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Can edge waves be generated by wind?
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Edge waves, the infragravity waves trapped by near-shore topography, are important
in morphodynamics and flooding on mildly sloping beaches. Edge waves are usually
generated by swell via triad interactions. Here, we examine the possibility that edge waves
might be also generated directly by wind. By processing data from the SandyDuck’97
near-shore experiment, we show that pronounced directional asymmetry of edge waves
does occur in nature, apparently unrelated to the direction of swells and along-shore
currents. These observations exhibit edge waves propagating in the downwind direction
under moderate wind against the along-shore currents, while swell is incident nearly
normally to the shoreline, which strongly suggests generation of edge waves by wind. We
examine theoretically possible mechanisms of edge-wave excitation by wind. We show that
the ‘maser’ mechanism suggested by Longuet-Higgins (Proc. R. Soc. Lond. A, vol. 311,
issue 1506, 1969b, pp. 371–389) in the context of excitation of free water waves is effective
under favourable conditions: nonlinearly interacting random short wind-forced waves
create a viscous shear stress on the water surface with the variation of stress being phase
linked to edge waves, which allows self-excitation of a coherent edge wave. The model we
put forward is based upon the kinetic equation for short wind waves propagating on the
inhomogeneous current due to an edge wave. The model needs a dedicated experiment for
validation. Analysis of plausible alternative mechanisms of generation via Miles’ critical
layer and via the viscous shear stresses induced by the edge wave in the air revealed no
instability in the consideration confined to the main mode and constant slope bathymetry.
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1. Introduction

After the initial discovery of edge waves by Stokes in 1846 (see Ursell & Taylor 1952;
Leblond & Mysak 1978; Stokes 2009), in the last decades of the 20th century research
into edge waves has been primarily driven by the interest in understanding of their
role in generating along-shore-periodic shoreline features, such as beach cusps (Guza
& Inman 1975). Although these efforts were ultimately inconclusive, they produced a
wealth of information about edge-wave dynamics. In particular, the alternative theory of
self-organization (Coco, Huntley & O’Hare 2000; Coco & Murray 2007) seems to have
settled the question into a more nuanced understanding of near-shore morphodynamics
that regards edge waves and cuspate shoreline structures as mutually interacting features
(Masselink et al. 2004; Dodd et al. 2008).

Linear dynamics of edge waves in idealized conditions (e.g. no dissipation, straight
shoreline, along-shore uniformity, monotonic beach profiles, etc.) is well understood: the
problem reduces to a singular Sturm–Liouville (SL) eigenvalue problem in the cross-shore
(e.g. Huthnance 1975). Analytical solutions have been found for simple plane beaches
(Ursell & Taylor 1952; Whitham 1979; Mei, Stiassnie & Yue 2005), and beaches with
exponential profiles – whether concave (Ball 1967; Clarke & Louis 1975) or convex
(Buchwald, Adams & Longuet-Higgins 1968); see also generalizations by Louis &
Clarke (1986). Some departures from idealized conditions have been investigated using
asymptotic expansions, for example, the effects of mild along-shore variability (Kurkin
& Pelinovsky 2002). A plethora of other modifications of the problem have also been
considered, for example, the effects of non-monotonic beach profiles (Bryan & Bowen
1996); the effect of along-shore currents (Howd, Bowen & Holman 1992); rogue edge
waves (Pelinovsky, Polukhina & Kurkin 2010).

Edge waves were examined as an important element of the near-shore hydrodynamics
(e.g. Freilich & Guza 1984; Elgar & Guza 1985, 1986; Elgar, Herbers & Guza 1994;
Herbers, Elgar & Guza 1995; Agnon & Sheremet 1997; Sheremet et al. 2002; Herbers
et al. 2003; Sheremet et al. 2016, and many others). The infragravity field contributes
to shoreline storm surge and flooding by generating low frequency fluctuations of the
mean water level, for example, the wave set-up produced by incident swell in energetic
condition could reach up to 3 m elevation (e.g. Stockdon et al. 2006; Guza & Feddersen
2012; Shimozono et al. 2015; Montoya & Lynett 2018, and others). Despite the infragravity
wave amplitudes in the open ocean being of the order of a few cm, infragravity waves
radiating from coasts into the deep ocean can play a role in ice-shelf break up; they are also
considered to be source of seismic free oscillations, the ‘Earth hum’ (e.g. Deen, Stutzmann
& Ardhuin 2018; Uchiyama & McWilliams 2008); and are important for quantifying errors
in satellite altimetry (e.g. Rawat et al. 2014).

The mechanisms of edge-wave generation are less well understood. In the Greenspan
(1956) mechanism, edge waves can be generated by weather fronts. Major atmospheric
pressure anomalies created by atmospheric fronts can excite edge waves which are in the
‘Greenspan resonance’ with a moving pressure distribution, i.e. the velocity of a moving
pressure anomaly equals the phase velocity of a certain edge-wave mode. Although the
atmospheric fronts are accompanied by strong winds, these winds usually play only a
minor role in generating edge waves (e.g. see an overview with theoretical estimates and
available observations of the Greenspan resonance in Leblond & Mysak 1978).

On mild sloping beaches edge waves occupy the infragravity (IG) frequency band,
approximately between 1/30 and 1/300 Hz (Elgar & Guza 1985), which is generally
interpreted to indicate that generation mechanisms are similar to those of free IG waves
(for recent general review, see e.g. Bertin et al. 2018). It is generally agreed that IG waves
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cannot be generated directly by wind: the phenomenological argument is that IG waves
have frequencies well below the spectral gap, the lower frequency bound of wind wave
range, which corresponds approximately to waves with 20 s periods. After some debate
over two alternative mechanisms: nonlinear wave–wave interaction (Freilich & Guza 1984;
Elgar & Guza 1985, 1986; Elgar et al. 1994; Agnon & Sheremet 1997; Sheremet, Guza &
Herbers 2005, and many others) vs forcing by oscillations of the swell breaking point
(Symonds, Huntley & Bowen 1982), the consensus emerged in favour of the former for
mild sloping beaches (e.g. List 1992; van Dongeren, Bakkenes & Janssen 2003; Battjes
et al. 2004).

On mildly sloping beaches, the group-bound long-wave approximation (Longuet-Higgins
& Stewart 1962) is still commonly used, although more sophisticated descriptions based
on near-resonant triad interactions have long been available (Freilich & Guza 1984;
Elgar & Guza 1986; Kaihatu & Kirby 1995; Agnon & Sheremet 1997; Sheremet et al.
2016). Edge waves may be excited through nonlinear interaction between swell and IG
leaky waves (Kirby, Putrevu & Özkan Haller 1998). However, perhaps because of the
historical interest in the relationship with beach cusps, starting with the celebrated paper
by Guza & Davis (1974) most of the published work has focused on edge waves with a
standing-wave structure in the along shore (e.g. Blondeaux & Vittori 1995; Vittori et al.
2019). Standing edge waves may be produced by either synchronous or subharmonic
excitation by normally incident waves. They are by definition directionally symmetric:
the generating wave field propagates nearly perpendicular to the straight shoreline, and
the edge-wave field is standing in the along shore, i.e. comprises two finely balanced
counter-propagating progressive edge waves. In general, it is to be expected that if the
wave–wave interaction is the dominant generation mechanism on mildly sloping beaches,
with the near-shore swell and IG fields being primarily normally incident (e.g. Sheremet
et al. 2002), the directional near symmetry should be a characteristic of edge-wave fields.
Note that, even under the general triad-interaction mechanism (not subharmonic), the
existence of counter-propagating edge waves is a condition for interaction (Kirby et al.
1998).

Field observations seem to support the expectation that edge waves are directionally
symmetric. Using observations collected by Herbers & Guza (1994) offshore the US
Army Field Research Facility (FRF) at Duck, NC, Herbers et al. (1995) carried out a
comprehensive analysis of the directional properties of swell and IG waves. Their results
show that, although the ratio of up- to downcoast IG energy flux is typically close to
unity (i.e. IG fields are usually directionally symmetric), directionally asymmetric fields
are common as well. While non-normally incident swells can generate edge waves in
both up- and downcoast directions, a high correlation between the direction of swell and
that of IG waves has been noted, which suggests that, statistically, the swell direction
is the strongest factor in determining the direction of edge waves. Therefore, while
directionally asymmetric IG waves (and, consequently, edge waves) are observed, their
direction statistically matches the swell direction.

Here, we start with the ‘counter’-question: Do directionally asymmetric edge waves
fields, that do not match the swell direction, occur? If the answer is ‘yes’, they are
unlikely to be generated by nonlinear wave interactions, leaving direct wind forcing as
the most likely candidate. The overall high correlation of swell and IG wave directionality,
however, suggests that such occurrences must be rare, possibly associated with peculiar
coastal weather conditions. Finding such events in existing data is a challenge in itself.
The search for a directionally asymmetric wave has to exclude laboratory experiments,
where the limited along-shore spans available require periodic lateral boundary conditions,
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thus implicitly imposing along-shore symmetry. Field observations of edge waves are
notoriously difficult, for a host of reasons (e.g. Holman & Bowen 1979). Field conditions
rarely match simple along-shore uniformity, and when they do, it is over a limited
spatial scale, so estimates based on analytical solutions are of limited use. The best
observational tools available today for resolving the along-shore wavenumber spectrum
are arrays comprising a large number of synchronously recording sensors distributed
in along-shore lines. To resolve the cross-shore structure of edge waves, multiple such
lines are needed, distributed at different locations in the cross-shore to eliminate ‘blind
spots’ caused by cross-shore nodes. Given their rarity, to capture anomalous edge-wave
fields, such arrays would have to be deployed for extended periods of time. The required
large number of instruments and long duration of the experiment makes these arrays
very expensive and fragile, and subject to failure. Even if all these difficulties are
overcome, the number of spatial data points is still severely limited, resulting in statistically
unstable estimates. Moreover, even with the highest-resolution data available to date, the
SandyDuck’97 near-shore array observations, the analysis of IG and edge-wave content
requires non-trivial methods (e.g. Sheremet et al. 2002, 2005). However, we will show
that the available observational data are rich enough to allow for examination of the
directional asymmetry of edge-wave fields. An outstanding example is the near-shore array
deployed by Elgar, Herbers, O’Reilly and Guza (e.g. Feddersen et al. 2000; Elgar et al.
2001; Sheremet et al. 2002, 2005) during the SandyDuck’97 experiment, which is, to our
knowledge, the most comprehensive effort to date to study near-shore edge waves.

As far as we are aware, the directional asymmetry of edge waves has never
been considered. Using wavenumber–frequency spectra (the method is described in
Appendix A), in § 2 we search the SandyDuck’97 observations for the records that
exhibit directionally asymmetric edge-wave fields, that coincide with the occurrence of
along-shore winds and that do not match the direction of the incoming swells and cannot be
explained by strong along-shore currents. We show that pronounced directional asymmetry
does occur in nature, apparently unrelated to the direction of the swells and along-shore
currents. This observational evidence strongly suggests the existence of direct edge-wave
generation by wind and thus motivates a theoretical examination of a possible mechanisms
of direct wind forcing.

In the theoretical part of the work we examine all plausible mechanisms of edge-wave
generation by wind. It is not clear why this possibility has never been considered, we
can only speculate; perhaps it is due to the consensus that IG waves in the ocean are not
generated by wind and, by virtue of the implicit extension that the edge waves belong to
the IG range, their generation by wind has been ruled out without consideration. However,
there is a crucial difference between the edge waves and free oceanic IG waves: the former
are much slower, which makes it, in principle, possible for edge waves to interact with
the wind via a number of physical mechanisms which have not been considered in this
context. In § 3 we provide the mathematical formulation of the problem of edge-wave
generation by wind and identify three plausible candidate mechanisms to be examined.
In § 4 we examine the ‘maser’ mechanism put forward by Longuet-Higgins (1969b) to
explain the peculiarity of wave–wind interaction for relatively long water waves. In this
mechanism the central role is played by wind-forced short free wind waves of gravity
and gravity–capillary range which generate vorticity near the surface and viscous shear
stresses. These short waves and, hence, the stresses they create, are modulated by the
orbital velocities of edge waves, which creates an edge-wave phase-locked tangential stress
distribution. The effect of a moving stress distribution phase locked with the edge-wave
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results in the edge-wave growth. Estimates of the edge-wave growth rates based upon
a reasonably realistic simplified kinetic description of a broad spectrum of nonlinearly
interacting short wind waves propagating on an inhomogeneous current due to the edge
wave predict effective edge-wave generation under favourable conditions. The possibility
of generation by Miles’ critical layer mechanism and and via interaction with the viscous
shear stresses induced by the edge wave in the air are analysed in Appendices B and C,
respectively. In the consideration based upon the model confined to the main mode of edge
waves and constant slope bathymetry no instability has been revealed. In § 5 we summarize
the findings, discuss their implications and the main open questions.

2. Observational evidence

2.1. The Sandyduck’97 near-shore experiment and methods of data analysis
The SandyDuck’97 near-shore field experiment, hosted by the FRF at Duck, NC
(figure 1a), was aimed at capturing a comprehensive snapshot of all possible aspects of
near-shore wave, circulation and sediment transport processes, and involved 30 groups
of investigators from universities and institutions in the US and Canada (see Birkemeier,
Long & Hathaway (1997) for an overview). A comprehensive archive of the data collected,
as well as a detailed description of the different components of the experiment may
be found on the FRF’s data servers (Hathaway & Birkemeier 2004). Wind data used
here were provided by the FRF meteorological station, located at the seaward end of
the pier, at x = 585.20 m, y = 517.30 m and z = 19.36 m, in the FRF coordinate system
(figure 1). Offshore wave data used here were obtained by the FRF directional Waverider
buoy located near the 17 m isobath at the point x = 3.87 km, y = −2.35 km in the FRF
coordinates (30 10.10’ N, 75 42.04’ W). Near-shore bathymetric data were surveyed during
the experiment using the CRAB (Coastal Research Amphibious Buggy) over a near-shore
‘minigrid’, with 2–3 m resolution along 18 profile lines parallel to the x-axis, spaced in
the instrumented area at 25 m, and extending from dune base to 400 m offshore. At the
near-shore array location, the bathymetry was essentially cylindrical, with nearly straight
and parallel isobaths (figure 1b,c). The beach profile may be roughly divided into two
segments: a steep near-shore segment, 100 < x < 250, with a slope ≈0.028, typically
intensely reworked by waves; and a milder offshore one, x ≈ 350, with a slope ≈ 0.013.
Each of these segments exhibited a bar, located at x ≈ 150 m and x ≈ 350 in figure 1(c).
The bars were always present, although at shifting positions and with varying heights and
shapes. The hydrodynamic data discussed here were collected by the near-shore array,
which recorded flow velocity and pressure at 2 Hz continuously from August to December
1997. The array data used here were recorded by a subset of 35 triplets of collocated
electromagnetic current meters (UV) and bottom-mounted pressure (P) sensors distributed
on six along-shore lines between approximately the 1 and 6 m isobaths (figure 1). The
along-shore spacing of the instruments in the array was not uniform, in order to maximize
the coverage and eliminate co-array (lag space) redundancies (see, e.g. Davis & Regier
1977; Sheremet et al. 2005 for the near-shore array).

2.2. Directional asymmetry of edge-wave spectra
The analysis presented here covers observations from August to November 1997. Wind
speed and direction, as well as offshore wave parameters measured by the Waverider
buoy at 17 m depth (significant height, period and direction) are available from the data
repository at a resolution of approximately 30 min (figure 2); here, we just report the data.
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Figure 1. Configuration of the near-shore array experiment at Sandyduck’97. (a) Atlantic coast at USACE
FRF, Duck, NC. The coastline is approximately 20◦ west of north. In the FRF coordinate system used here,
y-axis is along shore, the x-axis direction is cross-shore and elevation data are referenced to the 1929 National
Geodetic Vertical Datum (NGVD). The origin of the FRF system is the intersection of a shore-parallel baseline
with the southern boundary of the FRF property. The y coordinate of the landward end of the pier is 516.6 m. (b)
Distribution of instruments of the near-shore array (only the along-shore lines shown), overlaid on bathymetry
map (surveyed on 14 August 1997). Circles represent collocated pressure (P) sensors and electromagnetic
current meters (U cross-shore, and V along-shore component of the horizontal flow velocity). (c) Cross-shore
bathymetry profile (14 August 1997) at all the cross-shore minigrid survey lines; mean slopes: ≈0.028 for
100 < x < 250; ≈0.013 for x > 250 m.

The general metocean conditions during the SandyDuck’97 experiment were not very
energetic (figure 2). A few mild storms were recorded, associated with winds ≈15 m s−1

out of the NE, that generated offshore waves with peak significant heights ≈2 m and with
peak periods typically between 8 and 10 s. The most energetic storm on 19 October was
characterized by northerly winds with a speed ≈20 m s−1, offshore significant wave height
≈4 m and peak period 10 s.

In agreement with the analysis of Herbers et al. (1995), in most records swell direction
and variance are the determining factors for the structure of the IG wave band. The example
in figure 3 shows IG field recorded on 24 August, 05:00 (all times given are local time).
This event was characterized by a weak sustained wind blowing in the upcoast direction,
with speed ≈1.9 m s−1 and with an offshore swell of 0.5 m significant wave height, with a
peak period of 8.3 s. Mean currents recorded at the near-shore array had maximum speed
0.11 m s−1, and a variable direction, mostly onshore (figure 3a). The overall downcoast
direction of the IG waves estimated at four lines of the near-shore array (figure 3c–f )
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Figure 2. FRF wind (a,b) and offshore wave (c–e) parameters recorded between August and November 1997.
Wind data were collected by a meteorological station located at the shoreline end of the pier; the wave data –
by the Datawell Waverider buoy, located approximately 4 km offshore, near the 17 m isobath. (a) Wind speed;
(b) wind direction; (c) wave significant height; (d) wave peak period; (e) wave peak direction. Wind records are
from the FRF Met station. The direction of both wind and offshore waves is given in meteorological convention,
clockwise and ‘coming from’, but with respect to the upcoast direction (20◦ west of north, see figure 1).
Downcoast (blue markers) and upcoast (red markers) events correspond to wind direction aligned by ±20◦
with the along-shore axis; offshore wave heights less than 1.5 m; and swell propagating nearly shore normal,
within a ±40◦ window.

matches the direction of the offshore swell. The location of the centre of mass (peak
values) of the wavenumber–frequency spectrum (figure 3c–f ), mostly in the trapped wave
domain, suggests that edge waves were a significant component of the near-shore IG field.

While the direction of IG waves matches the swell direction in most cases, anomalies
also occur, in which the strong IG directional asymmetry agrees with the wind, rather
than the swell direction. To find such anomalies, ‘favourable’ metocean conditions are
defined here as satisfying the following conditions: (i) wind direction predominantly
along shore: within a 20◦ centred on the along-shore axis, and, (ii) low energy
swells, with offshore significant height <1 m and direction nearly shore normal (±40◦).
Although these constraints are somewhat arbitrary, they are not used here with any other

934 A16-7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
09

.1
51

.2
09

.2
3,

 o
n 

02
 F

eb
 2

02
2 

at
 1

4:
13

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
11

41

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1141


V.I. Shrira, A. Sheremet, Y.I. Troitskaya and I.A. Soustova

210

900

850

825

775

700

260 310 385 0 0.1 0.2 0.3

10–1

10–2

x = 210 m
x = 260 m
x = 310 m
x = 385 m

Downcoast

Waves

Wind
2.7 m 3.4 m 3.1 m 3.4 m

p12

p92

p82 p82

p51p52p55p56p53
p54

p84

p36
p37

p85

p61

p63
p64p62p65

p22 p23 p24 p25

p41p42p45p43p44
p46

p93 p94 p95

p13 p14 p15

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.040

0.035

0.030

0.025

0.020

0.015

0.010
0 0.1 –0.006 –0.004

κ (1 m–1)Spp (10–3m2 Hz–1)

f (
H

z)
f (

H
z)

f (
H

z)
S

p
ec

tr
al

 d
en

si
ty

 (m
2
 H

z–
1
)

A
lo

n
g
sh

o
re

 (m
)

Cross-shore (m) Frequency (Hz)

f (
H

z)
Spp (10–3m2 Hz–1)κ (1 m–1)

–0.002 –0.006 –0.004 –0.002 0 0.02 0.04

0.100.050 –0.006 –0.004 –0.002 –0.006 –0.004 –0.002 0 0.05 0.10
0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.040

0.035

0.030

0.025

0.020

0.015

0.010

x = 210 m
H = 2.7 m

x = 260 m
H = 3.4 m

x = 310 m
H = 3.1 m

x = 385 m
H = 3.4 m

A A

B C B C

A A

B C B C

(a) (b)

(c) (d)

(e) ( f )

Currents Vmax = 0.11 m s–1
Wind U =1.9 m s–1     Direction: 5.7 deg.
Offshore Waves Hs =0.53 m Tp =8.3 s Direction: 106 deg.
Nearshore array x (m) Hs (m) HIG

s (m)
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Figure 3. Example of observations where the overall edge-wave propagation direction matches the direction
of the offshore swell, but is opposite to the wind (24 August, 05:00). (a) Near-shore array lines (grey rectangles)
used for the wavenumber–frequency spectrum analysis. Circles indicate the position of the pressure and velocity
sensors used in the analysis. Arrows represent mean currents. (b) Spectral density of pressure variance at the
along-shore lines. Inset: schematic of wave and wind directions. (c–f ) Wavenumber–frequency spectra at four
along-shore array lines. To facilitate the reading of the scales of the edge waves, rather than using ω and k, the
plots are given in f (frequency, reciprocal of the wave period), and κ = k/2π (reciprocal of the along-shore
wavelength). Dashed lines represent the trapped-wave interval ±[kE

min, kE
max] (±kE

min – red; ±kE
max – blue). The

f -κ domain outside the trapped-wave interval ±[kE
min, kE

max] is shaded white; shaded region A: waves that can
escape into the deep ocean; shaded regions B and C: up- and downcoast-propagating trapped waves that have
the turning point offshore of the array line. The table provides relevant wave (offshore and near shore) and
wind parameters, where Vmax is the maximum current speed; x is the cross-shore position of the line; U is the
wind speed; Hs is significant height, and HIG

s is the significant height of the IG frequency band).
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Can edge waves be generated by wind?

purpose than to eliminate highly unfavourable events. These criteria identify 60 events
(figure 2; 41 upcoast, and 19 downcoast) out of the total of 3809 as having potentially
anomalous directionality. The preponderance of upcoast favourable events reflects the
local wave climate and the orientation of the coast.

We present here two examples, showing upcoast- and dowcoast-propagating IG fields,
respectively. In both cases discussed below the offshore swells are nearly shore normal.
If wind did not play any role in the generation of the IG wave field, one would expect to
see approximately directionally symmetric IG wavenumber–frequency spectra; i.e. low
resolution maximum entropy estimates should show a spectral centre of mass (peak)
located roughly at κ = 0. In fact, both cases exhibit strong directional asymmetry that
agrees with the direction of the wind. We stress that, in both the cases, IG propagation
direction is against the near-shore current.

The downcoast event shown in figure 4 occurred on 30 November, 16:00. The
meteorological and offshore wave conditions during it were characterized by winds
≈6 m s−1 blowing downcoast, and offshore long swell of peak period 10.5 s and significant
height 1.16 m, propagating nearly perpendicular to the coast (figure 4(b) and table). Mean
currents at the near-shore array have a maximum speed 0.16 cm s−1, flowing onshore at
the deepest line (x = 385 m) and rotating slightly upcoast at the shallower array lines
(figure 4a). As before, the location of the centre of mass of the wavenumber–frequency
spectrum suggests significant edge-wave content (figure 4c–f ).

The upcoast event shown in figure 5 occurred on 5 September, 11:00, during a
≈5 m s−1 upcoast wind and in the presence of an offshore short swell with peak
period ≈7 s, significant height ≈1.34 m; (figure 5(a) and table). Mean currents at the
near-shore array were less than 11 cm s−1, flowing overall downcoast (figure 5a). The
wavenumber–frequency spectra exhibit a combination, at different frequencies, of free and
trapped power, the latter showing strong upcoast directional asymmetry.

2.3. Preliminary conclusions
The events discussed above are examples of cases where the dominant propagation
direction of the mostly trapped IG wave field is clearly correlated to wind direction,
but seems disconnected from the direction of the swell (shore normal) and along-shore
currents. We caution that this ‘associative’ logic might be misleading in general, because
it assumes that the forcing (by either wind or waves) varies slowly and the IG wave system
is at quasi-equilibrium. However, figures 4 and 5 represent only ‘1 h snapshots’ (processed
time span) of the wave and wind fields. A directional misalignment might occur, for
example, if the analysis window coincided with a major shift in swell direction, but before
the IG wave field had time to respond. A quick examination of the details of the wind and
wave fields before the events (figure 6), however, shows no significant shifts in the swell
direction in the day before the selected events, which supports the suggestion that for these
events wind, rather than swell, is the dominant forcing of the observed edge-wave wave
field. Alternative interpretations of the reported asymmetry of edge-wave propagation are
discussed in § 5.

3. Wind excitation of edge waves
3.1. Formulation of the problem

To our knowledge the possibility of wind generation of edge waves has never been
examined theoretically. Here, we address this gap by considering mathematical models of
direct edge-wave excitation by wind. To this end we adopt the idealizations outlined in the
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Figure 4. Example of observations of downcoast-propagating edge waves in the wind direction, with swells
being normally incident (30 November, 16:00). Notations and conventions are the same as in figure 3.

previous section: we assume the coastline to be straight and infinite, the bathymetry to be
cylindrical, i.e. we allow the water depth to depend only on the distance from the straight
shore. We employ the Cartesian coordinate frame with the horizontal y axis directed along
the coastline, x axis directed off shore and the vertical z axis directed upwards. The edge
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Figure 5. Example of upcoast-propagating edge waves, matching the direction wind, with normally incident
swells (observations on 5 September, 11:00). Notations and conventions are the same as in figure 3.

waves are described in the shallow water approximation. We use the following notations:
u and v are the offshore and the along-shore fluid velocity components, H(x) is the
undisturbed water depth, pa is total normal stress caused by the action of the atmosphere
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Figure 6. Wind and wave parameters the day before the events analysed in figures 4 and 5 (same organization
as in figure 2).

at the water surface and ξ is the water surface elevation. Then the equations of motion can
be written in the form

∂u
∂t

+ v
∂u
∂y

+ u
∂v

∂x
+ g

∂ξ

∂x
= − 1

ρ

∂pa

∂x
, (3.1)

∂v

∂t
+ v

∂u
∂y

+ u
∂v

∂x
+ g

∂ξ

∂y
= − 1

ρ

∂pa

∂y
, (3.2)

∂ξ

∂t
+ ∂

∂y
v[ξ + H(x)] + ∂

∂x
u[ξ + H(x)] = 0. (3.3)

We confine our consideration to the linear setting. As shown by Longuet-Higgins (1969a),
the effect of an oscillating shear stress at the water surface Ta in a viscous fluid in the
presence of a propagating surface wave is equivalent to that of the normal stress with
π/2 phase lag relative to Ta. Here, pa in ((3.1) and (3.2)) is a sum of the direct normal
stress at the water surface and the contribution of the shear stress. On linearizing system
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Can edge waves be generated by wind?

((3.1)–(3.3)), we consider an infinitesimal plane wave propagating along the coastline

∂u
∂t

+ g
∂ξ

∂x
= − 1

ρ

∂pa

∂x
, (3.4)

∂v

∂t
+ g

∂ξ

∂y
= − 1

ρ

∂pa

∂y
, (3.5)

∂ξ

∂t
+ H(x)

(
∂u
∂x

+ ∂v

∂y

)
+ u

dH
dx

= 0. (3.6)

We perform Fourier transform with respect to along-shore coordinate y and time t. For
each harmonic component specified by a particular wavenumber k the wave velocities,
the elevation of the water surface and the normal stress can be presented as products of
a function specifying the cross-shore dependence which we mark by a hat symbol and
e−i(ωt−ky) ⎛

⎜⎝
u
v

ξ

pa

⎞
⎟⎠ =

⎛
⎜⎜⎝

Û(x)
V̂(x)
Ξ̂(x)
P̂a(x)

⎞
⎟⎟⎠ e−i(ωt−ky). (3.7)

Edge-wave cross-shore dependence is determined by the boundary value problem

gH(x)
(

d2η̂

dx2 − k2η̂

)
+ g

dH
dx

dη̂

dx
+ ω2η̂ = ω2P̂a(x)

ρg
, η̂(0) < ∞, η(∞) = 0, (3.8)

where

η̂(x) = Ξ̂(x) + P̂a(x)
ρg

. (3.9)

To fix the idea we consider the simplest model of bathymetry. For the constant slope,
H(x) = γ x, the explicit solution corresponding to the fundamental mode of edge waves is
remarkably simple

η̂(x) = ae−kx, P̂a(x) = Pa0e−kx, ω2 − γ gk = ω2

ρga
Pa0. (3.10a–c)

It differs from the similar formulae for free edge waves in Appendix A by the presence of
the term (ω2/ρga)Pa0 which accounts for the interaction with atmosphere. Since it is of
the order of the air-to-water density ratio we can neglect its effect on the real part of the
eigenvalue and present the wave frequency and the growth rate as follows:

ω0 =
√

γ gk, (3.11)

Imω

ω0
= 1

2ρg
Im

Pa0

a
. (3.12)

At first glance the above problem set-up strongly resembles the formulation for the
Greenspan (1956) resonance, where an edge wave in resonance with a moving pressure
distribution is generated by a moving, given, atmospheric pressure disturbance. The key
difference with our set-up is that, in contrast to Greenspan (1956), there is no prescribed
atmospheric pressure disturbance, Pa0 is not given, but has to be found by solving the linear
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boundary value problem (3.8)–(3.12) in the absence of atmospheric forcing. Here, the
challenge is to find and quantify instability mechanisms producing noticeable growth rates
Im ω > 0. We identify three a priori seemingly plausible options which we examine:

(i) Edge-wave dispersion relation for any bathymetry allows the waves to have a critical
layer in the wind flow. Therefore, the obvious candidate mechanism of edge-wave
generation to be considered is an analogue of Miles’ mechanism of wind wave
generation. This mechanism is examined in Appendix B for the main mode in the
constant slope model; the growth rate is shown to be identically zero.

(ii) Since the edge waves are essentially quasi-horizontal motions, the shear stresses
caused by the coupled atmospheric flow potentially might cause an instability if
the turbulent viscosity in the boundary layer in the air is taken into account. This
possibility is examined in Appendix C. It is shown that with viscous effects taken
into account there is no instability in the system of edge waves coupled with
atmospheric flow.

(iii) It is known (Longuet-Higgins 1969b) that the effect of strongly wind-forced short
free waves (of short gravity and gravity–capillary range) is equivalent to a viscous
tangential stress at the surface. Since such short waves are strongly affected by orbital
velocities of edge waves, these stresses are modulated by edge waves. Interaction of
random free short waves with an edge-wave field might lead to self-excitation of
a coherent edge wave. In the next section we examine such a ‘maser’ mechanism
and show that, indeed, such self-excitation can occur. We will also provide rough
estimates of its efficiency.

4. The ‘maser’ mechanism of self-excitation of edge waves

Since we have shown that, on the one hand, there is observational evidence of edge-wave
excitation by wind, while, on the other hand, according to the analysis in Appendices B
and C, there is no direct linear generation of edge waves by wind, at least in the simplest
setting we outlined, there should be a less straightforward mechanism. In this section we
re-examine the idea of the nonlinear ‘maser’ mechanism, suggested by Longuet-Higgins
(1969b) in a different context and show that this is the most likely candidate for generation
of edge waves by wind. Longuet-Higgins (1969b) showed that a harmonic short wave
of gravity or gravity–capillary range with amplitude A, wave vector K and frequency Ω

generates mean vorticity near the water surface, as if generated due to action of the viscous
shear stress

τwave = 2ρν(KA)2Ω
K
K

, (4.1)

where ν is the kinematic viscosity of the water. In our context, the short wind waves
are always in the deep water regime and hence relation (4.1) applies. The presence of
an edge wave, which is much longer than the short wave, causes modulation of its slope
(KA) and, hence, the modulation of the viscous shear stress given by (4.1). Obviously, the
variations of the shear stress at the water surface have the same frequency and wavenumber
as those of the edge wave. Crucially, these variations are phase linked with the edge
wave, which therefore can cause growth of the edge wave. Note that, in our context, the
maser mechanism is expected to be much more efficient than for deep water waves case
examined by Longuet-Higgins (1969b), since the group velocities of short wind waves
could be much closer to or even coincide with edge-wave celerity. Although in this case
we do not have direct generation of edge waves by wind, here, we adopt the universally
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accepted terminology by Longuet-Higgins, who discovered this mechanism in a different
context and christened it ‘maser mechanism of wave generation by wind.’ To estimate
the growth rate of the edge wave we consider below two models of a surface wave field:
(i) a toy model of the quasi-harmonic wave and, (ii) a reasonably realistic model with a
continuous spectrum of random weakly nonlinear short wind waves. From now on, when
we are speaking about a free surface wave field or short wind waves we mean only waves
of short gravity and gravity–capillary range, since the rest of the surface wave spectrum
plays no role in our consideration.

4.1. Edge-wave excitation by wind in the model with a quasi-harmonic wind wave
We start with examining the modulation of the amplitude and wavenumber of a short
quasi-monochromatic wind wave by an edge wave. In the laboratory frame the local
dispersion relation linking the short-wave frequency Ω with the wave vector K(Kx, Ky)

riding upon the edge wave with the account of the Doppler shift due to the orbital velocity
U(U, V) is

Ω =
√

gK + σK3 + UKx + VKy, K =
√

K2
x + K2

y , (4.2)

where σ is the surface tension coefficient. In the reference frame following the edge wave
with phase velocity c this dispersion relation takes the form

Ω = −cKy +
√

gK + σK3 + UKx + VKy, K =
√

K2
x + K2

y . (4.3)

Recall that U and V are the edge-wave orbital velocity components

(U, V) = gka
ω

e−kx(− sin ky, cos ky). (4.4)

The standard WKB (Wentzel–Kramers–Brillouin) equations for the wavevector K(Kx, Ky)
and position vector r of the short-wave wavepacket (e.g. Phillips 1977)

dK
dt

= −∂Ω

∂r
,

dr
dt

= ∂Ω

∂K
, (4.5a,b)

in our context take the form

dKx

dt
= (−Kx sin ky + Ky cos ky)

gak2

ω
e−kx,

dKy

dt
= (Kx cos ky + Ky sin ky)

gak2

ω
e−kx,

dy
dt

= −c + gak
ω

e−kx cos ky + Cgry,
dx
dt

= −gak
ω

e−kx sin ky + Cgrx.

⎫⎪⎪⎬
⎪⎪⎭

(4.6)
Here,

Cgry = Ky

K
Cgr, Cgrx = Kx

K
Cgr,

(
Cgr = d

dK

√
gK + σK3

)
(4.7a–c)

are the components of the intrinsic group velocity of the short wind waves. For simplicity
only, consider a gravity–capillary wave, which initially has the wave vector directed along
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y: K(t = 0) = (0, K0). Then, in the linear approximation in the amplitude of the edge wave
(ka), the solution to system (4.6) is

Ky = K0 + K0
gk2a
ω

cos ky
ω − Cgr0k

e−kx, (4.8)

Kx = −K0
gk2a
ω

sin ky
ω − Cgr0k

e−kx. (4.9)

Here, Cgr0 is the group velocity of a short wave with the initial wave vector K0

Cgr0 = g + 3σK2
0

2
√

gK0 + σK3
0

. (4.10)

Modulation of the short-wave amplitude can be easily found from the conservation of the
wave action N

N = F
Ω − (V − c)Ky − UKx

, (4.11)

where Ω is given by (4.3), and

F = (Ω − (V − c)Ky − UKx)
2

2K
|A|2, (4.12)

is the intrinsic energy of the short wave with amplitude |A|. To the first order in ka the
Taylor expansion of (4.3) gives for the short-wave wave action

N = Cf 0

(
1 + ε

Cgr0 − Cf 0

Cf 0
cos kye−kx

)
|A|2, (4.13)

where

ε = gk2a
ω

1
ω − Cgr0k

, (4.14)

and Cf 0 = √
g/K0 + σK0 is the intrinsic phase velocity of the short wave. In the linear

approximation in ka, (4.14) and (4.8) yield the following closed expression for the slope of
the short wave:

(KA)2 = (K0A0)
2
(

1 + 3Cf 0 − Cgr0

Cf 0

gk2a
ω(ω − Cgr0k)

cos kye−kx
)

. (4.15)

The shear stress due to the wind-forced short wave is given by (4.1). The wave frequency
in the linear approximation can be found from (4.3). To the first order in ka we have

Ω = Ω0

(
1 + ε

Cgr0

Cf 0
cos kye−kx

)
, (4.16)

where Ω =
√

gK + σK3 is the frequency of the gravity–capillary wave with wavenumber
(0, K0). The effective shear stress created as a result of interaction with the edge wave
reads

τwave = 2ρν(KA)2Ω = 2ρν(K0A0)
2Ω0

(
1 + 3gk2a

ω(ω − Cgr0k)
cos kye−kx

)
y0, (4.17)

where y0 is the unit vector in the y direction. For the adopted simplest model with the
constant slope bathymetry H = γ x and the edge-wave dispersion relation ω = √

γ gk, we
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Can edge waves be generated by wind?

can now easily find the expression for the component of the shear stress acting upon the
edge wave

τ1y = 6ρν(K0A0)
2Ω0

gka

γ (ω − C(0)
gr k)

. (4.18)

Employing this expression for the shear stress we can finally obtain from (3.12) the
normalized growth rate ω1/ω0 of the edge wave of frequency ω0, ω0 = √

γ gk

ω1

ω0
= 3ν(K0A0)

2Ω0k2

γω2
0(1 − C(0)

gr k/ω0)
= 3ν(K0A0)

2Ω0k

γ 2g(1 − C(0)
gr k/ω0)

. (4.19)

On the basis of this formula a rough estimate of the edge-wave relative growth rate
(ω1/ω0) for typical parameters (ν = 10−6 m2 s−2, γ ∼ 10−3 − 10−2, k ∼ 10−2 m−1,
Cgr0 ∼ 0.5 m s−1, ) yields

ω1/ω0 ∼ 10−2(K0A0)
2. (4.20)

Since typical short gravity and gravity–capillary waves are often rather steep (e.g.
Troitskaya et al. (2012), where |A0K0| ∼ 0.23), then ω1/ω0 ∼ 10−3, which is quite
substantial. However, the estimates strongly depend on the local conditions.

Obviously, the assumption of quasi-monochromatic short wind wave field adopted in the
considered toy model is totally unrealistic, it was needed as a first step to fix the idea. The
rough estimate it provides has a limited purpose, it suggests that edge-wave generation by
wind via short wind waves is indeed feasible and, hence, a consideration of a more realistic
model is warranted. Such a model is put forward in the next section.

4.2. Self-excitation of an edge wave interacting with a continuous spectrum of random
short wind waves

Here, we consider a reasonably realistic model where short wind waves are described as an
arbitrary continuous spectrum of nonlinearly interacting random weakly nonlinear waves,
while the edge-wave field is assumed to be linear. The evolution of interacting random
weakly nonlinear short gravity and gravity–capillary waves is described using the kinetic
equation for the spectral density of wave action N (e.g. Keller & Wright 1975)

∂N
∂t

+ ∂Ω

∂K
∂N
∂r

− ∂Ω

∂r
∂N
∂K

= β[U, V]N + Int[N], (4.21)

where the term βN comprises energy input due to the interaction with wind and sinks due
to dissipation, Ω is the short-wave frequency specified by the dispersion relation (4.3), K
is the short-wave vector and Int[N] is the short-wave nonlinear interaction term. The full
collision integral Int[N], which for this range of scales has not been rigorously derived
yet for the situations where both the triad and quartic interactions are important. The
collision integral for the gravity range derived by Hasselmann (1962) (e.g. Komen et al.
1994) is expected to be valid when the main effect is due to the waves of gravity range.
There exist a number of parameterizations of the collision integral for the gravity–capillary
range (see e.g. Kosnik, Dulov & Kudryavtsev 2010, and reference therein). Here, instead
of considering the full collision integral Int[N], which for this range of scales remains
to be properly derived, the nonlinear interaction of short gravity and gravity–capillary
waves will be described by the simplest relaxation model commonly referred to as the
τ -approximation (e.g. Keller & Wright 1975). This relaxation model is a commonly used
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approximation of the nonlinear interaction term based on the assumption that the spectrum
of short waves differs little from the equilibrium spatially uniform spectrum N0(K) and is
only slightly perturbed by the edge wave. The equilibrium spectrum N0(K) is determined
by the balance between the input and relaxation specified by the right-hand side of the
kinetic equation, i.e.

β[U, V]N(0) + Int[N(0)] = 0. (4.22)

Consider a small spatially homogeneous perturbation N1(K) of the equilibrium spectrum
N = N(0) + N(1). In virtue of our assumption N(1) � N(0), the kinetic equation can be
linearized, which yields

∂N(1)

∂t
= δ

δN(0)
β[N(0)]N(1)N(0) + β[N(0)]N(1) + δ

δN(0)
Int[N(0)]N(1). (4.23)

This equation predicts that all perturbations are decaying exponentially

N(1) = N(1)
0 (K) exp(−βr(K)t), (4.24)

where βr(K) is the relaxation rate for the wave component with the wavevector K . The
inverse of βr(K) is the relaxation time τ which gave the name to this approach that
originated in the kinetics of gases (Bhatnagar, Gross & Krook 1954). The substitution
of the spatially homogeneous solution (4.24) into (4.23) yields

− βrN
(1)
0 =

[
δ

δN(0)
β[N(0)]N(0) + β[N(0)] + δ

δN(0)
Int[N(0)]

]
N(1), (4.25)

which means that the decay rate βr is the eigenvalue of the operator in square brackets.
Equation (4.25) yields the approximation of the perturbed ‘collision integral’ we employ

δ

δN(0)
Int[N(0)]N(1) =

[
− δ

δN(0)
β[N(0)]N(0) − β[N(0)] − βr

]
N(1), (4.26)

which, strictly speaking, can be justified only for the spatially homogeneous
perturbation. Following Keller & Wright (1975), we will use this expression for small,
N(1), (N(1)/N(0) � 1), weakly inhomogeneous perturbations of scales far exceeding those
of gravity–capillary waves. Following Keller & Wright (1975), we also assume that
βr is equal to the short-wave wind input βwindN(0). Then, the kinetic equation for the
perturbations of the wave action spectral density in the presence of edge waves takes the
form

∂N(1)

∂t
+ ∂Ω(0)

∂K
∂N(0)

∂r
− ∂Ω(0)

∂r
∂N(0)

∂K
= −βwind(N(0))N(1), (4.27)

were Ω0 =
√

gK + σK3 is the unperturbed frequency of the gravity–capillary wave with
wave vector K . It is more convenient to use the polar form for K = (K sin θ, K cos θ

characterized by its modulus K and polar angle θ . Making use of the dispersion relation
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(4.3), we re-write our kinetic equation (4.27) in the form

∂N(1)

∂t
+ C(0)

gr

K
(K∇)N(1) − 1

K
∂N(0)

∂K

(
Ky

∂(UK)

∂y
+ Kx

∂(U · K)

∂x

)

− 1
K2

∂N(0)

∂θ

(
−Kx

∂(U · K)

∂y
+ Ky

∂(U · K)

∂x

)
= −βwind(N(0))N(1), (4.28)

where,
U = (U, V), U = U0 exp(−i(ωt − ky) − kx), (4.29a,b)

C(0)
gr = dΩ(0)/dK and βwindN(0) is the input minus dissipation in the absence of edge

waves. Since the problem is linear with respect to the edge-wave amplitude, it is convenient
to present the fields in complex form. Then, taking into account (4.3)

U0 = gka
ω

(i, 1). (4.30)

We consider the perturbations of wave action spectral density N(1) in the form of a
harmonic inhomogeneous wave repeating the structure of the orbital velocity field in the
edge wave

N(1) = N(1)
0 exp(−i(ωt − ky) − kx). (4.31)

Then, from the kinetic equation (4.27) we obtain the following expression for the
perturbation amplitude N(1)

0 :

N(1)
0 = −gk2a

ω2
(Ky + iKx)

2

(1 − C(0)
gr (k/ω)(Ky + iKx)/K + βi/ω)

1
K

(
∂N(0)

∂K
+ i

1
K

∂N(0)

∂θ

)
. (4.32)

Since Ky = K cos θ , Kx = K sin θ , we can present the above expression (4.32) in a more
compact form

N(1)
0 = −gk2a

ω2
K2e2iθ

(1 − C(0)
gr (k/ω)eiθ + βi/ω)

1
K

(
∂N(0)

∂K
+ i

1
K

∂N(0)

∂θ

)
. (4.33)

Taking into account the relationship between the wave action spectral density N, the
spectrum of surface elevations F (N = F/Ω) and the slope spectra S = FK2 (4.33), we
can readily obtain an expression for the perturbation of the slope spectra S(1) caused by
the edge wave

S(0) = S(1)
0 exp(−i(ωt − ky) − kx). (4.34)

Then, the complex amplitude S(1)
0 is

S(1)
0 = −gk2a

ω2
ωKe2iθ

(ω − kC(0)
gr eiθ + βi)

(
∂S(0)

∂K
− S(0)

K

(
C(0)

gr

C(0)
ph

+ 2

)
+ i

1
K

∂S(0)

∂θ

)
, (4.35)

and C(0)
ph = Ω(0)/K. We can now calculate the spectral density of the perturbed tangential

stress τ (1)

τ (1)(K) = τ
(1)
0 (K) exp(−i(ωt−ky) − kx),

(
τ

(1)
0 (K) = 2ρνS(1)

0 Ω(y0 cos θ+x0 sin θ)
)

,

(4.36a,b)
where y0 and x0 are unit vectors in the along-shore and offshore directions. The integration
of (4.36a,b) over the short-wave wavevectors yields the surface shear stress caused by the
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short-wave spectrum

τ 10 = 2ρν

∫
S(1)

0 (y0 cos θ + x0 sin θ)

√
gK + σK3K dK dθ. (4.37)

For rough estimates we assume that the equilibrium short-wave spectrum is the saturated
Phillips spectrum (Phillips 1958)

S(0) = α cos(θ − θ0)
2

K2 , (4.38)

where θ0 is the wind direction with respect to the y axis which can vary from −π/2 to π/2,
while the Phillips constant α = 0.02. Then, making use of the dispersion relation for edge
waves, we find from (4.35) the complex amplitude of the perturbation of the short-wave
field slopes in the form

S(1)
0 = kaω

γ
e2iθ

((
4 − C(0)

gr

C(0)
ph

)
cos(θ − θ0)

2 − i sin 2(θ − θ0)

)

(ω − kC(0)
gr eiθ ) + βi

α

K2 . (4.39)

From the definition of tangential stress (4.36a,b) it follows

τ
(1)
0 = 2ρνωα

γ
ka· (4.40)

∫ Kmax

Kmin

dK
K

∫ π/2

−π/2
e2iθ

(
4 − C(0)

gr

C(0)
ph

)
cos(θ − θ0)

2 − i sin 2(θ − θ0)

(ω − kC(0)
gr eiθ ) + βi

(y0 cos θ + x0 sin θ)

√
gK + σK3 dθ. (4.41)

Since the spatial distribution of short-wave packets riding on edge waves is modulated by
the edge waves, this creates the tangential stress which is phase linked to the edge wave
and, thus, might lead to selection and self-excitation of the selected edge wave. The growth
rate of the edge wave can be calculated employing (3.12), which yields

Imω

ω
= νωαk

gγ 2 Re
∫ Kmax

Kmin

dK
K

∫ π/2

−π/2
e3iθ

[(
4 − C(0)

gr

C(0)
ph

)
cos(θ − θ0)

2 − i sin 2(θ − θ0)

]

(ω − kC(0)
gr eiθ ) + βi

×
√

gK + σK3 dθ. (4.42)

For the estimates we use the values of parameters from Sheremet et al. (2002) (ω =
0.088c−1, γ = 0.02, k = 0.037m−1). If, for simplicity, we also assume that ω/k � C(0)

gr ,
although this assumption significantly underestimates the effect and is often not justified,
then expression (4.42) takes a much simpler form

Imω

ω
= ναk√

gγ 2 Re

[∫ π/2

−π/2
e3iθ

(
7
2

cos(θ − θ0)
2 − i sin(θ − θ0)

)
dθ

∫ Kmax

Kmin

dK√
K

]
.

(4.43)
The integral with respect to K in (4.43) logarithmically diverges at the upper and
lower limits. Obviously, there is a viscous ‘cutoff scale’ specified by viscosity which
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is not explicitly taken into account in the presented model. Therefore, for our rough
estimates we introduce the ‘cutoff scale’ K = 102 m−1 as the upper limit of integration.
Then, according to (4.43), for the above parameters and viscosity coefficient equal to
the kinematic viscosity of water ν = 10−6 m2 s−1, Im ω/ω ∼ 10−5. However, since a
background small-scale turbulence is always present in the upper layer of the ocean, the
use of turbulent viscosity is more appropriate. We estimate the eddy viscosity coefficient
by the Prandtl formula ν = 0.4w∗z, where w∗ is the friction velocity in the water boundary
layer linked to the air friction velocity by the condition of the equality of shear stresses
ρairu2∗ = ρwaterw2∗. We assume that the eddy viscosity for a wave with the wavenumber K
is ν = 0.4w∗K−1. Then, from (4.43) follows

Imω

ω
= 0.4u∗αk√

gγ 2

√
ρa

ρw
Re

[∫ π/2

−π/2
e3iθ

(
7
2

cos(θ−θ0)
2 − i sin(θ−θ0)

)
dθ

∫ Kmax

Kmin

dK
K3/2

]
.

(4.44)
The integral with respect to K in (4.44) also diverges at the lower limit as Kmin → 0.
The simplifications adopted in the model break down for insufficiently short wind waves.
Longer short wind waves have larger group velocities and therefore are increasingly
less sensitive to inhomogeneities created by the orbital velocities of edge waves. In our
estimates we set the large-scale ‘cutoff’ to be equal to 4 m−1, which corresponds to the
wavelength of 1.5 m. For the friction velocity corresponding to a 10–12 m s−1 wind and
the above mentioned parameters of the edge wave from (4.44), expression (4.44) predicts
quite substantial growth rates: Imω/ω ∼ 10−3 − 10−2.

These estimates are quite crude and, therefore, the specific quantitative predictions
should be treated very cautiously; a healthy scepticism would be appropriate. However,
we could deduce from the formulae ((4.42) and (4.44)) the most basic qualitative features
which we expect to be robust. Neither the specificity of the adopted bathymetry nor the
choice of the main mode are important here. What matters most is the characteristic phase
velocity of edge waves controlled in our simplest model by the bottom slope γ . For real
bottom topographies the same role will be played by a ‘characteristic bottom slope.’ We
expect the inverse quadratic dependence of the growth rates on characteristic bottom slope
to be the most robust feature of this mechanism of edge-wave generation. Roughly, the
milder the beach slope the more favourable are the conditions for the generation of an
edge wave by wind. This prediction goes with a caveat; the bottom friction was ignored
in the model and this oversimplification might preclude the generation of edge waves for
particularly small bottom slopes. In its present form the model does not yield explicitly
the distinguished preferred scale of edge waves. All things being equal, the excitation is
expected to be stronger for shorter edge waves. The preferred scale of edge-wave excitation
could be found by simulating directly equation (4.42) without extra simplifications, which
goes beyond the scope of this paper and requires a dedicated work.

Implicit in the model is the key assumption of moderate wind. For winds too weak
the steepness of gravity–capillary waves will be too small and since the mechanism is
quadratic in steepness, their effect on edge waves will be negligible. On the other hand, for
winds too strong the short waves might be breaking intensively and will be less sensitive to
the inhomogeneity due to orbital velocities of the edge wave; the scale of inhomogeneity
should be always smaller than the mixing scale due to wind. To quantify what winds are
moderate enough and what are not, is a challenging task which goes beyond the scopes of
the present work.

At present, there is a substantial gap between the maser model and observations. To
bridge it concerted efforts from both ends of the divide are needed. From the observations
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we need detailed measurements of short wind waves, especially to determine whether there
are phase correlations with the edge waves; difficult to provide accurate measurements
of subsurface turbulence are necessary to find the scale-dependent turbulent viscosity for
short wind waves. On the theoretical side the most crude approximation should be replaced
by more accurate alternatives, of particular concern is the use of the long-wave cutoff. To
this end, better models of short-wave interaction with the turbulent boundary layer are
required. A novel kinetic equation which takes into account both the triad and quartet
interactions should be derived and investigated numerically.

5. Concluding remarks

Here, we briefly summarize the main results: a plausible theoretical model of edge-wave
excitation by wind and an analysis of the data set from the SandyDuck’97 near-shore field
experiment strongly suggest the occurrence of edge waves generated by wind. We also
discuss some implications of the results and the new questions this work raises.

Our analysis in § 2 of the data set from the SandyDuck’97 near-shore field experiment
has shown the occurrence of pronounced directional asymmetry of edge waves unrelated
to the direction of swells and along-shore currents. We interpret this as a strong suggestion
of direct generation of edge waves by wind. We see two possible alternative interpretations
of the observed directional asymmetry. First, the observed edge waves have not necessarily
be generated locally, these edge waves might have been generated by swell at a different
stretch of the coast oriented obliquely with respect to the incoming swell. Such edge
waves, in principle, could propagate long distances along shore. We also note that that
a related interpretation of the observed edge-wave directional asymmetry as an artefact
of non-local in time generation by swell, i.e. generation by oblique swell coming onshore
well before the moment of observation, was not supported by the SandyDuck’97 data. The
second alterative is due to the possibility that incoming swell might consist of several swell
systems and smaller peaks in the spectra, which we do not see in the observations because
of wave–buoy system limitations, might still generate edge waves via resonant interactions;
the poor angular resolution of the SandyDuck’97 swell spectra does not enable us to rule
out this possibility. However, we stress that these two mechanisms do not contain inherent
directional asymmetry, a priori edge waves could come from both directions with equal
probability. We do not see signs of this in our data set, and with the caveats that our data
set is limited, we could cautiously claim that the data do not support these alternative
interpretations.

The analysis of the SandyDuck’97 data set also highlighted the fundamental limitations
of the available data sets and techniques. The main limitation is the overwhelming
challenge posed by deploying and maintaining spatial arrays of sensors with high-enough
sensor density and large-enough along-shore spans to resolve the distribution of power in
the along-shore lag space. As discussed in § 2, even the best existing data sets, which we
do not expect to see matched in quality soon, have intrinsically low lag resolution and
span. Because of this, all analysis techniques can return reliably only low-order moments
of the spectral power distribution in the frequency–lag space; basically, only the location
of the mean. While not useful for resolving individual edge-wave modes, fortunately, this
is enough to identify the presence/absence of pronounced directional asymmetry. In this
sense, the resulting conclusions on edge-wave directional asymmetry are robust. To obtain
a better resolved picture of directional properties of edge waves qualitatively, new methods
of edge-wave observation based on remote sensing are needed.
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In the theoretical analysis we exploit the observation that edge waves are much
slower than the free oceanic IG waves, more specifically, that the phase velocities of
edge waves could be close to the group velocities of wind-forced short gravity and
gravity–capillary waves. This makes likely effective edge-wave generation by wind
through the self-excitation ‘maser’ mechanism: the wind-forced random short gravity and
gravity–capillary waves modulated by edge-wave orbital velocities create non-uniform
tangential stresses phase linked with the edge wave. Thus, similar to maser, out of the
random field of linear edge waves one coherent harmonic edge wave is selected and
amplified. This mechanism is expected to work most effectively when the celerity of
edge waves falls into the range of group velocities of gravity–capillary or short gravity
waves, which is often the case. Figure 7 illustrates the domain of overlap for the first
few edge-wave modes on a plane beach with slopes ranging from 0.003 to 0.01. Most
likely to be excited by the ‘maser’ mechanism are modes 0 and 1, but higher modes might
also be excited on beaches with small enough slopes. Note that a proper consideration of
small slopes requires taking into account bottom friction, and our model is frictionless.
Also, in a realistic model one has to take into account both the along-shore current and
wind-induced Ekman current which might significantly affect the dispersion relations of
gravity–capillary waves. We describe the ‘maser’ excitation employing a model based on
the kinetic equation for weakly nonlinear short gravity and gravity–capillary waves. This
is the robust part of what we are putting forward. However, even knowing that for a given
bathymetry the kinematic condition for interaction is satisfied and having an adequate
mathematical model, we cannot say a priori without solving the kinetic equation whether
the interaction is strong enough to be of importance. To solve the kinetic equation for waves
on a current with periodic inhomogeneity (either numerically or analytically) is a quite
challenging task. To circumvent somehow this formidable obstacle and to obtain a rough
semi-quantitative estimate we adopted a number of simplifying assumptions. The key ones
are the use of the ‘τ -approximation’ and introduction of a ‘cutoff’ scale in dealing with
the divergence of the nonlinear term. The ‘τ -approximation’ assumes that the spectrum
of short gravity and gravity–capillary waves is a sum of a steady longitudinally uniform
equilibrium spectral distribution in the absence of perturbing edge waves and small
time-dependent deviations from the equilibrium due to edge waves. The ‘τ -approximation’
originated as the model for collision processes in gases (Bhatnagar et al. 1954) and
is widely used beyond the parameter range of its theoretical validity in many physical
contexts, including physical oceanography (e.g. Keller & Wright 1975; Hughes 1978). The
key element in the model is the fact that wind-forced short gravity and gravity–capillary
waves exert a shear stress on the surface. This stress depends on the eddy viscosity near the
surface, which can vary up to several orders of magnitude depending on the sea state (e.g.
Huang 1979). This introduces a large element of uncertainty into the estimates. We also
have only a very rough idea on the long-wave boundary of the range of short gravity waves
for which the adopted parametrization of the shear stress remains valid; in the sketch in
figure 7 we used 1 m wavelength for certainty. By employing these approximations and
assumptions we obtain a rough estimate for the growth rate of edge waves, which suggests
that, indeed, the mechanism is effective under favourable conditions. However, at present,
we cannot provide a more solid quantitative prediction, instead, here, we discuss open
questions and some qualitative implications of this mechanism.

An important implicit assumption we adopted is that the random edge waves are linear
and, hence, not interacting with each other. Nonlinear interactions among edge waves, if
sufficiently strong, can weaken or even destroy the coherent self-excitation. This issue goes
beyond the scope of this work and requires a dedicated study. The coherent self-excitation
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Figure 7. Group velocity of short gravity and gravity–capillary waves (black line, using the ASTM saltwater
model with salinity of 20 g kg−1 and surface tension 0.076 N m−1) and the phase velocity of the first few
edge-wave modes on a plane beach with slopes of 0.003, 0.06 and 0.01. The left bound of the sketched edge
waves corresponds to waves with 50 s period. The domain of velocity overlap is marked in grey.

mechanism is expected to be most favoured by moderate winds, since sufficiently strong
winds reduce the spatial inhomogeneity of short gravity and gravity–capillary spectra
caused by edge waves. However, at the moment we are unable to quantify the ‘optimal’
wind. To summarize, the overall weak point of the theoretical picture we put forward
is that, currently, there are still many uncertainties requiring substantial further work
to elaborate quantitatively their implications. At the qualitative level, under favourable
conditions we expect literally visible manifestations of the maser mechanism for edge
waves: orbital velocities of edge waves create inhomogeneities of the gravity–capillary
wave field which can be visible to the unaided eye and/or microwave radars as roughness
bands moving along shore with the celerity of edge wave. Similar manifestations of
roughness bands moving onshore are commonly observed for internal gravity waves
(e.g. Apel et al. 1975), but we are not aware of such observations for edge waves. If
confirmed, this way of observing edge waves might be an important addition to the existing
toolbox.

We stress that we view the generation of edge waves by swell through triad interactions
as the dominant mechanism of their generation. In the SandyDuck’97 data set, out
of ∼900 3 h runs exhibiting edge-wave events, we found only ∼70 that suggest
possible wind generation. We focussed upon those relatively rare situations where
edge-wave generation through triad interactions was either absent or weak, which made
generation of edge waves by wind the most likely explanation of the observed directional
asymmetry.

Although we showed that the ‘maser’ mechanism of edge-wave excitation is very
plausible, this does not rule out other possibilities such as, for example, triad interactions
between two edge-wave harmonics and a resonant perturbation in the airflow (Tsimring
1983; Vrećica, Soffer & Toledo 2019). In contrast to Vrećica et al. (2019) no specific
information is readily available about possible atmospheric anomalies such as strong
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fronts during the Sandyduck97 experiment. Certainly, these possibilities need further
investigation.

Albeit that the growth rates due to Miles’ mechanism and the viscous shear stresses
created by wind are shown to vanish for the adopted constant slope model, for more general
bathymetry the question remains open and needs further study.

Our main conclusion is that the question of wind contribution to edge-wave generation
is open, it needs further investigation and in the generic situations both the nonlinear triad
interactions and generation by wind should be simultaneously taken into account.
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Appendix A. Spectral analysis in the wavenumber–frequency domain

Idealizing the FRF bathymetry as along-shore uniform, i.e. H = H(x) in the FRF
coordinate system, where H is the water depth, x is the cross-shore coordinate, increasing
seaward, and y is the along-shore coordinate, linear edge waves may be described using
the potential shallow water equations

ηt + (Hφx)x + Hφyy = 0; φt + gη = 0, (A1)

where η(x, y, t) and φ(x, y, t) are the free surface elevation and the flow potential, and
subscripts denote partial derivatives. Substituting a Fourier representation, e.g.

η(x, y, t) =
∫ ∞

−∞
F(x, k)ei(ky−ωt) dκ

2π
, (A2)

we obtain for the cross-shore function F the differential equation(
c2Fx

)
x
+
(
ω2 − c2k2

)
F = 0, (A3)

where k is the along-shore wavenumber, ω = 2πf is the angular frequency and c(x) =√
gH. The cross-shore structures F corresponding to edge waves are solutions of (A3) that

satisfy the boundary conditions

F(0) < ∞, and F(∞) = 0. (A4a,b)

The boundary value problem (A3)–(A4a,b) is a singular SL eigenvalue problem, with
F(x, k) being the eigenfunction corresponding to eigenvalue ω(k). Under quite general
conditions, for a given k, the problem (A3)–(A4a,b) has a countable set of eigenvalues {ωn}
with n = 0, 1, . . . (e.g. Huthnance 1975). In the (k, ω) parameter space, edge-wave modes
are represented by dispersion curves ω(k). For example, for a plane beach of constant slope
s, the dispersion relation is ω2 = gs(2n + 1)k (e.g. Whitham 1979).

Standard edge-wave analysis in the (k, ω) plane involves: (i) solving the SL problem
(A3)–(A4a,b) for the bathymetry under consideration (FRF bathymetry in this case);
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and (ii) estimating the power density in (k, ω) plane. If spectral estimators had infinite
resolution, overlapping power density and dispersion curves could be used to identify
existing edge-wave modes. Although solving numerically the system of (A3)–(A4a,b) is
not difficult (e.g. Holman & Bowen 1979; Kirby, Dalrymple & Liu 1981; Howd et al.
1992), the low resolution of the observations (and, consequently, of the spectral estimates
in the (k, ω) space) precludes accurate identification of individual edge-wave modes (see
discussion below). It is, however, possible to answer a weaker question: ‘Are edge waves
observed at all?’ Indeed, for a given frequency ω, edge-wave wavenumbers identifiable
by an along-shore line of instruments satisfy the constraint kmin < k < kmax. The lower
bound is determined by the trapping condition k > kE

min = ω2/g, where ω2/g is the deep
water wavenumber. The upper bound is determined by the condition that the turning point
of the trapped wave has to be seaward of the instrument line; setting to zero the coefficient
of F in (A3) determines the turning-point depth for modes with wavenumber k as
HT = (1/g)(ω/k). A line of instruments located at an isobath h0 can therefore only resolve
wavenumbers k < kE

max = √
ω/gH. In addition, on setting, according to convention ω ≥ 0,

the sign of k specifies the direction of propagation: upcoast for k > 0 and downcoast for
k < 0. One can therefore identify edge-wave fields and evaluate their directional symmetry
by the location of the power density peaks with respect to the interval ±[kE

min, kE
max].

Estimates of wavenumber–frequency power density are based on along-shore lines of
the near-shore array (figure 1b), following Davis & Regier (e.g. 1977). Pressure frequency
cross-spectra are estimated using the standard method (Welch 1967): 3 h long time series
are detrended, divided into 600 s de-meaned segments with 50 % overlap, tapered using a
Hanning window, Fourier transformed and averaged over the 600 s segments. The resulting
estimates have 34 degrees of freedom, a frequency resolution of 0.008 Hz and 26 frequency
modes in the IG band (f ≤ 0.05 Hz).

The spatial lag structure of the cross-spectra at a given frequency are then used to
estimate the spectral density in the wavenumber domain. Estimators of various complexity
may be applied, such as the Maximum likelihood method (e.g. Capon 1969; Pawka 1982;
Oltman-Shay & Guza 1987; Donelan et al. 2015, and many others), maximum entropy
method (MEM), (Lygre & Krogstad 1986; Wu 1997; Sheremet et al. 2005, e.g.) or other
similar ‘best-fit’ methods (Herbers et al. 2003; Sheremet et al. 2005). However, none of
these estimators can overcome the limitations imposed by the spatial structure of the FRF
near-shore array. It is remarkable that, even a carefully designed and exceptional field effort
such as the SandyDuck’97 near-shore array experiment can only provide a limited view of
near-shore edge waves. For example, while the along-shore sensor lines correspond to a
co-array counting up to 46 non-redundant lags, with a maximum lag of ≈202 m, the first
3 edge-wave modes with frequency f = 0.01 Hz have along-shore wavelengths of 468,
1405 and 2341 m, significantly exceeding the array span (we assumed for this calculation
that the FRF beach slope was 0.03). Because of these limitations, we apply here the most
simple and straightforward version of the MEM method (Wu 1997; Sheremet et al. 2002).
To avoid the well-known super-resolution and peak-splitting problems associated with
high-order MEM, we use the first-order estimate that best fits the cross-spectrum (within
the cross-spectral error) at the co-array lags. The resulting density function is given on a
wavenumber grid (512 wavenumbers with a resolution 6.7622 × 10−5 1 m−1), chosen for
providing a smooth outcome but, otherwise, of no particular significance. The resulting
estimate is typically a single-peak density in wavenumber, and should be interpreted as
an estimate of the ‘centre of mass’ location in the wavenumber. Therefore, a significant
overlap of (k, ω) density and the interval ±[kE

min, kE
max] is interpreted below as evidence of
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Can edge waves be generated by wind?
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Figure 8. Dependence of the observed IG significant wave height on wind speed (a) and water depth (b). Each
dot represents a 3 h run corresponding to swell significant height < 1 m s−1, wind direction deviating less than
20◦ from along shore and swell direction deviating less than 20◦ from the shore normal. Only 70 runs (shown)
out of a total of 930 available satisfy these constraints. The IG significant height is calculated for frequencies ¡
0.05 Hz using the near-shore array pressure sensors at the line at cross-shore location x = 310 m (see figure 1(b),
and 3–5, top panels). The depth is averaged over the line; the wind speed is provided by measurements at the
FRF Pier.

edge waves; the sign of the overlapped wavenumbers gives information of the direction of
propagation of the edge waves.

Figure 8 illustrates one of the difficulties in identifying the wind generation in field data
employing the best data set currently available. On the one hand, it seems reasonable to
expect that the energy per unit shoreline length of wind-generated edge waves to increase
with wind speed. Because it is difficult to estimate the energy per unit shoreline length of
edge waves from only four cross-shore measurement locations, we use a single location
(310 m array line; e.g. figure 1b) to examine the relationship between the IG significant
wave height and wind speed (figure 8a) and tidal phase (water depth) (figure 8b). The
set of 70 3 h runs shown was selected to represent cases when the wind was nearly along
shore, and swell was nearly shore normal (both with <20◦ deviation). The runs considered
here are most likely to include directionally asymmetric edge-wave fields that are not
aligned with the swell direction. Alignment of such edge waves with the wind, makes
their generation by wind the dominant hypothesis. The data seem to show a weak increase
of IG height with wind speed (from 0 to 4 m s−1), and with water depth (tidal phase).
However, interpreting trends in such a small statistical population is practically pointless.
Moreover, the runs shown are not unambiguous. The simple criteria used to select them
were meant to narrow the search, not to pinpoint indisputable evidence of wind generation.
The bulk directional analysis used here provides only the crudest measure of the directional
asymmetry of IG waves; even in the cases selected here for illustration, some edge-wave
components generated by swell might be present, biasing the results.

Appendix B. The linear Miles mechanism of edge-wave excitation

Edge-wave dispersion relation allows the waves to have a critical layer in the wind flow
for any bathymetry. Therefore the Miles critical layer mechanism is an obvious candidate
mechanism of edge-wave generation by wind to be considered.
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V.I. Shrira, A. Sheremet, Y.I. Troitskaya and I.A. Soustova

B.1. Normal stresses induced by edge waves in the air flow
Here, we will examine the water surface stresses induced by the edge wave in the air flow
above within the framework of a simplified inviscid model. In this case, the motions in the
air flow are described by the Euler equations for the velocity field Ua(ua, va, wa)

∂Ua

∂t
+ (Ua, ∇)Ua + 1

ρa
∇pa = 0, (B1)

complemented by the incompressibility condition

divUa = 0, (B2)

the kinematic boundary condition

∂ξ

∂t
+ (Ua, ∇⊥)ξ − wa

∣∣∣∣
z=ξ

= 0, (B3)

where ξ is the free surface displacement, ∇⊥ ≡ (∂x, ∂y). The boundedness at large distance
from the air–water interface is also required.

We aim to examine the edge-wave linear growth rate, to this end it is sufficient to solve
the problem in the linear approximation in edge-wave amplitude. We look for the solution
in the form Ua = Ua + u1, where Ua = (Ua(z), Va(z), 0) is the unperturbed air flow
velocity, and u1 = (u(x, y, z), v(x, y, z), w(x, y, z)) are small perturbations. In the linear
approximation the Euler equation projections onto the Cartesian frame have the form

∂u1

∂t
+ Va

∂u1

∂y
+ Ua

∂u1

∂x
+ w1

∂Ua

∂z
+ 1

ρa

∂p1

∂x
= 0, (B4a)

∂v1

∂t
+ Va

∂v1

∂y
+ Ua

∂v1

∂x
+ w1

∂Va

∂z
+ 1

ρa

∂p1

∂y
= 0, (B4b)

∂w1

∂t
+ Va

∂w1

∂y
+ Ua

∂w1

∂x
+ 1

ρa

∂p1

∂z
= 0. (B4c)

The incompressibility condition for perturbations takes the standard form

∂u1

∂x
+ ∂v1

∂y
+ ∂w1

∂z
= 0. (B4d)

After some algebra the system ((B4a)–(B4d)) can be reduced to the following single
equation for vertical velocity:(

∂

∂t
+ Ua

∂

∂x
+ Va

∂

∂y

)
�w1 −

(
∂w1

∂x
d2Ua

dz2 + ∂w1

∂y
d2Va

dz2

)
= 0, (B5)

where

�w1 =
(

∂2w1

∂y2 + ∂2w1

∂x2 + ∂2w1

∂z2

)
. (B6)

The linearized boundary condition at the air–water interface, with the condition Ua =
w1|z=0 taken into account, has the standard form

∂ξ

∂t
− w1|z=0 = 0. (B7)

In the case of free water wave interaction with wind, (B5) reduces to the Rayleigh equation
for the complex amplitude of vertical velocity w1. In the context of the modelling of
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Can edge waves be generated by wind?

wave generation by wind this equation was studied by Miles (1957). It was found that
even in the inviscid setting the interaction with the critical layer leads to an instability of
the free water waves. At a first glance, the same mechanism has to take place for edge
waves as well, since the critical layer is always present. In this section, we examine this
possibility for the fundamental mode in the case of constant slope bathymetry, which
dramatically simplifies the consideration. For edge waves of the fundamental mode in
case of constant slope bathymetry w1 = w10(z) exp(−i(ωt − ky) − kx), while the complex
amplitude w10(z) satisfies the following equation:

(ω − k (iUa (z) + Va (z)))2 d2w10

dz2 + k
(

i
d2Ua

dz2 + d2Va

dz2

)
w10 = 0. (B8)

Equation (B8) can be solved in quadratures. Indeed, it can be reduced to the form

d
dz

[
(ω − k (iUa (z) + Va (z)))2 d

dz

(
w10

ω − k (iUa (z) + Va (z))

)]
= 0. (B9)

A single integration of (B9) yields[
((ω − k(iUa(z) + Va(z)))2 d

dz

(
w10

ω − k (iUa(z) + Va(z))

)]
= A. (B10)

The so far unspecified integration constant A will be found later. By excluding pressure p1
from equations ((B4a)–(B4c)) we find(

∂

∂t
+ Ua

∂

∂x
+ Va

∂

∂y

)(
∂v1

∂x
− ∂u1

∂y

)
+ dVa

dz
∂w1

∂x
− dUa

dz
∂w1

∂y
= 0. (B11)

For edge waves, when all the components of the wave field depend on t, x, y as
exp(−i(ωt − ky) − kx), we can readily obtain from (B11) the following relation:

− i (ω − k (iUa + Va)) (−iku10 − kv10) − kw10

(
i
dUa

dz
+ dVa

dz

)
= 0. (B12)

The incompressibility condition takes the form

− ik(iu10 + v10) + dw10

dz
= 0. (B13)

From (B12) and (B13) we can readily obtain the equation for the complex amplitude of the
vertical velocity of perturbations w10

d
dz

(
w10

ω − k (iUa + Va)

)
= 0. (B14)

Comparing (B14) and (B10) we see that the unspecified integration constant A should be
set equal to zero. Then the solution of (B14) can be presented as

w10 = B (ω − k (iUa + Va)) , (B15)

where B is a constant which remains to be specified. The solution (B15) does not satisfy
the energy boundedness condition; therefore, B = 0. Hence, within the framework of the
model of inviscid hydrodynamics, the problem has only a trivial solution. Thus, in sharp
contrast to free surface waves in an inviscid setting there is no excitation of edge waves via

934 A16-29

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
09

.1
51

.2
09

.2
3,

 o
n 

02
 F

eb
 2

02
2 

at
 1

4:
13

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
11

41

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1141


V.I. Shrira, A. Sheremet, Y.I. Troitskaya and I.A. Soustova

Miles’ critical layer mechanism, at least for the main mode of the edge wave in the model
with a constant bottom slope.

What happens beyond the framework of the inviscid model? The kinematic boundary
condition (B3) can be satisfied within the framework of viscous hydrodynamics. In this
case, however, the wave induced hydrodynamic pressure perturbation will be a small
quantity proportional to the thickness of the wave viscous boundary layer. This implies that
the generation of edge waves by perturbations of the wave-induced aerodynamic pressure
is inefficient.

Appendix C. Shear stress induced in the air flow by edge waves on the water surface

In view of the quasi-horizontal structure of edge waves, the impact of shear stresses
they induce in the air flow might be important and ought to be examined. It is known
(Longuet-Higgins 1969a) that shear stresses are important only in a viscous fluid and for
free water waves the effect of shear stress is equivalent to that of normal stress phase
shifted by π/2 with respect to the shear stress. Now, consider what happens in the context
of edge waves. We follow the Longuet-Higgins (1969a) line of reasoning, who considered
viscous boundary layer at the surface of fluid. We denote by u′(u′, v′) the tangential
velocities produced in the boundary layer by the shear stress τ and the corresponding
mass flux in the boundary layer by M

M =
∫

ρu′ dz
(

Mx =
∫

ρu′ dz, My =
∫

ρv′ dz
)

. (C1)

In contrast to the free surface waves considered by Longuet-Higgins (1969a), for the edge
wave, two components of u′ and M ′ should be taken into consideration. Similarly to
Longuet-Higgins (1969a), on neglecting the shear stress outside the boundary layer we
obtain

dM
dt

= τ . (C2)

Following Longuet-Higgins (1969a), on introducing the boundary layer thickness D and
contribution to the vertical velocity due to the tangential stress, w′, we obtain

∂D
∂t

= w′ =
∫

∂w′

∂z
dz. (C3)

Using the incompressibility condition we re-write the right-hand side, then the identity
takes the form

∂D
∂t

= w′ = −
∫ (

∂u′

∂x
+ ∂v′

∂y

)
dz. (C4)

By virtue of the specific dependence of all the edge-wave variables on the ansatz
exp(−i(ωt − ky) − kx), we readily find from (C4) the following expression:

− iωD = −
∫

(ikv′ − ku′) dz. (C5)

Using the definition (C2), the equality (C5) can be reduced to the form

D = My + iMx

ρc
, (C6)
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Can edge waves be generated by wind?

where c = ω/k is the phase velocity of the edge wave. In virtue of (C2) we have

D = τy + iτx

−iωρc
. (C7)

On the water surface this layer creates variable pressure δp with the spatial structure of the
edge-wave field

δp = ρgD = g
τy + iτx

iωc
. (C8)

Using the dispersion relation for the edge waves ω = √
γ gk we obtain from (C8) a simple

expression for this pressure

δp = i
τy + iτx

γ
. (C9)

Then for the edge-wave growth rate we obtain from (3.12)

Imω

ω
= 1

2pγ g
Re
(

τy + τx

γ

)
. (C10)

To find the shear stresses induced by an edge wave in the air flow we have to take into
consideration turbulent viscosity in the air, since the air flow is a turbulent boundary layer.
We describe the turbulence employing the simplest first-order closure model, that is, we
assume the tensor of turbulent stresses to be

Gij = ν(z)
(

∂ui

∂yj
+ ∂uj

∂yi

)
, (C11)

where ν(z) is an ‘effective viscosity’, a sum of the molecular and eddy viscosities.
Accounting for shear stresses, the system of linearized equations of motion in the air
((B4a)–(B4d)) takes the form

∂u1

∂t
+Va

∂u1

∂y
+Ua

∂u1

∂x
+w1

∂Ua

∂z
+ 1

ρa

∂p1

∂x
= ∂

∂y

(
ν
∂u1

∂y

)
+ ∂

∂x

(
ν
∂u1

∂x

)
+ ∂

∂z

(
ν
∂u1

∂z

)
,

(C12a)

∂v1

∂t
+ Va

∂v1

∂y
+Ua

∂v1

∂x
+w1

∂Va

∂z
+ 1

ρa

∂p1

∂y
= ∂

∂y

(
ν
∂v1

∂y

)
+ ∂

∂y

(
ν
∂v1

∂x

)
+ ∂

∂z

(
ν
∂v1

∂z

)
,

(C12b)

∂w1

∂t
+ Va

∂w1

∂y
+ Ua

∂w1

∂x
+ 1

ρa

∂p1

∂z
= ∂

∂y

(
ν
∂w1

∂y

)
+ ∂

∂x

(
ν
∂w1

∂x

)
+ ∂

∂z

(
ν
∂w1

∂z

)
.

(C12c)

The incompressibility condition retains the same form. The kinematic boundary condition
(B7) is supplemented by the no-slip condition at the air–water interface

u1|z=0 = u|z=0, v1|z=0 = v|z=0, (C13a,b)

where u and v are the edge-wave orbital velocities on the water surface. On eliminating
u1, v1, p1 in the system ((C12a)–(C12c)) we obtain a single equation for w1 which
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V.I. Shrira, A. Sheremet, Y.I. Troitskaya and I.A. Soustova

generalizes equation (B5)

(
∂

∂t
+ Ua

∂

∂x
+ Va

∂

∂y

)
�w1 −

(
∂w1

∂x
d2Ua

dz2 + ∂w1

∂y
d2Va

dz2 )

)

= ν��w1 + 2
dν

dz
�

∂w1

∂z
+ d2ν

dz2

(
∂2w1

∂z2 − ∂2w1

∂y2 − ∂2w1

∂x2

)
, (C14)

where

Δ = ∂2
x + ∂2

y + ∂2
z . (C15)

For the main mode of the edge wave we have

w1 = w10(z) exp(−i(ωt − ky) − kx),
∂2w1

∂y2 + ∂2w1

∂x2 = 0. (C16a,b)

Then equation (C14) takes the form

− i (ω − k (iUa + Va))
d2w10

dz2 − ikw10

(
i
d2Ua

dz2 + d2Va

dz2

)
= d2

dz2

(
ν

d2w10

dz2

)
. (C17)

Equation (C17) can be integrated once with respect to z and written as

d
dz

(
(iUa + Va) − ω

k

) dw10

dz
= 1

ik
d2

dz2

(
ν

d2w10

dz2

)
. (C18)

The integration constant is set to zero. To justify this assumption we consider the first two
equations of the system ((C12a)–(C12c)). Similarly to (B11) they reduce to

(
∂

∂t
+ Ua

∂

∂x
+ Va

∂

∂y
)

)(
−∂u1

∂y
+ ∂v1

∂x

)
+
(

−∂w1

∂y
dUa

dz
− ∂w1

∂x
dVa

dz

)

= ∂

∂y

(
ν

∂

∂y

(
∂w1

∂x
− ∂u1

∂y

))
+ ∂

∂x

(
ν

∂

∂x

(
∂w1

∂x
− ∂u1

∂y

))
+ ∂

∂z

(
ν

∂

∂z

(
∂w1

∂x
− ∂u1

∂y

))
.

(C19)

Accounting for the incompressibility condition and the known x and y dependence of the
velocity fields induced by the edge wave, (C19) reduces to the following equation for the
complex amplitude of vertical velocity:

(
(iUa + Va) − ω

k

) dw10

dz
= 1

ik
d2

dz2

(
ν

d2w10

dz2

)
. (C20)

Now, consider boundary conditions for equation (C20). The kinematic boundary condition
(B7), takes the form
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w10|z=0 = −iωa. (C21a)

Using the expressions for the horizontal components of velocity in the edge wave, the
no-slip condition (B13) can be written as

(u, v) = gka
ω

(i, 1). (C21b)

From the incompressibility condition and the above mentioned conditions we obtain the
boundary condition for the complex amplitude of vertical velocity

dw10

dz
|z=0 = 0. (C21c)

On finding a solution to (C20) satisfying the boundary conditions which decays with
distance from the water–air interface, we express equivalent normal stress on the surface
through the complex amplitude of vertical velocity

τy = ν

(
∂u10

∂z
+ ∂w10

∂x

)
,

τx = ν

(
∂v10

∂z
+ ∂w10

∂y

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C22)

With (C22) taken into account we can rearrange (C9)

δp = iν
γ

(
d
dz

(iu10 + v10)

)
. (C23)

Making use of the incompressibility condition we simplify it to

δp = − ν

γ k
d2w10

dz2 |z=0. (C24)

Equation (C20) is second order with respect to dw10/dz, it has two linearly independent
solutions, one of which decays with distance from the boundary, while the other grows.
Obviously, only the first solution meets the boundedness condition. At the same time,
crucially, the boundary condition (C21c) means that the decaying solution is also zero.
Consequently, there is no shear stress induced by edge waves in the viscous air flow either.
This means that, at least in the adopted setting, the linear growth rate of edge waves is
exactly zero. At the moment we do not know how robust this counterintuitive result is. We
cannot claim that it holds for higher modes and a different bathymetry.
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