
The Identity Problem for Matrix Semigroups in

SL2(Z) is NP-complete

Paul C. Bell ∗ Mika Hirvensalo† Igor Potapov‡

Abstract

In this paper, we show that the problem of determin-
ing if the identity matrix belongs to a finitely generated
semigroup of 2 × 2 matrices from the modular group
PSL2(Z) and thus the Special Linear group SL2(Z) is
solvable in NP. From this fact, we can immediately de-
rive that the fundamental problem of whether a given
finite set of matrices from SL2(Z) or PSL2(Z) gener-
ates a group or free semigroup is also decidable in NP.
The previous algorithm for these problems, shown in
2005 by Choffrut and Karhumäki, was in EXPSPACE
mainly due to the translation of matrices into expo-
nentially long words over a binary alphabet {s, r} and
further constructions with a large nondeterministic fi-
nite state automaton that is built on these words. Our
algorithm is based on various new techniques that allow
us to operate with compressed word representations of
matrices without explicit expansions. When combined
with the known NP-hard lower bound, this proves that
the membership problem for the identity problem, the
group problem and the freeness problem in SL2(Z) are
NP-complete.

1 Introduction

The Projective Special Linear group PSL2(Z) and Spe-
cial Linear group SL2(Z) play a central role in many
branches of mathematics, see [6]. SL2(Z), which is the
most basic example of a discrete non-abelian group, con-
sists of all integer 2×2 matrices, with determinant one1

and PSL2(Z) is the quotient of SL2(Z) by its center
{I,−I}, where I is the identity matrix. In other words,
PSL2(Z) consists of all integer 2× 2 matrices, with de-
terminant 1, where pairs of matrices A and −A are con-

∗Department of Computer Science, Loughborough University.

Email: P.Bell@lboro.ac.uk
†Department of Mathematics and Statistics, University of

Turku. Email: mikhirve@utu.fi. Supported by Väisälä Foun-

dation
‡Department of Computer Science, University of Liverpool.

Email: potapov@liverpool.ac.uk. This research was supported

by EPSRC grant EP/M00077X/1.
1The subgroup SL2(Z) of the group SL2(R) has a role some-

what like that of Z inside of R.

sidered to be equivalent. Group SL2(Z) is important
in the context of many fundamental problems, for ex-
ample from hyperbolic geometry [25, 9, 12], dynamical
systems [19], Lorenz/modular knots [15], braid groups
[20], particle physics, high energy physics [24], M/string
theories [11], ray tracing analysis, music theory [17] and
it plays a central role for the development of efficient
solutions of 2× 2 matrix problems [21].

The structural properties of SL2(Z) and PSL2(Z)
have been studied extensively in various textbooks and
research papers. In this work, we reveal new struc-
tural properties and techniques for efficient computa-
tions with compressed representations of elements in
these groups in order to answer long-standing algorith-
mic complexity questions. In particular, we show that
for any finitely generated semigroup S ⊆ SL2(Z) the
membership problem for the identity matrix in SL2(Z)
(whether or not the identity matrix belongs to S), the
group problem (whether S is a group, i.e. S is closed un-
der inverse) and the freeness problem (whether each ma-
trix in S has a unique factorisation) are NP-complete,
by reducing the previously known EXPSPACE upper
bound from [10] to NP.

Many simply formulated and elementary problems
for matrices are inherently difficult to solve even in
dimension two, and most of these problems become
undecidable in general starting from dimension three
or four. One such hard question is the Membership
Problem: Given a finite set of m × m matrices F =
{M1,M2, . . . ,Mn} and a matrix M , determine if there
exist an integer k ≥ 1 and i1, i2, . . . , ik ∈ {1, . . . , n}
such that Mi1 ·Mi2 · · ·Mik = M , i.e. determine whether
matrix M belongs to the semigroup generated by F .

In 1994, Cai, Fuchs, Kozen and Liu proved that
the the membership problem for finitely generated sub-
groups and submonoids of the modular group PSL2(Z)
can be solved in polynomial time on average [6]2. Later,

2Note that the subgroup membership problem can be seen as a
special case of the submonoid (semigroup) membership problem.
The only difference between the subgroup and submonoid mem-

bership problems is that in the subgroup membership problems,
inverses are allowed. The subgroup membership problems reduce

in 2007, Gurevich and Schupp solved the membership
problem for the modular group, showing that the prob-
lem for the group case is decidable in polynomial time
[13]. While it is known that the membership problem is
NP-hard for a semigroup of matrices from SL2(Z), the
exact complexity for the membership problem in this
case is still open.

In this paper, we consider the Identity Problem,
which is the membership problem for the identity matrix
in the semigroup. We may note that the solution
to the identity problem is the most essential special
case on the way to building an algorithm for the
general membership problem for SL2(Z). On the other
hand, the identity problem is tightly connected with
another two fundamental decision problems on matrices:
the Group Problem: “is a given matrix semigroup a
group?”3 and the Freeness Problem: “does every matrix
have a unique factorisation over F , i.e. is F a code?”

One of the main results in this paper states that the
identity problem for matrix semigroups generated by
any finite set of matrices from SL2(Z) is NP-complete.
The previous algorithm for this problem, shown in 2005
by Choffrut and Karhumäki [10], was in EXPSPACE
mainly due to the translation of matrices into exponen-
tially long words over a binary alphabet {s, r} and fur-
ther constructions with a large nondeterministic finite
state automaton that is built on these words. However
that decision procedure could also be implemented in
EXPTIME, as the construction of the automaton re-
lies on words which have an exponential length represen-
tation of each matrix from the generator and which then
requires an exponential number of steps for the con-
struction of additional edges and checking of the mem-
bership problem in the resulting regular language. On
the other hand, the problem does not allow any obvi-
ous PSPACE algorithm, let alone an NP algorithm, as
it was shown in [4] that there are instances of the iden-
tity problem where the number of generator occurrences
needed to produce the identity matrix is exponential in
the description size of the semigroup generator.

Rather surprisingly, in this context, we show here
that the identity problem for SL2(Z) can be solved in
NP. Our new algorithm is based on various new tech-
niques that allow us to operate with compressed word
representations of matrices without explicit exponential
expansions. The identity problem in SL2(Z) is suscepti-
ble to an exponential blow up in the space and time
requirements unless elaborate techniques are used to
avoid them and simpler approaches often have patholog-
ical cases which cause recognisers for the problem to lie

to the submonoid membership problems by simply including the
inverses in the generating set of matrices.

3The identity and group problems are bilaterally reducible [10].

outside of NP. In our results, we rely on the fact that
we can find a reasonable characterization of complex
long paths within our derived compressed graph called
Alternating Forms, which have many useful properties
that can be exploited and help us to greatly simplify
the analysis. When combined with the NP-hard lower
bound shown in [4], this proves that the membership
problem for the identity problem and group problem in
SL2(Z) is NP-complete. From this fact, we can imme-
diately derive that the fundamental problem of whether
a given finite set of matrices from SL2(Z) or PSL2(Z)
generates a group is also decidable in NP.

In fact, we prove a stronger statement that it is
decidable whether the identity matrix is in S, where S
is an arbitrary regular subset of SL2(Z) that is, a subset
which is defined by a finite automaton. Since SL2(Z)
is closed under inverses, we show a construction that
solves the freeness problem in NP. The non-freeness
problem was recently proven to be NP-hard [14] so the
non-freeness problem in SL2(Z) is also NP-complete.

Our main results in this paper are therefore to show
that the three problems (identity, group and freeness
problems) can be solved in NP over SL2(Z) and they
are therefore NP-complete following existing hardness
results for these problems. The decidability status of
the identity problem and the group problem in higher
dimensions was unknown for a long time and was only
recently shown to be undecidable for integer matrices
starting from dimension four [3], see also the solution
to Problem 10.3 in [5]. The freeness problem is known
to be undecidable for 3 × 3 matrices over the integers
[7]. Although some partial results for the freeness
problem in matrices of dimension two are known, a
complete picture is far from clear [8]. The decidability
of the identity problem in dimension three remains
a long standing open problem as well as many other
questions on matrices in dimension two over Z, Q and
C. The case of dimension two is the most intriguing
since there is some evidence that if these problems
are undecidable, then this cannot be proved using any
previously known constructions. In particular, there is
no injective semigroup morphism from pairs of words
over any finite alphabet (with at least two elements)
into complex 2 × 2 matrices [7], which means that the
coding of independent pairs of words in 2 × 2 complex
matrices is impossible and the exact encoding of the
Post Correspondence Problem or a computation of a
Turing Machine cannot be used directly for proving
undecidability in 2 × 2 matrix semigroups over Z, Q
or C. The only undecidability result in the case of
2 × 2 matrices that has been shown so far is the
membership, freeness and vector reachability problems
over quaternions [2] or more precisely in the case of

diagonal matrices over quaternions, which are simply
dual quaternions.

2 Preliminaries

2.1 Semigroup basics. By an alphabet we under-
stand (usually) a finite set Σ, and call its elements let-
ters. Any alphabet can be furnished with algebraic
structure, defining a product by letter juxtaposition
(concatenation). The semigroup generated by Σ is de-
noted by Σ+ or 〈Σ〉sg = {σ1σ2 . . . σn | n ≥ 1, σi ∈ Σ}.
The assumption that there are no nontrivial relations
between the letters such as commutation is another way
to say that Σ+ is freely generated by Σ.

An element of the semigroup Σ+ is called a word,
and there is a natural extension of Σ+ into a monoid,
just by adding the neutral element called the empty
word, which is denoted by ε or 1. The monoid generated
by Σ is denoted by Σ∗. Given a word w = σ1σ2 · · ·σk,
we denote by wi,j the word σi · · ·σj , with the assump-
tion that 1 ≤ i ≤ j ≤ k.

If Σ is included in an algebraic structure containing
also the inverse of each σ ∈ Σ satisfying σσ−1 =
σ−1σ = 1, we may define the group generated by Σ as
〈Σ〉gr = {σa11 σa22 . . . σann | n ≥ 0, σi ∈ Σ, ai ∈ {−1, 1}}.
If there is no danger of confusion, we omit the subscript
‘gr’ and simply write 〈Σ〉.

2.2 Matrix Groups in Z2×2. Notation Z2×2 stands
for the set of all 2 × 2 integer matrices. This set
has a natural ring structure with respect to ordinary
matrix addition and multiplication. Unfortunately, the
algebraic structure of Z2×2 seems too complicated to
imply any straightforward algorithm for membership
questions, hence simpler structures are needed.

A subset of Z2×2,

GL2(Z) = {A ∈ Z2×2 | det(A) ∈ {−1, 1}}.

also denoted as GL(2,Z) is called the General Linear
group, consisting of all 2 × 2 integer matrices having
integer matrix inverses. Group GL2(Z) is clearly the
largest multiplicative matrix group contained in Z2×2.
However, as it shortly turns out, a smaller subgroup is
useful for computational purposes.

One restriction that turns out useful is the Special
Linear group defined as

SL2(Z) = {A ∈ GL2(Z) | det(A) = 1},

but the quotient group

PSL2(Z) = SL2(Z)/{±I}

called the Projective Special Linear group appears even
more useful. In fact, PSL2(Z) has a very useful

representation as a free product of two cyclic groups
of order 2 and 3. Notice that by the very definition, an
element of PSL2(Z) is a set a = {A,−A} of two matrices
in SL2(Z), but from now on, we may slightly abuse the
notations and write a = ±A, or choose either matrix A
or −A to represent a. Intuitively, PSL2(Z) can be taken
as SL2(Z) by ignoring the sign.

2.3 Graph Theory. We will study labelled multi-
graphs with the property that all edges between vertices
v1 and v2 have distinct labels. Therefore, our notion of
multigraphs can be formally defined as follows: V is a
finite set of vertices (also called nodes), L is the set of
labels (which may be infinite) and E ⊆ V ×L×V is the
set of labelled edges (also called arcs). Now (u, l, v) ∈ E
means that there is an edge from u to v labelled with l.

A path in a graph is understood as a sequence
of adjacent edges, and can hence be presented as a
sequence

(2.1) Π = (v1, l1, v2)(v2, l2, v3) . . . (vk, lk, vk+1) ∈ E∗

Using notation ei = (vi, li, vi+i), the above presentation
can be written as Π = e1e2 . . . ek ∈ E∗. The length of
path (2.1) is k and its label is defined as concatenation
l1l2 . . . lk ∈ L∗. It is important to notice that if the label
set contains the empty word ε, then it is treated in the
concatenation as usual, i.e. l1εl2 = l1l2. For a path
with label l beginning at vertex u and ending at v we
may also use the notation Π = (u, l, v).

A subpath of (2.1) is defined as eiei+1 . . . ej , where
1 ≤ i ≤ j ≤ k. The subpath is proper if i > 1 or j < k.

Definition 2.1. A dual edge cycle is a path of the form
e1e2E

∗e1e2, where e1, e2 ∈ E.

Remark 2.1. The notion of dual edge cycle is essen-
tially different from the usual graph-theoretical notion
of a cycle, which requires that a node is visited twice.

Intuitively, a dual edge cycle is a path at least four
edges long that returns to the two initial edges at the
very end. Unless otherwise stated, the notion of “cycle”
in this article refers to Definition 2.1. The reason for
such a definition is that in the later analysis, we want to
remove cycles in the graph but simultaneously preserve
local properties of the path from which the cycle was
removed.

We call a dual edge cycle reduced, if none of its
proper subpaths is a dual edge cycle.

Definition 2.2. The reduction function red : E∗ →
E∗ is defined to remove dual edge cycles: If Π =
Π1Π2Π3, where Π2 = e1e2E

∗e1e2 is a dual edge cycle
and Π1,Π3 ∈ E∗, then red(Π) = Π1e1e2Π3. As usual,

red∗ is defined as the transitive closure of red. Thus,
red∗(Π) contains each consecutive pair of edges of the
graph at most once. Such a path is called a reduced
path.

Example. Consider set of edges {e1, e2, e3, e4} ⊆ V ×
L× V and path

Π = e1e2e3e1e3e2e3e1e2

Now, Π is a dual edge cycle, since e1e2 is a prefix and
suffix. But it is not reduced, since e3e1e3e2e3e1 and
e2e3e1e3e2e3 are proper subpaths and dual edge cycles.

Notice that red(Π) ∈ {e1e2, e1e2e3e1e2} – recall
that red is nondeterministic.

3 The Structure of PSL2(Z)

3.1 Generating SL2(Z). Group SL2(Z) is very im-
portant in number theory, and its structure has been
studied extensively in various textbooks (see [23], for
instance), but for pointing out the algorithmic complex-
ity issues, we reproduce the structural properties most
relevant to our study here.

Two structurally important elements of SL2(Z) are

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Evidently S2 = −I (which implies S3 = −S and S4 = I,
so S has order 4), whereas for each n ∈ Z,

Tn =

(
1 n
0 1

)
,

implying that T has no finite order. Nevertheless, it
can be shown that S and T generate SL2(Z), and the
following lemma provides even a quantitative version of
this fact.

Lemma 3.1. SL2(Z) = 〈S, T 〉gr. Furthermore, any
matrix

A =

(
a b
c d

)
∈ SL2(Z)

can be represented as

(3.2) A = SαT q1S3T q2 · . . . S3T qkSβT qk+1 ,

so that α, β ∈ {0, 1, 2, 3}, qi ∈ Z, k ≤ 1 + log2M , and

|qi| ≤ 3
2M

1+log2
5
2 , where M = max{|a| , |b| , |c| , |d|}.

Representation (3.2) can be found in time polynomial
in log2M .

Proof. By a direct computation we see that left multi-
plication of A by S and Tn can be described as follows:

(3.3)
S

(
a b
c d

)
=

(
−c −d
a b

)
,

Tn
(
a b
c d

)
=

(
a+ nc b+ nd
c d

)
.

If c = 0, then

A =

(
a b
0 d

)
,

and since det(A) = ad = 1, it follows that a = d ∈
{−1, 1}. Therefore

A ∈
{(

1 b
0 1

)
,

(
−1 b
0 −1

)}
= {T b, S2T−b}.

If c 6= 0 but a = 0, then according to (3.3) SA ∈
{T−d, S2T d}, implying that A ∈ {S3T−d, ST d} (since
S4 = I). In these cases, the claim evidently holds.

Assume then that ac 6= 0. If |A11| < |A21|, then
according to (3.3), |(SA)11| > |(SA)21|. So define

α =

{
1 if |a| < |c|
0 if |a| ≥ |c|.

to see that

A1 = SαA =

(
a1 b1
c1 d1

)
enjoys property |(A1)11| = |a1| ≥ |c1| = |(A1)21|.
Assume then that

Ai =

(
ai bi
ci di

)
with property |(Ai)11| = |ai| ≥ |ci| = |(Ai)21| has
been defined, but ci 6= 0. Then, due to the (extended)
division algorithm, we can find an integer qi so that
ai = qici + ri, where |ri| ≤ 1

2 |ci|.
We define now

(3.4) Ai+1 = ST−qiAi =

(
−ci −di
ri bi − qici

)
,

and denote ai+1 = −ci, bi+1 = −di, ci+1 = ri, and
di+1 = bi − qici. Then matrix Ai+1 clearly satisfies
|(Ai+1)11| = |ai+1| = |ci| > |ri| = |ci+1| = |(Ai+1)21|.

Sequence A1, A2, . . . of matrices is defined until the
least k for which ck = 0 and hence

Ak =

(
ak bk
0 dk

)
,

and therefore, as we concluded above,

Ak ∈ {T bk , S2T−bk}.

Define β and qk so that Ak = SβT qk , where β ∈ {0, 2}
and qk ∈ {±bk}. Now Ai+1 = ST−qiAi implies Ai =
T qiS3Ai+1, so

A = S−αA1 = S−αT q1S3A2 = S−αT q1S3T q2S3A3

=
...

= S−αT q1S3T q2S3 · · ·T qk−1S3Ak

= S−αT q1S3T q2S3 · · ·T qk−1S3+βT qk .

To estimate the magnitude of the numbers k, q1, q2, . . .,
qk, let Mi be the absolute value of the largest element
of Ai and M the largest Mi. Clearly M = M1 and
notice also that according to the process defined above,
|ci+1| ≤ 1

2 |ci| for each i. But if |ci+1| = |ri| = 1
2 |ci| =

1
2 |ai+1| for some step, ci+1 divides ai+1 implying that
ri+1 = 0 and the process terminates. Hence we have, if
the process has not yet terminated,

1 ≤ |ci| <
1

2
|ci−1| <

1

22
|ci−2| < . . . <

1

2i−1
|c1| ,

which implies i−1 < log2 |c1| ≤ log2M1. By contraposi-
tion, i ≥ 1+log2M1 implies ci = 0. Thus, if k is chosen
as the least number so that ck = 0, then k ≤ 1+log2M1.
For the magnitude of numbers qi, notice that as in (3.4)
it always hold that |ri| ≤ 1

2 |ci|, then Mi+1 > Mi is pos-
sible only in the case Mi+1 = |di+1|. To analyze this,
the determinant condition gives −cidi+1 +ridi = 1, and
if i < k, then ci 6= 0 and therefore

di+1 =
1− ridi
−ci

implying

Mi < Mi+1 = |di+1| ≤
1

|ci|
+
|ri|
|ci|
|di| ≤ 1 +

1

2
Mi,

But the inequality Mi < 1 + 1
2Mi thus obtained can

be valid only if Mi ≤ 1. Now Mi = 0 can be true
only for the zero matrix, whereas Mi = 1 results in a
small number of cases which can each be checked to
satisfy Mi+1 ≤Mi. For the final step where ck = 0 the
determinant condition implies |dk| = 1 anyway, so we
can conclude that the process described above cannot
increase the absolute value of the maximal matrix entry.

For i < k we can write qi = ai−ri
ci

, so

|qi| ≤
∣∣∣∣aici
∣∣∣∣+

∣∣∣∣rici
∣∣∣∣ ≤ |ai|+ 1

2
≤Mi +

1

2
,

and since qi and Mi are both integers, we can conclude
that |qi| ≤ Mi ≤ M1 = M . As qk ∈ {±bk,±dk},
trivially |qk| ≤Mk ≤M1 = M .

It is a straightforward task to analyze that the pro-
cedure for finding representation (3.2) is a polynomial-
time algorithm, given the bit representation size of A as
the input size. �

Remark 3.1. Even though all matrices A ∈ SL2(Z)
can be represented in terms of S and T , it is worth
noticing that the representation is not unique. A direct
computation shows that, for example, TST = ST−1S3.

For a more canonical representation, let

R = ST =

(
0 −1
1 1

)
.

Direct computation shows that

R2 =

(
−1 −1

1 0

)
and R3 = −I,

implying that R6 = I, so R is of order 6. Since now
T = S−1R = S3R, it follows that SL2(Z) = 〈S,R〉, and
that a representation of A ∈ SL2(Z) in terms of R and
S can be obtained by substituting T = S3R = −SR in
(3.2). It is noteworthy that when substituting T = −SR
in (3.2), one can use R3 = −I and S2 = −I to get a
representation

(3.5) A = (−1)γRn0SRn1S · . . . ·Rnl−1SRnl ,

where γ ∈ {0, 1}, ni ∈ {0, 1, 2} and ni ∈ {1, 2} for
0 < i < l.

Remark 3.2. It can be shown that the representation
(3.5) for a given matrix A ∈ SL2(Z) is unique, but
it should be noticed that representation (3.5) can be
exponentially long in the representation size of matrix
A in bits, as the example
(3.6)(

1 m
0 1

)
= Tm = (−SR)m = (−1)m SR . . . SR︸ ︷︷ ︸

m times

demonstrates. The representation size of the matrix Tm

is proportional to log2m, but the representation (3.6)
contains 2m matrices.

It is structurally simpler to present (3.5) ignoring
the sign. For that purpose, we introduce two struc-
turally important elements of PSL2(Z).

Definition 3.1. Let s = S{±I} and r = R{±I} be the
projections of S and R in PSL2(Z).

Remark 3.3. Since S2 = R3 = −I in SL2(Z), it is
clear that s2 = r3 = ε in PSL2(Z).

3.2 Generating PSL2(Z).

Lemma 3.2. [23] - PSL2(Z) = SL2(Z)/{±I} is a free
product of 〈s〉 = {1, s} and 〈r〉 = {1, r, r2}. That is,
PSL2(Z) = 〈r, s | s2 = r3 = 1〉 and if
(3.7)

rn0srn1s · · · rnp−1srnp = rm0srm1s · · · rmq−1srmq ,

where ni,mj ∈ {0, 1, 2} and ni, mj ∈ {1, 2} for 0 < i <
p and 0 < j < q, then p = q and ni = mi for each i.

For the proof of Lemma 3.2 see [23].

Definition 3.2. We call a representation w of a ∈
PSL2(Z) a ground level presentation, or 〈r, s〉-
presentation if w ∈ {r, s}∗ strictly, (eg. no parentheses
and exponents are involved), and reduced, if w contains
no subwords ss or rrr.

Remark 3.4. By Lemma 3.2 every element of PSL2(Z)
admits a unique reduced ground level representation.
However, it follows directly from Remark 3.2 that
the unique representation of the projection of Tm in
PSL2(Z) is

(3.8) tm = rs . . . rs︸ ︷︷ ︸
m times

,

which is exponentially long in the representation size
of tm, that being Θ(log2m) since we can use Tm to
represent tm = {Tm,−Tm}.

Despite Definition 3.2, we may refer to the ground
level representation using exponents and parentheses,
e.g., r2, or even (sr)m, but it should then be clear from
the context that we are not referring to the succinct
representation which we now define.

It is remarkable that for a given matrix A, the
representation (3.7) of a = ±A always contains so much
periodicity, that it is possible to have a polynomially
long description. In the continuation, we will call such
a description a succinct or compact representation.

In fact, substituting T = −SR in (3.2) and taking
the projections S → s and R→ r we learn that

(3.9) a = sα(sr)q1s(sr)q2 · . . . s(sr)qksβ(sr)qk+1 ,

where the estimation for the exponents and k are the
same as in Lemma 3.1. We need to remember that
in this representation, numbers qi are not necessarily
positive but, if qi < 0, we can simply write (sr)qi =
(r2s)−qi to get a presentation with positive exponents
expressed in the following lemma:

Lemma 3.3. Any element a = {A,−A} of PSL2(Z)
admits a unique succinct representation of the form
(3.10)
a = rα(sr)n1(sr2)n2(sr)n3(sr2)n4 . . . (sr)nl−1(sr2)nlsβ ,

where α ∈ {0, 1, 2}, β ∈ {0, 1} and ni > 0 if 1 < i < l.
The representation size can be bounded analogously to
Lemma 3.1.

It is possible to formalize the notion of the succinct
representation by extending alphabet from {r, s} into
a larger one containing parentheses (and), exponent
symbol ↑, and 0 and 1 to present the exponents in
binary. When applying this approach to equation (3.8),
we would have a representation

(3.11) tm = (rs) ↑ (m1 . . .mk),

where m1 . . .mk is the binary representation of integer
m and hence k = blog2mc + 1. Now the length of
the right hand side of (3.11) as a string over the larger
alphabet described above is approximately 1 + 2 + 1 +
1 + 1 + k + 1, which is proportional to log2m, the
representation size of tm.

However, to achieve simplification, we will not
use such a formalism for the succinct representations.
Instead, we choose to use an infinite alphabet consisting
of syllables defined in the next section.

3.3 Syllabic Presentation of PSL2(Z). A more
straightforward version of the compact representation
(3.10) can be obtained by using the notion of a syllable.
In principle, a syllable is just a word over alphabet
{r, s}, but typically a systematic form is desirable.

Definition 3.3. Following Gurevich and Schupp [13]
we define the following syllables:

Ri =


(rs)i−1r if i > 0
(r2s)|i|−1r2 if i < 0
ε if i = 0

We say that syllable Ri is positive, if i > 0, and
negative, if i < 0. The representation size of the syllable
is a constant (to define the type) plus the subscript a
representation size for Ra type syllable.

In the continuation, we will introduce more syllables
but for the moment, these are sufficient. Notice that Ri
is the inverse to R−i for any i ∈ Z (thus RiR−i = ε).
As r = R1, the following lemma is trivial but its claim
is worth emphasizing.

Lemma 3.4. All elements of PSL2(Z) can be repre-
sented by using syllables of the set {s,Ra | a ∈ Z}.

The main advantage of syllables of Definition 3.3
is that they can be used to write the compact repre-
sentations (3.10) in a structural way, and also provide
a natural way to handle the potential cancellations of
elements.

Remark 3.5. It can easily be shown that the syllabic
representation of PSL2(Z) elements is not unique. Con-
sider, for instance an element a = R2R−5. By the defi-
nition,

R2R−5 = (rs)r(r2s)4r2 = (rs)rr2s(r2s)3r2

= r(r2s)3r2 = r(r2s)(r2s)2r2 = s(r2s)2r2

but also sR−3 = s(r2s)2r2.

The above example serves as a basis of the following
definition.

Definition 3.4. Words w1 and w2 over the syllabic al-
phabet {s,Ra | a ∈ Z} (or even over an extended alpha-
bet we introduce later) are equivalent, if they are repre-
sentations of the same PSL2(Z) element. In the contin-
uation, we will denote the syllabic word equivalence by
w1 ≡ w2. It should be noted that for equivalent syllabic
words w1 and w2, also w1 = w2 holds, if the equality is
understood in PSL2(Z). To keep notations simpler, we
accept this ambiguity.

It is clear that ≡ is an equivalence relation, and
even a congruence, meaning that if w1 ≡ w2, then
ww1 ≡ ww2, and w1w ≡ w2w.

Even though the syllabic representation is not
unique, the following result is proven in [13]. The repre-
sentation size estimate follows directly from Lemma 3.3.

Lemma 3.5. Each element a ∈ PSL2(Z) admits a
unique representation of the form

(3.12) a = sαRn1
sRn2

sRn3
s . . . sRnl

sβ ,

where α, β ∈ {0, 1} and the representation is alternat-
ing, meaning that nini+1 < 0 for each i. The size of
representation (3.12) is polynomial in the representa-
tion size of a.

Because of the uniqueness, we call representation
(3.12) a canonical syllabic representation of PSL2(Z)
elements.

Lemma 3.6. The syllables satisfy the following rela-
tions

• ss ≡ ε

• RaR−a ≡ ε, and

• Ra+b ≡ RasRb, if ab > 0.

• R1R1 ≡ R−1, and R−1R−1 ≡ R1.

Proof. The proof is straightforward and uses only the
definition of syllables Ra, and relations r3 = s2 = ε in
PSL2(Z). �

Remark 3.6. It can be seen that the above relations
give rise to other ones. For example, if ab < 0 and
|b| < |a|, then RaRb ≡ Ra+bsR−bRb ≡ Ra+bs, and
a symmetric version is obtained when |a| < |b|. To
summarize:

• RaRb ≡ Ra+bs, if ab < 0 and |b| < |a|

• RaRb ≡ sRa+b, if ab < 0 and |a| < |b|.

Remark 3.7. The above rules in Lemma 3.6 and Re-
mark 3.6 may seem like cancellation rules: Syllables of
type Ra with different subindex signs cancel against each
other very much like the exponents in a product, but the
subindex values close to zero introduce anomalities.

For example, it is easy to see that

R1R
t
2R1 ≡ R−1R−1R

t
2R1

≡ R−1sR1R
t−1
2 R1 ≡ . . .

≡ (R−1s)(R−1s) · · · (R−1s)R1R1

≡ (R−1s)
tR−1 ≡ R−(t+1)

From this, we can easily derive that Rt2R1 ≡
R−1R−(t+1) ≡ R1sR−t and R1R

t
2 ≡ R−tsR1. Simi-

larly we can see that R−1R
t
−2R−1 ≡ Rt+1 and derive

analogous consequences.

We conclude this section by estimating the “reduc-
tion power” of the equivalences of Lemma 3.6 and Re-
mark 3.6.

Definition 3.5. The ground level length, also called
rs-length of a syllable is defined as the number of
occurrences of generators r and s in the syllable. That
is, |s|〈r,s〉 = 1, and

|Ra|〈r,s〉 =

 2a− 1 if a > 0
−3a− 1 if a < 0

0 if a = 0

The ground-level length of a syllabic word w = w1 . . . wn
is defined as |w|〈r,s〉 = |w1|〈r,s〉 + . . .+ |wn|〈r,s〉.

Definition 3.6. A syllabic word w is reducible, if
there exists an equivalent syllabic word w′ so that
|w′|〈r,s〉 < |w|〈r,s〉.

Lemma 3.7. A syllabic word w is reducible if and only
if it contains a factor of the form ss, RaR1Rb, R−aR−b,
RaR−b, or R−aRb, where a, b > 0.

Proof. The proof is based on the fact that a syllabic
word can always be interpreted as a word over alphabet
{r, s}, and as such, is reducible if and only if it contains
a factor s2 or r3.

Part “If”: Assume first that a syllabic word contains
one of the aforementioned factors. Case ss is trivial,
that factor can be removed to obtain an equivalent
syllabic word w′ so that |w′|〈r,s〉 = |w|〈r,s〉 − 2.

In case a = b = 1, we have RaR1Rb =
rrr = ε. If a > 1 but b = 1, then RaR1Rb =
(rs)a−1r r r = (rs)a−2rs = Ra−1s, and a similar
conclusion follows in case a = 1, b > 1. In the
remaining case, both a, b > 1, and a direct cal-
culation shows that RaR1Sb = (rs)a−1r r(rs)b−1r,
a word which contains first r3 and then s2 to
be removed: RaR1Rb = (rs)a−2rs rr rs(rs)b−2r =
(rs)a−2r(rs)b−2r = Ra−1Rb−1.

If a, b > 1, then R−aR−b = (r2s)a−1r2(r2s)b−1r2 =
(r2s)a−2r2sr2r2s(r2s)b−2r2 = R−(a−1)sR1sR−(b−1) (r3

was removed). A similar conclusion holds if either a = 1
or b = 1.

The cases RaR−b and R−aRb are obvious and can
be treated analogously.

Part “Only if”: Assume then that a syllabic word w
is reducible. Since all reductions are done by removing
s2 or r3 from the underlying presentation over alphabet
{s, r}, we can conduct the following analysis:

1) If ss can be removed, then ss must occur as a
subword in the original syllabic word, since the syllables
Ra begin and end with an r.

2) The case when factor r3 can removed can occur
only when syllables of type Ra are concatenated.

2.1) In case RaRb, where a, b > 1, no reduction
takes place, since RaRb = (rs)a−1r(rs)b−1r contains
only two consecutive occurrences of r. However, if b = 1,
Then RaRb ends with rr, and if the next syllable also
begins with r, a factor r3 can be removed. On the other
hand, if the next syllable is of type R−b with b > 0, there
is a factor R1R−b, which will fall in the subcase 2.3).
Hence we can finish with this subcase by concluding
that the reduction takes place if RaR1 is followed by
Rb, where b > 0.

2.2) In the case R−aR−b, where a, b > 1, a reduction
(r3 is removed) always occurs:

R−aR−b = (r2s)a−1r2(r2s)b−1r2

= (r2s)a−2r2sr2r2s(r2s)b−2r2

= R−(a−1)srsR−(b−1)

= R−(a−1)sR1sR−(b−1).

2.3) In both cases RaR−b and R−aRb, a reduction
clearly takes place: RaR−b = (rs)a−1r(r2s)b−1r2 =
Ra−1R−(b−1) if a, b > 1, and the reduction can be
applied recursively as long as both subindices remain
positive. A similar conclusion can be derived for the
supplementary case RaR−b. �

Notice that according to Lemma 3.7, the canonical
form of Lemma 3.5 is not reducible.

Definition 3.7. We define the set of syllables Ω =
{ε, s, sαR±1sβ , sαR±2sβ}, where α, β ∈ {0, 1}. Intu-
itively, set Ω forms a “neighbourhood” of ε.

Lemma 3.8. Assume that a syllabic word w is reducible
to w′ ∈ Ω. Then the reduction can be performed by using
the following syllabic rules:

1. ss 7→ ε

2. RaR−a 7→ ε

3. RaR−b 7→ Ra−bs, if ab > 0 and |b| < |a|

4. RaR−b 7→ sRa−b, if ab > 0 and |a| < |b|

5. R−1R−1 7→ R1

6. R1 7→ R−1R−1

Remark 3.8. We do not introduce a rule R1R1 →
R−1, even though the equivalence R1R1 ≡ R−1 holds.
The asymmetry becomes understandable in the proof
below. It should be noted that rule R1 → R−1R−1 is not
a ground level reduction, but it is used to incorporate the
equivalence RaR1Rb ≡ Ra−1Rb−1.

Proof. It is straightforward to verify that words over
alphabet {s, r} together with rewriting rules r3 7→ ε
and s2 7→ ε form a locally confluent system, meaning
that if x 7→ y and x 7→ z by a single application of a
reduction rule, then there is a w so that y 7→∗ w and
z 7→∗ w (using reduction rules repeatedly). It follows
from Newman’s lemma [16] that the system is confluent.
Especially, for any x ∈ {r, s}∗ there is a unique minimal
element x′ ∈ {r, s}∗ obtained by using the reduction
rules recursively in any order as long as it is possible to
apply any rule.

Let us now assume that a syllabic word w is
reducible to w′ ∈ Ω. We need to show that a chain
of reduction rules s2 7→ ε and r3 7→ ε can be replaced
by a chain of the rules mentioned in the statement of
this lemma.

1) Factor ss can only occur if it is already present in
the syllabic word, and removing that factor corresponds
exactly to the syllabic reduction rule 1.

2) The second type r3 7→ ε can be applied only if w
contains three consecutive symbols r. The proof of the
previous lemma shows that there are three subcases:

2.1) Reduction of form RaR1Rb 7→ Ra−1Rb−1 (a,
b > 1) removes one R1 and reduces the indices of the
surrounding syllables, but it may be simulated by rules
6, 3, 4, and 1:

RaR1Rb 7→ RaR−1R−1Rb 7→ Ra−1ssRb−1 7→ Ra−1Rb−1.

2.2) In this case, R−aR−b contains a factor r3

to be removed, and the resulting representation is
R−(a−1)sR1sR−(b−1) (assuming a, b > 1). However,
it is straightforward to see that in order to cancel a
word containing such a fragment to the identity word,
the first or the last syllable must be cancelled to the
identity. More precisely, if a syllabic word

uR−aR−bv 7→ uR−(a−1)sR1sR−(b−1)v 7→∗ ω

is reducible to an element of Ω, then necessarily either
u 7→∗ u1sRa−1 or v 7→∗ Rb−1sv1. In the first case (the
second is analogous), we can change the reduction order
to have

uR−aR−bv 7→∗ u1sRa−1R−aR−bv

7→ u1ssR1R−bv

7→ u1R1R−bv,

which can be further reduced by using case 2.3. Hence,
we can conclude that this subcase is actually not needed
when reducing syllabic words to the identity. If one of
the subindices, say b, is equal to 1, then the correspond-
ing reduction rule is R−aR−1 7→ R−(a−1)sR1, but as
this form is canonical as well, a similar conclusion can
be drawn. On the other hand, if a = b = 1, then the
rule becomes R−1R−1 7→ R1, which is exactly the rule
number 5.

2.3) This case divides into various subcases. If a,
b 6= 0, we have RaR−b = Ra−1R−(b−1), a reduction
which is obtained by applying r3 7→ ε and s2 7→ ε. As
the system is confluent, we can assume that a reduction
of this type is applied recursively, consequently arriving
either in rule 2, 3, or 4. �

In the algorithm to be presented, we shall need all
reduction rules of Lemma 3.8 at least implicitly, but the
following rules will form the backbone of the algorithm
presented in Section 5.

Definition 3.8. (Reduction function ρ) We call
rules 1-4 of Lemma 3.8 regular and define function ρ
to represent them as follows:

i) ρ(ss) = ε

ii) ρ(RxR−y) =

 Rx−ys, if |x| > |y| ,
sRy−x, if |y| > |x| ,

ε, if |x| = |y| ,
where sgn(x) = sgn(y).

Function ρ can be applied iteratively and nondeter-
ministically. We denote by ρ∗ the reflexive transitive
closure of ρ. Note that ρ is a locally confluent rewriting
system and ρ∗ is clearly terminating, thus ρ is globally
confluent by Newman’s lemma [16] (thus the order that
rules of ρ are applied is not important).

Reduction rules 5 and 6 are called anomalous.

4 First (Brute Force) Decision Procedure

Lemma 3.2 states that the elements of PSL2(Z) can
be presented as words over {r, s} satisfying relations
r3 = s2 = ε. In this section, we use such a presentation
to describe the decision procedure for the identity prob-
lem via standard automata-theoretical constructions,
although the construction of the automata will require
exponential time and space.

We have already described the general formulation
of the identity problem in the preliminaries, but for the
sake of accuracy, we state the computational problem
formally here.

Problem 1. (Identity problem over PSL2(Z))
Given a finite set {A1, . . . , An} ⊂ SL2(Z); let
ai = {Ai,−Ai} be the projection of Ai on PSL2(Z).
The problem is to decide if the semigroup 〈a1, . . . , an〉sg
contains the identity element.

4.1 Input Size Measures. In order to estimate the
problem’s complexity, it is necessary to define a measure
of the size of an input. Here we will use the following:

Definition 4.1. Given an integer a, we denote by |a|bit
the bit representation size of a, that is |a|bit = 1 +
blog2 |a|c + 1, where the extra bit serves as the sign of
the integer, and log2(0) is taken as 0.

Definition 4.2. For any matrix A ∈ Z2×2, we denote
by |A|bit the represention size of matrix A, which is given
by |A|bit =

∑
1≤i,j≤2 |aij |bit.

Remark 4.1. Letting M = max1≤i,j≤2 |aij |, as in
Lemma 3.1, it is obvious that |A|bit = Θ(logM).

Definition 4.3. For any finite matrix set S =
{A1, . . . , An}, the bit size of S is defined as

|S|bit = |A1|bit + . . .+ |An|bit .

When estimating the input size, we ignore the
separating symbols needed for representing sets and
matrices. It is obvious that including those would
produce only a linear increase in the representation size.

It is possible to find instances of Problem 1 where
the representation of the identity element requires a
high number of generator occurrences.

Example. Let n > 1 and S = {sRn, R−1s}. Now the
description size of set S consists of the description of
b = R−1s (a constant number of bits) and a = sRn
requires a number of bits proportional to log2 n the
length of the number. Using Remark 3.6 and Lemma
3.6 we see that ab = sRnR−1s = sRn−1ss = sRn−1,
ab2 = sRn−2, and by induction abn = 1. It is evident

that the identity cannot be found in S+with fewer
generator occurrences.

In this example, the smallest identity in A+ is
obtained by an exponential (in the description size of the
set A) number of the generator occurrences, but there
is anyway a short sequence of elements in S+ witnessing
the existence of the identity: By computing O(log2 n)
elements of sequence b, b2 = R−1sR−1s = R−2s, b

4 =
(b2)2 = R−4s, b

8 = (b4)2 = R−8s, b
16 = (b8)2 = R−16s,

. . . it is possible to construct R−ns, and sRnR−ns = ε.
Here the parsing tree of the identity element is ex-

ponentially deep in the semigroup description size. An-
other example where the shortest identity is exponen-
tially long, but the parsing tree only polynomially deep
was given in [4].

4.2 Automaton for Recognizing the Identity.
The decision procedure presented in [10] is based on
Lemma 3.2, which states that all elements of PSL2(Z)
can be faithfully represented as strings over alphabet
{r, s} with relations r3 = s2 = ε. Briefly described, the
procedure works as follows: First, a nondeterministic
finite automaton over alphabet {r, s} recognizing A+ is
constructed, and then ε-transitions are iteratively added
to represent the relations r3 = s2 = ε between the nodes
(states) as long as possible. More precisely, whenever
a path q1 → q2 with label r3 or s2 is found, an ε-
transition q1

ε−→ q2 is introduced. The procedure ends
eventually, since the number of states is finite, although
exponential in the description size of A. The decision
whether ε ∈ A+ is then made based on the observation
whether there is an ε-transition from the initial state to
the final state.

Another route to the decision procedure, when the
aforementioned finite automaton is constructed, is to
note that the representations of the identity element
in PSL2(Z) can be described by a simple context-free
grammar (the starting and only nonterminal symbol is
∆)

∆→ 1 | s∆s∆ | r∆r∆r∆.

It is well-known that the intersection of a regular
language L1 (accepted by a finite automaton) and a
context-free language L2 (that consists of the identity
element representations) is context-free, and the deci-
sion procedure follows from the fact that the emptiness
problem for a context-free language L = L1 ∩ L2 is de-
cidable.

The construction of an automaton recognizing lan-
guage {a1, a2, . . . , an}+ is very straightforward: The au-
tomaton has two states q0 and q1, and for each ai, there
is a transition q0

ai−→ q1, as well as a loop q1
ai−→ q1.

State q0 is specified as the initial state, and q1 as the
final state (See Figure 1).

q0 q1

a1

ai

an

a1

ai

an

Figure 1: Automaton recognizing {a1, a2, . . . , an}+.
Initial and final states are indicated with short arrows.

Remark 4.2. We call the graph of Figure 1 a daisy
graph: Indeed, arrows q0 → q1 form the stem, and each
arrow q1 → q1 forms one petal.

The automaton of Figure 1 is defined on abstract
symbols ai, and introducing the 〈r, s〉-representation
will result in the automaton being augmented so that
each edge will be replaced with a path as follows: if

ai = ti,1ti,2 . . . ti,ki ,

where each ti,j ∈ {r, s}, then each edge ◦ ai−→ ◦ of the
previous automaton is replaced with a path

◦ ti,1−−→ ◦ ti,2−−→ ◦ . . . ◦
ti,ki−−−→ ◦,

and all the new nodes are assumed distinct. The
replacements result in a larger automaton shown in
Figure 2. As described above, the 〈r, s〉-automaton of
Figure 2 can be used to discover whether the semigroup
A+ contains the identity element.

Now that the lengths of 〈r, s〉-representations of el-
ements of PSL2(Z) can be exponential in the descrip-
tion size of the elements (Remark 3.4), it follows that
the daisy graph of Figure 2 and consequently the de-
scribed decision procedure requires exponential space
in the worst case.

4.3 Syllabic Automaton. An obvious attempt to
resolve the identity problem with fewer spatial resources
comes from the syllabic representations of the PSL2(Z)
elements. Using the syllabic representation instead of
the ground-level representation, we can redefine the
daisy graph of Figure 2 to be only polynomially large in
the input size, but the price to pay is that the edge labels
then come from an infinite alphabet {s,Ra | a ∈ Z}.

The procedure described in Section 4.2 generalizes
as well, but instead of introducing ε-transitions only,

q0 q1

t11

ti1

tn1

t12

ti2

tn2

t11

t12

ti1

ti2

tn1

tn2

Figure 2: 〈r, s〉-automaton recognizing {a1, . . . , an}+.

we introduce new transitions according to Lemma 3.8:
Whenever a path q1 → q2 exists bearing a label
equal to the left-hand side of one of the syllabic rules
of the Lemma, then a new edge q1 → q2 with the
corresponding right hand side as the label should be
introduced.

It is not very difficult to see that such a procedure
will also eventually halt, since for the new Ra-labels be-
ing introduced, the subscript a has no greater absolute
values than those already existing. Finally, the decision
can be made by checking whether the procedure has
produced an ε-transition from the initial to the final
state.

However, the described procedure will produce a
multigraph, which may lead to an exponential increase
in the amount of space required for the computation.

Example. When applying this procedure to Example 4.1
we first get a daisy graph with two petals: one with label
sRn, and the second one with label R−1s. Applying
the reduction rules repeatedly will produce new paths
q1 → q1 with labels sRn−1, sRn−2, sRn−3, etc. Hence
the number of new edges eventually added will be
exponential in the input description size.

Remark 4.3. It should be mentioned already here that
the “daisy” form of the graph is not essential for the
decision procedure. On the contrary, it is possible to
generalize the procedure to decide if the identity is in

R(a1, . . . , an), where R is any regular expression of a1,
. . ., an.

5 Improved Decision Procedure

In the continuation, we will demonstrate how to modify
and analyze the syllabic daisy graph in order to achieve
a nondeterministic, polynomial time algorithm for re-
solving Problem 1.

The strategy will avoid exponential growth in the
edge set mentioned in Example 4.3. A cursory descrip-
tion of the algorithm is as follows:

• Given a matrix set M = {M1, . . . ,Mn} ⊆ SL2(Z),
the procedure starts with constructing a syllabic
version of the “daisy graph” GM = (Q,E) as
described in Section 4.3. It follows from Lemma 3.5
that the size of this graph is polynomial in the input
size and the construction can be done in polynomial
time. Eqi,qj ⊆ E stands for labelled edges from
node qi to qj .

• For a nondeterministically chosen pair of vertices
qi, qj ∈ Q, it is checked if there is a path qi → qj
with label equivalent to a syllabic word in Ω, i.e.
one “close” to ε. This may be done via short,
medium, or long reductions which we describe later.

• Finally, it is verified whether there is an ε-edge from
the initial state q0 to the final state q1. The witness
for such an edge gives the positive answer to the
identity problem.

The short and medium reductions are straightfor-
ward to describe with the already existing notions, but
for the long reductions, we need to introduce more ter-
minology. As we shall show, the syllabic words reducing
to the identity can be assumed to be of a certain form,
which can be locally verified. The form we are aiming
at would be much simpler without reductions shown in
Remark 3.7.

5.1 Syllabic Graph Path Properties. In this sec-
tion we study various important properties of the syl-
labic form of the Daisy Graph. Recall from the Defini-
tion 3.7 that Ω-syllables are those “close” to ε.

As shown in Remark 3.7, there is an option of
having an unbounded number of reductions for cer-
tain types of paths (where the labels are of the form
R1R

t
2R1 ≡ R−(t+1) or R−1R

t
−2R−1 ≡ Rt+1), and hence

we will also introduce R-minus -type “joker” syllable
R−, and analogous plus -type joker syllable of the form
R+.

5.1.1 Syllables R− and R+. Consider a path Π =
(qi, R2, qi)(qi, R1, qj) in GM . Note that we have a self

loop from qi to itself, labelled by syllable R2. This
implies that the path (qi, R2, qi)

t(qi, R1, qj) exists for
any t ≥ 0. From Remark 3.7, (R2)tR1 ≡ R−1R−(t+1),
and hence for any t′ ∈ Z+, there is a path from qi
to qj with label equivalent to R−1R−(t+1). We thus
introduce a syllable R−, which denotes an R syllable of
any negative index.

Similarly, if there exists a path Π =
(qi, R−2, qi)(qi, R−1, qj), then since Rt−2R−1 ≡ R1Rt+1,
we define a syllable R+, which denotes an R syllable of
any positive index.

Definition 5.1. Let Γ+ = {Rx, R+|x > 2}, Γ− =
{Rx, R−|x < 2}, Γ = Γ+ ∪ Γ− and finally Σ = Ω ∪ Γ be
the set of all syllables.

For each syllable in Σ, we now introduce a notion of
“weight”, which gives a magnitude to each such element.

Definition 5.2. (Weight) We define the weight of a
syllable z ∈ Σ as a function wgt : Σ→ Z:

wgt(z) =


x, if z = Rx and z ∈ Γ;
±2, if z ∈ {sαR±2sβ |α, β ∈ {0, 1}};
±1, if z ∈ {sαR±1sβ |α, β ∈ {0, 1}};
0 if z ∈ {ε, s}.

We define the absolute weight of a syllable to be a
function awgt : Σ → N ∪ {0}, given by awgt(z) =
|wgt(z)|. Function wgt (resp. awgt) can be extended
to a word w = w1w2 · · ·wk ∈ Σ∗ by defining wgt(w) =∑k
i=1 wgt(wi) (resp. awgt(w) =

∑k
i=1 awgt(wi)).

As described above, syllables R− and R+ are essen-
tially ‘sets’ of syllables, allowing any negative weight for
R− and any positive weight for R+. Therefore wgt(R+)
is any positive integer and wgt(R+) is any negative in-
teger.

Remark 5.1. It is worth noting that equivalent syllabic
words may have different (absolute) weights. For ex-
ample, R−5R10 ≡ sR−5, which shows that the absolute
weight may differ, and R1 ≡ R−1R−1, which shows that
even the weight may differ.

Therefore, the (absolute) weight is strictly related to
a particular syllabic word, not to the PSL2(Z) element
it represents.

The following definition will help to characterize
certain syllabic words reducible to the identity and will
be essential to the later analysis.

Definition 5.3. Alternating Form (AF). Let

AF = Σ∗ \ Σ∗{RasαsαRb, RasR−b}Σ∗,

where a and b have the same sign, and α ∈ {0, 1}. In
other words, a word w ∈ Σ∗ is in alternating form if

it does not contain two consecutive syllables Ra and
Rb (possibly with ss in between) with the same sign,
or a substring of the form RasR−b. Given a path
Π = (qi, w, qj) ∈ Q × Σ∗ × Q, we also say Π ∈ AF
if w ∈ AF and there is no danger of confusion.

Definition 5.4. (Ω-Minimal Word) A syllabic
word w = w1w2 · · ·wk ∈ Σ∗ is called an Ω-minimal
word if and only if w ≡ w′, where w′ ∈ Ω and
wiwi+1 · · ·wj ≡ w′′ where w′′ ∈ Ω for 1 ≤ i < j ≤ k
implies that i = 1, j = k and w′ = w′′. We denote the
set of all Ω-minimal words over Σ by Φ.

For example, R10R−5sR−5 ∈ Φ, since
R10R−5sR−5 ≡ R5ssR−5 ≡ R5R−5 ≡ ε, but no
shorter syllabic subword of R10R−5sR−5 has that
property. We later show that Ω-minimal words whose
length is greater than 3 are in alternating form which
greatly simplifies their analysis.

The length of a path without dual edge cycles is
analyzed in the following lemma.

Lemma 5.1. Given a path Π ∈ Q × Σ∗ × Q where
Π = (qi, w, qj) and w ∈ AF . Then the following two
properties hold:

i) If red(Π) = Π′, then Π′ = (qi, w
′, qj), where w′ ∈

AF ;

ii) |red∗(w)| ≤ |E|2.

Proof. To prove i), let Π = π1π2 · · ·π|w| ∈ AF . If
red(Π) = Π, then red(Π) ∈ AF as required. Oth-
erwise, Π = Π1Π2Π3, where Π1,Π3 ∈ E∗ and Π2 =
e1e2 Ue1e2 ∈ E∗ is a dual edge cycle (for some e1, e2 ∈
E) and red(Π) = Π1e1e2Π3. Notice that checking if an
element of Σ∗ belongs to AF is a local property of the
word; we need only determine if every subword of length
two is not of the form Ras

α · sαRb, Ras ·R−b, Ra · sR−b
and every subword of length three is not of the form
Ra · s ·Rb, where ab > 0 and α ∈ {0, 1}.

If Π ∈ AF , then Π1e1e2 ∈ AF and e1e2Π3 ∈ AF ,
which implies that red(Π) = Π1e1e2Π3 ∈ AF , since
e1e2 ∈ E2 and the last syllable of Π1 agrees with e1e2,
which in turn agrees with the first syllable of Π3.

To prove ii) notice that |red∗(w)| is a reduced path
and thus contains each element of E2 at most once
(otherwise we have a dual edge cycle which can be
removed). Thus |red∗(w)| ≤ |E|2. �

5.2 Modification Principles of the Daisy
Graph. In the analysis below, we shall require that
the maximal number of edges in the daisy graph GM
is bounded polynomially in |M |bit. The initial num-
ber of labelled edges of the daisy graph GM is |E| =

∑
qi,qj∈Q |Eqi,qj | and this is polynomial in |M |bit by

Lemma 3.3. The maximal possible number of edges that
will be added to GM by our algorithm will be proven
to be polynomial in the initial graph size. Other than
the edges that we may add to GM in the next section,
Section 5.1.1, we will only ever add edges with a label
from Ω between existing pairs of vertices qi and qj in the
graph as we see in Section 5.2.2, and therefore the final
graph will have a description size polynomial in |M |bit
since |Ω| is a constant.

5.2.1 Introduction of R− and R+-edges. Con-
sider a path Π = (qi, R2, qi)(qi, R1, qj) in GM , which
implies that the path: (qi, R2, qi)

t(qi, R2, qj) exists for
any t ≥ 0. Since (R2)tR1 ≡ R−1R−(t+1), we introduce a
new vertex q and new edges by defining Eqi,q = {R−1}
and Eq,qj = {R−}, where R− is the syllable defined
previously, which stands for any R−(t+1) where t ≥ 0.

Similarly, for path Π = (qi, R1, qj)(qjR2, qj), we

introduce a new vertex q and new edges qi
R−−−→ q and

q
R−1−−−→ qj .

The paths with label Rt−2R−1 and R−1R
t
−2 are

treated analogously.
However, the cases with finitely many R2-labels

such as (q1, R2, q2) · · · (qk−1, R2, qk)(qk, R1, qk+1) in
GM , where the states are distinct does not contain a
self loop and thus arbitrary powers of R2 are not nec-
essarily possible. In this case, we just add a new vertex

q and new edges q1
R1−−→ q and q

R−k−−−→ qk+1. The cases
with other path label combinations such as R−1R

t
−2 are

analogous.
In the continuation, we may assume that if we

have a subpath of the form Π = (qi, R2, qi)
t(qi, R1, qj),

then we can alternatively take the (equivalent) path
(qi, R−1, q)(q,R−t, qj) instead. Similar conclusion holds
for subpaths with labels R1R

t
2, Rt−2R−1, and R−1R

t
−2.

5.2.2 Introduction of Ω-edges. Let Π = (qi, w, qj)
be a path in GM from vertex qi to vertex qj such that
w = w1w2 · · ·wk ∈ (Σ−{ε})k, with k ≥ 2, w ≡ w′ ∈ Ω,
and w ∈ Φ, i.e. w is Ω-minimal. Throughout this
section, we ignore ε transitions, which we assume can be
taken at any point without explicitly mentioning them.

We then introduce an edge with label w′, i.e.
Eqi,qj := Eqi,qj ∪ {w′} (if it does not already exist).

We now describe three ways of showing that there
is indeed such a path qi → qj .

1. Short Reductions. If |w| ≤ 3, then we call path Π a
short reduction. The existence of such a path can
be directly checked for any vertex pair (qi, qj).

2. Medium Reductions. Let |w| > 3, such that Π

contains no dual edge cycles, i.e. no pair of edges
of the graph is used more than once (excluding ε-
edges). In this case, we call Π a medium reduction
from qi to qj .

3. Long Reductions. Let |w| > 3 such that Π contains
at least one dual edge cycle, then we call Π a long
reduction from qi to qj .

For the study of medium and long reductions of Ω-
minimal words over Σ, where |w| > 3, the class AF
gives a neat description of such words as we now show.

Lemma 5.2. Let w ∈ Φ and |w| > 3. Then w ∈ AF .

Proof. We proceed by contradiction and show that any
word w of length at least 4 which is not in alternating
form will not reduce to an element of Ω. To do this,
we will use the reduction function ρ from Lemma 3.8.
To simplify the analysis, we will also introduce the
rule that ρ(RasRb) = Ra+b if ab > 0 in this Lemma.
This property can immediately be deduced from the
definition of R-syllables in Definition 3.3 and is simply
a rewriting of equivalent ground level representations of
a syllable.
Case 1) - w = W1Rx1Ry1W2 where W1,W2 ∈ Σ∗ and
x1, y1 > 0. Both W1 and W2 cannot equal ε since k ≥ 3.
Let w′ = ρ∗(W1)Rx1

Ry1ρ
∗(W2) = W ′1Rx1

Ry1W
′
2. Thus

W ′1,W
′
2 do not contain syllabic subwords ss, Rz1sRz2

or Rz1R−z2 , where z1z2 > 0. Since w ∈ Φ, then
W ′1,W

′
2 6∈ Ω.

We now show that ρ∗(W ′1Rx1) is of the form W ′′1 Rx′1
or W ′′1 R−x′1s, where W ′′ ∈ Σ∗ and x′1 > 0. Consider the
suffix of ρ∗(W ′1). We have the following cases (where
X,X ′ ∈ Σ∗ are arbitrary words and x2, x3 > 0):

1. If ρ∗(W ′1) = XRx2
s, then we can apply rule

ρ(Rx2
sRx1

) = Rx1+x2
and recursively consider the

suffix of ρ(X) with Rx1+x2 .

2. If ρ∗(W ′1) = XR−x2s or ρ∗(W ′1) = XRx2 , then
there is no cancelation between ρ∗(W ′1) and Rx1

.

3. If ρ∗(W ′1) = XR−x2
with |x2| > |x1|, then

ρ∗(W ′1Rx1
) = XR−x2

Rx1
= XR−x2+x1

s.

4. If ρ∗(W ′1) = XR−x2
with |x2| < |x1|, then

we see that ρ∗(W ′1Rx1) = XsRx1−x2 . X can-
not have suffix R−x3s, since ρ(R−x3sR−x2) =
R−(x2+x3). If X = X ′Rx3

s, then ρ∗(W ′1Rx1
) =

X ′ρ(Rx3
ssRx1−x2

) = X ′Rx3
Rx1−x2

, which does
not cancel and ends with a positive R sylla-
ble. If X = X ′R−x3 , then ρ∗(W ′1Rx1) =
X ′ρ(R−x3sRx1−x2) = X ′R−x3sRx1−x2 , again end-
ing with a positive R syllable since there is no can-
celation.

5. If ρ∗(W ′1) = XR−x2
with |x2| = |x1|, then this gives

a contradiction, since ρ(R−x2
Rx1

) = ε but then w
is not an Ω-minimal word.

The above analysis therefore shows that the suffix of
ρ∗(W ′1Rx1

) is Rx′1 or sR−x′1 for x′1 > 0. A similar
analysis shows that the prefix of ρ∗(Rx2

W2) is of the
form Ry′1 or R−y′1s for y′1 > 0. In fact, we can see
that x′1, y

′
1 > 2, since otherwise w contains a syllabic

reduction to a word of the form sαR±1s
β ∈ Ω, or

sαR±2s
β ∈ Ω for α, β ∈ {0, 1}, which is a contradiction

since w is Ω-minimal.
Therefore, we see that ρ(W1Rx1

)·ρ(Rx2
W2) has one

of the following forms: XRx′1 ·Ry′1X
′, XR−x′1s ·Rx′2X

′,
XRx′1 ·sR−y′1X

′ orXR−x′1s·sR−y′1X
′ ≡ XR−x′1R−y′1X

′.
Since there is no cancelation between the central ele-
ments of the first three of these cases, then the word
cannot reduce under ρ to a word in Ω. This leaves us
with the case that w contains two consecutive negative
weight R syllables.
Case 2) - w = W1R−x1

R−y1W2 where W1,W2 ∈ Σ∗

and x1, y1 > 0. Let w′ = ρ∗(W1)R−x1
R−y1ρ

∗(W2) =
W ′1R−x1R−y1W

′
2. Thus W ′1,W

′
2 do not contain syllabic

subwords ss, Rz1sRz2 or Rz1R−z2 , where z1z2 > 0.
Since w ∈ Φ, then W ′1,W

′
2 6∈ Ω. We now show

that ρ∗(W ′1R−x1
) is of the form W ′′1 R−x′1 , W ′′1 Rx′1s or

W ′′1 sR1, where W ′′ ∈ Σ∗ and x′1 > 0.
Consider the suffix of ρ∗(W ′1). We have the follow-

ing cases (where X,X ′ ∈ Σ∗ are arbitrary words and
x2, x3 > 0):

1. If ρ∗(W ′1) = XR−x2
s, then ρ∗(W ′1R−x1

) =
XR−(x2+x1) for which there is no cancelation and
the suffix is R−(x2+x1).

2. If ρ∗(W ′1) = XRx2
s, then there is no cancelation

and ρ∗(W ′1R−x1
) = XRx2

sR−x1
.

3. If ρ∗(W ′1) = XRx2 with |x2| > |x1|, then
ρ∗(W ′1R−x1) = XRx2−x1s, with x2 − x1 > 2, oth-
erwise Rx2

R−x1
≡ w′ ∈ Ω which is a contradiction.

4. If ρ∗(W ′1) = XRx2
with |x2| < |x1|, then

ρ∗(W ′1R−x1) = XsR−x1+x2 with −x1 + x2 < −2,
otherwise sR−x1+x2 ∈ Ω which is a contradic-
tion. X cannot have suffix R−x3

or Rx3
s since

this suffix would cancel with Rx2
. Thus the suf-

fix of X must be either Rx3
or R−x3

s. If it is
Rx3 , then ρ∗(W ′1R−x1) = X ′Rx3sR−x1+x2 which
does not cancel any further. If the suffix of X is
R−x3

s, then ρ∗(W ′1R−x1
) = X ′R−x3

ssR−x1+x2
=

X ′R−x3
R−x1+x2

and we again have two consecutive
negatively weighted R syllables. Since −x1 + x2 <
−2, then R−x3R−x1+x2 has suffix sR−x1+x2+1,
where −x1 + x2 + 1 < −1.

5. If ρ∗(W ′1) = XRx2
with |x2| = |x1|, then this is

a contradiction, since then ρ∗(Rx2R−x1) ≡ ε ∈ Ω,
but w ∈ Φ.

Thus, the suffix of ρ∗(W ′1R−x1) is in {R−x′1 , Rx′1s;x1 >
1}. A similar analysis shows that the prefix of
ρ∗(R−y1W

′
2) is in {R−y′1 , sRy′1 ; y′1 > 1}. We see that

XR−x′1 · R−y′1X
′ ≡ XR−(x′1−1)sR1sR−(y′1−1)X

′ since
x′1, y

′
1 > 1, and there is no further reduction. For

XR−x′1 · sRy′1X
′ there is no further cancelation. Simi-

larly for XRx′1s · R−y′1X
′. Finally, XRx′1s · sRy′1X

′ ≡
XRx′1Ry′1X

′ which has already been considered and
cannot reduce to an Ω element.
Case 3) - w = W1Rx1

sR−y1W2 where W1,W2 ∈ Σ∗

and x1y1 > 0. In this case, an identical analysis to
that above shows that the suffix of ρ∗(W1Rx1) is of
one of the forms {X ′Rx′1 , X

′R−x′1s} and the prefix of
ρ∗(Ry1W2) is of one of the forms {R−y′1Y

′, sRy′1Y
′},

where X ′, Y ′ ∈ Σ∗ and |x1|, |y1| > 1. Now we consider
what happens when these elements are combined as
ρ∗(W1Rx1sR−y1W2) for these four cases.

In the case ρ∗(W1Rx1) ≡ X ′Rx′1 and ρ∗(Ry1W2) ≡
R−y′1Y

′, then X ′Rx′1 · s · R−y′1Y
′ is unchanged by the

action of ρ since Rx′1 · s · R−y′1 has no cancelation. In
the second case ρ∗(W1Rx1

) ≡ X ′Rx′1 and ρ∗(Ry1W2) ≡
sRy′1Y

′, then ρ(X ′Rx′1 ·s ·sRy′1Y
′) ≡ X ′Rx′1 ·Ry′1Y

′ with
x′1, y

′
1 > 1 has already been considered above.
In case three, ρ∗(W1Rx1) ≡ X ′R−x′1s and

ρ∗(Ry1W2) ≡ R−y′1Y
′, then ρ(X ′R−x′1s · s · R−y′1Y

′) ≡
X ′R−x′1 ·R−y′1Y

′ with x′1, y
′
1 > 1 has already been con-

sidered above. In case four, ρ∗(W1Rx1
) ≡ X ′R−x′1s and

ρ∗(Ry1W2) ≡ sRy′1Y
′, thus ρ(X ′R−x′1s · s · sRy′1Y

′) ≡
X ′R−x′1s·Ry′1Y

′ which again is unchanged by the action
of ρ. �

In fact, we can extend the previous Lemma to show
that the weight of a word w ∈ Φ must be in the set
{0,±1,±2} and the value determines which elements in
Ω word w may reduce to, as we now see.

Lemma 5.3. Given a word w ∈ Φ, with |w| > 3, then
w ≡ w′, for some w′ ∈ Ω iff 0 ≤ |wgt(w)| ≤ 2, and if

wgt(w) =

 ±2 ⇒ w′ = sαR±2s
β

±1 ⇒ w′ = sαR±1s
β

0 ⇒ w′ ∈ {s, ε}

where α, β ∈ {0, 1}.

Proof. Let w = w1w2 · · ·wk ∈ Φ. Note that the action
of ρ, defined in Definition 3.8 does not change the weight
of word w. Consider thus ρ∗(w) ≡ w′ ∈ Ω. Since
the weight of any syllable of Ω is 0,±1,±2, and by
Lemma 3.8 and Lemma 5.2, ρ reduces w to w′ (since
w ∈ Φ and thus w ∈ AF), then the weight of w and w′

are the same as required. �

The next technical lemma uses number-theoretical
arguments and will be required later in order to bound
the number of distinct dual edge cycles required in ‘long
reductions’ to a polynomial value.

Lemma 5.4. Let 1 ≤ x, c1, . . . , ck1 , d1, . . . , dk2 < T such
that there exist integers α1, . . . , αk1 , β1, . . . , βk2 > 0
where:

(5.13) x+

k1∑
j=1

αjcj −
k2∑
j=1

βjdj = 0.

Then, there exists {c′1, . . . c′k′1} ⊆ {c1, . . . ck1},
{d′1, . . . d′k′2} ⊆ {d1, . . . dk2}, α

′
i, β
′
i > 0 and k′1, k

′
2 ∈

O(log T) such that

(5.14) x+

k′1∑
j=1

α′jc
′
j −

k′2∑
j=1

β′jd
′
j = 0.

Proof. Let S = {c1, c2, . . . , ck} be a set of positive
integers and pM the largest prime divisor therein. We
can then write

c1 = 2α11 · 3α12 · . . . · pα1M

M

c2 = 2α21 · 3α22 · . . . · pα2M

M

...

ck = 2αk1 · 3αk2 · . . . · pαkM

M

and if we take the minimal exponent of each column,
say αj = min{α1j , α2j , . . . , αkj}, it is clear that

gcd(c1, c2, . . . , ck) = 2α13α2 · . . . · pαM

M .

The same gcd can be obtained by selecting at most M
integers from set S: Choose ci1 so that αi11 = α1 (the
1st column exponent is minimal), ci2 so that αi21 = α1

(the 2nd column exponent is minimal), etc. until ciM .
Some of the numbers ci1 , . . ., ciM may be the same, but
anyway |S′| = |{ci1 , ci2 , . . . , ciM }| ≤M . To estimate M
is straightforward:

c1 = 2α113α12 · . . . · pα1M

M ≥ 2 · 3 · . . . · pM ≥ 2M ,

hence M ≤ log2 c1, and a similar estimate holds for any
ci. Hence M ≤ log2 T , where T = max{c1, c2, . . . , ck}.
It is clear that for any S′′ so that S′ ⊂ S′′ ⊂ S, we have
gcd(S′′) = gcd(S′) = gcd(S).

Assume then that a Diophantine equation

x+

k1∑
j=1

αjcj −
k2∑
j=1

βjdj = 0

has a solution (α1, . . . , β1, . . .) over the natural numbers
(here it is assumed that k1, k2 > 0, i.e. that both signs

really occur). As reasoned above, there is a set {c′1, . . .,
c′k′1

, d′1, . . ., d′k′2
} with cardinality at most log2 T + 1,

where T = max{c1, . . . , d1, . . .} (+1 comes from the
requirement that there has to be at least one number
of the opposite sign). Because of the gcd condition, we
know that

(5.15) x+

k′1∑
j=1

αjc
′
j −

k′2∑
j=1

βjd
′
j = 0

has a some solution (α1, . . . , β1, . . .) over the inte-
gers. To simplify the notations, remove the primes and
rewrite (5.15) as

(5.16) x+

k1∑
j=1

αjcj −
k2∑
j=1

βjdj = 0.

Let then B = c1 . . . ck1d1 . . . dk2 . Now for any n ∈ Z,

k1∑
j=1

(αj + nk2
B

cj
)cj −

k2∑
j=1

(βj + nk1
B

dj
)dj

=

k1∑
j=1

αjcj −
k2∑
j=1

βjdj + nk1k2B − nk1k2B,

which shows that for any n ∈ Z, αj 7→ αj + nk2
B
cj

(and

similarly for βj) yields another solution to (5.16). It
follows that there is a solution where each α (and β)is
positive.

We now estimate the magnitude of the positive
integers α and β in the solution. In fact, B could
be could even be replaced with B

gk1+k2
, where g =

gcd(c1, . . . , d1, . . .), but even without such a replace-
ment we have that

B = c1 . . . ck1d1 . . . dk2 ≤ T k1+k2 ,

hence the bit size of B is at most

log2B ≤ (k1 + k2) log2 T ≤ (log2 T + 1) log2 T.

�

We also require the following technical lemma. This
will allow us to determine that if we have two words
w1, w2 ∈ Φ starting with the same syllable, and ending
with the same syllable, then if they have the same weight
they will reduce to exactly the same element of Ω.

Lemma 5.5. Let Σ′ = Σ − {R−, R+} and w1 = uXv,
where u, v ∈ Σ′ and X ∈ Σ′∗ such that |w1| > 3,
|wgt(w1)| ≤ 2 and w1 ∈ Φ. Then w ≡ w′ for some
unique w′ ∈ Ω and for any word w2 = uY v where
Y ∈ Σ′∗, Y ∈ AF and wgt(w2) = wgt(w1), then
uY v ≡ w′.

Proof. Note that if u = s or v = s, then w1 6∈ Φ as is not
difficult to see. For example if u = s, and ρ∗(uXv) ∈ Ω,
then it implies that ρ∗(Xv) ∈ Ω and thus w1 6∈ Φ. We
may therefore assume that u = Ra and v = Rb for some
a, b ∈ Z− {0}.

If wgt(w1) = 0, then w′ = ε or w′ = s by definition
of wgt and Ω. In both cases since wgt(w2) = wgt(w1) =
0, then w2 ≡ w′ since application of the reduction rules
of Lemma 3.8 only remove a multiple of 2 ‘s’ syllables
from a word as can easily be verified.

Therefore assume that wgt(w1) = t ∈ {±1,±2}.
Thus we have w1 ≡ sα1Rts

β1 and w2 ≡ sα2Rts
β2 . We

we prove that α1 = α2 and β1 = β2 which will prove
the Lemma.

Clearly wgt(X) = wgt(Y) and since w1, w2 ∈ AF ,
then it follows that X,Y ∈ AF because a subword of
a word in AF is also in AF . Assume by contradiction
that α1 = 1 and α2 = 0, i.e. that w1 = RaXRb ≡
sRts

β1 and w2 = RaY Rb ≡ Rts
β2 . Then, X ≡

R−asRts
β1R−b and Y ≡ R−aRts

β2R−b. Since X,Y ∈
AF , then sgn(a) = −sgn(t) in order that R−asRt ∈
AF . However, sgn(a) = sgn(t) in order that R−aRt ∈
AF . Since t 6= 0, this give a contradiction. A similar
proof shows that if α1 = 0 and α2 = 1, i.e. if w1 ≡
Rts

β1 and w2 ≡ sRts
β2 , then we get a contradiction.

Therefore α1 = α2.
Assume then by contradiction that β1 = 1 and

β2 = 0, i.e. that w1 = RaXRb ≡ sα1Rts and
w2 = RaY Rb ≡ sα1Rt. Then, X ≡ R−as

α1RtsR−b
and Y ≡ R−as

α1RtR−b. Since X,Y ∈ AF , then
sgn(b) = −sgn(t) in order that RtsR−b ∈ AF . However,
sgn(b) = sgn(t) in order that RtR−b ∈ AF . Since
t 6= 0, this again gives a contradiction. Thus we see
that α1 = α2 and β1 = β2 as required. �

Lemma 5.6. Let Π = (qi, w, qj) ∈ Ek be a path in
GM from a vertex qi to a vertex qj such that w =
w1w2 · · ·wk ∈ Φ and k ≥ 2. Then a certificate for the
derivation of an edge (qi, w

′, qj), with w ≡ w′ ∈ Ω,
can be nondeterministically found in time polynomial in
|M |bit.

Proof. We shall deal with three separate cases. In
the proof, we again ignore any ε transitions, which we
may assume can be taken without explicitly mentioning
them.
1) Short reductions. In this case, k ≤ 3 and we
can verify that w ≡ w′ ∈ Ω trivially via the reductions
shown in Lemma 3.8. The only remaining cases involve
syllables R− and R+.

If w1w2 = R+λ1, w1w2 = λ2R−, w1w2 = R−λ2,
w1w2 = λ1R+, w1w2 = R−R+ or w1w2 = R+R−,
where λ1 ∈ Γ− and λ2 ∈ Γ+: then the following edges
all belong to Eqi,qj : {ε,R2s,R1s, sR1, sR2}.

To see this, let us consider the first rule w1w2 =
R+λ1, where λ1 = R−x for some x > 2 as an example.
The other cases follow in a similar analysis. Since
syllable R+ allows us to derive any syllable Rk, where
k ≥ 1, then we can easily verify that the following are
all valid labels of edges from qi to qj :

Rx−2R−x ≡ sR−2; Rx−1R−x ≡ sR−1; RxR−x ≡ ε;
Rx+1R−x ≡ R1s; Rx+2R−x ≡ R2s.

Such a path can be found and verified in time polyno-
mial in |M |bit. Thus any short reductions can be found.
2) Medium reductions. In this case, k > 3 and
Π does not contain a dual edge cycle (as throughout,
cycles will mean dual edge cycles unless otherwise
stated). We may assume that w ∈ AF by Lemma 5.2.
By Lemma 5.1, we know that |w| ≤ |E|2 since red(w) =
w. Such a path Π can be guessed in polynomial time
and we can verify that w ≡ w′ ∈ Ω holds by applying
the reductions rules of Lemma 3.8.
3) Long reductions. In this case k > 3 and Π contains
at least one dual edge cycle. This is the most difficult
case and we split the analysis into two subcases. Since
w ∈ Φ, we may assume that w ∈ AF by Lemma 5.2,
and that |wgt(Π)| ≤ 2, with the weight determining
which element of Ω we reduce to, up to factors of ‘s’ by
Lemma 5.3. We shall show a way to find an equivalent
path Π2 = (qi, w2, qj), such that w2 ∈ AF , wgt(w2) =
wgt(w) and Π2 contains no more than a polynomial (in
terms of |M |bit) number of reduced dual edge cycles,
which will allow us to verify that w2 ≡ w ≡ w′ ∈ Ω
succinctly.

In this step, we may assume that Π does
not contain a subpath (qi, R1, qj)(qj , R2, qj) or
(qj , R2, qj)(qj , R1, qk) (or the version with R−1 and
R−2). This is because an equivalent path exists in the
graph using word R− (R+ resp.) by Section 5.2.1. In
both cases 3a and 3b below, the presence of such a
path within Π implies that dual edge cycles of arbitrary
positive or negative weight exist, and then in both cases
a solution is trivial to find (since the main difficulty
in these cases is finding an equivalent path with low
descriptional complexity of a given weight). Therefore
in the analysis below we shall exclude syllables R−
and R+, as well as subwords of the form R1R

t
2, Rt2R1,

R−1R
t
−2 and Rt−2R−1.

3a) Π contains both positive and negative weight
dual edge cycles. I.e. Π = X1C1Y1 = X2C2Y2 such
that C1 and C2 are dual edge cycles and wgt(C1) ·
wgt(C2) < 0, with X1, X2, Y1, Y2 ∈ E∗.

Each reduced dual edge cycle Ci present in Π has a
weight, which we denote by ci if the weight is positive
and di if the weight is negative (we take the absolute
value of a negative weight, so all ci, di are positive). Let

x = wgt(red∗(Π)) and assume without loss of generality
that x > 0. Note that x is not unique, since red
is nondeterministic. By Lemma 5.4, if there exists a
solution to x+

∑k1
j=1 αjcj −

∑k2
j=1 βjdj = 0, then there

also exists a solution when k1, k2 ∈ O(log T), where T is
the sum of absolute values of edge label weights in the
daisy graph GM . This corresponds to choosing a subset
of the reduced dual edge cycles of Π.

We now note a technical concern. The proof of
Lemma 5.4 proceeds by removing unneccesary terms
from set {ci} and {di} whilst retaining the gcd. How-
ever, we may choose some term ci1 , corresponding to
some reduced cycle Ci1 , whilst removing some other
term ci2 , corresponding to some reduced cycle Ci2 .
The cycle Ci1 may not be directly connected to path
red∗(Π) however, and Ci2 may need to be present, at
least once, in order to allow cycle Ci1 to be taken.
In this case, we may add ci2 to the set of chosen gcd
values however, which potentially increases the size of
set {ci} by a factor of two. In this case, the coeffi-
cient of ci2 (denoted αi2) must be nonzero, since Ci2
must be chosen at least once, in order to allow Ci1 to
be traversed. However, if we have a solution to Equa-
tion (5.14) when αi2 = 0, then choose any term βkdk
and update αi2 := dk and βk := βk + ci2 and then a
solution still exists and αi2 , βk > 0. To see this, note
that 0 · ci2 − βkdk = dkci2 − (ci2 + βk)dk. A similar
analysis holds for the elements of set {di}.

To find a certificate for an Ω-minimal word w along
a path from qi to qj , which is reducible to w′ ∈ Ω, we
can thus:

a) Nondeterministically guess a reduced path Π′, in
Alternating Form, between nodes qi and qj of
length ≤ |E|2 and of weight x.

b) Nondeterministically guess O(log T) positive (resp.
negative) reduced dual edge cycles that can be
‘reinserted’ in to Π′ and denote their weight by ci
(resp. di). The length of each such cycle is bounded
by |E|2 by Lemma 5.1, since they are reduced. This
new path may be denoted Π′′ = (qi, w

′′, qj). Note
that Π ∈ AF ⇒ Π′′ ∈ AF by Lemma 5.1.

c) Verify that x+
∑k1
j=1 αjcj −

∑k2
j=1 βjdj = wgt(w′),

where |wgt(w′)| ≤ 2 for some guessed values
αj , βj ≥ 1.

Note that this procedure is guaranteed to find a
syllable in Ω with the same weight as w′ ∈ Ω. Note
also in this procedure that since Π′′ and Π start and
end with the same syllable (since the procedure only
removes and reinserts dual edge cycles which leaves the
first and last syllables unchanged), and since Π′′ ∈ AF ,

then Lemma 5.5 implies that Π ≡ Π′′ ≡ w′ ∈ Ω as
required.
3b) Π only contains dual edge cycles of the same
sign.

By abuse of notation, let Π′(τ) ≥ 0 denote the
number of occurences of a subpath τ ∈ E+ within a
path Π′. For example, if Π′ = e1e2e3e1e2e4e3e1e2, then
Π′(e1e2) = 3 and Π′(e4) = 1.

Our aim is to construct a path Πz such that Πz(τ) =
Π(τ) for all τ ∈ E2, where Πz ∈ AF . Crucially, Πz will
have a simple description and acts thus as a certificate
for path Π from qi to qj .

Let Π1 = red∗(Π). Our approach will be to
nondeterministically guess a reduced dual edge cycle Π∗
and ‘insert’ a power of Π∗ into Πi to give a path Πi+1,
starting from i = 1. The idea of this procedure is
that the description of this new path has a polynomial
description in terms of |M |bit. This procedure of
inserting powers of a reduced dual edge cycle will
generate paths Π1,Π2, . . . ,Πz where we will reach a
stopping condition that for all τ ∈ E2, then Πz(τ) =
Π(τ). The choice of the dual edge cycles will ensure
that z ≤ |E|2 and each cycle is taken to a bounded
power. We will show that Πi ∈ AF ⇒ Πi+1 ∈ AF and
since Π1 ∈ AF by Lemma 5.1 then by induction this
will show that Πz ∈ AF . The constructed path Πz will
then act as a certificate for path Π.

Now we show how to find Π∗ for a given Πi. Assume
that Πi(τ) ≤ Π(τ) for all τ ∈ E2. This certainly holds
for i = 1, since red only removes dual edge cycles.
Nondeterministically choose a reduced dual edge cycle
Π∗ = π1π2 · · ·πmπ1π2 ∈ E∗, such that Πi(π1π2) > 0
and for each τ ∈ E2 such that Π∗(τ) ≥ 1, then
Π(τ) − Πi(τ) ≥ 1. Note that by the definition of a
reduced dual edge cycle, |Π∗| ≤ |E|2 + 2. For each
τ ∈ E2, then Π∗(τ) = 0 if τ is not a subpath of Π∗,
Π∗(τ) = 2 if τ is equal to π1π2 and Π∗(τ) = 1 otherwise.
Define x = min{Π(τ) − Πi(τ); τ ∈ E2 and Π∗(τ) ≥ 1}.
Therefore, x ≥ 1 by the choice of Π∗ and x denotes the
minimum difference between the number of times some
τ ∈ E2 appears in Π and in Πi.

Recall that we assumed all dual edge cycles have
the same sign. Let b = wgt(Π1). Assume without loss
of generality that b < −2 and therefore all dual edge
cycles of Π have a positive weight (otherwise the weight
of Π would certainly be less than −2). Note that b has
a description size which is polynomial in |M |bit, since
|Π1| ≤ E2 + 2 and so |b| is no more than two times the
sum of all edge weights in the graph GM .

Now, since Πi(π1π2) > 0, then we can write Πi =
Π′iπ1π2Π′′i ∈ E∗, where Π′i,Π

′′
i ∈ E∗. We define

Πi+1 = Π′i(π1π2 · · ·πm)xπ1π2Π′′i ∈ E∗ (we intuitively

call this ‘inserting’ Πx
∗ into Πi). Clearly, Πi+1 is a path

in GM since π1π2 was already a subpath of Πi and Π∗
is a dual edge cycle. Since each cycle has a positive
weight (at least 1) then x ≤ |b| + 4 because otherwise
wgt(Πi+1) > 2 and any additional (positive) dual edge
cycles that are added to Πi+1 will only increase the
weight, even though |wgt(Π)| ≤ 2. At this point then,
notice that x is bounded polynomially in |M |bit.

Furthermore, invariant Πi+1(τ) ≤ Π(τ) still holds
for all τ ∈ E2 by the choice of x. Crucially, notice that
there exists some τ ∈ E2 such that Π(τ)−Πi(τ) > 0 and
Π(τ)−Πi+1(τ) = 0; this is just the τ that defined value
x. Each time we repeat this procedure, there exists some
new τ ∈ E2 such that the number of occurences of τ in
Π and Πi+1 is equal. Since τ ∈ E2, then this procedure
can be repeated no more than |E|2 times to generate
some path Πz, after which for every pair τ ∈ E2, we
have that Πz(τ) = Π(τ).

By Lemma 5.1, we know that function red retains
Alternating Form for paths (i.e. if path Π′ ∈ AF ,
then red(Π′) ∈ AF). A minor modification of the
proof also shows that if Πi = Π′iπ1π2Π′′i ∈ AF , then
Πi+1 = Π′iΠ

x
∗Π
′′
i ∈ AF , since inserting a dual edge cycle

also retains the required local properties of syllables.
The final part to verify is that this procedure can be

carried out iteratively until Πz(τ) = Π(τ) for all τ ∈ E2.
The only way that this can fail is if at some point we
generate path Πi and there does not exist a reduced
dual edge cycle Π∗ ∈ E∗ which can be ‘inserted’ into
Πi, i.e. for some τ ∈ E2 which is a subpath of Π∗, then
Π(τ) − Πi(τ) = 0, which means that we cannot use τ
again while maintaining invariant Πi+1(τ) ≤ Π(τ).

Let Λ(Πi) = {τ ′ | τ ′ ∈ E2 and Π(τ ′)−Πi(τ
′) ≥ 1}.

Thus, Λ(Πi) is just the set of dual edges which are
present more in Π than in Πi.

Assume then by contradiction that |Λ(Πi)| ≥ 1, but
there does not exist a reduced dual edge cycle which
only uses edges of Λ(Πi). In this case, we cannot insert
another cycle into Πi, even though Π(τ)−Πi(τ) ≥ 1 for
some τ ∈ Λ(Πi).

Let τ1 = (qj , u1, q) ∈ E, τ2 = (q, u2, qk) ∈ E
and τc = τ1τ2 ∈ Λ(Πi) ⊆ E2. If there exists some
edge el = (q′j , u

′
1, qj) ∈ E such that τc(elτ1) = 0 and

elτ1 ∈ Λ(Πi), then we ‘extend’ τc to the left to give
τc 7→ elτc. Note that τc is still a valid path. This
procedure is performed iteratively. Now, since we only
left extend τc if it does not cause repetition of some dual
edge, then this procedure must eventually halt for some
τ∗c and then ‖τ∗c | ≤ |Λ(Πi)| ≤ |E|2. Note also that τ∗c
is not a dual edge cycle by our above assumption that
no such cycle is possible using only elements of Λ(Πi).
Now, τ∗c is a path from some vertex q1 to qk that cannot
be further left extended by any edges from Λ(Πi).

Let In : E∗ × Q → N be a function such that
In(Π′, q′) denotes the number of edges of Π′ ∈ E∗

going to vertex q′ ∈ Q, plus 1 if Π′ starts at vertex
q′. Similarly, Out : E∗ ×Q→ N is a function such that
Out(Π′, q′) denotes the number of edges of Π′ ∈ E∗

leaving vertex q′ ∈ Q, plus 1 if Π′ ends at vertex q′. For
example, given path:

Π′ = (q′1, w
′
1, q
′
2)(q′2, w

′
2, q
′
3)(q′3, w

′
3, q
′
2)(q′2, w

′
5, q
′
3),

then In(Π′, q1) = 1, Out(Π′, q1) = 1, In(Π′, q2) = 2,
Out(Π′, q2) = 2 and In(Π′, q3) = 2, Out(Π′, q3) =
2. These functions can be defined formally for Π′ =
π′1π

′
2 · · ·π′k′ ∈ E∗ as follows:

In(Π′, q′) =
∑

πi′=(q′′,w′,q′)

1 +
∑

π1=(q′,w′,q′′)

1,

Out(Π′, q′) =
∑

πi′=(q′,w′,q′′)

1 +
∑

πk′=(q′′,w′,q′)

1,

where 1 ≤ i′ ≤ k′, q′′ ∈ Q and w′ ∈ Σ− {ε}. Note that
the second summation of function In/Out adds 1 if and
only if Π′ begins/ends at vertex q′.

Note that for any path Π′ ∈ E2 and vertex q′ ∈ Q:

(5.17) In(Π′, q′) = Out(Π′, q′).

Consider vertex q1. Since τ∗c cannot be further left
extended from vertex q1, then for all τ ∈ E2 of the
form (qy1 , wy1 , q1)(q1, wx1 , qx1), for any qy1 , qx1 ∈ Q and
wx1 , wy1 ∈ Σ − {ε}, then Π(τ) − Πi(τ) = 0, and thus
τ 6∈ Λ(Πi). This implies that

(5.18) In(Π, q1) = In(Πi, q1).

Since there exists some path τl =
(q1, wx2

, qx2
)(qx2

, wy1 , qy2) ∈ E2 such that τl ∈ Λ(Πi),
then Π(τl)−Πi(τl) > 0, then it implies that

(5.19) Out(Π, q1) > Out(Πi, q1).

Combining Invariant 5.17, Equality 5.18 and Inequal-
ity 5.19, we obtain the following contradiction:

In(Πi, q1) = Out(Πi, q1)

< Out(Π, q1)

= In(Π, q1)

= In(Πi, q1)

To recap then, given Π ∈ Φ such that |Π| > 2
and Π contains only dual edge cycles of positive sign,
we first define Π1 = red∗(Π), which we showed has a
polynomial length (polynomial in terms of |M |bit). We

then define some Π∗ and some x > 0, such that |Π∗|
and x are polynomial in size and we define Πi+1 by
‘inserting’ Πx

∗ into Πi. We repeat this procedure no
more than |E|2 + 2 times, and therefore the procedure
is polynomial in |M |bit. Finally this gives us a path Πz.
We showed that Πi ∈ AF ⇒ Πi+1 ∈ AF and since
Π ∈ AF ⇒ Π1 ∈ AF , by Lemma 5.1, this implies that
Πz ∈ AF . Since, by definition, Πz(τ) = Π(τ) for all
τ ∈ E2, then wgt(Πz) = wgt(Π). It is clear that the
first and last syllables of Π and Πz are the same, since
function red does not alter the first or last two syllables
of any word. Therefore by Lemma 5.5, since |Π| > 3,
Π ∈ Φ, wgt(Π) = wgt(Πz) and Πz ∈ AF , then Πz ≡ Π
as required. �

We conclude the aforementioned procedure in a theo-
rem:

Theorem 5.1. The identity problem over PSL2(Z) is
in NP.

Recall from Remark 4.3 that the described proce-
dure is not limited to the daisy graph and works for any
regular expression R(a1, . . . , an).

Corollary 5.1. The problem of determining whether
the identity matrix is in an arbitrary regular expression
R(a1, . . . , an) ⊆ PSL2(Z) is in NP.

Recall also that elements of PSL2(Z) are actually
matrix pairs: a = {A,−A} ⊂ SL2(Z). Let 〈M ′〉sg be
a semigroup generated by some finite M ′ ⊆ SL2(Z).
We may then construct a syllabic automaton for the
projection of M ′ in PSL2(Z) only losing the information
about the sign. If I belongs to the projection of 〈M ′〉sg,
then either I or −I belongs to 〈M ′〉sg. But in the latter
case, I = (−I)2 also belongs to 〈M ′〉sg. Hence we obtain
the following corollary:

Corollary 5.2. The identity problem over SL2(Z) is
in NP.

Theorem 5.2. The problem of determining whether
a matrix M is in an arbitrary regular expression
R(a1, . . . , an) ⊆ PSL2(Z) is in NP.

Proof. The decidability of the problem was shown in
[10] as it can be reduced to the identity problem for
a regular expression in PSL2(Z), i.e. whether I ∈

M−1 · R(a1, . . . , an). Let M =

(
a b
c d

)
and since

det(M) = 1, it follows that the inverse matrix M−1 =(
d −b
−c a

)
as well as its syllabic representation will

be of the same size as the matrix M . Then the state-
ment of this theorem directly follows from Corollary 5.1
as deciding whether I ∈ M−1 · R(a1, . . . , an) is in NP.
�

Theorem 5.3. The non-freeness problem for finitely
generated semigroups in PSL2(Z) and SL2(Z) is NP-
complete.

Proof. By Corollary 5.1 the problem of determin-
ing whether I ∈ R(a1, . . . , an) is in NP, where
R(a1, . . . , an) is an arbitrary regular expression in
PSL2(Z). We will reduce the non-freeness problem in
PSL2(Z) into the identity problem.

Let M = {m1,m2, . . . ,mn} ⊆ PSL2(Z) be a finite
set generating a semigroup 〈M〉sg. This semigroup
is non-free if and only if there exist two different
factorizations

(5.20) A ·X ·B = C · Y ·D,
where A,B,C,D ∈M and X,Y ∈ 〈M〉sg so that A 6= C
and B 6= D.

Equation (5.20) is equivalent to
AXBD−1Y −1C−1 = I, hence the identity el-
ement belongs to the language of the regu-
lar expression AM∗BD−1(M−1)∗C−1, where
M−1 = {m−1 | m ∈ M}. Since there are only
n2(n−1)2 such expressions with A 6= C and B 6= D, we
can nondeterministically find a witness (if one exists)
for the identity for each in polynomial time.

The claim for SL2(Z) is evident, since if a finitely
generated semigroup 〈M〉sg ⊆ SL2(Z) is non-free, so
clearly is its projection in PSL2(Z). Thus the non-
freeness problem belongs to class NP. The problem was
shown to be NP-hard in [14], and therefore it is NP-
complete. �

6 Conclusion

The main contribution of this article is an entirely
new type of NP algorithm applied to low-dimensional
matrix problems. In particular, we derive the exact
complexity of the identity problem in SL2(Z), showing
that it is NP-complete. Moreover, the NP algorithm
for checking whether the identity matrix belongs to
an arbitrary regular expression is important as many
closely related problems for 2 × 2 matrices can be
reduced to it, including the membership and non-
freeness problems. In general, many problems for
2 × 2 matrices are still open. For example, even the
decidability of the freeness problem for 2 × 2 matrices
over natural numbers still remains a long-standing open
problem [5]. Recently progress was made to show
the decidability of the vector reachability problem for
SL2(Z), see [21] and the decidability of the membership
problem for non-singular integer 2× 2 matrices see [22].
However, the exact complexity of these problems is not
yet known.

The proposed techniques presented in this paper
may be helpful for designing more efficient algorithms

for similar problems. One of the natural steps would be
to extend the NP algorithm if possible for the mortality
problem for 2× 2 matrices whose determinants assume
the values 0 or ±1. This problem was shown to be
NP-hard in [1] and decidability of this problem was
shown in [18] based on the decidability for SL2(Z) from
[10]. The complexity of matrix problems over rational
or complex numbers may be even higher. Very little
is still known not only about the complexity, but also
about the decidability of these problems.

References

[1] P. C. Bell, M. Hirvensalo, and I. Potapov. Mortality
for 2 × 2 matrices is NP-hard. In Mathematical Foun-
dations of Computer Science 2012: 37th International
Symposium, MFCS 2012, pages 148–159, 2012.

[2] P. C. Bell and I. Potapov. Reachability problems in
quaternion matrix and rotation semigroups. Informa-
tion and Computation, 206(11):1353–1361, 2008.

[3] P. C. Bell and I. Potapov. On the undecidability of the
identity correspondence problem and its applications
for word and matrix semigroups. International Journal
of Foundations of Computer Science, 21(6):963–978,
2010.

[4] P. C. Bell and I. Potapov. On the computational com-
plexity of matrix semigroup problems. Fundamenta In-
formaticae, 116:1–13, 2012.

[5] V. D. Blondel, J. Cassaigne, and J. Karhumäki.
Freeness of multiplicative matrix semigroups. In V. D.
Blondel and A. Megretski, editors, Unsolved Prob-
lems in Mathematical Systems and Control Theory,
http://press.princeton.edu/math/blondel/solutions.html,
2004. Princeton University Press.

[6] J.-Y. Cai, W. H. Fuchs, D. Kozen, and Z. Liu. Efficient
average-case algorithms for the modular group. In The
35th Annual Symposium on Foundations of Computer
Science (FOCS), 1994.

[7] J. Cassaigne, T. Harju, and J. Karhumäki. On the
undecidability of freeness of matrix semigroups. In-
ternational Journal of Algebra and Computation, 9(3-
4):295–305, 1999.

[8] J. Cassaigne and F. Nicolas. On the decidability of
semigroup freeness. RAIRO - Theoretical Informatics
and Applications, 46(3):355–399, 2012.

[9] F. Chamizo. Non-euclidean visibility problems. In
Proceedings of the Indian Academy of Sciences - Math-
ematical Sciences, volume 116, pages 147–160, 2006.

[10] C. Choffrut and J. Karhumäki. Some decision prob-
lems on integer matrices. Informatics and Applica-
tions, 39:125–131, 2005.

[11] M. G. del Moral, I. Mart́ın, J. M. Peña, and A. Restuc-
cia. SL(2,Z) symmetries, supermembranes and sym-
plectic torus bundles. Journal of High Energy Physics
9, pages 1–12, 2011.

[12] J. Elstrodt, F. Grunewald, and J. Mennicke. Arith-

metic applications of the hyperbolic lattice point the-
orem. Proc. London Math. Soc., 57(3):239–283, 1988.

[13] Y. Gurevich and P. Schupp. Membership problem
for the modular group. SIAM Journal of Computing,
37(2):425–459, 2007.

[14] S.-K. Ko and I. Potapov. Matrix semigroup freeness
problems in SL(2,Z). In 43rd International Conference
on Current Trends in Theory and Practice of Computer
Science, (SOFSEM), 2017.

[15] D. Mackenzie. A new twist in knot theory. What’s
Happening in the Mathematical Sciences, 7, 2009.

[16] M. H. A. Newman. On theories with a combinatorial
definition of equivalence. Annals of Mathematics,
43:223–243, 1942.

[17] T. Noll. Musical intervals and special linear trans-
formations. Journal of Mathematics and Music:
Mathematical and Computational Approaches to Mu-
sic Theory, Analysis, Composition and Performance,
1(2):121–137, 2007.

[18] C. Nuccio and E. Rodaro. Mortality problem for 2x2
integer matrices. In Theory and Practice of Computer
Science: 34th Conference on Current Trends in Theory
and Practice of Computer Science, (SOFSEM), pages
400–405, 2008.

[19] L. Polterovich and Z. Rudnick. Stable mixing for
cat maps and quasi-morphisms of the modular group.
Ergodic Theory and Dynamical Systems, 24(2):609–
619, 2004.

[20] I. Potapov. Composition problems for braids. In
In proceedings of 33nd International Conference on
Foundations of Software Technology and Theoretical
Computer Science, LIPIcs. Leibniz Int. Proc. Inform.,
volume 24, pages 175–187, 2013.

[21] I. Potapov and P. Semukhin. Vector reachability
problem in SL(2,Z). In 41st International Symposium
on Mathematical Foundations of Computer Science,
(MFCS), volume 58, pages 1–14, 2016.

[22] I. Potapov and P. Semukhin. Membership problem for
2 × 2 integer matrices. In Proceedings of the 28th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2017.

[23] R. A. Rankin. Modular Forms and Functions. Cam-
bridge University Press, 1977.

[24] E. Witten. SL(2,Z) action on three-dimensional con-
formal field theories with abelian symmetry. From
fields to strings: circumnavigating theoretical physics,
2:1173–1200, 2005.

[25] D. Zagier. Elliptic Modular Forms and Their Appli-
cations. The 1-2-3 of Modular Forms : Lectures at
a Summer School in Nordfjordeid, Norway. Springer-
Verlag, 2008.

http://press.princeton.edu/math/blondel/solutions.html

	Introduction
	Preliminaries
	Semigroup basics.
	Matrix Groups in Z22.
	Graph Theory.

	The Structure of PSL2(Z)
	Generating SL2(Z).
	Generating PSL2(Z).
	Syllabic Presentation of PSL2(Z).

	First (Brute Force) Decision Procedure
	Input Size Measures.
	Automaton for Recognizing the Identity.
	Syllabic Automaton.

	Improved Decision Procedure
	Syllabic Graph Path Properties.
	Syllables R- and R+.

	Modification Principles of the Daisy Graph.
	Introduction of R- and R+-edges.
	Introduction of -edges.

	Conclusion

