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Abstract 

Background: Central conventional chondrosarcoma (CS) is the most common subtype of primary malignant bone 
tumour in adults. Treatment options are usually limited to surgery, and prognosis is challenging. These tumours are 
characterised by the presence and absence of IDH1 and IDH2 mutations, and recently, TERT promoter alterations 
have been reported in around 20% of cases. The effect of these mutations on clinical outcome remains unclear. The 
purpose of this study was to determine if prognostic accuracy can be improved by the addition of genomic data, and 
specifically by examination of IDH1, IDH2, and TERT mutations.

Methods: In this study, we combined both archival samples and data sourced from the Genomics England 100,000 
Genomes Project (n = 356). Mutations in IDH1, IDH2, and TERT were profiled using digital droplet PCR (n = 346), whole 
genome sequencing (n=68), or both (n = 64). Complex events and other genetic features were also examined, along 
with methylation array data (n = 84). We correlated clinical features and patient outcomes with our genetic findings.

Results: IDH2‑mutant tumours occur in older patients and commonly present with high‑grade or dedifferentiated 
disease. Notably, TERT mutations occur most frequently in IDH2‑mutant tumours, although have no effect on survival 
in this group. In contrast, TERT mutations are rarer in IDH1‑mutant tumours, yet they are associated with a less favour‑
able outcome in this group. We also found that methylation profiles distinguish IDH1- from IDH2‑mutant tumours. IDH 
wild‑type tumours rarely exhibit TERT mutations and tend to be diagnosed in a younger population than those with 
tumours harbouring IDH1 and IDH2 mutations. A major genetic feature of this group is haploidisation and subsequent 
genome doubling. These tumours evolve less frequently to dedifferentiated disease and therefore constitute a lower 
risk group.

Conclusions: Tumours with IDH1 or IDH2 mutations or those that are IDHwt have significantly different genetic 
pathways and outcomes in relation to TERT mutation. Diagnostic testing for IDH1, IDH2, and TERT mutations could 
therefore help to guide clinical monitoring and prognostication.
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Background
Central conventional chondrosarcoma (CS) is the most 
common primary malignant bone tumour in adults. Ana-
tomical location, histopathology, and grading are the cur-
rent criteria for determining treatment [1, 2], although 
providing prognoses remains challenging [1–3]; hence, 
a greater understanding of the disease, and its biomark-
ers is required to provide patients with a more person-
alised treatment plan. Well-differentiated cartilaginous 
tumours are referred to differently depending on where 
they develop: those presenting at sites, from where they 
can be excised fully with relative ease, including the pha-
langes and long bones they have an excellent prognosis, 
and are referred to as atypical cartilaginous tumours 
(ACT), the exception being if they are associated with a 
dedifferentiated (DD) component. In contrast, tumours 
with features of ACT that occur at sites where complete 
excision is difficult, such as the axial skeleton and pel-
vis, are referred to as CS grade (G) 1; these lesions often 
recur locally and are associated with transformation to 
higher tumour grade, with many patients eventually suc-
cumbing to their disease [4, 5]. G2 disease represents 
approximately 40% of central CS, and  has a 5-year sur-
vival of approximately 70–99%, whereas G3 disease, com-
prising about 10% of all central CS, has a 5-year survival 
of approximately 30–77% [4, 5]. The most aggressive 
form of the disease is the DD subtype, which arises on 
the background of about 10% of all conventional central 
chondrosarcomas and has a 5-year survival of 7–24% [2, 
4, 5]. In contrast high grade disease of the phalanges is 
uncommon and has little metastatic potential; DD CS 
rarely occurs at this site [6].

The cytosolic isocitrate dehydrogenase type 1 (IDH1) 
and mitochondrial isocitrate dehydrogenase type 2 
(IDH2) enzymes are key components in the tricarbox-
ylic acid cycle. Specific alterations at the R132 and R172 
amino acid residues of these genes respectively occur in 
CS (amongst other cancers), disrupting normal functions 
and leading to the accumulation of 2-D-hydroxyglutarate 
(2HG), a competitive inhibitor of alpha KG-dependent 
dioxygenases. This results in downstream affects, includ-
ing hypermethylation of CpG islands [7].

Close to 70% of central CS harbour an IDH1 (60%) 
or an IDH2 (10%) mutation [8], and these are con-
sidered key initiators of disease [8–11]. No recur-
rent initiating genetic drivers have been reported in 
the remaining 30% of IDH1/2 wild type (IDHwt) cases 
[12, 13], although these tumours have been reported to 
exhibit different methylation profiles compared to IDH1 

and IDH2-mutant tumours [14, 15], hereafter referred to 
as IDH1 and IDH2 tumours. Other key drivers include 
mutations in COL2A1, CDKN2A/B, and TP53 [12, 13, 
16, 17] as well as less common pathogenic alterations in 
cell cycle-related genes such as RB1 [18] and CDK4/6 
[12, 19], alterations in the Indian Hedgehog pathway, and 
amplifications of MYC [12, 13]. Alterations in CDKN2A 
and TP53 are more likely to occur in high grade disease 
(G2, G3, and DD CS) [12, 17, 19]. These alterations have 
limited value as markers for survival or risk stratification. 
Previously, near haploid karyotypes have been reported 
in CS [20–23], although the relationship with other 
mutations has not been reported.

The recently identified alterations in the TERT pro-
moter locus (C228T) are thought to result in increased 
telomerase expression leading to immortalisation. These 
mutations rarely occur in well differentiated tumours, 
meaning they are a reliable prognostic marker for CS 
[24]. In contrast, the impact of IDH1 and IDH2 mutations 
on survival remains unclear [9, 25, 26] possibly reflecting 
the relatively small number of cases studied.

The aim of this study was to undertake a comprehen-
sive analysis of a large set of CS genomes, leveraging data 
from the Genomics England 100,000 Genomes Project 
[27] combined with digital droplet PCR (ddPCR) and 
methylation profiling. A particular focus of our efforts 
was to identify mutations of relevance to patient outcome 
and identify recurrent driver mutations in those tumours 
that are wild type for IDH1 and IDH2 mutations (IDHwt).

Methods
Patients and samples
Three hundred fifty-six cases of CS were included in the 
study. No enchondromas were included. These included 
68 tumour-normal paired samples from four clinical 
sites (Royal National Orthopaedic Hospital Stanmore, 
Royal Orthopaedic Hospital Birmingham, Nottingham 
NHS Trust, Queen Elizabeth Hospital Birmingham) that 
were subjected to whole genome sequencing (WGS) as 
part of the Genomics England 100,000 Genomes Project 
(hereby referred to as the 100KGP cohort, Additional 
file  1: Supplementary Table  1-2). The remaining cases 
were obtained from the archives of the Royal National 
Orthopaedic Hospital, Stanmore (Additional file 1: Sup-
plementary Table 3). The pathology was reviewed Adri-
enne Flanagan, Fernanda Amary, and Roberto Tirabosco. 
For cases with clinical follow-up, the median surveillance 
time was 5.6 years (2059 days, range: 5–10,057 days). 
Nearly all patients received surgery as standard of care; 
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two died prior to receiving definitive treatment, and 6% 
(n = 22) of patients received adjuvant treatment in the 
form of doxorubicin/cisplatin or radiotherapy.

Bioinformatic pre‑processing and statistical assessment
Single nucleotide variants (SNVs) and indels were called 
on WGS data and filtered using a panel of normal (PON) 
samples via the Genomics England analysis pipeline, 
which utilises Strelka and other tools [28] (Additional 
file  2: Supplementary Methods). To quality assess the 
100KGP mutation calls, we performed orthogonal veri-
fication of hotspot mutations in IDH1 (R132), IDH2 
(R172), and TERT (C228T) identified across 64 patients 
(59 mutations in total) using ddPCR, which yielded a 
recall rate of 100%. There was one instance (WGS_53) 
where a mutation was called by ddPCR but not in the 
WGS data (IDH1 ddPCR, IDHwt WGS, later result used, 
Additional file 2: Supplementary Methods). Somatic copy 
number variants were called using Battenberg [29] and 
structural variants (SVs) were called using Delly (v0.8.5) 
[30]. Unless otherwise specified, comparisons between 
groups were performed using Wilcoxon tests for distri-
butions and Fisher exact tests for group counts (i.e. in 
IDH1/2/WT group comparisons). Survival analysis uti-
lised a Kaplan-Meier standard Cox proportional hazard 
model.

Identification of driver mutations, genome doubling, 
partial haploidisation, and analysis of mutational 
signatures
Driver mutations in SNVs and indels were identified 
using a combination of known hotspot locations pub-
lished previously and available in Additional file 2: Sup-
plementary Methods, the SIFT [31] and POLYPHEN [32] 
tools, plus visual inspection using integrative genomics 
viewer (IGV) of the IDH1 R132, IDH2 R172, and TERT 
mutations (Additional file 3: Supplementary Fig. 1, Note 
1). Amplification events were designated as copy states 
of five or in diploid genomes and nine or more in those 
that are genome doubled. For the purposes of plotting, 
we classified copy states from Battenberg as either, dip-
loid, trisomy or tetrasomy, copy neutral LOH (cnLOH), 
and the remaining copy states as ‘other’ (any remaining 
copy state). Tumours with genome doubling (GD) were 
identified using a clustering procedure based on the R 
package Mclust [33]. Cases with more than 50% LOH 
were marked as exhibiting partial haploidisation. We 
confirmed the ploidy status in 14 of the 100KGP cases 
using flow cytometry (Additional file  2: Supplementary 
Methods, Additional file  3: Supplementary Fig.  2, Note 
2). To time the appearance of GD, we used a methodol-
ogy based on molecular-clock principles [34, 35]. Ninety-
six channel single-base substitution (SBS) mutational 

signatures were extracted from the Strelka-called SNVs 
using SigProfilerExtractor [36] version 1.1.3 with default 
parameters.

Methylation data protocol and analysis
We analysed 84 cases using methylation arrays (Addi-
tional file  3: Supplementary Tables  4-6, Supplementary 
Fig.  3). Five hundred nanograms of DNA from frozen 
tumour samples were bisulphite converted using Zymo 
EZ DNA methylation Gold kit (Zymo Research Corpo-
ration Irvine, CA, USA) and hybridised to the Infinium 
HumanMethylationEPIC beadchip arrays (Illumina, San 
Diego, CA). The generated methylation data were ana-
lysed using the ChAMP R [37], normalised using BMIQ, 
and hierarchical clustering plots were constructed using 
the ‘pheatmap’ R package [38].

TERT promoter methylation status was determined 
by the methylation status of the cg11625005 probe as 
reported previously [39]. Raw DNA methylation data 
files have been deposited in the ArrayExpress database 
(https:// www. ebi. ac. uk/ array expre ss/ exper iments/ E- 
MTAB- 11031/, accession: E-MTAB-11031).

Statistics and mathematical analysis
In all group comparison situations, such as IDH1, IDH2, 
and IDH-WT cases, with or without TERT mutations, we 
used Fisher test statistics as implemented in R (testing 
both 3X2 and 2x2 contingency tables). Distributions of 
data, as seen in the tests of timing for GD was performed 
using Wilcoxon tests, again implemented in R. Linear 
regressions were also implemented using the stand-
ard R methods. The cox proportional hazard model and 
Kaplan-Meyer, were obtained via the survminer package 
[40]. For the chromosome arm frequency comparisons, 
we used Fisher tests and the Bonferroni multiple testing 
correction. For power calculations, please see Additional 
file 2: Supplementary Methods.

Results
Driver mutations in central conventional 
and dedifferentiated chondrosarcomas
Profiling a total of 350 CS cases for IDH1 and IDH2, 
using ddPCR (n = 282) and WGS (n = 68), we verified 
previous findings that IDH2 are less frequent than IDH1 
mutations (IDH1: 51%, IDH2: 14%, IDHwt: 35%) [16, 
26, 41]. In cases with grading information (n = 343), we 
found that IDH1 mutations were equally frequent across 
grades (ACT/G1: 51%, G2/3: 53%, DD CS: 55%; p = 0.9) 
and that IDH2 mutations were more frequent in higher 
grade disease (ACT/G1: 7%, G2/3: 14%, DD: 25%; p = 
0.005). IDHwt was negatively associated with increasing 
grade (%IDHwt; ACT/G1: 41%, G2/3: 32%, DD CS: 19%; 
p = 0.01). These data imply that the progression to DD 
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CS is more common in tumours with IDH2 mutations 
and least common in IDHwt tumours.

Canonical mutations and structural changes near the 
TERT promoter have been reported in approximately 
20% of CS and found to correlate with high grade disease 
[24, 26, 42]. We found a similar frequency in our cohort 
(23%, 74 with C228T, one with C250T, four with struc-
tural changes near the TERT promoter (Additional file 3: 
Supplementary Fig. 1). TERT mutations were rare in well 
differentiated tumours and increased in frequency across 
grades (ACT/G1: 3%, G2/3: 22%, DD: 56%; p = 2e-14, 
Fig. 1A). We found that the TERT promoter was hyper-
methylated in 19/57 (33%) of cases analysed on methyl-
ation arrays, excluding DD CS cases (Fig.  1B). Seven of 
these cases, all high grade, also harboured TERT C228T 
promoter mutations. There was no significant difference 
between the number of cases with both TERT promoter 
mutations and hypermethylation across IDH1 and IDH2 
tumours (Fig. 1B). Rare alterations involving ATRX have 
been reported previously [26], but in the 100KGP cohort 
(n = 68), we found no such alterations in this cohort. 
These data confirm that TERT mutations, and possibly 
methylation, have distinct roles in CS progression.

We next examined mutations in other key driver genes 
reported in CS, utilising the 100KGP cohort (Fig.  1A). 
Our findings were largely similar to those previously 
reported [13, 43]. Monosomies of 17p and pathogenic 
SNVs/indels in TP53 were found in 22% of cases in line 
with previous reports [12]. TP53 mutations were absent 
from all but one well-differentiated tumour. COL2A1 
mutations were common and marginally anti-corre-
lated with increasing grade (ACT/G1: 100%, G2/3: 54%, 
DD CS: 44%; p = 0.03). As previously reported [17, 19, 
21], pathogenic SNVs/indels and/or bi-allelic dele-
tions of CDKN2A and CDKN2B were common in CS 
and enriched in G2/3 and DD CS, though not signifi-
cantly in this dataset. Hypermethylation of these genes 
was not detected. CDK4 and CDK6 gains were found 
in 12 cases, and a single case had a pathogenic SNV in 
CDK6. These frequencies are similar to previous reports 
[12]. MYC amplifications were found in five high-grade 
tumours establishing its status as a driver of CS [44, 
45]. MDM2 alterations were identified in three high 
grade IDHwt cases, two of which were amplifications 

(one 8 copies, one 31 copies, confirmed using fluores-
cence in  situ hybridisation), and one was a structural 
alteration involving intron 7 of MDM2 and an intragenic 
region on chr4q28.3. The latter did not result in amplifi-
cation of MDM2 but removal of the zinc finger binding 
domains, which has been suggested to have an oncogenic 
effect [46]. All three mutations were mutually exclusive 
of TP53 mutations. These data support the premise that 
MDM2 is a potential driver gene in CS [26], though any 
biological effects require further exploration. Homozy-
gous deletions of PTEN were present in three high grade 
cases. PTEN promoter hypermethylation was found in 
13/57 cases, all high grade. Analysis utilising dNdS [47] 
returned no previously unknown drivers, implying that 
all prominent somatically mutated genes driving CS have 
likely been identified (Additional file  2: Supplementary 
Methods, Additional file 3: Supplementary Fig. 2).

IDH1, IDH2, and TERT define key genetic subgroups
Analysis of all mutation calls (n = 350) revealed that the 
frequency of TERT mutations was different across IDH1, 
IDH2, and IDHwt cases (Fig. 1C). IDH2 mutations were 
strongly associated with TERT mutations (IDHwt: 5%, 
IDH1: 24%, IDH2: 58%, p = 6e−13; IDH1 vs IDH2: p = 
1e−5). This association was observed in G2/3 (IDH1 vs 
IDH2: p = 7e−6) but not in DD CS (IDH1 vs IDH2: p > 
0.99), implying that although TERT is associated with 
high-grade tumours, this is not equal in the context of 
IDH mutation status.

Hypermethylation across IDH1‑ and IDH2‑mutated 
tumours
CpG island DNA hypermethylation has been reported 
to distinguish between cartilaginous IDH and IDHwt 
tumours [14, 15]. However, utilising the larger numbers 
available in this study, we found 3468 differentially meth-
ylated probes (DMPs) across IDH1 and IDH2 tumours, 
excluding DD CS (n = 31, p = 0.002, Additional file  3: 
Supplementary Fig.  2, Supplementary Tables  4-6). The 
overall methylation level across all probes also revealed 
significant differences between IDH1 and IDH2 tumours 
(p = 0.002) indicating that the former are globally hyper-
methylated compared to IDH2 and IDHwt tumours.

(See figure on next page.)
Fig. 1 Summary of Genomics England Cohort. A Summary of driver mutations by grade. IDH1 mutations are frequent across all grades, although 
IDH2 and TERT mutations are enriched in G2/3 and DD CS tumours. B TERT mutation and methylation status (left) and overall genomic methylation 
levels (right) across IDH groups. C TERT mutation status across IDH groups. Canonical TERT promoter mutations are common in IDH2‑mutant 
tumours but rare in IDHwt tumours (left plot). In G2/3 tumours, TERT alterations are more common in IDH2 compared to IDH1 tumours (middle 
plot), though equally common in DD CS (right plot). p‑values for tests across all IDH groups above, IDH1 vs IDH2 are marked on plots. D Mutational 
calling showing driver calls, genome doubling (GD) and haploidisation (HP), Battenberg copy states (diploid, gain, copy neutral LOH, and any 
other copy state), and Delly structural variant calls (methods). E GD and HP overview by IDH status. Timing of GD shown on right (Additional file 1: 
Supplementary Methods). F Mutational signature analysis demonstrating commonality of SBS2, 5, and 8, and prominence of SBS40 in IDH groups.
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Fig. 1 (See legend on previous page.)
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Partial haploidisation followed by genome doubling 
is common in IDHwt tumours
We compared the mutational profiles across each IDH 
group (complete summary of 100KGP data shown in 
Fig. 1D) and found that the frequency of common driv-
ers, excluding TERT, was similar across IDH1 and IDH2 
and IDHwt tumours. We did not find that mutations in 
CDKN2A/B and TP53 were enriched in IDH1/2 cases, as 
previously reported [48] but contrasting another study 
[26]. The total number of SVs was not statistically dif-
ferent across the IDH groups nor was the number of SVs 
that fell into gene regions. We did not find any common 
structural variants affecting the same gene more than 
25% of cases, although none of these were cancer-related 
genes (Additional file 2: Supplementary Methods).

The genetic alterations initiating development of 
IDHwt CS remains unknown, but previous reports 
of near-haploid (HP) and hyperhaploidy in CS and in 
other sarcoma subtypes including undifferentiated sar-
comas and malignant peripheral nerve sheath tumours 
prompted us to investigate this [21, 22, 49, 50]. We 
found 23 tumours with GD and seven with HP in the 
100KGP cohort (n=68, Additional file 3: Supplementary 
Fig. 4, Additional file 2: Supplementary Methods). Most 
GD events (16/23, 69%) occurred in the absence of HP, 
whereas HP always occurred with GD (Fig. 1D). GD was 
highly enriched in IDHwt tumours (GD%, IDH1: 24%, 
IDH2: 9%, IDHwt: 63%, IDHwt vs IDH1 p = 0.0005, 
Fig. 1E), and HP was exclusive to this group (HP%, IDH1: 
0%, IDH2: 0%, IDHwt: 37%, IDHwt vs IDH1 p = 8e-5, 
Fig.  1E). Timing analysis demonstrated that GD events 
tended to occur at a similar relative time in IDHwt and 
IDH1 cases implying that it could be an intermediate 
or late event in evolutionary timelines of both tumour 
groups (Fig. 1E, Additional file 2: Supplementary Meth-
ods). The six cases of IDHwt tumours without HP/GD 
events, harboured mutations in TP53 and CDKN2A, 
although alterations in these genes were not mutually 
exclusive with the absence of GD and HP (TP53: 3/6, 
50%, CDKN2A/B: 5/6, 83%, Fig. 1D). One of these cases 
was ACT/G1, pointing to a possible initiating role of 
TP53 and CDKN2A in some IDHwt tumours.

Mutational signatures across IDH1, IDH2, and IDHwt 
groups
Analysis of mutational signatures in the 100KGP cohort 
(n = 52, Fig. 1F, Additional file 3: Supplementary Fig. 5) 
revealed nine active signals, with SBS1, SBS5, and SBS8 
being ubiquitous and most prominent across IDH1, 
IDH2, and IDHwt tumours. Five signatures (SBS2, SBS12, 
SBS13, and SBS17a/b) were principally exclusive to 
IDHwt tumours. SBS2 and SBS13 have been associated 

with APOBEC and were simultaneously active in five 
IDHwt cases (18%). We did not observe any difference 
in SNV burden in tumours with active SBS2 and SBS13. 
SBS12 was found in one IDH1 case and three IDHwt 
cases. SBS17a/b, signatures with unknown aetiology, 
were found only in IDHwt cases. SBS40, also of unknown 
aetiology, was found in 28% of IDH1 cases, 25% of IDH2 
cases, and 81% of IDHwt. These data demonstrate that 
IDH1 and IDH2 tumours are comparable in terms of 
mutational signatures, whereas IDHwt tumours exhibit 
more heterogeneous mutational processes.

The genetic distinction between central conventional 
and dedifferentiated chondrosarcoma
We next analysed the DD CS for specific alterations that 
may explain their histological phenotype and their poor 
clinical outcomes. We confirmed that metastatic disease 
was most common in DD CS (60%, compared to 27% in 
G2/3 and <1% in ACT/G1 (G2/3 vs DD: p = 1e−5). Ana-
lysing the 100KGP data (DD: n = 16, G2/3: n = 41), the 
frequency of identified known drivers in DD CS and G2/3 
revealed no difference except for IDH2 and TERT, which 
were enriched in DD (IDH2: p = 0.05, TERT: p = 3e−6). 
However, we found differences in total driver burden (p = 
2e−8), SNV burden (p = 0.009), number of chromosome 
segments (p = 0.01), and SV burden (p = 0.01) (Addi-
tional file  3: Supplementary Fig.  6). We next explored 
whether the increased segment counts were attributable 
to chromothripsis. Using a previously published method 
[51], we found only one instance of chromothripsis 
(WGS_21) which overlapped with the SV identified at 
the TERT loci (Fig. 1D, Additional file 3: Supplementary 
Fig. 1). Examining the number  more broadly, the average 
number of chromosomes with high breakage was higher 
in DD CS compared to G2/3 (median, G2/3: 0, DD CS: 
2.5, p = 0.03, see Additional file 2: Supplementary Meth-
ods). There were no specific chromosome arms enriched 
amongst those with high fragmentation, although three 
cases (19%) had fragmentation across chromosome 12q, 
which has also been reported in dedifferentiated lipo-
sarcoma [52]. Previous studies have reported that aber-
rations of chromosome 5q and trisomy of chromosome 
19 distinguish G2/3 from DD CS [53]. Twenty-five per-
cent DD CS harboured 19p/q gains which is less than the 
50% previously reported [53]. Examining losses and gains 
across all chromosome arms revealed no events unique 
to DD CS although losses at 15q were more common in 
this subtype (15q loss, G2/3, 10%, DD CS: 38%, p = 0.05). 
Together, these analyses suggest that the primary genetic 
difference between G2/3 and DD CS is the number of 
accrued SNVs and the degree of chromosomal instability.
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Age at diagnosis as a clinical factor in chondrosarcoma
Previous studies of CS have treated IDH1 and IDH2 
tumours as one group [14, 54]. Our results, leveraging 
hundreds of cases, provide evidence that IDH1 and IDH2 
mutations lead to distinct downstream genetic events, 
with differences in the frequency of TERT mutations, 
GD/HP, methylation profiles, and the number and types 
of mutational signatures.

We examined the effect of the presence or absence of 
IDH1 and IDH2 mutations on the clinical behaviour 
of CS (n = 339, Fig.  2). We showed that patient age at 

diagnosis increased across grades in these groups and 
that the median age was highest in those with IDH2 
tumours (IDH1: 55 year, IDH2: 67 year, IDHwt: 47 year, 
IDH1 vs IDH2: p = 0.003, IDH1 vs IDHwt: p = 0.0006, 
Fig.  2A). The age at diagnosis for each IDH group was 
similar for ACT/G1 and DD CS, and the difference in 
age of the G2/3 tumours explained the overall difference 
in ages (median age G2/3, IDH1: 60 year, IDH2: 71 year, 
IDHwt: 44 year, IDH1vs IDH2: p = 0.04, IDH1 vs IDHwt: 
p = 2e−6, Fig. 2B). We considered whether these differ-
ences in chronological age at diagnosis were reflected 

Fig. 2 Divergences in chronological and molecular age in chondrosarcoma. A Boxplots showing the distribution of age at diagnosis (n = 339) 
increasing across grades. Distributions differ across IDH1, IDH2, and IDHwt groups, with IDH2 tumours occurring in older patients compared to those 
with IDH1 and IDHwt tumours. B Boxplots of age, broken down by IDH status and grade. C The differences in chronological age between G2/3 
IDH1 and IDH2 tumours and IDHwt tumours (B) is recapitulated in the activities of mutational signature SBS5. There is no significant difference in 
molecular age of IDH1 and IDH2 tumours, whereas there is a significant difference in the chronological age
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in the mutational signatures active in each group. The 
total SNV burden correlated with age at diagnosis, as did 
SBS5, previously been reported as clock-like [55], SBS8, 
but not SBS1. In G2/3 tumours, the activity of SBS5 was 
similar in IDH1 and IDH2, but lower in IDHwt (IDH1 vs 
IDH2 p = 0.4, IDH1 vs IDHwt: p = 0.03, Fig. 2C). By con-
trast, SBS5 activity was similar in all DD cases (IDH1 vs 
IDH2 p = 0.7, IDH1 vs IDHwt: p = 0.8, Fig. 2C). These 
same results were recapitulated when using SBS8 and 
total SNV burden (Additional file  3: Supplementary 
Fig. 7). Together, these data imply further differences in 
the rate of evolution from G2/3 to DD CS across IDH1, 
IDH2, and IDHwt tumours.

Divergent outcomes in IDH1, IDH2 and IDHwt tumours
Using all available clinical information (n = 342), we 
found that IDH2 tumours tended to be larger at time of 
presentation (IDH1 vs IDH2: p = 0.001, IDH1 vs IDHwt: 
p = 0.4, Fig.  3A), supporting the premise that these 
tumours evolve over longer time periods, and present in 
older people. Development in specific anatomical loca-
tions was not significantly different (Fig. 3A).

Using all cases with available follow-up data (n = 328), 
a Cox proportional hazard model demonstrated that 
ACT/G1 tumours nearly always had a good outcome 
with no metastatic events being recorded and only one 
of 98 patients, with a pelvic tumour, succumbing to dis-
ease. No patients with tumours in the small bones of the 
hands and feet died of disease (Fig.  3B). We found that 
DD CS had a higher frequency of metastatic disease com-
pared with G2/3 disease (G2/3 vs DD CS, p = 9e−7). 
There were no significant differences in the frequency of 
metastatic or recurrent disease across IDH1, IDH2, and 
IDHwt DD CS tumours. However, metastases or recur-
rent disease appeared to occur less frequently in patients 
with IDH2 G2/3 tumours compared to IDH1 and IDHwt 
tumours (% metastases/recurrence, IDH1: 37%, IDH2: 
13%, IDHwt: 23%, IDH1 vs IDH2: p = 0.04, Fig. 3B). We 
also found that the time interval between diagnosis and 
detection of metastatic disease six months following 
presentation of the primary tumour was shorter in IDH2 
tumours compared to IDH1 (p = 0.04, Fig.  3B). Finally, 
we found no differences in outcome related to the differ-
ent IDH1 mutation contexts (R132C/G/H/L/S) but noted 
that R132S/L variants found in only a minority number 
of cases, making statistical analysis difficult (Additional 
file 3: Supplementary Table 3, Supplementary Fig. 8).

Canonical TERT promoter mutations (g.1295113) 
had an independent hazard ratio (HR) that was equal 
to that of grade (TERT: HR = 2.2, p = 0.003, tumour 
grade: HR = 2.2, p = 2e−13, Additional file  3: Supple-
mentary Fig. 8), pointing to the benefit of TERT as a bio-
marker. We also found that overall outcomes were worse 

in patients whose tumours had TERT hypermethylation 
(n = 68, HR = 3.4, p = 0.01). Restricting our analyses 
to high-grade tumours and excluding tumours in the 
hands and feet, we found that patients whose tumour 
harboured both IDH1 and TERT mutations had signifi-
cantly worse outcomes than those with an IDH1 muta-
tion alone. TERT mutations had no effect on outcome in 
patients with IDH2 tumours, even though these muta-
tions are found more frequently in combination with 
IDH2 mutations (Fig.  3C, Additional file  3: Supplemen-
tary Methods). This suggests that TERT mutations are 
context specific and only relevant to outcome predictions 
in IDH1 tumours.

Given these findings, identification of tumours with 
IDH1 and TERT mutations has  clinical value.

Discussion
In this study of patients with CS, involving targeted, 
whole genome, and methylation data, we provide sig-
nificant insights into the genetic pathways and dynam-
ics underlying disease progression. Here, with the 
benefit of large sample numbers, we have been able to 
study tumours with IDH1 and IDH2 mutations indepen-
dently and shown that they represent distinct genetic and 
clinical groups.

In addition to confirming that IDH2 tumours rep-
resent the minority group with 14% of cases, we report 
that they are highly represented in DD CS. They also 
present as larger tumours and on average over a decade 
later than IDH1 tumours. Despite this, IDH1 and IDH2 
tumours have similar molecular ages suggesting that 
on average, tumours with IDH2 mutations have slower 
cell division rates. Therefore, we speculate that many of 
these tumours go into growth arrest and become cal-
cified, representing at least a proportion of calcified 
enchondromas, a lesion commonly detected, when medi-
cal imaging is undertaken for unrelated symptoms. This 
would account for the comparatively lower frequency of 
IDH2 tumours. Furthermore, the high incidence of TERT 
mutations and TERT promoter methylation in high grade 
IDH2 tumours, suggests that these events, through acti-
vation of telomerase, have prevented the senescent phe-
notype and bring about high-grade IDH2 tumours. This 
finding could potentially account for the presentation at 
the relatively late age of these tumours.

No significant differences in the type or number of 
mutations were identified that accounted for the differ-
ent clinical findings associated with IDH1 and IDH2. 
However, we show that IDH1 tumours are globally more 
methylated at CpG islands compared to both the IDH2 
and IDHwt tumours. The small numbers of cases stud-
ied to date is likely to account for this being unrecognised 
previously [14, 15]. Indeed, even IDH1 and IDH2 gliomas, 
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Fig. 3 Outcomes in chondrosarcoma. A Tumour size of IDH1, IDH2, and IDHwt CS are different at presentation and their anatomical location are 
largely comparable, although IDHwt tumours develop more frequently in the chest wall and spine (left and middle, and right, respectively). B 
Kaplan‑Meier analysis and hazard ratios (HR) from Cox proportional hazard analysis confirms tumour grade, and anatomical location, as predictors 
of outcome. The frequency of metastatic/recurrent disease is significantly lower in IDH2 G2/3 disease compared to IDH1 G2/3 disease but is 
comparable in DD CS. The time interval between diagnosis and discovery of metastatic disease is shortest in IDH2‑driven tumours and on average 
longest in IDHwt (while also being less frequent). Median time in days given right of plot. C TERT mutations are linked to poor outcome, as is 
methylation of TERT (left plots). In high‑grade (G2/3 and DD CS) IDH1 tumours, TERT mutations associate with a poor outcome, but not in IDH2 
tumours
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which are considerably more common than CS, are gen-
erally studied together because of their small numbers. 
Nevertheless, although all IDH mutations result in accu-
mulation of 2-HG there is growing evidence that the 
impact of the different mutations exerts different biologi-
cal effects. Studies utilising human oligodendroglioma 
cells have shown that the IDH1 R132 mutation leads to 
higher enzymatic activity than that brought about by 
IDH2 R172 [56]. Other studies of IDH1 and IDH2 muta-
tions in gliomas point to them as having distinct muta-
tional and clinical patterns [57]. Furthermore, different 
biological effects of 2HG are also seen as a consequence 
of different IDH2 mutations [58]. As it is known that 
2HG exerts diverse biological functions including regu-
lation of DNA hydroxymethylation, it is feasible that the 
IDH1 and IDH2 mutations explain our different methyla-
tion array findings and mediate the different behaviour 
of the tumour subgroups. However, further research is 
required to establish this.

The limitation of the study remains the small numbers 
of cases when broken down by grade, particularly grade 
3. Hence, the need to build prospective collaborative 
studies with detailed clinical outcome over a long period. 
Previous studies have suggested different effects of IDH 
mutations on clinical outcome in patients with CS [9, 25, 
26]. Here, with the benefit of a large patient cohort, we 
show that although IDH2 tumours are more commonly 
associated with TERT mutations, only IDH1 mutations 
in combination with TERT mutations are associated with 
significantly reduced survival.

Conclusions
The underlying mutational pathways of tumours with 
IDH1 or IDH2 mutations, or those that are IDHwt, differ 
significantly. Based on the finding that TERT leads to dif-
ferent outcomes in IDH1- and IDH2-mutant tumours, we 
propose that genetic testing for IDH1, IDH2, and TERT 
promoter mutations in the context of other clinical fac-
tors, could be useful in patient stratification.
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