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Abstract
Purpose The purpose of this study was to measure the anti-angiogenic effect of N-desulfated Re–N-acetylated, a chemically 
modified heparin (mHep).
Methods In vitro assays (cell tube formation, viability, proliferation, and migration) with endothelial cells were performed 
after 24 h of treatment with mHep at 10, 100, and 1000 ng/mL or saline. In vivo tests were performed after laser-induced 
choroidal neovascularization (CNV) in rats, followed by an intravitreal injection (5 µL) of mHep (10, 100, 1000 ng/mL) or 
balanced salt solution. Immunofluorescence analysis of the CNV was performed after 14 days.
Results mHep produced a statistically significant reduction in cell proliferation, tube formation, and migration, without 
cell viability changes when compared to saline. Mean measures of CNV area were 54.84 ×  106 pixels/mm (± 12.41 ×  106), 
58.77 ×  106 pixels/mm (± 17.52 ×  106), and 59.42 ×  106 pixels/mm (± 17.33 ×  106) in groups 100, 1000, and 10,000 ng/mL, 
respectively, while in the control group, mean area was 72.23 ×  106 (± 16.51 ×  106). The P value was 0.0065. Perimeter analy-
sis also demonstrated statistical significance (P = 0.0235) with the mean measure of 93.55 ×  104, 94.23 ×  104, and 102 ×  104 
in the 100 ng/mL, 1000 ng/mL, and control groups, respectively.
Conclusions These results suggest that mHep N-DRN is a potent anti‐angiogenic, anti‐proliferative, and anti-migratory 
compound with negligible anticoagulant or hemorrhagic action and no cytotoxicity for retina cells. This compound may 
serve as a candidate for treating choroidal neovascularization.

Keywords Angiogenesis inhibitors · Choroidal neovascularization · Vascular endothelial growth factor · Heparin

Key messages

Heparin is a glycosaminoglycan that modulate the angiogenesis and regulate vessel growth via ECM interactions.

Chemically-modified heparin demonstrated anti-angiogenic, anti-proliferative and anti-migratory effects in vitro 
study.

Choroidal neovascularization area was significantly reduced when treated with chemically-modified heparin 

compared to control group, in an animal model.
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Introduction

Choroidal neovascularization (CNV) is an important cause 
of vision loss, especially in age-related macular degenera-
tion (AMD), which is the leading cause of vision loss in 
older adults in industrialized countries [1]. In neovascular 
AMD, new vessels sprout from the choroid through Bruch’s 
membrane and enter the retina. This process leads to pho-
toreceptor loss and damage to sensory retina followed by 
a submacular fibrotic scar [2]. The pathogenesis of CNV 
is controlled by angiogenic agents such as growth factors, 
cytokines, and extracellular matrix (ECM) components, 
including glycosaminoglycans (GAGs) [3, 4].

GAGs interact with several proteins controlling and 
modulating biological activities, including angiogen-
esis. Heparin and heparan sulfate (HS) are GAGs that 
modulate the angiogenesis and regulate vessel growth 
via ECM interactions, providing signaling for endothelial 
cell proliferation, survival, and migration after binding 
to integrin [4, 5]. The dynamic remodeling of ECM by 
metalloproteinase is related to vascular tube formation 
[6, 7]. Angiogenesis modulation also occurs through 
the interaction of GAGs with angiogenic growth factors 
and cytokines such as VEGFs, FGFs, TGF-β, IFN-γ, 
and TNF-α [8]. VEGF-A is one of the most significant 
growth factors involved in angiogenesis, and it contains 
a heparin-binding domain [9, 10]. VEGF-A’s stability 
increases when bound to heparin, with bioavailability 
and protein half-life control, suggesting that the heparin-
binding domain targets diseases related to VEGF [11, 
12]. These findings combined with the properties of 
GAGs to bind and modulate angiogenic factors suggest 
a motive for studying and designing new synthetic GAG 
analogs to inhibit angiogenesis.

The development of new drugs that target the angi-
ogenic cascade of CNV could significantly impact 
patients’ health and quality of life with AMD [13]. CNV 
treatment has been based on anti-vascular endothelial 
grown factor (anti-VEGF) inhibitors; however, all avail-
able medications carry treatment burdens, including 
tachyphylaxis and nonresponse with vision loss over 
time [14]. Therefore, the search for new therapies to 
treat CNV is of fundamental importance. Among vari-
ous compounds, heparin is known for its anticoagulant 
activity; however, it also has anti-inflammatory activity, 
including inactivation of chemokines, inhibition of the 
activation and recruitment of inflammatory cells, and 
modulation of the synthesis of matrix metalloproteinases 
(MMPs) [15]. Heparins display anti-angiogenic activity, 
inhibiting capillary tube formation by endothelial cells 
(ECs); this inhibitory feature depends on the heparins’ 
molecular weight or structure [16, 17].

Despite its great potential as an anti-inflammatory and 
anti-angiogenic agent, heparin’s clinical use is limited 
by its vigorous anticoagulant activity and risk of hem-
orrhagic complications. Therefore, chemically modified 
heparin derivatives, devoid of anticoagulant and hemor-
rhagic activity, may be preferable to heparin for control-
ling inflammation and neovascularization. Chemically 
modified heparins are created after depolymerization, 
desulfation, and acetylation to maintain anti-angiogenic 
potential and to remove interference on hemostasis. N-sul-
fate groups and O-sulfate are removed separately, and the 
resultant free amino groups are acetylated [18].

Previously, we showed that a heparinoid with low con-
tent of 2-O-sulfate groups isolated from marine shrimp pre-
sented negligible anticoagulant and hemorrhagic activities, 
with reduced acute inflammatory and angiogenesis pro-
cesses [19]. Based on these findings, the present study was 
designed to determine the effects of intravitreal chemically 
modified heparin (N-desulfated Re–N-acetylated heparin) 
on modulation angiogenesis.

Materials and methods

Modified heparin preparation and characterization

Unfractionated heparin (UFH) from porcine intestinal 
mucosa (Bioiberica, Spain) was used to generate the 
N-desulfated Re–N-acetylated heparin (N-acetyl hepa-
rin). Heparin desulfation and re–N-acetylation was per-
formed as previously described [20]. Essentially, UFH 
was N-desulfated by solvolytic desulfation of the hepa-
rin pyridium salt in DMSO:Methanol at 60 °C. The end 
product was precipitated with cold ethanol saturated with 
sodium carbonate. The precipitate was then dissolved in 
an aqueous solution of saturated sodium carbonate and 
re–N-acetylation was carried out by the addition of acetic 
anhydride at 0 °C. The final product was precipitated and 
desalted using gel permeation chromatography connected 
to a FPLC system (GE) (Figs. 1–6).

The heparin structure was determined by 2D (het-
eronuclear single quantum coherence, 13C-1H HSQC) 
nuclear magnetic resonance (NMR). Briefly, samples of 
10 mg/mL in deuterium oxide (99,9%, Cambridge Iso-
tope Laboratories Inc., Andover, MA, USA) were used 
for spectra acquisition at 22 °C in a Bruker Avance NEO 
500 MHz spectrometer [21, 22]. The average molecular 
weight of both compounds is equivalent (around 16 kDa) 
as the chemical modifications are optimized to cause 
minimal depolymerization (Fig. 1). The UFH degree of 
sulfation is 2.3, and no free amino groups were detected 
on the N-acetyl heparin, suggesting a level of N-acetyla-
tion > 95% (based on NMR sensitivity).
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Cell culture and animals

Adult human retinal pigment epithelial cells (ARPE-19) were 
cultured in DMEM/F12 medium (Invitrogen, San Diego, CA, 
USA) supplemented with 10% fetal bovine serum (FBS) (Cul-
tilab, Campinas, SP, Brazil), 15 mM HEPES, 2.0 mM L-glu-
tamine, 0.5 mM sodium pyruvate, and 20 mM sodium bicarbo-
nate in 5.0%  CO2 atmosphere. RAECs (rabbit aortic endothelial 
cells) were cultured in F12 medium (Invitrogen) supplemented 
with 10% FBS (Cultilab) and 20 mM sodium bicarbonate in 
2.5%  CO2 atmosphere [23]. All cultures were plated on Falcon 
culture dishes (BD Falcon, San Jose, CA, USA).

For in vivo experiments, male heterozygote pigmented 
Zucker rats weighing 200 g were used. Animals were main-
tained on a 12:12-h dark–light cycle at room temperature and 
had free access to standard chow and water. All experiments 
were performed following the association for Research in 
Vision and Ophthalmology (ARVO) and the Animal Care 
Ethics Committee of the Federal University of Sao Paulo 
(number: 5726120717).

Endothelial cell proliferation assay

Cell proliferation was assessed by direct cell counting. ECs 
were plated at 1 ×  104 cells per well in 24-well plates and 
cultured for 16 h in F12 medium containing 10% FBS; the 
cells were then starved for 48 h in F12 medium containing 
0.2% FBS. Afterwards, ECs were stimulated with 10% FBS 
and different concentrations of mHep (10, 100, or 1000 ng/
mL) or saline (control), harvested after 24 h, and counted 
in a cell counter chamber. Experiments were performed in 
triplicate, and values were expressed as means ± SEM.

Cytotoxicity assay

Cytotoxicity was assessed by using the 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay.  105 
ARPE-19 or 2 ×  104 ECs were plated in 96-well plates and 
cultured for 5 days using the respective cell culture media 
as described at the 2.1 item. The media was replaced by 

Fig. 1  Characterization of N-desulfated Re–N-acetylated heparin 
(mHep). A Predominant disaccharide repeats in UFH and N-acetyl 
heparin. B 13C-1H heteronuclear single quantum coherence spec-
troscopy (HSQC) NMR spectrum of UFH. I denotes iduronic acid; G, 

glucuronic acid; and A, glucosamine; and C 13C-1H HSQC spectrum 
of N-acetyl heparin. I denotes iduronic acid; G, glucuronic acid; and 
A, glucosamine
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fresh medium, containing 10% FBS and different amounts 
of mHep (10, 100, and 1000 ng/mL in 200 µL/well) or saline 
(control) and maintained for 24 h in the  CO2 atmosphere. 
Afterwards, the medium was aspirated and the cells washed 
2 × with PBS, and serum-free medium containing MTT 
(0.5 mg/mL) was added. ARPE or ECs were incubated with 
the MTT for 2 h followed by isopropanol extraction and the 
absorbance measured at 570 nm using an ELISA plate reader 
(EL·800; BioTek Instruments, Winooski, VT, USA).

Cell migration assay

Conventional transwell plates contain 24-well inserts (Corn-
ing Life Sciences, Tewksbury, USA) with each well consist-
ing of an upper and a lower chamber separated by a micropo-
rous membrane containing randomly distributed 8-µm pores. 
The upper chamber of the inserts were seeded with ECs 
(5 ×  104 cells/well) in F12 supplemented with 0.2% FBS 
and various concentrations of mHep (10, 100, or 1000 ng/
mL) or saline (control); the lower chamber was filled with 
F12 medium supplemented with 10% FBS, and the plate 
were maintained for 16 h at 37 °C, 2.5%  CO2 [24]. Then, 
inserts were washed with PBS, the upper part of the insert 
was cleaned with a cotton swab and fixed with paraform-
aldehyde, permeabilized with methanol, and stained with 
4′,6-diamidino-2-phenylindole (DAPI). The nuclei present 
at the bottom of the insert were counted by the analysis using 
ImageJ (NIH, Bethesda, MD, USA).

Angiogenesis assay: capillary‑like tube formation

Matrigel (Corning® Matrigel Matrix) was thawed at 4 °C 
on ice and plated on 24-well plates and incubated at 37 °C 
for 16 h to gel. ECs  (105 cells) were seeded on top of 
the jellified Matrigel in F12 medium containing 10% FBS 
and different amounts of mHep (10, 100, 1000 ng/mL) or 
saline (control). The cultures were maintained at 37 °C in 
a 2.5%  CO2 humidified atmosphere for 16 h. The experi-
ment was performed in triplicate. Capillary-like tube for-
mation was analyzed under an inverted light microscope 
at 100 × magnification. Six images were randomly taken 
in different areas of the well and quantified by two differ-
ent observers. The total length of connected cells forming 
capillary structures was quantified using ImageJ software 
and expressed as mm tube length [25].

Induction of choroidal neovascularization

Zucker rats were anesthetized with an intraperitoneal injec-
tion of a mixture of 80 mg/kg of ketamine and 8 mg/kg of 
xylazine. The pupils were then dilated by topical application 

of 1% tropicamide plus 2.5% phenylephrine (Allergan, 
Guarulhos, SP, Brazil). The animals were sited at the slit 
lamp, and a handheld coverslip associated with 50 μL of 
2% methylcellulose was used as a contact lens. Photoco-
agulation was executed in the right eye, using an argon laser 
(532 nm; Quantel Medical, Cournon-d’Auvergne, France), 
power 120 mW, spot size 100 μm, and duration 100 ms. Four 
lesions around the optic disc were performed. The aim of 
the laser shot was to rupture Bruch’s membrane, indicated 
by an air bubble at the moment of the laser application [25].

Intravitreous chemically modified heparin injection

Immediately following the laser procedure, the ani-
mals received an intravitreous injection of mHep using 
a micro-syringe (Hamilton Co, Reno, NV, USA). They 
were assigned to groups (1:1) according to the dose: 100, 
1000, and 1000 ng/mL of mHep in 5 μL of balanced 
salt solution (BSS) (Alcon, Sao Paulo, Brazil) or only 
intravitreous BSS. The injection was performed under a 
stereomicroscope (Stemi 508, Carl Zeiss, Oberkochen, 
Germany) to visualize and confirm proper placement. 
After 24 h of CNV induction and intravitreous injections, 
the animals were anesthetized to perform fundus exami-
nation after dilation of the pupil. Animals with vitreous 
or retinal hemorrhages and traumatic lens injury were 
excluded from the study. The animals were maintained 
for 14 days at the animal facility and then euthanized and 
submitted to immunofluorescence analysis of the poste-
rior part of the eye.

Flatmount immunofluorescence analysis

Zucker rats were subjected to CNV induction and mHep 
treatment as described above. After 14 days, the rats were 
euthanized with anesthesia overdose (10 ×), and eyes were 
enucleated. The eyecups were fixed with 2% paraformal-
dehyde for 30 min and washed in 0.1 mM glycine in PBS, 
the retina was removed, and the eyecups were incubated 
with anti-von Willebrand factor (1:50, sc-8068; Santa 
Cruz Biotechnology, Santa Cruz, CA, USA) in PBS con-
taining 0.1% saponin at room temperature for 2 h. The 
eyecups were washed 6 times with PBS and incubated 
for 30 min with anti-rabbit IgG conjugated with Alexa 
Fluor 488 (Molecular Probes) in PBS and flat-mounted in 
Fluoromount-G (Electron Microscopy Sciences, Hatfield, 
PA, USA). Confocal microscopy (Leica SP8, Wetzlar, Ger-
many) was used to analyze the flatmount slides.

The neovascularization area and perimeter were meas-
ured by two individual analyzers, using ImageJ software 
(National Institutes of Health) on a pixels/mm2 scale [25].
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Statistics

The statistical analysis was based on one-way ANOVA with 
Bonferroni’s post-test, using GraphPad Prism 9 for Mac 
(GraphPad Software, Inc., La Jolla, CA, USA), with data 
expressed as means ± standard error of the mean. A 95% con-
fidence interval with a 5% level of significance was adopted; 
results with P values < 0.05 were considered significant.

Results

mHep inhibits EC proliferation

EC proliferation was assessed by direct cell counting after 
exposure to various mHep concentrations. We found that 
all concentrations of mHep significantly inhibited fetal 

bovine serum (FBS’s) ability to stimulate EC prolifera-
tion compared with control group (BSS) after 24 h (Fig. 2, 
P = 0.0011). The higher dose of mHep (1000 ng/ml) sig-
nificantly reduced EC proliferation when compared to 10 
and 100 ng/mL (P < 0.05).

mHep does not affect cell viability

Cell toxicity with subsequent impairment on cell viability 
could justified the inhibition of EC proliferation; however, the 
chemically modified heparin did not demonstrate cell viabil-
ity significant changes for both ECs (Fig. 3A; P = 0.1251) and 
ARPE-19 (Fig. 3B; P = 0.1699) compared to BSS.

mHep inhibits EC migration

mHep decreased the migration rate of ECs when compared 
to control. Treatment of ECs with 10 and 1000 ng/mL mHep 
decreased the migration rate by 1.5 × compared to control, 
while the 100 ng/mL group decreased migration by 2.0 × . 
These results were statistically significant (P = 0.0003; 
Fig. 4). There was no difference in the migration rate of 
ECs when the mHep groups were compared to one another.

mHep inhibits capillary tube formation

All doses of the mHep inhibited capillary tube formation com-
pared with the control (Fig. 5A–D). The decrease in total mm of 
tube length was statistically significant (P = 0.002) for all doses 
of the mHep (Fig. 5E). No significant effect was observed when 
various concentrations of mHep were compared; however, they 
were significantly different when compared BSS to 100 and 
1000 ng/mL (P = 0.0144 and 0.0014, respectively).

In vivo studies

Forty rats were allocated into four groups, BSS or mHep 
(100 ng/mL, 1000 ng/mL, and 10000 ng/mL). In the BSS 
group, two rats presented with vitreous hemorrhage during the 

Fig. 2  N-desulfated Re–N-acetylated heparin (mHep) inhibits 
endothelial cell proliferation. Comparison between control and mHep 
were significantly different (P values = 0.0011). Differences between 
lower concentrations of mHep (10 and 100 ng/mL) were also signifi-
cantly different when compared to 1000  ng/mL (*P < 0.05; Bonfer-
roni’s post-test.)

Fig. 3  Chemically modified 
heparin does not promote cell 
death. The MTT assay assessed 
cell viability assay that was 
performed in endothelial cells 
(A) and retinal pigmented 
cells (ARPE-19) (B). P values 
(0.1251 and 0.1699, respec-
tively) represent the results 
of control group compared to 
mHep (10, 100 and 1000 ng/
mL)
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laser procedure and were excluded; 38 rats completed the study 
(eight in control and ten each in the experimental groups).

No signs of hemorrhages, infection, or severe inflamma-
tion were noticed in clinical examination at 14 days after 
intravitreal injection. During the process of enucleation and 
eye cup fixation, we clinically analyzed the vitreous, and no 
signs of severe intraocular inflammation (vitritis) or vitreous 
hemorrhages were notice.

The neovascularization area comparison demonstrated 
significant differences between control and treatment 
groups (Fig. 6A–D). Mean measures of membrane area 
were 54.84 ×  106 pixels/mm2 (± 12.41 ×  106), 58.77 ×  106 
pixels/mm2 (± 17.52 ×  106), and 59.42 ×  106 pixels/mm2 
(± 17.33 ×  106) in groups 100, 1000, and 10,000 ng/mL, 
respectively, while in the control group, mean area was 
72.23 ×  106 (± 16.51 ×  106). The P value in the ANOVA 
analysis was 0.0024 (Fig. 6E). In the Bonferroni’s multiple 
comparisons test, control × 100 ng/mL, control × 1000 ng/
mL, and control × 1000 ng/mL demonstrated P values of 

0.0028, 0.0404, and 0.0322, respectively. Perimeter analysis 
also demonstrated a significant difference (P = 0.0235).

Discussion

Heparin is a heterogeneous N- and O-sulfated glycosa-
minoglycan with anticoagulant activity widely used to 
treat and prevent thrombosis. In addition to anticoagulant 
activity, heparin can bind and modulate several proteins, 
including pro-angiogenic factors. Because of this property, 
heparin and its analogs have been studied as anti-angio-
genic medications [5, 25].

The treatment of choroidal neovascularization with 
crude heparin could have consequences such as sub-
macular hemorrhage, with irreversible vision loss due to 
the barrier effect, tractional changes (clot contraction), 
and toxicity (hemosiderin) [26]. To avoid anticoagulant 
activity and hemorrhagic effects of heparin, maintaining 

Fig. 4  N-desulfated Re–N-
acetylated heparin inhibits 
endothelial cell migration. 
Endothelial cell migrations 
were analyzed in the presence 
of balanced salt solution (A) or 
various concentrations of the 
mHep: 10 ng/mL (B), 100 ng/
mL (C), and 1000 ng/mL(D). 
P values = 0.0003 (ANOVA); 
*P < 0.05 using Bonferroni’s 
post-test

Fig. 5  N-desulfated Re–N-acetylated heparin inhibits tube forma-
tion (Matrigel-based capillary formation assay). Tube formation was 
examined under balanced salt solution (A) or various concentrations 
of the MHEP; 10 ng/mL (B), 100 ng/mL (C), and 1000 ng/mL(D). 

An example of the tubular structure was delimited by black lines in 
the magnification insert (A). The total length of tubular structures 
was measured and expressed as mm tube length (E) and were signifi-
cantly different (P = 0.002)
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anti-angiogenic and anti-inflammatory effects, chemically 
modified heparins have been created after depolymeriza-
tion, desulfation, and acetylation processes.

In the present study, we determined the anti-angiogenic poten-
tial of chemically modified heparin using in vitro and in vivo 
assays with N-desulfated Re–N-acetylated heparin (mHep) that 
presented no anticoagulant or hemorrhagic effects [27].

The in vitro studies were designed to evaluate EC prolif-
eration, migration, and finally capillary-like tube formation, 
all of which are essential steps of angiogenesis.

The first steps of angiogenesis are related to EC prolif-
eration and migration, followed by capillary morphogenesis 
[28, 29]. Targeting the proliferation and migration of the 
ECs or morphogenesis can be practical approaches to pre-
vent CNV. Our results demonstrated that the treatment of 
ECs with all tested doses of mHep reduced endothelial cell 
migration and proliferation and capillary-like tube formation 
compared to the control group.

Heparin reduces angiogenesis and metastasis due to 
its ability to modulate growth factors and their receptors, 
including FGF, VEGF, and TGF-b, thereby controlling 
various aspects of vascular development and angiogenesis 
[3, 30]. Heparin impairs EC proliferation via modulating 
VEGF signaling, as shown by Dao et al. [31] where the 
authors treated ECs with heparin and observed a decreased 
VEGF-mediated activation of VEGFR2 and mitogenic 
effect in vitro. Cohen et al. [32] showed that heparin binds 
to VEGF and interferes with mitogenic activity. In contrast, 
chemically modified heparin lacking the 2-O-sulfate groups 
bound VEGF but inhibited its mitogenic activity [25]. EC 
proliferation decreased in the presence of a shrimp hepari-
noid with low content of 2-O-sulfate, possibly explaining its 
potent anti-angiogenic effect.

N-desulfated Re–N-acetylated heparin, like the 2-O-des-
ulfated-heparin, might competitively inhibit the interaction 
between growth factors and cell surface heparin sulfate (HS) 

proteoglycans. Low-molecular-weight heparin reduced can-
cer cell migration in A549 cells, mediated by interference 
with two major PAR-1 downstream signaling pathways, 
MAPK/ERK and PI3K/Akt [33]. Our results agree with 
those in the literature, as we showed that heparin signifi-
cantly reduced cell proliferation and migration.

Mousa and Mohamed [34] showed that tinzaparin, low-
molecular-weight heparin, potently inhibited angiogenesis. 
This effect was dose-related and depended on relatively 
higher-molecular-weight tinzaparin fragments. These experi-
ments suggested that heparin’s effect is mediated via cellular 
release of tissue factor pathway inhibitor. Previous studies 
from our group showed strong anti-angiogenic effects of a 
heparinoid lacking 2-O-sulfate groups. This heparinoid inter-
feres with the binding and modulation of FGF-2, EGF, and 
VEGF in endothelial cells, altering proliferation, modification 
of the 2-D network organization in capillary-like structures, 
and reduction of the CNV area in an animal model. [25]

No cytotoxic effects were detected in ARPE-19 cells or 
ECs when measuring mitochondrial reductase using the MTT 
test. The lack of cytotoxicity in ARPE-19 cells indicates a new 
intravitreous anti-angiogenic compound because the retinal 
pigment epithelium participates in the maintenance of photore-
ceptors metabolism with a critical role in retinal function [35].

Because mHep has anti-angiogenic activity in vitro and 
showed no cytotoxicity in retina cells, in vivo studies were 
performed using an intravitreous injection of mHep in laser-
induced choroidal neovascularization in pigmented rats to 
evaluate the anti-angiogenic effect of this heparin.

After the laser shot in the retina, the injection of 5 µL 
of solution containing only BSS or combined with 100 ng, 
1000 ng, or 10,000 ng mHep was applied intravitreously in 
rats. After 2 weeks, the eyes were enucleated, the posterior 
segments were dissected, and the choroidal neovascular area 
was analyzed using immunofluorescence with anti-vWF, 
an EC marker. We found significant CNV reduction in all 

Fig. 6  Choroidal neovasculari-
zation analyses after intravitre-
ous injection of chemically 
modified heparin. Choroidal 
neovascularization area was 
manually measured with 
ImageJ. Balanced salt solution 
(A) or various concentrations 
of the MHEP were compared; 
100 ng/mL (B), 1000 ng/
mL (C), and 10,000 ng/mL 
(D). Bar: 100 μm. P value 
(P = 0.0024) demonstrated a 
significant difference of CNV 
area (E); * represents P < 0.05 
using Bonferroni’s post-test
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animals treated with mHep compared to control, mainly at 
the low dose of 100 ng. This finding suggests the potential 
activity of mHep to treat CNV by reducing angiogenesis. 
HS/heparin binds and modulates heparin-binding growth 
factors and their receptors, controlling various aspects of 
vascular development and angiogenesis. This anti-angio-
genic potential could be attributed to mHep and VEGF inter-
action because heparin-related molecules competitively bind 
to heparin-binding growth factors, limiting their interactions 
with cell surface heparan sulfate proteoglycans and cytokine 
receptors, consequently blocking angiogenesis [36].

Low-molecular-weight heparin is a potent inhibitor of 
FGF-2 and VEGF-mediated EC proliferation [37]. HS oligo-
saccharides have been demonstrated to suppress EC migra-
tion, tube formation, and signaling induced by VEGF165 and 
FGF-2 [9, 38]. Our group’s previous studies showed that a hep-
arinoid with low content of 2-O-sulfated groups binds VEGF, 
FGF-2, and EGF, reducing angiogenesis in EC culture and a 
laser-induced choroidal neovascularization animal model [25].

Taken together, these findings suggest that the mHep is a 
potent anti‐angiogenic, anti‐proliferative, and anti-migratory 
compound with negligible anticoagulant or hemorrhagic 
activity. It showed no cytotoxicity in retinal cells, suggesting 
that this compound is a candidate for treating neovascular 
AMD and other angioproliferative diseases.
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