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A B S T R A C T

This paper presents a unified framework to analyse the role of thermoacoustic and aeroacoustic
sources in a one-dimensional acoustic resonator. We introduce two forms of the tailored Green’s
function: one that satisfies the boundary conditions of the acoustic pressure and one that satisfies
those of the acoustic velocity. We consider acoustic sources, which can enter into a feedback
loop with the acoustic field in the resonator and hence give rise to an instability. We assume
that they are compact, and we model them as a monopole, dipole or a combination of the
two. The reaction of a source to the acoustic field can be described in the time-domain (e.g.
by a relationship between the volume outflow of a monopole to the local acoustic velocity at
earlier times) or in the frequency domain (e.g. by a transfer matrix). Governing equations for
the complete acoustic system are derived from the 1-D version of the acoustic analogy equation,
using a Green’s function approach. They turn out to be two coupled Volterra equations for the
acoustic pressure and velocity. Their solution is straightforward and numerically inexpensive.
We demonstrate our approach with three diverse examples: a nonlinear Rijke tube, a whistling
orifice, and a flame anchored on an orifice plate with bias flow. Our framework can be applied
to various configurations, in particular to combustion test rigs, which consist of a duct-shaped
resonator housing acoustically active elements, such as a flame and an orifice with bias flow.
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List of symbols

𝑎𝑘, 𝑏𝑘 fitting parameters for approximation by rational functions
𝐵 abbreviation for (𝛾 − 1)�̄�∕𝑐2

𝑐 speed of sound
𝐷𝑜 orifice diameter
𝐹 global force
𝑓 local force distribution
i imaginary unit
𝐿 length of 1-D cavity
𝑛 mode number
𝑛0, 𝑛1 coupling coefficients
𝑝 pressure
𝑄 global heat release rate
𝑞 local heat release rate (per unit mass)
𝑅0, 𝑅𝐿 reflection coefficients
𝑅𝑒 Reynolds number
𝑆𝑡 Strouhal number
𝑠(𝐱, 𝑡) acoustic source distribution
𝑇11, 𝑇12, 𝑇21, 𝑇22 elements of the transfer matrix
�̄� mean temperature
𝑇1, 𝑇2 time periods of modes 1 and 2
 (𝜔) flame transfer function
𝑡 observer time
𝑡∗ source time
𝑡𝑜 thickness of orifice plate
𝑢 velocity
�̄�𝑜 bias flow velocity
𝐱 = (𝑥1, 𝑥2, 𝑥3), 𝑥 observer position (3-D and 1-D)
𝐱∗, 𝑥∗ position of the hypothetical point source occurring in the Greens function
𝑥𝑞 axial coordinate of source position
𝑉 volume
𝑍(𝜔) transfer impedance
𝛾 specific heat ratio
𝜈 kinematic viscosity
𝜌 mass density
𝜏 time-lag
𝜔 angular frequency
𝐺 Green’s function
𝐻(𝑥) Heaviside function
𝛿 delta function
Overbars denote the mean part of field quantities, primes denote the fluctuating part of field quantities in the time-domain,
and hats denote the fluctuating part of field quantities in the frequency-domain. For example, for the global heat release rate,
𝑄(𝑡) = �̄� + 𝑄′(𝑡), where �̄� is the mean part, and 𝑄′(𝑡) and �̂�(𝜔) are, respectively, the fluctuating part in the time domain
and frequency domain. The starred symbols 𝑥∗, 𝑡∗ denote source position and source time. The time dependence of a quantity
oscillating with frequency 𝜔 is denoted by e−i𝜔𝑡.

1. Introduction

The Green’s function is an impulse response. It has not only a clear physical meaning in that it can be measured, but it is also
very useful mathematical tool for solving linear partial differential equations with a nonhomogeneity acting as the source term

see chapter 2 by Ffowcs Williams in [1]). Green’s functions are named after the mathematician George Green, who was the first
o develop the concept in the 1820s [2] and applied it to electrostatic problems. Green’s functions were subsequently used to solve
ther partial differential equations (PDEs) governing a variety of physical phenomena.
2
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The use of Green’s functions in acoustics took off with the emergence of Lighthill’s theory [3,4]. By reformulating the
ompressible Navier–Stokes equations, Lighthill derived his famous acoustic analogy equation, which is a nonhomogeneous wave
quation for the acoustic field. This equation, he then turned into an integral equation with the help of the Green’s function. The
ntegral formulation proved to be very convenient for understanding the noise generation mechanisms due to aeroacoustic and
hermoacoustic processes; it also provided a suitable framework for introducing approximations [5,6].

In acoustics, the Green’s functions are the solution of the special nonhomogeneous wave equation

1
𝑐2
𝜕2𝐺
𝜕𝑡2

− 𝜕2𝐺
𝜕𝑥2𝑖

= 𝛿
(

𝐱 − 𝐱∗
)

𝛿
(

𝑡 − 𝑡∗
)

, (1.1)

here 𝛿 denotes the delta function, and 𝜕2∕𝜕𝑥2𝑖 is the Laplace operator. The Green’s function represents the sound field generated
y a point source at position 𝐱∗, firing an impulse at time 𝑡∗, and observed by a listener at position 𝐱 and time by 𝑡. We denote it
y

𝐺 = 𝐺
(

𝐱, 𝑡; 𝐱∗, 𝑡∗
)

. (1.2)

satisfies the causality condition that no sound can be observed before the impulse has been fired, i.e.

𝐺 = 0 and 𝜕𝐺
𝜕𝑡

= 0 for 𝑡 ≤ 𝑡∗ . (1.3)

n unbounded space, the solution of Eq. (1.1) that satisfies Eq. (1.3) is known analytically, and given by

𝐺
(

𝐱, 𝑡; 𝐱∗, 𝑡∗
)

=
𝛿
[

(𝑡 − 𝑡∗) − |𝐱 − 𝐱∗| ∕𝑐
]

4𝜋 |𝐱 − 𝐱∗|
; (1.4)

his is called the ‘‘free-space Green’s function’’. It is widely used in acoustics, in particular to predict aerodynamic sound in
nbounded flows.

If the impulsive point source acts in a space with boundaries, the resulting acoustic field adapts to these boundaries and is
enerally quite different from the response in the free field. The Green’s function, which satisfies the relevant boundary conditions
s called the ‘‘exact Green’s function’’ or the ‘‘tailored Green’s function’’, because it is tailored to the relevant geometry. Doak [7]
as the first to use tailored Green’s functions in conjunction with Lighthill’s acoustic analogy equation.

The tailored Green’s function is an under-used mathematical tool in fundamental studies of self-excited acoustic oscillations. Yet
t offers an elegant framework to study oscillations driven by thermoacoustic and/or aeroacoustic feedback. The purpose of this
aper is to advocate this framework and to illustrate its advantages with suitable examples.

The tailored Green’s function is known in analytical form only for a limited number of elementary geometries. Three-dimensional
pace with a thin rigid half-plane is one such geometry. It has been applied by various aeroacoustics researchers to study the noise
rom the edge of an aerofoil. Ffowcs Williams and Hall [8] used it to model noise generation by a half-plane in turbulent fluid.
owe [9] extended the approach to small acoustic frequencies. Roger [10] used this tailored Green’s function to predict the tonal
oise of distributed propellers installed above the wing of an aircraft.

A far-field approximation of the tailored Green’s function was developed by Howe [11]. This is known as the ‘‘compact Green’s
unction’’ or ‘‘low-frequency Green’s function’’, and is valid for the special case where the source is close to a compact object
scatterer) and the observer is far from the source. It has been applied successfully to model a variety of sound generation scenarios,
or example

– the sound generated when a density inhomogeneity is swept out of a nozzle into free space [12]
– the compression wave produced when a high-speed train enters a tunnel [13]
– the sound produced by unsteady throttling of flow into a resonant cavity with application to voiced speech [14].
Another class of the tailored Green’s function is the enclosed-space Green’s function. This represents the interior sound field

enerated by a point source in a cavity and is a superposition of cavity modes. Analytical representations are known for simple
eometries, for example ducts of finite length, rectangular, cylindrical and annular cavities (see, for example, [15], chapter 7; [16],
hapters 7 and 9). Applications are quite uncommon, but a few scenarios have been modelled:

– Doak [17,18] described the acoustic field generated by a distribution of wall-mounted pistons in a finite-length rigid duct.
– Kang and Kim [19] determined the acoustic field in a finite three-port cylindrical chamber with variable end conditions.
– Veerababu and Venkatesham [20] calculated the transmission loss of a concentric tube resonator.
The tailored Green’s function for a cavity is usually represented by a sum of eigenmodes (see [15], section 7.1). This

epresentation has poor convergence, which stems from the fact that the Green’s function has a singularity where the source and
bserver position coincide, whereas the eigenfunctions are analytical throughout. An alternative representation, which has a built-
n singularity, has been developed by Heckl and Howe [21]. They consider a piecewise uniform 1-D duct with a localised jump in
ross-section and in mean temperature. The source position is assumed to be close to the jump, while the observer position can be
nywhere on either side of the jump. Heckl and Howe expressed the Green’s function as two separate functions, corresponding to
he two separate sections of the piecewise duct. One function satisfies the upstream boundary condition and is valid for observers in
he upstream section, while the other function satisfies the downstream boundary condition and is valid for the downstream section.
hey use generalised functions to calculate the Green’s function in the frequency-domain and then apply a Fourier transform to get
he time-domain version. Their result is a superposition of ‘‘modes’’, which are similar to the duct modes in that they have the same
3

requencies; however, they differ from the duct modes in that they have a singularity at the source position.
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Fig. 1. Finite duct with a source enclosed by a compact control volume.

Acoustic waves generated by a source distribution 𝑠(𝐱, 𝑡) are described by the nonhomogeneous wave equation, e.g. for the
pressure 𝑝′

1
𝑐2
𝜕2𝑝′

𝜕𝑡2
−
𝜕2𝑝′

𝜕𝑥2𝑖
= 𝑠(𝐱, 𝑡) . (1.5)

his equation can be written with Eq. (1.1) in integral form

𝑝′(𝐱, 𝑡) = ∫

𝑡

𝑡∗=0 ∫𝑉
𝑠(𝐱∗, 𝑡∗) 𝐺

(

𝐱, 𝑡; 𝐱∗, 𝑡∗
)

d𝑉 ∗ d𝑡∗ + b.c. , (1.6)

here 𝑉 is a control volume that encloses the sources, and b.c. abbreviates a term, which involves a surface integral over the
oundary of 𝑉 . This term is zero if the tailored Green’s function is used in the integral of Eq. (1.6). The sound field is then given
s a superposition of time-delayed signals emanating from the sources in 𝑉 . One can regard Eq. (1.6) as the formal solution to
he problem if the source term 𝑠(𝐱, 𝑡) is independent of the acoustic field and given explicitly. However, if there is a back-reaction
f the acoustic field on the source, Eq. (1.6) represents an integral equation for 𝑝′(𝐱, 𝑡), rather than an explicit solution for 𝑝′(𝐱, 𝑡).

Together with the primary source, the back-reaction from the acoustic field forms a feedback loop, and this can lead to self-excited
(or self-sustained) oscillations.

The prototype example of a self-excited oscillation in thermoacoustics is the Rijke tube. This is a straight vertical tube with open
ends and a hot gauze stretched across its cross-section. Under certain conditions, the tube emits a loud booming sound, with just one
(or a few) dominant frequencies, which are close to the tube’s resonance frequencies. This is generated by the feedback between the
acoustic field (similar to that in an organ pipe) and the fluctuations of the rate of heat released from the hot gauze. The hot gauze
acts like a monopole-type sound source [22]. This phenomenon is called ‘‘thermoacoustic instability’’. It also occurs in combustion
systems if the acoustic field in the combustion chamber interacts with the flame dynamics. More information on Rijke tubes can be
found in [23].

Aeroacoustic instabilities occur in various flow-duct systems and are due to the interaction between unsteady fluctuations in the
flow (such as an oscillating shear layer or eddies) and the acoustic modes in a resonating component of the duct system. Human
whistling is an example of such an instability. Another example is the sound produced by an aperture in a flow duct. By forcing
a flow through the aperture, a jet is created on the downstream side of the aperture; this creates a vorticity distribution, which
in turn acts like dipole-type source of sound [24]. This phenomenon tends to manifest itself by a whistling tone and it is called
‘‘aeroacoustic instability’’.

Studies, based on the tailored Green’s function, of self-excited oscillations in thermoacoustics and aeroacoustics exist, but are
quite rare.

– Heckl and Howe [21] predicted the growth rates of thermoacoustic instabilities in a quasi-1D enclosure with a localised
blockage as well as jumps in cross-section and mean temperature.

– Bigongiari and Heckl [25] considered a duct housing a flame which was coupled to the acoustic field by an amplitude-
dependent time-lag law and investigated nonlinear effects (limit cycles, bistability, hysteresis).

– Wang and Heckl [26] performed a fundamental study of thermoacoustic instabilities in a hard-walled box.
– Su et al. [27] used a tailored Green’s function to predict the acoustic characteristics of an in-duct aperture with bias flow, but

did not study self-sustained oscillations.
The configuration we will consider is quite basic, consisting of just two components (see Fig. 1):

(1) a one-dimensional acoustic resonator,
(2) a compact source, which reacts to the acoustic field in the resonator.
The acoustic resonator is a duct of finite length 𝐿 without mean flow. Section 2 gives the governing equations for its tailored

Green’s function, as well as explicit analytical expressions in the form of a superposition of duct modes. The acoustic source is
described in Section 3. It is located at the axial position 𝑥𝑞 in the duct (see Fig. 1); its extent in the axial direction is much smaller
han the duct length. We treat it as a narrow control volume across which the acoustic pressure and velocity are discontinuous.
he coupling between the resonator and the source will be modelled by integral equations for the acoustic pressure and velocity.
hese will be derived in Section 4 from the acoustic analogy equation and a feedback model for the acoustic source. Examples to
emonstrate the predictive value of this approach will be shown in Section 5. Our model can be extended in several directions, and
4

hese will be described in Section 6.
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2. Duct model in terms of the tailored Green’s function for the acoustic pressure and velocity

We consider the duct shown in Fig. 1. Its ends at 𝑥 = 0 and 𝑥 = 𝐿 are assumed to be open and have pressure reflection coefficients

𝑅0 = −1, 𝑅𝐿 = −1 . (2.1a,b)

he boundary conditions for the acoustic pressure 𝑝′ are then given by

𝑝′(𝑥, 𝑡)|
|𝑥=0 = 𝑝′(𝑥, 𝑡)|

|𝑥=𝐿 = 0 , (2.2a,b)

nd for the acoustic velocity 𝑢′ by

𝜕𝑢′

𝜕𝑥
|

|

|

|𝑥=0
= 𝜕𝑢′

𝜕𝑥
|

|

|

|𝑥=𝐿
= 0 . (2.3a,b)

We introduce two separate Green’s functions for the pressure and velocity:
𝐺𝑝, which satisfies the pressure boundary conditions (Eq. (2.2))
𝐺𝑢, which satisfies the velocity boundary conditions (Eq. (2.3))

Both satisfy the PDE

1
𝑐2
𝜕2𝐺
𝜕𝑡2

− 𝜕2𝐺
𝜕𝑥2

= 𝛿
(

𝑥 − 𝑥∗
)

𝛿
(

𝑡 − 𝑡∗
)

, (2.4)

here 𝑥 and 𝑡 are the observer position and observer time, respectively; 𝑥∗ is the position of a hypothetical impulsive point source,
nd 𝑡∗ is the firing time of the impulse. They can be calculated analytically, giving the following results,

𝐺𝑝
(

𝑥, 𝑥∗, 𝑡 − 𝑡∗
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐻
(

𝑡 − 𝑡∗
) 2𝑐
𝜋

∞
∑

𝑛=1

(−1)𝑛

𝑛
sin

𝜔𝑛𝑥
𝑐

sin
𝜔𝑛 (𝑥∗ − 𝐿)

𝑐
sin𝜔𝑛

(

𝑡 − 𝑡∗
)

for 𝑥 < 𝑥∗

𝐻
(

𝑡 − 𝑡∗
) 2𝑐
𝜋

∞
∑

𝑛=1

(−1)𝑛

𝑛
sin

𝜔𝑛 (𝑥 − 𝐿)
𝑐

sin
𝜔𝑛𝑥∗

𝑐
sin𝜔𝑛

(

𝑡 − 𝑡∗
)

for 𝑥 > 𝑥∗
(2.5)

and

𝐺𝑢
(

𝑥, 𝑥∗, 𝑡 − 𝑡∗
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐻
(

𝑡 − 𝑡∗
) 2𝑐
𝜋

∞
∑

𝑛=1

(−1)𝑛

𝑛
cos

𝜔𝑛𝑥
𝑐

cos
𝜔𝑛 (𝑥∗ − 𝐿)

𝑐
sin𝜔𝑛

(

𝑡 − 𝑡∗
)

for 𝑥 < 𝑥∗

𝐻
(

𝑡 − 𝑡∗
) 2𝑐
𝜋

∞
∑

𝑛=1

(−1)𝑛

𝑛
cos

𝜔𝑛 (𝑥 − 𝐿)
𝑐

cos
𝜔𝑛𝑥∗

𝑐
sin𝜔𝑛

(

𝑡 − 𝑡∗
)

for 𝑥 > 𝑥∗
(2.6)

see Appendix D). In both results

𝜔𝑛 =
𝑛𝜋𝑐
𝐿

(2.7)

enotes the frequency of duct mode 𝑛, and 𝐻(𝑡 − 𝑡∗) denotes the Heaviside function. Both Green’s functions satisfy causality,

𝐺
(

𝑥, 𝑥∗, 𝑡 − 𝑡∗
)

= 0 for 𝑡∗ ≥ 𝑡 , (2.8a)
𝜕
𝜕𝑡
𝐺
(

𝑥, 𝑥∗, 𝑡 − 𝑡∗
)

= 0 for 𝑡∗ ≥ 𝑡 , (2.8b)

and reciprocity,

𝐺
(

𝑥, 𝑥∗, 𝑡 − 𝑡∗
)

= 𝐺
(

𝑥∗, 𝑥, 𝑡 − 𝑡∗
)

. (2.9)

. Model for the source

The source produces a discontinuity of the acoustic field across the control volume. We utilise this feature to describe the source
n terms of jump conditions for the acoustic pressure and velocity. Two different perspectives will be adopted. The first (presented in
ection 3.1) focusses on physical insight, while the second (presented in Section 3.2) takes advantage of the transfer matrix method,
hich is popular for the analysis of one-dimensional acoustic systems.

.1. Jump conditions due to fluctuating heat source and external force
5

We derive the jump conditions from the conservation equations for mass and momentum.
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3.1.1. Jump condition for the acoustic velocity
The linearised mass conservation equation is

𝜕𝜌′

𝜕𝑡
+ �̄� 𝜕𝑢

′

𝜕𝑥
= 0 , (3.1)

see [28], section 4.2), where 𝜌 is the density; the overbar denotes the mean part, and the prime ′ denotes the perturbation part.
e add the term 1

𝑐2
𝜕𝑝′

𝜕𝑡 to both sides of Eq. (3.1) and obtain

1
𝑐2
𝜕𝑝′

𝜕𝑡
+ �̄� 𝜕𝑢

′

𝜕𝑥
= 𝜕
𝜕𝑡

(

𝑝′

𝑐2
− 𝜌′

)

. (3.2)

he right-hand side can be expressed in terms of the rate of heat release (see [29], section 7.3),

𝜕
𝜕𝑡

(

𝑝′

𝑐2
− 𝜌′

)

=
𝛾 − 1
𝑐2

�̄� 𝑞′(𝑥, 𝑡) , (3.3)

here 𝑞′(𝑥, 𝑡) is the distribution of the heat release rate per unit mass (it has units W kg−1). The equation for mass conservation
hen becomes

1
𝑐2
𝜕𝑝′

𝜕𝑡
+ �̄� 𝜕𝑢

′

𝜕𝑥
= 𝐵 𝑞′(𝑥, 𝑡) , (3.4)

here the constant 𝐵 has been introduced as abbreviation for

𝐵 =
𝛾 − 1
𝑐2

�̄� . (3.5)

Given that heat release only occurs inside the control volume, we can express it by

𝑞′(𝑥, 𝑡) = 𝑄′(𝑡) 𝛿(𝑥 − 𝑥𝑞) , (3.6)

here 𝑥𝑞 is the position of the control volume, and 𝑄′(𝑡) is a measure for the time-dependence of the overall heat release rate. We
an then write Eq. (3.4) as

1
𝑐2
𝜕𝑝′

𝜕𝑡
+ �̄� 𝜕𝑢

′

𝜕𝑥
= 𝐵𝑄′(𝑡) 𝛿(𝑥 − 𝑥𝑞) , (3.7)

We now integrate Eq. (3.7) over the narrow range between 𝑥𝑞 − 𝛥𝑥 and 𝑥𝑞 + 𝛥𝑥 along the 𝑥-axis, and then let 𝛥𝑥→ 0. This gives

𝑢′2 − 𝑢
′
1 =

𝐵
�̄�
𝑄′(𝑡) , (3.8)

hich relates the velocity jump 𝑢′2 − 𝑢
′
1 to the heat release rate in the control volume. It is in line with the well-known fact that an

nsteady heat release rate acts like an acoustic monopole.

.1.2. Jump condition for the acoustic pressure
We start the derivation with the linearised momentum equation (see [28], section 4.2)

�̄� 𝜕𝑢
′

𝜕𝑡
+
𝜕𝑝′

𝜕𝑥
= 𝑓 ′(𝑥, 𝑡) , (3.9)

here 𝑓 ′(𝑥, 𝑡) represents an external force distribution, which could come, for example, from the inertia of a plug of fluid in an
rifice (it has units N m−3). Since this force distribution is non-zero only in the control volume, it can be expressed as

𝑓 ′(𝑥, 𝑡) = 𝐹 ′(𝑡) 𝛿(𝑥 − 𝑥𝑞) (3.10)

in analogy to Eq. (3.6)), where 𝐹 ′(𝑡) is a measure for the time-dependence of the overall force. Again, we integrate Eq. (3.9) over
he narrow range between 𝑥𝑞 − 𝛥𝑥 and 𝑥𝑞 + 𝛥𝑥, and then let 𝛥𝑥→ 0. This leads to

𝑝′2 − 𝑝
′
1 = 𝐹 ′(𝑡) , (3.11)

which relates the pressure jump 𝑝′2 − 𝑝
′
1 to the force in the control volume. It is in line with the well-known fact that an unsteady

force acts like an acoustic dipole.

3.2. Jump conditions in terms of the transfer matrix

An alternative way to describe the jump conditions is to regard the control volume as an input/output system, where the upstream
edge forms the input side, and the downstream edge forms the output side. Then the control volume can be represented in the
frequency-domain by a transfer matrix 𝐓 [30]. This is a 2 × 2 matrix, which relates the acoustic field quantities on the downstream
edge (subscript 2) to those on the upstream edge (subscript 1),

[

�̂�2
]

=
[

𝑇11 𝑇12
] [

�̂�1
]

; (3.12)
6

�̂�2 𝑇21 𝑇22 �̂�1
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the hat ̂ denotes frequency-domain quantities. The matrix elements 𝑇11, 𝑇12, 𝑇21 and 𝑇22 are generally complex and frequency-
dependent, and they can be measured for a given configuration (see e.g. [31,32]).

The elements of the transfer matrix are linked to the source terms in the frequency domain, 𝐹 (𝜔) and �̂�(𝜔), which are the Fourier
transforms of 𝐹 ′(𝑡) and 𝑄′(𝑡), respectively. This can be seen by rewriting Eq. (3.12) as two separate equations for the pressure jump
and velocity jump,

�̂�2 − �̂�1 = (𝑇11 − 1) �̂�1 + 𝑇12 �̂�1 , (3.13)

�̂�2 − �̂�1 = 𝑇21 �̂�1 + (𝑇22 − 1) �̂�1 . (3.14)

Comparison with the jump conditions, Eqs. (3.8) and (3.11), shows that

𝐹 (𝜔) = (𝑇11 − 1) �̂�1 + 𝑇12 �̂�1 , (3.15)

�̂�(𝜔) =
�̄�
𝐵

[

𝑇21 �̂�1 + (𝑇22 − 1) �̂�1
]

. (3.16)

hese two equations can in principle be transformed into the time-domain to give 𝐹 ′(𝑡) and 𝑄′(𝑡) in terms of 𝑝′1 and 𝑢′1 at the current
ime 𝑡 and earlier times.

. Integral governing equations for the time histories of pressure and velocity

We will derive two integral equations; one is based on the analogy equation for the pressure; this is shown in Section 4.1. The
ubsequent Section 4.2 shows the derivation for the velocity.

.1. Governing equation for the pressure

The acoustic analogy equation can be derived by simple manipulations of the conservation equations for mass and momentum,
iven by Eqs. (3.4) and (3.9), respectively. We differentiate Eq. (3.4) with respect to 𝑡, Eq. (3.9) with respect to 𝑥, and then subtract
he resulting equations. In this way, the velocity 𝑢′ gets eliminated from the equations, and we obtain

1
𝑐2
𝜕2𝑝′

𝜕𝑡2
−
𝜕2𝑝′

𝜕𝑥2
= 𝐵

𝜕𝑞′

𝜕𝑡
−
𝜕𝑓 ′

𝜕𝑥
. (4.1)

his is the acoustic analogy equation for the pressure. The left hand side of Eq. (4.1) has the same form as that of Eq. (2.4), which
efines the Green’s function. We exploit this feature to combine the two Eqs. (2.4) and (4.1), and derive an integral equation for
he pressure. This requires a series of mathematical manipulations (in particular using integration by parts, applying the boundary
onditions in Eq. (2.2) and making use of the causality conditions in Eq. (2.8) and reciprocity in Eq. (2.9)), which are shown in
ppendix A. The result is

𝑝′(𝑥, 𝑡) = −𝐵 ∫

𝑡

𝑡∗=0

𝜕𝐺𝑝
𝜕𝑡∗

|

|

|

|

|𝑥∗=𝑥𝑞

𝑄′(𝑡∗) d𝑡∗ + ∫

𝑡

𝑡∗=0

𝜕𝐺𝑝
𝜕𝑥∗

|

|

|

|

|𝑥∗=𝑥𝑞

𝐹 ′(𝑡∗) d𝑡∗ + i.c. . (4.2)

his is the governing equation for the acoustic pressure. The abbreviation i.c. denotes a term, which depends on the initial conditions
or 𝑝′ at 𝑡 = 0. The integrals in Eq. (4.2) have the source time 𝑡∗ as integration variable. Hence Eq. (4.2) gives the pressure 𝑝′(𝑥, 𝑡)
t the observer time 𝑡 in terms of the heat release rate 𝑄′(𝑡∗) and the force 𝐹 ′(𝑡∗) at earlier times.

.2. Governing equation for the velocity

Again, we first construct an analogy equation as basis for the integral governing equation for the velocity. In order to eliminate
he pressure (rather than the velocity) from the conservation equations, we divide the mass equation (Eq. (3.4)) by �̄� and differentiate
t with respect to 𝑥, while we divide the momentum equation (Eq. (3.9)) by �̄�𝑐2 and differentiate it with respect to 𝑡. Subtraction
f the resulting equations leads to

1
𝑐2
𝜕2𝑢′

𝜕𝑡2
− 𝜕2𝑢′

𝜕𝑥2
= −𝐵

�̄�
𝜕𝑞′

𝜕𝑥
+ 1
�̄� 𝑐2

𝜕𝑓 ′

𝜕𝑡
. (4.3)

his is the acoustic analogy equation for the velocity. The left hand side of this equation has again the same form as that of Eq. (2.4),
hich defines the Green’s function. By combining Eq. (2.4) for 𝐺𝑢 and Eq. (4.3) (see Appendix A), we obtain the integral equation

𝑢′(𝑥, 𝑡) = 𝐵 𝑡 𝜕𝐺𝑢
∗
|

|

|

𝑄′(𝑡∗) d𝑡∗ − 1
2

𝑡 𝜕𝐺𝑢
∗
|

|

|

𝐹 ′(𝑡∗) d𝑡∗ + i.c. . (4.4)
7
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|𝑥∗=𝑥𝑞
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Table 1
Parameters describing the nonlinear Rijke tube.

Parameter Symbol Numerical value Units

Tube length 𝐿 1 m
Mean temperature of the air �̄� 623 K
Speed of sound 𝑐 495 m s-1

Velocity of the mean flow �̄� 1.0 m s-1

Time-lag 𝜏 0.0036 s
Measure for flame power 𝑏 2.09 × 105 W m kg-1

Coupling coefficient for linear part 𝑛0 1
Coupling coefficient for nonlinear part 𝑛1 −17.4
Heat source position 𝑥𝑞 0.1, 0.3, 0.7, 0.9 m

4.3. Numerical solution of the integral governing equations

We evaluate the governing equations, Eqs. (4.2) and (4.4), at 𝑥 = 𝑥+𝑞 , i.e. at the upstream edge of the control volume,

𝑝′1(𝑡) = −𝐵 ∫

𝑡

𝑡∗=0

𝜕𝐺𝑝
𝜕𝑡∗

|

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

𝑄′(𝑡∗) d𝑡∗ + ∫

𝑡

𝑡∗=0

𝜕𝐺𝑝
𝜕𝑥∗

|

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

𝐹 ′(𝑡∗) d𝑡∗ + i.c. , (4.5)

𝑢′1(𝑡) =
𝐵
�̄� ∫

𝑡

𝑡∗=0

𝜕𝐺𝑢
𝜕𝑥∗

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

𝑄′(𝑡∗) d𝑡∗ − 1
�̄�𝑐2 ∫

𝑡

𝑡∗=0

𝜕𝐺𝑢
𝜕𝑡∗

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

𝐹 ′(𝑡∗) d𝑡∗ + i.c. (4.6)

he derivatives of the Green’s functions 𝐺𝑝 and 𝐺𝑢 in the integrands can be evaluated from Eqs. (2.5) and (2.6), and are known.
he source terms 𝑄′(𝑡∗) and 𝐹 ′(𝑡∗) (𝑡∗ = 0, … , 𝑡) depend on the acoustic field 𝑝′1 and 𝑢′1. The two Eqs. (4.5) and (4.6) therefore

represent a set of two coupled integral equations of the Volterra type [33] for the unknown functions 𝑝′1(𝑡) and 𝑢′1(𝑡). These functions
ccur at the current time 𝑡 on the left hand side, and at earlier times in the integrals on the right hand side. It is straightforward
o solve these integral equations numerically with an iterative approach stepping forward in time. This is described in Appendix B.
he numerical effort is kept low by exploiting the fact that the Green’s function is known analytically, which makes it possible to
idestep the need to sum over an ever-increasing number of terms as the iteration proceeds.

If the dependence of the source terms is given in the frequency domain as functions of �̂�1(𝜔) and �̂�1(𝜔) (as, for example, in
Eqs. (3.15) and (3.16)), these will have to be converted into the time-domain. This is described in Appendix C.

5. Some examples

In this section, we show three examples, where we apply the framework based on the tailored Green’s function. The first example
is a Rijke tube with a strongly nonlinear heat release law (Section 5.1). The second example is a flow duct with an orifice, which
has the potential to whistle (Section 5.2). In the third example (Section 5.3), we consider a duct with two acoustic sources: an orifice
late (dipole source) anchoring a flame (monopole source).

In all examples, the resonator is a duct with open ends, zero radiation losses and no friction. It is described by the Green’s
unctions given by Eqs. (2.5) and (2.6). The first two modes are included; higher modes are ignored. The results are calculated by
olving Eqs. (4.5) and (4.6) with the iteration scheme described in Appendices B and C. The time step in the iteration is 𝛥𝑡 = 10−5 s
hroughout.

In real systems, instabilities arise spontaneously, rather than at some initial time. We assume that we have a perfect active
ontrol system, proposed by Ffowcs Williams, which for 𝑡 < 0 suppresses any instability generated by the heat source or by the flow
hrough the orifice. At 𝑡 = 0, the active control system is switched off instantly. The system is then free to become unstable, i.e. the
scillation amplitude can grow, starting from a small initial value, triggered, for example, by low-level broadband noise.

.1. The nonlinear Rijke tube

In this section, we consider a Rijke tube with a strongly nonlinear heat release rate law. The air in the tube has uniform properties:
he mean temperature is �̄� = 623 K, and the corresponding speed of sound is 𝑐 = 495 m s−1. The tube is 1 m long; its first two modes

have frequencies 𝑓1 = 248 Hz, 𝑓2 = 496 Hz, and periods 𝑇1 = 0.0040 s, 𝑇2 = 0.0020 s. We assume that the heat release rate is described
by the Levine–Baum formulation [34]

𝑄′(𝑡) = −𝑏

[

𝑛1
|𝑢′1(𝑡 − 𝜏)|

�̄�
+ 𝑛0

]

𝑢′1(𝑡 − 𝜏)
�̄�

. (5.1)

he symbols are explained in Table 1 (columns 1 and 2, rows 5–8).
The numerical iteration scheme described in Appendix B is used, with 𝐹 ′(𝑡) = 0 throughout, to calculate the time histories. In

igs. 2 and 3, we present results for the parameter values listed in Table 1. The heat source position was varied, taking values
=0.1, 0.3, 0.7, 0.9 m. The initial conditions were 𝑄′(𝑡)| = 10−6 W m kg−1, 𝑢′ (𝑡)| = 10−6 m s−1. Fig. 2 shows the results for
8
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Fig. 2. Velocity results for four heat source positions 𝑥𝑞 . Top row: time histories; bottom row: frequency spectra. (a,b): 𝑥𝑞 = 0.1 m ; (c,d): 𝑥𝑞 = 0.3 m ; (e,f)
𝑞 = 0.7 m ; (g,h) 𝑥𝑞 = 0.9 m.

Fig. 3. Results for the heat release rate for four heat source positions 𝑥𝑞 . Top row: time histories; bottom row: frequency spectra. (a,b): 𝑥𝑞 = 0.1 m ; (c,d): 𝑥𝑞
= 0.3 m ; (e,f) 𝑥𝑞 = 0.7 m ; (g,h) 𝑥𝑞 = 0.9 m.

the acoustic velocity at the heat source, and Fig. 3 shows the results for the heat release rate. The top row of these figures shows
the time histories, and the bottom row shows the corresponding frequency spectra. The time histories display the envelopes of the
oscillations; the oscillations themselves are not visible, but their frequency content can be seen in the spectra.

The heat release rate law in Eq. (5.1) has a linear term, 𝑛0
𝑢′1(𝑡−𝜏)

�̄� , and a nonlinear term, 𝑛1
|𝑢′1(𝑡−𝜏)|𝑢

′
1(𝑡−𝜏)

�̄�2
. With the coupling

coefficients given by the values in Table 1, the linear term dominates for small velocity amplitudes of up to about 0.05 m s−1, while
the nonlinear term dominates for higher amplitudes. The ‘‘competition’’ between the two terms manifests itself in the velocity time
histories shown in Figs. 2(a), (c) and (e): the exponential growth at low amplitudes is followed by a limit cycle with an amplitude
of about 0.07 m s−1. The corresponding spectra underneath reveal which mode appears in the limit cycle. For 𝑥𝑞 = 0.1 m, both
modes are linearly unstable, but only mode 2 appears in the limit cycle. For 𝑥𝑞 = 0.3 m, only mode 1 is linearly unstable, and this
mode appears in the limit cycle. Mode 2 behaves in the same way for 𝑥𝑞 = 0.7 m. For 𝑥𝑞 = 0.9 m, both modes are linearly stable,
the oscillation decays, and there is no limit cycle.

Looking at the spectra in Fig. 3 for the heat release rate, we observe additional peaks at higher frequencies, which are not present
in the velocity spectra. These peaks are harmonics due to the nonlinear nature of the heat release rate law in Eq. (5.1). The effect
on the acoustic field of any harmonics above about 500 Hz is not captured here because our Green’s function includes only the first
two modes (mode 2 has frequency 𝑓2 = 496 Hz). If higher frequencies in the acoustic field are of interest, more modes need to be
included in the Green’s function.

The Galerkin method [35], [36, section 4.3] would offer an alternative to our Green’s function approach in that it would give
9

time histories resembling the ones presented here for nonlinear heat release laws. Like our Green’s function approach, the Galerkin
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Table 2
Parameters describing the duct and the orifice.

Parameter Symbol Numerical value Units

Duct length 𝐿 0.8 m
Speed of sound 𝑐 348 m s-1

Position of orifice plate 𝑥𝑞 0.28 m
Thickness of orifice plate 𝑡𝑜 0.003 m
Orifice diameter 𝐷𝑜 0.01 m
Bias flow velocity 𝑢𝑜 2.52 m s-1

Reynolds number of bias flow 𝑅𝑒 1600

method is based on the analogy equation Eq. (4.1) with localised sources described in terms of delta functions as in Eqs. (3.6) and
(3.10). In the Galerkin method, a trial solution of the form

𝑝′(𝑥, 𝑡) =
𝑁
∑

𝑛=1
𝜂𝑛(𝑡)𝜓𝑛(𝑥) (5.2)

s used, which represents a superposition of duct modes. 𝜂𝑛(𝑡) is the (unknown) time-dependence of mode 𝑛, and 𝜓𝑛(𝑥) is the
orresponding (known) eigenfunction. Second-order ODEs for 𝜂𝑛(𝑡) can be derived by the following mathematical steps:

– substitute Eq. (5.2), together with Eqs. (3.6) and (3.10), into Eq. (4.1);
– multiply the resulting equation by 𝜓𝑚(𝑥) and integrate it over the tube length;
– exploit the orthogonality of the functions 𝜓𝑛(𝑥) to get individual ODEs for 𝜂𝑛(𝑡).

he resulting ODEs are coupled forced oscillator equations, i.e.

d2𝜂𝑛
d𝑡2

+ 𝜔2
𝑛𝜂𝑛 = forcing term , (5.3)

where the forcing term depends (linearly or nonlinearly) on the acoustic field at the source position, which includes not just mode 𝑛,
but also the other modes. The set of ODEs needs to be solved numerically, for example by a Runge–Kutta scheme. The advantage of
our Green’s function approach over the Galerkin method is that we are dealing with an integral formulation and therefore random
errors in the numerical process are smoothed out [6].

5.2. The whistling orifice

In this section, we consider an orifice in a finite-length flow duct. Such a set-up is known to whistle under certain circum-
stances [37].

Our duct has ideal open ends with zero radiation losses. Losses due to friction are not included either. The temperature in the
duct is uniform and associated with a speed of sound 𝑐 = 348 m s−1. The duct is 0.8 m long; its first two modes have frequencies
𝑓1 = 218 Hz and 𝑓2 = 436 Hz. The orifice plate is located in the duct at the axial position 𝑥𝑞 = 0.35𝐿 = 0.28 m; its thickness is
𝑡𝑜 = 0.003 m. The orifice diameter is 𝐷𝑜 = 0.01 m, giving an aspect ratio of 𝑡𝑜∕𝐷𝑜 = 0.3. The mean flow in the duct creates a bias
flow with velocity �̄�𝑜 in the orifice; the corresponding Reynolds number is 𝑅𝑒 = 𝐷𝑜�̄�𝑜∕𝜈, where 𝜈 is the kinematic viscosity. The duct
diameter and the mean flow velocity in the duct have no influence on the results.

The parameters describing the duct and the orifice are summarised in Table 2.
We assume that the hydrodynamic effects in and around the orifice can be modelled by a dipole force given in terms of a transfer

impedance 𝑍(𝜔),

𝐹 (𝜔) = 𝑍(𝜔) �̂�1(𝜔) . (5.4)

Several results for 𝑍(𝜔) are available in the literature. We choose the transfer impedance, which has been determined by Fabre
et al. [38] by numerically solving the incompressible linearised Navier–Stokes equations for the flow through a circular orifice in
a thick plate. Their transfer impedance is shown in Fig. 4 as a function of frequency for an orifice with the properties given in
Table 2. Fig. 4(a) shows the real part (resistance), and Fig. 4(b) shows the imaginary part (reactance). We have converted their
results, which are given in terms of the Strouhal number (𝑆𝑡 = 𝜔𝐷𝑜∕(2�̄�𝑜)), to results along the frequency axis and adapted them to
our notation.

In our notation, the sign of the resistance, Re (𝑍(𝜔)) is such that it describes damping if Re (𝑍(𝜔)) < 0 and amplification if
Re (𝑍(𝜔)) > 0. The resistance in Fig. 4(a) is positive in the frequency ranges [153⋯ 287] Hz and [603⋯ 740] Hz. The lower frequency
range corresponds to the first hydrodynamic mode, and the higher one corresponds to the second harmonic mode [39]. This indicates
that the orifice might act as an amplifier if it is situated inside a duct, i.e. coupled to an acoustic resonator.

Here, the source is not described in the time-domain, but in the frequency-domain as shown in Fig. 4. In order to solve the integral
equations, Eqs. (4.5) and (4.6), it is necessary to transform 𝐹 (𝜔) into 𝐹 ′(𝑡). We do this with a two-step procedure: In the first step
(using Matlab’s rationalfit routine), we represent 𝑍(𝜔) by a series of rational functions, each with two fitting parameters; these
are determined numerically by least-squares fitting, minimising the discrepancy with the curves in Fig. 4. In the second step, we
transform the rational function representation into the time-domain (see Appendix C, where the procedure is described in more
10

detail).
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(

Fig. 4. Transfer impedance for an orifice with the properties given in Table 2 (adapted from Fig. 7(e) in [38]); (a) real part (resistance), (b) imaginary part
reactance). The dashed vertical lines mark the frequencies of the first two eigenmodes of our duct.

Fig. 5. Results for the acoustic velocity; (a) time history; (b) frequency spectra for the time interval [0…0.2]s (left); (c) frequency spectrum for the time interval
[0.8…1.0]s (right).

Fig. 5 shows our predictions for the acoustic velocity (measured on the upstream side of the orifice plate); Fig. 5(a) gives the
time history; the two red boxes mark two time windows: one at the beginning and one at the end of the time history. Fig. 5(b) gives
the frequency spectrum for the early time window, and Fig. 5(c) gives that for the late time window.

The Green’s function included modes 1 and 2, but no higher modes. The oscillation was triggered by imposing the initial force
𝐹 ′(𝑡)|𝑡=0 = 10−3 N m−2, while 𝑄′(𝑡)|𝑡=0 = 0.

The time history of the acoustic velocity, which is shown in Fig. 5(a), looks rather peculiar because it includes mode 1 and mode
2. The stability behaviour of the individual modes can be discerned from the frequency spectra shown in Figs. 5(b) and (c). Mode 1
(218 Hz) clearly increases in amplitude. Further spectra (not shown) calculated for time windows between the two red ones marked
in Fig. 5(a) confirm that the increase of mode 1 is exponential. Mode 2 (436 Hz) is stable. It starts with an amplitude higher than
that of mode 1, but decays exponentially and is barely detectable at the end of the time history.

The corresponding results for the dipole force are shown in Fig. 6. It is evident that the dipole force features the same qualitative
behaviour as the acoustic velocity. This behaviour is expected, given that the frequency of mode 1 is in the range where the resistance
is positive, while mode 2 has a frequency where the resistance is negative (see Fig. 4).

We have validated our results obtained from the Green’s function approach by calculating the complex eigenfrequencies of modes
1 and 2 with an eigenvalue approach. The predictions of both approaches were fully consistent.

5.3. Duct with a flame anchored on an orifice plate

We consider the configuration shown in Fig. 7, consisting of a uniform duct of length 𝐿; both ends of the duct are open.
An orifice plate is positioned in the duct at the axial position 𝑥𝑞 . A premixed gas passes through the orifice and is burnt in a

flame that is anchored on the downstream edge of the hole. We treat the orifice plate and the flame as two individual acoustic
sources at the same axial position; both sources are linear. The parameters for this set-up are listed in Table 3.

We describe the orifice plate by the same transfer impedance as in Section 5.2 (see Figs. 4(a) and (b)). Whether the orifice plate
acts as an amplifier or a damper of a particular mode depends on the frequency of that mode, which in turn depends on the length
of the duct.

The flame is modelled as a monopole source, which we describe here by a simple time-lag law for the heat release rate,

𝑄′(𝑡) = 𝑛 𝑢′ (𝑡 − 𝜏) , (5.5)
11
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[

d

𝑝
w

Fig. 6. Results for the dipole force; (a) time history; (b) frequency spectra for the time interval [0…0.2]s (left); (c) frequency spectrum for the time interval
0.8…1.0]s (right).

Fig. 7. Duct with orifice plate, flame and open ends.

Fig. 8. Map of the Rayleigh index in the 𝑥𝑞𝜏 – plane for the first two modes of the duct, (a) mode 1 and (b) mode 2. Grey regions denote positive, white
regions denote negative Rayleigh index. The small red circle marks the parameter values 𝑥𝑞 = 0.35𝐿, 𝜏 = 0.45𝑇1 = 0.89𝑇2.

where 𝑛 is the coupling coefficient and 𝜏 is the time-lag. According to the Rayleigh criterion, 𝜏 and 𝑥𝑞 are the critical parameters
that determine whether the flame acts as an amplifier or damper for a particular mode. Fig. 8 shows the sign of the Rayleigh index
𝑝′(𝑡)𝑄′(𝑡) (the overbar denotes the time-average) in the 𝑥𝑞 𝜏 – plane for the first two modes of an open-ended duct. Grey regions
enote positive Rayleigh index (amplifier), while white regions denote negative Rayleigh index (damper). The point 𝑥𝑞 = 0.35𝐿,
𝜏 = 0.45𝑇1 = 0.89𝑇2, which we consider here, lies in regions of positive Rayleigh index (marked by a small red circle), so the flame
acts as an amplifier for both modes.

We perform two parameter studies in the two subsections below to illustrate some effects that can occur when the orifice plate
and the flame are put together. The properties of the complete system are listed in Table 3. In Section 5.3.1, we vary the flame
power by increasing the coupling coefficient 𝑛. The initial conditions were 𝐹 ′(𝑡)|𝑡=0 = 10−6 N m−2, 𝑄′(𝑡)|𝑡=0 = 10−6 W m kg−1,
′
1(𝑡)|𝑡=0 = 10−3 N m−2 and 𝑢′1(𝑡)|𝑡=0 = 10−3 m s−1. Their choice was motivated by the aim to obtain results that could be displayed
ell and interpreted clearly.

In Section 5.3.2, we vary the frequencies of the two modes by varying the duct length. In both subsections, we show the time
histories 𝑝′ (𝑡) and 𝑢′ (𝑡), as well as the corresponding frequency spectra.
12
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Table 3
Parameters describing the setup shown in Fig. 7.

Symbol Numerical value Units

Duct parameters
Speed of sound 𝑐 348 m s-1

Length 𝐿 3.0, 1.5, 0.8 m
Frequency of mode 1 𝑓1 58, 116, 217 Hz
Frequency of mode 2 𝑓2 116, 232, 434 Hz
Period of mode 1 𝑇1 17.2, 8.62, 4.61 10−3 s
Period of mode 2 𝑇2 8.62, 4.32, 2.30 10−3 s
Orifice plate parameters
Frequency ranges where Re (𝑍) > 0 [153 . . . 287], [603 . . . 740] Hz
Axial position 𝑥𝑞 0.35𝐿 m
Flame parameters
Axial position 𝑥𝑞 0.35𝐿 m
Time-lag 𝜏 𝜏 = 0.45𝑇1 = 0.89𝑇2 s
Coupling coefficient 𝑛 1000, 5000, 10000 W s kg-1

Fig. 9. Pressure results for three coupling coefficients 𝑛, with 𝐿 = 3 m . Top row: time histories; bottom row: frequency spectra. (a,b): 𝑛 = 1000 W s kg−1;
(c,d): 𝑛 = 5000 W s kg−1; (e,f): 𝑛 = 10,000 W s kg−1.

5.3.1. Variable flame power
We simulate flames of different powers by varying the coupling coefficient (𝑛 = 1000, 5000, 10,000𝑊 𝑠 kg−1). The length of the

duct is kept constant at 𝐿 = 3 m. The eigenfrequencies of the first two modes are then 𝑓1 = 58 Hz and 𝑓2 = 116 Hz. They are both
in the range where the transfer impedance has a negative real part, i.e. the orifice plate acts as a damper for both modes.

The results for the acoustic pressure are given in Fig. 9, and those for the velocity in Fig. 10; the top rows of these figures show
the time histories, and the bottom rows show the corresponding frequency spectra.

From Fig. 9, we make the following observations about the time history and frequency spectrum for the pressure, as the coupling
coefficient 𝑛 increases. For the weakest flame (𝑛 = 1000 W s kg−1), the pressure decays with time, indicating that both modes are
stable. In this case, the amplifying effect of the flame is not strong enough to overcome the damping effect of the orifice plate. For
the strongest flame (𝑛 = 10,000 W s kg−1), both modes increase in amplitude, and we conclude that the flame has the upper hand
on both modes. For the intermediate flame (𝑛 = 5000 W s kg−1), we observe a mixed scenario: mode 1 is damped, but mode 2 is
amplified. In all three cases, the spectra show two peaks at 58 Hz and 116 Hz, which are the eigenfrequencies of the duct.

The corresponding results for the velocity are shown in Fig. 10. There are no qualitative differences between the time histories
of velocity and pressure. The same is true for the frequency spectra.

5.3.2. Variable duct length
Now we vary the duct length to generate modal frequencies that are inside or outside the frequency ranges, where the orifice

plate acts as an amplifier. We consider the two lengths 𝐿 = 0.8 m and 𝐿 = 1.5 m. For 𝐿 = 0.8 m, we have 𝑓1 = 217 Hz (Re (𝑍) > 0,
amplified) and 𝑓2 = 434 Hz (Re (𝑍) < 0, damped), while for 𝐿 = 1.5 m the effect on the two modes is the other way round:
𝑓1 = 116 Hz (Re (𝑍) < 0, damped) and 𝑓2 = 232 Hz (Re (𝑍) > 0, amplified). The power of the flame is kept constant and low, with
the coupling coefficient 𝑛 = 1000 W s kg−1.

The results for the acoustic pressure are given in Fig. 11, and those for the velocity in Fig. 12; the top rows of these figures show
the time histories, and the bottom rows show the frequency spectra.
13
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(

Fig. 10. Velocity results for three coupling coefficients 𝑛, with 𝐿 = 3 m . Top row: time histories; bottom row: frequency spectra. (a,b): 𝑛 = 1000 W s kg−1;
c,d): 𝑛 = 5000 W s kg−1; (e,f): 𝑛 = 10,000 W s kg−1.

Fig. 11. Pressure results for two duct lengths 𝐿, with 𝑛 = 1000 W s kg−1. Top row: time histories; bottom row: frequency spectra. (a,b): 𝐿 = 0.8 m ; (c,d): 𝐿
= 1.5 m.

Fig. 12. Velocity results for two duct lengths 𝐿, with 𝑛 = 1000 W s kg−1. Top row: time histories; bottom row: frequency spectra. (a,b): 𝐿 = 0.8 m ; (c,d): 𝐿
= 1.5 m.
14
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From Fig. 11 we make the following observations about the time history and frequency spectrum for the pressure. The time
istory for 𝐿 = 0.8 m has a peculiar envelope. This is due to the fact that we have a superposition of two modes: mode 1 starts
ith a small amplitude and grows exponentially, while mode 2 starts with a much larger amplitude, but decays. The time history

or 𝐿 = 1.5 m shows again a superposition of two modes: here mode 2 grows exponentially and dominates over the damped mode
throughout the whole time history.

The corresponding results for the velocity are shown in Fig. 12. There are no qualitative differences between the time histories
f velocity and pressure. The same is true for the frequency spectra.

. Conclusions

Sound generation by a feedback process in an acoustic resonator (e.g. between sound and a flame, or between sound and
ydrodynamic structures) is an important topic in several branches of acoustics. For example, feedback between sound and
ydrodynamic structures is the underlying mechanism that produces the sound of musical wind instruments. Another example is
thermoacoustic instability, which is due to the feedback between sound and a flame. Multiple feedback, involving sound, flames

nd hydrodynamic structures, is also possible and has been observed in gas turbine engines amongst other systems.
Our paper introduces a unified framework to study such effects largely analytically, with very little numerical effort. The

omplete resonator-source system is modelled by a Green’s function approach, using the same formalism for aeroacoustic sources
nd thermoacoustic sources; their coupling to the acoustic field can be linear or nonlinear. Our predictions give time histories for the
coustic field; these are obtained by solving a coupled set of Volterra integral equations with an uncomplicated iteration method,
tepping forward in time.

Our method is attractive for fundamental studies and offers several advantages, which have been illustrated by three different
ase studies:
(1) A Rijke tube with a quadratic dependence of the heat release rate on the acoustic velocity. This case relies on a

time-domain approach. The resulting time histories give a wealth of physical information, such as transient behaviour, limit-cycle
amplitudes and higher harmonics. Similar results would be obtained from a Galerkin approach; however, our method is less prone
to numerical errors since it involves solving integral equations, rather than differential equations. It would be impossible to apply
a frequency-domain approach to this case without losing information about the harmonics. Nonlinear approaches in the frequency
domain are limited to quasi-nonlinear heat release rate models, where the nonlinearity is merely an amplitude dependence; a
common example would be a network model where the flame is described by an amplitude-dependent flame transfer function.

(2) An orifice in a thick plate with bias flow, described by a transfer impedance. We illustrated with this case that our
approach can also be used for sources that are described in the frequency domain.

(3) An acoustic resonator with both thermoacoustic feedback (flame) and aeroacoustic feedback (orifice plate). Since
ittle numerical effort is required to produce time histories of the acoustic field and the source terms, parameter studies can be
erformed quickly, and they give insight into the role of the individual feedback mechanisms, as well as their interaction with each
ther.

Various extensions of our Green’s function approach are feasible: More elaborate resonator geometries can be considered, as long
s the tailored Green’s function can be calculated analytically. This is the case for a surprisingly diverse group of configurations, for
xample for ducts with general end conditions, as well as for segmented ducts, where segments with different properties are joined
ogether; these segments could, for example, have different mean temperatures and/or different cross-sectional areas. Furthermore,
everal sources, at different positions in the resonator cavity, could be added, as long as they can be regarded as acoustically compact.
his includes ‘‘responsive sources’’, which react to the acoustic field in the resonator (like the ones showcased in this paper), as well
s unresponsive ones (such as external noise). Non-compact sources could also be simulated by a series of closely-spaced compact
ources.
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Appendix A. Derivation of the integral equations for the pressure and velocity

We derive the integral equation for the pressure from the governing PDEs for 𝐺𝑝 (see Eq. (2.4)) and 𝑝′ (see Eq. (4.1)). In a first
step, we apply the Laplace transform to both sides of the PDEs, using the following notation and properties:

 [𝑝′(𝑥, 𝑡)] = �̂�(𝑥, 𝑠), (A.1)

where

�̂�(𝑥, 𝑠) = ∫

∞

𝑡=0
𝑝′(𝑥, 𝑡) e−𝑠𝑡d𝑡 ,


[

𝜕2𝑝′

𝜕𝑡2

]

= 𝑠2 �̂�(𝑥, 𝑠) − [𝑠 𝑝′(𝑥, 𝑡) + �̇�′(𝑥, 𝑡)]𝑡=0 , (A.2)


[

𝜕𝑞′

𝜕𝑡

]

= 𝑠 𝑞(𝑥, 𝑠) , (A.3)

assuming

𝑞′(𝑥, 𝑡)|𝑡=0 = 0 ,

 [𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗)] = e−𝑠𝑡
∗
�̂�𝑝(𝑥, 𝑥∗, 𝑠) , (A.4)

where

�̂�𝑝(𝑥, 𝑥∗, 𝑠) = ∫

∞

𝑡=0
𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗) e−𝑠(𝑡−𝑡

∗) d𝑡 ,



[

𝜕2𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗)

𝜕𝑡2

]

= 𝑠2 e−𝑠𝑡
∗
�̂�𝑝(𝑥, 𝑥∗, 𝑠), (A.5)

given that terms at 𝑡 = 0 are zero due to the causality of the Green’s function,

 [𝛿(𝑡 − 𝑡∗)] = e−𝑠𝑡
∗
. (A.6)

The transformed versions of Eqs. (2.4) and (4.1) are

𝑠2

𝑐2
�̂�𝑝 −

𝜕2�̂�𝑝
𝜕𝑥2

= 𝛿(𝑥 − 𝑥∗) | ⋅ �̂�(𝑥, 𝑠) (A.7)

𝑠2

𝑐2
�̂� −

𝜕2�̂�
𝜕𝑥2

− 1
𝑐2

[

𝑠𝑝′(𝑥, 𝑡) + �̇�′(𝑥, 𝑡)
]

𝑡=0 = 𝐵 𝑠 𝑞 −
𝜕𝑓
𝜕𝑥

| ⋅ �̂�𝑝(𝑥, 𝑥∗, 𝑠) (A.8)

We multiply the equations as indicated (by the notation |.) and subtract Eq. (A.8) from Eq. (A.7). This gives

− �̂�
𝜕2�̂�𝑝
𝜕𝑥2

+ �̂�𝑝
𝜕2�̂�
𝜕𝑥2

+ 1
𝑐2

[𝑠𝑝′(𝑥, 𝑡) + �̇�′(𝑥, 𝑡)]𝑡=0�̂�𝑝 = �̂� 𝛿(𝑥 − 𝑥∗) − 𝐵 𝑠 𝑞 �̂�𝑝 +
𝜕𝑓
𝜕𝑥
�̂�𝑝 . (A.9)

Next we swap the positions 𝑥 and 𝑥∗, and apply the integral ∫ 𝐿𝑥∗=0 ⋯ d𝑥∗ on both sides of Eq. (A.9). This leads to

∫

𝐿

𝑥∗=0

(

�̂�𝑝
𝜕2�̂�
𝜕𝑥∗2

− �̂�
𝜕2�̂�𝑝
𝜕𝑥∗2

)

d𝑥∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼1

+ 1
𝑐2 ∫

𝐿

𝑥∗=0

[

𝑠𝑝′(𝑥∗, 𝑡) + �̇�′(𝑥∗, 𝑡)
]

𝑡=0 �̂�𝑝d𝑥
∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼2

= �̂�(𝑥, 𝑠) − 𝐵 ∫

𝐿

𝑥∗=0
𝑠 𝑞(𝑥∗, 𝑠) �̂�𝑝(𝑥, 𝑥∗, 𝑠) d𝑥∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼3

+∫

𝐿

𝑥∗=0

𝜕𝑓
𝜕𝑥∗

�̂�𝑝(𝑥, 𝑥∗, 𝑠) d𝑥∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼4

(A.10)

The integrals denoted by 𝐼1, 𝐼2, 𝐼3, 𝐼4 can be simplified, using integration by parts:

𝐼1 = ∫

𝐿

𝑥∗=0

(

�̂�𝑝
𝜕2�̂�
𝜕𝑥∗2

− �̂�
𝜕2�̂�𝑝
𝜕𝑥∗2

)

d𝑥∗

=

[

�̂�𝑝
𝜕�̂�
𝜕𝑥∗

− �̂�
𝜕�̂�𝑝
𝜕𝑥∗

]𝐿

𝑥∗=0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

determined by the
boundary conditions

−∫

𝐿

𝑥∗=0

(

𝜕�̂�𝑝
𝜕𝑥∗

𝜕�̂�
𝜕𝑥∗

−
𝜕�̂�
𝜕𝑥∗

𝜕�̂�𝑝
𝜕𝑥∗

)

d𝑥∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

. (A.11)
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t

For the boundary conditions given by Eq. (2.2), the result is clearly

𝐼1 = 0 . (A.12)

It can be shown, by the way, that 𝐼1 = 0 is true for many other boundary conditions, e.g. for duct ends described by a frequency-
dependent reflection coefficient; this is because �̂�𝑝 and �̂� satisfy the same boundary conditions.

The integral 𝐼2 is determined by the initial conditions. We assume that they are given by

𝑝′(𝑥, 𝑡)|𝑡=0 = 𝑝0 𝛿(𝑥 − 𝑥𝑑 ) , (A.13a)

�̇�′(𝑥, 𝑡)|𝑡=0 = 0 , (A.13b)

which describe an initial pressure concentrated at the point 𝑥𝑑 with magnitude 𝑝0. 𝐼2 then reduces to

𝐼2 = ∫

𝐿

𝑥∗=0
𝑠 𝑝0𝛿(𝑥∗ − 𝑥𝑑 ) �̂�𝑝 d𝑥∗ = 𝑠 𝑝0 �̂�𝑝(𝑥, 𝑥𝑑 , 𝑠) . (A.14)

𝐼3 and 𝐼4 can be simplified with the assumption that the source is compact and located at 𝑥𝑞 , as described by Eqs. (3.6) and (3.10).
In the 𝑠-domain these expressions become

𝑞(𝑥∗, 𝑠) = �̂�(𝑠) 𝛿(𝑥∗ − 𝑥𝑞) , (A.15)

𝑓 (𝑥∗, 𝑠) = 𝐹 (𝑠) 𝛿(𝑥∗ − 𝑥𝑞) . (A.16)

Then

𝐼3 = ∫

𝐿

𝑥∗=0
𝑠 �̂�(𝑠)𝛿(𝑥∗ − 𝑥𝑞) �̂�𝑝(𝑥, 𝑥∗, 𝑠) d𝑥∗ = �̂�𝑝(𝑥, 𝑥∗, 𝑠)

|

|

|𝑥∗=𝑥𝑞
𝑠 �̂�(𝑠) , (A.17)

𝐼4 = ∫

𝐿

𝑥∗=0

𝜕𝑓
𝜕𝑥∗

�̂�𝑝 d𝑥∗ =
[

𝑓 �̂�𝑝
]𝐿
𝑥∗=0

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=0 because

𝑓=0 at 𝑥∗=0,𝐿

−∫

𝐿

𝑥∗=0
𝑓
𝜕�̂�𝑝
𝜕𝑥∗

d𝑥∗

= −∫

𝐿

𝑥∗=0
𝐹 𝛿(𝑥∗ − 𝑥𝑞)

𝜕�̂�𝑝
𝜕𝑥∗

d𝑥∗ = −
𝜕�̂�𝑝
𝜕𝑥∗

|

|

|

|

|

|𝑥∗=𝑥𝑞

𝐹 (𝑠) . (A.18)

Eq. (A.10) then becomes

�̂�(𝑥, 𝑠) = 𝐵 �̂�𝑝(𝑥, 𝑥𝑞 , 𝑠) 𝑠 �̂�(𝑠) +
𝜕�̂�𝑝
𝜕𝑥∗

|

|

|

|

|

|𝑥∗=𝑥𝑞

𝐹 (𝑠) + 1
𝑐2
𝑝0 𝑠 �̂�(𝑥, 𝑥𝑑 , 𝑠) (A.19)

In order to transform this back into the time-domain, we apply the inverse Laplace transform on both sides of Eq. (A.19), using:

 −1 [�̂�(𝑥, 𝑠)] = 𝑝′(𝑥, 𝑡) , (A.20)

 −1
[

�̂�𝑝|𝑥∗=𝑥𝑞 𝑠 �̂�(𝑠)
]

= ∫

𝑡

𝑡∗=0
𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗)|𝑥∗=𝑥𝑞

𝜕𝑄′

𝜕𝑡

∗
d𝑡∗

= −∫

𝑡

𝑡∗=0

𝜕𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗)
𝜕𝑡∗

|

|

|

|

|𝑥∗=𝑥𝑞

𝑄′(𝑡∗) d𝑡∗ , (A.21)

 −1
⎡

⎢

⎢

⎣

𝜕�̂�𝑝
𝜕𝑥

∗
|

|

|

|

|

|𝑥∗=𝑥𝑞

𝐹 (𝑠)
⎤

⎥

⎥

⎦

= ∫

𝑡

𝑡∗=0

𝜕𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗)
𝜕𝑥∗

|

|

|

|

|𝑥∗=𝑥𝑞

𝐹 ′(𝑡∗) d𝑡∗ , (A.22)

 −1 [𝑠 �̂�𝑝(𝑥, 𝑥𝑑 , 𝑠)
]

=
𝜕𝐺𝑝(𝑥, 𝑥∗, 𝑡)

𝜕𝑡

|

|

|

|

|𝑥∗=𝑥𝑑

. (A.23)

This leads to

𝑝′(𝑥, 𝑡) = − 𝐵 ∫

𝑡

𝑡∗=0

𝜕𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗)
𝜕𝑡∗

|

|

|

|

|𝑥∗=𝑥𝑞

𝑄′(𝑡∗) d𝑡∗

+ ∫

𝑡

𝑡∗=0

𝜕𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗)
𝜕𝑥∗

|

|

|

|

|𝑥∗=𝑥𝑞

𝐹 ′(𝑡∗) d𝑡∗ +
𝑝0
𝑐2

𝜕𝐺𝑝(𝑥, 𝑥∗, 𝑡)
𝜕𝑡

|

|

|

|

|𝑥∗=𝑥𝑑

. (A.24)

There are three terms on the right-hand side of Eq. (A.24): the first term represents the feedback between the acoustic field and
the heat release rate 𝑄′(𝑡); the second term represents the feedback between the acoustic field and the dipole force 𝐹 ′(𝑡); the third
17

erm represents the free oscillation, which is triggered by the initial pressure 𝑝0. We omit the third term in this paper because
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A

h

it would interfere with the feedback between the acoustic field and the two sources. This would add unnecessary complications
to understanding our time histories. Instead, we kick-start the acoustic field in the first iteration step in such a way that the free
oscillation is suppressed.

The integral equation for the velocity is derived in much the same way as that for the pressure. The starting point are the two
governing PDEs for 𝐺𝑢 (see Eq. (2.4)) and 𝑢′ (see Eq. (4.3)). They are manipulated by the same steps shown for the pressure in
Eqs. (A.1)–(A.10). The integral equivalent to 𝐼2 is determined by the initial conditions for the velocity. We assume

𝑢′(𝑥, 𝑡)|𝑡=0 = 𝑢0 𝛿(𝑥 − 𝑥𝑑 ) , (A.25a)

�̇�′(𝑥, 𝑡)|𝑡=0 = 0 , (A.25b)

which represents an initial velocity concentrated at the point 𝑥𝑑 with magnitude 𝑢0. The subsequent manipulations are directly
analogous to those given in Eqs. (A.14)–(A.23). The final result is

𝑢′(𝑥, 𝑡) =𝐵
�̄� ∫

𝑡

𝑡∗=0

𝜕𝐺𝑢(𝑥, 𝑥∗, 𝑡 − 𝑡∗)
𝜕𝑥∗

|

|

|

|𝑥∗=𝑥𝑞
𝑄′(𝑡∗) d𝑡∗

− 1
�̄� 𝑐2 ∫

𝑡

𝑡∗=0

𝜕𝐺𝑢(𝑥, 𝑥∗, 𝑡 − 𝑡∗)
𝜕𝑡∗

|

|

|

|𝑥∗=𝑥𝑞
𝐹 ′(𝑡∗) d𝑡∗ +

𝑢0
𝑐2

𝜕𝐺𝑢(𝑥, 𝑥∗, 𝑡)
𝜕𝑡

|

|

|

|𝑥∗=𝑥𝑑
. (A.26)

ppendix B. Iteration scheme for sources described in the time-domain

We write the Green’s functions 𝐺𝑝 and 𝐺𝑢 (see Eqs. (2.5), (2.6)) in compact form,

𝐺𝑝(𝑥, 𝑥∗, 𝑡 − 𝑡∗) =
∞
∑

𝑛=1
𝑔𝑝𝑛(𝑥, 𝑥∗) sin𝜔𝑛(𝑡 − 𝑡∗) , (B.1)

𝐺𝑢(𝑥, 𝑥∗, 𝑡 − 𝑡∗) =
∞
∑

𝑛=1
𝑔𝑢𝑛(𝑥, 𝑥∗) sin𝜔𝑛(𝑡 − 𝑡∗) , (B.2)

aving introduced the abbreviations

𝑔𝑝𝑛(𝑥, 𝑥∗) =

⎧

⎪

⎨

⎪

⎩

2𝑐
𝜋

(−1)𝑛

𝑛
sin

𝜔𝑛𝑥
𝑐

sin
𝜔𝑛(𝑥∗ − 𝐿)

𝑐
for 𝑥 < 𝑥∗

2𝑐
𝜋

(−1)𝑛

𝑛
sin

𝜔𝑛(𝑥 − 𝐿)
𝑐

sin
𝜔𝑛𝑥∗

𝑐
for 𝑥 > 𝑥∗

(B.3)

and

𝑔𝑢𝑛(𝑥, 𝑥∗) =

⎧

⎪

⎨

⎪

⎩

2𝑐
𝜋

(−1)𝑛

𝑛
cos

𝜔𝑛𝑥
𝑐

cos
𝜔𝑛(𝑥∗ − 𝐿)

𝑐
for 𝑥 < 𝑥∗

2𝑐
𝜋

(−1)𝑛

𝑛
cos

𝜔𝑛(𝑥 − 𝐿)
𝑐

cos
𝜔𝑛𝑥∗

𝑐
for 𝑥 > 𝑥∗

(B.4)

Also, we have omitted spelling out the Heaviside functions 𝐻(𝑡 − 𝑡∗) in Eqs. (B.1) and (B.2) because they reduce to factors 1 in the
integration range 𝑡∗ = 0, … , 𝑡.

Then the Green’s function derivatives required in Eqs. (4.5) and (4.6) can be written as
𝜕𝐺𝑝
𝜕𝑥∗

=
∞
∑

𝑛=1

𝜕𝑔𝑝𝑛(𝑥, 𝑥∗)
𝜕𝑥∗

(−Im[e−i𝜔𝑛(𝑡−𝑡
∗)]) , (B.5)

𝜕𝐺𝑝
𝜕𝑡∗

=
∞
∑

𝑛=1
𝑔𝑝𝑛(𝑥, 𝑥∗)(−𝜔𝑛)(Re[e−i𝜔𝑛(𝑡−𝑡

∗)]) , (B.6)

𝜕𝐺𝑢
𝜕𝑥∗

=
∞
∑

𝑛=1

𝜕𝑔𝑢𝑛(𝑥, 𝑥∗)
𝜕𝑥∗

(−Im[e−i𝜔𝑛(𝑡−𝑡
∗)]) , (B.7)

𝜕𝐺𝑢
𝜕𝑡∗

=
∞
∑

𝑛=1
𝑔𝑢𝑛(𝑥, 𝑥∗)(−𝜔𝑛)(Re[e−i𝜔𝑛(𝑡−𝑡

∗)]) , (B.8)

After inserting Eqs. (B.5) to (B.8) into the integral Eqs. (4.5) and (4.6), we obtain

𝑝′1(𝑡) = − 𝐵
∑

𝑛
𝑔𝑝𝑛(𝑥, 𝑥∗)

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

(−𝜔𝑛) Re

⎡

⎢

⎢

⎢

⎢

⎢

⎣

e−i𝜔𝑛𝑡 ∫

𝑡

𝑡∗=0
ei𝜔𝑛𝑡

∗
𝑄′(𝑡∗) d𝑡∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼𝑞𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
∑

𝑛

𝜕𝑔𝑝𝑛(𝑥, 𝑥∗)
𝜕𝑥∗

|

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

Im

⎡

⎢

⎢

⎢

⎢

⎢

−e−i𝜔𝑛𝑡 ∫

𝑡

𝑡∗=0
ei𝜔𝑛𝑡

∗
𝐹 ′(𝑡∗) d𝑡∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⎤

⎥

⎥

⎥

⎥

⎥

(B.9)
18

⎣ =𝐼𝑓𝑛(𝑡) ⎦
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w
l
(

and

𝑢′1(𝑡) =
𝐵
�̄�

∑

𝑛

𝜕𝑔𝑢𝑛(𝑥, 𝑥∗)
𝜕𝑥∗

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

Im

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−e−i𝜔𝑛𝑡 ∫

𝑡

𝑡∗=0
ei𝜔𝑛𝑡

∗
𝑄′(𝑡∗) d𝑡∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼𝑞𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

− 1
�̄� 𝑐2

∑

𝑛
𝑔𝑢𝑛(𝑥, 𝑥∗)

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

(−𝜔𝑛) Re

⎡

⎢

⎢

⎢

⎢

⎢

⎣

e−i𝜔𝑛𝑡 ∫

𝑡

𝑡∗=0
ei𝜔𝑛𝑡

∗
𝐹 ′(𝑡∗) d𝑡∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼𝑓𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (B.10)

he quantities to be updated in every time step are 𝑄′(𝑡), 𝐹 ′(𝑡), 𝐼𝑞𝑛(𝑡), 𝐼𝑓𝑛(𝑡), 𝑝′1(𝑡) and 𝑢′1(𝑡).
The two newly introduced integrals, 𝐼𝑞𝑛(𝑡) and 𝐼𝑓𝑛(𝑡), have the same integration range, 𝑡∗ = 0, … , 𝑡. We update them by dividing

he integration range for 𝐼𝑞𝑛(𝑡 + 𝛥𝑡) and 𝐼𝑓𝑛(𝑡 + 𝛥𝑡) into two parts: the first part is the interval 𝑡∗ = 0, … , 𝑡, and the second part is
he short time interval 𝑡∗ = 𝑡, … , 𝑡 + 𝛥𝑡. For 𝐼𝑞𝑛 we then get

𝐼𝑞𝑛(𝑡 + 𝛥𝑡) = ∫

𝑡

𝑡∗=0
ei𝜔𝑛𝑡

∗
𝑄′(𝑡∗) d𝑡∗ + ∫

𝑡+𝛥𝑡

𝑡∗=𝑡
ei𝜔𝑛𝑡

∗
𝑄′(𝑡∗) d𝑡∗ . (B.11)

he first integral represents 𝐼𝑞𝑛(𝑡). The second integral can be approximated: the time interval 𝛥𝑡 is assumed to be very small
compared with an oscillation period of the highest mode of interest), and therefore the source term 𝑄′ is nearly constant in this
nterval and approximately equal to 𝑄′(𝑡). With this rationale, Eq. (B.11) can be written as

𝐼𝑞𝑛(𝑡 + 𝛥𝑡) = 𝐼𝑞𝑛(𝑡) +𝑄′(𝑡) e
i𝜔𝑛𝑡

𝑖 𝜔𝑛

(

ei𝜔𝑛𝛥𝑡 − 1
)

, (B.12)

and an analogous result is obtained for 𝐼𝑓𝑛(𝑡),

𝐼𝑓𝑛(𝑡 + 𝛥𝑡) = 𝐼𝑓𝑛(𝑡) + 𝐹 ′(𝑡) e
i𝜔𝑛𝑡

𝑖 𝜔𝑛

(

ei𝜔𝑛𝛥𝑡 − 1
)

, (B.13)

This leads with Eqs. (B.9) and (B.10) to

𝑝′1(𝑡 + 𝛥𝑡) =𝐵
∑

𝑛
𝑔𝑝𝑛(𝑥, 𝑥∗)

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

𝜔𝑛 Re
[

e−i𝜔𝑛(𝑡+𝛥𝑡)𝐼𝑞𝑛(𝑡 + 𝛥𝑡)
]

+
∑

𝑛

𝜕𝑔𝑝𝑛(𝑥, 𝑥∗)
𝜕𝑥∗

|

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

Im
[

−e−i𝜔𝑛(𝑡+𝛥𝑡)𝐼𝑓𝑛(𝑡 + 𝛥𝑡)
]

(B.14)

and

𝑢′1(𝑡 + 𝛥𝑡) =
𝐵
�̄�

∑

𝑛

𝜕𝑔𝑢𝑛(𝑥, 𝑥∗)
𝜕𝑥∗

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

Im
[

−e−i𝜔𝑛(𝑡+𝛥𝑡)𝐼𝑞𝑛(𝑡 + 𝛥𝑡)
]

+ 1
�̄� 𝑐2

∑

𝑛
𝑔𝑢𝑛(𝑥, 𝑥∗)

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

𝜔𝑛 Re
[

e−i𝜔𝑛(𝑡+𝛥𝑡)𝐼𝑓𝑛(𝑡 + 𝛥𝑡)
]

. (B.15)

The iteration is started from initial values, given for example for 𝑄′(𝑡)|𝑡=0 or 𝐹 ′(𝑡)|𝑡=0.

Appendix C. Iteration scheme for sources described in the frequency-domain

The iteration process described in Appendix B assumes that the source terms 𝑄′ and 𝐹 ′ are given in the time-domain. However,
ore often than not, they are given in the frequency-domain. Typical examples are

�̂�(𝜔) =  (𝜔) �̂�1(𝜔) , (C.1)

𝐹 (𝜔) = 𝑍(𝜔) �̂�1(𝜔) , (C.2)

here  (𝜔) is a flame transfer function, and 𝑍(𝜔) is a transfer impedance. The time-domain equivalents of  (𝜔) and 𝑍(𝜔) are time-
ag response functions, which we denote by  ′(𝑡) and 𝑍′(𝑡). They appear in the convolution integrals that arise when Eqs. (C.1) and
C.1) are transformed into the time-domain,

𝑄′(𝑡) = ∫

𝑡

𝜏=0
 ′(𝑡 − 𝜏) 𝑢′1(𝜏) d𝜏 , (C.3)

𝐹 ′(𝑡) =
𝑡
𝑍′(𝑡 − 𝜏) 𝑢′ (𝜏) d𝜏 . (C.4)
19
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This formulation can be incorporated into the iteration scheme described in Appendix B. We illustrate this for the special case,
where a dipole force is present, but no heat source. The integral equation, Eq. (A.26), for the acoustic velocity then reduces to

𝑢′1(𝑡) = − 1
�̄� 𝑐2 ∫

𝑡

𝑡∗=0

𝜕𝐺𝑢(𝑥, 𝑥∗, 𝑡 − 𝑡∗)
𝜕𝑡∗

|

|

|

|

𝑥=𝑥𝑞
𝑥∗=𝑥𝑞

𝐹 ′(𝑡∗) d𝑡∗ . (C.5)

With the time derivative of the Green’s function given by Eq. (B.8), Eq. (C.5) can be written as

𝑢′1(𝑡) =
1
�̄� 𝑐2

Re
∑

𝑛

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∫

𝑡

𝑡∗=0
𝑔𝑢𝑛𝜔𝑛 e−i𝜔𝑛(𝑡−𝑡

∗)𝐹 ′(𝑡∗) d𝑡∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (C.6)

We now need to obtain 𝐹 ′(𝑡) from the frequency-domain formulation 𝑍(𝜔). To this end, we approximate 𝑍(𝜔) by a series of
‘basis functions’’ that can be transformed analytically into the time-domain. A tried and tested series of basis functions are rational
unctions [40]

𝑍(𝜔) ≈
∑

𝑘

𝑏𝑘
−i𝜔 − 𝑎𝑘

, (C.7)

here the 𝑎𝑘 and 𝑏𝑘 are fitting parameters, which are either real or they come in complex conjugate pairs. In our notation, (time
ependence e−i𝜔𝑡), all the 𝑎𝑘 have positive real parts. The time-domain version of Eq. (C.7) is

𝑍′(𝑡) =
∑

𝑘
𝑏𝑘 e−𝑎𝑘𝑡 . (C.8)

With Eq. (C.4) we get for the dipole force

𝐹 ′(𝑡) =
∑

𝑘
∫

𝑡

𝜏=0
𝑏𝑘 e−𝑎𝑘(𝑡−𝜏) 𝑢′1(𝜏) d𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐹𝑘(𝑡)

, (C.9)

here the abbreviation 𝐹𝑘(𝑡) has been introduced as shown just below Eq. (C.9).
The quantities to be updated in every time step are 𝐹𝑘(𝑡), 𝐼𝑛(𝑡) and 𝑢′1(𝑡). In order to update 𝐹𝑘(𝑡) and 𝐼𝑛(𝑡), we adopt the same

trategy as in Appendix B, of dividing the integration range for 𝐹𝑘(𝑡 + 𝛥𝑡) and 𝐼𝑛(𝑡 + 𝛥𝑡) into two parts: the first part is the interval
∗ = 0, … , 𝑡, and the second part is the short time interval 𝑡∗ = 𝑡, … , 𝑡 + 𝛥𝑡. We then get for the force

𝐹 (𝑡 + 𝛥𝑡) =
∑

𝑘
𝐹𝑘(𝑡 + 𝛥𝑡) , (C.10)

ith

𝐹𝑘(𝑡 + 𝛥𝑡) = e−𝑎𝑘𝛥𝑡 𝐹𝑘(𝑡) + 𝑢′1(𝑡)
𝑏𝑘
𝑎𝑘

(1 − e−𝑎𝑘𝛥𝑡) . (C.11)

For the integral 𝐼𝑛(𝑡 + 𝛥𝑡), we get

𝐼𝑛(𝑡 + 𝛥𝑡) = e−i𝜔𝑛𝛥𝑡𝐼𝑛(𝑡) + 𝐹 ′(𝑡)(−i)𝑔𝑢𝑛(1 − e−i𝜔𝑛𝛥𝑡) . (C.12)

Finally, 𝑢′1 is updated by

𝑢′1(𝑡 + 𝛥𝑡) =
1
�̄� 𝑐2

Re
∑

𝑛

[

e−i𝜔𝑛𝛥𝑡 𝐼𝑛(𝑡) + 𝐹 ′(𝑡) (−i) 𝑔𝑢𝑛 (1 − e−i𝜔𝑛𝛥𝑡)
]

. (C.13)

Gaussian basis functions are an alternative to rational ones. They are not used in this paper, but could be convenient to approximate
flame transfer functions  (𝜔), which are given in the frequency domain. They have been used by Gopinathan et al. [41] to
approximate a flame transfer function by

 (𝜔) ≈
∑

𝑘
𝑛𝑘 ei𝜔𝜏𝑘 e

−0.5𝜔2𝜎2𝑘 ; (C.14)

here the fitting parameters are 𝑛𝑘, 𝜏𝑘 and 𝜎𝑘 and they are also determined with a nonlinear least squares routine. The time-domain
version of Eq. (C.14) is

 ′(𝑡) =
∑

𝑘

𝑛𝑘
𝜎𝑘

√

2𝜋
e
− (𝑡−𝜏𝑘 )

2

2𝜎2𝑘 . (C.15)

Appendix D. Calculation of the tailored Green’s function of a duct with open ends

We show this calculation for the velocity Green’s function 𝐺𝑢, but drop the subscript u here for convenience. Fig. D.1 shows the
considered configuration. A uniform duct of length 𝐿 has open ends and houses a point source at position 𝑥∗ firing an impulse at
time 𝑡∗.
20
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Fig. D.1. Uniform open-ended duct with point source at 𝑥∗.

The acoustic velocity field generated by the point source is the required Green’s function 𝐺(𝑥, 𝑥∗, 𝑡 − 𝑡∗). It is described by the
PDE Eq. (2.4),

1
𝑐2
𝜕2𝐺
𝜕𝑡2

− 𝜕2𝐺
𝜕𝑥2

= 𝛿
(

𝑥 − 𝑥∗
)

𝛿
(

𝑡 − 𝑡∗
)

, (D.1)

nd the boundary conditions for the acoustic velocity Eq. (2.3),
𝜕𝐺
𝜕𝑥

|

|

|

|𝑥=0
= 𝜕𝐺

𝜕𝑥
|

|

|

|𝑥=𝐿
= 0. (D.2)

We calculate 𝐺(𝑥, 𝑥∗, 𝑡 − 𝑡∗) in two steps. In the first step, we will determine its frequency-domain equivalent, which in the second
tep we will transform into the time-domain.

requency-domain Green’s function

We denote the frequency-domain Green’s function by �̂�(𝑥, 𝑥∗, 𝜔). It satisfies the inhomogeneous Helmholtz equation,

𝜕2�̂�
𝜕𝑥2

+ 𝑘2�̂� = 𝛿(𝑥 − 𝑥∗) (D.3)

and the boundary conditions given in Eq. (D.2). These boundary conditions are satisfied by the following trial solution,

�̂� =
{

𝐴 cos 𝑘𝑥 for the region 0 < 𝑥 < 𝑥∗

𝐵 cos 𝑘(𝑥 − 𝐿) for the region 𝑥∗ < 𝑥 < 𝐿
(D.4)

where 𝐴 and 𝐵 are functions of 𝑥∗ which are to be determined. With the Heaviside function 𝐻 , we can combine the two functions
n Eq. (D.4) into a single expression,

�̂� = 𝐴𝐻(𝑥∗ − 𝑥) cos 𝑘𝑥 + 𝐵𝐻(𝑥 − 𝑥∗) cos 𝑘(𝑥 − 𝐿) . (D.5)

We will determine 𝐴 and 𝐵 by substituting Eq. (D.5) into the PDE Eq. (D.3), noting that differentiation of Eq. (D.5) with respect to
𝑥 requires the derivative of 𝐻 , which is a generalised function. This is given by

𝜕𝐻(𝑥 − 𝑥∗)
𝜕𝑥

= 𝛿(𝑥 − 𝑥∗) and 𝜕𝐻(𝑥∗ − 𝑥)
𝜕𝑥

= −𝛿(𝑥 − 𝑥∗) . (D.6a,b)

he first and second derivative of Eq. (D.5) can then be written as

𝜕�̂�
𝜕𝑥

= − 𝐴 𝛿(𝑥 − 𝑥∗) cos 𝑘𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝛿(𝑥−𝑥∗) cos 𝑘𝑥∗

+𝐵 𝛿(𝑥 − 𝑥∗) cos 𝑘(𝑥 − 𝐿)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛿(𝑥−𝑥∗) cos 𝑘(𝑥∗−𝐿)

− 𝑘𝐴𝐻 (𝑥∗ − 𝑥) sin 𝑘𝑥 − 𝑘𝐵𝐻 (𝑥 − 𝑥∗) sin 𝑘(𝑥 − 𝐿) (D.7)

𝜕2�̂�
𝜕𝑥2

= − 𝐴𝛿′(𝑥 − 𝑥∗) cos 𝑘𝑥∗ + 𝐵 𝛿′(𝑥 − 𝑥∗)𝑐𝑜𝑠𝑘(𝑥∗ − 𝐿)

+ 𝑘𝐴 𝛿(𝑥 − 𝑥∗) sin 𝑘𝑥∗ − 𝑘𝐵 𝛿(𝑥 − 𝑥∗) sin 𝑘(𝑥∗ − 𝐿)

−𝑘2𝐴𝐻(𝑥∗ − 𝑥) cos 𝑘𝑥 − 𝑘2𝐵𝐻(𝑥 − 𝑥∗) cos 𝑘(𝑥 − 𝐿)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=−𝑘2�̂�

(D.8)

Note that in Eq. (D.7) we have made use of the fact that a function 𝜑(𝑥) loses its 𝑥-dependence when multiplied by the delta-function,

𝜑(𝑥) 𝛿(𝑥 − 𝑥∗) = 𝜑(𝑥∗) 𝛿(𝑥 − 𝑥∗). (D.9)

ubstitution of Eq. (D.8) into Eq. (D.3) leads to

𝛿′(𝑥 − 𝑥∗)
[

−𝐴 cos 𝑘𝑥∗ + 𝐵 cos 𝑘(𝑥∗ − 𝐿)
]

+ 𝛿(𝑥 − 𝑥∗) 𝑘
[

𝐴 sin 𝑘𝑥∗ − 𝐵 sin 𝑘(𝑥∗ − 𝐿)
]

= 𝛿(𝑥 − 𝑥∗) . (D.10)

e extract two equations from Eq. (D.10) by comparing the coefficients of 𝛿(𝑥 − 𝑥∗) and 𝛿′(𝑥 − 𝑥∗),
∗ ∗
21

− 𝐴 cos 𝑘𝑥 + 𝐵 cos 𝑘(𝑥 − 𝐿) = 0 , (D.11a)
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Fig. D.2. Singular points and integration path in the complex 𝜔 plane for 𝑡 < 𝑡∗.

Fig. D.3. Singular points and integration path in the complex 𝜔 plane for 𝑡 > 𝑡∗.

𝐴 sin 𝑘𝑥∗ − 𝐵 sin 𝑘(𝑥∗ − 𝐿) = 1
𝑘
. (D.11b)

These are linear equations for 𝐴 and 𝐵, and the solutions are

𝐴 =
cos 𝑘(𝑥∗ − 𝐿)
𝑘 sin 𝑘𝐿

, (D.12a)

𝐵 = cos 𝑘𝑥∗
𝑘 sin 𝑘𝐿

, (D.12b)

where sin 𝑘𝑥∗ cos 𝑘(𝑥∗ − 𝐿) − cos 𝑘𝑥∗ sin 𝑘(𝑥∗ − 𝐿) = sin 𝑘𝐿 has been used). Substitution of Eq. (D.12) into Eq. (D.4) gives

�̂�(𝑥, 𝑥∗, 𝜔) =

⎧

⎪

⎨

⎪

⎩

cos 𝑘𝑥 cos 𝑘(𝑥∗ − 𝐿)
𝑘 sin 𝑘𝐿

for the region 0 < 𝑥 < 𝑥∗

cos 𝑘(𝑥 − 𝐿) cos 𝑘𝑥∗

𝑘 sin 𝑘𝐿
for the region 𝑥∗ < 𝑥 < 𝐿

(D.13a,b)

his function is continuous across 𝑥 = 𝑥∗, but its gradient, 𝜕�̂�
𝜕𝑥 jumps by 1.

ime-domain Green’s function

The time-domain Green’s function is the inverse Fourier transform of the frequency-domain Green’s function,

𝐺(𝑥, 𝑥∗, 𝑡 − 𝑡∗) = − 1
2𝜋 ∫

∞

−∞
�̂�(𝑥, 𝑥∗, 𝜔) e−i𝜔(𝑡−𝑡

∗) d𝜔 , (D.14)

and can be calculated with the residue theorem. The integrand in Eq. (D.14) has infinitely many singular points along the real axis;
those at 𝜔𝑛 =

𝑛𝜋𝑐
𝐿 with 𝑛 = ±1, ±2 ,±3, … are simple poles, and at 𝜔0 = 0 there is a pole of order 2.

The time-domain Green’s function needs to be causal, i.e. 𝐺 = 0 for 𝑡 − 𝑡∗ < 0 (before the impact) and 𝐺 ≠ 0 for 𝑡 − 𝑡∗ > 0 (after
he impact). We satisfy this by a suitable choice of the integration path in the complex 𝜔 plane when applying the residue theorem.
he path for 𝑡 − 𝑡∗ < 0 is shown in Fig. D.2, and that for 𝑡 − 𝑡∗ > 0 in Fig. D.3.

efore the impact (𝑡 < 𝑡∗)
There are no singular points enclosed by the integration path, and the integral along the semicircular arc 𝛤 can be shown to

vanish as 𝑅 → ∞; therefore

𝐺(𝑥, 𝑥∗, 𝑡 − 𝑡∗) = 0 for 𝑡 < 𝑡∗ . (D.15)
22
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After the impact (𝑡 > 𝑡∗)
Again, the integral along the semicircular arc 𝛤 can be shown to vanish as 𝑅 → ∞. According to the residue theorem (note that

the integration path is traversed in the clockwise, i.e. negative, direction),

𝐺(𝑥, 𝑥∗, 𝑡 − 𝑡∗) = − 1
2𝜋

(−2𝜋i)
∞
∑

𝑛=−∞
Res𝜔𝑛

[

�̂�(𝑥, 𝑥∗, 𝜔) e−i𝜔(𝑡−𝑡
∗)
]

. (D.16)

alculation of residues
At the pole 𝜔0, the residue can be calculated by constructing the Laurent series expansion of �̂�(𝑥, 𝑥∗, 𝜔) e−i𝜔(𝑡−𝑡∗) with respect to

𝜔. It turns out that there is no term of order 𝜔−1 in the expansion, and therefore

Res𝜔0 �̂�(𝑥, 𝑥
∗, 𝜔) e−i𝜔(𝑡−𝑡

∗) = 0 . (D.17)

At the simple poles 𝜔𝑛 with 𝑛 ≠ 0, the residue can be calculated with the following formula, for two analytical functions 𝑃 (𝜔) and
𝑄(𝜔),

Res𝜔𝑛

[

𝑃 (𝜔)
𝑄(𝜔)

]

=
𝑃 (𝜔𝑛)
𝑄′(𝜔𝑛)

. (D.18)

For the region 0 < 𝑥 < 𝑥∗ (see Eq. ((D.13)a), with 𝑘 = 𝜔
𝑐 ),

𝑃 (𝜔) = cos 𝜔𝑥
𝑐

cos
𝜔(𝑥∗ − 𝐿)

𝑐
e−i𝜔(𝑡−𝑡

∗) , (D.19)

𝑄(𝜔) = 𝜔
𝑐
sin 𝜔𝐿

𝑐
⇒ 𝑄′(𝜔) = 1

𝑐

[

sin 𝜔𝐿
𝑐

+ 𝜔𝐿
𝑐

cos 𝜔𝐿
𝑐

]

, (D.20)

nd with 𝜔𝑛 =
𝑛𝜋𝑐
𝐿 ,

𝑄′(𝜔𝑛) =
(−1)𝑛𝑛𝜋

𝑐
. (D.21)

Then Eq. (D.16) becomes

Res𝜔𝑛
[

�̂�(𝑥, 𝑥∗, 𝜔) e−i𝜔(𝑡−𝑡
∗)
]

= (−1)𝑛 𝑐
𝑛𝜋

cos
𝜔𝑛𝑥
𝑐

cos
𝜔𝑛(𝑥∗ − 𝐿)

𝑐
e−i𝜔𝑛(𝑡−𝑡

∗) . (D.22)

his is for the region 0 < 𝑥 < 𝑥∗.
For the region 𝑥∗ < 𝑥 < 𝐿, the residue is obtained in the same way resulting in (𝑥 and 𝑥∗ swapped over)

Res𝜔𝑛
[

�̂�(𝑥, 𝑥∗, 𝜔) e−i𝜔(𝑡−𝑡
∗)
]

= (−1)𝑛 𝑐
𝑛𝜋

cos
𝜔𝑛(𝑥 − 𝐿)

𝑐
cos

𝜔𝑛𝑥∗

𝑐
e−i𝜔𝑛(𝑡−𝑡

∗) . (D.23)

he sum in Eq. (D.16) includes positive and negative mode numbers. It can be reduced to a sum over only positive mode numbers
y using 𝜔−𝑛 = −𝜔𝑛.

inal result for the velocity Green’s function
The results for before and after the impact can be combined with the Heaviside function,

𝐻(𝑡 − 𝑡∗) =
{

0 if 𝑡 < 𝑡∗

1 if 𝑡 > 𝑡∗
(D.24)

to give

𝐺(𝑥, 𝑥∗, 𝑡 − 𝑡∗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐻(𝑡 − 𝑡∗) 2𝑐
𝜋

∞
∑

𝑛=1

(−1)𝑛

𝑛
cos

𝜔𝑛𝑥
𝑐

cos
𝜔𝑛(𝑥∗ − 𝐿)

𝑐
sin𝜔𝑛(𝑡 − 𝑡∗) for 0 < 𝑥 < 𝑥∗

𝐻(𝑡 − 𝑡∗) 2𝑐
𝜋

∞
∑

𝑛=1

(−1)𝑛

𝑛
cos

𝜔𝑛(𝑥 − 𝐿)
𝑐

cos
𝜔𝑛𝑥∗

𝑐
sin𝜔𝑛(𝑡 − 𝑡∗) for 𝑥∗ < 𝑥 < 𝐿

(D.25)

is an impulse response and behaves as expected: it is zero before the impulse (until 𝑡 = 𝑡∗), and a superposition of modes thereafter.
hese modes have the same frequencies as the eigenmodes of the duct, however, they are not the eigenmodes because their spatial
istribution has a singularity at 𝑥 = 𝑥∗. Also, the Green’s function in (D.25) satisfies reciprocity, i.e. it does not change if 𝑥 and 𝑥∗

re swapped over.

ailored Green’s function for the pressure
The Green’s function for the pressure, 𝐺𝑝(𝑥, 𝑥∗, 𝑡−𝑡∗), needs to satisfy the pressure boundary conditions Eq. (2.2), and this requires

he following trial solution instead of Eq. (D.4),

�̂� =
{

𝐴 sin 𝑘𝑥 for the region 0 < 𝑥 < 𝑥∗

𝐵 sin 𝑘(𝑥 − 𝐿) for the region 𝑥∗ < 𝑥 < 𝐿
(D.26)

therwise, the Green’s function for the pressure is calculated by the same method as that shown above for the velocity. The result
s given in Eq. (2.5).
23
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