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Abstract
Evidence-accumulation models are a useful tool for investigating the cognitive processes that give rise to behavioural 
data patterns in reaction times (RTs) and error rates. In their simplest form, evidence-accumulation models include three 
parameters: The average rate of evidence accumulation over time (drift rate) and the amount of evidence that needs to 
be accumulated before a response becomes selected (boundary) both characterise the response-selection process; a third 
parameter summarises all processes before and after the response-selection process (non-decision time). Researchers often 
compute experimental effects as simple difference scores between two within-subject conditions and such difference scores 
can also be computed on model parameters. In the present paper, we report spurious correlations between such model 
parameter difference scores, both in empirical data and in computer simulations. The most pronounced spurious effect is 
a negative correlation between boundary difference and non-decision difference, which amounts to r = – .70 or larger. In 
the simulations, we only observed this spurious negative correlation when either (a) there was no true difference in model 
parameters between simulated experimental conditions, or (b) only drift rate was manipulated between simulated experimental 
conditions; when a true difference existed in boundary separation, non-decision time, or all three main parameters, the 
correlation disappeared. We suggest that care should be taken when using evidence-accumulation model difference scores 
for correlational approaches because the parameter difference scores can correlate in the absence of any true inter-individual 
differences at the population level.
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In recent years, renewed attempts have been made to bridge 
the long-recognized gap between experimental cognitive 
psychology on one hand, and inter-individual differences 
research on the other (e.g., Borsboom et al., 2009; Cronbach, 
1957; Euler & Schubert, 2021; Hedge et al., 2017; Miller 
& Ulrich, 2013; Parsons et al., 2019; Rouder et al., 2019; 
Rouder & Haaf, 2019). However, these two branches of psy-
chological research use different methodologies, making it 
difficult to bridge the gap.

One problem is the so-called “reliability paradox” (Hedge 
et al., 2017): It has repeatedly been observed that standard 
experimental effects such as the Stroop effect, the Simon 
effect, or the task-switch cost—effects that have been rep-
licated in thousands of studies—have surprisingly low 
split-half and retest reliability. Moreover, when the same 
effect is measured as response time (RT) difference score 
and error difference score, even these two measures of the 
same effect often do not correlate (e.g., Hedge et al., 2018). 
Part of the problem is that experimental psychology and 
inter-individual differences psychology focus on two differ-
ent kinds of reliability: Experimental psychology aims to 
provide effects that occur in all (or almost all) individuals 
and are of similar size in all individuals, and therefore are 
replicable in group-level analyses across different samples. 
In contrast, psychological research into inter-individual dif-
ferences looks for effects that consistently and reliably differ 
across individuals (see also Rouder & Haaf, 2019 for a dis-
cussion of this distinction). Here, an effect is reliable when 
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the same rank-ordering of individuals can be reproduced 
across different data sets from the same group of individu-
als. Hence, reliability in the sense of experimental research 
and reliability in the psychometric sense are two different 
concepts that are not easily reconciled.

Evidence‑accumulation models

As a possible way of increasing the reliability of experimen-
tal effects in the psychometric sense, researchers have started 
to use formal computational modelling, such as evidence-
accumulation models, taking model parameters instead of 
behavioural measures (such as mean RT and mean error 
rates) as primary dependent variables (e.g., Lerche & Voss, 
2017; Lerche et al., 2020; Hedge et al., 2018, 2019, 2021; 
Ratcliff & Childers, 2015; Schubert et al., 2015, 2016, 2021; 
for using evidence-accumulation models for correlational 
approaches in cognitive neuroscience, see e.g., Forstmann 
et al., 2011, 2016). Evidence-accumulation models are a 
class of formal computational models that can be applied to 
speeded choice RT tasks with two or more response alter-
natives. Such models assume that evidence for the differ-
ent response alternatives is accumulated over time until an 
evidence threshold/boundary for one response alternative is 
reached; this response alternative then becomes selected. In 
their simplest form, these models include two parameters 
for the response-selection process: the average rate of evi-
dence accumulation over time (drift rate), and the height of 

the threshold/boundary that needs to be reached (boundary 
separation). A third parameter in these models summarises 
all processes before and after the response-selection process 
and is often called non-decision time. Prominent examples 
of evidence-accumulation models are the drift-diffusion 
model (DDM) introduced by Ratcliff and colleagues (e.g., 
Ratcliff & McKoon, 2008; Ratcliff et al., 2016; see Fig. 1), 
and the Linear Ballistic Accumulator (LBA) model by 
Heathcote and Brown (2008). More complex models have 
been developed that include additional parameters (see, e.g., 
Servant et al., 2014; White et al., 2018, for discussion and 
comparison of models designed to account for performance 
in conflict tasks).

Evidence-accumulation models can be useful for a bet-
ter understanding of the relationship between experimen-
tal psychology and interindividual-differences research. 
For instance, Hedge et al. (2018) investigated the surpris-
ing lack of a consistent correlation between RT difference 
scores and error difference scores of the same effect using 
evidence-accumulation models. They demonstrated that this 
lack of correlation between behavioural difference scores of 
the same effect can be understood when considering differ-
ence scores in DDM parameters. In general, the experimen-
tal effect (be it the Stroop effect, Simon effect, task-switch 
cost, or other) is computed as the within-subject difference 
between two conditions, which can be termed the “easy” and 
“hard” conditions for sake of generality. Hard-minus-easy 
difference scores can be computed on behavioural meas-
ures as well as on model parameter values. If participants 

Fig. 1   Schematic representation of trial processing in the drift-dif-
fusion model. Note some researchers refer to the response boundary 
as an “evidence threshold.” Fig. available at https://​www.​flickr.​com/​

photos/​15071​6232@​N04/​46893​547582 under CC license https://​creat​
iveco​mmons.​org/​licen​ses/​by/2.​0/

https://www.flickr.com/photos/150716232@N04/46893547582
https://www.flickr.com/photos/150716232@N04/46893547582
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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differ in the size of their difference score in the evidence-
accumulation parameter, then RT difference scores and error 
difference scores will be positively correlated across par-
ticipants. If, in addition, participants differ in their overall 
threshold setting, the same difference in evidence accumula-
tion between hard and easy conditions will produce larger 
RT effects—and at the same time smaller error effects—in 
those individuals with higher thresholds than in those indi-
viduals with lower thresholds. This latter effect can produce 
a negative, or close-to-zero, correlation between RT differ-
ence scores and error difference scores across individuals. 
Hence, relying on behavioural difference scores alone does 
not make much sense for correlational approaches because 
correlations between behavioural difference scores can be 
positive, negative, or non-existent, depending on the under-
lying cognitive processes that cause the interindividual vari-
ability in the behavioural difference scores.

In light of these insights, it may be tempting to rely more 
on model-parameter difference scores instead of behavioural 
difference scores. In fact, in experimental psychology, sev-
eral researchers have investigated common experimental 
effects with simple evidence-accumulation models, and 
computed model-parameter difference scores, for exam-
ple for the response-effect compatibility effect (Janczyk & 
Lerche, 2019), the backward-crosstalk effect in dual-tasking 
(Durst & Janczyk, 2019; Janczyk et al., 2017); task-switch 
costs (Schmitz & Voss, 2012, 2014); N–2 task-repetition 
costs in task switching (Kowalczyk & Grange, 2020; Schuch, 
2016; Schuch & Grange, 2019; Schuch & Konrad, 2017) and 
speed–accuracy trade-off effects (Forstmann et al., 2011; see 
Heitz, 2014, for a review).

Such difference scores in model parameters obtained from 
experimental psychology could in turn be used for correla-
tional approaches, potentially yielding more reliable corre-
lations. Thus, difference scores in model parameters could 
be a promising tool for integrating cognitive experimental 
psychology and inter-individual differences research.

Overview of the present paper

Regarding the possibility of using difference scores from 
evidence-accumulation model parameters for investigating 
inter-individual differences, in the present paper we high-
light a potential problem with such model-based difference 
scores. We incidentally observed a strong negative corre-
lation between two parameters of a simple evidence-accu-
mulation model in our own data sets and set out to inves-
tigate this finding in a more systematic way. In particular, 
when applying a simple drift-diffusion model, we observed 
a pronounced correlation between the boundary separation 
parameter difference score and the non-decision time param-
eter difference score: Those participants who show a higher 

boundary in the hard than easy condition typically show a 
smaller non-decision time in the hard than easy condition, 
and vice versa. This incidental finding raised our curios-
ity, and we checked several more of our own data sets. We 
observed a pronounced negative correlation in all of them of 
around r = – .70 between the difference scores in boundary 
separation parameter and the difference scores in non-deci-
sion time parameter across participants. We also checked 
whether this negative correlation was present in data col-
lected independently of either of our research groups by 
reanalysing some of the data from Dutilh et al. (2019), and 
found it was indeed present.

This incidental finding made us wonder whether this is a 
theoretically interesting effect, or perhaps a methodological 
artefact of some sort. We therefore conducted a series of 
computational simulations where we knew the true popula-
tion parameter values and could manipulate them systemati-
cally. The simulations revealed that even in the absence of 
any differences in population parameter values between the 
easy and hard conditions, a correlation of difference scores 
in DDM parameters emerged. The pronounced negative cor-
relation consistently occurs between the difference score in 
boundary separation parameter and the difference score 
in non-decision time; at the same time, there are no such 
pronounced correlations of one of these difference scores 
with the difference score in the evidence-accumulation rate 
parameter (although we sometimes did observe a moderate 
positive correlation between boundary separation difference 
score and evidence-accumulation difference score).

Notably, the pronounced negative correlation in the 
simulations is only observed between parameter difference 
scores of boundary separation and non-decision time, while 
at the same time, the overall values of boundary separation 
and non-decision time parameters within a condition are 
not highly correlated. That is, we observed a pronounced 
negative correlation between the hard-minus easy difference 
score in boundary separation parameter and the hard-minus-
easy difference score in non-decision time parameter, while 
there are no such pronounced correlations between bound-
ary separation parameter and non-decision time parameter 
within the hard condition, or within the easy condition.

Our further investigations revealed that this spurious cor-
relation of model difference scores is not constricted to one 
particular kind of evidence-accumulation model, or to the 
fitting algorithms of one particular software package; rather, 
we observed the correlation both when using the Ratcliff 
drift-diffusion model and the Linear Ballistic Accumulator 
Model (Brown & Heathcote, 2008), and with different soft-
ware packages (fast-dm-30: Voss et al., 2015; Voss & Voss, 
2007; EZ-diffusion model: Wagenmakers et al., 2007; rtdists: 
Singmann et al., 2020).

Diffusion models fall within the class of so-called 
"sloppy" models where parameters are known to be highly 
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correlated—a characteristic typical of many biologically 
plausible models—which can impact on the efficiency and 
accuracy of parameter estimation (Boehm et  al., 2018; 
Heathcote et al., 2019). Indeed, recent studies have shown 
that when independent research teams attempt to fit ver-
sions of the diffusion model to a single data set, the teams 
often produce quite different estimates of best-fitting model 
parameters, and these differences sometime lead to differ-
ent inferences (Boehm et al., 2018; Dutilh et al., 2019). 
Documenting the extent of these correlations is therefore 
of importance for researchers wishing to draw valid infer-
ences from their modelling. Our findings imply that care 
should be taken when interpreting diffusion-model differ-
ence scores in boundary-separation parameter and non-deci-
sion time parameter. These difference scores can correlate 
in the absence of any population-level differences between 
two within-subjects experimental conditions. Moreover, the 
difference scores in these two model parameters should not 
be used in individual-differences research, because they do 
not necessarily reflect true inter-individual differences at the 
population level.

In the following, we will first describe the spurious 
correlation in two empirical data sets of previously pub-
lished studies, one from our own labs (Schuch & Grange, 
2019), and one from a different lab (Dutilh et al., 2019). 
Then we will describe in detail the set of computational 
simulations, and we will conclude with some considera-
tions on what could cause the spurious correlation and 
some recommendations for researchers wishing to apply 
these models.

Reanalysis of behavioural data

In several of our own data sets (from published and unpub-
lished studies), we observed a pronounced negative correla-
tion between participants’ boundary-separation parameter 
difference score and their non-decision time parameter dif-
ference score when applying a simple drift-diffusion model. 
In the following, we exemplarily present a reanalysis of 
a previously published study of ours (Schuch & Grange, 
2019), where this correlation amounted to about r = – .70 
in all experimental conditions.

Schuch and Grange (2019)

In the Schuch and Grange’s (2019) study, N–2 task repeti-
tion costs were measured, which are a kind of task-switch 
cost where different types of task sequences are compared. 

N–2 task repetition costs denote the finding of worse perfor-
mance in task sequences of the type ABA (where the task 
performed in trial N is the same as the task performed in trial 
N–2) as compared to type CBA (where the task in trial N is 
not the same as in trial N–2). The performance decrement 
in ABA versus CBA is usually taken as an indicator of per-
sisting task-level inhibition (Mayr & Keele, 2000; see Gade 
et al., 2014; Koch et al., 2010; Mayr, 2007, for reviews). The 
reasoning is that task A becomes inhibited when switching 
from A to B, and this inhibition decays slowly over time; the 
sooner one switches back to the previously inhibited task, 
the more persisting inhibition needs to be overcome. While 
Schuch and Grange (2019) focused on a different research 
question (investigating aftereffects of N–2 repetition costs; 
not relevant for the present context), the data can be sum-
marized as an assessment of N–2 repetition costs in four 
different experimental conditions. In particular, ABA and 
CBA trials were obtained in the experimental conditions I, 
II, III, and IV (condition I: short task-preparation interval 
and task sequence preceded by another ABA sequence; con-
dition II: short task-preparation interval and task sequence 
preceded by another CBA sequence; condition III: long task-
preparation interval and task sequence preceded by another 
ABA sequence; condition IV: long task-preparation interval 
and task sequence preceded by another CBA sequence). All 
independent variables were manipulated within-subjects, 
meaning that for each subject, four different N–2 repetition 
costs (calculated as the difference score of ABA minus CBA) 
can be computed (one for each experimental condition I, II, 
III, and IV). From here we refer to this as the “difference 
score.” We took the diffusion modelling results from Schuch 
and Grange (2019), and correlated the difference score in 
boundary separation parameter with the difference score in 
non-decision time across participants, separately for each 
condition I, II, III, and IV.

The DDM analysis in the Schuch and Grange (2019) 
study was conducted with the software “fast-dm-30” (Voss 
et al., 2015). The parameters drift rate (v), boundary sepa-
ration (a), non-decision time (t0), and trial-by-trial varia-
bility of non-decision time (st0) were estimated separately 
for each individual and each condition. The starting point 
bias was set to 0.5a (i.e., in the middle between the two 
boundaries). The lower and upper boundaries were set to 
reflect correct and wrong responses, respectively. All other 
parameters implemented in fast-dm were set to 0. The Kol-
mogorov–Smirnov (KS) statistic was used for fitting.

From here onwards, we use the labels v, a, and t0 to 
refer to the three main diffusion model parameters drift 
rate, boundary separation, and non-decision time respec-
tively, and we use the terms v-difference, a-difference, and 
t0-difference, to refer to the parameter difference scores 
between two within-subject conditions.
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Experiment 1 from Schuch and Grange (2019)

In Experiment 1 from Schuch and Grange (2019) with N =  
32, and about 100 trials per condition and participant (mean 
= 102, SD = 10, min. = 53, max. = 121), the correlation 
between the a-difference and the t0-difference was r = 
– 0.767, r = – 0.706, r = – 0.701, and r = – 0.565, in con-
ditions I, II, III, and IV, respectively (see Table 1). These 
correlations are visualised in Fig. 2. At the same time, the 
a-difference was correlated moderately positive with the 
v-difference (r = 0.398, r = 0.355, r = 0.543, r = 0.327, 
in conditions I, II, III, and IV); correlations between t0- 
difference and v-difference were weak or close to zero (r =  
– 0.063, r = 0.182, r = – 0.078, r = 0.298 in conditions I, II, 
III, and IV, respectively).

Experiment 2 from Schuch and Grange (2019)

Experiment 2 from Schuch and Grange (2019) with N = 32 
new participants was similar to Experiment 1, but involved 
a larger number of trials. In Experiment 2, a task-preparation 
interval of intermediate length was used in three out of four 
trials; only in every fourth trial, the task-preparation interval 
was long or short. When analysing the trials with intermedi-
ate task-preparation interval, a larger number of trials per 
condition was available (mean = 285, SD = 35, min. = 186, 
max. = 346). For these trials, there were only two experi-
mental conditions (condition I: task sequence preceded by 
another ABA sequence; condition II: task sequence preceded 
by another CBA sequence). Again, there was a pronounced 
negative correlation between a-difference and t0-difference, 

Table 1   Product-moment correlation coefficients between the fitted 
parameters from fast-dm-30 from Schuch and Grange (2019), Experi-
ment 1. easy: CBA condition; hard: ABA condition; diff: hard-minus-

easy difference in the corresponding parameter; conditions I-IV: dif-
ferent experimental conditions; see main text for details

a (easy) a (hard) v (easy) v (hard) t0 (easy) t0 (hard) a diff v diff t0 diff

a (easy) —
a (hard) I: 0.725

II: 0.803
III: 0.723
IV: 0.843

—

v (easy) I: – 0.427
II: – 0.362
III: – 0.575
IV: – 0.711

I: – 0.551
II: – 0.501
III: – 0.531
IV: – 0.691

—

v (hard) I: – 0.603
II: – 0.580
III: – 0.652
IV: – 0.727

I: – 0.496
II: – 0.531
III: – 0.343
IV: – 0.616

I: 0.705
II: 0.666
III: 0.782
IV: 0.885

—

t0 (easy) I: – 0.084
II: – 0.161
III: 0.050
IV: 0.154

I: 0.127
II: – 0.034
III: 0.357
IV: 0.250

I: – 0.187
II: – 0.137
III: – 0.116
IV: – 0.174

I: – 0.080
II: 0.178
III: – 0.138
IV: – 0.189

—

t0 (hard) I: 0.039
II: – 0.118
III: 0.048 IV: 0.167

I: – 0.109
II: – 0.223
III: 0.111
IV: 0.134

I: – 0.174
II: – 0.149
III: – 0.130
IV: – 0.201

I: – 0.118
II: 0.204
III: – 0.182
IV: – 0.148

I: 0.803
II: 0.865
III: 0.857
IV: 0.910

—

a diff I: – 0.196
II: – 0.208
III: – 0.056
IV: – 0.106

I: 0.532
II: 0.416
III: 0.650
IV: 0.446

I: – 0.259
II: – 0.270
III: – 0.135
IV: – 0.093

I: 0.035
II: 0.015
III: 0.222
IV: 0.071

I: 0.285
II: 0.191
III: – 0.461
IV: 0.206

I: – 0.204
II: – 0.186
III: 0.107
IV: – 0.031

—

v diff I: 0.028
II: – 0.241
III: – 0.157
IV: 0.193

I: 0.304
II: – 0.008
III: 0.256
IV: 0.351

I: – 0.737
II: – 0.453
III: – 0.270
IV: – 0.522

I: – 0.041
II: 0.363
III: 0.389
IV: – 0.064

I: 0.187
II: 0.384
III: – 0.041
IV: 0.028

I: 0.134
II: 0.430
III: – 0.089
IV: 0.160

I: 0.398
II: 0.355
III: 0.543
IV: 0.327

—

t0 diff I: 0.192
II: 0.048
III: – 0.011
IV: 0.015

I: – 0.373
II: – 0.385
III: – 0.494
IV: – 0.292

I: – 0.004
II: – 0.057
III: – 0.004
IV: – 0.043

I: – 0.072
II: 0.093
III: – 0.054
IV: 0.112

I: – 0.191
II: – 0.035
III: – 0.422
IV: – 0.308

I: 0.431
II: 0.471
III: 0.106
IV: 0.115

I: – 0.767
II: – 0.706
III: – 0.701
IV: – 0.565

I: – 0.063
II: 0.182
III: – 0.078
IV: 0.298

—
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which amounted to r = – 0.81 in both experimental condi-
tions (see Table 2, again visualised in Fig. 2). At the same 
time, there were no strong correlations between a-difference 
and v-difference (r = 0.15 and r = 0.03 in conditions I and II, 
respectively) or between t0-difference and v-difference (r =  
0.16 and r = 0.41 in conditions I and II).

We also observed the negative correlation between a-dif-
ference and t0-difference in another empirical data set (task-
switching paradigm; unpublished data); there we checked 
whether this correlation depends on particularities of the 
diffusion-model settings. We still observed the correlation 
when using the maximum-likelihood (ML) instead of the KS 
criterion for the fitting procedure, and when allowing st0 to 
vary across conditions versus fixing it across experimental 
conditions (both changes were inspired by the diffusion-
modelling procedure reported in Janczyk & Lerche, 2019). 
We observed the spurious correlation in all four combina-
tions of fitting criterion (ML versus KS) and st0 setting (var-
iable versus fixed across conditions); moreover, when using 

the EZ-diffusion model (Wagenmakers et al., 2007) instead 
of fast-dm, we again obtained similar results.

To summarize, we consistently observed a pronounced 
negative correlation between a-difference and t0-difference 
when applying a simple drift-diffusion model to empirical 
task-switching data. The correlation occurred in differ-
ent experimental conditions, and with different diffusion-
model settings.

Reanalysis of Dutilh et al. (2019)

To check for the generality of this finding, in a next step 
we reanalysed an empirical data set collected independently 
from our own research groups. We selected the data set of 
Dutilh et al. (2019), which was used in a “many-analysts” 
examination of the variability of model-based inferences of 
two-choice RT data. Dutilh et al. created 14 data sets; each 
data set comprised two conditions, and in most data sets 

Fig. 2   Plots of the correlation between a_difference and t0_differ-
ence from all conditions across Experiments 1 and 2 from the Schuch 
and Grange (2019). Points represent individual participant differ-

ence scores in diffusion model parameters and lines represent a linear 
model (with shading denoting 95% confidence intervals around the 
linear model predictions)
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some aspect of participants’ behaviour was manipulated to 
selectively induce changes in model parameters across two 
conditions (“Condition A” and “Condition B”). The primary 
task in all experiments was a random dot motion task where 
a cloud of dots was presented to participants; a proportion of 
the dots moved in a consistent direction, and the remainder 
moved in a random direction. The task required participants 
to judge the direction of the coherently moving dots.

Of the 14 data sets, we reanalysed three; these were 
selected as either no DDM parameter was expected to 
change across conditions (i.e., data set from Experiment 1), 
or only one parameter was expected to change across condi-
tions (i.e., data sets from Experiments 2 & 3). In the data set 
from Experiment 1, there were no experimental differences 
between the two conditions, and therefore there should be 
no differences in DDM parameters across conditions. There-
fore, the labelling of “Condition A” and “Condition B” is 
somewhat arbitrary in this Experiment, but it does allow 
us to explore whether the spurious correlation is present in 
a data set with no condition-differences in model param-
eters. The data comprising Experiment 2 was obtained via 
a manipulation of task difficulty between Conditions A and 
B; specifically, the proportion of coherently moving dots 
in the cloud presented on each trial was 20% in Condition 
A, and 10% in Condition B; Condition B can thus be con-
sidered a “hard” condition, and Condition A a (relatively) 
“easy” condition. The data comprising Experiment 3 was 
obtained via a manipulation of response caution between 
Conditions A and B; specifically, in Condition A participants 
were instructed to respond with an emphasis on speed, and 
to respond with an emphasis on accuracy in Condition B. 

This speed–accuracy manipulation influences the response 
boundary parameter typically in drift-diffusion modelling 
(see e.g., Heitz, 2014).

The data for each experiment—and for each condition 
within each experiment—was extracted as described in 
Dutilh et al. (2019) and fit with fast-dm-30 using maximum 
likelihood criterion with v, a, and t0 free to vary across con-
ditions A and B. The model was fit to each experiment sepa-
rately. The correlation coefficients among all parameters are 
shown in Table 3.

The negative correlation between a-difference and t0- 
difference was very large in Experiment 1 (r = – 0.964) and 
Experiment 2 (r = – 0.899), but was absent in Experiment 3 
(r = 0.056). At the same time, the a-difference was correlated 
moderately positively with the v-difference in Experiment 1 
(r = 0.299), but this correlation was moderate and negative 
in Experiments 2 (r = – 0.315) and 3 (r = – 0.216); the cor-
relation between t0-difference and v-difference was small and 
negative in Experiment 1 (r = – 0.173), but was moderate 
and positive in Experiments 2 (r = 0.435) and 3 (r = 0.379).

To summarise the reanalysis of Dutilh et al. (2019), we 
found the spurious correlation between a-difference and 
t0-difference in two of the three data sets. Surprisingly, we 
did not find the correlation in Experiment 3. In that experi-
ment, response caution was manipulated via speed–accuracy 
emphasis instructions; such instructions have been shown 
to selectively influence estimates of boundary separation in 
drift-diffusion model fitting (e.g., Forstmann et al., 2011; 
Heitz, 2014; but see Rae et al., 2014). This raises an inter-
esting possibility that the spurious correlation observed 
between a-difference and t0-difference only occurs when 

Table 2   Product-moment correlation coefficients between the fitted 
parameters from fast-dm-30 from Schuch and Grange (2019), Experi-
ment 2, trials with intermediate CSI. easy: CBA condition; hard: 

ABA condition; diff: hard-minus-easy difference in the correspond-
ing parameter; conditions I-II: different experimental conditions; see 
main text for details

a (easy) a (hard) v (easy) v (hard) t0 (easy) t0 (hard) a diff v diff t0 diff

a (easy) —
a (hard) I: 0.846

II: 0.846
—

v (easy) I: – 0.530
II: – 0.410

I: – 0.587
II: 0.372

—

v (hard) I: – 0.446
II: – 0.261

I: – 0.501
II: – 0.200

I: 0.912
II: 0.835

—

t0 (easy) I: – 0.098
II: – 0.223

I: – 0.122
II: – 0.310

I: 0.044
II: 0.055

I: – 0.018
II: – 0.012

—

t0 (hard) I: 0.007
II: – 0.117

I: – 0.233
II: – 0.185

I: – 0.008
II: – 0.071

I: – 0.014
II: 0.005

I: 0.883
II: 0.836

—

a diff I: 0.020
II: – 0.429

I: 0.551
II: 0.119

I: – 0.271
II: 0.132

I: – 0.240
II: 0.147

I: – 0.075
II: – 0.108

I: – 0.447
II: 0.531

—

v diff I: 0.348
II: 0.262

I: 0.372
II: 0.303

I: – 0.510
II: – 0.296

I: – 0.112
II: 0.278

I: – 0.145
II: – 0.116

I: – 0.049
II: 0.133

I: 0.153
II: 0.026

—

t0 diff I: 0.193
II: 0.534

I: – 0.273
II: 0.110

I: – 0.063
II: – 0.209

I: 0.003
II: 0.026

I: 0.060
II: 0.079

I: 0.522
II: 0.613

I: – 0.813
II: – 0.808

I: 0.159
II: 0.409

—
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the experimental manipulations do not affect the boundary 
separation parameter. We explore this question—among oth-
ers—in a set of simulations studies.

Simulation studies

In this section, we conducted a series of simulations to explore 
the correlation between a-difference and t0-difference. We 
were primarily interested in understanding whether the 
observed correlation was peculiar to the empirical data sets 
investigated above or whether it was a general result that 
might be found in other situations. Simulations are important 
to explore such questions as we are able to generate synthetic 
data where the values for the true data-generating parameters 
are known, which is not possible with real data.

Simulation 1: No difference in parameters

In Simulation 1, we wanted to explore whether we would 
observe the correlation between a-difference and t0-differ-
ence in a data set where no true difference exists in any of 
the main DDM parameters between two experimental con-
ditions. This provides a strong test of whether the observed 
correlation is an artefact of real behavioural data or whether 

it is an emergent and general property of DDM model 
fits: If we observe a correlation between a-difference and 
t0-difference in the absence of a true difference in param-
eter values between conditions then the correlation must be 
a general property of DDM fitting. This simulation is thus 
similar in design to Experiment 1 from Dutilh et al. (2019), 
where there was no experimental manipulation of participant 
behaviour between the two experimental conditions.

We conducted a simulation where data were generated 
from 1000 artificial participants in two experimental condi-
tions; we refer to these as an “easy” condition and a “hard” 
condition throughout, even though in this particular simula-
tion no differences in parameters existed. For each partici-
pant, 1000 trials were simulated in each condition; such large 
trial numbers have been shown to lead to excellent parameter 
recovery (see Lerche et al., 2017) and as such noise in the 
parameter estimation routine is minimised. In Simulation 
1, the diffusion parameters used to generate the data were 
randomly selected for each participant, but importantly the 
exact same parameters were used for each participant to gen-
erate data in both the easy and the hard condition. Specifi-
cally, parameters for each participant in the easy condition 
were sampled from a uniform distribution with the following 
minimum and maximum values: v [0.0–4.0], a [0.5–2.0], and 
t0 [0.2–0.5] (see Lerche et al., 2017, for similar values); the 

Table 3   Product-moment correlation coefficients between the fitted parameters from fast-dm-30 from Dutilh et al. (2019) Experiments 1–3 (con-
ditions A and B). diff = difference score for model parameters calculated as condition B minus condition A. See main text for details

a (A) a (B) v (A) v (B) t0 (A) t0 (B) a diff v diff t0 diff

a (A) —
a (B) 1: 0.327

2: 0.269
3: – 0.177

—

v (A) 1: 0.090
2: – 0.125
3: 0.172

I: – 0.247
2: 0.286
3: – 0.072

—

v (B) 1: 0.021
2: – 0.167
3: 0.332

1: – 0.161
2: 0.231
3: – 0.267

1: 0.907
2: 0.966
3: 0.689

—

t0 (A) 1: – 0.483
2: – 0.406
3: – 0.324

1: – 0.091
2: – 0.008
3: 0.089

1: 0.549
2: 0.673
3: 0.422

1: 0.568
2: 0.708
3: – 0.050

—

t0 (B) 1: 0.085
2: 0.100
3: – 0.362

1: – 0.358
2: – 0.374
3: 0.096

1: 0.712
2: 0.311
3: 0.005

1: 0.673
2: 0.386
3: – 0.182

1: 0.702
2: 0.675
3: 0.572

—

a diff 1: – 0.749
2: – 0.642
3: – 0.510

1: 0.381
2: 0.566
3: 0.937

1: – 0.261
2: 0.335
3: – 0.124

1: – 0.133
2: 0.327
3: – 0.351

1: 0.408
2: 0.341
3: 0.193

1: – 0.335
2: – 0.383
3: 0.212

—

v diff 1: – 0.161
2: 0.065
3: 0.130

1: 0.202
2: – 0.326
3: – 0.190

1: – 0.231
2: – 0.952
3: – 0.606

1: 0.201
2: – 0.840
3: 0.160

1: 0.035
2: – 0.572
3: – 0.629

1: – 0.100
2: 0.197
3: – 0.206

1: 0.299
2: – 0.315
3: – 0.216

—

t0 diff 1: 0.747
2: 0.616
3: – 0.101

1: – 0.332
2: – 0.467
3: 0.023

1: 0.174
2: – 0.410
3: – 0.408

1: 0.100
2: – 0.358
3: – 0.161

1: – 0.435
2: – 0.338
3: – 0.319

1: 0.335
2: 0.466
3: 0.595

1: – 0.964
2: – 0.899
3: 0.056

1: – 0.173
2: 0.435
3: 0.379

—
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exact same parameters for the easy condition were then used 
for the hard condition. Throughout all simulations reported 
in this paper, we fixed the starting point of the diffusion pro-
cess equidistant between response boundaries (i.e., param-
eter zr was set to 0.5), and all variability parameters were set 
to zero. Data were simulated using the fast-dm-30 software 
(Voss et al., 2015) using the construct-samples routine with 
precision set to 31. The simulated behavioural data showed 
similar response times in the easy condition (M = 0.625 s, 
SD = 0.206 s) and the hard condition (M = 0.626 s, SD = 
0.207 s), and the accuracy was identical in both conditions 
(M = 84.6%, SD = 14.4%).

The diffusion model was then fit to the simulated behav-
ioural data. During fitting, only the three main parameters—
v, a, and t0—were allowed to freely vary across conditions. 
The starting point parameter zr was fixed at 0.5, and all vari-
ability parameters were fixed at zero2. Maximum likelihood 
was used as the optimisation criterion throughout all simula-
tions. Recovery of the generating parameter values used to 
generate simulated data was excellent in the fitting routine. 
The correlation between the parameter values used to gener-
ate simulated data and the recovered best-fitting parameter 
values were all above r = 0.995 (see Appendix A).

The fit routine returned the set of best-fitting parameters 
per participant, namely v (easy), v (hard), a (easy), a (hard), 
t0 (easy), and t0 (hard). We then calculated difference scores 
on each parameter, calculated as the estimate for the easy 
condition subtracted from the estimate for the hard condition, 

namely v-difference, a-difference, and t0-difference. We then 
computed the product-moment correlation coefficient matrix 
across all of the parameters. Due to the large participant num-
bers in the simulation, we did not calculate statistical signifi-
cance. Instead, we interpret the correlation coefficient as an 
effect size, and use r = |0.1| to denote a small effect, r = |0.3| 
to denote a medium effect, and r >= |0.5| to denote a large 
effect. The correlation matrix is shown in Table 4.

As can be seen, we found a large negative correlation (r 
= – .743) between the difference score in boundary separa-
tion (a-difference) and the difference score in non-decision 
time (t0-difference), replicating the finding in the Schuch and 
Grange (2019) data set, as well as Experiments 1 and 2 from 
the reanalysis of Dutilh et al. (2019). This correlation was pre-
sent despite there being no correlation between the boundary 
separation parameter and the non-decision time parameter for 
either the easy or the hard conditions. Aside from the expected 
large correlations between matching parameters across con-
ditions (e.g., v[easy] and v[hard]), no other correlations were 
above medium in effect size. Within the difference scores, we 
observed a medium positive correlation between a-difference 
and v-difference which we also observed in the reanalysis of 
Experiment 1 of Schuch and Grange (2019), and in Experiment 
1 of the reanalysis of Dutilh et al. (2019). In addition, there was 
a small negative correlation between v-difference and t0-differ-
ence, which we did not observe consistently in the real data sets.

To check that the observed correlations were not due to 
the model estimation programme used, we fitted the EZ-
diffusion model (Wagenmakers et al., 2007) to the behav-
ioural data generated by the simulation3. The correlation 

Table 4   Product-moment correlation coefficients between the fitted parameters from the fast-dm-30 fitting routine in Simulation 1. Diff = differ-
ence scores on parameters (hard minus easy)

a (easy) a (hard) v (easy) v (hard) t0 (easy) t0 (hard) a diff v diff t0 diff

a (easy) —
a (hard) 0.991 —
v (easy) 0.043 0.039 —
v (hard) 0.009 0.042 0.994 —
t0 (easy) – 0.045 – 0.041 – 0.001 – 0.001 —
t0 (hard) – 0.049 – 0.052 0.005 0.003 0.998 —
a diff – 0.020 0.117 – 0.026 0.025 0.027 – 0.022 —
v diff – 0.038 0.027 – 0.072 0.036 – 0.002 – 0.017 0.473 —
t0 diff – 0.056 – 0.158 0.080 0.057 – 0.023 0.043 – 0.743 – 0.215 —

1  Precision values control the accuracy of the calculated density 
functions in fast-dm-30. Higher values lead to higher accuracy of pre-
diction but leads to slower simulation time. Voss et al. (2015) recom-
mend setting precision to values between 2.0 and 5.0.
2  Usually, trial-to-trial variability in non-decision time (implemented 
in fast-dm-30 via the st0 parameter) is not fixed to zero to account for 
very rapid responses often present in real data sets (Voss et al., 2015). 
We repeated Simulation 1 with st0 allowed to be a free parameter dur-
ing the model fitting and found qualitatively identical results to those 
reported in the text body. All simulations therefore fixed st0 to zero, 
which also has the benefit of reducing simulation time.

3  As the EZ diffusion model is a closed-form solution where the 
main DDM parameters are calculated from mean RT, RT variance, 
and percentage accuracy, edge corrections are required when accu-
racy is at 100, 50, or 0%. We used the same correction as reported 
by Lerche et al. (2017): When accuracy was 100%, we set accuracy 
equal to 100 – 100 / (2n), where n is the number of trials used in the 
simulation (here n = 1000); when accuracy was 50%, it was corrected 
to 50 + 100 / (2n), and to 100 / (2n) when accuracy was 0%.
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matrix for this fitting routine is shown in Table 5, and shows 
qualitatively similar results, and in particular the correlation 
between a-difference and t0-difference remained large and 
negative. Note, though, that the correlation between a-dif-
ference and v-difference—whilst still positive—reduced in 
size to a small effect. The small negative correlation between 
v-difference and t0-difference was absent in the EZ model fit.

Simulation 2: Introducing differences in each main 
parameter

Although Simulation 1 provides a strong test of the cor-
relation between a-difference and t0-difference due to no 
true parameter difference between conditions, it does pre-
sent a somewhat unrealistic representation of the type of 
real data analysts are likely to use the diffusion model for, 
where some experimental manipulation is known to lead to 
differences between conditions. In Simulation 2 we there-
fore explored the impact of a true condition difference on 
the observed negative correlation between a-difference and 
t0-difference. We conducted a series of simulations wherein 
we systematically generated artificial data where just one 
parameter changed between easy and hard conditions, whilst 
the other parameters remained fixed. We repeated the simu-
lations to generate data that exhibited a small (Cohen’s d 
= 0.3), medium (d = 0.5), and large (d = 0.8) effect size. 
This allows us to explore the impact of selectively changing 
just one parameter between two conditions on the correla-
tion between a-difference and t0-difference. After this, we 
then explored the effect of changing all parameters between 
conditions.

Changing one main DDM parameter between conditions

The values for the manipulated parameter for simulated partic-
ipants were sampled from a multivariate normal distribution 

(with the constraint that all parameters should be positive 
values) with means and standard deviations that allowed the  
various effect sizes of interest. For example, when the drift 
rate was manipulated to have a small effect size across condi-
tions, the parameter values for drift rate were sampled from 
a multivariate normal distribution with means M(easy) = 
2.3, M(difficult) = 2.0, and standard deviations SD(easy) = 
1, SD(hard) = 1, constrained to have a correlation r = 0.5 
between the two parameters at the population level. The other 
parameters were selected as in Simulation 1 by sampling 
parameters for the easy condition from a uniform distribu-
tion and using the exact same parameters in the hard condi-
tion (see Table 6 for full parameter-generating details). These 
parameter values were then used to simulate data using the 
construct-samples routine in fast-dm-30.

We generated parameter values for 1000 artificial partici-
pants in each factorial combination of manipulated param-
eter and effect size. For each combination of manipulated 
parameter and effect size, 1000 trials were simulated per 
condition per participant. The diffusion model was then fit-
ted to the simulated data in the same way as in Simulation 1.

The results of the simulations are visualised in Fig. 3, 
which shows heatmaps of the correlation matrices for each 
of the nine combinations of which parameter was manipu-
lated, and to what effect size. The correlation matrices are 
presented numerically in Appendix B, together with the 
numerical correlation matrices resulting from fitting the 
simulated data with the EZ-diffusion model.

The results showed quite strikingly that the effects of 
which parameter was manipulated produced remarkably 
consistent outcomes across all effect sizes (that is, the pat-
tern of correlations in each column is consistent across each 
effect size magnitude).

The negative correlation between a-difference and t0- 
difference was only present when drift rate was varied across 
conditions (column 1 of Fig. 3), but not when boundary 

Table 5   Product-moment correlation coefficients between the fitted parameters from the EZ-diffusion fitting routine in Simulation 1. Diff = dif-
ference scores on parameters (hard minus easy)

a (easy) a (hard) v (easy) v (hard) t0 (easy) t0 (hard) a diff v diff t0 diff

a (easy) —
a (hard) 0.978 —
v (easy) 0.033 0.040 —
v (hard) 0.033 0.047 0.993 —
t0 (easy) – 0.062 – 0.039 0.008 0.005 —
t0 (hard) – 0.057 – 0.067 – 0.003 – 0.004 0.974 —
a diff – 0.015 0.192 0.037 0.070 0.104 – 0.053 —
v diff – 0.003 0.053 – 0.070 0.050 – 0.024 – 0.012 0.273 —
t0 diff 0.024 – 0.118 – 0.046 – 0.039 – 0.174 0.055 – 0.683 0.053 —
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Table 6   Parameter sampling values used to generate simulated data in Simulation 2. Each row represents a separate sub-simulation, wherein one 
key parameter was manipulated to have either a small, medium, or large effect across easy and hard conditions

Where a parameter is manipulated between conditions, μ and σ provide the mean and standard deviation (respectively) for each condition used to draw 
samples from a multivariate normal distribution with correlation ρ = 0.5 between the manipulated parameters. = signifies identical parameters were 
used to the named column (e.g., = t0 (easy) means the parameters were identical to those in the t0 (easy) column. μ = mean of the condition. σ = 
standard deviation of the condition. Unif refers to a uniform distribution with the range of possible values shown in square brackets

Sub-simulation v (easy) v (hard) a (easy) a (hard) t0 (easy) t0 (hard)

v (small effect) μ = 2.3, σ = 1 μ = 2.0, σ = 1 unif[0.5–2.0] = a (easy) unif[0.2–0.5] = t0 (easy)
v (medium effect) μ = 2.5, σ = 1 μ = 2.0, σ = 1 unif[0.5–2.0] = a (easy) unif[0.2–0.5] = t0 (easy)
v (large effect) μ = 2.8, σ = 1 μ = 2.0, σ = 1 unif[0.5–2.0] = a (easy) unif[0.2–0.5] = t0 (easy)
a (small effect) unif[0.0–4.0] = v (easy) μ = 1.25, σ = 0.4 μ = 1.37, σ = 0.4 unif[0.2–0.5] = t0 (easy)
a (medium effect) unif[0.0–4.0] = v (easy) μ = 1.25, σ = 0.4 μ = 1.45, σ = 0.4 unif[0.2–0.5] = t0 (easy)
a (large effect) unif[0.0–4.0] = v (easy) μ = 1.25, σ = 0.4 μ = 1.57, σ = 0.4 unif[0.2–0.5] = t0 (easy)
t0 (small effect) unif[0.0–4.0] = v (easy) unif[0.5–2.0] = a (easy) μ = 0.350, σ = 0.1 μ = 0.385, σ = 0.1
t0 (medium effect) unif[0.0–4.0] = v (easy) unif[0.5–2.0] = a (easy) μ = 0.350, σ = 0.1 μ = 0.400, σ = 0.1
t0 (large effect) unif[0.0–4.0] = v (easy) unif[0.5–2.0] = a (easy) μ = 0.350, σ = 0.1 μ = 0.430, σ = 0.1

Fig. 3   Heatmaps of the product-moment correlation matrices from 
Simulation 2 where one DDM parameter was changed across con-
ditions, and Simulation 3 where all three parameters were changed 
across conditions. Columns represent which parameters were manipu-

lated to be different between simulated conditions, and rows represent 
the effect size of the manipulated difference in those parameters. Diff 
= difference score. Correlations between difference scores are high-
lighted by grey rectangles 
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separation or non-decision time, or all three parameters, 
were varied across conditions (columns 2–4 of Fig. 3). The 
negative correlation between a-difference and t0-difference 
was large across each manipulated effect size of the drift rate 
effect (r = – 0.774 when d was small, r = – 0.769 when d 
was medium, and r = – .819 when d was large). These cor-
relations are visualised in Fig. 4.

These correlations were not driven by outlier scores. We 
assessed the impact of outliers by standardising the data 
and removing any simulated participant with standardised 
scores lower than – 2.5 or higher than 2.5. The correlations 
remained negative: rs = – 0.661, – 0.693, – 0.688, – 0.705 for 
Simulation 1, Simulation 2 (small v), Simulation 2 (medium 
v), and Simulation 2 (large v) respectively.

When t0 was manipulated, we found a moderate positive 
correlation between a-difference and v-difference, which 
ranged from r = 0.455–0.521. These correlations were present 
in Experiment 1 of Schuch and Grange (2019; ranging from 
r = 0.33 to 0.54) and in Experiment 1 of Dutilh et al. (2019; 
r = 0.30); this correlation was absent from the reanalysis of 

Experiment 2 of Schuch and Grange, but was medium and 
negative in Experiments 2 and 3 of Dutilh et al. (rs = – 0.32 
and – 0.22, respectively). Similar to the correlation between 
a-difference and t0-difference, these correlations were not 
driven by outlier scores. When we standardised the scores and 
removed any simulated participant with standardised scores 
lower than – 2.5 or higher than 2.5, the correlations were rs =  
0.350, 0.389, 0.355, 0.328 for Simulation 1, Simulation 2 
(small v), Simulation 2 (medium v), and Simulation 2 (large 
v), respectively.

No other correlations were consistently found between dif-
ference parameters. Note that although there was a medium 
negative correlation between v-difference and t0-difference 
when boundary separation was manipulated to a small effect 
size, this did not replicate at other effect-size manipulations, 
nor was it present in the EZ-diffusion fitting.

The only other correlations present are to be expected 
from the design of the simulations. Namely, when a param-
eter was not manipulated between conditions, a large posi-
tive correlation was found between its fitted estimate in easy 

Fig. 4   Plots of the correlation between a-difference and t0-difference 
in Simulation 1, and Simulation 2 (with drift rate, v, manipulated to 
have a small, medium, and large difference across conditions). Points 
represent simulated participants’ difference scores in diffusion model 

parameters, and the lines represent a linear model (with shading—
barely visible—denoting 95% confidence intervals around the linear 
model predictions)
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and hard conditions. When a parameter was manipulated, 
the fitted estimate for the easy condition was moderately 
positively correlated with the hard condition (because the 
data were generated to have an r = .5 correlation). In addi-
tion, when a parameter was manipulated, the estimates of 
that parameter for the easy and the hard condition were cor-
related with the magnitude of the difference score in that 
parameter (negatively for the easy-condition parameter, and 
positively for the hard-condition parameter). This latter pat-
tern was found for the drift rate parameter in the reanalysis 
of Schuch and Grange (2019): v-difference was consistently 
negatively correlated with the v estimate in the easy condi-
tions (ranging from r = – 0.27 to r = – 0.74), and in some 
conditions positively correlated with the v estimate in the 
hard condition (range r = – 0.11 to r = 0.39). In the rea-
nalysis of Dutilh et al. (2019), v-difference was negatively 
correlated with the v-estimate in Condition A (notionally the 
“easy” condition; range r = – 0.23 to – 0.95), but was only 
positively correlated with the v-estimate in Condition B in 
Experiments 1 and 3 (rs = 0.20 and 0.16, respectively); in 
Experiment 2 (where drift rate was manipulated behaviour-
ally), the correlation was large and negative (r = – 0.84).

Changing all main DDM parameters between conditions

In the next part of the simulation, we simulated data where 
all three main parameters changed between conditions, again 
manipulating the size of the changes to be small, medium, 
and large. The parameters were generated as presented in 
Table 7, except all three parameters changed across condi-
tions. Again, 1000 participants were simulated with 1000 
trials per condition. The results of the simulation are shown 
in Fig. 3, most-right column (numerical correlation matrices 
and EZ-diffusion results are in Appendix B). The results 
showed only the expected correlations dictated by the simu-
lation design; the negative correlation between a-difference 
and t0-difference was not found.

Discussion

Taken together, the results of Simulation 1 and Simulation 2 
show that the negative correlation between a-difference and 
t0-difference found in the reanalysis of Schuch and Grange 
(2019) and in Experiments 1 and 2 from Dutilh et al. (2019) 
appears when there is either no true difference in parameter 
values across conditions (e.g., Experiment 1 in Dutilh et al., 
2019), or the true difference is localised to the drift rate 
parameter (e.g., Experiments 1 & 2 from Schuch & Grange, 
2019, and Experiment 2 from Dutilh et al., 2019). This con-
clusion is congruent with us not finding the correlation in the 
reanalysis of Experiment 3 from Dutilh et al. (2019), where 
the experiment’s speed–accuracy trade-off likely influenced 
the boundary separation parameter between conditions. In 
other words, the spurious correlation between a-difference 
and t0-difference emerges whenever there is no true difference 
in the a and t0 parameters across conditions, irrespective of 
whether there is a true condition difference in drift rate or not.

Simulation 3: Using rtdists package

In Simulations 1 and 2, we simulated and fitted the diffusion 
model using the fast-dm-30 software provided by Voss et al. 
(2015). We wanted to assure ourselves that the observed neg-
ative correlation between a-difference and t0-difference was 
not due to the use of this software. Therefore, in Simulation 3 
we utilised different simulation and fitting software. Specifi-
cally, we used the R package rtdists (Singmann et al., 2020)4 

Table 7   Product-moment correlation coefficients between the fitted parameters from the rtdists fitting routine in Simulation 3. Diff = difference 
scores on parameters (hard minus easy)

a (easy) a (hard) v (easy) v (hard) t0 (easy) t0 (hard) a diff v diff t0 diff

a (easy) —
a (hard) 0.991 —
v (easy) 0.045 0.035 —
v (hard) 0.050 0.048 0.994 —
t0 (easy) – 0.051 – 0.048 – 0.006 – 0.004 —
t0 (hard) – 0.044 – 0.048 – 0.002 – 0.003 0.998 —
a diff – 0.126 0.011 – 0.076 – 0.019 0.024 – 0.024 —
v diff 0.043 0.115 – 0.099 0.013 0.011 – 0.004 0.513 —
t0 diff 0.098 – 0.004 0.052 0.026 – 0.009 0.056 – 0.741 – 0.240 —

4  Note that although the rtdists package implements the drift-diffusion 
model in R, it is based on C code underlying the fast-dm-30 software. 
As the purpose of Simulation 3 was to make sure our results in Simula-
tion 1 and Simulation 2 were not due to peculiarities in the simulation 
and/or fitting algorithms in fast-dm-30, it might therefore seem prob-
lematic to use rtdists. However, the code for rtdists has been adapted to 
C++ by Singmann et al. (2020), which then is called by functions writ-
ten in R. Thus we consider this to be an independent implementation of 
the drift-diffusion model and is therefore suitable for our purposes.
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and repeated Simulation 1, where data are simulated with no 
true difference in parameters across conditions (again using 
the parameter generation criteria in Table 6). The results of 
the simulation are shown in the correlation matrix in Table 7.

Replicating Simulation 1, we found a large negative cor-
relation between a-difference and t0-difference. Similar to 
Simulation 1, the positive correlation between a-difference 
and v-difference—this time with a large effect size—re-
emerged, as did the small negative correlation between 
v-difference and t0-difference.

The finding of a large negative correlation between a-dif-
ference and t0-difference appears robust across simulation 
and fitting procedures. As also found in our behavioural 
data, we found in Simulation 1 a small positive correlation 
between a-difference and v-difference; although this was not 
replicated in the EZ-diffusion fit of the Simulation 1 data-
set, the correlation has replicated using the rtdists package 
here in Simulation 3. In addition, Simulation 3 replicated the 
small negative correlation between v-difference and t0-dif-
ference, again generally consistent with our behavioural 
data reanalysis. Taken together, the findings of Simulation 
3 broadly support the findings of Simulation 1: When no 
true differences exist in diffusion model parameters between 
experimental conditions, spurious correlations appear in all 
of the difference scores of the parameter values.

Simulation 4: Linear ballistic accumulator model

In Simulation 3, we utilised a different simulation and model 
fitting environment to ensure our findings generalise across 
different implementations of the drift-diffusion model. In 
Simulation 4, we addressed whether the findings generalise 
to different theoretical accounts of evidence accumulation 
during rapid decision making. In particular, we simulated 
data from the Linear Ballistic Accumulator (LBA) model 
(Brown & Heathcote, 2008), and fitted the generated data 
with the LBA model.

The LBA model is similar to the DDM in that it decom-
poses response times into a decisional and non-deci-
sional component. The decisional component of the LBA 
assumes—like the DDM—that responses are determined by 
an evidence-accumulation process (see Fig. 5 for a schematic 
overview of the LBA model). However, the LBA assumes 
that the evidence-accumulation process is linear, with the 
rate of evidence accumulation determined by the drift rate. 
The drift rate varies on each trial (modelled as a draw from 
a random distribution with mean v and standard deviation 
s), which models trial-wise variability in response time. 
The LBA assumes separate accumulators for each response 
option (cf., the DDM which assumes a single accumulator 
can hit one of two response boundaries; see Fig. 1), which in 
our simulations we generalise to include one accumulator for 

the “correct” response (with mean drift rate v) and one accu-
mulator for the incorrect response (with mean drift rate 1–v). 
Each accumulator begins each trial with a certain amount of 
residual evidence, represented by a random starting point of 
the drift rate between 0–A, where A is a parameter that rep-
resents the height of the starting point boundary. A response 
is selected when an accumulator reaches the threshold (the 
height of which is represented by parameter b, which is con-
strained to be larger than A); RT is determined by the time 
taken for the first accumulator to reach the threshold, and 
accuracy is determined by whether the accumulator repre-
senting the correct response option was the first to reach 
the boundary or not. Response caution—equivalent to the 
boundary separation parameter a in the DDM—is given by 
b – (A/2). As with the standard diffusion model, the LBA 
model also has a parameter reflecting non-decisional com-
ponents of performance (i.e., t0).

We simulated 1000 participants from the LBA model, 
with 1000 trials per condition. As in Simulation 1, the 
parameters were identical for each participant in each con-
dition. All LBA parameters were drawn from uniform distri-
butions with the following minimum and maximum values: 
mean correct v [1.0–4.0], A [0.5–2.0], b [A + 0.001–2.0], 
and t0 [0.2–0.5]. The LBA model was then fitted to the gen-
erated data using a gradient descent method (as implemented 

Fig 5   Schematic representation of trial processing in the Linear Bal-
listic Accumulator Model. Fig. available at https://​www.​flickr.​com/​
photos/​15071​6232@​N04/​51602​517573 under CC license https://​creat​
iveco​mmons.​org/​licen​ses/​by/2.​0/

https://www.flickr.com/photos/150716232@N04/51602517573
https://www.flickr.com/photos/150716232@N04/51602517573
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
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in R’s nlminb function) to find the best set of LBA param-
eters for each participant and each condition that minimises 
the negative log-likelihood of the data. Starting parameters 
for the search routine were generated for each participant and 
each condition using the following heuristics (see Donkin 
et al., 2011): t0 was set at 90% of the fastest response in 
the data; mean correct drift rate v was set to 0.5 + Φi-1(p), 
where p is the probability of a correct response, and Φ is the 
normal cumulative distribution function with mean equal to 
zero and standard deviation 0.3; A was set as twice the value 
of the inter-quartile range of all response times; and b was 
set to A × 1.25.

After the fit routine had found the best-fitting parame-
ters for each participant and each condition, we calculated 
response caution for each participant and condition (cal-
culated as b–[A/2]) and calculated difference scores for all 
main parameters (the easy condition parameter value sub-
tracted from the hard condition parameter value). The cor-
relation matrix is shown in Table 8.

The results showed a replication of the large negative 
correlation between response caution-difference and t0-dif-
ference as found in Simulation 1, suggesting that our main 
finding is reproducible across different theoretical imple-
mentations of evidence-accumulation models. In addition, 
we again found a (large) positive correlation between cau-
tion-difference and v-difference, and a (small) negative cor-
relation between v-difference and t0-difference.

Simulation 5: True Correlated Difference Scores

So far, the Simulations have examined cases where no true 
correlation exists between difference scores in the diffu-
sion model parameters. We have shown under such circum-
stances, a spurious correlation emerges between the a-differ-
ence and t0-difference parameters. In the current simulation, 
we examine the complement of this whereby we simulate 
artificial data where a true correlation exists between 

a-difference and t0-difference parameters. The question we 
wished to address is whether the model fitting procedure is 
able to recover such a true correlation, or whether recovery 
is corrupted by whatever is causing the spurious correlations 
reported in previous simulations5.

Recovery of a true negative correlation

In the first simulation in this section, we explored recovery 
attempts from a simulated data set with a true population-
level correlation of r = – .7 between the a-difference and 
t0-difference parameter values. We simulated data consisting 
of 1000 trials for 1000 artificial participants in two condi-
tions (“easy” and “hard”). The method used to generate the 
parameters that would be used to simulate the data for each 
participant in the easy condition was the same as in Simu-
lation 1. The method used to generate the parameters that 
would be used to simulate the data in the hard condition was 
as follows:

That is, the drift rate was identical for the easy and the 
hard condition. The boundary separation parameter in the 
hard condition was generated by taking the boundary separa-
tion parameter in the easy condition and adding a difference 
score to it (adiff). The non-decision time parameter in the 
hard condition was generated by taking the non-decision 
time parameter in the easy condition and adding a differ-
ence score to it (t0diff). The difference scores adiff and t0diff 
were sampled from a multivariate normal distribution with 
mean adiff set to zero, SD adiff set to 0.1, mean t0diff set to 

vhard = veasy

ahard = aeasy + adiff

t0hard = t0easy + t0dif

Table 8   Product-moment correlation coefficients between the fitted parameters from the LBA simulation and fitting routine in Simulation 4. 
Note that caution was calculated as b - (A/2). Diff = difference scores on parameters (hard minus easy)

Caution (easy) Caution (hard) v (easy) v (hard) t0 (easy) t0 (hard) Caution diff v diff t0 diff

caution (easy) —
caution (hard) 0.925 —
v (easy) 0.082 0.070 —
v (hard) 0.060 0.103 0.979 —
t0 (easy) –0.147 –0.039 –0.066 –0.052 —
t0 (hard) –0.063 –0.165 –0.084 –0.095 0.765 —
caution diff –0.156 0.231 –0.018 0.112 0.277 –0.267 —
v diff –0.105 0.141 –0.080 0.125 0.068 –0.057 0.635 —
t0 diff 0.126 –0.181 –0.024 –0.061 –0.375 0.310 –0.793 –0.183 —

5  We are grateful to an anonymous reviewer for suggesting this simu-
lation study.
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zero, and SD t0diff set to 0.05. The population correlation 
between adiff and t0diff was set to r = – 0.7. Put another way, 
the population-level difference in boundary separation and 
non-decision time between the hard and the easy condition 
was zero, but there was a true correlation in difference scores 
between adiff and t0diff of r = – 0.7. The parameter fitting 
routine was the same as in Simulation 1.

The results of the Simulation can be seen in Table 9. 
Critically, the “true” negative correlation between adiff and 
t0diff was relatively well recovered (r = – 0.673).

Recovery of a true positive correlation

In the next simulation in this section, we repeated the previ-
ous simulation but simulated data so that the true popula-
tion-level correlation between adiff and t0diff was set to 0.7. 
The results of this simulation can be seen in Table 10. The 
“true” positive correlation between adiff and t0diff was rela-
tively well recovered (r = 0.521). Although there is some 
discrepancy between the recovered correlation and the 
“true” generating correlation, this likely reflects sampling 
error and/or simulation noise.

In general, though, the results of Simulation 5 show that if 
a true correlation exists between adifference and t0difference, the 
model fitting procedures of the diffusion model are able to 
recover this correlation relatively well. Parameter recovery 
in situations with true correlations between difference scores 
is therefore not corrupted by whatever is causing the spuri-
ous correlations reported in previous simulations.

General discussion

The use of evidence-accumulation models such as the drift-
diffusion model hold great promise in addressing the so-
called “reliability paradox” (Hedge et al., 2018; Rouder & 
Haaf, 2019): By analysing individual differences at the latent 
level (e.g., via DDM parameters) researchers can uncover 
relationships not apparent at the purely behavioural level. 
The current work was inspired by an incidental observa-
tion that when difference scores of DDM parameters were 
analysed, a large and negative correlation emerged between 
the difference score in the boundary separation parameter 
and the difference score in the non-decision time parameter. 
In this paper we have confirmed this finding more formally, 

Table 9   Product-moment correlation coefficients between the fitted parameters from the “true negative” correlation in Simulation 5. Diff = dif-
ference scores on parameters (hard minus easy)

a (easy) a (hard) v (easy) v (hard) t0 (easy) t0 (hard) a diff v diff t0 diff

a (easy) —
a (hard) 0.996 —
v (easy) 0.007 – 0.005 —
v (hard) 0.003 – 0.001 0.994 —
t0 (easy) 0.006 0.020 – 0.012 – 0.011 —
t0 (hard) 0.009 – 0.072 0.031 0.028 0.848 —
a diff – 0.023 0.237 – 0.044 – 0.017 0.052 – 0.312 —
v diff – 0.039 0.029 0.002 0.109 0.010 – 0.027 0.256 —
t0 diff 0.007 – 0.168 0.077 0.069 – 0.036 0.500 – 0.673 – 0.066 —

Table 10   Product-moment correlation coefficients between the fitted parameters from the “true positive” correlation in Simulation 5. Diff = dif-
ference scores on parameters (hard minus easy)

a (easy) a (hard) v (easy) v (hard) t0 (easy) t0 (hard) a diff v diff t0 diff

a (easy) —
a (hard) 0.969 —
v (easy) 0.004 0.000 —
v (hard) –0.005 –0.003 0.994 —
t0 (easy) 0.009 0.027 –0.006 –0.002 —
t0 (hard) 0.004 0.084 0.015 0.015 0.868 —
a diff –0.036 0.211 –0.016 0.009 0.075 0.323 —
v diff –0.076 –0.021 –0.081 0.033 0.039 –0.003 0.216 —
t0 diff –0.006 0.122 0.041 0.033 0.006 0.502 0.521 –0.075 —
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via reanalysis of behavioural data (the two experiments of 
Schuch & Grange, 2019, as well as three experiments from 
Dutilh et al., 2019) and via a series of computational simu-
lation studies. These simulations were conducted across a 
range of software implementations of the DDM, as well as 
using a different evidence-accumulation model (the LBA; 
Brown & Heathcote, 2008). In Appendix C we outline 
details of additional analyses to explore whether the spuri-
ous correlation is caused by difficulties in parameter opti-
misation when accuracy rates are very high, but find that it 
had little impact. In addition, in Appendix D we report the 
results of fitting a Bayesian hierarchical version of the diffu-
sion model (as implemented in the hBayesDM package in R; 
Ahn et al., 2017) to Experiment 1 data of Dutilh et al. (2019) 
and again find a large negative correlation. Together, these 
results using different models and fitting techniques suggest 
that the result is general.

We begin this discussion by summarising our behavioural 
and simulation findings; we then offer some suggestions as 
to the potential cause of the spurious correlation between 
boundary separation difference and non-decision time differ-
ence, before providing some recommendations for research-
ers wishing to use DDM or LBA difference scores in their 
own work.

Summary of findings

Correlation between a‑difference and t0‑difference

The correlation between a-difference and t0-difference 
emerged in the majority of our analyses. Specifically, it was 
present in all of the experiments and conditions reanalysed 
from Schuch and Grange (2019), was present in two out of 
three experiments in Dutilh et al. (2019), and was present in 
the simulations (but not all; see later). Visualisation of this 
correlation in the Schuch and Grange (2019) data (Fig. 2) 
and in the simulations where it was present (Fig. 4) suggest 
this negative correlation is not driven by outliers in the data, 
but indeed represents a strong negative linear relationship 
across the range of difference scores. In the simulations, 
we only observed the negative correlation when either (a) 
there was no true difference in model parameters between 
simulated experimental conditions, or (b) only drift rate v 
was manipulated between simulated experimental condi-
tions; when a true difference existed in boundary separation, 
non-decision time, or all three main parameters, the correla-
tion disappeared. This suggests that the spurious correlation 
occurs only when there is no difference between experimen-
tal conditions, or the difference is isolated to the drift rate. 
This simulation result is congruent with the reanalysis of 
the behavioural data. For example, Experiment 1 of Dutilh 
et al. (2019) had no behavioural manipulation between the 
two experimental conditions, and we observed the negative 

correlation between a-difference and t0-difference; in Exper-
iment 2, the behavioural manipulation influenced estimates 
of drift rate, and again we observed the negative correla-
tion; in Experiment 3, however, the behavioural manipula-
tion influenced the boundary separation parameter, and the 
negative correlation between a-difference and t0-difference 
disappeared.

Further correlations between parameter difference scores

While the negative correlation between boundary-difference 
and non-decision-difference was the most pronounced and 
most consistent relationship between parameter difference 
scores, we also observed some other correlations between 
parameter difference scores. In particular, we observed 
medium-to-large correlations between a-difference and 
v-difference in the reanalysis of Experiment 1 of Schuch and 
Grange (2019; ranging from r = 0.33 to 0.54) and in Experi-
ment 1 of Dutilh et al. (2019; r = 0.30); this correlation 
was absent from the reanalysis of Experiment 2 of Schuch 
and Grange, but was medium and negative in Experiments 2 
and 3 of Dutilh et al. (rs = – 0.32 and – 0.22, respectively). 
This correlation emerged also in Simulation 1 using the 
DDM (r = 0.47), and in Simulation 4 using the LBA (r = 
0.64). Recall that these simulations had no true difference in 
parameter values between conditions. In Simulation 2 where 
changes in parameters were introduced, we observed the cor-
relation between a-difference and v-difference only when 
t0 was selectively changed (ranging from r = 0.46 to .052). 
When other parameters were selectively changed between 
conditions, or all three parameters were changed, the cor-
relation disappeared.

This correlation arises due to individuals with larger dif-
ference scores in boundary separation having larger differ-
ence scores in drift rate; but note that if the difference score 
in drift rate is positive, this reflects higher drift rates in the 
hard condition relative to the easy condition. This is because 
the difference score is calculated as the parameter estimate 
for the hard condition minus the parameter estimate for the 
easy condition, and drift rates tend to be lower in harder 
conditions than in easy conditions. One possibility is that 
there is some form of trade-off occurring during the model 
fitting when no true differences exist between conditions in 
the boundary separation and drift rate parameters.

We sometimes observed a correlation between v-difference 
and t0-difference. Although not consistently present, it was 
small-to-medium and positive in Experiment 1 Conditions 2 
and 4 (rs = 0.18 & 0.30 respectively) and Experiment 2 Con-
ditions 1 and 2 of Schuch and Grange (rs = 0.16 and 0.41, 
respectively), as well as in Experiments 2 and 3 in Dutilh 
et al. (2019; rs = 0.44 and 0.38, respectively); it was small 
and negative in Experiment 1 of Dutilh et al. (r = – 0.17). In 
Simulations 1 and 4, this correlation was small and negative 
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(rs = – 0.22 & – 0.24, respectively), but note that it did not 
replicate in the EZ-diffusion analysis of the same data in Sim-
ulation 1. It was however again present in the LBA model in 
Simulation 4 (r = – 0.18). It was also present in Simulation 2, 
but only when boundary separation was manipulated between 
conditions (rs = – 0.39, – 0.17, & – 0.22 for small, medium, 
and large effect size differences, respectively). Hence, from 
the simulation studies, it seems that a small negative spurious 
correlation between v-difference and t0-difference emerges 
when the third parameter, boundary separation, is manipu-
lated between conditions, or when there are no differences 
between the conditions at all.

In general, the simulation results seem to suggest that 
when there is a difference between conditions in one of the 
main parameters (or no difference between conditions at 
all), a spurious correlation tends to occur between the dif-
ference scores of the other two parameters. The size of the 
spurious correlation between difference scores is largest for 
the relationship between a-difference and t0-difference, and 
medium-to-small for the relationship between v-difference 
and a-difference, and v-difference and t0-difference.

Recommendations for researchers

In all of the simulations reported in the paper (and indeed 
the model fits to behavioural data), we allowed all three main 
parameters to freely vary across experimental conditions. 
Such an approach is common in the literature when wishing 
to draw inferences on meaningful parameter changes across 
conditions (see Donkin et al., 2011; Dutilh et al., 2019). 
However, it could be that the spurious correlation between 
a-difference and t0-difference is exacerbated by unneces-
sary model flexibility (i.e., when parameters are allowed to 
vary freely across conditions even when there was no true 
parameter difference in the data-generating process). To 
assess this, we conducted an additional simulation similar 
to the design of Simulation 1 where no true difference exists 
between two experimental conditions in the generated data; 
however, during model fitting, drift rate—although still a 
free parameter—was constrained to take on the same value 

across conditions. The correlations between best-fitting 
parameters using fast-dm-30 are shown in Table 11. The 
correlation between a-difference and t0-difference was still 
large and negative. Of course, this model is still more flex-
ible than the “true” data-generating model, but constraining 
boundary separation and/or non-decision time to be equal 
across conditions would prohibit us from examining the dif-
ference score in these parameters.

This leads us to a recommendation for researchers wish-
ing to use evidence-accumulation models in assessments of 
individual differences: Only allow parameters to vary freely 
across conditions during the fitting process if there is strong 
a priori theoretical justification for supposing parameter 
differences are expected, or formal model selection/com-
petition techniques have suggested that models with addi-
tional free parameters are justified (Donkin et al., 2011; see 
Heathcote et al., 2015 for an excellent overview of this and 
other general recommendations to researchers using formal 
modelling). Formal model selection techniques, such as 
Bayesian information criterion (BIC) and Akaike informa-
tion criterion (AIC), can be used to temper quality of model 
fit with a penalty term for additional free parameters: All 
else being equal, if two models fit equally well, the simpler 
model—that is, the model with fewer free parameters—will 
be preferred. With this approach, difference scores on certain 
model parameters will only be calculated by the researcher 
when the model-selection process has suggested that a 
model where these certain model parameters change across 
conditions fits the data better than a model where the param-
eters are fixed across conditions. This would then avoid the 
spurious correlation reported in the current paper as we do 
not find the spurious correlation between a-difference and 
t0-difference when the true data-generating model had real 
differences in either of these parameters across conditions.

To exemplify the technique of model competition, and 
how it would avoid the calculation of a spurious correla-
tion between a-difference and t0-difference, we conducted 
formal model selection techniques on the data generated in 
Simulation 1, where no true differences in parameter values 
existed across conditions in the data-generating process. 

Table 11   Product-moment correlation coefficients between the fitted parameters from the fast-dm-30 fitting routine with drift rate not free to 
vary between conditions. Diff = difference scores on parameters (hard minus easy)

a (easy) a (hard) v t0 (easy) t0 (hard) a diff t0 diff

a (easy) —
a (hard) 0.994 —
v 0.042 0.036 —
t0 (easy) – 0.047 – 0.043 0.004 —
t0 (hard) – 0.041 – 0.042 0.006 0.998 —
a diff – 0.090 0.016 – 0.058 0.037 – 0.011 —
t0 diff 0.096 0.016 0.029 – 0.068 – 0.003 – 0.752 —
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Eight possible models were then constructed (see Table 12); 
each model differed on the eligibility of one or more DDM 
parameters to freely vary across conditions. The simplest 
model—Model 1, which has only three free parameters (v, 
a, and t0, which are not free to vary across conditions)—is 
correctly selected by the model selection technique of choos-
ing the model with the lowest AIC value (or BIC value).

In this case, the researcher would not be justified in 
interpreting a model where a and t0 are free to vary across 
conditions, thus avoiding the spurious correlation between 
a-difference and t0-difference. In addition, note that in Simu-
lation 2 where the data were generated from a “true model” 
with all three main parameters changing across conditions 
we did not observe the spurious negative correlation (see 
Fig. 3). In this situation, a model where all three parameters 
are free to vary would win the model competition, and the 
spurious correlation would likely not be present in any sub-
sequent individual differences analysis.

However, recall that in Simulation 5 we generated simu-
lated data with no true difference between any of the main 
parameters between conditions but with a large correlation 
between a-difference and t0-difference. We were interested 
in whether this correlation could be recovered by the model-
fitting procedure, and found that it could. However, as no 
true difference was present between any of the three main 
parameters across conditions, model competition techniques 
select a model in which the main parameters are not allowed 
to freely vary across conditions (see Appendix E); as such, 
researchers would miss the true correlation between a-differ-
ence and t0-difference because they would fit a model to the 
data where these parameters do not change across condition 
(so there are no difference scores in parameters).

The recommendation we provide to engage in model 
competition appears to minimise exposure to the spurious 
correlation—which likely arises only in overly flexible mod-
els—but also leaves the possibility that a true correlation 
between a-difference and t0-difference could be missed if the 

best-fitting model is one where the parameters are not free to 
vary across conditions. Note, however, that such a situation 
where there is a true correlation between the a-difference 
and t0-difference—but at the same time the mean differ-
ence across participants in both parameters is zero—prob-
ably does not occur very often in real data. In summary, we 
believe the cost of finding a spurious correlation outweighs 
the cost of missing a true correlation and recommend engag-
ing in model competition techniques and only analysing fur-
ther the winning model.

An additional tool to use for model selection is Akaike 
weights (e.g., Wagenmakers & Farrell, 2004). Selecting a 
model based on raw AIC or BIC scores becomes challeng-
ing when two (or more) models’ IC scores differ by a small 
amount. Although one can still select the model with the 
smallest IC score, the researcher is left wondering how 
strongly they can disregard the next-best model. Akaike 
weights estimates the probability that each model in the set 
of all models considered will be superior when applied to 
new data (McElreath, 2020). As such, these weights can be 
used to quantify the degree of superiority of the winning 
model. As can be seen in Table 12, the winning model has a 
weight of 1, indicating decisive support for this model. For 
more information and further use-cases of Akaike weights, 
see Wagenmakers and Farrell (2004). Importantly, both of the 
model selection techniques discussed—that based on overall 
AIC or BIC values, and that based on Akaike weights—can 
be applied to group-averaged data (as above) or applied to the 
individual participant level. A model that is superior at the 
group level may not be superior for each participant.

As an alternative (or complement) to formal model selec-
tion, researchers could use a structural equation modelling 
approach for estimating the parameters of evidence-accu-
mulation models (e.g., Schubert et al., 2022)6. In such a 

Table 12   Results of the model competition approach to analys-
ing data generated from Simulation 1. Each row depicts a different 
model based on whether drift rate (v), boundary separation (a), and 
non-decision time (t0) is free to vary across conditions or not (if yes, 
denoted by a tick, and by a cross if not). LL is the log-likelihood of 

the fit. AIC and BIC refer to the total Akaike and Bayesian informa-
tion criteria, respectively, summed across all simulated participants. 
WAIC and WBIC represent Akaike weights for each model based on the 
AIC and BIC values, respectively. Bold & underlined model repre-
sents the winner of the model competition

Model Vary v? Vary a? Vary t0? LL AIC BIC WAIC WBIC

Model 1 x x x – 715,490 1,436,982 1,453,784 1 1
Model 2 ✓ x x – 715,956 1,439,912 1,462,316 0 0
Model 3 x ✓ x – 715,946 1,439,893 1,462,296 0 0
Model 4 x x ✓ – 716,093 1,440,185 1,462,589 0 0
Model 5 x ✓ ✓ – 716,684 1,443,367 1,471,372 0 0
Model 6 ✓ x ✓ – 716,637 1,443,274 1,471,279 0 0
Model 7 ✓ ✓ x – 716,401 1,442,803 1,470,807 0 0
Model 8 ✓ ✓ ✓ – 717,127 1,446,253 1,479,858 0 0

6  We would like to thank Anna-Lena Schubert for this idea.



	 Behavior Research Methods

1 3

framework, the evidence-accumulation model parameters 
can be conceptualised as latent variables (which are esti-
mated repeatedly on the basis of different subsets of the raw 
data; for example, separate estimations on the basis of odd-
numbered and even-numbered trials). The difference scores 
in evidence-accumulation model parameters can then be esti-
mated as latent change scores, which are derived by regress-
ing the parameter estimates from the “hard” condition on the 
parameter estimates from the “easy” condition (for reviews 
of latent change score modelling see Kievit et al., 2018 and 
McArdle, 2009). The latent change scores representing the 
difference scores can then be correlated. In Appendix F, we 
report first investigations of the spurious correlations with 
latent change score models. We observed a Heywood case: 
small and non-significant variances of latent change scores, 
but large correlations between change scores, including a 
large negative correlation between the latent change score 
for boundary separation and non-decision time (i.e., the spu-
rious correlation). However, we found that in models where 
correlations could occur between indicator diffusion model 
parameters within a condition, the spurious correlation was 
absent. This provides preliminary evidence that the correla-
tions of model parameters within a condition could play a 
role for the spurious correlations between difference scores 
to occur and that latent change score modelling might be a 
useful approach to mitigate its impact.

Conclusions

We have identified—both in behavioural data and via com-
putational simulations—that spurious correlations can arise 
between model parameter difference scores when using 
evidence-accumulation models. Researchers wishing to use 
this class of models for inter-individual differences research 
should be aware of these spurious correlations, and should 
bear them in mind when wishing to draw conclusions from 
difference-scores. One way we have identified to mitigate 
the impact of these spurious correlations—but we submit 
that there will be other solutions we have not thought of—is 
to conduct formal model competition to ensure that differ-
ence scores are only calculated for a model parameter when 
model competition has shown that such parameter flexibility 
is warranted by the data.
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