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Abstract

We consider localised bulging/necking in an inflated hyperelastic mem-

brane tube with closed ends. We first show that the initiation pressure

for the onset of localised bulging is simply the limiting pressure in

uniform inflation when the axial force is held fixed. We then demon-

strate analytically how, as inflation continues, the initial bulge grows

continually in diameter until it reaches a critical size and then prop-

agates in both directions. The bulging solution before propagation

starts is of the solitary-wave type, whereas the propagating bulging

solution is of the kink-wave type. The stability, with respect to axially

symmetric perturbations, of both the solitary-wave type and the kink-

wave type solutions is studied by computing the Evans function using

the compound matrix method. It is found that when the inflation is

pressure-controlled, the Evans function has a single non-negative real

root and this root tends to zero only when the initiation pressure or the

propagation pressure is approached. Thus, the kink-wave type solu-

tion is probably stable but the solitary-wave type solution is definitely
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unstable.

1 Introduction

When a cylindrical membrane tube with closed ends is inflated by an

internal pressure, such as via air pumping, a localised bulge forms when

the pressure reaches a critical value pcr. As more air is pumped into the

tube, the pressure drops but the radius at the centre of the bulge will

increase until it reaches a maximum value rmax. With continued infla-

tion, the pressure stays at a constant value pm, and the bulge spreads

in both directions while the radius at the centre of the bulge maintains

the maximum value rmax. This process is well-known and has been

described in a number of numerical and experimental studies such as

Kyriakides and Chang (1990, 1991), Shi and Moita (1996), Pamplona

et al (2006), and Goncalves et al (2008). Various aspects of this process

have also been examined in many analytical studies. The earliest an-

alytical study seems to be that by Kydoniefs and Spencer (1969) who

obtained an exact solution for an inflated membrane tube sealed by

a rigid plug at each end and modeled by the Mooney-Rivlin material

model. Yin (1977) proposed a method for characterising the kink-

wave type bulging solution. Stability and bifurcation of the uniformly

inflated state was studied by Corneliussen and Shield (1961), Shield

(1972), Haughton and Ogden (1979), and Chen (1997). Chater and

Hutchinson (1984) recognised that this process shared the same fea-

tures as a family of other problems such as propagating buckles in long

metal tubes under external pressure (Kyriakides, 1981), propagating

necks in some polymeric materials when pulled in tension (Hutchinson

and Neale 1983) and stress-induced phase transformations (Ericksen

1975). They used this connection to demonstrate that the propagat-

ing pressure pm could be determined by the Maxwell equal-area rule.

The so-called limit-point instability, corresponding to the fact that

the pressure-volume curve in uniform inflation has a turning point,
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was thought to be relevant to this process, and there are a number of

studies devoted to the determination of this limiting pressure including

Alexander (1971), Benedict et al (1979), and more recently Kanner and

Horgan (2007). However, the exact correspondence between the limit-

ing pressure and the initiation pressure for onset of localised bulging

does not seem to have been fully appreciated; this connection is now

clear if one compares Fu et al’s (2008) equation (6.2) with Chen’s

(1997) expression (25). We observe that in this correspondence the

limiting pressure must be evaluated at fixed axial force. Thus, if the

axial stretch at the two ends of a very long tube is maintained at unity,

which was often assumed to simplify analysis, then the corresponding

limiting pressure will be different from the initiation pressure since a

variable axial force would be required to maintain unit axial stretch at

infinity. In this connection, we note that the solid line in Kyriakides

and Chang’s (1990) Figure 9 seems to have been miscalculated; this fig-

ure shows unsatisfactory disagreement between the theoretical limiting

pressure and their experimental result for the initiation pressure. Fu et

al (2008) recalculated the solid line in Kyriakides and Chang’s (1990)

Figure 9 and found almost perfect agreement between the theoretical

limiting pressure and the experimental initiation pressure.

This paper may be viewed as a sequel to our previous study, Fu et

al (2008), hereafter referred to as FPL, where it was shown that the

onset of localised bulging or necking corresponds to a bifurcation at

zero mode number and the mode shape can only be described by a

weakly nonlinear post-bifurcation analysis. To simplify analysis, the

axial stretch at infinity was assumed to be unity. In this paper, we con-

sider the more realistic case in which the tube has closed ends, and our

study will not be confined to the near-critical regime. Instead we aim

to characterise the entire bulging or necking process, from its weakly

nonlinear initial onset to the fully nonlinear propagation stage, and to

assess the stability properties of the bifurcated solution in each stage.
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Our study is motivated by our belief that insights derived from the in-

flation problem will help with our understanding of related problems,

such as kink-band formation in fibre-reinforced composites (see, e.g.,

Fu and Zhang 2006), which share the same features but for which ana-

lytical results are much harder to come by. Of course, the present study

is also relevant to the continuum-mechanical modeling of aneurysm for-

mation and growth (Humphrey and Canham 2000, Watton et al 2004,

Vorp 2007, Haughton and Merodio 2009).

The rest of this paper is divided into seven sections as follows. Af-

ter formulating the problem and writing down the governing equations

in the next section, we present in Section 3 diagrams of r(0) as a func-

tion of r∞ for three strain-energy functions, where r∞ and r(0) are the

radii at infinity and at the centre of the bulge, respectively. We use

these diagrams as the basic tool to characterise the entire bifurcation

process. In Section 4 we use the phase plane method to provide a differ-

ent perspective on the bifurcation process. In Section 5, we study the

stability of the weakly nonlinear initial bulging solution with respect

to axially symmetric perturbations, with the initial bulging solution

obtained using the procedure explained in FPL. We use this case to

explain our method of stability analysis and to validate our numeri-

cal results in the following section. In Section 6, stability of the fully

nonlinear bulging solution is studied with respect to axially symmetric

perturbations. Results are compared with those obtained in the pre-

vious section when specialising to the near-critical regime. The paper

is concluded with a summary and additional remarks.

2 Governing equations

We model the tube as an incompressible, isotropic, hyperelastic, cylin-

drical membrane. The tube is assumed to have a constant undeformed

radius R and a constant undeformed thickness H . We shall only be

concerned with localised solutions, and assume that the tube is long
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enough for end effects to be negligible. Thus, such a long tube may

be conveniently viewed to be infinitely long, and we shall refer to end

conditions simply as conditions imposed at infinity. We use cylindri-

cal polar coordinates throughout this study, and so the undeformed

configuration is given by coordinates (R,Θ, Z).

The undeformed tube is subject to a uniform internal pressure,

which drives the deformation. We assume that the axisymmetry re-

mains throughout the entire deformation, and hence the deformed

configuration is expressed using cylindrical polar coordinates (r, θ, z),

where r = r(Z, t), θ = Θ, z = z(Z, t), and t denotes time.

The principal directions of the deformation correspond to the lines

of latitude, the meridian and the normal to the deformed surface.

Hence the principal stretches are given by,

λ1 =
r

R
, λ2 =

√
r′2 + z′2, λ3 =

h

H
, (2.1)

where the indices 1, 2, 3 are used for the circumferential, axial and

radial directions respectively, a prime represents differentiation with

respect to Z, and h denotes the deformed thickness.

The principal Cauchy stresses σ1, σ2, σ3 in the deformed configura-

tion for an incompressible material are given by

σi = λiWi − p, i = 1, 2, 3 (no summation), (2.2)

where W = W (λ1, λ2, λ3) is the strain-energy function, Wi = ∂W/∂λi,

and p is the pressure associated with the constraint of incompressibil-

ity; see Ogden (1997) for further details. Utilising the incompressibil-

ity constraint λ1λ2λ3 = 1 and the membrane assumption of no stress

through the thickness direction, σ3 = 0, we find

σi = λiŴi, i = 1, 2, (2.3)

where Ŵ (λ1, λ2) = W (λ1, λ2, λ
−1
1 λ−1

2 ) and Ŵ1 = ∂Ŵ /∂λ1 etc (Haughton

and Ogden 1979).
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The equations of motion can be derived from the exact field equa-

tions of general nonlinear shell theory, e.g. Budiansky (1968), but

Epstein and Johnson (2001) gave a very readable self-contained deriva-

tion. We quote their results and rewrite them in the form:

[

Rσ2
z′

λ2
2

]

′

− P ∗ rr′ = ρRz̈,

[

Rσ2
r′

λ2
2

]

′

− σ1

λ1
+ P ∗ rz′ = ρRr̈, (2.4)

where P ∗ is the internal pressure divided by the original wall thickness,

ρ is the density of the material and a superimposed dot represents dif-

ferentiation with respect to time. We note that in the static case (2.4)

can be rewritten to give the equilibrium equations in FPL. Addition-

ally, we non-dimensionalise the length variables with respect to the

undeformed radius R by setting R = 1.

We initially look for static solutions of (2.4) which have uniform

cross-section far away from any bulge or neck, with r(Z) → r∞R, z(Z) →
z∞Z as Z → ∞, where here and hereafter we write z∞ for z′(∞) to

simplify notation. This extends the work in FPL, where the remote

axial stretch z∞ was set to be unity. Therefore, evaluating (2.4) in this

uniform section we find a relation for the pressure as

P ∗ =
Ŵ1(r∞, z∞)

r∞z∞
, (2.5)

which will enable us to use r∞ or z∞, instead of P ∗, as the control

parameter.

As discussed in FPL, two integrals of the equilibrium equations

exist, given by,

Ŵ − λ2Ŵ2 = C1 = Ŵ (∞) − z∞Ŵ
(∞)
2 , (2.6)

Ŵ2z
′

λ2
− 1

2
P ∗λ2

1R = C2 = Ŵ
(∞)
2 − 1

2
P ∗r2

∞
, (2.7)

where a superscript ∞ represents evaluation at λ1 = r∞, λ2 = z∞, and

the conditions at infinity have been applied to determine the constants
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C1 and C2. We note that equation (2.7) represents constancy of the

resultant force in the Z direction, whereas the conservation law (2.6)

was first derived by Pipkin (1968).

For an infinite tube with open ends the remote axial stretch z∞

represents a prestrain of the material which is prescribed by the load

applied at the end of the tube and is therefore treated as constant. In

FPL we assume that z∞ = 1, with an appropriate force to ensure this.

For a tube with closed ends and no axial loading, we require that the

force balance in the Z direction is zero, and hence C2 = 0, giving the

following relation from (2.7),

r∞Ŵ1(r∞, z∞) = 2z∞Ŵ2(r∞, z∞), (2.8)

which may be used to determine z∞ for any given r∞. Therefore we

take r∞ as the controlling parameter of the deformation, with P ∗ de-

termined by (2.5) and z∞ either determined from (2.8) or prescribed.

For examples and numerical results throughout this work we will

use three strain-energy functions, the Varga, Ogden and Gent materi-

als, given respectively by,

W = 2(λ1 + λ2 + λ3 − 3), (2.9)

W =

3
∑

r=1

µr(λ
αr

1 + λαr

2 + λαr

3 − 3)/αr, (2.10)

W = −1

2
Jm ln(1 − λ2

1 + λ2
2 + λ2

3 − 3

Jm
), (2.11)

where we have nondimensionalised with respect to the infinitesimal

shear modulus, Jm > 0 is a material constant representing the maxi-

mum sustainable stretch of the material and α1 = 1.3, α2 = 5.0, α3 =

−2.0, µ1 = 1.491, µ2 = 0.003, µ3 = −0.023. The Ogden and Gent ma-

terials were proposed in Ogden (1972) and Gent (1996) respectively,

and are popularly used to model rubber. We include these three strain-

energy functions as examples due to their popularity in the literature,

though any suitable strain-energy function may be used.
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The closed ends relation (2.8) for the Varga and Gent materials

become respectively,

1 + r2
∞
z∞ − 2r∞z

2
∞

= 0, 1 + r4
∞
z2
∞
− 2r2

∞
z4
∞

= 0, (2.12)

which may be solved explicitly for z∞. The counterpart of (2.12) for

the Ogden material is more involved but it is found that all three

materials display a similar monotone relationship between z∞ and r∞

for r∞ > 1. It is noted that the condition for the Gent material (2.12)2

is independent of Jm. In fact, (2.12)2 is valid for any strain energy that

is only a function of the first invariant I1 = λ2
1+λ

2
2+λ

2
3, whereas (2.12)1

is valid for any strain energy that is only a function of λ1 + λ2 + λ3.

3 Characterisation of solitary-wave type

and kink-type solutions

Without loss of generality, we assume that the centre of the bulge/neck

is located at Z = 0, where we must necessarily have r′(0) = 0 due to

the symmetry. On evaluating (2.6) and (2.7) at Z = 0, we obtain

Ŵ (r0, z
′

0) − z′0 Ŵ2(r0, z
′

0) − Ŵ (∞) + z∞Ŵ
(∞)
2 = 0, (3.1)

Ŵ2(r0, z
′

0) −
Ŵ

(∞)
1

2r∞z∞
(r2

0 − r2
∞

) − Ŵ
(∞)
2 = 0, (3.2)

where r0 = r(0), z′0 = z′(0) ≥ 0. Solving these two equations simulta-

neously for r0 and z′0, we can obtain r0 as a function of r∞. As in FPL,

we have shown in Figures 1, 2(a) and 3(a) r0 − r∞ versus r∞ for the

Varga, Ogden and Gent strain-energy functions with closed ends. The

corresponding plots for the case where z∞ = 1 have previously been

given in FPL, along with further discussion of the Varga material for

this case. The analysis given in Section 5 of FPL for the Varga mate-

rial still holds for the tube with closed ends, with minor adjustment of

FPL’s equation (5.7), in particular the fact that the equations blow up
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at a finite value of r∞ = r∗ = (4(
√

2 − 1))1/3, at which point z′0 → ∞.

For r∞ < r∗ there exist no non-trivial solutions with positive z′0 for the

closed tube.

1.5 2.0 2.5 3.0

-2

-1

1

2

r∞

r0 − r∞

Figure 1: Dependence of r0−r∞ on r∞ for the closed Varga tube. Only

the solid line corresponds to localised solutions.

We shall now focus our discussion on the Ogden and Gent strain-

energy functions which are known to be realistic material models for

rubber. We first note that in each case the relation between r0−r∞ and

r∞ is a closed curve that intersects the horizontal axis twice. These

two intersections are both bifurcation points. Based on our numerical

calculations, the near-critical analysis in FPL, and our further insight

into the plots to be discussed shortly, we remark that only the solid

line parts in these figures correspond to localised solutions. If we were

to integrate the equations (2.6) and (2.7) from Z = 0 using values of

r0 and z′0 from the other sections, we would obtain either unbounded

or periodic solutions which do not satisfy our conditions at infinity.

As shown in FPL, the smaller bifurcation value of r∞ corresponds to

a bifurcation into a bulging solution, whereas the larger bifurcation

value corresponds to a bifurcation into a necking solution, which can

readily be seen from the amplitude diagrams.

It will now be shown that the turning points A and B in Figures

2(a) and 3(a) have a special interpretation, namely that at these points

we have r′′(0) = 0 as well as r′(0) = 0. To this end, we first differentiate
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1
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Figure 2: Dependence of r0 − r∞ and r0 on r∞ for the closed Ogden

tube. Only the solid lines in (a) correspond to localised solutions, and

the segments corresponding to non-localised solutions are not plotted

in (b)

(3.1) and (3.2) with respect to r∞, viewing z′0 as a function of r0 and

r∞, and r0, z∞ as functions of r∞. By taking the limit ∂r0/∂r∞ → ∞
in the resulting equations, we obtain

Ŵ1(r0, z
′

0) − z′0Ŵ12(r0, z
′

0) + z′0
∂z′0
∂r0

Ŵ22(r0, z
′

0) = 0,

Ŵ12(r0, z
′

0) −
r0Ŵ

(∞)
1

r∞z∞
+
∂z′0
∂r0

Ŵ22(r0, z
′

0) = 0.

Finally, on eliminating ∂z′0/∂r0 from the two equations above, we ob-

tain

Ŵ1(r0, z
′

0) −
r0z

′

0

r∞z∞
Ŵ

(∞)
1 = 0. (3.3)

On the other hand, the static form of (2.4)2, together with (2.5), may

be rewritten as
(

σ2

λ2
2

)

r′′ +

(

σ2

λ2
2

)

′

r′ − Ŵ1 +
r0z

′

0

r∞z∞
Ŵ

(∞)
1 = 0. (3.4)

On evaluating this equation at Z = 0 where r′ = 0, and making use of

(3.3), we obtain r′′(0) = 0.
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Figure 3: Dependence of r0−r∞ and r0 on r∞ for the closed Gent tube

with Jm = 97.2. Only the solid lines in (a) correspond to localised

solutions, and the segments corresponding to non-localised solutions

are not plotted in (b)

The result established above indicates that as we trace from the

first bifurcation point along the solid curve the radius at the centre of

the bulge will increase monotonically until we reach the turning point

A, where the bulge flattens out at its centre, stops growing in radius

and then starts to propagate in both directions; see Figure 6. At this

stage the bulge can be viewed as two kink solutions stitched together

and each kink consists of two uniform states, r = r∞ and r = r0

respectively, joined by a smooth transition region. We now show that

these two uniform states in fact satisfy the so-called Maxwell equal-area

rule (Ericksen 1975, Chater and Hutchinson 1984).

To show this, we first define a volume measure v,

v = r2
∞
z∞, (3.5)

which for uniform inflation is the volume change per unit volume in

the undeformed configuration. With the additional use of (2.8), we

may view r∞ and z∞ both as functions of v.
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The Maxwell equal-area rule defines a pressure Pm such that the

two areas bounded by the curve P (v) and the line P = Pm are equal,

i.e.
∫ v2

v1

P (v)dv = Pm(v2 − v1). (3.6)

The two values of v thus generated are the volumes corresponding

to the two uniform sections of the kinked solution. Figure 4 shows the

pressure-volume curve for a typical Gent tube with closed ends, along

with the line Pm. This pressure-volume curve is typical for rubber-like

materials, but the pressure-volume curve is not required to be non-

monotonic for the kinked solution to exist, as discussed below.

5 10 15 20 25

0.70

0.75

0.80

v

P ∗

v1 v2

Pm

Figure 4: Pressure as a function of volume for the closed Gent tube

with Jm = 30

We define the strain energy depending solely on the volume as

W̃ (v) = Ŵ (r∞(v), z∞(v)). It can then be shown that

P ∗ = 2
dW̃

dv
. (3.7)

Thus, the Maxwell equal-area rule becomes

Pm(v2 − v1) = 2
(

W̃ (v2) − W̃ (v1)
)

, (3.8)

where

v1 = r2
∞
z∞, v2 = r2

0z
′

0, Pm = P ∗|v=v1 = P ∗|v=v2 , (3.9)
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with (r∞, z∞) and (r0, z
′

0) being the two uniform states connected by

the Maxwell line. It remains to show that the (r0, z
′

0, r∞, z∞) defined

in this way also satisfy the turning point condition (3.3).

For the case of closed ends we apply (2.8) to both uniform states

to obtain

r∞Ŵ1(r∞, z∞) = 2z∞Ŵ2(r∞, z∞), r0Ŵ1(r0, z
′

0) = 2z′0Ŵ2(r0, z
′

0).

(3.10)

Also, (3.9)3 may be written as

Pm =
Ŵ1(r∞, z∞)

r∞z∞
. (3.11)

On substituting (3.9)1,2 and (3.11) into (3.8) and then making use

of (2.6) and (3.10), we do indeed obtain the turning point condition

(3.3). It should be stressed that the equation (3.10) is only valid when

considering a uniform state. For the case of fixed z∞ (3.10) is not

required but the turning point condition may still be derived.

For the case of the Gent tube with z∞ = 1, P is a monotonic

function of v and thus no Maxwell line exists. However, the condition

given by (3.3) still has a solution, corresponding to the kinked solution,

as shown in Figure 3(a) of FPL.In this case, the two pressures given

by (3.9)3 evaluated at the two pairs (r∞, 1) and (r0, z
′

0) are equal, and

thus the Maxwell condition (3.6) is trivially satisfied.

A similar interpretation may be given to the second turning point B,

though this represents a kinked solution arising from a necking solution.

To provide further insight into the necking solution, we have shown in

Figures 2(b) and 3(b) the corresponding r0 against r∞, omitting those

segments that do not give rise to localized solutions. Viewed in this

way, point B is simply a mirror reflection of A about r0 = r∞, the line

of uniform inflation. Thus, we may describe the entire inflation and/or

deflation process as follows. First, the stress-free state corresponds to

point C in Figures 2(b) and 3(b). Uniform inflation would follow the

straight line r0 = r∞ and terminate at the first bifurcation point D. As
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inflation continues, the uniform configuration bifurcates into a bulged

configuration; the growth of the bulge is described by the path DA.

At point A, the bulge reaches its maximum and starts to propagate in

both directions. For a finite tube, a uniform state will eventually be

achieved as each of the two kinks reaches the end of the tube. This

uniform state corresponds to point E. At this stage, we may either

inflate the tube further until it pops or deflate it. The deflation would

follow the line r0 = r∞ until we reach the second bifurcation point

F . As deflation continues, the uniform state bifurcates into a necked

state, the evolution of which is described by the path FB. At point

B, the decrease of the radius at the centre of the neck stops and the

neck starts to propagate in both directions. The propagation stops

when the kinks reach both ends, and the resulting new uniform state

corresponds to point G. In the above description, we have assumed

that the bulge or neck initiates in the middle of the tube. In practice,

it is usually the material or geometrical inhomogeneity that selects the

actual site of initiation.

Thus, the plots in Figures 2 and 3 are able to describe the en-

tire bulging/necking process graphically. Figure 3 is for the closed-

end Gent tube with Jm = 97.2, but similar behaviour is found for

Jm > 18.23, below which no bifurcation points exist. This is a larger

value of Jm than that found in FPL for the case of z∞ = 1 (according

to Horgan and Saccomandi 2003, the values of Jm for healthy arteries

range between 0.422 and 3.93). The Ogden tube with z∞ = 1, dis-

cussed in FPL, has only one critical point and no kinked solution in

contrast to the case of closed ends.
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4 Determination of the bulging/necking

solutions

In this section, we use the phase plane method to provide a different

perspective on how a bulging/necking solution evolves into a kink so-

lution, and explain how such solutions can be determined numerically.

To this end, we rewrite (2.6) and (2.7), defining two new functions f

and g,

f(r, λ2) ≡ Ŵ − λ2Ŵ2 − C1 = 0, (4.1)

g(r, λ2) ≡
λ2

Ŵ2

(C2 +
P ∗

2
r2) = z′. (4.2)

Equation (4.1) allows us to express λ2 = K(r) as a function of r for a

given r∞, though this relation will be implicit for most strain-energy

functions. Using the definition of λ2 given in (2.1), we can write

(r′)2 = λ2
2 − z′2

= K(r)2 − g(r,K(r))

= F (r; r∞), (4.3)

defining the function F . The behaviour of F governs the existence and

shape of the non-trivial solution. From elementary dynamical systems

theory we may deduce that a bulged solution can exist if F has a double

root at r = r∞, another root at r = r0 where r0 > r∞, and F > 0 for

r ∈ (r∞, r0). A similar statement with r0 < r∞ can be made about

necking solutions.

Following FPL, we may expand (4.3) for values of r close to r∞ as

(r′)2 = w′2 = ω(r∞)w2 + γ(r∞)w3 + O(w4), (4.4)

where w = r − r∞, and the function ω is given by

ω(r∞) =
r∞(Ŵ

(∞)
1 − z∞Ŵ

(∞)
12 )2 + z2

∞
Ŵ

(∞)
22 (Ŵ

(∞)
1 − r∞Ŵ

(∞)
11 )

r∞z∞Ŵ
(∞)
2 Ŵ

(∞)
22

. (4.5)
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The expression for γ(r∞) is too long and so is not written out here

for brevity. As observed in FPL, the bifurcation condition is given by

ω(r∞) = 0.

Equation (4.4) confirms that in the near-critical regime where |w| ≪
1, the function F always has a repeated root r∞ and one other root

approximately equal to r∞ − ω(r∞)/γ(r∞).

On differentiating (4.4) with respect to Z we find,

w′′ = ω(r∞)w +
3

2
γ(r∞)w2 + O(w3). (4.6)

Expanding the above equation around rcr, a root of the bifurcation

condition ω(r∞) = 0, defining ǫ = r∞ − rcr, and then neglecting terms

of order higher than ǫ2, we obtain

w′′ = ω′(rcr)ǫw +
3

2
γ(rcr)w

2, (4.7)

or equivalently,
d2V

dξ2
= V − V 2, (4.8)

where

w = −2ǫω′(rcr)

3γ(rcr)
V (ξ), ξ =

√

ǫ ω′(rcr)Z. (4.9)

In writing down the last expression we have assumed that ǫω′(rcr) > 0,

which is a necessary condition for the existence of localised bulging

or necking solutions as shown in FPL. Equation (4.8) has an exact

solitary-type solution given by

V = V0 ≡
3

2
sech2(

ξ

2
), (4.10)

which will be referred to as the weakly nonlinear solution. We observe

from (4.9) and the definition w = r−r∞ that this solution corresponds

to a localized bulging solution if γ(rcr) < 0, and to a localized necking

solution if γ(rcr) > 0.

Return now to the fully nonlinear equation (4.3) which, when differ-

entiated with respect to Z, yields 2r′′ = ∂F/∂r. Thus, fixed points are
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given by the roots of ∂F/∂r = 0 and on the phase plane there exist sad-

dles at the minima of F and centres at the maxima. For rm < r∞ < rcr,

where rcr is the first bifurcation value and rm is the value of r∞ corre-

sponding to the turning point A in Figures 2(a) and 3(a), the profile

of F (r; r∞) and the corresponding phase portrait are typified by those

shown in Figures 5(a, c). In this case, F has a repeated root r∞ and a

third root r0, and we have a localized bulging solution corresponding

to the homoclinic orbit in 5(c). In the limit r∞ → rm, the third root

r0, by coalescing with a fourth root, becomes another double root and

a local point of minimum of F ; see Figure 5(b). In this case we have a

kink solution corresponding to the heteroclinic orbit in Figure 5(d).

1.4 1.5 1.6 1.7 1.8 1.9

-0.007

0

0.007

1 2 3 4 5 6 7
0

1

2

1.4 1.5 1.6 1.7 1.8 1.9
-0.15

0

0.15

1 2 3 4 5 6 7
-1.8

0

1.8

rr

rr

(a) (b)

(c) (d)

F (r; 1.5) F (r; 1.11694)

r′ r′

Figure 5: Plots of F against r for the closed Gent tube with Jm = 97.2

for r∞ corresponding to (a) a typical bulged solution and (b) the kinked

solution, above the corresponding phase portraits.
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Figure 6: Profiles of the bulge corresponding to r∞ =

1.16941, 1.17, 1.2, 1.3, 1.4, 1.5 for the closed Gent tube with Jm = 97.2.

Larger amplitudes of r(Z) correspond to smaller values of r∞.
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There are two methods that may be used to find the fully nonlin-

ear solitary-wave type solution corresponding to the homoclinic orbit.

The first method, as discussed in Section 5 of FPL, involves numerical

integration of a system of three first-order differential equations. The

second method is rewriting (4.3) as,

∫ r(Z)

r0

dr

−
√

F (r; r∞)
=

∫ Z

0

dZ = Z, Z > 0, (4.11)

where we have used the fact that r′(Z) < 0 for Z > 0. When evaluated

numerically, this equation gives Z as a function of r. When a symbolic

algebra package such as Mathematica is used, the inversion to find r as

a function of Z can be carried out simply by exchanging two columns

of data. We have used both methods to validate our numerical results.

Figure 6 shows typical profiles of the solitary-wave type solution for

different r∞ for the closed Gent tube. In particular it shows how the

solution stops growing radially and begins to propagate down the tube

as the turning point A in Figure 3(a) is approached.

5 Stability of the weakly nonlinear solu-

tion

We now consider stability of the weakly nonlinear solitary-wave type

solution given by (4.10). The result will be used to validate our stability

analysis of the fully nonlinear solution to be presented in the next

section.

The static solution (4.10) is in fact a ‘fixed’ point of an evolution

equation when time dependence is included. For convenience we now

consider the necking case where ǫ and ω′(rcr) are both positive; exactly

the same analysis applies for the bulging case where ǫ and ω′(rcr) are

both negative though absolute values then need to be taken throughout

the following section.
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For ǫ ≪ 1, the prestressed membrane tube will support traveling

waves with small wave number and small wave speed. It can be shown

with the aid of the dispersion relation derived in Fu and Il’ichev (2009)

that the wave number and wave speed are of order
√
ǫ and ǫ, respec-

tively. It can also be deduced that the radial amplitude is of the order√
ǫ times the axial amplitude. Thus, we may define a far distance

variable ξ as in (4.9), a slow time variable τ through

τ = ǫt, (5.1)

and look for a perturbation solution of the form

r∞ = rcr + ǫλ̂1, z∞ = z′cr + ǫλ̂2, (5.2)

r = r∞ + ǫ {w1(ξ, τ) + ǫ w2(ξ, τ) + · · · } , (5.3)

z = z∞Z +
√
ǫ {u1(ξ, τ) + ǫ u2(ξ, τ) + · · · } , (5.4)

where λ̂1 and λ̂2 are constants, and w1, w2, u1, u2 etc are to be deter-

mined.

The internal pressure is given by

P ∗ =
W1(r∞, z∞)

r∞z∞
,

and we assume that it is held fixed in any axisymmetric perturbations.

This is known as pressure controlled inflation which can be realised by

connecting the gas in the tube to a very large reservoir of the same

gas. We note, however, that with r∞ and z∞ given by (5.2), we have

the Taylor expansion

P ∗ = P0 + ǫP1 + · · · . (5.5)

On substituting (5.2)–(5.5) into the equations of motion (2.4) and

equating the coefficients of like powers of ǫ, we obtain, to leading order,

L

[

w1
√

ω′(rcr) u1ξ

]

= 0, L =

[

−Ŵ1/z
′

cr + Ŵ12 Ŵ22

z′cr(Ŵ1 − rcrŴ11) rcr(Ŵ1 − z′crŴ12)

]

,

(5.6)
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where Ŵ1, Ŵ2, Ŵ12, Ŵ22 are all evaluated at r = rcr, z
′ = z′cr, and u1ξ

denotes ∂u1/∂ξ. It is easy to find detL = ω(rcr)rcrŴ2Ŵ22. Thus, as

we expected, ω(rcr) = 0 ensures that the matrix equation (5.6)1 has a

non-trivial solution for w1 and u1.

Proceeding to the next order, we find that w2 and u2 satisfy the

inhomogeneous system

L

[

w2
√

ω′(rcr)u2ξ

]

= b, (5.7)

where the vector b only contains w0 and its derivatives. Forming the

dot product of (5.7) with the left eigenvector of L, we then obtain the

evolution equation in the form

∂2V

∂ξ2
− c1

∂2V

∂τ 2
= c2

∂4V

∂ξ4
+ c3

∂2V 2

∂ξ2
, (5.8)

where c1, c2, c3 are known constants, and V is given by

w1 = −2ω′(rcr)

3γ(rcr)
V (ξ, τ)

which may be compared with its static form (4.9)1. Although the

expressions for the constants c1, c2, c3 are available from the above per-

turbation procedure, we may obtain their expressions more simply as

follows.

First, from the fact that when V is assumed to be independent of

τ , (5.8) must reduce to the static amplitude equation (4.8), we deduce

that c2 = c3 = 1. To determine the remaining constant c1, we linearise

(5.8) and then look for a traveling wave solution of the form

V = eiK(ξ−vτ) = exp

(

iK
√

ǫ ω′(rcr)

(

Z −
√

ǫ

ω′(rcr)
vt

))

, (5.9)

obtaining,

v2 =
1 +K2

c1
. (5.10)
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From (5.9)2 we see that the actual wave number k̂ and speed ĉ, using

the notation of Fu and Il’ichev (2009), are

k̂ = K
√

ǫ ω′(rcr), ĉ = v

√

ǫ

ω′(rcr)
. (5.11)

It then follows that

ĉ2 =
ǫ

c1ω′(rcr)
+

k̂2

c1ω′(rcr)2
=

(r∞ − rcr)

c1ω′(rcr)
+

k̂2

c1ω′(rcr)2
. (5.12)

From equation (2.11) of Fu and Il’ichev (2009) we obtain

ρĉ2

µ
= f(r∞) +O(k̂2) = f ′(rcr)(r∞ − rcr) +O(k̂2, ǫ2), (5.13)

where

f(r∞) = − Ŵ
(∞)
2 Ŵ

(∞)
22

z∞

(

Ŵ
(∞)
1 − r∞Ŵ

(∞)
11

)ω(r∞)

The c1 is then obtained by comparing (5.12) with (5.13). We have

c1
ρ

=
z∞
r∞

· r∞Ŵ
(∞)
11 − Ŵ

(∞)
1

Ŵ
(∞)
2 Ŵ

(∞)
22

· 1

ω′(rcr)2
, (5.14)

where the right hand side is evaluated at the bifurcation point. There-

fore our evolution equation is given by,

∂2V

∂ξ2
− c1

∂2V

∂τ 2
=
∂4V

∂ξ4
+
∂2V 2

∂ξ2
, (5.15)

with c1 given by (5.14). We note from (5.14) that c1 is non-negative

for values of (r∞, r0) on the solid segments in Figures 2-4. Equation

(5.15) is recognized as a Boussinesq equation whose solution has been

much studied; see, e.g., Ablowitz and Clarkson (1991).

To study the stability of (4.10), we substitute

V = V0(ξ) +B(ξ)eστ
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into (5.15) and linearise to obtain

d4B

dξ4
− d2B

dξ2
+ 2

d2(V0B)

dξ2
+ c1σ

2B = 0. (5.16)

The static solution V0(ξ) is said to be linearly unstable or spectrally

unstable if, for some fixed complex σ with Re (σ) > 0, there exists a

solution of (5.16) which decays exponentially as ξ → ±∞.

The above eigenvalue problem is now solved by computing the

Evans function. The Evans function is a complex analytic function

whose zeros correspond to the eigenvalues (Evans 1975; Alexander et

al. 1990). We follow the procedure explained in Afendikov and Bridges

(2001) in which the eigenvalue problem also involves a fourth-order dif-

ferential equation. We note that the Boussinesq equation (5.15) also

admits a solitary wave solution of the form Vc(ξ − cτ), which reduces

to V0 when c = 0. The stability of this solitary wave solution has

previously been studied by Alexander and Sachs (1995), also with the

Evans function method. They normalized their Evans function E(σ)

such that it tended to unity as σ → ∞. They further showed that

E(0) = E ′(0) = 0, and then with the use of an explicit expression

for E ′′(0), they deduced that the solution Vc(ξ − cτ) was unstable if

c < 1/(2
√
c1). It then follows immediately that our static solution V0 is

unstable. Despite this known result, we shall still use this simple case

to illustrate how the Evans function can be calculated. Our procedure

is different from that of Alexander and Sachs (1995) and will be used

in the determination of stability of the fully nonlinear solution in the

next section. Furthermore, an exact solution that will emerge from

such a calculation seems be new.

We rewrite the system (5.16) as a system of first order differential

equations

y′ = A(ξ; ζ)y, (5.17)
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where

y =











B(ξ)

B′(ξ)

B′′(ξ)

B′′′(ξ)











, A(ξ; ζ) =











0 1 0 0

0 0 1 0

0 0 0 1

−ζ − 2V ′′

0 (ξ) −4V ′

0(ξ) 1 − 2V0(ξ) 0











,

(5.18)

and ζ = c1σ
2. As ξ → ±∞, A has two pairs of eigenvalues, given by

±k1,±k2, where

k1 =

√

1

2
(1 −

√

1 − 4ζ), k2 =

√

1

2
(1 +

√

1 − 4ζ),

with positive square root taken on all four occasions.

We denote the eigenvectors associated with −k1,−k2, k1, k2 by a+
1 ,a

+
2 ,a

−

1 ,a
−

2 ,

respectively. Then as ξ → ∞, any decaying solution of (5.17) will tend

to a linear combination of a+
1 e−k1ξ and a+

2 e−k2ξ. Likewise, as ξ → −∞,

any decaying solution of (5.17) will tend to a linear combination of

a−

1 ek1ξ and a−

2 ek2ξ. Choosing l to be a suitably large positive number,

we may integrate (5.17) subjected to the initial conditions

y(l) = a+
1 , y(l) = a+

2 , y(−l) = a−

1 , y(−l) = a−

2 ,

in turn to obtain four independent solutions

y+
1 (ξ), y+

2 (ξ), y−

1 (ξ), y−

2 (ξ).

It then follows that any solution of (5.17) that decays as ξ → ∞ must

take the form d1y
+
1 (ξ)+d2y

+
2 (ξ), where d1, d2 are constants. Likewise,

any solution of (5.17) that decays as ξ → −∞ must take the form

d3y
−

1 (ξ)+d4y
−

2 (ξ). At an eigenvalue of ζ , these two solutions intersect

at any specific ξ, say ξ = d. Thus, the eigenvalues may be determined

from the condition N(ζ, d) = 0, where

N(ζ, d) = det[y−

1 (d), y−

2 (d), y+
1 (d), y+

2 (d)]. (5.19)
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The above determinant is, in general, dependent on the matching point

d, although the eigenvalues should be independent of it. The Evans

function, D(ζ), is defined by

D(ζ) = e−
∫

d

−∞
TrA dξN(ζ, d), (5.20)

and is independent of the matching point d (this can be established

with the use of the well-known formula d(detM)/dx = (detM)tr (M−1dM/dx)

for any square matrix function M(x)).

The above procedure breaks down when k1 = k2, that is when

ζ → 1/4. In this case, we need to replace a+
2 ,a

−

2 by the corresponding

generalised eigenvectors

lim
k2→k1

a+
2 − a+

1

k2 − k1
, and lim

k2→k1

a−

2 − a−

1

k2 − k1
, (5.21)

respectively. To accommodate this isolated case, we may replace the

determinant in (5.19) by

det[y−

1 (d),
y−

2 (d) − y−

1 (d)

k2 − k1

, y+
1 (d),

y+
2 (d) − y+

1 (d)

k2 − k1

],

which is simply 1/(k2 − k1)
2 times the original determinant. Thus,

equivalently, to take care of the above special case, we only need to use

N(ζ, d) in the form

N(ζ, d) =
4

4ζ − 1
det[y−

1 (d), y−

2 (d), y+
1 (d), y+

2 (d)], (5.22)

which has a finite limit when ζ → 1/4.

To avoid any “stiff” behaviour, we shall use the compound matrix

method (Gilbert and Backus 1966; Ng and Reid 1979, 1985) to evaluate

the determinant N(ζ, d) and hence the Evans function. To this end,

we introduce two new matrices Y +(ξ) and Y −(ξ) through

Y +(ξ) = [y+
1 (ξ),y+

2 (ξ)], Y −(ξ) = [y−

1 (ξ),y−

2 (ξ)].
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We then define the minors of these matrices, φ−

i and φ+
i , i = 1, . . . 6, as

the determinants formed by taking the (1, 2), (1, 3), (1, 4), (2, 3), (2, 3), (3, 4)-

th rows. The two vector functions formed from these minors satisfy

the differential equations

dφ+

dξ
= Q(ξ)φ+,

dφ−

dξ
= Q(ξ)φ−, (5.23)

where

Q(ξ) =





















A11 + A22 A23 A24 −A13 −A14 0

A32 A11 + A33 A34 A12 0 −A14

A42 A43 A11 + A44 0 A12 A13

−A31 A21 0 A22 + A33 A34 −A24

−A41 0 A21 A43 A22 + A44 A23

0 −A41 A31 −A42 A32 A33 + A44





















,

(5.24)

see, for instance, Gilbert and Backus (1966) or Bridges (1999). The

initial conditions for φ+ and φ− are given by the corresponding minors

of Y +(l) and Y −(−l), respectively. Equation (5.23)1 is then integrated

from ξ = l and (5.23)2 from ξ = −l for a given ζ . However, to remove

the exponential growth we write

φ+(ξ) = ψ+(ξ)e−(k1+k2)ξ, φ−(ξ) = ψ−(ξ)e(k1+k2)ξ,

so that

dψ+

dξ
= (Q+ (k1 + k2)I)ψ

+,
dψ−

dξ
= (Q− (k1 + k2)I)ψ

−, (5.25)

where I is the 6 × 6 identity matrix.

In terms of the vector functions ψ+ and ψ−, the determinant ap-

pearing in the definition of the Evans function becomes

N(ζ, d) =
4

4ζ − 1

{

ψ+
1 (d)ψ−

6 (d) − ψ+
2 (d)ψ−

5 (d) + ψ+
3 (d)ψ−

4 (d)

+ψ+
4 (d)ψ−

3 (d) − ψ+
5 (d)ψ−

2 (d) + ψ+
6 (d)ψ−

1 (d)
}

. (5.26)
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Figure 7: The Evans function for the weakly nonlinear solution.
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Figure 8: Normalised eigenfunction of (5.16) corresponding to the

eigenvalue ζ1 = 3/16.

We used the above procedure to calculate D(ζ) numerically. The re-

sults are shown in Figures 7 and 8. It is seen that D(ζ) = 0 has a single

positive root, seemingly equal to the rational number 3/16. This sug-

gests that the eigenvalue problem (5.16) may have an exact solution.

A systematic procedure for obtaining exact solutions is to substitute a

trial solution of the form

B(ξ) = f(ξ)

(

d1sech(
ξ

2
) + d2sech

2(
ξ

2
) + d3sech

3(
ξ

2
) + d4sech

4(
ξ

2
)

)

into the differential equation (5.16) and solving the resulting equations

for the disposable constants d1, d2, d3 and d4. For instance, for f(ξ) =

1, or tanh( ξ
2
), non-trivial solutions are always found despite the fact

that the system of equations for d1, d2, d3 and d4 is over-determined.
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By taking f(ξ) = 1, we find the exact solution

ζ =
3

16
, B(ξ) = sech(

ξ

2
) − 2 sech3(

ξ

2
),

whereas by taking f(ξ) = tanh( ξ
2
), we recover the exact solution ζ =

0, B = V ′

0(ξ), which could have been deduced from the translational

invariance of (5.16).

Therefore, as the above analysis is conducted for a general strain-

energy function and valid for both bulging and necking solutions, we

conclude that all near-critical solitary-wave type solutions are unstable

with respect to axisymmetric perturbations.

6 Stability of the fully nonlinear solution

In this section we consider the stability of the fully nonlinear bifurcated

solutions r = r̄(Z), z = z̄(Z) that were determined in Section 4. As

in the previous section, we consider axisymmetric perturbations and

write

r(Z, t) = r̄(Z) + w(Z, t), z(Z, t) = z̄(Z) + u(Z, t). (6.1)

On substituting (6.1) into (2.4) and linearising in terms of w and u,

we find

[

λ̄2
2W̄2u

′ + z̄′(λ̄2W̄22 − W̄2)(r̄
′w′ + z̄′u′) + λ̄2

2z̄
′W̄12w

λ̄3
2

]′

−P ∗(r̄w′+wr̄′) = ρü

(6.2)
[

λ̄2
2W̄2w

′ + r̄′(λ̄2W̄22 − W̄2)(r̄
′w′ + z̄′u′) + λ̄2

2r̄
′W̄12w

λ̄3
2

]′

−W̄12

λ̄2

(r̄′w′ + z̄′u′) − wW̄11 − P ∗(r̄u′ + wz̄′) = ρẅ, (6.3)

where λ̄2 =
√
r̄′2 + z̄′2, W̄2 = Ŵ2(r̄, λ̄2), W̄12 = Ŵ12(r̄, λ̄2) etc. It

should be noted that P ∗ in (6.2) and (6.3) is a function of r∞.
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In the spectral stability analysis, we look for a solution of the form

w(Z, t) = w̃(Z)eηt, u(Z, t) = ũ(Z)eηt. (6.4)

The fully nonlinear solution r = r̄(Z), z = z̄(Z) is said to be lin-

early unstable or spectrally unstable if, for some fixed complex η with

Re (η) > 0, there exists a solution of the above form which decays

exponentially as Z → ±∞.

It can be seen that (6.2) and (6.3), after use of (6.4), is a system

of two coupled linear second order differential equations for w̃(Z) and

ũ(Z), and the dependence on η is entirely through the combination

α = ρη2, (6.5)

which defines α. This eigenvalue problem is now solved using the same

procedure as in the previous section.

We first rewrite the system (6.2) and (6.3) in the form (5.17)

but now ξ is replaced by Z, the vector function y is given by y =

(ũ(Z), ũ′(Z), w̃(Z), w̃′(Z))T , and the new coefficient matrix A is not

written out for brevity. We note, however, that A is now a function

of Z via the fully nonlinear solution (r̄, z̄), and also dependent on the

value of r∞. From the conditions governing the decay of the underlying

state as Z → ±∞ we require r̄(Z) → r∞, z̄
′(Z) → z∞, and hence the

matrix A∞ now takes the form

A∞ =















0 1 0 0
ω(r∞)

Ŵ
(∞)
22

0 0
Ŵ

(∞)
1 −z∞Ŵ

(∞)
12

z∞Ŵ
(∞)
22

0 0 0 1

0
−Ŵ

(∞)
1 +z∞Ŵ

(∞)
12

Ŵ
(∞)
2

−z∞Ŵ
(∞)
1 +z∞r∞(ω+Ŵ

(∞)
11 )

r∞Ŵ
(∞)
2

0















.

(6.6)

It is found again that the four eigenvalues ofA∞ take the form ±k̂1,±k̂2.

For r∞ close to rcr, k̂1 and k̂2 are real for α ∈ [0, α1], complex for

α ∈ [α1, α2], and real again for α ∈ [α2,∞) for some α1 and α2 that

29

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in  
IMA J APPL MATH following peer review. The definitive publisher-authenticated version 75(4):581-602 Aug 2010 
 is available online at: http://imamat.oxfordjournals.org/



can only be determined numerically and are dependent on the value of

r∞. Thus, at the isolated values of α1 and α2, we have k̂1 = k̂2. These

two isolated cases can be accommodated in the same way as 1/4 is

taken care of in the previous section. As r∞ moves away from rcr, α1

and α2 coalesce and k̂1 and k̂2 are then real for all α.

We proceed with the Evans function method outlined in the previ-

ous section to find the eigenvalues for each r∞. Again, a single positive

real eigenvalue is found for each r∞. Close to the critical point, rcr, we

expect to recover the near-critical results discussed in Section 5. The

connection between the eigenvalues σ and η is given by η = ǫσ. Hence

in the limit as r∞ → rcr we require the connection

α =
ρǫ2ζ1
c1

, (6.7)

where ζ1 is the only positive real eigenvalue found in Section 5, i.e.

ζ1 = 3/16. This connection also provides the value of α1 where k̂1 = k̂2,

if ζ1 is replaced by 1/4.

The above correspondence is confirmed in the limit as r∞ → rcr,

for both the open and closed tubes described by the various strain-

energy functions considered here. Figure 9 shows how the eigenvalue

for the Gent strain-energy function with closed ends is proportional to

(r∞ − rcr)
2 near rcr, with the coefficient given by ρζ1/c1.

Figure 10 shows how the single eigenvalue varies with respect to r∞

for a closed-end Gent tube with Jm = 97.2. It is seen that as the kinked

solution is approached at rk = 1.1694, the value of the eigenvalue

rapidly approaches zero. This is also the case when Jm = 30 and 97.2

with both closed and open ends, as well as the closed Ogden tube. This

suggests that the kink-wave type solution is probably stable, although

the possibility of other complex eigenvalues on the right half complex

plane has not been eliminated.

For the closed Varga tube we find that the value of the eigenvalue

exponentially grows as r∞ → r∗, where the eigenvalue tends to infinity,

as can be shown in Figure 11.
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0.0000
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0.0025

0.0030

r∞

α

Figure 9: Dependence of α, defined by (6.5), on r∞ for the closed-end

Gent tube with Jm = 97.2 and values of r∞ in a small left neighborhood

of the first bifurcation value 1.59676. Dotted line: numerical result

based on the fully nonlinear solution; dashed line: asymptotic result

α = ρζ1ǫ
2/c1 = 10.6311(r∞ − rcr)

2 based on the weakly nonlinear

solution.

1.2 1.3 1.4 1.5 1.6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r∞

α

Figure 10: Dependence of α on r∞ for the closed Gent tube with

Jm = 97.2, showing the fact that α tends zero as the solitary-wave

type solution tends to zero or the kink-wave type solution.

7 Conclusion

In this paper we have presented a graphical method for characteris-

ing the entire inflation process, and have studied the stability of the

bifurcated solutions by determining whether there is a localised pertur-

bation that would grow exponentially in time. The graphical method is

based on the r0 versus r∞ diagram that gives almost all the information
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Figure 11: Dependence of α on r∞ for the closed Varga tube.

about the entire inflation and deflation process. Our spectral stabil-

ity analysis shows that when the inflation is pressure controlled, the

solitary-wave type solutions are unstable with respect to axi-symmetric

perturbations. Our analysis seems to indicate that the kink-wave type

solution might be stable, but as with all stability analysis, it is much

harder to establish stability than to prove instability. As remarked

earlier, pressure-controlled inflation can be realized by connecting the

inflating gas in the tube to a very large reservoir of the same gas, but

unfortunately all available experimental results have been obtained for

volume-controlled inflation only and so our theoretical predication is

yet to be verified by further experiments. We have also made some

preliminary study on the stability of the bulging solutions using the

energy method. The corresponding results will be reported in a sepa-

rate paper which focuses on the case of volume-controlled inflation.
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