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Abstract

Accurate stellar parameters are important not just to understand the stars themselves,

but also for understanding the planets that orbit them. Despite the availability of high

quality spectra, there are still many uncertainties in stellar spectroscopy. In this thesis,

the finer details of spectroscopic analyses are discussed and critically evaluated, with a

focus on improving the stellar parameters.

Using high resolution, high signal-to-noise HARPS spectra, accurate parameters

were determined for 22 WASP stars. It is shown that there is a limit to the accuracy of

stellar parameters that can be achieved, despite using high S/N spectra. It is also found

that the selection of spectral lines used and the accuracy of atomic data is crucial, and

different line lists can result in different values of parameters.

Different spectral analysis methods often give vastly different results even for the

same spectrum of the same star. Here it is shown that many of these discrepancies can

be explained by the choice of lines used and by the various assumptions made. This

will enable a more reliable homogeneous study of solar-like stars in the future.

The Rossiter-McLaughlin effect observed for transiting exoplanets often requires

prior knowledge of the projected rotational velocity (v sin i). This is usually provided

via spectroscopy, however this method has uncertainties as spectral lines are also broad-

ened by photospheric velocity fields known as “macroturbulence” (vmac). Using rota-

tional splitting frequencies for 28 Kepler stars that were provided via asteroseismology,

accurate v sin i values have been determined.

By inferring the vmac for 28 Kepler stars, it was possible to obtain a new calibration

between vmac, effective temperature and surface gravity. Therefore macroturbulence,

and thus v sin i, can now be determined with confidence for stars that do not have

asteroseismic data available. New spectroscopic vsini values were then determined for

the WASP planet host stars.
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1 Understanding stellar spectra

Many of the lines, especially the stronger ones, have been identified with respect
to the substance producing them, but this must be a labour of years.

- Henry Augustus Rowland, 1895

1.1 Motivation

The overall aim of this work was to analyse spectra of solar-like stars in detail, with

a focus on improving stellar parameters. This in turn feeds into exoplanet studies, as

a planet cannot be understood without first gaining an appreciation of the star which

it orbits. In particular this work is relevant to transiting exoplanets, both from the

analysis of the Wide Angle Search for Planets (WASP) host stars and from improving

knowledge of spectral line broadening, which needs to be known in order to study

transiting planet obliquities.

A planet seen transiting its parent star can be coaxed into unveiling much about

itself. Transiting planets were first suggested as a possible cause of stellar variability

by Lardner (1858), and Struve (1952) proposed that it should be possible to detect the

periodic dip in magnitude by a Jupiter-mass planet passing in front of its host star. The

first detection of a transiting exoplanet had to wait nearly half a century (Charbonneau

et al. 2000; Henry et al. 2000), which paved the way for hundreds more being discovered

in the subsequent years. However, one does not get very far in planetary research

without first knowing something about the parent stars.

Transiting planets, yield information such as the orbital period of the planet from

the light curve, however measuring the planet’s mass and radius require knowledge of

the mass and radius of the host star. The transit of an exoplanet across its host star

will only yield the ratio of the planet to star radius. Similarly, the mass of a planet,

acquired from combining transiting and radial velocity data, cannot be determined

independently from the mass of the star (Winn 2011).

It is thus imperative that the mass and radius of the host star are known precisely,

but obtaining direct measurements of these parameters is only possible for a limited

number of stars. For instance, a fundamental value of mass cannot be obtained unless

the star is in a suitable binary system (Andersen 1991; Torres, Winn & Holman 2008),

and determining the radius of a star often requires knowledge of the angular diameter,
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which in turn needs a known distance (North et al. 2007). Most current distance

measurements were acquired using the parallax technique with ESA’s Hipparcos satellite

(Perryman & ESA 1997; van Leeuwen 2007), but these will soon be complemented by

data from ESA’s Gaia mission (Perryman et al. 2001).

For stars without direct mass and radius measurements, spectroscopy can be used

to provide an estimate of these parameters. If the effective temperature (Teff), surface

gravity (log g) and chemical composition are known, then a calibration or grid of stellar

evolutionary models can be used to find the stellar mass and radius, and thus the

planetary mass and radius. Accurate values for the planetary radii can be used to

study unusual properties of some systems, such as “bloated” planetary radii (Fortney

et al. 2008; Spiegel & Burrows 2013).

Discerning the chemical composition of host stars has additional value. It is

well established that higher metallicity stars are more likely to have planets (Gonzalez

1998; Santos, Israelian & Mayor 2004; Fischer & Valenti 2005; Ghezzi et al. 2010;

Mortier et al. 2013a), and it is possible that other planetary parameters, such as planet

core size and planet radius, are related to the stellar metallicity (Guillot et al. 2006;

Dodson-Robinson 2012; Enoch, Collier Cameron & Horne 2012). It is not just the

overall composition that is important as individual elements have a role to play in the

formation of planets. The stellar Fe abundance is often the only elemental abundance

used, as it is easiest to obtain, but O and C are the first and second most important

contributor to the mass of giant planets respectively, along with oxides of Si, Mg, Ca

and Al (Brugamyer et al. 2011).

It has also been suggested that stars with planets can have different chemical

compositions to stars without known planets (Meléndez et al. 2010; Meléndez et al.

2009; Ramı́rez, Meléndez & Asplund 2009; Gonzalez, Carlson & Tobin 2010; Ramı́rez

et al. 2010). In particular, Si may be enriched in planet host stars (Robinson et al. 2006;

Brugamyer et al. 2011). There is still some dispute regarding these supposed trends

(González Hernández et al. 2010) and it is complicated by the Galactic chemical evolu-

tion (Schuler et al. 2011b). Therefore these relationships need to be thoroughly verified

by ensuring that the trend isn’t simply arising from systematics of the adopted method.

Can we truly understand these correlations, and thus planetary formation, without be-

ing confident in the value of the metallicity? It is imperative that the spectroscopic

parameters are obtained in the best way possible.

While the exoplanets might steal the limelight, stellar parameters are important
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whether or not the star comes equipped with a planetary system. For example, the mass

is important for stellar evolution studies. The Teff and metallicity are also required as

prior information before other stellar parameters can be extracted via asteroseismology.

The initial goal for this thesis was to determine stellar parameters using high

signal-to-noise ratio (S/N) spectra from the High Accuracy Radial velocity Planet

Searcher (HARPS) spectrograph, which is installed on the 3.6 m telescope at La Silla.

The spectra are those of planet host stars, namely a subset of the WASP stars. These

stars already had spectra with lower resolution and lower S/N available, but such spec-

tra are not necessarily appropriate for revealing the stellar parameters with the accuracy

and precision desired for planetary studies.

My intention was to analyse each HARPS spectrum in detail by measuring a

selection of the spectral lines, rather than using an automated method to extract the

parameters. Using this “hands on” approach has enabled me to critically evaluate

spectral analysis techniques and come to a better understanding of the problems that

can arise with such analyses. For instance, there will always be errors in low S/N spectra

due to the noise that pollutes them, however significant errors can still be present in

the parameters derived from high S/N spectra and there are limits as to how much we

can extract even from these ideal spectra. It was my goal to identify any systematics,

so that ultimately numerous spectra can be analysed with confidence via automated

methods.

The motivation for the second part of this thesis was spawned from the first, as it

came to light that the ambiguity between two different sources of line broadening could

be solved. The macroturbulence1 (vmac) and projected rotational velocity (v sin i) are

intertwined in spectral line profiles. These two broadening parameters can be disentan-

gled via Fourier methods, however this method is limited to stars with exceptionally

high S/N and high resolution spectra, and it is also a difficult method to utilise. By

using asteroseismic results from Kepler to pinpoint the v sin i with good accuracy, vmac

can be disentangled from the v sin i relatively simply. This in turn leads to a calibra-

tion between macroturbulence and Teff and log g, allowing the macroturbulence to be

estimated and the v sin i to be measured.

It is desirable to know each of these parameters individually for a number of

reasons. Macroturbulence is not even accurately known for the solar spectrum, with

1Also given as ζRT, where RT stands for radial-tangential.



4

values ranging from 1.9 km s−1 (Bean et al. 2006) to 3.8 km s−1 (Gray 1984a), and

this can make a significant difference in the shape of spectral line profiles. Previous

calibrations exist (Gray 1984a; Saar & Osten 1997; Gonzalez 1998; Valenti & Fischer

2005; Bruntt et al. 2010a), however none of these use an independent measurement of

v sin i.

The v sin i is important for estimating the age of stars, which in turn is vital

for stellar evolution studies. A prior knowledge of v sin i is also needed to obtain the

spin-orbit misalignment of planetary systems (Triaud et al. 2010). Depending on the

geometry of the system, there can be a degeneracy between v sin i and the inclina-

tion angle. In these cases, the only way to measure the spin-orbit angle is to have a

measurement of v sin i from an external source, such as spectroscopy, however current

spectroscopic values are plagued with uncertainty from the macroturbulence.

1.2 A brief history of stellar spectroscopy

The stars have fascinated mankind for millennia. Monitoring the skies was important

for making predictions on when to sow or harvest crops, and knowledge of the stars was

imperative for navigation. Attempts at measuring stellar parameters began with the

invention of the telescope, but their meaning was not truly understood for some time

later (Tassoul & Tassoul 2004).

In 1666, Isaac Newton first used a prism to disperse the white light of the Sun into

a rainbow of colours; a spectrum. The gradual change in colour from red to blue was

noted to be interspersed with seven vertical dark bands by Hyde Wollaston (1802), who

incorrectly assumed that these bands signified the boundaries of the different colours.

With the advent of the first spectroscope by Joseph von Fraunhofer, it was revealed

that the solar spectrum was littered with hundreds of these dark lines, and Fraunhofer

named the most prominent lines with letters of the alphabet (Fraunhofer 1817). This

notation is still in use today, for example the sodium doublet at 5889 Å is the “D” line,

while the two calcium lines at 3933 and 3968 Å are the K and H lines respectively.

Over 40 years after Fraunhofer’s lines were discovered, the connection between

spectral lines and chemical elements was made (Kirchhoff 1859; Kirchhoff & Bunson

1860). Huggins & Miller (1864) observed numerous elements in several bright stars,

and confirmed that the same elements are present in the stars as on Earth. In 1868,

Anders Jonas Ångström published a dataset of the wavelengths of lines in the solar
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spectrum, to which further lines were added by Rowland (1895). By 1891, 36 elements

had been identified in the solar spectrum (Hoskin 1999; Tassoul & Tassoul 2004).

Spectral lines can be used to decipher the composition of the photosphere of a star,

as well as provide estimates on the effective temperature and surface gravity. Different

types of stars exhibit vastly different spectra, and it is the temperature that is the

main factor in dictating which elements are present in the spectra and their subsequent

pattern of lines. In order to understand what this pattern is telling us, we first need to

classify the stars. Henry Draper first photographed a stellar spectrum in 1872, which

eventually led to a catalogue being compiled by Edward Pickering (Pickering & Fleming

1897), who along with Willamina Fleming and Antonia Maury arranged the spectra in

a continuous series. The modern classification system was introduced by Annie Jump

Cannon, and is based on the strength of the hydrogen Balmer lines. Cannon arranged

the order of spectral classes into the familiar OBAFGKM sequence, with O being the

hottest and M being the coolest (Cannon & Pickering 1912). The OBAFGKM spectral

sequence is used for both main sequence (MS) and evolved stars, with the hotter stars

being referred to as “early-type”, while the cool stars are called “late-type”. Each

spectral class is further divided with ten subclasses per group, however some classes

are not commonly used. For example, the main subclasses for G stars are G0, G2, G5,

and G8 (Gray 2008).

In this system, the Balmer lines peak in A-type stars, and other spectral line

features change smoothly between different classes. Successful investigations into the

theory behind this were implemented by Megh Nad Saha, who realised how temper-

ature and pressure play a role in stellar spectra (Saha 1921). Ralph Howard Fowler

and Edward Arthur Milne then combined Saha’s work with the Boltzmann equation,

which led to Cecilia Payne-Gaposchkin refining the spectral classification system with

a temperature scale based on chemical composition (Payne 1929; Payne 1930). This

work paved the way for modern stellar spectroscopy and the investigation of stellar

parameters.

1.3 The continuous spectrum

Fraunhofer also noted that the intensity of the light of the Sun peaked in the yellow-

green region of the spectrum. It is now known that the intensities of stars at different

temperatures peak at different wavelengths, with the radiation emanating from hot
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stars peaking at short wavelengths, while cool stars peak at long wavelengths. The

relationship between the temperature and peak wavelength is given by Wien’s Law,

λmax = 2.9 × 10−3/Teff , and the spectrum produced at a particular temperature is

assumed to be that of a perfect blackbody.

If one were able to send a spectroscope deep enough into the interior of a star,

then the resulting spectrum would almost mimic a blackbody spectrum that is free

of the “taint” of spectral lines. However, there are various processes that can remove

photons from a beam of light as it travels through the outer layers of the star, and this

can in turn change the overall shape of the spectrum in a number of different ways.

The change in the intensity (Iv) of light is given by

dIv = −Iv dτv, (1.1)

where τv is the optical depth which is given by

τv =

∫ L

0

κvρ dx, (1.2)

and x is the geometrical depth, L is the path length, and ρ is the density of the star.

The opacity, κv, also known as the absorption coefficient, is a measure of a material’s

ability to absorb or scatter radiation at a given frequency. The continuous opacity is

typically dominated by bound-free and free-free processes which cause chunks of the

spectrum to be removed via absorption. The continuous opacity varies gradually with

wavelength, thus determining the shape of the star’s continuous spectrum, called the

continuum.

Bound-free transitions (also called photoionisation) of neutral hydrogen is a strong

source of opacity from early A-type to mid F-type stars. The Balmer lines are created

when a hydrogen atom with an electron in the n = 2 energy level (where n is the

principal quantum number) receives enough energy to be excited to a higher energy

level. However, if a photon with a wavelength of 3647 Å or shorter hits the hydrogen

atom, it will become ionised. The continuum will rise gradually towards the blue end

of the spectrum, but when it reaches this wavelength, it will drop suddenly as the

photons become absorbed by the H atoms. This drop is known as the Balmer jump, or

discontinuity. Similarly, the Paschen jump occurs at 8212 Å, and the optical spectrum

in between the two is known as the Paschen continuum. This behaviour results in the

“saw-tooth” appearance of the continuous spectrum as seen in Figure 1.1.
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Figure 1.1: The solid line shows the continuous spectrum for a star of Teff = 6429 K,
which is the combination of different sources of opacity at different wavelengths. Credit:
Gray (2008). Reproduced with permission.

The negative hydrogen ion, H−, is the dominant opacity source for late-A to mid-

F, and it also contributes significantly in G-type stars. The negative hydrogen ion is

a hydrogen atom that has captured a second electron. This second electron is very

weakly bound and its ionisation energy is only 0.754 eV, meaning that a photon with a

wavelength of 16450 Å or shorter will remove the electron and cause dissociation of the

atom. The origin of the extra electron is in the ionisation of metals. Photodissociation

of H− peaks at a wavelength of around 8500 Å before gradually decreasing again, taking

a bell-shaped chunk out of the continuum. There is also a contribution to the opacity by

free-free transitions in the H− ion, which rises into the infrared and rivals the bound-free

opacity at around 14500 Å. The free-free transition takes place as the second electron

absorbs a photon that changes the type of orbit of the electron. For K and M-type stars,

the opacity is dominated by that from molecular absorption bands, although there is

also some continuous opacity present from the Rayleigh scattering of H2 molecules.

While a particular process will dominate the continuous opacity, the final shape

of the continuum will be dictated by a combination of different types, as is shown in the
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example of a 6429 K star in Figure 1.1 (Collins 1989; Carroll & Ostlie 2006; Robinson

2007; Gray 2008; Gray & Corbally 2009).

1.4 Spectral lines

While hydrogen, and to a lesser extent, helium cause the continuous opacity in stars, it

is the metallic elements that give rise to line opacity, i.e. spectral lines. The continuum

is formed deep within the photosphere, the wings of the lines are formed higher up, and

the cores of the lines are formed in the upper layers of the photosphere. If the continuous

opacity is high then there is only a limited range in the photosphere in which a spectral

line can form. This means that line will be weaker than if the continuous opacity

was low. Thus the line strength for weak lines is proportional to the line opacity and

inversely proportional to the continuous opacity. This correlation is only valid for weak

lines, as strong lines are more likely to be affected by collisional broadening (discussed

in Section 1.8.4) and microturbulence2 (vmic; discussed in Section 1.8.3.1) than weak

lines (Gray & Corbally 2009). Line opacity can also behave like continuous opacity in

the upper photosphere if many lines are present, which is known as “line blanketing”.

An absorption line is formed via a bound-bound transition, as an electron in an

atom moves up an energy level when a photon is absorbed. Similarly, an emission

line is formed when a photon is released and the electron drops to a lower level. The

amount of energy needed for an electron to be excited to a higher energy level is called

the lower-level excitation potential3, (EP) with units of eV. The difference in energy

between two levels will determine the wavelength of the spectral line based on Planck’s

equation E = hc/λ. If the atom receives more energy than the excitation potential,

then the incoming photon will either be scattered or the atom will become ionised.

The energy needed to liberate an electron completely from an atom is known as the

ionisation potential, and this is the energy difference between the ground state and

the continuum, which in this case is the area beyond the atom’s influence (Gray 2008;

Robinson 2007).

Spectral lines can be measured by means of the equivalent width4 (EW). The EW

is given as

2Also given as ξ.
3Also given as χ
4Also given as Wλ.
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EW =

∫
Fc − Fλ

Fc

dλ, (1.3)

where Fc is the flux at the continuum and Fλ is the radiant flux as a function of

wavelength. It is so called because the area of the spectral line on the plot of wavelength

versus intensity is equivalent to the width of a rectangular box where the height of the

box is equal to that of the continuum. Dividing the area within the spectral line by Fc

is done in order to have the flux measurements in units of the continuum. For spectral

lines, the full width at half maximum (FWHM) is used to describe the broadening of the

line, rather than the strength of the line (Carroll & Ostlie 2006). EW has wavelength

units, so that it is usually given in Å or nm.

The most prominent elements evident in a stellar spectrum are dependent on the

Teff of the star. This is because there is a preferred temperature range for each possible

electron transition in an atom, as given by the Saha and Boltzmann equations.

The Saha equation denotes how the spectral line strength depends on the ionisa-

tion state of the atoms present:

N(i+1)

Ni

=
2Zi+1

neZi

(
2πmekT

h2

)3/2

e−χi/kT , (1.4)

where Ni is the number of atoms, χi is the ionisation energy and i is the ionisation stage,

ne is the number density of free electrons, me is electron mass, h is Planck’s constant,

and Zi is the partition function. The partition function is the weighted sum of different

possible electron configurations depending on the ionisation state and is given as

Z =
∞∑

j=1

gje
−(Ej−E1)/kT , (1.5)

where Ej in the energy of the jth energy level, and gj is the degeneracy of that level.

The Boltzmann equation denotes the distribution of electrons in different levels

of the atoms;

Nb

Na

=
gbe

−Eb/kT

gae−Ea/kT
=
gb

ga

e−(Eb−Ea)/kT , (1.6)

where ga and gb are the number of degenerate states with energy of Ea and Eb respec-

tively, and Na and Nb are the number of atoms with energy Ea and Eb respectively.

Combining the two yields information as to what elements will peak at what

temperatures. For example, the Boltzmann equation indicates that the strength of the

Balmer lines will increase with temperature because there will be more electrons in
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the first excited state. However the Saha equation shows that at temperatures above

∼12,000 K almost all of the hydrogen is ionised, resulting in the Balmer lines peaking

at around 10,000 K. Most elements do not peak at a certain temperature in the way

that H does. This is because the resonance line, that which emanates from the ground

state, increases in strength with decreasing temperature. Another example lies in the

fact that even though the Sun has much more H than Ca, at a temperature of 5777 K

very few H atoms will be able to produce Balmer lines, whereas almost all of the Ca

atoms will be able to produce lines. This means that the strongest lines in the Sun are

the Ca ii H and K lines (Carroll & Ostlie 2006; Gray & Corbally 2009).

The Fe i abundance is sensitive to changes in Teff , but relatively insensitive to

changes in log g, meaning that Fe i can be used as a temperature indicator. This

temperature sensitivity is greater for low EP lines, and is almost negligible for high EP

lines. Thus requiring that there is no trend between EP and abundance should yield

the Teff of the star. The same principle can be applied to Fe ii lines, where in this case

it is the high EP lines that are sensitive to Teff changes, however there are not usually

a sufficient number of Fe ii lines present.

Similarly, the Fe ii abundance is sensitive to changes in log g. Thus, requiring that

the Fe i and Fe ii abundances agree should result in a value for log g. These methods

for determining the Teff and log g from Fe lines are known as excitation and ionisation

balance respectively (Takeda, Ohkubo & Sadakane 2002).

1.5 Non-local thermodynamic equilibrium (NLTE)

The majority of spectral analysis techniques (e.g. Santos, Israelian & Mayor 2004;

Valenti & Fischer 2005; Sozzetti et al. 2006; Gonzalez & Laws 2007; Sousa et al. 2008;

Bruntt et al. 2010a; Ghezzi et al. 2010; Fossati et al. 2011; Schuler et al. 2011b; Torres

et al. 2012) still assume that thermodynamic equilibrium is possible for small volumes

within the star, i.e. local thermodynamic equilibrium (LTE). This assumption is usually

made due to the computational difficulties inherent with non-LTE calculations.

In LTE assumptions, the Saha-Boltzmann equations are used to determine the

atomic level populations from the local gas temperature. However, the atomic level

population is also coupled with the radiation field, which is non-local due to photons

being scattered into other parts of the star. This means that the actual level populations

are different from those calculated using the Saha-Boltzmann equations.
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The atomic level populations in NLTE are calculated by means of a statistical

equilibrium (SE) equation, which occurs when there is a balance between radiative and

collisional population and de-population processes, i.e.

ni

∑

j 6=i

(Rij + Cij) = nj

∑

j 6=i

(Rji + Cji), (1.7)

where R and C represent the radiative and collisional rates respectively and i and

j are energy levels. Each ion, along with all of its energy levels, needs to be taken

into account as well as the rate of interactions between particles and photons, such as

excitation and ionisation of atoms. As Asplund (2005) phrases it: “In non-LTE, in

principle everything depends on everything else, everywhere else.” Rates of collision

are influenced by temperature and the number density of particles, whereas radiative

rates are influenced by the radiative field (Asplund 2005; Bergemann 2011; Mashonkina

2010a).

The departure coefficient, bi, is used to quantify the effects of the departure from

LTE on the line strength;

bi =
ni

n∗i
, (1.8)

where ni is the number density computed from SE and n∗i is the number density com-

puted from the Saha-Boltzmann equations. The departure coefficient varies depending

on the layer of formation, which means that NLTE may induce opposite effects in the

wings and core of one line. When bi is greater than 1, the line is stronger because of

extra absorbing atoms in the lower level of the transition. When bi is less than 1, the

line is weaker than in LTE because there are fewer absorbing atoms (Asplund 2005;

Mashonkina 2010c).

The abundance obtained from Fe i lines can be different depending on whether

LTE or NLTE is assumed. In particular, using LTE for metal-poor stars leads to a

large discrepancy between abundances of Fe i and Fe ii lines. This is because of both

decreasing collision rates as there are fewer electrons from metals, as well as increasing

photoionisation rates. In addition, Fe i lines with low excitation potential deviate more

from LTE than lines with high excitation potential (Mashonkina 2010b; Mashonkina

et al. 2011). NLTE effects are more prominent for Fe i than Fe ii lines, and there

can be a difference of up to 0.1 dex in abundance between the two ionisation states

(Asplund 2005; Caffau et al. 2011). Fe ii can thus be used as a more reliable indicator



12

for abundance, however this is not easy due to the paucity of lines (Meléndez & Barbuy

2009).

1.6 Model atmospheres

In order to compute a synthetic spectrum, a model atmosphere of the star is needed.

The most commonly used models are the 1D models of ATLAS (Kurucz 1993) and

MARCS (Gustafsson et al. 1975). 1D models are time independent and assume hydro-

static equilibrium. Energy is mainly transported by convection in late-type stars, and

this is approximated by the mixing length theory (MLT) (Bonifacio et al. 2012).

The MLT (Böhm-Vitense 1958) assumes that convective energy is transported by

eddies that move in the atmosphere. An eddy will move up in the atmosphere until

it reaches the same temperature as the surrounding material, at which point it will

dissolve. The height that an eddy moves up or down is known as the mixing length

parameter, α. This is a free parameter that is usually between 0.5 and 2.0 (Castelli,

Gratton & Kurucz 1997).

MARCS and ATLAS models agree very well and the abundances determined

from the two models will only differ by ∼0.04 dex (Bonifacio et al. 2009; Magic 2014).

However, for large optical depths, MARCS and ATLAS will produce slightly different

results due to a different treatment of MLT (Bonifacio et al. 2012).

The ATLAS models also have the option of including overshooting. Overshooting

is the assumption that the eddy stops moving upward when its centre is at the top

of the convection zone. Therefore part of the eddy is actually above the boundary

of the convection zone (Castelli, Gratton & Kurucz 1997). However, the inclusion of

overshooting produces an unrealistic temperature structure in the atmosphere, which

results in the abundances being overestimated by ∼0.1 dex, and this option should not

be used (Castelli, Gratton & Kurucz 1997; Bonifacio et al. 2009; Bonifacio et al. 2012).

Another variation of the MLT was proposed by Canuto & Mazzitelli (1991, 1992).

The CM theory assumes that the mixing length is equal to the distance of the nearest

stable layer, and thus has no need for the free parameter α.

Despite the simplifications and crude assumptions of 1D models, they have still

proven to be remarkably good at reproducing the stellar spectra. This has improved

with the acquisition of more precise laboratory data and improvements in opacity sam-

pling or opacity distribution functions (Magic et al. 2013).
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However, hydrodynamic, time-dependant 3D models will produce a more accurate

representation of stellar atmospheres as they can model the convection directly. The

difference between 3D and 1D models can have an appreciable effect on the strength of

synthetic line profiles. This can lead to systematic effects in abundance determination,

especially if the star is of low metallicity (Collet, Asplund & Trampedach 2007).

This is because the 1D models assume radiative equilibrium. The thermal balance

comes from the radiative heating from spectral line re-absorption of continuum radiation

and the adiabatic cooling from the expansion of upflowing gas. For solar metallicity,

there are enough spectral lines to generate sufficient radiative heating in the optically

thin layers so that the mean temperature is then close enough to that expected from

radiative equilibrium. This means that the difference between 1D and 3D is small at

solar metallicity.

However, metal-poor stars do not have enough lines and therefore the cooling

from the expansion of upflowing material dominates over the radiative heating from

the spectral lines. The 1D models do not take this into account, so that they can

overestimate the temperature by ∼1000 K in the optically thin layers (Asplund 2005;

Magic et al. 2013).

In 3D models, there is no need to change the Teff to get an agreement between

the abundances of low and high EP lines (Asplund et al. 2000). However, as the low

EP lines are more sensitive to changes in Teff , they are also more sensitive to departures

from LTE. NLTE effects are thus more prominent in 3D models compared to 1D models,

particularly for low metallicities. This is because the outer layers of the star are cooler in

3D models so that there is larger decoupling between radiation and local temperature.

The low EP lines then become stronger and more sensitive to the conditions in the

outer photosphere (Bergemann et al. 2012).

1.7 Oscillator strength

The oscillator strength, f, is a vital piece of atomic data that is needed in order to

obtain elemental abundances. It is the strength of the electron transition taking place

and it is typically written as log gf , where g is the statistical weight of the energy level

that the transition initiated from. A high value of log gf does not necessarily mean

that the spectral line will appear strong, as other factors such as temperature, pressure

and chemical composition will also influence the line strength (Wahlgren 2010).
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The f-value can be obtained once the mean lifetime of the excited level and in-

tensity of the emission line are measured. In an ideal world, the laboratory oscillator

strengths should be the most reliable, however according to Wahlgren (2010), many

lines in data sets still include oscillator strengths based on work by Corliss & Bozman

(1962). It has been shown that these values are often too high by an order of magnitude

and include scale errors that vary depending on the element. These f-values are also

partially correlated with the EP of the different transitions (Sneden & Lawler 2005;

Wahlgren 2010).

Due to the paucity of laboratory data available, an “astrophysical” log gf is often

used instead. This is done by adjusting the oscillator strengths by the value equal to

the amount needed to change the individual abundance of that line to a fixed solar

value. For example, if the abundance of a line in the Sun5 is found to be 7.55 and the

log gf is -1.50, then the log gf will be changed to -1.45 if the solar abundance is fixed to

7.50. The result is that scatter is completely reduced for the Sun as all lines now yield

the same abundance. Alternatively, a line-by-line differential analysis can be performed

with respect to the Sun, which will also eliminate the problems caused by inaccurate

oscillator strengths and reduce the scatter in the abundances (Bruntt, De Cat & Aerts

2008; Brugamyer et al. 2011).

However, this method is not without its problems. For instance, if the star being

analysed is not the same spectral type as the one where the oscillator strength was

determined from, then there will be different excitation and line blending conditions

which will create errors in the astrophysical log gf . The lines in the different stars to be

compared must be equally sensitive to abundance and broadening and this requirement

is only satisfied for a limited range of stellar values. Differential analysis should also

use the same line list between stars in order to minimise errors (Takeda, Ohkubo &

Sadakane 2002; Takeda et al. 2005b; Gonzalez 2006; Meléndez et al. 2010; Bergemann

2011; Wahlgren 2010).

Theoretical and laboratory obtained log gf values tend to disagree more with

decreasing line strengths, and this can introduce a scale error such that the deviation

between the measured and true values of log gf increases for lower values of log gf

(Blackwell & Shallis 1979; Meléndez & Barbuy 2009). This is most likely because

experimental gf values of weak lines can have errors of around 20 per cent or more, as

5Abundances and their notation will be discussed in Section 2.3.
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it is difficult to measure gf values for weak transitions (Bergemann 2011).

Uncertainties in oscillator strengths can be larger than the difference between LTE

and NLTE abundances, thus an error in the log gf could be misinterpreted as an NLTE

effect. Errors are also introduced if the meteoritic abundances are used for gf calculation,

as these have additional uncertainties (Wahlgren 2010). For instance, problems with

sample sizes and preparation between different authors can be a cause of uncertainty

in the meteoritic abundances and there is a spread in the values obtained (Lodders,

Palme & Gail 2009). Also, volatile depletion in the CI-meteorites, whose composition

closely resembles that of the Sun, makes measurements of the initial abundance of these

difficult. As such, elements need to be compared to Si rather than H, and this assumes

knowledge of the photospheric Si abundance (Asplund et al. 2009).

1.8 Line broadening

In the initial output of a spectrograph, the spectral lines do appear as narrow lines such

as the ones the Fraunhofer described. However, when spectra are plotted as flux against

wavelength, it is clear that they are not actually “lines”, but appear more rounded as

they have been broadened by many different processes. Knowledge of these processes

is essential to correctly fit the lines and to understand the underlying physics.

1.8.1 Doppler broadening

Doppler broadening occurs when atoms move at high velocities due to high tempera-

tures. As such, the emitted photon will be redshifted or blueshifted to a slightly lower

or higher wavelength, causing broadening of the line profile. This broadening will be

greater for hotter temperatures. If the velocity distribution is Maxwellian, then the line

profile is a Gaussian (Collins 1989; Gray 2008).

1.8.2 Rotation

Stellar rotation was first observed by Johann Fabricius in 1610, who noticed that spots

on the surface of the Sun were a part of the Sun, and thus that their motion is due to

the rotation of the Sun (Tassoul & Tassoul 2004). Nowadays, rotation periods (Prot)

from spots have been determined from the light curves of many stars and space-based

photometry, such as the Kepler mission, have been used to measure Prot for thousands

of active stars (Nielsen et al. 2013; Reinhold, Reiners & Basri 2013).
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The light reaching us from a rotating star will exhibit a Doppler shift, as the

approaching limb causes the spectral lines to be blueshifted and the receding limb

causes the spectral lines to be redshifted. As we cannot resolve the stellar discs, we

see the combined light from the star and the Doppler effect is averaged across the

line profile. This has the effect of broadening the line profile by causing the line to

become more rounded without changing the EW of the line. The amount of rotational

broadening also depends on the inclination of the stellar rotation axis relative to the

line of sight (i). For instance, a star viewed equator-on will have the maximum amount

of rotational broadening possible in the spectral lines, but a pole-on star will have no

visible rotational broadening. Therefore the rotation inferred from spectroscopy is the

sky-projected rotational velocity, v sin i, and is thus a lower limit on the rotational

velocity at the equator (Gray 2008).

The notion that stellar rotation could broaden spectral lines was first suggested

by Abney (1877), and Struve (1930) used this knowledge to show that early-type stars

rotate much faster than late-type stars. The explanation for this was not suggested

until Schatzman (1962) realised that late-type stars lose angular momentum due to

magnetised winds. This is because late-type stars have convective envelopes and thus

exhibit stellar activity.

Stellar rotation will be discussed in more detail in Chapter 5.

1.8.3 Velocity fields

The convective motion of the outer layers of cool stars can have a substantial effect on

the shape of spectral line profiles. Rosseland (1928) was the first to suggest that “eddy

motion” should be taken into account in stellar models. He attributed this motion to

turbulence in the photosphere, a term which has unfortunately persisted. The velocity

fields that reshape spectral lines have little to do with turbulence, and in the context

of stellar spectroscopy turbulence is taken to mean non-thermal velocity fields (Gray

1978).

It is difficult to adequately model these velocity fields in 1D spectra, which led

to the introduction of “microturbulence” and “macroturbulence” as a way to broaden

the spectral lines in a way that simulates velocity fields. The size of the microturbulent

“cell” is defined as being less than the mean free path of a photon. This means that a

photon will be absorbed by other microturbulent cells before eventually leaving the star.

Macroturbulence represents velocities that occur where the cell is larger than the unit
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optical depth, i.e. the photons remain within the cell from the time they are created

until the time that they are emitted from the star. This division between micro and

macroturbulence is crude, as in reality the motion would occur over a range of scales

(Mucciarelli 2011; Asplund et al. 2000; Nordlund, Stein & Asplund 2009).

1.8.3.1 Microturbulence

The velocity distribution of vmic is assumed to be Gaussian, since the small values of less

than ∼2 km s−1 means that it is impossible to measure the shape of this distribution as

it is smaller than the other components of line broadening. Microturbulence is included

in the synthetic spectrum by means of adding it in quadrature to the thermal Doppler

broadening, which still results in a Gaussian. Microturbulence is unlikely to actually

be caused by a small scale velocity field, and is more likely to be caused by differential

velocities along the line of sight (Landstreet 2007; Gray 2008).

Struve & Elvey (1934) found that the abundance derived from strong lines differed

from that calculated using weak lines. In order to bring the abundances into agreement,

they introduced vmic so that the strong lines would be spread over a larger wavelength

interval and the saturation reduced. This has the effect of increasing the total absorp-

tion and changing the EW so that the strong lines should now give the same abundance

as the weak lines. Therefore, by assuming that all lines have the same abundance, it is

possible to determine the vmic for a star. This is done by plotting abundance against

EW, and changing the vmic until the correlation coefficient is negligible (Magain 1984;

Mucciarelli 2011).

According to Magain (1984), this can result in systematic errors of the vmic due

to random errors in the EWs. The errors between EW and abundance are correlated

so that a positive error on the EW will result in an overestimate of the abundance and

vice versa. This means that a point that moves to the right in the plot will also move

upwards, and one that moves to the left of the plot also moves downwards, which in

turn leads to a positive trend in the slope of the line. Thus the vmic has to be increased

in order to remove the slope. Magain also noted that numerous lines aren’t necessary

for the vmic calculation, as long as the ones that are selected are of good quality.

Alternatively, vmic can be determined by using a Blackwell Diagram (Blackwell &

Shallis 1979; Blackwell, Shallis & Simmons 1982). The abundance of a line required to

produce the measured EW is computed for different values of microturbulence and this
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is plotted as a curve for each spectral line. The slope is different for each spectral line,

and the point of intersection of the lines should give the abundance and microturbulence

of the star in question. Saffe & Levato (2004) showed that the abundances for several

elements agree with the abundances derived from classical methods for a number of

stars. Only weak and medium lines should be used, as strong lines will not work with

the Blackwell diagram. Both the oscillator strengths and the EWs should be of the

highest accuracy possible in order for a clear solution to be achieved.

Spectral analysis often assumes that we understand the Sun, and if a method

produces the known solar parameters, then it is valid. However, not all solar parameters

are known with great precision and vmic is one of them. Various values of solar vmic exist

throughout the literature, as shown in Table 1.1, and this is partially due to the type

of spectrum used. Solar spectra can be taken of the disc centre, or over the integrated

disc. The vmic obtained from the integrated flux spectra will be greater than that from

disc centre spectra, as there are horizontal velocities near the solar limb (Gadun 1994).

As flux spectra contain disc averaged rotation and velocity fields, as well as centre-to-

limb variations, they are more appropriate when comparing the Sun with other stars

(Wallace et al. 2011).

Table 1.1: Solar vmic values

vmic (km s−1) Type Ionisation state Reference
0.81 ± 0.20 Disc centre Fe i Gadun (1994)
0.86 ± 0.04 Disc centre Fe ii Gadun (1994)
0.85 Disc centre Blackwell, Booth & Petford (1984)
1.11 ± 0.14 Disc integrated Fe i Gadun (1994)
1.20 ± 0.10 Disc integrated Fe ii Gadun (1994)
1.18 ± 0.03 Disc integrated Blackwell et al. (1976)
1.24 Disc integrated Bean et al. (2006)

1.8.3.2 Macroturbulence

Unlike microturbulence, macroturbulence does not alter the EW of the lines. If individ-

ual spectra from each macro “cell” could be obtained, they would be Doppler shifted

by the velocity of that particular cell. However, as multiple cells are viewed simultane-

ously because the stellar disc is unresolved, they become blurred and the overall effect

is to broaden the line profile (Gray 2008). Macroturbulence mostly represents the ve-

locity dispersion of granulation. Some of the macroturbulent velocity is from acoustic
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oscillations, although these velocities are an order of magnitude lower than those from

granulation (Asplund et al. 2000; Gray 2009).

The radial-tangential (RT) macroturbulence model was developed by Gray (1975,

1977b, 2008). In this model, it is assumed that the velocity distribution is Gaussian

and the velocity vectors are either along the stellar radius or tangential to the surface.

The need for both a radial and tangential component is necessary as we know that

a convective cell will move vertically as it rises and falls, and that horizontal motion

occurs between the rising and falling material. The RT macroturbulence is calculated

by integrating across the stellar disc and the flux is given by

Fv = πIv*

[
2AR∆λ

π1/2ζ2
R

∫ ζR/∆λ

0

e−1/u2

du+
2AT ∆λ

π1/2ζ2
T

∫ ζT /∆λ

0

e−1/u2

du

]
, (1.9)

where Iv is the intensity, * represents a convolution, A is the fraction of the surface area

of the stellar disc that has radial (R) or tangential (T) motion, ζ is the macroturbulence

dispersion, u = ζR cos θ/∆λ in the first integral, u = ζT sin θ/∆λ in the second integral

and θ is the angle between our line of sight and the normal to the stellar surface.

From this, it can be seen that the radial and tangential components behave in

the same manner. This treatment of macroturbulence assumes that the lines in the

disc integrated spectrum are symmetric, as it doesn’t account for the temperature and

velocity differences that give rise to the asymmetric profiles seen in observed spectra.

Including rotation and linear limb darkening in the line profile gives

Fv = H(λ)*

∮
I0
c (1− ε+ ε cos θ)Θ(∆λ−∆λR) cos θdω, (1.10)

where H(λ) is the thermal profile (including microturbulence), ε is the limb darkening

coefficient, Θ is the macroturbulence velocity distribution, and ∆λR is the rotational

Doppler shift.

The disc integrated profile of macroturbulence is not a Gaussian, and has broader

wings and a “cusp” shape to the core. This shape is evident in spectral lines, assuming

the v sin i is low enough to preserve the shape. This can be seen in Figure 1.2, where a

synthetic line of Fe i 5538 Å in the Sun is shown for three different broadening scenarios.

When v sin i is set to zero, the “cusp” shaped core and broad wings are evident for vmac

= 8 km s−1. For vmac of zero and v sin i = 8 km s−1, it is obvious that v sin i has the effect

of broadening the line with a rounded core, and there is no additional broadening in
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the wings. The combination of both profiles, with vmac and v sin i both having 8 km s−1

is also shown. For higher v sin i values, the vmac signal becomes washed out.
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Figure 1.2: Line profile shapes of vmac and v sin i. The “cusp” shaped core and broad-
ened wings of the pure macroturbulent broadening is obvious.

As with vmic, there are many different solar vmac in the literature, some of which

are shown in Table 1.2. Some of this can be explained by the choice of lines used. The

Takeda (1995) value is for strong lines, whereas the Gray (1977b) value is for weak lines.

Weak lines are formed deeper in the photosphere and thus have higher macroturbulence.

Table 1.2: Solar vmac values

vmac (km s−1) Reference
1.9 Bean et al. (2006)
2.3 ± 0.4 Takeda (1995)
2.6 ± 0.3 Sheminova & Gadun (1998)
2.7 Saar & Osten (1997)
3.5 ± 0.2 Gonzalez (1998)
3.8 Gray (1977b)
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1.8.3.3 3D models

While 1D models require microturbulence and macroturbulence to emulate velocity

fields, 3D models have no need for these adjustable parameters as convective energy

transport can be included directly in the models. 3D models can fit the depths, shifts,

and asymmetries of the synthetic lines well with the observed spectrum (Asplund et al.

2000; Asplund 2007; Bigot & Thévenin 2006).

Even though 3D models don’t require vmic and vmac they can still be used to

extract these parameters, as a test of the reliability of the models (Steffen, Ludwig &

Caffau 2009). Steffen, Caffau & Ludwig (2013) found that the theoretical vmic values

determined from the 3D models are less than the actual values for the Sun and Procyon.

Higher resolution models increase the vmic, but it still falls short of the actual value.

This suggests that the 3D models still can’t model the velocity fields sufficiently, and

that a resolution-dependent 3D vmic might be needed in addition to the large-scale

hydrodynamical velocity fields. This is in disagreement with Asplund et al. (2000), but

in agreement with Allende Prieto et al. (2002), who found that the iron abundance

increases with lines strength in Procyon, which can also be explained by vmic being

underestimated.

1.8.4 Line damping

Line “damping” occurs from interactions at the atomic level. This type of broaden-

ing can have a subtle, but important, effect on the line profile shape and damping

parameters are more enhanced in strong lines (Ryan 1998).

1.8.4.1 Natural broadening

Natural line broadening, also known as radiative damping, occurs due to uncertainties

in the lifetimes of energy levels. Electron transitions between different levels do not

result in the photon being absorbed or emitted at an exact wavelength. Instead, the

wavelength is dependent on how long the electron spends in a particular level. Electrons

that spend a short amount of time in an energy level have a very uncertain energy,

whereas electrons that spend a long time in an energy level have a better defined

energy. The natural damping can be expressed as combination of the widths of the

separate energy levels δνi and δνj so that the overall FWHM of natural broadening is

given by
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δνij = (2πτi)
−1 + (2πτj)

−1, (1.11)

where τ is the mean lifetime of the level. If the lower level is the ground state, then the

broadening from δνi will be negligible as the lifetime of the ground state is infinitely long.

The upper level will have a finite lifetime, and will thus have a spread in frequency which

causes broadening. Broadening is stronger for lines with a high excitation potential, as

there is a high level of uncertainty in the wavelength of the emitted photon (Thorne

1988; Gray 2008; Wahlgren 2010). At stellar temperatures, the broadening caused by

Doppler motion is much larger than that due to natural line broadening (Collins 1989;

Gray 2008).

1.8.5 Pressure broadening

Pressure broadening, also known as collisional broadening, is caused by a change in

energy due to a collisional interaction at the atomic level. This change in energy is

proportional to Rn, where R is the distance between the absorber and the perturber

and the integer n depends on the type of interaction. The change in energy can be

converted into a change in the spectrum frequency ∆ν = Cn/R
n, where Cn is the

interaction constant. Cn needs to be measured in the laboratory or calculated for each

transition, as well as for each type of interaction, and it isn’t always well known (Collins

1989; Gray 2008).

1.8.5.1 Stark effect

Stark broadening is one type of collisional broadening, where neighbouring charged

particles create an external electric field, thus perturbing energy levels of an atom.

This will cause the atom to temporarily be in an electric field. The linear Stark effect

has n = 2, and as such the distance between the atom and the perturbers will have

the longest range compared to other types of collisional broadening. The perturbers

are protons and electrons and it is usually hydrogen lines that are most affected by

the linear Stark effect. The quadratic Stark effect has n = 4, and it affects most lines,

particularly in hot stars. The perturbers in this case are ions and electrons (Gray 2008).
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1.8.5.2 Resonance broadening

Resonance broadening occurs when an interaction occurs between two neutral atoms;

one an excited atom and the other in the ground state, where the excited atom has a

strong transition to the ground state and the perturber is in the ground state. It is

also known as self-broadening since the atom and the perturber must be of the same

species. Resonance broadening has n = 3, and it is an important broadening factor in

late-type stars. It influences the H lines, and affects the Hα line more than Hβ (Collins

1989; Molisch & Oehry 1998; Allard et al. 2008; Mashonkina 2010d).

1.8.5.3 Van der Waals broadening

Van der Waals (VDW) broadening occurs regardless of the type of atom or its ionisation

state (Molisch & Oehry 1998) and it is one of the most prominent broadening processes

of metallic lines in cool stars, after thermal broadening and microturbulence are ac-

counted for (Ryan 1998). The perturber is neutral hydrogen, the atoms of which are

four times more common than electrons in stars with a Teff < 10,000 K. The perturber

becomes polarised, i.e. becomes an induced dipole, and it is this induced electric field

that changes the energy levels of the atom. The broadening of strong lines is dominated

by this process (O’Mara & Barklem 2003; Gray 2008; Mashonkina 2010d).

The ABO theory (Anstee & O’Mara 1991; Anstee & O’Mara 1995a; Anstee &

O’Mara 1995b; Barklem & O’Mara 1997; Barklem, Anstee & O’Mara 1998; Barklem &

Aspelund-Johansson 2005), uses calculated cross sections to determine the width of the

lines. These are given as a function of the principal quantum number of both the upper

and lower levels of the transition (Ryan 1998; O’Mara & Barklem 2003; Mashonkina

2010d). ABO theory allows strong lines to be used for abundance calculations, assuming

accurate log gf values exist for those lines (Doyle et al. 2005). Abundance analyses

typically rely on weak lines as they aren’t affected by microturbulence, whereas the

broad wings of strong lines require knowledge of collisional broadening. However, VDW

broadening can still affect weak lines (Ryan 1998).
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1.8.6 Additional broadening factors

1.8.6.1 Zeeman broadening

There are other atomic mechanisms that can result in line broadening. If a magnetic

field is present, electron transitions become complicated as the magnetic quantum num-

ber is no longer degenerate. Instead of one line being produced, the line is split into

multiple components as numerous transitions now take place. This is known as the

Zeeman effect. The width that the lines are split by is related to the strength of the

magnetic field and the number of lines visible depends on the direction the atom is

viewed in (Robinson 2007). Zeeman broadening mainly effects stars that are cooler

than spectral type G6 (Gray 1984b), however the splitting is usually small compared to

other line broadening factors, meaning that it cannot usually be resolved in solar-like

stars (Robinson 1980). On the Sun, the inhomogeneous magnetic fields average across

the disc, which makes them rather elusive. Cool stars that are noticeably active with

prominent spots are also likely to be fast rotators, and the rotational broadening then

washes out the Zeeman effect. Zeeman broadening can still be detected as the Zeeman

effect introduces a line shift that depends on the Landé g-factor, the line wavelength,

and the strength of the magnetic field (Hartmann 1987). The dimensionless Landé g-

factor describes the magnetic sensitivity of the line and can be measured in laboratory

experiments, with reasonable reliability, and can also be computed where necessary

(Romanyuk 1997).

1.8.6.2 Hyperfine splitting and isotope shift

Hyperfine splitting (HFS) is also unresolved and causes some lines to be broadened. The

lines become desaturated so that the core appears to be flattened. HFS occurs when

energy levels are perturbed by the interaction between the nuclear magnetic moment,

caused by the intrinsic spin of the protons and neutrons in the nucleus, and the magnetic

field at the nucleus produced by the angular momentum of the electrons (Thorne 1988;

Wahlgren 2005). HFS is more prominent in elements with an odd atomic number, such

as Mn and Co, which have a large atomic mass and large nuclear spin respectively

(Bergemann 2011).

The mass and/or volume of the nucleus influences the energy levels, so that com-

parable transitions in different isotopes will result in a small difference in energy, known

as isotope shift. Lines of different isotopes will be displaced as each energy level is shifted

by a different amount (Thorne 1988).
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2 Obtaining stellar parameters

While we can conceive of the possibility of determining their shapes, their sizes,
and their motions, we shall never be able by any means to study their chemical
composition...I regard any notion concerning the true mean temperature of the
various stars as forever denied to us.

- French philosopher Auguste Comte, 1835

While spectroscopy can be used to extract some stellar parameters, other techniques

are also needed in order to explore the full range of data than can be obtained from

the stars. This chapter will outline the parameters that we can obtain from stars, and

the methods in which they are determined.

2.1 Effective temperature

The effective temperature is the surface temperature of a star assuming that it is a

blackbody radiating at its measured luminosity. The Teff can be calculated from the

Stefan-Boltzmann relationship if stellar luminosity (L) and radius (R) are known;

Teff =

(
L

4πR2σ

) 1
4

, (2.1)

where σ is the Stefan-Boltzmann constant.

However, luminosity and radius are not known for many stars, and it is usually

the flux and angular diameter that can be measured from Earth (Boyajian et al. 2012).

The Teff can thus be calculated from the angular diameter and bolometric flux via

Fbol(Earth) =
θ2

4
σTeff

4. (2.2)

As Teff is twice as sensitive to angular diameter as to the flux received at Earth,

it is important to get accurate angular diameter measurements (Smalley et al. 2002).

However, this can be difficult for dwarfs given their small radii, and so only a small

number of stars have angular diameters measured to a level of precision high enough

to obtain a fundamental Teff for the star (Casagrande et al. 2010).

An accurate Teff is important for many reasons. It is essential in order to have

accurate abundance determinations, as abundance estimates are sensitive to the value

of Teff used (Gonzalez 2006; Kovtyukh et al. 2003). Stellar activity can alter the mea-

sured temperatures of stars, due to the presence of spots and faculae (Biazzo et al.
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2007), therefore high precision temperature measurements can help rule out any false

detections of low mass planet candidates which may have been caused by starspots

(Kovtyukh et al. 2003). Thus it is important that an accurate value of Teff be known

in order to decipher other stellar parameters (Fischer & Valenti 2003).

As direct determinations of Teff are difficult to obtain, a wide variety of indirect

methods based on spectroscopy and photometry exist in order to estimate values for

Teff .

2.1.1 Multicolour photometry

The shape of the continuous spectrum of a star is different depending on its spectral

type, and as such it can be used to determine Teff . Multicolour photometry uses filters

that measures the light within a certain wavelength range, making it possible to create

colour indices where the difference is taken between the magnitudes at different wave-

lengths. There are many different photometric systems, for example Johnson-Cousins

UBVRI (Johnson & Morgan 1953) and Strömgren ubvy (Strömgren 1966).

The difference in a star’s magnitude between the blue (B) and visual (V) wave-

lengths will give the (B − V ) index. As a hot star is brighter at short wavelengths,

the B magnitude will have a smaller value than the V magnitude, making the index

negative or neutral for hot stars, and positive for cool stars. The (B − V ) index is

sensitive to temperature as it measures the slope of the Paschen continuum. However

the temperature determined from the (B − V ) index depends on whether the star is a

giant or dwarf and whether it is metal-rich or metal-poor (Gray & Corbally 2009).

2.1.2 Infrared flux method

One method of determining Teff which relies very little on model atmospheres is the

InfraRed Flux Method (IRFM; Blackwell & Shallis 1977; Blackwell, Shallis & Selby

1979; Blackwell, Petford & Shallis 1980). The bolometric flux at the surface of a star,

Fbol = σTeff
4, is not directly measurable, and instead we have to use the bolometric

flux as is seen on Earth which relies on the angular diameter, i.e. using Equation 2.2.

If the photometry doesn’t cover the entire range of flux, then model atmospheres can

be used to compute this part of the flux which can account for between 15 to 30 per

cent of the total flux (Casagrande, Portinari & Flynn 2006).

The IRFM breaks the degeneracy between angular diameter and temperature by

using the fact that the flux received on Earth in the infrared, FIR(Earth), is relatively
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insensitive to temperature,

FIR(Earth) =
θ2

4
φ(Teff , log g, [Fe/H]), (2.3)

where φ (Teff , log g, [Fe/H]) is the flux at the surface of the star. The ratio of

Fbol/Fbol(Earth) eliminates the angular diameter term, and yields the observational ratio

(Robs). The theoretical ratio, Rtheo = σTeff
4

φ
is calculated at a given wavelength using

a grid in Teff , log g and [Fe/H] space, where the Teff is an initial estimate. Interpolat-

ing over the grid of model atmospheres generates a synthetic spectrum, which is then

used to obtain the bolometric correction by estimating the flux beyond the range of the

photometry.

By equating both ratios as in Equation 2.4, it is possible to rearrange for Teff and

there is no longer a dependence on angular diameter. The angular diameter can then be

determined separately (Blackwell, Petford & Shallis 1980; Ramı́rez & Meléndez 2005;

Casagrande, Portinari & Flynn 2006).

Fbol(Earth)

FIR(Earth)

=
σTeff

4

φ(Teff , log g, [Fe/H])
(2.4)

The Teff derived from the IRFM can be verified by comparing the resulting an-

gular diameter with direct measurements, such as those obtained via interferometry.

Ramı́rez & Meléndez (2005) found a good agreement between their IRFM diameters

and the fundamental values for giant stars, although this agreement broke down at

temperatures below 3800 K. This comparison is more difficult to perform with dwarf

stars, however there does still seem to be an agreement with the angular diameters

using solar metallicity stars.

Disadvantages of the IRFM include sensitivity to cool companions, which has the

effect of lowering Teff for the primary star. This is because the cool companion has more

flux in the infrared region, which lowers the flux ratio (Smalley 2005). Other sources

of error come from the method’s dependence on photometry and metallicity values,

differences in the absolute flux calibrations, and on which types of model atmospheres

are used (Casagrande, Portinari & Flynn 2006). The IRFM can also fall victim to

interstellar reddening, which can increase the Teff by 50 K for an extinction of 0.01

mag. However stars within 70 parsecs should have negligible reddening (Casagrande

et al. 2010).
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2.1.3 Balmer lines

The Balmer lines can serve as an important Teff indicator for stars below 8000 K, as

the core to wing transition of the lines are sensitive to temperature changes, but not to

changes in other parameters (Mashonkina 2010d). Above this temperature, the Balmer

lines become dually dependent on gravity and are no longer reliable as temperature

indicators. However, if Teff is obtained via an independent method, the lines can still

play a role in log g determinations (Smalley 2005; Gray 2008). Using NLTE calculations

for the Balmer lines results in the core being strengthened by a significant amount,

as well as a slight weakening of the core to wing transition. Differences in derived

temperatures between LTE and NLTE are around 100 K for Hα and around 10 K for

Hβ (Mashonkina 2010d).

The Balmer lines are very broad in A, F and G-type stars and this can make

continuum determination and fitting difficult as metal lines are prominent. Continuum

determination is made more tedious when using echelle spectra, as the overlapping

orders are merged. This affects Hα more than Hβ (Bruntt et al. 2010a). A single order

spectrograph would produce more appropriate spectra for Balmer line measurements.

As the Hα line is formed above the convection zone in stars later than mid A-

type, and the Hβ line is formed just within the CZ, the Teff from the Balmer lines is

influenced by convection. This causes a difference in temperature for the two lines.

Hα temperatures are typically between 100 and 200 K hotter than Hβ temperatures at

around 6000 K. However this discrepancy decreases for hotter temperatures (Gardiner,

Kupka & Smalley 1999).

2.2 Surface gravity

The surface gravity of a star is the measure of acceleration due to gravity on the

surface of a star, and it is related to the radius (R) and mass (M) of the star by g =

GM/R2, where G is the gravitational constant. Surface gravity is usually expressed in

logarithmic form log g = logM - 2 logR + 4.437, where M and R are in solar units and

log g is expressed in cgs units.

Stars swell as they evolve off the main sequence, and this increase in radius

will decrease the pressure and lower the surface gravity. Main sequence stars have

a much greater pressure due to their smaller radii, which results in more frequent

atomic collisions than their evolved counterparts. The multitude of collisions results
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in electrons having less well defined energies, and this will broaden the wings of strong

spectral lines. Such broadening is absent in giant stars, making it possible to tell the

difference between a dwarf and giant of the same temperature and spectral class. The

pressure broadened lines are also much stronger in late-type dwarf stars than early-type,

once again due to the smaller radius.

2.2.1 Pressure broadened lines

The pressure-sensitive wings of the Na i D lines at 5889 and 5893 Å can be used for

log g determination, as they persist over a large temperature range. It is best to fit the

profiles of the lines rather than measure the EWs, as it is difficult to measure the EW

accurately for strong, blended lines (Gray 2008). The surface gravity can be determined

from Mg i b lines at 5167, 5173 and 5184 Å, but these lines can be blanketed with MgH

and C2 lines (Fischer & Valenti 2005). It is also difficult to normalise the continuum

of the Mg i b lines because the lines are wide and two of them are too close together to

define the continuum. The red wing (at around 5160 Å) has no discernible continuum,

particularly for stars earlier than K0, meaning that only the 5184 Å line can be used

with any confidence. Bruntt et al. (2010a) use the Ca i lines at 6122, 6162, and 6439 Å,

as the continuum can be obtained easier than with Mg i b lines. The Ca i lines are also

narrower and there are more weak lines present compared to Na or Mg, which allows

the abundance to be determined with greater confidence.

2.2.2 log g from planet transits

The log g can be indirectly obtained from the transit photometry, and this can have

greater precision than its spectroscopic counterpart. This method relies on determining

the stellar density, which can be calculated once the normalised separation between the

star and the planet, a/Rs, and the period, P, are known from the transit data;

Ms

R3
s

=
4π2

GP 2

(
a

Rs

)3

− Mp

R3
s

, (2.5)

where a is the semi-major axis. The left hand side of the equation corresponds to the

stellar density and the first term on the right hand side includes only measurable prop-

erties. The second term involves two unknown parameters, but this term is neglected

as it is two to three orders of magnitude smaller than the first term for the majority

of transiting exoplanets. This then leads to the stellar density being determined di-

rectly from observable parameters. Density (ρ), like surface gravity, is also a measure
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of stellar evolution. Sozzetti et al. (2007) use the parameters that are directly observed

to compute the isochrones (see Section 2.5.1 for a further discussion on isochrones).

That is, they use a/Rs rather than using the density. The theoretical values of a/Rs

for the isochrones were calculated by rearranging the above equation and this was then

compared with the actual value from the transit. Once mass and radius are determined

from the isochrones, the log g can be calculated.

As using a/Rs is more precise than using the spectroscopic log g, determining the

ages of stars via isochrones also has increased precision for this method (Sozzetti et al.

2007). Measuring ρs directly from the transit light curve also has the advantage of

revealing whether the host star is a dwarf or a giant, without the need for spectroscopy

(Seager & Mallén-Ornelas 2003).

2.3 Chemical composition

Spectroscopy is the tool for determining the abundances of elements that are present in

stellar photospheres. The abundance can be measured via synthesis by adjusting the

abundance and other parameters until the synthetic spectrum agrees with the observed

one. The abundance can also be determined from the EWs via the curve of growth.

This is the rate at which the abundance increases with increasing EW. The abundance

increases linearly with EW for weak lines, and as the line core saturates, the curve of

growth will flatten out. The curve will then start to rise again for strong lines as the

line wings are broadened by damping parameters (Gray 2008).

While it is theoretically possible to gain an accurate elemental abundance from

a single spectral line, it is important to measure several good lines for each element.

This is because the unreliability of atomic data creates an inevitable scatter in the

abundance values for each element, so taking the result of only one line could easily

give an incorrect abundance. The iron lines that adorn spectra of cool stars are more

numerous than any other element, making it easier to select numerous non-blended

lines. This is why the stellar metallicity is often quoted using just the iron abundance.

There are many other elements present, although most only have a sparse availability

of suitable lines.

Stellar abundances (A) are given as the total abundance as a fraction of hydrogen.

They are more typically written as log(A) + 12, where log(A) is the number ratio of

the element with respect to hydrogen, log(Nel/NH). There are several other ways of



31

denoting the abundance, for example iron can be written as (Fe/H), logA(Fe), logAFe

or log εFe.

Abundances can also be written relative to the Sun, and in this case square

brackets are used, i.e. [Fe/H]. The overall metallicity of a star can be written as [M/H],

which is typically in agreement with [Fe/H] though it can differ by up to 0.1 dex. For

instance, Holmberg, Nordström & Andersen (2007) found that [Fe/H] was higher than

[M/H] by an average of 0.10, 0.09 and 0.03 dex for F, G and K stars respectively.

Metallicity can also be determined via Strömgren photometry, by using the metal-

licity index index m1 = (v− b)− (b−y). This measures line blanketing in the spectrum

caused by a cluster of metal lines around 4100 Å, and is sensitive to the overall metal-

licity of the star (Bessell 2005; Árnadóttir, Feltzing & Lundström 2010).

2.4 Mass and radius

The mass of a star is one of its most important fundamental parameters. The initial

mass of a star determines what type of star it will be, how long it will live, and how it

will die. The mass of a star can only be determined directly if it is in a suitable binary

system, due to the gravitational interplay between the two stars, and this is known as

the dynamical mass.

Studies of binaries can also yield the stellar radius, as can other methods. Knowl-

edge of the radius can be put to good use by differentiating between dwarfs and sub-

giants. For example, Baines et al. (2008) used accurate radius measurements to con-

clude that some stars that has previously been classified as dwarfs have larger radii

than initially thought, and thus are actually beginning to evolve off the main sequence.

2.4.1 Masses and radii from binaries

There are three situations in which the dynamical mass can be extracted: in a visual

binary with a known parallax, a visual binary with radial velocity (RV) observed over

a complete orbit, or in a double lined eclipsing binary. Visual binaries are more com-

mon than double-lined eclipsing binaries, with several thousand pairs being catalogued

(Malkov et al. 2012).

Eclipsing binaries (EBs) serve another function as the fractional radii, which are

the radii divided by the semi major axis, can be extracted from the light curve. The

linear radius can be determined from EBs without knowing the distance, however the
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distance is still needed to convert this to angular radius in order to find the Teff (Gray

2008; Southworth 2012a).

Currently only a few hundred stars have a mass and radius determined directly

from eclipsing binaries that is known to less than three per cent error. If the errors are

larger, then the range of different stellar models that will fit the data is quite extensive,

making small errors in mass vital for delving into stellar evolution. Torres, Andersen

& Giménez (2010) obtained accurate masses and radii of 190 stars which are in binary

systems and then derived calibrations for both M and R based on the Teff , log g and

[Fe/H]. The values obtained from the calibration are in agreement with the observed

values with an accuracy of a few per cent. Enoch et al. (2010) have substituted log g in

the Torres relation with log ρ, determined from the transit light curve, in order to find

the stellar masses and radii. Gillon et al. (2011) and Southworth (2011) also computed

similar calibrations with log ρ.

2.5 Age

Stars can be as deceptive as people when it comes to revealing their age. Stellar ages

are impossible to determine directly, and the resulting model dependence makes some

of the results questionable. The only stellar age that we know with a great deal of

certainty is that of the Sun. The age of the Sun is derived from the rate of decay of

elements in meteorites, and is not determined from observable properties. Thus this

method of age determination cannot be applied to other stars (Soderblom 2010).

Knowing the age of the star is of vital importance to understand its evolution

and put other stellar parameters in perspective. For instance, putting age constraints

on groups of stars can build a picture of Galactic evolution. A knowledge of the age

of the star can offer perspective on the dynamics and migration of planets (Soderblom

2010). For example, the age of a star can be important for the search for life on other

planets, as an old star could indicate a dying biosphere (O’Malley-James et al. 2013).

2.5.1 Evolutionary models

The location of a star in the Hertzsprung-Russell (HR) diagram can signify its age, as

its luminosity increases with time, and the change in luminosity is related to a change

in temperature. As mass is also related to luminosity, the HR diagram can also be used

extract information on the stellar mass.
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Theoretical isochrones can be used to determine stellar ages if the Teff is plotted

against a measure of stellar evolution, such as luminosity or absolute magnitude. How-

ever, these parameters require a known distance, so sometimes it is preferable to use

log g or log ρ instead. It is also essential to know the metallicity, as two stars of the

same age and mass with differing metallicities could either be on the MS or headed

towards the giant branch (Lachaume et al. 1999; Nordström et al. 2004). There are

numerous grids of evolutionary models available for calculating isochrones, for example

some of the most widely used include the Padova (Girardi et al. 2000) or Y 2 (Yi et al.

2001; Demarque et al. 2004) models.

Determining ages via isochrones is more suited towards early-type stars, which

have a rapid evolution, or late-type stars that are at least ∼1/3 of their MS lifetimes.

Late-type dwarfs evolve along the ZAMS for the first part of their lives, and not only

do the isochrones converge at this part of the HR diagram, but they are also unevenly

spaced, making it very difficult to place a star correctly (Lachaume et al. 1999; Nord-

ström et al. 2004; Soderblom 2009; Soderblom 2010).

Observational errors propagate through to age errors, with errors in Teff and

metallicity creating uncertainties (Holmberg, Nordström & Andersen 2007). Even if

a distance measurement is available to calculate absolute magnitude or L, this mea-

surement can still be plagued with errors (Barnes 2007; Chanamé & Ramı́rez 2012).

Observational errors have a tendency to push MS stars onto the subgiant region, which

can lead to a general overestimation of ages (Nordström et al. 2004).

2.5.2 Gyrochronology

Skumanich (1972) noticed that the rotation period spindown of stars is related to their

age t by Prot ∝ tb, where b is -0.5. The loss of angular momentum is due to the mass

lost from stellar winds (Mamajek & Hillenbrand 2008). This relationship is sensitive to

mass (Cardini & Cassatella 2007), however most calibrations tend to be performed using

colour instead of mass for convenience. This technique was dubbed gyrochronology by

Barnes (2007). Gyrochronology could be more accurate than isochrone ages for stars

of a given mass on the MS, and it has the advantage that it does not require a distance

measurement.

Barnes (2007) identified the mass dependency of a number of open clusters and

then determined the rotation rate to be P (B−V, t) = f(B−V )g(t), where f(B−V ) is

the mass dependence and g(t) is the age dependence. Mamajek & Hillenbrand (2008)
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fitted the Barnes relation to the Pleiades and Hyades clusters and noted that the Hyades

periods are overestimated by up to 50 per cent. As such, they recalibrated the Barnes

relation using rotation data from different sources, and updated the fitting coefficients to

get a better agreement with the clusters. Soderblom (2010) recommends the Mamajek

& Hillenbrand (2008) calibration over the Barnes (2007) one. However, Soderblom

(2010) also cautions that both calibrations will result in an asymmetric age distribution

that implies that the rapid rotators are younger than they actually are.

There are some other problems inherent with gyrochronology. The use of rotation

periods is biased towards young stars that are active enough to show variability due to

spots. It is also difficult to test gyrochronology for older stars, as open clusters with

ages greater than ∼500 Myr are uncommon and distant (Cardini & Cassatella 2007;

Soderblom 2010).

2.5.3 Chromospheric activity

Rotation is not just correlated with age, it is also connected to the chromospheric

activity (Noyes et al. 1984), meaning that activity can also be used to calibrate the

age of stars. As the rotation rate of a star slows down with time, the activity will also

diminish. One of the most commonly used activity indicators is the emission in the

cores of the Ca ii H and K lines. They are used to calculate the activity index, logR′HK,

by measuring the Ca ii H and K emission relative to the overall stellar flux. This age

indicator is only suitable for late-type stars, and the ages determined from the Ca ii

lines agree with the rotation ages, which is not surprising as rotation is the main cause

of activity in dwarfs (Lachaume et al. 1999; Nordström et al. 2004).

A single, low resolution spectrum can be used to determine the mean activity from

the Ca ii H and K lines, which is advantageous over trying to determine Prot. The Ca ii

reversal can also still be observed in stars which are too old to have Prot measured from

the surface modulation. However, Ca ii emission cannot be used for very young stars,

because the scatter in rotation is also large (Soderblom 2010). Also, the activity varies

over cycles of days, weeks or years so that ages determined from a single measurement

of logR′HK are not as accurate as mean values determined from many measurements

collected over time (Lachaume et al. 1999; Nordström et al. 2004).

Another source of error lies in the fact that the chemical composition can have

an adverse effect on the logR′HK because a metal-poor star will have shallow Ca ii

lines, thus making the emission appear more prominent and the star more active than
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it actually is. The metallicity error can outweigh that caused by variability in activity

(Rocha-Pinto & Maciel 1998; Rocha-Pinto et al. 2000).

2.5.4 Lithium

The amount of lithium present in the stellar photosphere can be used to estimate the

age of young stars, as lithium will deplete over time. However, this depletion is not

linear and is not described simply by a tb law, as found by Sestito & Randich (2005).

They determined the ages of open clusters via isochrone fitting and compared these to

their Li abundances to determine the Li ages. These Li ages are only effective up to

1 or 2 Gyr, as beyond this there is a Li plateau. In addition, after 1 Gyr a bimodal

distribution in the Li depletion becomes evident. Some stars, including the Sun, deplete

Li at a faster rate but the reason for this is unclear. Randich (2009) cautions that it is

difficult to be more precise than saying that beyond 1 Gyr, a low Li abundance means

the star is probably old and/or had a peculiar evolution and that a high Li abundance

will only give a lower limit for the age. They cite the example that logA(Li) of ∼2.24

does not help to narrow down the age between 1 Gyr and 8 Gyr. Soderblom (2010) also

points out that there is a large scatter in the Li abundances of the Sestito & Randich

(2005) work, which is not due to measurement errors. This scatter is greater than any

age trend for late F and G-dwarfs, and Li will only provide some estimation of age if

the abundance scatter is averaged out in a group of stars.

Of course, this type of calibration assumes that the Li abundance can be measured

with ease and without dispute, which is obviously not the case as is seen with the

abundance scatter. The Li line at 6708 Å is prone to NLTE effects, especially in Li-rich

stars, which can lead to abundance errors if it is not accounted for (Carlsson et al. 1994;

Takeda & Kawanomoto 2005; Lind, Asplund & Barklem 2009).

2.6 Asteroseismology

Asteroseismology is the study of pulsations within stars, and it can be used to extract

parameters such as mean density, surface gravity, age, mass and radius. Oscillations in

a star cause the surface to expand and contract, and thus the star varies in brightness.

The first pulsating star to be discovered was o Ceti by David Fabricius in 1595, however

at the time the brightness variations were attributed to dark spots on the surface of

the star (Carroll & Ostlie 2006). An important milestone in the study of pulsating



36

stars was the discovery by Henrietta Swan Leavitt of the period-luminosity relationship

of Cepheid variables (Leavitt & Pickering 1912), which is used to estimate cosmic

distances. Shapley (1914) correctly suggested that the variations seen in the Cepheids

could be due to radial pulsation of a single star; arguing against theories of double

stars. Leighton, Noyes & Simon (1962) first detected pulsations in the Sun, signifying

the birth of helioseismology. Solar-like oscillations in another star were not detected

for nearly 30 years, when Brown et al. (1991) measured excess power in the Fourier

spectrum of Procyon, although this was disputed at the time and it took a while

before the presence of oscillations was confirmed. The floodgates of asteroseismic data

opened when the space-based MOST (Walker et al. 2003), CoRoT (Baglin et al. 2009)

and Kepler (Borucki et al. 2010) missions provided exquisite photometry for numerous

pulsating stars.

The use of stellar parameters extracted from asteroseismology can prove useful for

the study of planet host stars (Christensen-Dalsgaard et al. 2010; Huber et al. 2013).

For instance, as asteroseismology can determine the stellar radius, it can then be used

to find the planetary radius for transiting planets. Similarly, the asteroseismic mass can

help to constrain the planetary mass. Asteroseismology can also provide stellar ages,

which can be used to set limits on the ages of planets (Chaplin & Miglio 2013). Using

log g from asteroseismology as a prior for spectroscopic analyses can help to eliminate

some of the problems caused by the uncertainties in the spectroscopic log g (Carter

et al. 2012).

2.6.1 Solar-like oscillations

The pulsations discovered in the Cepheid variables are dubbed “classical” pulsations,

and their origin differs from those in the Sun. The oscillations in the Cepheids are

powered by the κ-mechanism, which is dependant on opacity. Layers of partially ionised

H and He have a large opacity which inhibits radiation being transmitted, causing the

layers to heat up. This leads to an accumulation of pressure, which pushes the layers

outwards. The opacity of the layers then decreases as ions recombine with free electrons,

the heat decreases, and the layers once again fall inwards to begin a new cycle (Aerts,

Christensen-Dalsgaard & Kurtz 2010; Leblanc 2010).

Solar-like oscillations are standing waves that are excited by turbulent convection

near the surface of the star. This excitation makes their amplitudes detectable, and

they are seen as an excess of power in a Fourier spectrum, which takes a bell shape
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comprised of a comb-like structure of different frequencies (Barban et al. 2009; Chaplin

et al. 2010; Mathur et al. 2012). Solar-like oscillations are not restricted to solar-like

stars, rather any cool star (. 7000 K) with an outer convection zone. This includes

subgiants and red giants as well as MS stars (Bedding 2011). The detection of solar-like

oscillations depends on the brightness and evolutionary state of a star, as the luminosity

determines the amplitude of the oscillations (Huber et al. 2013).

Detecting oscillations in a star can be done either using RV measurements or by

using photometry. The Doppler shift measures the changes in surface velocity, whereas

photometry measures intensity variations from the intrinsic stellar pulsations (Cunha

et al. 2007). Selecting an appropriate spectral line for measuring the RV variations

due to oscillations depends on the depth of formation of the line as the amplitude of

the oscillation increases with height in the atmosphere (Harvey 1985). The background

signal of granulation increases with decreasing frequency, which can make it difficult to

spot low frequency modes. However these granulation signatures are somewhat dimin-

ished in Doppler observations as opposed to the intensity measurements of photometry,

which can be advantageous for low frequency measurements. Low frequency modes

are particularly narrow in MS stars, which emphasises any rotational frequency split-

ting present (Chaplin & Miglio 2013). The use of photometry has the advantage of

being able to study hundreds of stars simultaneously, which gives rise to the ensemble

asteroseismology performed with CoRoT and Kepler (Bedding 2011).

2.6.2 Modes

There are two different restoring forces for the standing waves that cause solar-like

oscillations. Pressure gradients act as a restoring force for the acoustic waves, and

these are called p-modes. The second restoring force is buoyancy, and the resulting

modes are called gravity modes, or g-modes (Aerts, Christensen-Dalsgaard & Kurtz

2010; Chaplin & Miglio 2013). G-modes probe to great depths beneath the convection

zone, but they are not detectable in MS stars due to the lengthy periods (Harvey 1985).

Each mode in the star is described by a characteristic frequency for particular

values of n, l and m. The overtone of the mode, n, is the number of radial nodes, or

nodal shells. The degree of the mode, l, is the number of nodal lines at the surface

and the azimuthal order of the mode, m, is the number of surface nodes that cross

the equator. It is only possible to detect m modes if a star is rotating, which will

be discussed further in Section 5.3. A mode is described by the central frequency,
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line width, and line height and a particular mode will give the radial displacement of

material within the star as a function of latitude, longitude and radius (Harvey 1985;

Benomar et al. 2009; Aerts, Christensen-Dalsgaard & Kurtz 2010).

Measuring the frequencies of as many modes as possible that exist in different

cavities is the best way to obtain high resolution in asteroseismic measurements. Stars

that have higher degree l modes will have more zones on the surface that are moving

in antiphase with each other, and some of these damp the oscillations in a process

known as partial cancellation (Harvey 1985; Aerts, Christensen-Dalsgaard & Kurtz

2010; Chaplin & Miglio 2013). This means that only modes of low degree, typically

with l ≤ 3, can be resolved (Bedding 2011). Detection of l = 3 modes is more likely

in Doppler measurements than with photometry, although it is still possible to detect

these modes via photometry, for example, in the Kepler data of 16 Cyg A (Metcalfe

et al. 2012).

In young solar-type stars, the p-mode and g-modes clearly have different frequency

ranges. Once a star evolves and hydrogen is depleted, the increased core density causes

the g-mode frequencies from the stellar interior to increase to the point that they are

comparable to p-mode frequencies. If a p-mode meets a g-mode of the same degree,

the modes won’t cross each other and instead an “avoided crossing” occurs. This is

due to the coupling between the p-mode and g-mode cavities, and it causes the modes

to exchange nature. Therefore, both g-modes and p-modes behave as p-modes in the

envelope, and both g-modes and p-modes behave as g-modes in the interior. Mixed

modes, unlike pure g-modes, can be detected. As a star ages, it is possible to observe

multiple l = 1 modes in a single order, as the g-modes become detectable. In red giants,

there can be a lot of l = 1 mixed modes per order. It is also possible for mode bumping

to occur, where a mode is bumped upwards by one below so that the regular frequency

spacing is disrupted (Bedding et al. 2011; Bedding 2011; Chaplin et al. 2010; Deheuvels

et al. 2012; Chaplin & Miglio 2013).

2.6.3 Parameters from pulsations

The oscillation frequencies measured via asteroseismology can be used to determine

stellar parameters, however a prior knowledge of the Teff and metallicity is usually

needed. Of particular importance is the large frequency separation, ∆ν, the frequency

of maximum amplitude, νmax, and the small frequency separation, δνnl (Chaplin &

Miglio 2013).
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The large frequency separation is the frequency spacing between consecutive radial

overtones as is illustrated in Figure 2.1, i.e. the n modes differ by 1, but have the same

value of l. It is the inverse of the time it takes the sound wave to travel from the surface

to the core and back to the surface again. The small frequency separation, also depicted

in the figure, is where n differs by 1, and l differs by 2 such that δν02 = νn,0− νn−1,2 for

a given value of n (Bedding 2011). The maximum frequency is the frequency with the

largest amplitude, which is the central frequency in the power excess (Chaplin et al.

2011).

Figure 2.1: The large and small separations are indicated, with each mode being la-
belled as (n,l). The dotted lines indicate the radial modes. Credit: Bedding (2011).
Reproduced with permission.

The small frequency separation can be used to determine the age of a star. The

sound speed increases with increasing radius, and this corresponds to a decrease in δνnl.

The amount of helium within the core will increase as a star evolves, which will then

cause the sound speed to decrease near the core of the star. Overall this has the effect

of decreasing δνnl as the star ages. This relationship does not hold for more evolved

stars such as red giants (Soderblom 2009; Doǧan 2010; Christensen-Dalsgaard 2011).

Even when individual oscillation frequencies can’t be determined due to low S/N,

∆ν can usually be extracted, which can be used to determine the stellar density from

(
∆ν

∆ν¯

)
≈

√
ρ̄

ρ̄¯
≈

(
M

M¯

)0.5 (
R

R¯

)−1.5

. (2.6)

If νmax can also be determined, then this can be used to ultimately find the
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mass and radius. The maximum frequency is scaled approximately with the acoustic

cut-off frequency, νc, although the physical meaning of this relationship is still poorly

understood;

(
νmax

νmax,¯

)
≈

(
νc

νc,¯

)
≈

(
M

M¯

)(
R

R¯

)−2 (
Teff

Teff ,¯

)−0.5

. (2.7)

The acoustic cut-off frequency rises sharply close to the stellar surface and acts

as a boundary below which a wave will be reflected back into the envelope if it has a

frequency less than νc (Doǧan 2010; Chaplin et al. 2011; Chaplin & Miglio 2013).

If ∆ν, νmax and Teff are known, then Equation 2.6 and Equation 2.7 can be

rearranged to extract the mass and radius individually in what is known as the “direct”

method (Aerts, Christensen-Dalsgaard & Kurtz 2010; Basu, Chaplin & Elsworth 2010;

Belkacem et al. 2011; Belkacem 2012; Chaplin et al. 2011; Mathur et al. 2012);

(
R

R¯

)
=

(
νmax

νmax,¯

)(
∆ν

∆ν¯

)−2 (
Teff

Teff ,¯

)−0.5

(2.8)

and

(
M

M¯

)
=

(
νmax

νmax,¯

)3 (
∆ν

∆ν¯

)−4 (
Teff

Teff ,¯

)1.5

. (2.9)

Using the conventional methods to determine stellar radii outlined in Section 2.4

typically results in errors that can be greater than 50 per cent. Using ∆ν from as-

teroseismology diminishes this error to less than 5 per cent, with the addition of νmax

reducing this a small bit more (Basu, Chaplin & Elsworth 2010). Silva Aguirre et al.

(2013) used the asteroseismic radius, along with the limb-darkened angular diameter de-

termined from the IRFM, to calculate an asteroseismic distance and found an excellent

agreement with the Hipparcos parallax measurements. They then used this technique

on all of 565 short-cadence Kepler stars to find the distance distribution of the sample.

It should be cautioned that as the oscillations are a stochastic process, νmax will

vary depending on the time of the observations (Belkacem 2012). However, the scaling

relations based on ∆ν and νmax still only result in uncertainties that are minuscule in

comparison to traditional methods for determining stellar mass and radius (Huber et al.

2013).

The maximum frequency decreases as the star ages, i.e. as log g decreases, mean-

ing that the relationship between νmax and νc can be used to determine log g from

asteroseismology (Belkacem 2012; Chaplin & Miglio 2013);
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log g = log g¯ + log

(
νmax

νmax,¯

)
+

1

2
log

(
Teff

Teff ,¯

)
. (2.10)

Using νmax to constrain log g can lead to a precision that is similar to eclipsing

binaries, and the seismic gravities typically agree well with other methods of gravity

determination. However, Bruntt et al. (2012) found the spectroscopic log g was sys-

tematically higher than the asteroseismic log g by around 0.08 dex, but could not offer

an explanation as to why this is so. The main source of error in seismic gravity values

stems from the uncertainty in νmax, which ranges from one to ten per cent. However,

a typical uncertainty of five per cent still only equates to an error of around 0.03 dex

in log g. The asteroseismic log g determination is reliant on a prior knowledge of Teff ,

but is not overly sensitive to it. A change in Teff of 100 K will only result in a change

in log g of around 0.004 dex for solar-like stars (Morel & Miglio 2012).

It is also possible to determine parameters from asteroseismology via grid-based

methods. For grid based methods, ∆ν, νmax, Teff and [Fe/H] are used as input param-

eters in stellar evolutionary models and these models are used to estimate mass and

radius. The grids can also be used to determine the log g when νmax isn’t used as an

input value. Grid based methods have smaller uncertainties than scaling relations, but

can depend on uncertainties in metallicity (Chaplin et al. 2011).
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3 Spectral analysis method

In the stars...there is a multitude of experiments all ready performed for us with
a variety of conditions of just the kind we need. It remains for us to observe and
interpret these results.

- Henry Draper, 1879

Unfortunately, there is no single, exact method for extracting information from stellar

spectra. There are different programmes, different methods for measuring the lines,

different assumptions used and so on. In this chapter I describe the spectral analysis

method that I have used to determine the parameters of a selection of the stars from

the Wide Angle Search for Planets (WASP) programme. Some of the results here have

been published in Doyle et al. (2013).

3.1 Software

uclsyn (University College London SYNthesis) is the software I use for spectral anal-

ysis (Smith 1992; Smalley, Smith & Dworetsky 2001). atlas 9 models without convec-

tive overshooting are used (Castelli, Gratton & Kurucz 1997) and local thermodynamic

equilibrium is assumed. Spectral lines can be measured directly by using equivalent

widths, or alternatively the lines can be synthesised by using least squares fitting.

The atomic data used to generate the synthetic spectra is obtained from Kurucz & Bell

(1995), although lines can also be input manually using atomic data from other sources.

The broadening parameters that can be input are microturbulence, macroturbulence,

rotational velocity and instrumental broadening. The radiative damping constant, Van

der Waals damping constant and the Stark broadening factor are input via the line

list. The adopted solar abundances previously used in uclsyn were taken mainly from

Anders & Grevesse (1989), the C, N, and O abundances are taken from Grevesse (1991)

and the Fe abundance from Biemont et al. (1991). The current version now uses the

abundances from Asplund et al. (2009).
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3.2 Methods

3.2.1 Input of initial parameters

Before determining the spectroscopic parameters of a star, prior values need to be input

to create the model spectrum. An initial guess for Teff can be determined from the

Balmer lines or from photometry. The log g is input as 4.5 under the assumption that

the star is a dwarf, and vmic is input as 1 km s−1. In order to fit the lines, broadening

also needs to be accounted for in the synthetic spectrum. An initial estimate of vmac

can be determined from the input Teff using a calibration. The v sin i is input as a low

value (∼3 km s−1), but this can be adjusted if it is obvious that the observed spectrum

has a higher rotational velocity.

The instrumental broadening also needs to be input. I determined this from the

telluric lines at ∼6300 and 6800 Å. This was done by fitting a synthetic spectrum to the

telluric lines. The height of the observatory, and the airmass at the time the spectrum

was obtained were input. The instrumental broadening was then varied until a good

match was achieved between the synthetic and observed spectrum. Coadded spectra

cannot be used for this, as the velocity shift incurred by the motion of the Earth will

create additional broadening when the spectra are added together. An example is seen

in Figure 3.1 for a single HARPS spectrum of WASP-7. For the HARPS spectra, a

resolution of 112,000 was used for all spectra and the Kitt Peak Solar Atlas has negligible

instrumental broadening (Valenti & Piskunov 1996).

3.2.2 Determining parameters

The first step of analysing a spectrum is to measure the EWs of the lines. Details of

the selection of the line list will be discussed in Section 3.4. I interactively measured

the EWs of as many absorption lines as possible for each element. In order to directly

measure the EWs, a point on each side of the line is selected where the wing of the line

reaches the continuum. The continuum was normalised by eye over a small wavelength

range around each line.

A curve-of-growth analysis was then used to determine the abundance from the

measured EW. A synthetic line profile was generated using that abundance and com-

pared to the observed profile shape, and if the synthetic line profile reproduced the

observed line, then this EW was used. In some instances, the synthetic profile failed to

produce an acceptable fit to the observed spectrum, possibly due to incorrect broad-
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Figure 3.1: Determining the instrumental broadening from the telluric lines for the
HARPS spectrum of WASP-7. The solid black line is a single observed spectrum and
the red dashed line is the fit. This is for a resolution of 112,000 and also taking into
account the observatory height and the airmass at the time the spectrum was taken.

ening parameters. When this occurred, I used a least squares fitting method to fit the

line by adjusting the vmic, vmac, v sin i and logA (Fe). This abundance was then used to

calculate the EW of the synthetic line. Fitting the lines, as opposed to just measuring

the EWs, is required for strong lines, as discussed in Section 3.6.4.

Once all of the EWs are measured, this will give a first guess for the abundances

of the Fe lines, which can then be used to determine Teff , log g, and vmic. This is an

iterative procedure, as the final abundance cannot be determined until the Teff , log g,

and vmic are known.

The first estimate for Teff is determined from the excitation balance of Fe i, as

discussed in Section 1.4. I estimated the microturbulence by using the Magain (1984)

method to reduce the trend in EW with abundance, as described in Section 1.8.3.1.

The ionisation balance log g is determined by varying log g until the Fe i and Fe ii

abundances agree. Any obvious outliers in the plot of Fe abundance against EW or EP

were removed, with a requirement that the abundance of the individual lines should be
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within 0.25 dex of the average abundance. This restriction allowed discrepant lines to

be removed while still retaining a sufficient number of lines needed to determine the

stellar parameters. In general I found that the same lines had abundances that were

too high or too low across all stars, indicating that these lines had incorrect atomic

data.

I also estimated the log g from the Na D lines and the Ca line at 6439 Å. The

abundance is first determined from several weak lines, and then the log g is adjusted

until the synthetic lines match the observed spectrum. The average log g is then de-

termined from the ionisation balance, Na D lines, and the Ca line. The log g from the

ionisation balance agrees with the log g from the pressure broadened lines to within 0.3

dex. This difference is possibly due to the errors in abundance, Teff errors influencing

the ionisation balance, or other issues inherent in determining the log g from pressure

broadened lines. The final log g value is then used to redetermine the vmic, and this

vmic is used to get a final value for the excitation balance Teff .

Once the final parameters have been determined, the final abundances can also be

calculated. Now that the Teff is known, the vmac can be calculated from a calibration. I

originally calculated the macroturbulence based on the Bruntt et al. (2010a) calibration

for stars with Teff below 6500 K, and this was extrapolated for stars greater than 6500

K. However in Chapter 5, I determine my own vmac calibration. Once there is a value

of vmac, the rotational velocity is fit for a selection of unblended lines and the average

value is used as the final v sin i value.

3.3 Spectrographs

The initial analyses for the WASP planet host stars for the discovery papers are usu-

ally performed using coadded spectra from the CORALIE spectrograph, which has a

resolution between 55,000 and 60,000 (Queloz et al. 2001; Wilson et al. 2008) and is

installed on the Swiss 1.2m Leonard Euler telescope at La Silla. These spectra have

S/N varying from ∼40 to ∼100. I analysed some of these CORALIE spectra for the

discovery papers in order to test the spectral analysis methods I was developing and

also to understand the limitations inherent with low S/N. These analyses are ongoing

in order to contribute to the WASP collaboration, and now include the line list that I

constructed as part of this work.

The next step was to analyse these stars using the spectra obtained with the
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HARPS spectrograph which has a resolution of ∼115,000 (Mayor et al. 2003). HARPS

spectra typically have much higher S/N than their CORALIE equivalents, and the

S/N and magnitude of each WASP star used is given in Table 3.1. The raw spectra

had already been reduced using the standard HARPS data reduction software and the

observation details for these spectra are discussed in Triaud et al. (2010), Queloz et al.

(2010) and Gillon et al. (2009).

Table 3.1: Details of the HARPS spectra used in the present work

Star V mag No. of
spectra

S/N

WASP-2 11.98 32 100
WASP-4 12.50 32 100
WASP-5 12.30 34 125
WASP-6 11.90 44 125
WASP-7 9.50 20 235
WASP-8 9.79 80 430
WASP-15 11.00 51 240
WASP-16 11.30 77 175
WASP-17 11.60 60 230
WASP-18 9.30 21 270
WASP-19 12.59 36 125
WASP-20 10.68 62 305
WASP-21 11.58 62 145
WASP-22 12.00 34 190
WASP-23 12.68 35 105
WASP-24 11.31 63 195
WASP-29 11.30 39 185
WASP-30 11.90 37 200
WASP-31 11.70 25 135
WASP-53 30 100
WASP-69 9.88 21 210
WASP-77A 10.30 8 110
WASP-77B 12.05 4 40
WASP-80 11.90 24 75

Both CORALIE and HARPS are cross-dispersed, fibre fed, echelle spectrographs

that use a thorium argon spectrum as a reference. Using the ThAr reference spectrum

enables the calibration of wavelength with the detector pixels, as well as tracking and

removing instrumental drifts from the radial velocity measurements. A ThAr reference

is used on HARPS because it utilises the whole visible range of the spectrum (3800 to

6900 Å), whereas an iodine cell as a reference is limited to the 5000 to 6000 Å range.
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HARPS has a larger echelle grating and fibre diameter than CORALIE, which is what

enables it to reach a superior resolution. The HARPS spectrograph is contained within

a vacuum to eliminate problems with atmospheric pressure variations and the vacuum

vessel has an air-conditioning system around it to minimise temperature variations.

This gives the spectrograph enhanced stability (Queloz et al. 2001; Rupprecht et al.

2004).

3.4 Line list

While some methods rely on fitting the entire observed spectrum (or sections of it) with

a synthetic spectrum, a more detailed analysis requires studying the individual lines. It

is impractical to individually measure every line in a spectrum, and so an appropriate

selection of lines must be chosen from a high S/N spectrum.

3.4.1 Atomic data

The line list used for the original discovery paper analyses of the WASP stars was

constructed mainly from the data of Kurucz & Bell (1995), but also supplemented

with other data from Barklem, Piskunov & O’Mara (2000), Gonzalez & Laws (2000),

Gonzalez et al. (2001) and Santos, Israelian & Mayor (2004) and hereafter will be

referred to as the KB line list. The KB line list included log gf values that were known

to have been obtained from differential solar analyses, which can create problems such

as that discussed in Section 4.1.3. A new line list was needed to fully exploit the high

quality spectra of HARPS by ensuring the log gf values used were the most up to

date and accurate values available. I obtained a significant proportion of atomic data

from the Vienna Atomic Line Database (VALD; Kupka et al. 1999), however the exact

source of the data in VALD is not always clear as a group of papers are cited instead

of individual work. This means that there could still be log gf values in the new line

list that were determined from the Sun, although I did not intentionally include any.

Overall I found that there weren’t major abundance differences between the KB and

the new line list, as both have a wide range of scatter due to uncertainties in atomic

data.

When damping parameters were unavailable in VALD, I obtained them from

Kurucz & Bell (1995). In addition, the VALD log gf value was not always used for

certain elements (e.g. Cr ii, Ti ii), as the value given resulted in abundances that were
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inconsistent with the assumed solar abundances. In these cases a different source of

log gf from within VALD was used, so that a more suitable solar abundance could be

obtained. For instance, using the default VALD values yields a logA(Cr ii) of 5.80 ±
0.09 for the Sun, which is 0.16 dex higher than the Asplund et al. (2009) abundance.

However, using alternative log gf values from VALD results in a logA(Cr ii) of 5.66 ±
0.01. Of course, this still introduces some bias towards the Sun, but I prioritised values

that I knew were obtained in the laboratory if they existed. The log gf values were also

supplemented from other sources (Fuhr & Wiese 2006; Meléndez & Barbuy 2009).

The choice of log gf can greatly influence the abundance obtained, resulting in a

wide range of values for a particular element, even in the Sun. For example, the solar

Mn ranges between 5.23 and 5.46 (Bergemann & Gehren 2007). Bigot & Thévenin

(2006) computed log gf values using 3D models for a number of near-IR Fe and Si

lines, and found that their values differ from the VALD values by up to 0.5 dex. When

comparing their values to laboratory ones, this difference was reduced to 0.1 dex, further

emphasising the fact that VALD values are not necessarily the best available.

In some cases it was not possible to find suitable log gf values. For instance, Si

was found to exhibit a strong trend in EW against abundance when using the VALD

data, and there currently isn’t enough suitable atomic data elsewhere to correct this. Shi

et al. (2008) also mention the large scatter in the solar Si abundance due to uncertainties

in the some of the laboratory log gf values. Many of the Si lines are also difficult to

fit correctly due to asymmetries and unusually broad wings, which will be discussed

further in Section 5.10.

All lines were cross-referenced with the NIST database to check the reliability of

log gf values. Any lines with an “E” rating, i.e. with an uncertainty of greater than

± 50 per cent (Fuhr & Wiese 2006), were rejected. However, it should be noted that not

all lines in the list were present in the NIST database, so some lines that were included

in my line list could still have large uncertainties in the log gf values. The line list is

given in Appendix A, showing the NIST rating where available.

3.4.2 Line selection

I selected lines from the Kitt Peak Solar Atlas (Kurucz et al. 1984; S/N ∼3000) and

prioritised unblended lines where possible, which comprise around one third of the

list. Some lines had blending components that could be compensated for via spectral

synthesis, and these were included to increase the number of lines. Unresolved blends
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were included when there was a paucity of lines for a particular element. In this case,

a restriction was imposed to ensure that the blending component comprised no more

than five per cent of the overall EW, otherwise the line was deemed to be too severely

blended to be of use. Lines which were blended with the same element in a different

ionisation state were rejected, even if the weaker component was less than five per

cent, as lines blended with other ionisation states could bias the estimate of the Teff .

Unresolved blends were rejected for Fe, as there are still a sufficient number of Fe lines

remaining after these blends are excluded.

A multitude of lines will not necessarily decrease the abundance error, especially

if the additional lines are of poor quality. According to Kurucz (2002), abundance

errors are likely to increase if there is a wide range of line strengths in a line list. An

accurate abundance can theoretically be determined from a single weak line, as weak

lines (EW < 30 mÅ) are less affected by damping parameters and microturbulence.

As such, including strong lines can increase the abundance errors. However, it is not

possible to use only weak lines as there are not a sufficient number of them, and thus

strong lines were also included in the list. The EWs for the Fe i lines in the HARPS

solar spectrum (Dall et al. 2006; S/N ∼1000) range from 5.6 to 133.1 mÅ and the EP

ranges from 0.052 to 5.033 eV. The strongest lines were often removed at a later stage as

there can be large uncertainties in damping parameters and microturbulence for these

lines (Takeda et al. 2005a; Jenkins et al. 2008).

3.4.3 Line lists for cool and hot stars

The strength of neutral metal lines increases vastly with decreasing temperature, and

lines that are weak in the Sun become much stronger in cooler stars. In addition, ionised

species will become weaker (Allende Prieto et al. 2004). Therefore a line list optimised

for the Sun will not necessarily yield the best results with mid to late K-dwarfs. When

I used the line list selected from the Sun on cool star WASP-69 (Teff = 4945 K), there

were only 32 measurable iron lines making it very difficult to get a reasonable result

for Teff , the ionisation balance log g and vmic. The low Teff means that the blue end of

the spectrum is littered with spectral lines and it is most likely that molecular lines are

present, which are not synthesised with uclsyn. The multitude of lines in the blue

end also makes it almost impossible to discern the position of the continuum. It is

thus difficult to measure any lines below ∼5200 Å. In addition, this particular star is

also very metal-rich, which makes some of the lines too strong to be useful and also
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increases the amount of blending that is present. Adding in additional Fe and Ca lines

from the KB line list was required in order to obtain a satisfying result, however it was

clear that a new line list needed to be created for such stars. The lines for the cool

stars line list were then selected from WASP-29.

Tables 3.2, 3.3 and 3.4 show the comparison between the low Teff line list and the

solar line list for the cool stars WASP-23, WASP-53 and WASP-69 respectively. The

Teff (unconstrained), log g, and vmic used to determine these abundances for these stars

are listed in Table 3.7. The Fe abundance agrees well between both line lists, showing

that the use of different line lists does not affect the Fe abundance determination itself.

In general, there is a good agreement with the abundances of other elements, although

the cool star line list obviously has more Ti and Cr lines. The most discrepant element

is Co, and in the solar line list logA (Co) is 0.22 dex higher for WASP-53, and 0.40 dex

higher for WASP-69. It is not immediately obvious what the cause of this discrepancy

is, however it is possible that certain lines are more prone to HFS in one line list.

Table 3.2: Abundance comparison between line lists for WASP-23.

Element Solar line list No. of lines Low Teff line list No. of lines
Ca 6.43 ± 0.09 7 6.35 ± 0.19 6
Sc 3.17 ± 0.04 5 3.10 ± 0.08 7
Ti 5.07 ± 0.08 27 5.02 ± 0.11 32
V 4.10 ± 0.09 11 4.09 ± 0.12 15
Cr 5.67 ± 0.07 11 5.70 ± 0.13 27
Mn 5.49 ± 0.11 8 5.46 ± 0.16 5
Fe 7.56 ± 0.07 34 7.56 ± 0.09 59
Co 5.04 ± 0.13 7 4.98 ± 0.13 7
Ni 6.20 ± 0.08 17 6.21 ± 0.09 14

Table 3.3: Abundance comparison between line lists for WASP-53.

Element Solar line list No. of lines Low Teff line list No. of lines
Ca 6.55 ± 0.09 7 6.50 ± 0.15 6
Sc 3.42 ± 0.12 5 3.34 ± 0.11 8
Ti 5.23 ± 0.11 27 5.21 ± 0.15 39
V 4.49 ± 0.17 13 4.37 ± 0.20 19
Cr 5.84 ± 0.10 11 5.86 ± 0.11 21
Mn 5.69 ± 0.13 8 5.72 ± 0.20 6
Fe 7.69 ± 0.13 37 7.72 ± 0.11 63
Co 5.45 ± 0.20 9 5.23 ± 0.11 6
Ni 6.41 ± 0.16 22 6.42 ± 0.12 20
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Table 3.4: Abundance comparison between line lists for WASP-69.

Element Solar line list No. of lines Low Teff line list No. of lines
Ca 6.67 ± 0.16 5 6.61 ± 0.16 7
Sc 3.47 ± 0.19 7 3.40 ± 0.12 11
Ti 5.29 ± 0.14 26 5.32 ± 0.16 44
V 4.61 ± 0.14 13 4.62 ± 0.17 18
Cr 6.05 ± 0.17 11 6.10 ± 0.20 35
Mn 5.93 ± 0.34 10 5.85 ± 0.18 8
Fe 7.79 ± 0.12 32 7.82 ± 0.11 71
Co 5.66 ± 0.31 8 5.26 ± 0.16 10
Ni 6.57 ± 0.19 21 6.51 ± 0.10 19

At the other end of the Teff scale, the HARPS spectrum of Procyon (S/N ∼300)

was used to select lines that could be used in addition to the solar line list when analysing

hotter stars. Using the solar line list for Procyon resulted in only 44 measurable Fe

lines, as metallic lines become less prominent in hotter stars. Including the additional

lines brought the Fe line count up to 67 for this star, which caused a subtle change

in parameters. The final values used were thus based on the hotter line list, and this

analysis is discussed in Section 3.5 and the results given in Table 3.5.

3.5 Comparison to standard stars

Before applying the method outlined above to the HARPS spectra of the WASP stars, it

was important to verify that the method achieved acceptable results on well known stars

such as the Sun and Procyon. Procyon was chosen as a hotter comparison star than the

Sun, as many WASP stars are hotter than the Sun. The parameters were derived from

the Kitt Peak Solar Atlas and the HARPS sky spectrum for the Sun, and from a HARPS

spectrum of Procyon. These parameters, along with literature values, are displayed in

Table 3.5. The parameters of the Sun are well known, however the parameters of

Procyon are less accurate. The mass, and thus the log g, can be determined with a

good deal of accuracy due to the binary nature of Procyon. However, there is still

some disagreement as to the Teff , mainly due to different values of bolometric flux and

angular diameter. The Teff values are given as 6516 ± 87 K (Aufdenberg, Ludwig &

Kervella 2005), 6530 ± 49 K (Allende Prieto et al. 2002) and 6591 ± 43 K (Chiavassa

et al. 2012). Casagrande et al. (2010) also obtained a value of 6626 ± 80 K using the

IRFM. An averaged Teff value is adopted for Table 3.5.
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Table 3.5: Parameters obtained for the Sun and Procyon.

Parameter Sun (Solar
Atlas)

Sun
(HARPS)

Sun (litera-
ture)

Procyon
(HARPS)

Procyon (lit-
erature)

Teff(K) 5760 ± 50 5775 ± 45 5777a 6660 ± 95 6566 ± 65b

log g 4.42 ± 0.02 4.43 ± 0.02 4.44a 4.05 ± 0.06 4.01 ± 0.03c

logA(Fe) 7.49 ± 0.06 7.52 ± 0.08 7.50 ± 0.04d 7.48 ± 0.09 7.36 ± 0.03e

vmic (km s−1) 0.85 ± 0.08 0.75 ± 0.15 0.85f 1.70 ± 0.08 2.2e

a Gray (2008), b See text, c Chiavassa et al. (2012), d Asplund et al. (2009), e Allende
Prieto et al. (2002), f Magain (1984)

It is possible that the higher Teff that I determined for Procyon could also be

due to NLTE effects. Performing a full NLTE correction is beyond the scope of this

work, however I thought it would be interesting to perform a quick test to get an idea

of how much NLTE affects the Fe I lines at higher temperatures. Using the INSPECT

database1 (Bergemann et al. 2012; Lind, Bergemann & Asplund 2012), I was able to

input the Teff , log g, vmic and logA (Fe) for Procyon and the NLTE corrections for a

number of Fe i lines were displayed with an average correction of +0.04 dex. If there

was no value available for any of my lines, I used the average value as the correction. I

found that the Teff of Procyon derived from the excitation balance was now 60 K lower,

bringing it to 6600 K which is in better agreement with the literature.

For the HARPS solar spectrum, I found logA(Fe) to be 7.52 ± 0.08. This is in

good agreement with the values of 7.50 ± 0.04 and 7.52 ± 0.06 found by Asplund et al.

(2009) and Caffau et al. (2011) respectively, but higher than the value of 7.45 ± 0.02

determined by Meléndez & Barbuy (2009).

3.6 Results and discussion

The Teff , log g and logA(Fe) from the discovery papers are given in Table 3.6, along

with the IRFM Teff (Maxted, Koen & Smalley 2011) and the log g derived from the

transits (Southworth 2012b; Southworth et al. 2012; Southworth et al. 2013; Mortier

et al. 2013b). Table 3.7 gives the Teff (constrained and unconstrained), log g, vmic, vmac

and v sin i determined for each star, as well as the number of Fe lines used in each

analysis. The vmac was determined using the Bruntt et al. (2010a) calibration, and was

then redetermined in Chapter 5.

1www.inspect-stars.net
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3.6.1 Determination of log g

It is important to include as many Fe ii lines as possible in order to get an accurate log g

from the ionisation balance. When using the KB line list on the Kitt Peak Solar Atlas,

I found that the log g from the ionisation balance was too high at 4.62 ± 0.08. Only six

out of ten Fe ii lines were usable, and these had lower than average abundances (which

was only obvious as the solar parameters are already known with good confidence). It

is also possible that the ionisation balance log g could be underestimated using other

line lists, depending on the particular Fe ii lines used. This shows the importance of not

using ionisation balance alone to determine log g; the pressure broadened lines should

also be used to compliment this method. Figure 3.2 depicts the ionisation balance of the

KB line list when using the correct solar log g of 4.44, showing the inadequate selection

of Fe ii lines.
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Figure 3.2: The ionisation balance is wrong for the Kitt Peak Solar Atlas when using
the KB line list due to a paucity of Fe ii lines. The log g shown here is for the correct
value of 4.44. If this was not known, then the log g would be overesimtated. The Fe i
lines are shown as blue circles and the Fe ii lines are represented by the black diamonds.
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3.6.1.1 The Na i D lines

Using the Na i D lines for log g determination can be difficult if interstellar Na is present.

In addition, the Na i D lines can also be plagued with telluric emission lines.

It is important that an accurate Na abundance is determined prior to any attempt

to fit the Na i D lines to obtain log g. Figure 3.3 shows the HARPS solar spectrum

along with synthetic spectra computed with [Na/H] abundances of -0.1, 0.1 and 0.3

dex. Even a change of 0.1 dex can make a noticeable difference, and a change of 0.3

dex can have a detrimental effect on the log g if it is not taken into account. If there is

a high abundance of Na, then the log g can be underestimated.
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Figure 3.3: The effect that differing values of [Na/H] has on the synthetic spectra is
shown. This can in turn affect the log g determination from the Na i D lines if the
abundance is not taken into account.

I noticed that it was particularly difficult to obtain a reasonable value for log g for

stars below ∼5000 K. The log g was unusually low and suggested that these stars were

actually giants. This low log g was inconsistent with other results, and as the [Na/Fe]

abundance seemed abnormally high for these stars, I assumed that the abundance was

incorrect. Plotting [Na/Fe] against Teff revealed a trend, shown in Figure 3.4, with
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[Na/Fe] increasing for cooler stars and a significant upturn evident at 5000 K. The

solid line shown in the figure is a linear regression to the data, where f(x) = m(x) + c

and the slope (m) is −1.73× 10−4 ± 3.09× 10−5 and intercept (c) is 1.01 ± 0.17.

A measure of how well the data fits to the line is the coefficient of determination,

r2, which is the square of the correlation coefficient. It has values between 0 and 1. If

there was no trend between [Na/Fe] and Teff , then r2 would be expected to be 0. In

this case, r2 is 0.60 indicating that there is a trend with this data, although it is not

a perfect linear relationship. The Fischer statistical test (F-test) can be used to test

if this linear relationship is significant. If the F-statistic (which is calculated from the

ratio of the regression sum of squares and residual sum of squares) is greater than the

F-critical value, then the null hypothesis can be rejected. The null hypothesis is that

the data is actually a random scatter of points with a slope of zero. The F-statistic

is 31.26 for 21 degrees of freedom, so when comparing this to the F-critical value it

is found that the probability (p) that the null hypothesis is true is 0.00001507. This

means that the null hypothesis can safely be rejected, and that there is indeed a trend

between [Na/Fe] and Teff .
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Figure 3.4: A trend was observed between [Na/Fe] and Teff , suggesting that the Na
abundance is incorrect in stars below 5000 K. The solid line is the linear regression.
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The four Na lines I used to measure abundance were at 4751, 5148, 6154 and

6160 Å. There are other Na lines, but I deemed them too strongly blended to be of use.

For instance, the Na i 5682 line is in a blend with Cr, and while this can sometimes

be measured via synthesis, it produces an abundance that is abnormally low compared

to the other lines and so this line is not used in any analysis. The Na i 5688 line is

always blended with another Na line, and so is not used at all. The abundance usually

agrees between the four lines for solar-like stars and hotter, but the 6154 + 6160 doublet

yields significantly higher abundances than the 4751 and 5148 Å lines in cooler stars. No

obvious trend with temperature is evident in the data of Shi, Gehren & Zhao (2004) or

Thorén & Feltzing (2000), however Shi, Gehren & Zhao (2004) do not have any stars in

their sample below 5000 K. They measured the 5682/5688, 5889/5895 and 6154/6160 Å

Na i lines via line synthesis, however the first two doublets are prone to blending and

NLTE effects respectively. The stellar sample of Thorén & Feltzing (2000) does extend

to 4500 K, but there is too much scatter in their data to notice any trend. Beirão et al.

(2005) note that [Na/H] is higher in planet host stars than comparison “single” stars,

however an overall increase in [Na/H] wouldn’t explain the trend with Teff .

The Na abundance can be greatly overestimated in LTE calculations. NLTE

corrections are always negative and the magnitude of these corrections increases with

decreasing metallicity. NLTE Na corrections also increase with increasing Teff , until

a maximum Teff is reached, then the corrections decrease again. However, the NLTE

sensitivity is most prominent for the Na i D lines, which I do not use for abundance

determinations as they are too strong. The doublet at 6154 Å is much less sensitive to

NLTE corrections, and only needs small NLTE corrections of between -0.05 and -0.10

dex over a wide range of stellar parameters, and this doublet yields good abundances

for stars with solar-like metallicity (Mashonkina, Shimanskĭi & Sakhibullin 2000; Shi,

Gehren & Zhao 2004; Asplund 2005; Lind et al. 2011). No NLTE corrections are given

for the 4751 and 5148 Å lines, but it is assumed that they behave similarly to the

6154 Å doublet so I ruled out NLTE effects as the cause of the abundance discrepancy.

The [Na/Fe] will increase with [Fe/H] in late-type thin disc stars. Therefore metal-

rich thin disc stars would be expected to have higher Na, regardless of Teff (Feltzing

& Gustafsson 1998; Thorén & Feltzing 2000; Lind et al. 2011). As thin disc stars are

expected to be younger than ∼9 Gyr (Shi, Gehren & Zhao 2004), I checked that all

the cooler stars were of the correct age to be classified as thin disc stars. I also plotted

my data alongside that from Shi, Gehren & Zhao (2004), depicted in Figure 3.5, which
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shows that my data exhibits this trend and is thus unlikely to be composed of thick

disc stars, which are confined to the left hand side of the plot. However the stars with

the highest overall metallicity, and thus most rich in sodium, don’t show a trend with

Teff , so different populations of stars in the Galaxy can’t be used to explain the trend

in [Na/Fe] with Teff .
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Figure 3.5: The filled and empty blue circles represent the thick disc and thin disc stars
data of Shi, Gehren & Zhao (2004) respectively, and the black diamonds are the values
from this work. There is no trend observed for the thick disc stars. The thin disc stars
exhibit a trend with [Na/Fe] and [Fe/H], which is seen in both data sets.

Incorrect values for VDW broadening can yield large dispersions in Na abun-

dances, as Na is highly sensitive to this broadening factor. Mashonkina, Shimanskĭi &

Sakhibullin (2000) calculated corrections to the Unsöld values, however no values are

present for the Na lines used in my analysis. I attempted to calculate these correc-

tions using the cross programme for ABO theory (Barklem, Anstee & O’Mara 1998),

however this was impossible as the principal quantum number is too high in all lines

to result in a reliable broadening value (Barklem & Aspelund-Johansson 2005). Thus,

there could still be significant errors in the abundance of sodium at lower temperatures

and this could contribute to the high [Na/Fe] values.
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Adibekyan et al. (2012a; 2012b) also observed a trend of [Na/Fe] with Teff for low

Teff stars in a sample of 1111 FGK stars. They suggest that this trend could be due

to the fact that Na is sensitive to Teff at low temperatures, that increased blends at

low temperature cause inaccurate abundances, and that there could be deviations from

excitation and ionisation balances.

The increased blending at lower temperatures is indeed a likely cause of the trend.

The Na i 4751 Å line is a resolved blend in most stars, but for cooler stars it also

becomes blended with Zr i, which can make it difficult to measure. The Na i 5148 Å is

also in a resolved blend with Ni i, which becomes more difficult to synthesise at lower

temperatures. Thus a combination of increased blending and uncertainties in VDW

broadening make the Na abundance, and thus the log g, unreliable for stars below

5000 K.

3.6.1.2 Ca lines

There are more Ca lines available compared to Na which can be used to determine

abundance, which led to the Ca i line at 6439 Å also being used as a gravity diagnostic.

However this line is not as useful in hotter stars, as the sensitivity to changes in log g

is reduced. Bruntt et al. (2010b) also recommend the use of the Ca i 6122 and Ca i

6162 Å lines, however it was found on a number of occasions that these lines gave a log g

value that was inconsistent with the other pressure-broadened lines and the ionisation

balance. Therefore these two Ca lines were not included in the overall log g estimation.

3.6.1.3 The Mg i b triplet

Fuhrmann et al. (1997) advocate that the log g from the pressure broadened lines, in

particular the Mg i b triplet, should be used over the ionisation balance log g. Their

reason for this is that they find the ionisation balance much lower (3.58) for Procyon

compared to the fundamental value of 4.05 ± 0.06 known from its binary nature. They

find the ionisation balance log g consistently lower than the Mg i b value, with the

discrepancy increasing towards hotter stars. However, in my own analysis of Procyon,

not only do I find the ionisation balance to give an appropriate log g, but I cannot

recreate their results with the lower log g. It is possible that part of the problem lies in

the fact that Fuhrmann et al. (1997) created a line list with log gf adjusted to the Sun

(see Section 4.1.3 for more on this). It is also possible that there are not enough Fe ii
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lines in their list and thus the ionisation balance log g is artificially low. However, this

is difficult to verify without knowing what lines they used.

That said, Fuhrmann et al. (1997) also make the valid point that the log g derived

from the Mg i b lines is relatively insensitive to changes in Teff , which makes it a

preferable method of determining log g considering the degeneracies in Teff , log g and

vmic when determining parameters with the Fe lines.

I initially didn’t use the Mg b triplet for log g determinations as the 5164 Å line

is badly blended and the synthetic lines for 5172 and 5183 Å were much stronger than

the observed spectrum using the known log g in the Sun. This meant that when these

lines were fit to the spectrum, the log g was too low. However, when these lines are

updated with the Van der Waals values from ABO theory, as well as recent laboratory

log gf values (Aldenius et al. 2007), the fit is vastly improved. As with sodium, the

abundance of magnesium should be calculated from weak lines prior to obtaining the

log g from the triplet.

Herein lies another problem, as not only are Mg lines scarce, but the atomic data

is also dubious. After modifying my line list to include the best Mg lines and updating

the atomic data, I still found that [Mg/Fe] is consistently high in stars of all Teff . I ruled

out NLTE effects as the cause, as the deviations are small for Mg in dwarfs of solar

metallicity (Zhao, Butler & Gehren 1998) and would not explain the discrepancy. As

Mg is quite sensitive to VDW broadening, I thought that updating these values might

result in better abundances. However, as with Na, it was not possible to get ABO

values for all of the lines used. Fuhrmann et al. (1997) used VDW values that had been

adjusted to the solar value. Mashonkina (2013) applied corrections to the VDW for

two Mg lines to obtain consistent abundances for all the Mg lines used, however these

are not lines that I used as they were unsuitable.

[Mg/Fe] can be used as a tracer for Galactic evolution and Mg can be genuinely

higher than the Fe abundance in some stars, particularly in those of low overall metal-

licity, however it is unlikely that there will be a substantial overabundance of Mg com-

pared to Fe in thin disc stars of solar metallicity (Fuhrmann 1998; Arnone et al. 2005).

Beirão et al. (2005) found that [Mg/Fe] is slightly above solar for high metallicity stars,

however this is still lower than my values. I found that the high Mg abundance has

the effect of lowering the log g to unrealistic values, such as 4.25 in the Sun, and these

log g values also disagree with those determined from the ionisation balance, Na and Ca

lines. As such, I chose not to use Mg as a log g diagnostic, however it could probably
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be used by assuming that the Mg abundance scaled with Fe.

Table 3.8 lists the individual log g values determined from each Na, Ca, and Mg

line.

3.6.1.4 Spectroscopic log g for cool stars

Not only is the log g from the Na i D lines unreliable for cool stars, but the ionisation

balance is also dubious as the number of Fe ii lines is vastly depleted at these tem-

peratures. As seen in Section 3.6.1, the log g can be overestimated when there aren’t

enough Fe ii lines. In addition, discrepancies in log g exist as the Fe ii abundance can

be vastly different from the Fe i abundance. For temperatures above 5500 K, the abun-

dances of Fe i and Fe ii are consistent with each other, however for cooler stars the

Fe ii abundance has a tendency to creep upwards. In the Hyades cluster, Allende Prieto

et al. (2004) found that this results in the Fe ii abundance being higher by an order

of magnitude for metal-rich stars with a Teff of around 4000 K. For the abundances to

agree, the Teff needs to be increased by ∼350 K or the log g needs to be lowered from

∼4.6 to ∼3.8. However modifying the parameters by such a large amount is outside

the expected errors and does not agree with parameters determined via other methods.

NLTE effects could explain the discrepancy in Fe, as for cooler stars it is expected that

the Fe ii lines are prone to NLTE alterations and can differ by up to 0.6 dex.

Therefore, spectroscopic log g values should not be trusted at all for stars below

5000 K, and alternate methods of determining log g should be sought. For example,

Woolf & Wallerstein (2005) determined the log g of their sample of K and M dwarfs

via a calculation, rather than directly from the mid resolution (∼33,000) spectra. The

masses were obtained from the mass-luminosity diagram using H and KS magnitudes

determined from parallax distances. The bolometric magnitude (Mbol) was found from

the parallax, the KS magnitude and the bolometric correction BCK. The log g was

then determined from Mbol, mass and Teff via log g = logM + 4 log(Teff/5770) + 0.4

(Mbol - 4.65) + 4.44. Bean et al. (2006) used a similar approach for M dwarfs using a

log g and stellar mass calibration. The masses of several M dwarfs were determined from

binaries and from the MK and mass relationship of Delfosse et al. (2000) for single stars.

The MK magnitude was obtained from K magnitudes and parallaxes from 2MASS and

Hipparcos respectively. Unfortunately, there are no parallaxes available for the sample

of WASP stars studied here, so these methods cannot be employed to determine log g,

however future Gaia measurements could resolve this issue.
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3.6.2 Determination of Teff

The temperatures from the HARPS spectra are compared with the IRFM values in

Figure 3.6. The solid line is a linear regression to the data, m = 1.10 ± 0.06 and c

= -579.66 ± 325.89. The rms difference between the two methods is 113 K, which is

reasonable given the Teff errors. If both measures of Teff were in perfect agreement,

r2 would be 1 and here it has a value of 0.97, indicating that there is a strong linear

relationship between the two methods of determining Teff .

It is possible that the spectroscopic temperatures are higher than the IRFM values

for the hotter stars due to NLTE effects, particularly for WASP-17. Using the method

outlined in Section 3.5, I found that the Teff of WASP-17 derived from the excitation

balance was now reduced from 6700 ± 105 to 6630 ± 100 K. In the case of WASP-17,

the strong interstellar reddening present could affect the IRFM Teff .
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Figure 3.6: Comparison of Teff from the HARPS spectra with the IRFM. The solid line
depicts the linear regression.
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3.6.3 Microturbulence

Obtaining the appropriate vmic value depends strongly on knowing the correct value of

Teff and log g. If one of these two parameters is incorrect then the vmic will be skewed.

For instance, a change in Teff or log g by 100 K or 0.1 dex respectively will result in a

change in vmic of around 0.1 km s−1. In addition, the scatter in abundances makes it

difficult to get a precision in vmic any better than 0.08 km s−1.

I also considered using Blackwell diagrams to determine the vmic. However, there

can be ambiguity as to the position of the intersection of the lines, as seen in Figure 3.7

for WASP-15 using the Fe i lines from Gray & Griffin (2007). As the Blackwell diagrams

are also dependent on an input Teff , I found no advantage to using this method.

I found that the vmic increases with Teff , in agreement with Bruntt et al. (2010a),

Landstreet et al. (2009), and Smalley (2004). Valenti & Fischer (2005) suggested that

vmic should be fixed to the solar value of 0.85 km s−1 based on the fact that they found

a correlation between [M/H] and vmic when they let vmic vary. They also found no

significant dependence between vmic and Teff . However, while fixing vmic is valid for

stars of similar Teff to the Sun, it is not appropriate for hotter stars. The resulting

vmic is plotted against Teff in Figure 3.9 and the second order polynomial fit is given in

Equation 3.1:

vmic = 0.89 + 4.16× 10−4(Teff − 5777) + 9.25× 10−8(Teff − 5777)2 km s−1. (3.1)

An error of 0.18 km s−1 is determined by adding in quadrature the rms scatter of

the fit (0.13 km s−1) and the average vmic error (0.13 km s−1). As others (e.g. Edvardsson

et al. 1993; Reddy et al. 2003; Bruntt et al. 2012; Tsantaki et al. 2013) have determined

the relationship of vmic with both Teff and log g, I also plotted the log g dependence in

Figure 3.9. Unlike for vmac in Figure 5.12, there is no indication of a log g dependence.

However, the calibrations in the literature that include log g usually do so for a sample

of stars that includes both dwarfs and more evolved stars, so it is possible that the log g

dependence just isn’t obvious among the dwarf stars.

The Bruntt et al. (2010a) calibration is also shown in Figure 3.9, and clearly

returns higher vmic values, particularly for the hotter stars. In fact, this is also true of

the calibrations of Edvardsson et al. (1993), Reddy et al. (2003), Gómez Maqueo Chew

et al. (2013) and Tsantaki et al. (2013). The reason for this is not clear, however it is

possible that my use of the Magain method can partially explain the higher vmic values
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Figure 3.7: Blackwell diagram for WASP-15 using the selection of Fe i lines from Gray
& Griffin (2007). Ideally, the lines should all intersect at one point which reveals the
optimum vmic, but it is unclear from the diagram what the vmic should be.

of other works. As expected, the use of the calculated EWs of the Magain method will

result in lower vmic values, as can be seen in Figure 3.8.

It is possible that the difference in line lists could contribute to the differences

in vmic determined, in both the number of lines used and the specific lines selected.

In order to see how the number of lines used might affect the vmic, I chose a hot star

with the most measured Fe lines (WASP-15; see Table 3.7) and randomly deleted lines

until there were only 40 remaining. This did not result in a change in the vmic. The

cutoff imposed for strong lines could also be a factor in the vmic obtained, as additional

broadening in the form of damping parameters will also be dominant in strong lines. I

did not use lines stronger than ∼110 mÅ, although other authors use different limits.

For example, Mucciarelli (2011) do not use lines stronger than 78 mÅ at 5500 Å. I

found that deleting lines stronger than this in WASP-15 only serves to reduce the vmic

by 0.05 km s−1.
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Figure 3.8: The vmic calculated for the HARPS spectra via the Magain method is given
by the blue circles, and the standard method is given by the black diamonds. The
dashed and solid curves are fits to the respective data. The errors are the same as for
Figure 3.9.

3.6.4 Fitting lines

The synthetic line based on the measured EW will not be as broad as the observed

line, because damping parameters are a major factor for strong lines and strong lines

begin to deviate from a Gaussian profile and develop Lorentzian wings. For example,

Figure 3.10 shows the difference between the EW and fitting methods for the HARPS

solar spectrum. The underestimation of the EW method for strong lines is obvious

from the residuals between the fitting and EW values. For lines stronger than 0.08 Å,

measuring the EW will underestimate the value of the line by up to 0.02 Å. As such,

many authors choose to exclude strong lines from their analyses, although Mucciarelli

(2011) advises that these lines can still be used for an abundance analysis, just not in

microturbulence calculations.
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the red dashed line is the calibration from Bruntt et al. (2010a). There is no obvious
dependence on log g among the dwarfs.

3.6.5 Continuum placement

Determining the points at which the wings of a line reach the continuum can be difficult

and often results in an underestimate of the EW and thus the abundance.

I found that in spectra with low S/N (such as the CORALIE spectra), the noise

makes the continuum placement difficult. In addition, the wings of the lines become

lost in the noise, leading to an underestimation of the line strength. An example is

shown in Figure 3.11 for a line in the CORALIE WASP-16 spectrum (S/N of 70), as

well as for the same line in the HARPS spectrum which has S/N of 175.

A high S/N spectrum doesn’t necessarily eliminate all problems associated with

determining where the line wings meet the continuum. Extremely weak lines that

are ordinarily lost in the noise at the continuum become evident, but these are often

unidentified lines which makes them difficult to synthesise, as is shown in Figure 3.12

for the Kitt Peak Solar Atlas.
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Figure 3.10: EW measurements compared with fitting for the HARPS solar spectrum.
The solid line in the top panel is a 1:1 relationship. The residuals show that the fitting
method can produce an EW error of up to 0.02 Å compared to just measuring the EWs
for lines stronger than 0.08 Å.

3.6.6 Spectral comparison

Spectral comparison can be useful when there are some uncertainties in the parameters.

While this method does not yield actual values for the parameters, it is useful to compare

the spectra of stars to ascertain which set of parameters are the most likely. My initial

analysis of the HARPS spectrum of WASP-23 yielded the parameters from the Fe lines

of Teff = 4975 ± 50 K and ionisation balance log g = 4.20 ± 0.10 dex. While this solution

looked perfectly viable at first based purely on the spectroscopic analysis, the stellar

radius derived from the log g is 1.24 R¯, which would make this a slightly evolved star.

This is inconsistent with the radii derived from the discovery paper spectral analysis

and from the statistical analysis, which are 0.97 R¯ and 0.77 R¯ respectively (Triaud

et al. 2011). After a further inspection, and removal of three Fe lines, I found that the

parameters of Teff = 5020 ± 50 K and log g = 4.35 ± 0.08 dex also appeared to be a

reasonable solution from the Fe lines, and a higher log g would be more consistent with

previous results. While the latter appears to be the better solution, I decided to try
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Figure 3.11: A Ni i line in a CORALIE spectrum of WASP-16 with S/N of 70 is shown in
the top panel. The noise in the continuum makes it difficult to normalise the spectrum,
as well as creating problems with fitting the wings of the line. The same line is shown
in the bottom panel with the HARPS spectrum (S/N 175) for comparison.
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Figure 3.12: The top panel shows the same Ni i line as Fig. 3.11, but in the Kitt Peak
Solar Atlas (S/N of 3000). The lower panel is a close up of the continuum showing that
unidentified weak lines can cause normalisation issues even in high S/N spectra.
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and verify this using spectral comparison.

Figure 3.13 shows several spectra in likely decreasing Teff order; σ Dra (5282 K),

WASP-23 (5020 K), WASP-53 (4950 K), WASP-29 (4730 K), and 61 Cyg A (4442

K). All additional spectra were obtained from the ELODIE archive at Observatoire de

Haute-Provence (Moultaka et al. 2004). The spectra chosen were of similar v sin i, as

this can affect the spectral classification (Gray 1988). The spectral region shown in

Figure 3.13 is sensitive to Teff changes, with the Ca i 4226 Å line strengthening towards

later spectral types. Of course the Ca abundance itself can affect the line strength, but

for stars of similar metallicity it is the Teff changes that dominate the variations in the

line strength. The line ratios of Cr i 4275 / Fe i 4271 Å and Cr i 4254 / Fe i 4260 Å

are also sensitive to temperature changes. As the Cr abundance generally scales with

Fe, these ratios can be used for metal-poor and metal-rich stars. Line ratios between

Fe and H are only suitable for solar metallicity stars (Gray & Corbally 2009). A visual

inspection shows that WASP-23 is very similar to WASP-53, however when the line

ratios are measured there is a clear difference that places the spectral type of WASP-23

between WASP-53 and σ Dra, which is consistent with the Teff of WASP-23 being 5020

rather than 4975 K, and thus favours the second solution from the spectral analysis.

It is quite difficult to measure the line ratios as all the lines are blended, and it is

impossible to measure the EW of the line to the full extent of the wings due to the

presence of many other strong lines. However, a consistent measurement towards the

core of the line does result in a viable set of line ratios. These should be used with

caution, but can provide an indication of spectral type.
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WASP-24 is a hotter star of Teff = 6080 K, and as such different lines bear the

temperature sensitivity. The spectral comparison of WASP-24 with the spectra of

HD 22484 (Teff 5988 K), HD 5015 (Teff 6128 K), HD 173667 (Teff 6332 K) and HD

100563 (Teff 6414 K) is shown in Figure 3.14. The Ca i 4226 Å line is no longer

useful as a standalone temperature indicator, however it can be used in a ratio with

the Hδ line. The Fe i 4046 Å line can also be used with Hδ, however these ratios

can only be used for solar metallicity stars. The Balmer lines can be used alone to

decipher temperature as they grow towards increasing temperatures until mid-A type

stars, however the comparison at this temperature range is not as clear cut as it was

for WASP-23, because as mentioned in Section 2.1.3, the Balmer lines are difficult to

normalise in echelle spectra and it is likely that there are continuum errors. As such,

this should only be used as a guideline. The line ratios also indicate that HD 22484

is hotter than WASP-24, while a direct comparison of the Hδ lines between the two

indicates otherwise. Other than this discrepancy, the line ratios agree with the general

trend of temperature.

3.6.7 Constraining log g from planetary transits

Some WASP stars have log g values available that had been calculated from the stellar

density, which are given in Table 3.6. For the values in common between Southworth

and Mortier, there is good agreement for most stars, except for WASP-13 and WASP-

16. This is most likely due to the fact that the transit log g requires isochrones to be

computed, and is thus model dependent. Southworth used the mean of different values

computed with five different models, and Mortier has used one model.

In Figure 3.15, I plot the Mortier transit log g values against my own spectroscopic

log g values, including the HIRES analysis of WASP-13 (see Section 4.1 for more details).

The linear regression gives m = 0.85 ± 0.31 and c = 0.68 ± 1.34. r2 gives a value of

0.32, indicating that there isn’t a relationship between these values. This is also obvious

from the scatter of the values on the plot and the rms difference of 0.15 dex between the

two methods. Therefore, there is no systematic difference between the spectroscopic

and transit log g measurements and a comparison between the two doesn’t show which

is the best method.

As it is recommended by Torres et al. (2012) to redetermine the spectroscopic

parameters with the log g fixed to the transit value, I re-derived the Teff with priority

given to the Southworth log g. These values are given in Table 3.7. The comparison
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Figure 3.15: Comparison between the spectroscopic log g from this work and the transit
log g from Mortier et al. (2013b). The solid line is the linear regression, and it is obvious
that the spectroscopic and transit log g values don’t compare well.

between constrained and unconstrained Teff is shown in Figure 3.16. The solid line is the

linear regression with m = 1.03 ± 0.03 and c = -204.61 ± 160.77. The rms difference

is 62 K, which indicates that there is better agreement between the unconstrained

and constrained Teff values than there is between the unconstrained and IRFM values.

r2 is 0.99, which further indicates good agreement between the unconstrained and

constrained values, and therefore that the constrained Teff isn’t any better than the

unconstrained value.

For individual cases, the results still seem somewhat inconclusive. For example,

the constrained Teff is in disagreement with the IRFM Teff for WASP-2, but in others

the constrained Teff seems to be better. The most striking example is that of WASP-15,

where the unconstrained Teff of 6405 ± 80 K is reduced to 6260 ± 80 K when the log g

is fixed, in better agreement with the IRFM Teff of 6210 ± 60 K.

As WASP-17 has a Teff that is suspiciously high, it might be expected that con-

straining the log g would reduce the Teff , especially since the spectroscopic log g for this

star is particularly unreliable. However, the Teff is only reduced by 30 K, meaning that

other factors are at work pushing the Teff higher.
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transit value. The solid line is the linear regression.

3.6.8 Abundances

The abundances I determined are given in Table 3.9 for all elements that have three or

more usable spectral lines. The abundances obtained from the HARPS solar spectrum

are consistent with the Asplund et al. (2009) solar values, as seen in Figure 3.17.

However, there is a discrepancy with Co, and the error on Mn is large compared to

the other elements. This may be due to hyperfine splitting as discussed in Section 3.7.

Overall, I found that the logA(Fe) values derived from the HARPS spectra of the

WASP stars were an average of 0.10 ± 0.05 dex higher than the previous analyses, and

this can be seen in Figure 3.18. This is excluding WASP-2, WASP-4, and WASP-5,

as there are large uncertainties in the initial values. Some of the initial analyses were

also of HARPS spectra, which explains the data points which are in agreement. Higher

abundances are to be expected from the high S/N HARPS spectra, as the line profile

wings are less likely to be underestimated due to noise on the continuum.

There is evidence that the CORALIE spectrograph is prone to scattered light,

which can weaken spectral lines and could also contribute to the underestimated abun-
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dances. This can be shown when looking at the EWs of the CORALIE and HARPS

spectra of WASP-69 in Figure 3.19. The spectra are both of similar S/N, and this

enabled a good comparison between the EWs of the lines, which is not possible with

other stars within the WASP data sets or with the Sun. For example, the CORALIE

spectrum of the Sun has S/N of 60, whereas the HARPS spectrum as S/N of 1000, and

the S/N difference here is the major contributor to the CORALIE solar abundances

being underestimated by ∼0.2 dex. In the case of WASP-69, there is an rms difference

of 0.006 Å between both spectrographs. This small but systematic difference indicates

that there is an additional discrepancy between the two spectrographs, possibly due to

scattered light in the CORALIE spectrum.

3.6.8.1 Differential analysis

In addition to using abundances determined from the EWs measured with uclsyn, I

also performed a line-by-line differential analysis with the Sun. I found that the uclsyn

abundances agree with the differential abundances to within 0.04 dex. However, as there
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is a large range in the stellar parameters, I decided it was best not to use these values.

As such, the abundances obtained from the non-differential analyses were retained for

most elements.

For some elements, the abundances obtained are highly anomalous, even in the

Sun, or there is an unusual scatter in the abundances, such as with Si. In these cases, I

looked for suitable alternate values of log gf but found none. As such, the only way to

obtain any sort of abundance values for these elements was to use a differential analysis,

and the results of this is shown in Table 3.10 for Si, Cu, Sr, Sm, Gd, Dy and W. It

should be noted that most of these elements have very few lines, which could introduce

further errors. For instance, the precision of some of the abundances in Table 3.10 is

as low as 0.01 dex and this is most likely due to the fact that there are very few lines.

A larger number of lines, such as used for Fe, will have a larger scatter in the values.

If there are only three lines measured for an element, they do not give an accurate

representation of the possible spread in abundances, and could be biased towards as
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higher or lower abundance, as is the case for too few Fe ii lines in Section 3.6.1.

3.6.9 Mass and radius

The mass and radius for each star are obtained from the Teff , log g, and [Fe/H], based on

the Torres, Andersen & Giménez (2010) calibration and given in Table 3.11. However,

it should be noted that these masses and radii are only given as an example, and that

stellar evolutionary models may give different results based on the same spectroscopic

parameters.



81

T
ab

le
3.

9:
A

b
u
n
d
an

ce
s

fo
r

th
e

H
A

R
P

S
so

la
r

sp
ec

tr
u
m

,
P

ro
cy

on
an

d
th

e
W

A
S
P

st
ar

s.
S
ta

r
lo

g
A

(F
e)

lo
g

A
(N

a
)

lo
g

A
(C

a
)

lo
g

A
(S

c)
lo

g
A

(T
i)

lo
g

A
(V

)
lo

g
A

(C
r)

lo
g

A
(M

n
)

lo
g

A
(C

o
)

lo
g

A
(N

i)
lo

g
A

(Y
)

S
u
n

7
.5

2
±

0
.0

8
6
.3

2
±

0
.0

7
6
.3

3
±

0
.0

9
3
.1

0
±

0
.0

7
4
.9

5
±

0
.0

8
3
.9

2
±

0
.0

6
5
.6

5
±

0
.0

6
5
.5

0
±

0
.1

4
4
.8

4
±

0
.1

1
6
.2

4
±

0
.0

6
2
.2

4
±

0
.0

7
P

ro
cy

o
n

7
.4

8
±

0
.0

9
6
.3

1
±

0
.0

3
6
.3

7
±

0
.0

9
3
.1

2
±

0
.1

2
4
.9

8
±

0
.1

0
3
.9

3
±

0
.0

3
5
.6

5
±

0
.1

1
5
.2

3
±

0
.0

6
4
.8

3
±

0
.1

0
6
.2

0
±

0
.0

8
2
.2

8
±

0
.0

7
W

A
S
P

-2
7
.4

6
±

0
.1

0
6
.4

0
±

0
.0

6
6
.3

6
±

0
.0

8
3
.1

5
±

0
.0

7
5
.0

0
±

0
.0

8
4
.0

7
±

0
.0

8
5
.6

4
±

0
.0

9
5
.5

3
±

0
.1

1
5
.0

8
±

0
.2

0
6
.1

8
±

0
.0

9
W

A
S
P

-4
7
.4

2
±

0
.1

3
6
.2

7
±

0
.0

7
6
.2

5
±

0
.1

2
3
.0

9
±

0
.1

4
4
.8

7
±

0
.0

9
3
.8

6
±

0
.0

6
5
.5

9
±

0
.0

9
5
.5

3
±

0
.1

3
4
.8

7
±

0
.0

6
6
.1

4
±

0
.1

3
2
.1

4
±

0
.0

9
W

A
S
P

-5
7
.6

3
±

0
.1

0
6
.5

4
±

0
.1

1
6
.4

9
±

0
.0

9
3
.3

2
±

0
.1

6
5
.0

7
±

0
.1

2
4
.0

7
±

0
.0

8
5
.7

7
±

0
.0

8
5
.8

4
±

0
.0

9
5
.1

1
±

0
.0

7
6
.3

7
±

0
.1

0
2
.3

0
±

0
.1

4
W

A
S
P

-6
7
.3

5
±

0
.0

9
6
.1

8
±

0
.0

9
6
.1

9
±

0
.1

2
3
.0

2
±

0
.1

0
4
.8

3
±

0
.0

8
3
.8

0
±

0
.0

9
5
.5

0
±

0
.1

0
5
.2

7
±

0
.1

2
4
.6

7
±

0
.1

4
6
.0

4
±

0
.1

2
W

A
S
P

-7
7
.6

8
±

0
.0

6
6
.5

0
±

0
.0

3
5
.2

6
±

0
.2

4
5
.7

7
±

0
.0

5
6
.3

7
±

0
.1

0
W

A
S
P

-8
7
.7

0
±

0
.1

1
6
.5

9
±

0
.1

1
6
.5

6
±

0
.0

8
3
.2

3
±

0
.0

6
5
.1

4
±

0
.1

0
4
.1

9
±

0
.0

9
5
.8

4
±

0
.0

5
5
.6

6
±

0
.0

6
5
.2

1
±

0
.1

7
6
.4

9
±

0
.1

1
2
.3

7
±

0
.0

9
W

A
S
P

-1
5

7
.5

2
±

0
.1

0
6
.2

3
±

0
.0

3
6
.3

1
±

0
.0

9
3
.1

7
±

0
.1

0
4
.9

7
±

0
.0

7
5
.6

2
±

0
.0

8
5
.3

0
±

0
.0

8
4
.7

7
±

0
.1

0
6
.1

2
±

0
.0

7
2
.2

9
±

0
.0

8
W

A
S
P

-1
6

7
.5

9
±

0
.1

0
6
.4

7
±

0
.0

5
6
.4

4
±

0
.1

2
3
.1

4
±

0
.1

3
5
.0

3
±

0
.1

0
4
.0

0
±

0
.1

1
5
.7

3
±

0
.1

0
5
.6

7
±

0
.1

6
5
.1

0
±

0
.1

6
6
.4

1
±

0
.1

1
2
.1

2
±

0
.0

5
W

A
S
P

-1
7

7
.4

0
±

0
.1

0
6
.1

9
±

0
.0

4
6
.2

7
±

0
.1

9
4
.9

1
±

0
.0

6
5
.5

3
±

0
.0

5
5
.1

9
±

0
.0

9
6
.0

6
±

0
.1

0
2
.2

0
±

0
.1

1
W

A
S
P

-1
8

7
.6

0
±

0
.0

8
6
.2

2
±

0
.0

4
6
.4

8
±

0
.1

2
5
.0

7
±

0
.0

6
3
.9

4
±

0
.0

8
5
.7

5
±

0
.1

0
5
.5

1
±

0
.1

5
6
.2

4
±

0
.0

6
2
.4

1
±

0
.1

0
W

A
S
P

-1
9

7
.6

6
±

0
.1

1
6
.5

2
±

0
.0

8
6
.5

1
±

0
.1

3
3
.2

9
±

0
.0

9
5
.1

5
±

0
.1

1
4
.1

6
±

0
.0

8
5
.8

1
±

0
.0

8
5
.7

8
±

0
.2

1
5
.1

2
±

0
.1

0
6
.4

0
±

0
.0

8
2
.3

9
±

0
.1

6
W

A
S
P

-2
0

7
.6

5
±

0
.0

9
6
.4

0
±

0
.0

9
6
.4

2
±

0
.1

0
3
.2

0
±

0
.0

9
5
.0

9
±

0
.1

0
4
.1

1
±

0
.0

6
5
.8

0
±

0
.1

2
5
.5

8
±

0
.1

2
4
.9

8
±

0
.1

8
6
.2

8
±

0
.0

9
2
.4

2
±

0
.1

2
W

A
S
P

-2
1

7
.2

4
±

0
.0

7
5
.9

2
±

0
.0

7
6
.1

6
±

0
.0

9
3
.0

9
±

0
.0

5
4
.8

2
±

0
.1

1
3
.5

7
±

0
.0

6
5
.3

0
±

0
.1

2
4
.8

9
±

0
.0

9
4
.5

4
±

0
.1

2
5
.8

7
±

0
.0

7
1
.8

8
±

0
.0

6
W

A
S
P

-2
2

7
.6

8
±

0
.0

8
6
.5

2
±

0
.0

9
6
.5

0
±

0
.0

8
3
.2

4
±

0
.1

3
5
.1

0
±

0
.0

9
4
.0

6
±

0
.0

9
5
.7

9
±

0
.0

7
5
.6

7
±

0
.1

6
5
.0

7
±

0
.1

1
6
.4

1
±

0
.0

5
2
.3

1
±

0
.1

0
W

A
S
P

-2
3

7
.5

6
±

0
.0

7
6
.3

4
±

0
.0

4
6
.3

6
±

0
.1

9
3
.1

0
±

0
.0

8
5
.0

2
±

0
.1

1
4
.0

9
±

0
.1

2
5
.7

0
±

0
.1

3
5
.4

6
±

0
.1

6
4
.9

8
±

0
.1

3
6
.2

1
±

0
.0

9
W

A
S
P

-2
4

7
.5

4
±

0
.0

8
6
.2

8
±

0
.0

9
6
.3

7
±

0
.0

9
3
.1

8
±

0
.1

2
4
.9

7
±

0
.1

2
3
.8

1
±

0
.0

5
5
.5

8
±

0
.1

1
5
.3

9
±

0
.1

2
4
.8

5
±

0
.1

2
6
.1

7
±

0
.0

6
2
.3

1
±

0
.0

9
W

A
S
P

-2
9

7
.7

6
±

0
.1

2
6
.6

8
±

0
.1

0
6
.5

5
±

0
.1

3
3
.4

3
±

0
.0

9
5
.2

8
±

0
.1

3
4
.4

9
±

0
.2

2
5
.9

6
±

0
.1

8
5
.7

8
±

0
.1

7
5
.2

9
±

0
.1

9
6
.4

4
±

0
.1

0
W

A
S
P

-3
0

7
.6

1
±

0
.0

7
6
.4

3
±

0
.0

9
6
.4

7
±

0
.1

2
5
.0

1
±

0
.1

0
3
.8

5
±

0
.0

5
5
.7

8
±

0
.1

0
5
.6

1
±

0
.1

3
6
.2

9
±

0
.0

8
W

A
S
P

-3
1

7
.4

3
±

0
.1

0
6
.1

0
±

0
.0

5
6
.3

3
±

0
.0

5
3
.1

3
±

0
.0

9
4
.9

1
±

0
.0

8
5
.4

9
±

0
.0

9
5
.1

5
±

0
.1

2
6
.0

7
±

0
.1

0
2
.2

5
±

0
.1

0
W

A
S
P

-5
3

7
.7

2
±

0
.1

1
6
.7

6
±

0
.1

1
6
.5

0
±

0
.1

5
3
.3

4
±

0
.1

1
5
.2

1
±

0
.1

5
4
.3

7
±

0
.2

0
5
.8

6
±

0
.1

1
5
.7

2
±

0
.2

0
5
.2

3
±

0
.1

1
6
.4

2
±

0
.1

2
W

A
S
P

-6
9

7
.8

1
±

0
.1

1
6
.7

6
±

0
.1

0
6
.6

7
±

0
.1

6
3
.4

7
±

0
.1

9
5
.2

9
±

0
.1

4
4
.6

1
±

0
.1

4
6
.0

5
±

0
.1

7
5
.9

3
±

0
.3

4
5
.6

5
±

0
.3

1
6
.5

7
±

0
.1

9
W

A
S
P

-7
7
A

7
.5

0
±

0
.1

0
6
.3

2
±

0
.0

5
6
.3

2
±

0
.1

3
3
.1

2
±

0
.0

7
4
.9

3
±

0
.0

9
3
.9

0
±

0
.0

7
5
.6

4
±

0
.0

6
5
.5

7
±

0
.1

4
4
.9

1
±

0
.1

0
6
.2

1
±

0
.0

8
2
.2

5
±

0
.0

9
W

A
S
P

-7
7
B

7
.3

8
±

0
.1

9
6
.5

3
±

0
.0

8
6
.3

3
±

0
.0

9
3
.2

9
±

0
.1

8
5
.1

0
±

0
.1

5
4
.3

2
±

0
.1

4
5
.7

1
±

0
.2

2
5
.2

3
±

0
.2

7
6
.2

3
±

0
.1

9
W

A
S
P

-8
0

7
.3

6
±

0
.1

6
6
.3

0
±

0
.1

6
6
.2

0
±

0
.3

2
4
.9

3
±

0
.2

8
4
.0

8
±

0
.1

5
5
.4

1
±

0
.1

6
5
.2

5
±

0
.1

6
6
.0

0
±

0
.3

1



82

Table 3.10: Differential abundance analysis.
Star [Si/H] [Cu/H] [Sr/H] [Sm/H] [Gd/H] [Dy/H] [W/H]

WASP-2 0.07 ± 0.03 -0.04 ± 0.05 0.25 ± 0.03 0.10 ± 0.05
WASP-4 -0.02 ± 0.02 0.07 ± 0.04 0.08 ± 0.05 0.00 ± 0.05 -0.13 ± 0.08
WASP-5 0.20 ± 0.01 0.23 ± 0.02 0.24 ± 0.04 0.06 ± 0.04 0.17 ± 0.04 0.04 ± 0.09
WASP-6 -0.08 ± 0.02 -0.06 ± 0.06 0.15 ± 0.03 -0.12 ± 0.03 -0.06 ± 0.03 -0.42 ± 0.06
WASP-7 0.25 ± 0.02 0.46 ± 0.03 -0.29 ± 0.04 0.03 ± 0.04
WASP-8 0.25 ± 0.06 0.32 ± 0.29 0.38 ± 0.05 0.36 ± 0.04 0.48 ± 0.04 0.30 ± 0.09
WASP-15 -0.02 ± 0.03 0.02 ± 0.07 0.09 ± 0.05 -0.21 ± 0.05 -0.05 ± 0.05 0.22 ± 0.09
WASP-16 0.16 ± 0.02 0.21 ± 0.06 0.12 ± 0.04 0.17 ± 0.05 0.06 ± 0.04 0.15 ± 0.04 0.00 ± 0.08
WASP-17 -0.14 ± 0.04 -0.45 ± 0.09
WASP-18 0.13 ± 0.02 -0.04 ± 0.07 -0.27 ± 0.04
WASP-19 0.25 ± 0.02 0.25 ± 0.07 0.12 ± 0.06 0.34 ± 0.06 0.29 ± 0.07 0.06 ± 0.09
WASP-20 0.00 ± 0.03 0.08 ± 0.06 0.12 ± 0.04 0.17 ± 0.06 -0.08 ± 0.06 0.10 ± 0.06 0.30 ± 0.09
WASP-21 -0.31 ± 0.02 -0.43 ± 0.06 0.07 ± 0.04 -0.30 ± 0.04 -0.32 ± 0.04
WASP-22 0.14 ± 0.02 0.14 ± 0.02 0.30 ± 0.04 0.09 ± 0.04 -0.03 ± 0.04 0.02 ± 0.04 0.30 ± 0.08
WASP-30 0.10 ± 0.02 -0.14 ± 0.06 0.20 ± 0.03

Table 3.11: Stellar mass and radius determined from the Torres, Andersen & Giménez
(2010) calibration

Star Mass (M¯) Radius (R¯)
WASP-2 0.87 ± 0.07 0.90 ± 0.14
WASP-4 0.92 ± 0.07 0.92 ± 0.13
WASP-5 1.10 ± 0.08 1.24 ± 0.15
WASP-6 0.87 ± 0.06 0.77 ± 0.07
WASP-7 1.34 ± 0.09 1.32 ± 0.11
WASP-8 1.04 ± 0.08 1.05 ± 0.12
WASP-15 1.23 ± 0.09 1.15 ± 0.16
WASP-16 1.09 ± 0.09 1.34 ± 0.20
WASP-17 1.29 ± 0.12 1.27 ± 0.38
WASP-18 1.28 ± 0.09 1.29 ± 0.1
WASP-19 1.01 ± 0.08 1.07 ± 0.19
WASP-20 1.12 ± 0.08 0.94 ± 0.15
WASP-21 1.02 ± 0.07 1.13 ± 0.14
WASP-22 1.22 ± 0.09 1.35 ± 0.17
WASP-23 0.88 ± 0.07 1.07 ± 0.17
WASP-24 1.22 ± 0.09 1.44 ± 0.22
WASP-29 0.80 ± 0.06 0.83 ± 0.17
WASP-30 1.28 ± 0.09 1.51 ± 0.1
WASP-31 1.19 ± 0.09 1.19 ± 0.16
WASP-53 0.87 ± 0.08 0.96 ± 0.24
WASP-69 0.84 ± 0.07 0.98 ± 0.24
WASP-77A 1.00 ± 0.07 1.12 ± 0.12
WASP-77B 0.71 ± 0.06 0.69 ± 0.12
WASP-80 0.57 ± 0.05 0.61 ± 0.15
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3.7 Errors

The Teff , log g and [Fe/H] are correlated, and thus errors in one parameter will affect

the determination of another. For example, if the Teff of a hot star is overestimated,

the [Fe/H] will also be overestimated (Holmberg, Nordström & Andersen 2007).

I calculated the Teff errors from the 1-σ variation in the slope of abundance against

excitation potential, and they range between 50 and 105 K. These values are consistent

with Torres, Winn & Holman (2008), who suggest that Teff errors should not fall below

50 K, despite the fact that some automated spectroscopic analyses often give errors

that are much lower than this. To justify this decision they cite, for example, the

difference of around 100 K between excitation equilibrium measurements and the IRFM

determined by Ramı́rez & Meléndez (2004). Maxted, Koen & Smalley (2011) also

performed a comparison between spectroscopic methods and the IRFM, which supports

that temperature errors should not be any lower than 50 K.

A change in Teff will affect the ionisation balance, for example an increase in Teff

of 100 K will result in log g increasing by 0.1 dex (Bruntt 2009). This was accounted

for by varying the Teff by 1-σ when using the ionisation balance method. The log g

determined from the pressure-broadened lines is also dependent on the abundance, as

an increased abundance will cause the line to be stronger. The abundances were thus

varied by 1-σ when determining log g from fitting the Na i D and Ca i lines.

While there is some reduction in errors of stellar parameters from the original

analyses with mostly lower S/N spectra, the errors are still large considering the high

S/N of the HARPS spectra. I calculated the average errors in Teff , log g, vmic and

logA(Fe) to be 83 K, 0.11 dex, 0.11 km s−1 and 0.10 dex respectively for this sample of

stars. The scatter in Fe abundances due to uncertainties in atomic data can influence

the logA(Fe) as well as Teff , log g and vmic.

Variations in Teff , log g and vmic can affect the elemental abundances. Table 3.12

and Table 3.13 list the uncertainties when the stellar parameters are varied by their

average errors for the HARPS solar spectrum and Procyon respectively. Elements such

as V are more sensitive to changes in temperature than others due to a restricted range

in excitation potential. Therefore a large error on Teff will give V a more substantial

error than the other elements. For certain elements, additional sources of uncertainty

have to be considered. Abundances can be overestimated for Mn and Co, as the line

profiles are altered due to hyperfine splitting (Schuler et al. 2011b) so that they have a
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flat core. This could cause abundances uncertainties in Mn and Co to be higher than

for other elements (Wahlgren 2005).

Table 3.12: Abundance uncertainties for the HARPS solar spectrum

Element ∆ Teff ∆ log g ∆ vmic

+83 K +0.11 dex +0.11 km s−1

[Fe/H] 0.02 0.00 -0.02
[Ca/H] 0.05 -0.03 -0.02
[Sc/H] 0.01 0.04 0.00
[Ti/H] 0.05 0.01 -0.01
[V/H] 0.09 0.00 0.00
[Cr/H] 0.04 0.01 -0.01
[Mn/H] 0.07 0.00 -0.02
[Co/H] 0.06 0.01 0.00
[Ni/H] 0.04 0.00 -0.01
[Y/H] 0.00 0.05 -0.01

Table 3.13: Abundance uncertainties for Procyon

Element ∆ Teff ∆ log g ∆ vmic

+83 K +0.11 dex +0.11 km s−1

[Fe/H] 0.03 0.01 -0.01
[Ca/H] 0.05 -0.01 -0.02
[Sc/H] 0.04 0.04 0.00
[Ti/H] 0.03 0.02 -0.01
[V/H] 0.05 0.01 0.00
[Cr/H] 0.02 0.02 -0.02
[Mn/H] 0.11 0.06 0.05
[Co/H] 0.05 0.00 0.00
[Ni/H] 0.05 0.00 0.00
[Y/H] 0.03 0.04 -0.01

Systematic errors in the EWs can be investigated by comparing the EWs of the

same star between two different spectrographs (Gratton et al. 2007). Figure 3.20 shows

the EWs of the Sun measured from the Kitt Peak Solar Atlas plotted against the

EWs from the HARPS solar spectrum. The EWs agree between both spectra for weak

lines, however the HARPS EWs seem to be lower than the Kitt Peak Solar Atlas for

lines stronger than 0.06 Å. However, there is no significant offset evident in the solar

parameters when comparing the results between the HARPS solar spectrum and the

Kitt Peak Solar Atlas, as seen in Table 3.5. In addition the strongest lines, where

the largest deviations are seen, are culled prior to the final analyses. Therefore any

systematic errors present should have a negligible effect on the stellar parameters.
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Figure 3.20: Comparison of EWs measured in two different solar spectra. The solid
line depicts the 1:1 relationship.
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4 Comparison with other methods

The investigation of the nature of the fixed stars by a prismatic analysis of the
light which comes to us from them, however, is surrounded with no ordinary
difficulties.

- William Huggins and William Allen Miller, 1864

It has been recognised that the use of different methods and software for analysing

spectra can cause a scatter in the derived parameters, and in turn affect the planetary

parameters if the star is a known planet host. In addition, the different S/N and

resolution of the spectra, as well as the treatment of errors, can affect the results. In

this chapter I compare my method in Chapter 3 with others in the literature.

4.1 WASP-13

4.1.1 The HoSTS Project

The Homogeneous Study of Transiting Systems (HoSTS) project aims to characterise

planets and their host stars consistently, and to use a homogeneous, high quality set of

stellar spectra. Previous studies of planet host stars include Torres, Winn & Holman

(2008), who critically evaluated the spectral analyses procedures of multiple results for

a set of planet host stars, and determined the best value by combining results from

different studies. Ammler-von Eiff et al. (2009) redetermined the spectral properties of

13 planet host stars using spectra obtained from several different spectrographs, and

compared this with other results from the literature. They noted some discrepancies,

including the Fe abundance being systematically higher in their analysis compared to

previous results.

I thought it would be pertinent to contribute to HoSTS, and compare my method

with three others for the pilot study of WASP-13 (Gómez Maqueo Chew et al. 2013).

Each of the four spectral analysis methods performed an unconstrained analysis to

obtain Teff , log g and logA (Fe), an analysis with the Teff fixed from the Hα line (5950

± 70 K) , and an analysis with log g fixed from the transit value (4.10 ± 0.04 dex). The

Hα Teff was determined from a long-slit spectrum obtained with the IDS (R = 10,000).

The spectrum used for general analysis was a HIRES (R = 72,000) spectrum.

Method A used sme (Valenti & Piskunov 1996), which adjusts parameters of a

synthetic spectrum until it fits the observed spectrum. Method B was my analysis
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based on the methods in Chapter 3. Method C used MOOG/ARES to measure EWs

with a line list from Schuler et al. (2011b) and Method D used MOOG/ARES with a

line list from Sousa et al. (2008). MOOG (Sneden 1973) uses the same equivalent width

based methods as uclsyn, and ARES (Sousa et al. 2007) automatically measures EWs

of spectra.

All methods except mine utilised a differential abundance analysis. For the

uclsyn analysis, there wasn’t much difference for the three different constraints, as

the Teff and log g determined from the unconstrained analysis already agreed well with

the fixed Teff and log g. The results for the unconstrained analyses are given in Table 4.1.

Table 4.1: Results from unconstrained HoSTS analyses of WASP-13

Parameter A B C D Weighted mean
Teff (K) 6003 ± 65 5955 ± 75 5919 ± 30 6025 ± 21 5989 ± 48
log g 4.16 ± 0.08 4.13 ± 0.11 4.02 ± 0.06 4.19 ± 0.03 4.16 ± 0.07
logA (Fe) 7.54 ± 0.05 7.60 ± 0.09 7.54 ± 0.05 7.58 ± 0.05 7.56 ± 0.03
vmic (km s−1) 1.01 ± 0.17 0.95 ± 0.10 1.53 ± 0.09 1.28 ± 0.10 1.27 ± 0.29

The paper concludes that the results from the unconstrained analysis agreed well

between all four methods and are consistent with the transit log g and the Hα Teff ,

leading to the conclusion that the four different methods of spectral analysis have no

systematic differences between them. This is in disagreement with Torres et al. (2012),

who find that the log g should be fixed to the transit value. However, our methods differ

from Torres et al. (2012) in line lists, treatment of microturbulence and the parameters

space. A final conclusion on this cannot be drawn until more stars are analysed for the

HoSTS project.

While the results from the four different spectral analysis methods used do mostly

agree within the errors, I was still concerned about the range of values. Methods B, C

and D are essentially the same method; they all rely on the excitation and ionisation

balance of Fe lines to determine the parameters, and they all assume LTE and use atlas

9 models. Yet there are significant differences in Teff and vmic. As such, I decided to

look into these discrepancies further as part of my thesis.

4.1.2 Comparison to Method A

The sme analysis fixed the vmic to a value of 1.01 km s−1 based on the calibration of

Teff and vmic from a sample of HARPS stars analysed in Sousa et al. (2011). However,

this value of vmic was determined based on the Teff of 5825 ± 100 K from Skillen et al.
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(2009). This was also an sme analysis, but this Teff was derived from fixing the vmic to

0.85 km s−1. Using the Hα Teff gives a vmic of 1.23 km s−1 from the same calibration.

I used sme to determine the parameters of WASP-13 using both vmic values, and the

results are presented in Table 4.2. I did one unconstrained and one constrained run for

each vmic value. The values are different from the ones in the paper due to different

line lists and different assumptions, but the results in the table are self consistent. I

also included the vmic value of 0.85 km s−1, as sme analyses often have vmic fixed to this

value based on the Valenti & Fischer (2005) recommendation.

Table 4.2: sme parameters for WASP-13 with fixed vmic

Parameter vmic 1.01 km s−1 vmic 1.23 km s−1 vmic 0.85 km s−1

Teff (K) 6092 6011 6078 6017 6081 5999
log g 4.22 4.10∗ 4.19 4.10∗ 4.21 4.10∗

[M/H] 0.059 0.017 0.039 0.008 0.069 0.026
∗ Fixed from transit value

It is clear from Table 4.2 that fixing the vmic to a value that is too low doesn’t

have much effect on the parameters in sme, whereas such a vmic adjustment would have

much more influence on parameters determined from the Fe excitation and ionisation

balance. Also, fixing log g has much more of an impact than fixing vmic in sme.

4.1.3 Comparison to Method D

The log g and logA(Fe) are in good agreement between Methods B and D. However,

the Teff and vmic are notably higher in Method D than Method B. When I plot the

excitation balance using the lines and EWs of Method D in uclsyn, I get the same

Teff and vmic as they do, showing that it is not a difference in software that causes the

discrepancies in parameters.

When I measured the EWs using the line list of Sousa et al. (2008) in uclsyn, I

noticed that a significant number of the lines were badly blended. In Figure 4.1 I have

plotted the EWs that I measured against those measured via ARES in Method D, which

shows that many of the ARES EWs are overestimated. The EWs that I measured do not

included the blended component. If I do included the blended component in the EW,

then there is a much better agreement with the ARES EWs, as seen in Figure 4.2. This

figure shows a linear regression, with m = 1.01 ± 0.01, c = −6.11× 10−4± 3.03× 10−3

and r2 = 0.99. The r2 value of 0.99 indicates excellent agreement between these EW

measurements. The inclusion of so many badly blended lines in Method D is possibly
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because the line list was created from the Sun, and at the solar Teff the lines aren’t

blended. The effect of including lines with overestimated EWs is to increase the Teff

determined from the excitation balance, which explains why the Method D Teff is 70 K

hotter than Method B.
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Figure 4.1: Comparison between measured EWs for WASP-13. The solid line depicts
a 1:1 relationship. The EWs from this work are only for the line of interest and do
not include the blended component. This results in many of the ARES lines being
overestimated compared to the uclsyn EWs.

Taking the lines in common between both line lists and using the same EWs, I

found that using the Sousa et al. (2008) list gives a vmic that is 0.25 km s−1 higher for

the same value of Teff and log g. This indicates that the difference in vmic is purely

a factor of the different atomic data in the line lists, rather than the different EW

measurements. Figure 4.3 compares the log gf between the two line lists for the lines

in common, showing that there is an rms difference of 0.12 dex between the different

values of log gf .

The Sousa et al. (2008) line list was created differentially to the Sun. To determine

the effect that this has on vmic measurements, I adjusted my own line list to the Sun,

assuming a solar vmic of 0.85 km s−1. Using the Teff of 5955 K and log g of 4.13, I now
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Figure 4.2: Same as for Figure 4.1 but this time the uclsyn EWs measure the full EW
of the line, including the blended component. The solid line is a linear regression to
the data. The EWs are now in much better agreement.

get a vmic of 1.2 km s−1 using my own line list. If I create a line list differentially to the

Sun with a solar vmic of 1 km s−1, the resulting vmic for WASP-13 is now 1.3 km s−1, in

agreement with Method D. Therefore using log gf values calculated from the Sun will

create a significant bias when trying to determine the vmic for another star.

4.1.4 Comparison to Method C

Using the Schuler et al. (2011b) line list, 45 Fe i and 5 Fe ii lines were measured in

the Method C analysis of WASP-13. The low number of Fe ii lines might explain

why the log g from Method C is ∼0.1 dex lower than the other methods, as discussed

in Section 3.6.1. Using my own line list with only those five Fe ii lines, I obtain an

ionisation balance log g of 4.0.

The vmic determined via this method is 1.53 ± 0.09 km s−1, which is the highest

of all four methods. Using their line list and EW values, along with their values of Teff

and log g, I find it impossible to get a vmic of 1.53 km s−1. Instead, I find a value of

1.2 km s−1 eliminates the slope in the line. Similarly, I cannot recreate their excitation



91

-5

-4

-3

-2

-1

-5 -4 -3 -2 -1

lo
g 
g
f

 S
ou

sa
 e

t a
l. 

(2
00

8)

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

-5 -4 -3 -2 -1

∆ 
lo

g 
g
f

log gf this work

Figure 4.3: The top panel shows the comparison between the log gf values from my
line list and the Sousa et al. (2008) line list. The solid line is a 1:1 relationship. The
bottom panel shows the residuals, where ∆ log gf = log gf (Sousa et al. 2008) - log gf
(this work)

balance Teff , and I find a Teff of 6239 ± 85 K is needed when using their values for log g

and vmic.

The log gf values used in the Schuler et al. (2011b) line list were obtained from

VALD, so should not contribute to the increase in vmic as was found with the line list in

Section 4.1.3. There are also very few lines in common between the Schuler list and my

own, making a comparison of the log gf values (as was done for Method D) impossible.

They use the Unsöld values for VDW, increased by a factor of 2.2. Using their

line list with the scaled Unsöld values does make a difference to the abundance of some

of the lines, and this affects the vmic. However, it has the opposite effect in that the vmic

is lowered to 1.1 km s−1 using these values. This can be seen in Figure 4.4 where both

sets of values are displayed for Teff = 5919 K, log g = 4.02 and vmic = 1.53 km s−1. The

VALD VDW values have higher abundances for the stronger lines and the slope of this

fit has a correlation coefficient of -0.27. The fit to the Unsöld values has a correlation

coefficient of -0.35.
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Figure 4.4: The Schuler et al. (2011b) lines are shown for WASP-13 using Teff = 5919
K, log g = 4.02 and vmic = 1.53 km s−1. It is impossible to obtain their microturbulence
value as evident by the slopes. The blue circle are using the VALD VDW values, and
the black diamonds are using the Unsöld values scaled by 2.2. The solid red line and
orange dashed are the fits to the respective data, and have correlation coefficients of
-0.27 and -0.35. The slope is higher for the Unsöld values, which means that vmic needs
to be decreased compared to the VALD values.

Using the same line list for the Sun, along with the EWs measured in Schuler

et al. (2011a), shows that the same problems with Teff and vmic exist as in WASP-13.

The solar excitation Teff I get is 6079 ± 88 K, and the vmic is 1.2 km s−1, compared

to their value of 1.38 km s−1. Method C used the overshooting models of Castelli &

Kurucz (2004), however using these models in uclsyn only changes the solar Teff to

6103 ± 90 K and the vmic to 1.1 km s−1. This suggests that the problem may be due

to differences in the codes used.

Both Method C and D use MOOG to calculate abundances, however I am able to

recreate the parameters obtained by Method D once the line list is corrected for blends

and differential analysis. Method C used the 2010 version of MOOG, and Method D

likely used the 2002 version (as stated in Sousa et al. (2011)), so it is possible that

there the differences between the two versions cause the abundance discrepancies as

seen with Method C.
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4.2 Comparison to sme abundances for Procyon

An analysis of Procyon by Piskunov et al. (2013) using sme resulted in excellent agree-

ment with the abundances I published in Doyle et al. (2013), which is shown in Fig-

ure 4.5. However, the notable exception to this was Mn, where my value was 0.16 dex

lower than theirs. As I had cautioned in my paper, Mn can be sensitive to HFS. As

uclsyn had recently been updated to include HFS with the Kurucz & Bell (1995) hy-

perfine list, I was able to recalculate my Mn abundance while including this. I obtained

a value of 5.38 ± 0.12, which agreed well with the sme result of 5.39 ± 0.07. However,

Piskunov et al. (2013) used more recent laboratory log gf values in their line list than I

did, so I then used this updated line list, along with the HFS, to get the Mn abundance.

The inclusion of the updated log gf values pushes the Mn abundance too high, but us-

ing either HFS or the new log gf values gives a result consistent with other elements. It

is possible that the HFS is the actual cause of the problem, especially since some of the

Mn lines are obviously affected by this, and that the new log gf values didn’t account

for HFS. As such, my new result for Mn only includes the HFS.

It is interesting to note that while the inclusion of HFS improves the Mn abun-

dance for Procyon, it does the opposite in the Sun. My solar Mn abundance of 5.50

± 0.14 is already 0.07 dex higher than the Asplund et al. (2009) result, and includ-

ing HFS pushes this higher to 5.53 ± 0.14. A NLTE correction to Mn in the Sun

is positive (Bergemann & Gehren 2007) which would also increase the abundance, so

this is unlikely the cause of the discrepancy between the Sun and Procyon. However,

Blackwell-Whitehead & Bergemann (2007) noted that strong lines are more sensitive

than others to an adjustment in the VDW damping parameters. As VDW broadening

would be stronger in a cooler star, it is possible that this could explain the overabun-

dance of Mn in the Sun compared to Procyon.

I also performed a HFS analysis of Co and V in both the Sun and Procyon. There

is no difference in the V abundance for both stars. The abundance of Co in the Sun

is increased to 5.03 ± 0.15, which is in better agreement with Asplund et al. (2009).

However, the Co abundance in Procyon is now 4.94 ± 0.04 meaning it is no longer in

agreement with the Piskunov value of 4.85 ± 0.07. Therefore including the HFS for

Co seems to have the opposite effect to Mn, in that the solar value is improved but the

Procyon value is made worse.
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Figure 4.5: Comparison between sme and my method for Procyon abundances. The
solid line is a 1:1 relationship. The abundances agree well except for Mn, likely because
of HFS.

4.3 θ Cyg

The F4V star θ Cyg has a visual magnitude of 4.48, making it the brightest star

that can be observed by the Kepler spacecraft. As it exhibits solar-like oscillations,

asteroseismology can be used to determine an accurate and precise log g of 4.23 ± 0.03

dex. The star also has an M-dwarf companion, but unfortunately the orbital period is

∼230 years, making it currently impossible to derive the dynamical mass. Nonetheless,

the brightness and proximity of the star allow detailed analyses to be performed, which

is perfect for comparing methods. To determine the spectroscopic parameters of this

star six different analyses were performed by different people, including my analysis

(Guzik et al. 2014, in prep).

While the high resolution (85,000) HERMES spectrum of θ Cyg is more than

adequate for measuring lines, a problem arose in my analyses when trying to interpret

the results from the lines. The Teff obtained from the excitation balance of the Fe i lines

is ∼6900 K, which is anomalously high compared to the mean of previous literature

values and the IRFM Teff , both of which are ∼6700 K. To confirm this, I also obtained a
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Teff estimate from the Balmer lines. As usual, the Hα line was very difficult to normalise,

but even considering this obstacle the Hα line still line hints at a temperature around

6600 or 6700 K. The Hβ line was more obliging and was easier to normalise, giving a

Teff of 6700 K. The fits to the Balmer lines are shown in Figure 4.6. If the temperature

is lowered to 6700 K, the excitation plot shows an obvious trend, with the low EP lines

having lower abundances than their high EP counterparts. Mashonkina et al. (2011)

find that lines with EP < 1 eV need larger NLTE corrections than higher EP lines,

however the INSPECT database gives the same NLTE correction for lines of low and

high EP. Excluding all lines below 1 eV still results in an excitation balance Teff of

∼6900 K. Including an NLTE correction for all the Fe i lines as was done for Procyon

in Section 3.5 also didn’t help and no change was seen in the Teff .

As there were enough Fe ii lines present, I thought perhaps using these lines in-

stead of Fe i might work, since they have a different temperature dependence. However,

this has the opposite effect as the Teff is then increased to 6970 K.

I thus chose to ignore the excitation Teff and try to determine the parameters via

the ionisation balance. The log g was determined in the usual manner, by combining

the ionisation balance, and the fits to the Na and Ca lines, and these values are in good

agreement giving 4.35 ± 0.08 overall. By adjusting both the Teff and the vmic so as to

minimise the scatter in Fe, I obtained a best solution of Teff = 6800 K and vmic = 1.48

± 0.08 km s−1. To calculate the error on the Teff , I changed the log g and vmic by their

subsequent errors to see the effect on the Teff thus arriving at an error of 108 K.

I fixed the log g to the asteroseismic value to see if a constrained analysis would

improve the parameters. Using the excitation balance still produced a Teff of 6900 K,

so once again I just used the ionisation balance. However, this time I also kept the vmic

fixed to the value I had obtained from my best spectroscopic solution. The end result

was that the Teff was lowered to 6715 ± 92 K.

I performed a similar analysis using the NLTE corrected Fe i lines, and determined

a Teff of 6750 ± 108 K for the unconstrained analysis and 6670 ± 92 K when fixing

log g. All results are presented in Table 4.3.

Figure 4.7 shows the comparison of all the different methods in a Teff - log g plot,

and there is clearly a wide spread in the values. Bruntt and Sousa used the method

based on the Fe lines, Frasca compared the spectrum to a grid of stellar spectra with

well known parameters, and Lehmann and Latham used a grid of synthetic spectra.

The dashed line represents the approximate location of the Fe ionisation balance. Also
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Figure 4.6: Top: The Hα show the observed spectrum in red, and synthetic fits at 6500
K (black) and 6900 K (blue). Bottom: The synthetic fits for Hβ are for 6700 K (black)
and 6900 K (blue). The fits to the Balmer lines suggest the Teff is a couple of hundred
K lower than the 6900 K suggested by the excitation balance.
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Table 4.3: Results from analysis of θ Cyg

Unconstrained Fixed log g Unconstrained;
NLTE

Fixed log g;
NLTE

Teff 6800 ± 108 6715 ± 92 6750 ± 108 6670 ± 92
log g 4.35 ± 0.08 4.23 ± 0.03 4.35 ± 0.08 4.23 ± 0.03
vmic 1.48 ± 0.08 1.48 ± 0.08 1.51 ± 0.08 1.51 ± 0.08
logA (Fe) 7.52 ± 0.08 7.47 ± 0.09 7.52 ± 0.09 7.52 ± 0.09
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Figure 4.7: The Teff and log g from the different methods are displayed, along with the
direct, IRFM and best literature values. The dashed line represents the approximate
location of the Fe ionisation balance. Credit: Guzik et al. 2014 (in prep).

shown are the location of the previous literature values, the IRFM Teff (Blackwell &

Lynas-Gray 1998), as well as the direct observations of log g from asteroseismology and

the interferometric Teff of Ligi et al. (2012).

4.4 Comparisons with other analyses in the litera-

ture

4.4.1 Tsantaki et al. (2013)

Tsantaki et al. (2013) aimed to improve the Fe line list used for the excitation and
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ionisation balance, particularly for cool stars. They note that the spectroscopic Teff of

Sousa et al. (2008) is systematically higher than the IRFM Teff for stars cooler than

5000 K, which they say could be due to line blending. Tsantaki et al. (2013) thus

optimised their line list for cool stars by only selecting lines from the Sousa et al.

(2008) list that were free of blends in a late K-dwarf. A comparison between both

line lists showed that there is agreement above 5000 K, but below this the Teff will be

overestimated for cool stars with the Sousa et al. (2008) list.

However, given the discussion in Section 4.1.3, the Sousa et al. (2008) line list will

still result in an overestimation of Teff even for hotter stars. A solution to the blending

problem might be to optimise a range of different line lists that are free of blends at a

particular Teff .

Tsantaki et al. (2013) also note that log g and metallicity are not as sensitive

to line selection as Teff . This is consistent with Method B and D from the WASP-13

analyses having similar log g and metallicity despite the different line lists. This also

agrees with the fact that the Fe abundance is the same for the cool stars and solar lines

lists given in Section 3.4.3, while the effect on Teff is noticeable between these two lists.

They compared their spectroscopic log g values from the ionisation balance to the

“trigonometric” log g based on Hipparcos parallaxes. The find that the spectroscopic

log g values are underestimated for stars below 5000 K. They note that it is difficult to

explain this discrepancy, but that the lack of Fe ii lines in solar-like stars could lead

to uncertainties in the spectroscopic log g. This is in agreement with the discussion in

Section 3.6.1.4.

4.4.2 Mortier et al. (2013b)

Mortier et al. (2013b) analysed 90 transiting planet host stars using spectra from a range

of different spectrographs with the aim of homogeneously determining the parameters

of the stars. They used ARES to measure EWs, and MOOG to perform the usual

analysis with Fe lines to determine Teff , log g, and vmic. They used the Sousa et al.

(2008) line list for stars above 5200 K, and the Tsantaki et al. (2013) line list for cooler

stars.

Figure 4.8 compares the Teff for stars in common with the WASP analyses in

Chapter 3, including WASP-13. It is clear that their Teff is systematically higher, with

an rms difference of 105 K. This is most likely due to the blends in the Sousa et al.

(2008) line list. Mortier et al. (2013b) also noted that their Teff values are on average
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93 K hotter than those from the TEPCat catalogue of transiting planets (Southworth

2011).

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 6200

 6400

 6600

 6800

 7000

 4600  4800  5000  5200  5400  5600  5800  6000  6200  6400  6600  6800  7000

T
ef

f (
K

) 
 M

or
tie

r 
et

 a
l. 

(2
01

3)

Teff (K) this work

Figure 4.8: Comparison with the Teff of Mortier et al. (2013b), which is systematically
higher than the Teff determined here. The solid line is the 1:1 relationship.

Their vmic is also higher, as shown in Figure 4.9, and the difference between the

two methods increases for higher values of vmic. This is most likely due the use of

log gf values adjusted to the Sun as discussed in Section 4.1.3. However, as discussed

in Section 3.6.3, the vmic determined in this thesis is lower than other calibrations.

Their spectroscopic log g, from the ionisation balance, is higher than this work

as seen in Figure 4.10. This is probably because the Teff and vmic are also higher, and

thus the log g is forced to larger values to compensate for this. However, as with the

transit log g, there is no systematic difference and they do not compare well, making it

difficult to offer a suggestion as to why the values are different.
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Figure 4.9: Comparison with the vmic of Mortier et al. (2013b), showing that their vmic

are higher. The solid line is the 1:1 relationship.

4.4.3 Torres et al. (2012)

Torres et al. (2012) performed a comparison between different spectral analysis methods

for 56 transiting planet host stars. They used SPC (Buchhave et al. 2012), which

compares the spectrum to a grid of synthetic spectra, sme and MOOG. I have seven

stars in common with Torres et al. (2012), however not all were analysed with all three

of their methods. Interestingly, it is the MOOG results that disagree most strongly

with my results. For instance, their Teff for WASP-2 is 225 K hotter than mine. The

MOOG Teff for WASP-17 is 6300 ± 100 K, which is significantly lower than my NLTE

Teff of 6630 ± 100 K, as well as being 230 K lower than the SPC and sme methods.

This is unexpected given that it is the method that is most similar to mine. This might

be due to the use of a different line list, however they do not provide details of the lines

they used. It is unclear from the paper which version of MOOG they use, but if it is

the 2010 version then this may be a similar problem as was seen in Section 4.1.4.
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Figure 4.10: Comparison with the spectroscopic log g of Mortier et al. (2013b). Overall,
their values are higher, but there is no systematic difference.
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5 Disentangling projected rotational veloc-
ity from macroturbulence

It appears also that, other conditions being known, the mean velocity of rotation
might be calculated.

- William de Wiveleslie Abney, 1877

The periodical obscuration or total disappearance of the star may arise from tran-
sits of the star by its attendant planets.

- Dionysius Lardner, 1858

Much can be ascertained about a star from the rate at which it spins. The rotation

rate of a low-mass star decreases as it evolves due to magnetized winds carrying away

the angular momentum (Schatzman 1962) and this spindown can be used to place

constraints on the star’s age (Skumanich 1972; Barnes 2007). The stellar rotation rate

also depends on the star’s mass (Meibom et al. 2011) and thus it is a key parameter

when studying stellar evolution (Ekström et al. 2012; Gallet & Bouvier 2013). The

rotation rate is also important for investigating how interactions with close-in planets

can change stellar rotation rates (Bolmont et al. 2012). Knowledge of the stellar rotation

rate is also essential in order to understand the obliquities of transiting planets, which is

the motivation of this work. Some of the results in the this chapter have been published

in Doyle et al. (2014).

5.1 Differential rotation

In 1630, Christoph Scheiner observed equatorial sunspots moving faster than those

nearer to the poles. This phenomenon was attributed to differential rotation by Car-

rington (1860), who made detailed observations of the rotation rate of sunspots.

When angular rotational velocity varies with distance from the stellar centre it

is known as radial differential rotation, and when it varies with latitude it is called

latitudinal differential rotation. The former is detected on the Sun via helioseismology,

and spots are used on the Sun and other solar-like stars to trace the latter (Ammler-von

Eiff & Reiners 2012).

Differential rotation is modelled by

Ω(θ) = Ωequator(1− α sin2 θ), (5.1)



103

where θ is latitude, Ωequator is the angular velocity at the equator, and α is a variable

given by

α = (Ωequator − Ωpole)/Ωequator = ∆Ω/Ω. (5.2)

The parameter α is called the differential rotation, while ∆Ω is the absolute

shear and has units of radians per day. However, ∆Ω is also sometimes referred to as

the absolute differential rotation, in which case α is known as the relative differential

rotation. For the Sun, α is found to be 0.2, meaning that the equator rotates 20 per

cent faster than the poles. α can be measured directly, but ∆Ω requires a rotation

period measurement, and thus a radius measurement (Reiners & Schmitt 2003; Reiners

2006).

Differential rotation leads to a sharper line profile, so that if v sin i is fit to the

profile assuming it is a rigid rotator, the resulting v sin i value will be smaller than it

should be and can differ by around 10 per cent from the true value for the solar case

(Hirano et al. 2012). It is not just differential rotation that can change the shape of a

line profile. In the wavelength domain, low inclination and high limb darkening have a

similar effect on the line profile. These changes are very subtle and require high S/N

before they can be recognised (Reiners & Schmitt 2002).

Differential rotation can be detected via Fourier analysis, where it is evident

from the position of the zeros (Gray 1977a; Bruning 1981; Garcia-Alegre, Vazquez

& Woehl 1982; Reiners & Schmitt 2002). Differential rotation can be inferred from

starspot periodograms, as a second period adjacent to the primary one indicating spots

at different latitudes have different rotation rates (Ballot et al. 2011; Reinhold & Reiners

2013; Reinhold, Reiners & Basri 2013). Planetary transits can also sometimes reveal

differential rotation (Gaudi & Winn 2007; Hirano et al. 2011), as can Doppler imaging

(Donati & Collier Cameron 1997; Collier Cameron, Donati & Semel 2002; Barnes et al.

2005).

5.2 The Rossiter-McLaughlin effect

When a planet transits a star, it casts part of the star into shadow, and this periodic

reduction in flux is what allows transiting planets to be detected. When transits are

viewed via spectroscopy, not only can the Doppler effect be observed, but it can also be

possible to view an anomalous Doppler effect. With no transiting object, half of the star
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will be blueshifted as it approaches us, and half will be redshifted as it recedes. However,

a planet passing in front of the blueshifted half will weaken this signal and temporarily

cause it to be slightly redshifted, and vice versa. This is called the Rossiter-McLaughlin

(RM) effect and was first observed by Rossiter (1924) and McLaughlin (1924) for binary

stars, and first observed in a transiting exoplanet system by Queloz et al. (2000).

The changing radial velocity as the planet transits the star depends on the angle

at which the planet crosses the star. The true spin-orbit angle between the stellar spin

axis and the orbital axis of the planet, ψ, is not directly measurable. However it is

possible to measure λ, which is the angle in the plane of the sky between the projection

of the stellar spin axis and the projection of the orbital angular momentum vector of the

planet. The observer-orientated and orbit-orientated co-ordinate systems are depicted

in Figure 5.1.

Figure 5.1: The observer-orientated co-ordinate system is shown in (a), where λ is the
sky-projected spin-orbit angle, no is the orbital angular momentum vector of the planet,
ns is the stellar spin axis, io and is are the planetary orbital inclination and inclination
of the stellar rotation axis relative to the line of sight respectively. The X̂-Ŷ plane is
the sky plane and Ẑ points towards the observer. The orbit-orientated system is shown
in (b), where ψ is the actual spin-orbit angle of the system. Here, Ŷ ′ is the orbital axis
and the X̂ ′-Ẑ ′ plane is the orbital plane. Credit: Fabrycky & Winn (2009). Reproduced
with permission.

The angle λ is determined from the asymmetry of the RM waveform, as shown in

Figure 5.2. Three different possible paths of a planet across the star are depicted, each

with the same closest approach of the planet to the centre of the star, known as the
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impact parameter b. This means that the photometric signal from each transit will be

the same. However, there are obvious differences in the systems when the RM effect is

viewed. When the obliquity of the planet is negligible, the redshifted and blueshifted

components are symmetric. However, when the planet is misaligned an asymmetric

signal is produced as it only transits part of the redshifted part of the star, or doesn’t

transit this half at all (Gaudi & Winn 2007).

Figure 5.2: Different trajectories will change the RM signal, so that a misaligned planet
will create an asymmetric signal. Credit: Gaudi & Winn (2007). Reproduced with
permission.

If the orbital inclination of the planet io, the inclination of the stellar rotation

axis relative to the plane of the sky1 is, and λ are known, then ψ can be determined

from (Chaplin et al. 2013)

cosψ = cos is cos io + sin is sin io cosλ. (5.3)

Unfortunately, while io and λ are constrained from the transit, is is not as straight-

forward to measure, and as such the spin-orbit angle is represented by λ instead of ψ.

If the star has is = 90, then the λ will be equivalent to ψ. A large value of λ indicates

a large ψ, however the reverse is not true; in fact the value of ψ is quite uncertain for

small values of λ (Fabrycky & Winn 2009; Schlaufman 2010).

1This is given as i throughout the rest of the thesis, but given as is here to distinguish it from the
planetary inclination.
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5.2.1 Misaligned planets

The presence of giant planets in short period orbits can be explained via migration

(Lin, Bodenheimer & Richardson 1996). Gas giants are formed in the outer solar

system, but tidal interactions with the protoplanetary disc cause the planets to lose

angular momentum and migrate inwards towards the star. These motions damp the

eccentricity and the inclination of the planets. Therefore, the discovery of misaligned

planets (Hébrard et al. 2008) meant it was time to go back to the drawing board.

RM observations can possibly be used to distinguish between planets that under-

went “ordinary” migration and those that underwent other processes that caused them

to be misaligned. Therefore, by studying the distribution of λ with the properties of

the host star, such as Teff , mass and age, it is possible to uncover clues as to the origin

of these planets (Barker & Ogilvie 2009; Hirano et al. 2011).

The origin of misaligned planets is still not fully understood, and there are var-

ious theories involving few-body dynamics to explain them. Planet-planet scattering

involves the dynamical interaction of a number of planets which can end with one be-

ing ejected and another migrating inwards (Rasio & Ford 1996; Chatterjee et al. 2008).

Planet scattering combined with tidal circularisation can account for planets with high

eccentricities or high inclinations (Nagasawa, Ida & Bessho 2008; Nagasawa & Ida 2011;

Beaugé & Nesvorný 2012).

It is also possible that Kozai cycles (Kozai 1962) could generate highly inclined

planets. Kozai cycles can occur when a close binary – in this case a star with a planet

in a tight orbit – is influenced by a third object on a distant, inclined orbit. The per-

turber causes the eccentricity and inclination of the close binary to oscillate which can

ultimately increase the obliquity of the planet (Fabrycky & Tremaine 2007; Nagasawa,

Ida & Bessho 2008; Morton & Johnson 2011). The perturber can be either a star

or a planet, however no stellar perturber has been observed so far in the hot Jupiter

exoplanet systems (Beaugé & Nesvorný 2012).

5.2.2 The need for prior knowledge of v sin i

In order to see why a v sin i prior can be important for the RM effect, and thus under-

stand the motivation of this work, the amplitude and asymmetry of the RM effect need

to be described.
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The distance between the centre of the planet and the rotation axis of the star on

the sky plane is given as x, and this is separated into x1 and x2 for the blueshifted and

redshifted components. From the geometry shown in Figure 5.3, x1 and x2 are given as

x1 = (
√

1− b2 − b tanλ) cosλ =
√

1− b2 cosλ− b sinλ, (5.4)

and

x2 = (
√

1− b2 + b tanλ) cosλ =
√

1− b2 cosλ+ b sinλ. (5.5)

The apparent velocity of a point across the surface of a star can be related to

v sin i via v(x) = x(v sin i). Therefore the sum of x1 and x2 gives the mean amplitude

of the RM effect, as shown in the right hand side of Figure 5.3, while the difference

between x1 and x2 will give the asymmetry:

v sin i (x1 + x2) = 2
√

1− b2 v sin i cosλ, (5.6)

v sin i (x1 − x2) = 2b v sin i sinλ. (5.7)

Figure 5.3: The geometry of the RM effect. The sum of x1 and x2 gives the ampli-
tude, while their difference will give the asymmetry. Credit: Albrecht et al. (2011).
Reproduced with permission.

The impact parameter has an important role to play in the asymmetry. If b ≈
0, then Equation 5.7 will also go to 0, meaning that the asymmetry, and thus the

planet misalignment, can no longer be determined and only the mean amplitude can be

measured. This is illustrated in Figure 5.4. WASP-2 has a high impact parameter, so

the asymmetry is obvious in the RM waveform. In contrast, WASP-1 has a negligible
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impact parameter, and therefore the RM waveform looks symmetric even when λ is

high (Albrecht et al. 2011; Triaud 2011).

Figure 5.4: The low impact parameter of WASP-1 means that the asymmetry in the
signal can no longer be detected for different values of λ. WASP-2 has a higher value
of b, so that there is now an obvious difference in the signals. Credit: Albrecht et al.
(2011). Reproduced with permission.

Thus, there is a degeneracy between v sin i and λ for b ≈ 0, which can only be bro-

ken if there is prior knowledge of v sin i. In most cases, the v sin i prior is obtained from

the rotational broadening of the spectra, meaning that the value of macroturbulence

chosen will influence the results (Albrecht et al. 2012b).

5.3 Rotation from asteroseismology

The rotation of a star will ultimately influence the frequencies obtained via asteroseis-

mology, and this can be directly related to the v sin i, allowing an independent deter-

mination of the rotational velocity. As discussed in Section 2.6.2, a mode is described

by n, l and m. The azimuthal order m is given as (2l + 1), however in the absence of
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rotation the m frequencies will all be the same and the frequency of the mode is given

as νnl. For a rotating star, this degeneracy is lifted, so that the non-radial mode is now

split into a multiplet described by the m components. The frequency of the mode can

then be given as

νnlm ≡ νnl + δνnlm. (5.8)

If significant latitudinal differential rotation was present, then there would be

a variation of the frequency splittings between modes. The Sun-as-a-star data shows

miniscule variations in l = 3 and l = 4 modes, but even this is difficult to detect (Chaplin

2011). Thus solid body rotation can safely be assumed for solar-like stars and δνnlm

can be written as δνs as all frequency splittings have the same value. The frequency

splitting is related to the rotation of the star via δνs = Ω/2π where Ω is the angular

velocity (Ballot, Garćıa & Lambert 2006; Chaplin et al. 2013).

As non-radial modes are not spherically symmetric, the angle at which they are

viewed is a factor in detecting the frequency splitting. For example, as shown in Fig-

ure 5.5, an l = 1 mode at i = 90◦ has m = ± 1 components that can quite clearly be

seen, and the m = 0 component does not contribute to the line profile at all. This is

because at i = 90, the intensity perturbations from the northern and southern hemi-

spheres cancel out for m = 0. As i diminishes, the splitting evident from the m = ±
1 modes will become less evident as blending becomes more prominent. At i = 0, the

contribution from the m = ± 1 components has vanished completely, leaving only the

m = 0 component, which presents itself as a single, unsplit line profile (Chaplin et al.

2013). Therefore it is possible to estimate the inclination from the ratio of the ampli-

tudes of the m components, assuming the data have a sufficiently high S/N (Gizon &

Solanki 2003).

If the multiplet components are blended, then the measured values of i and δνs

are highly correlated, even though physically the two parameters are independent of

each other. This can make it difficult to disentangle the two parameters, and can create

significant errors. It is possible for there to be different couples of i and δνs, so that

there is no unique solution. Using their combination, δνs sin i, reduces the correlation

for stars with low rotation rates, and also reduces the uncertainty (Ballot, Garćıa &

Lambert 2006; Ballot et al. 2008; Chaplin et al. 2013).

Figure 5.5 shows example of l = 1 modes that all have the same linewidth, Γ, of

3 µHz. However, changing the linewidth will also have an effect on the ability to detect
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Figure 5.5: For an inclination of 90◦, the m = ± 1 components (in blue) are visible,
while the m = 0 component (in red) does not contribute to the line profile. For low
inclinations, the m = 0 component becomes prominent while the m = ± 1 component
diminish. Therefore there is no frequency splitting evident for low inclinations. Credit:
Chaplin et al. (2013). Reproduced with permission.

frequency splitting. Linewidth increases with Teff (Appourchaux et al. 2012), which

makes δνs sin i harder to determine for hotter stars as blending increases. For instance

if the linewidth or the splitting is similar to the small frequency separation, it can make

it difficult to distinguish between l = 0 and l = 2 modes, thus hampering the ability to

fit a unique solution (Barban et al. 2009).

For stars with a rotation several times that of the Sun, it is easier to extract the

splitting and inclination as δνs will be greater than Γ. At lower rotation rates, δνs < Γ

creates blending of the multiplet, making it difficult to resolve (Gizon & Solanki 2003;

Ballot, Garćıa & Lambert 2006). However, it is still possible to measure δνs sin i even

when the splitting isn’t resolved, as the m components will broaden the line profile, and

this broadening can be measured. This is more likely for the l = 2 mode, which has

more m components and thus greater broadening (Gizon et al. 2013).

By using δνs sin i along with an accurate determination of stellar radius, the v sin i

of the star can be determined via (Chaplin et al. 2013)

v sin i ≡ 2πR δνs sin i. (5.9)

The asteroseismic v sin i values used for this work were kindly provided by Guy

Davies and Bill Chaplin of the University of Birmingham.
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5.4 Instrumental broadening

The resolution of a spectrograph is given as R = λ/∆λ, and in order to truly disentangle

the rotational and macroturbulent broadening in the line profiles, it is imperative to

know how the spectrograph itself broadens the lines. Unfortunately, the resolution of a

spectrograph isn’t a value that’s set in stone. It can vary with time (Ramı́rez, Allende

Prieto & Lambert 2008), and even for the highly stable HARPS spectrograph, different

literature sources can quote vastly different values. For example Queloz et al. (2001)

give the HARPS resolution as 90,000, Pepe et al. (2002) determine R to be 98,000 while

in Mayor et al. (2003) R is 115,000.

The spectra of the Kepler stars used for this work were obtained by Bruntt et al.

(2012) using the ESPaDOnS spectrograph at the 3.6m Canada-France-Hawaii Tele-

scope, and the Narval spectrograph at the 2m Bernard Lyot Telescope. ESPaDOnS

has a resolving power of ∼81,000 (Donati et al. 2006) and Narval, which is an almost

identical spectrograph, has a resolving power of ∼75,000. High resolution spectra were

required in order to distinguish between different types of broadening in the spectral

lines. Bruntt et al. (2012) selected 93 stars that showed evidence of solar-like oscilla-

tions in the Kepler data. A subset of these stars was chosen for this work with the

criteria that they must not have mixed modes, and that the asteroseismic S/N should

be high enough to clearly detect splitting.

The instrumental broadening can be measured using the telluric lines for a spec-

trum that hasn’t been coadded with others, assuming the S/N is high enough. This

method isn’t appropriate for the ESPaDOnS spectra, as the telluric lines only suggest

that the resolution is between 75,000 and 81,000, and do not give a clear result. I there-

fore determined the instrumental broadening using ThAr spectra. The ThAr spectra

were coadded to increase the S/N and wavelength calibration was performed using the

IRAF ecidentify package.

By using the programme SPLAT to fit a Gaussian to a number of lines in each

order, I was able to determine the FWHM (∆λ) for those lines. As expected, the

FWHM increases with wavelength as seen in Figure 5.6. However, there is still a

significant amount of scatter in the FWHM values which could be due to blending or

misidentification of the lines (Murphy et al. 2007). Ramı́rez, Allende Prieto & Lambert

(2008) and Ramı́rez et al. (2009) noted that Th lines are sharper than Ar lines due

to differences in thermal broadening, although this isn’t significant enough to explain
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Figure 5.6: The FWHM of the ThAr lines as a function of λ shows the expected increase
in FWHM with increasing λ. The solid line is a best fit to the points.

the scatter in the FWHM values. They also found their ThAr lines from the 2dcoudé

spectrograph (R & 150,000) on the 2.7 m telescope at McDonald Observatory were

slightly asymmetric, and there was a slight deviation from a Gaussian profile. However,

this asymmetry isn’t detectable for the lower resolution ESPaDOnS spectrograph. In

addition, the binning (discussed further below) makes it difficult to notice any subtle

deviations in the line profile shapes. A Gaussian is therefore still the best fit for the

instrumental profile, as can be seen in Figure 5.7.

Figure 5.8 shows the resolution as a function of wavelength, with a linear fit

to the data showing that the resolution is approximately 65,500. This is clearly in

disagreement with the published value. However, it later came to light that the CCD on

ESPaDOnS had been updated not long after the ThAr spectrum was taken. Therefore,

the resolution obtained from the ThAr spectrum is also not useful for determining the

resolution of the stellar spectra.

The ESPaDOnS pipeline rebins the stellar spectra using bin sizes of 1.8 km s−1

(Donati 2004), therefore it was necessary to also bin the synthetic spectrum in uclsyn.

This was done by binning the synthetic spectrum into 2.6 km s−1 bins, and then inter-
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Figure 5.7: The Th line at 6151.993 Å for the ESPaDOnS spectrograph is shown along
with the Gaussian (red dashed) and Lorentzian (blue solid) fits.
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Figure 5.8: Resolution as a function of λ shows the resolution is constant, however there
is a lot of scatter.
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polating over the 1.8 km s−1 bins of the observed spectra. A Gaussian with R = 81,000

can then be fit to the binned synthetic spectrum. As the Narval spectrograph is almost

identical to ESPaDOnS, the same binning process was used for those spectra. The final

value for R for each spectrograph was chosen based on the binned solar spectra, as

discussed in the next section.

5.5 Measuring macroturbulence

Before measuring the macroturbulence, I had to choose a subset of lines from Section 3.4

which could be used with reasonable confidence, i.e. those that are unblended over as

large a Teff range as possible. These lines are are listed in Table 5.1 and the table

also includes four Fe i lines which weren’t used in the calibration, and this will be

discussed in Section 5.9. In cooler stars blending will become an issue for some of these

lines, in which case they are rejected. Stars that are slightly metal-poor will also have

fewer measurable lines. In stars with a relatively high v sin i (& 12 km s−1), blending

also becomes an issue as the selected lines will become broadened and encroach on

other nearby lines. Unresolved blends were rejected in these stars, however due to the

paucity of suitable lines in high v sin i stars, resolved blends were still used. While line

asymmetries should only be evident for a resolution greater than 100,000 (Gray 2008),

there does appear to be some asymmetric lines in these spectra. In such cases, lines

were rejected as it was impossible to fit the vmac to both wings. I selected a range of

elements, line strengths, and excitation potentials in order to see if macroturbulence

affected the various lines in different ways. I excluded Mn, Co and V as these lines are

prone to broadening from HFS, and Si as the lines are difficult to fit.

I first determined the radial-tangential vmac for the Kitt Peak Solar Atlas, HARPS,

ESPaDOnS and Narval solar spectra by using a least squares fit for each spectral line.

The v sin i was fixed to 1.9 km s−1 (Gray 1977b), and vmic was assumed to be 1.0

km s−1. I checked all lines individually by eye to ensure that the fitting was correct and

to eliminate any lines with bad fits. The final vmac value given is the average of all the

lines used. The vmac determined for the Kitt Peak Solar Atlas is 3.21 ± 0.27 km s−1,

and as the resolution of 300,000 means that the instrumental broadening is negligible in

this spectrum, this vmac value was deemed to be the solar value for the purpose of this

work. This is reasonably consistent with the range of values (3.1 km s−1 for strong lines

and 3.8 km s−1 for weak lines) determined from the Fourier analysis of Gray (1977b).
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Table 5.1: Spectral lines used to fit macroturbulence. The EWs and vmac

for the Kitt Peak Solar Atlas are also given.

Element λ (Å) EP (eV) log gf Effective Sun EW Sun vmac

Landé g (Å) (km s−1)
Cr i 5238.964 2.709 -1.305 1.43 0.0163 3.71
Ti i 5295.780 1.067 -1.633 1.23 0.0278 3.54
Y ii 5402.774 1.839 -0.510 0.89 0.0106 3.29
Ti ii 5418.751 1.582 -2.110 1.04 0.0493 3.46
Fe ii 5425.257 3.199 -3.220 1.24 0.0404 3.81
Fe i 5538.517 4.218 -3.244 1.96 0.0383 3.39
Fe i 5576.090 3.430 -1.000 0.00 0.1330 2.77
Fe i 5651.470 4.473 -2.000 1.88 0.0183 3.25
Fe i∗ 5732.275 4.991 -1.560 1.40 0.0146 3.92
Ca i 5867.563 2.933 -1.570 1.00 0.0243 3.22
Fe i∗ 5956.692 0.859 -4.605 0.71 0.0531 3.05
Fe i∗ 6055.992 4.733 -0.460 0.87 0.0759 2.92
Ni i 6111.066 4.088 -0.870 1.22 0.0347 3.55
Fe i 6151.617 2.176 -3.299 1.84 0.0502 2.93
Fe i 6200.319 2.609 -2.437 1.51 0.0736 3.08
Ni i 6204.600 4.088 -1.100 1.28 0.0226 3.47
Ni i 6223.980 4.105 -0.910 0.84 0.0286 3.39
Fe i 6252.554 2.404 -1.687 0.95 0.1246 3.03
Ti i 6258.104 1.443 -0.355 1.00 0.0525 2.89
Ni i 6378.247 4.154 -0.830 0.83 0.0326 3.51
Fe i∗ 6710.319 1.485 -4.880 1.69 0.0151 2.98
Ni i 6772.313 3.658 -0.980 0.92 0.0496 3.08
Fe i 6810.257 4.607 -0.986 1.49 0.0511 3.09
Fe i 6857.249 4.076 -2.150 1.14 0.0225 3.51

∗ Lines not used in the final calibration

Using the nominal resolution of 81,000 for the ESPaDOnS solar spectrum gave

vmac = 3.48 ± 0.40 km s−1. Similarly, the nominal resolution of 75,000 for Narval gave

vmac = 3.04 ± 0.50 km s−1. Although these values agree with the Kitt Peak Solar Atlas

within the errors, the discrepancies can be ascribed to a slightly incorrect value of the

spectral resolution adopted for ESPaDOnS and Narval. As a check on the resolution

values, I varied the average resolution of the synthetic spectra until the vmac equal to the

Kitt Peak Solar Atlas value. The HARPS solar spectrum was also included, although

binning is not required for HARPS. The resolution and vmac for each solar spectrum

are given in Table 5.2.

For the Kepler stars, I used the Teff , log g and vmic from Bruntt et al. (2012),

where log g was determined from asteroseismology. The errors are given as 60 K, 0.03

dex and 0.05 km s−1 for Teff , log g and vmic respectively. Including the resolution de-
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termined from the solar spectra and fixing the v sin i to the asteroseismic value, the

radial-tangential vmac was determined for each star using the binned spectra. The

individual vmac measurements for each line of each star are given in Table 5.3.

Table 5.2: Resolution and vmac for each solar spectrum

Spectrograph Resolution vmac (km s−1)
Solar Atlas 300 000 3.21 ± 0.27
HARPS (day sky) 98 000 3.21 ± 0.19
ESPaDOnS (twilight sky) 76 000 3.21 ± 0.53
Narval (Moon) 80 000 3.20 ± 0.49

Table 5.3: vmac (km s−1) measurements of individual lines. Line wavelengths are given
in Å.

KIC Cr i Ti i Y ii Ti ii Fe ii Fe i Fe i Fe i Ca i Ni i
5238 5295 5402 5418 5425 5538 5576 5651 5867 6111

1435467 5.47 5.58 5.45 6.07 5.09 4.88 6.12
2837475 11.17 13.00
3427720 3.73 2.88 2.11 3.50 4.10 4.03 4.56 3.24 4.43
3632418 4.39 4.59 4.49 4.95 5.22 4.53 5.51 4.61
3656476 3.09 3.61 3.88 3.30 3.58 3.29 3.40 3.18
4914923 4.09 4.08 4.04 3.78 4.13 4.44 4.55 4.82 4.01
5184732 3.77 3.76 2.66 3.54 4.17 2.70 4.13 3.43 3.96 3.57
6106415 4.90 4.53 4.25 3.82 3.82 3.35 4.28 4.19 5.54 3.42
6116048 3.99 3.52 3.90 4.52 3.72 3.80
6508366 9.00 8.44 10.69
6933899 3.41 4.03 4.35 3.89 4.27 2.47 4.58
7680114 3.37 3.59 3.47 3.58 5.08 3.55
7871531 2.52 3.11 3.46 3.11 1.99 3.31 2.77
7970740 2.26 2.43 1.19 3.28 1.89 3.55 2.43
8006161 2.14 2.39 2.67 3.26 2.19 2.85 2.34
8228742 3.25 3.52 3.86 4.85 4.52 4.40
8394589 5.54 5.20 5.47 4.69
8694723 5.94 5.72 6.89
9098294 4.76 3.83 3.98 4.20
9139151 3.96 3.32 3.84 3.78 4.44 4.01 3.19
9812850 5.68 5.83 6.47
9955598 2.34 2.03 2.59 3.25 2.12 3.21 1.32 2.72 1.99
10355856 5.62 4.40 4.28 5.92
10454113 5.85 4.04 4.67 4.56 5.51 4.64 5.14 4.46
10644253 3.62 3.22 3.96 4.68 3.56 4.17 4.01 4.45 3.35
10963065 4.55 4.15 3.86 3.55 4.48 4.46 4.33
11244118 3.46 4.13 3.66 3.65 4.05 2.97 3.68 2.96 4.01 2.81
12009504 4.33 4.09 4.69 5.05
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Table 5.3: vmac (km s−1) measurements of individual lines (continued).

KIC Fe i Fe i Ni i Ni i Fe i Ti i Ni i Ni i Fe i Fe i
6151 6200 6204 6223 6252 6258 6378 6772 6810 6857

1435467 5.54 5.89 5.34 5.18 6.19 5.62 6.19
2837475 11.55 12.55
3427720 3.72 4.51 3.89 3.75 4.36 4.41 3.77 3.86 3.59
3632418 5.97 4.70 3.59 6.01 4.84 4.79
3656476 3.59 4.00 4.16 2.90 3.75 4.53 3.21 3.52
4914923 3.86 4.25 4.52 3.91 3.56 4.20 3.91
5184732 2.82 3.97 3.55 4.98 2.95 3.48 4.46 4.43 3.44 3.66
6106415 4.06 4.52 3.35 3.82 4.02 3.83 4.41 4.46 4.50 3.81
6116048 4.38 4.63 3.10 3.96 4.03 4.82 4.62 3.28
6508366 9.81 11.24
6933899 3.90 4.51 4.72 4.18 4.30 4.32 4.55 4.30 4.22 5.18
7680114 3.44 3.89 3.33 3.06 3.42 3.94 4.08 3.30
7871531 2.58 3.04 3.09 1.95 2.88 2.89 3.02 3.27 2.98 1.79
7970740 1.34 3.02 2.53 1.95 2.42 3.27 2.78
8006161 1.34 2.49 2.52 1.74 1.57 3.11 1.69 2.06
8228742 3.36 5.05 5.02 3.94 4.28 4.53
8394589 4.91 5.72 4.37 4.82
8694723 4.11 8.20 6.31 6.76
9098294 3.50 3.50 2.64 3.08 3.36 4.29
9139151 3.65 4.40 4.34 4.06 4.28 4.56 4.29 3.57
9812850 6.00 6.26 6.14
9955598 1.51 3.18 3.10 3.38 2.31 2.18 3.68 3.41 2.13 1.31
10355856 7.23 5.94 6.01 5.75
10454113 4.31 5.52 4.85 4.75 4.78 4.62 4.77 5.02 4.21
10644253 2.65 4.47 4.07 3.99 3.86 3.78 3.59 3.67 4.18
10963065 4.52 4.88 4.59 4.29 4.10 4.86 3.86 4.52 4.58
11244118 2.53 3.94 4.46 5.29 3.13 3.08 4.84 4.02 3.32 3.17
12009504 3.67 4.09 5.19 4.13

5.5.1 Errors in computing vmac

The main contribution to the vmac error is from the scatter in the vmac values for the

different lines. The spectra have a S/N of 100 or less, meaning that noise at the

continuum level makes continuum placement difficult. Adjusting the continuum by

even 0.5 per cent will result in a different macroturbulence, and by performing two

different normalisations for several lines in a selection of stars, I found that the average

difference in the vmac for the two normalisations was ∼0.5 km s−1. An example is shown

in Figure 5.9 for a Fe ii line in KIC 8228742, with the corresponding vmac fits for the

two different normalisations shown in Figure 5.10. The two different vmac values in

this example are 3.34 and 3.76 km s−1. This is obviously one of the largest factors
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contributing to the errors. However, there is also a genuine difference in vmac in some

lines, as discussed in Section 5.9.
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Figure 5.9: A Fe ii line in KIC 8228742. The S/N of ∼100 makes continuum placement
ambiguous, as indicated by two different synthetic lines (in red and blue) which differ
by 0.5 percent at the continuum level. The solid black line is the observed spectrum.
The synthetic lines were first binned before a Gaussian was fit, but the binned synthetic
lines are left out of the image for clarity.

The v sin i error is included in the vmac error. The vmac was calculated based on

the given v sin i value, and then recalculated with the v sin i increased by the error. The

difference between the two vmac values was then added in quadrature in the vmac error.

The errors on the v sin i have a negligible impact on the vmac except for KIC 10355856

where the large v sin i error propagates into the vmac error.

Different spectral analysis techniques can yield different values of vmic for the same

spectrum, and the choice of vmic can affect the resulting vmac. For instance, using a vmic

of 1.00 and 0.85 in the Kitt Peak solar atlas yields a vmac of 3.21 ± 0.27 and 3.33 ± 0.28

respectively. Thus, the choice of vmic can have a subtle influence on vmac. In order to

account for this, a vmic error of 0.15 km s−1 was added in quadrature to the vmac error.

The metallicity can potentially influence the derived vmac, as vmac is fit while also
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Figure 5.10: The two synthetic lines shown in Figure 5.9 for KIC 8228742 are normalised
to 1 show the difference in the vmac fit for the same spectral line.

adjusting the logA of the line, and assuming the solar values as a starting point. There

is a subtle difference for KIC 8760414, which Bruntt et al. (2012) gives as logA(Fe)

= 6.36. Using a v sin i of 0 km s−1 (as no δνs sin i is available; see Section 5.6.3) and

assuming a solar abundance when fitting the lines gives a vmac of 3.62 ± 0.75 km s−1.

Using the lower abundance given in Bruntt et al. (2012) results in a vmac of 3.65 ±
0.71. This could create a small error if solar metallicity was assumed for a very metal-

poor or metal-rich star. However, most stars in this sample are not deviant from solar

metallicity, and even if the metallicity was wrong by ∼0.3 dex, the difference in the

vmac would be negligible.

The instrumental broadening needs to be input before the vmac can be determined,

but since the resolution of a spectrograph can vary, an additional error can be introduced

to the vmac if the wrong resolution is used. Increasing the resolution of the ESPaDOnS

and Narval solar spectra by 5000 increases the vmac by 0.19 and 0.14 km s−1 respectively

and this was accounted for in the vmac errors.

As VDW broadening is a prominent broadening factor in strong lines, then an

incorrect VDW value could introduce an error in the vmac, particularly if it has not
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been computed from ABO theory. For example, if VDW is assumed to be zero for the

strong line Fe i 6252 Å in the Kitt Peak Solar Atlas, the vmac increases from 3.02 to

3.95 km s−1. In this case, it is still impossible to fit the wings of the lines, showing

that VDW is clearly needed. However, when VDW is included and vmac is fixed to 3.5

km s−1 (the average Gray value), it is impossible to fit the core of the line as the vmac

is now too high. Varying the VDW does not rectify this, which suggests that both the

VDW and vmac are correct for this particular line. This is shown in Figure 5.11.
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Figure 5.11: The Fe i 6252 Å in the Kitt Peak Solar Atlas has a vmac of 3.02 km s−1.
This fit matches the observed spectral line exactly and is not shown on the plot. If the
VDW is set to 0 (the blue dotted line), the vmac is pushed higher to compensate, but
the wings clearly do not fit, showing that an accurate VDW is needed. If the VDW
broadening is used and the vmac set to 3.5 km s−1 (red dashed line), it is still not possible
to get a proper fit even when varying the VDW, indicating that the vmac is too high.

5.6 Results

The asteroseismic rotational velocity (v sin iastero) and the derived vmac are listed in

Table 5.4, and stars are identified with their Kepler Input Catalog (KIC) numbers.

The vmac is plotted against Teff in Figure 5.12, showing a clear increase in vmac with
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increasing Teff . The plot also shows that there is a dependency on log g among the

dwarfs, indicating that log g should be accounted for even within the same luminosity

class. There are two young red giants and one subgiant from Deheuvels et al. (2014)

also included on the plot, but not included in the calibration. These show that vmac

is higher for the giants as expected (Gray 2008), although it should be noted that the

δνs sin i values for these stars are upper limits. The fit to the data is expressed as a

function of Teff and log g via

vmac = 3.21 + 2.33× 10−3(Teff − 5777)

+2.00× 10−6(Teff − 5777)2 − 2.00(log g − 4.44). (5.10)

The zero points were set to yield the vmac value for the Sun and the gradient was

determined from a polynomial fit. This calibration is valid for the Teff range 5200 to

6400 K, and the log g range 4.0 to 4.6. The observed values were compared to the value

predicted from the calibration. Taking the difference between these and then obtaining

the standard deviation gives the rms scatter of the fit 0.37 km s−1. The mean of the

vmac errors with a 3-σ clipping rejection criterion is 0.62 km s−1. Adding these two

errors in quadrature gives a total error of 0.73 km s−1 for the calibration.

The vmac values obtained from the calibration will be affected by errors in the Teff

and log g. For instance, if the Teff of a star is increased by 100 K, the vmac will be 0.31

km s−1 greater on average. Similarily, an increase of 0.1 dex in log g will increase the

average vmac by 0.17 km s−1.

There are two outliers, KIC 2837475 and KIC 6508366 which have abnormally

high vmac. These are not shown on the plot and are not included in the calibration.

Judging by the extent that the wings of the lines are broadened, it is possible that this

effect could be real. However, both stars also have high v sin i (∼20 km s−1), meaning

that only a few lines are available to fit vmac and it is quite difficult to obtain a reasonable

fit. Interestingly, KIC 2837475 has a large discrepancy between the spectroscopic and

asteroseismic log g with the former being 0.35 dex higher than the latter. Bruntt et al.

(2012) finds that the spectroscopic log g is on average 0.08 ± 0.07 dex higher than the

asteroseismic values, but cannot explain the discrepancy of KIC 2837475.
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Table 5.4: The asteroseismic v sin i and vmac as determined in this work. The astero-
seismic v sin i is too high to fit the line profiles in some stars, in which case no vmac is
given. The Teff , log g and vmic are from Bruntt et al. (2012), with errors of 60 K, 0.03
dex and 0.05 km s−1 respectively. The number of lines (out of 20) used to determine
the average vmac for each star is also given.

KIC HD HIP Teff log g vmic v sin iastero vmac No. of
K km s−1 km s−1 km s−1 lines

1435467 6264 4.09 1.45 10.58 ± 0.70 5.61 ± 1.35 14
2837475 179260 6700 4.16 2.35 21.50 ± 0.96 12.07 ± 2.31∗ 4
3427720 6040 4.38 1.16 1.07 ± 0.63 3.80 ± 0.82 18
3456181 6270 3.93 1.53 10.89 ± 0.52
3632418 179070 94112 6190 4.00 1.42 7.75 ± 0.46 4.87 ± 0.87 14
3656476 5710 4.23 1.02 1.13 ± 0.18 3.56 ± 0.49 16
4914923 94734 5905 4.21 1.19 2.46 ± 0.39 4.13 ± 0.42 16
5184732 5840 4.26 1.13 3.11 ± 0.19 3.67 ± 0.64 20
6106415 177153 93427 5990 4.31 1.15 3.66 ± 0.14 4.14 ± 0.59 20
6116048 5935 4.28 1.02 3.47 ± 0.16 4.02 ± 0.57 14
6225718 187637 97527 6230 4.32 1.38 15.46 ± 1.13
6508366 6354 3.94 1.52 20.59 ± 0.95 9.83 ± 1.35∗ 5
6679371 6260 3.92 1.62 18.53 ± 0.92
6933899 5860 4.09 1.15 1.99 ± 0.30 4.19 ± 0.63 17
7103006 6394 4.01 1.58 13.46 ± 1.04
7206837 6304 4.17 1.29 7.82 ± 1.06
7680114 5855 4.18 1.10 2.49 ± 0.27 3.65 ± 0.53 14
7871531 5400 4.49 0.71 1.22 ± 0.27 2.81 ± 0.52 17
7940546 175226 92615 6264 3.99 1.56 9.17 ± 0.42
7970740 183606 5290 4.58 0.68 0.70 ± 0.20 2.50 ± 0.74 13
8006161 91949 5390 4.49 1.07 1.20 ± 0.08 2.22 ± 0.58 16
8228742 95098 6042 4.02 1.30 5.15 ± 0.59 4.22 ± 0.85 13
8394589 6114 4.32 1.23 4.92 ± 0.33 5.09 ± 0.65 8
8694723 6120 4.10 1.39 4.19 ± 0.78 6.28 ± 1.27 7
9098294 5840 4.30 1.01 2.11 ± 0.36 3.71 ± 0.69 10
9139151 92961 6125 4.38 1.22 4.75 ± 0.31 3.98 ± 0.74 15
9139163 176071 92962 6400 4.18 1.31 10.15 ± 0.81
9812850 6325 4.05 1.61 12.04 ± 0.96 6.06 ± 1.27 7
9955598 5410 4.48 0.87 1.29 ± 0.12 2.51 ± 0.76 19
10355856 6350 4.08 1.55 5.74 ± 2.72 5.75 ± 2.56 11
10454113 92983 6120 4.31 1.21 3.83 ± 0.51 4.81 ± 0.64 17
10644253 6030 4.40 1.14 0.62 ± 0.81 3.85 ± 0.56 18
10963065 6060 4.29 1.06 3.61 ± 0.25 4.35 ± 0.46 16
11244118 5745 4.09 1.16 1.67 ± 0.22 3.66 ± 0.73 20
12009504 6065 4.21 1.13 7.36 ± 0.37 4.41 ± 0.60 8

∗ Not included in the calibration.
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Figure 5.12: Macroturbulence is seen to increase with increasing Teff , however there also
seems to be some log g dependence. The circles represent the stars used in this study,
the diamond represents the Sun, and the squares are the red giants from Deheuvels
et al. (2014). The red giants are not included in the calibration.

5.6.1 Stars with v sin iastero too high

Seven of the stars have an asteroseismic v sin i that is clearly too high to fit the spectra,

and an example is shown in Figure 5.13. The v sin i is too high to allow for any vmac

broadening, which means that the wings cannot be fit and the core of the synthetic

profile is too shallow. If the vmac is fixed to 4.92 km s−1 from the calibration, the v sin i

fits with a value of 3.25 km s−1.

This implies that another mechanism is changing the shape of the line profiles.

Differential rotation, low inclination and limb darkening have the effect of narrowing

line profiles (Reiners & Schmitt 2002), which could explain why the v sin i will not

fit. However, limb darkening would not explain why this effect is only seen in some

stars and not others with similar parameters. As δνs sin i cannot be well constrained for

stars with a low inclination, the discrepancy in the line profiles cannot be caused by low

inclination. While there is some correlation between i and δνs sin i, it is still possible to

infer lower limits on the inclination from the posterior distribution plots, which show
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Figure 5.13: The synthetic spectrum clearly doesn’t fit the observed spectrum of KIC
6225718. The synthetic line, in red, has v sin iastero of 15.46 ± 1.13 and no vmac.

that i & 40 for these stars and most have i & 60. This suggests that the most likely

explanation for the shapes of these line profiles is latitudinal differential rotation.

However, including solar-like latitudinal differential rotation (i.e. α = 0.2) in the

synthetic line profile only solves the problem for KIC 7940546. For the other six stars,

a reduction in inclination is needed along with differential rotation. This can be as low

as i = 10 degrees. Even with these adjustments to the line profiles, there are still some

lines that cannot be fit. This is complicated by the fact that vmac is different for every

line due to depth dependence (see Section 5.9). For example, in KIC 7206837 the strong

lines seem to fit with v sin iastero, while the weaker lines do not fit. This is because the

stronger lines have lower vmac values, which allows them to compensate for the high

v sin iastero. No conclusive explanation can be offered as to why the line profiles of these

stars do not agree with v sin iastero. It is possible that undetected mixed modes could be

interfering with the δνs sin i measurements for the stars with log g < 4.0, however this

needs further investigation with asteroseismic modelling. In addition, higher quality

spectra might help in understanding these stars as it would allow the line profiles to be

fit with much better precision.
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5.6.2 Comparison with Prot

It would be useful to compare the asteroseismic v sin i values to the upper limit v sin i

derived from the rotation period and the stellar radius. The rotation period can be

determined from the light curve, as any existing spots will cause periodic modulations

in the light curve as they pass in and out of view. However, there are no stars in

common with the Prot values of Reinhold, Reiners & Basri (2013) and only five stars

have a Prot value from Nielsen et al. (2013). It is not expected that many stars in this

sample will have Prot values from starspots, as most of the stars are too old (& 2 Gyr)

to have sufficient activity (Chaplin et al. 2014). Table 5.5 compares v sin iastero with the

upper limit v sin i determined from the Prot values of Nielsen et al. (2013), showing that

the latter are systematically higher than the v sin iastero values. This is expected, since

the v sin i determined from Prot is an upper limit, but it is possible that this discrepancy

could be from period measurements of spots at high latitudes.

Table 5.5: Comparison between v sin iastero and the v sin i determined from Prot

KIC v sin iastero (km s−1) v sin i from Prot (km s−1)
(upper limit)

1435467 10.58 ± 0.70 ≤ 11.89 ± 0.81
7206837 7.82 ± 1.06 ≤ 9.27 ± 1.18
9098294 2.11 ± 0.36 ≤ 2.90 ± 0.12
9812850 12.04 ± 0.96 ≤ 13.98 ± 0.53
10454113 3.83 ± 0.51 ≤ 4.33 ± 0.21

5.6.3 Stars with no obvious splitting

There are three stars (KIC 6603624, 8760414 and 8938364) where δνs sin i couldn’t

be determined as there was no splitting evident. It is possible that this is simply

because these stars have negligible rotation. All three stars show no signs of Li and the

asteroseismic ages are given as 7.9 +2.4
−2.2, 13.6 ± 1.5 and 13.0 +2.8

−2.7 respectively (Chaplin

et al. 2014).

Using v sin i = 0 to obtain the upper limit of vmac, I saw that these stars fit in

with the general trend seen in Figure 5.12, indicating that the v sin i is probably not

much more than 0. I also placed an estimated upper limit on v sin i, by obtaining the

rotation periods via the gyrochronology calibration of Mamajek & Hillenbrand (2008)

and using the ages from Chaplin et al. (2014). However, these estimated v sin i values are

inconsistent with the asteroseismic v sin i values for the stars that do have a detectable
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δνs sin i, so the estimated values should be used as a guideline only. As such, I did

not include these three stars in the calibration. Both sets of parameters are given in

Table 5.6.

Table 5.6: Estimated v sin i and vmac for stars with no splitting

KIC v sin i (km s−1) vmac (km s−1) v sin i (km s−1) vmac (km s−1)
(estimated)

6603624 0 ≤ 3.35 ± 0.80 ≤ 1.32 ± 0.20 ≥ 2.96 ± 0.76
8760414 0 ≤ 3.62 ± 0.75 ≤ 1.90 ± 0.25 ≥ 3.05 ± 1.17
8938364 0 ≤ 3.77 ± 0.57 ≤ 1.36 ± 0.12 ≥ 3.50 ± 0.74

5.7 Comparison with other vmac relationships

Figure 5.14 shows my data overplotted with three other calibrations which are often

cited in the literature: Gray (1984a), Valenti & Fischer (2005) and Bruntt et al. (2010a).

My calibration is plotted at log g = 4.44. The observed values were compared with

the values predicted from the calibrations, and a linear regression was performed to see

which calibration predicted values that agreed with the observed values. My calibration

has the highest r2 value of 0.87 as seen in Table 5.7. This suggests a relatively good

agreement, however the r2 values for the other calibrations aren’t much lower so they

also agree well with the observed values. My calibration also has the lower rms scatter.

The linear regression and the rms scatter for my calibration are shown in Figure 5.15.

It is difficult to make a satisfactory comparison between the observed and predicted

values due to the scatter and large errors in the observed vmac values.

Table 5.7: Parameters from the linear regressions between the observed vmac values and
those predicted from each calibration.

Calibration r2 rms scatter
Doyle 0.87 0.37
Gray 0.81 0.50
Bruntt 0.82 0.44
Valenti & Fischer 0.81 0.67

5.7.1 Gray (1984a)

The difference in line profiles shapes due to varying broadening parameters is very subtle

in the wavelength domain. However, in the Fourier domain the broadening parameters
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Figure 5.14: Same as for Figure 5.12, but with the calibrations of Gray (1984a), Bruntt
et al. (2010a) and the upper limit of Valenti & Fischer (2005) also plotted. The fit for
this work is given at log g = 4.44.

have more distinct shapes, meaning that they can be distinguished from each other more

easily. The observed line profile D(λ) in the wavelength domain is a convolution with

the instrumental profile I(λ), the thermal profile H(λ) (including microturbulence) and

the total non-thermal broadening profile M(λ).

D(λ) = M(λ) ∗ I(λ) ∗H(λ). (5.11)

The thermal profile is computed from a model atmosphere. The thermal profile

also includes the microturbulence, even though microturbulence is non-thermal. M(λ)

includes both radial-tangential vmac and rotation, which have been combined via disc

integration and not via a convolution. Pressure broadening is not included, however

only lines that are not prone to significant pressure broadening should be selected for

the Fourier analysis. The Fourier transform of the observed profile is written with lower

case letters as

d(σ) = m(σ)i(σ)h(σ). (5.12)
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Figure 5.15: The observed vmac is plotted against the vmac predicted from Equation 5.10
and a linear regression was performed, giving an r2 of 0.87 km s−1. The lower plot shows
the difference between the observed and predicted values, and the dashed liness mark
the rms scatter of 0.37 km s−1.

The instrumental profile and thermal profile can now be divided out, leaving a

residual transform that represents the combination of vmac and v sin i. It is now possible

to disentangle vmac and v sin i as the shape of the sidelobes of the profiles in the Fourier

domain are distinctly different for both. This means that different ratios of the two

broadening parameters will also have unique shapes. Therefore, both vmac and v sin i

can be extracted by comparing the shape of m(σ) to a grid of model values.

This type of analysis requires high resolution spectra in order to obtain high

Fourier frequencies and thus distinguish between the transforms, as the top of the

transform has a similar shape for various combinations of vmac and v sin i. It is also

essential to have high S/N, as the crucial part of the transform needed for disentangling

the broadening occurs at low Fourier amplitudes (Gray 2008).

Gray (1984a) uses the Fourier method to determine the radial-tangential vmac for

a selection of stars with high S/N spectra (100 to 300). He plots this against spectral

type, and then converts spectral type to Teff to obtain the relation
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vmac = 3.95 Teff − 19.25 km s−1, (5.13)

where Teff is given in 103 K. The calibration has an error of ∼0.2 km s−1, and there is

an approximate change of 4 km s−1 per thousand degrees, which is similar to that found

for giant stars.

Zeeman broadening was approximated as a convolution with the non-thermal

profile, so that it could ultimately be removed. The Zeeman broadening had been

calculated in a previous paper (Gray 1984b), so that the actual vmac could be obtained

for these cooler stars, albeit with added uncertainties. Gray (1984a) provides vmac

values both with and without Zeeman broadening included in the profile, and there is

a noticeable difference in the calibration in the cool end depending on which value is

used.

A vmac calibration from Gray (2008) is also cited in the literature, however this is

obtained via a linear fit to the vmac values given for a typical star of each spectral type,

rather than a specific set of stars. This fit is almost the same as for Gray (1984a) and

it is probably the same calibration, albeit slightly different due to different Teff values

used. A visual inspection of Figure 3 in Gray (1984a) shows that the vmac values given

in Gray (2008) are consistent with that fit, except for the hottest star. As the Gray

(1984a) paper details the actual stars used in the calibration, it is more accurate to use

this one when comparing the different calibrations.

5.7.2 Valenti & Fischer (2005)

Valenti & Fischer (2005) initially tried using Gray’s macroturbulence calibration, how-

ever the resulting v sin i values suggested that the 1040 stars in their sample would have

a minimum rotational velocity of 3 km s−1, which disagrees with measured rotation pe-

riods of inactive stars from Noyes et al. (1984).

They set v sin i = 0 and determined the upper limit radial-tangential vmac for each

star by fitting a synthetic spectrum to an observed spectrum with the programme sme.

The vmac derived is thus an upper limit as it is a combination of vmac and v sin i. Their

plot of the vmac against Teff shows that below 5800 K, the slope changes by 1 km s−1

every 650 K. Using this, they then fit their linear relationship by fixing the solar vmac

value to 3.98 (the value obtained by Gray (1984a) for weak lines) and the solar v sin i

value to 1.63 km s−1 (Valenti & Piskunov 1996) to obtain the relationship
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vmac =

(
3.98 +

Teff − 5770 K

650 K

)
km s−1. (5.14)

They note that as stars below 5800 K should have negligible v sin i, then the

resulting vmac is the true value rather than an upper limit. To determine if setting

v sin i = 0 has an effect on the vmac of stars below 5800 K, I compared vmac upper limits

obtained using v sin i = 0 to the vmac obtained when using the v sin iastero (0.7 < v sin i

< 1.9 km s−1) for the Kepler stars with Teff below 5800 K, as well as for the Sun. The

results show that using v sin i = 0 for stars below 5800 K will overestimate the vmac by

0.41 ± 0.13 km s−1, as can be seen in Fig. 5.16. Therefore, there is a small systematic

error in the Valenti & Fischer (2005) calibration for these stars. However from Fig. 5.14

it is clear that it is still valid as an upper limit for dwarf stars below 5800 K.
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Figure 5.16: Comparing the vmac obtained using v sin iastero with the vmac obtained with
v sin i = 0 shows that the latter will be overestimated. The solid line depicts a 1:1
relationship.

For stars with Teff greater than 5800 K, they note that the vmac points rise sharply

above the linear relationship. They attribute this to the fact that v sin i will increase

with Teff , but do acknowledge that some of this might be due to vmac. In fact, it is

interesting to note that the turn off point for the increased vmac occurs at a similar Teff
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(∼6000 K) in my own plot. This indicates that the sharp increase seen in their plot for

the hotter stars is likely due to a combination of both v sin i and vmac. Therefore their

relationship will underestimate the vmac of stars above 5800 K, and explains why the

vmac values I obtained are greater than the “upper limit” for the hotter stars.

5.7.3 Bruntt et al. (2010a)

Bruntt et al. (2010a) analysed a sample of 22 stars using 10 to 30 lines with a line

strength of between 20 and 100 mÅ using the software vwa (Bruntt et al. 2002).

They assumed vmac with a Gaussian profile, and convolved the synthetic spectrum with

different combinations of v sin i and vmac in a grid with steps of 0.15 km s−1 until the best

fit was found. They fit a polynomial to their data to determine their vmac calibration

vmac = 2.26 + 2.90× 10−3∆T + 5.86× 10−7∆T 2 km s−1, (5.15)

where ∆T = Teff − 5700 K.

The Bruntt calibration gives vmac values that are systematically lower than this

work. A line profile in vwa with a given value of vmac is broader than in uclsyn for

the same value of vmac. In order for the two line profiles to agree, the vmac in vwa needs

to be increased by
√

2. For example, the solar vmac from the Bruntt calibration is 2.48

km s−1, but when this is multiplied by
√

2 it gives 3.50 km s−1, which is in agreement

with Gray (1984a). This will also move the Bruntt calibration up on Figure 5.14. The√
2 difference is probably due to the method of modelling vmac within the software,

however the exact reason for this is unclear even to the authors of the code (Bruntt

2014, private communication).

If the Bruntt vmac values are used as computed in Equation 5.15, it would be

expected that the v sin i will be pushed higher to compensate for this. In fact, this can

be seen in Figure 5.17, where the v sin i values from Bruntt et al. (2012) are seen to

be systematically higher than the v sin iastero values. The stars that have v sin iastero too

high (Section 5.6.1) are also included on the plot.

However, even when including the
√

2 factor, the v sin i still seems to be too high.

For example, when I assume that the vmac of KIC 3427720 is 4.66 km s−1 (Bruntt value

increased by
√

2), I obtain a v sin i of 0.95 ± 0.95 km s−1. This is in agreement with the

v sin iastero of 1.07 ± 0.63, but in disagreement with the Bruntt et al. (2012) value of 4

km s−1. It is not possible to fit the line profiles with that vmac and a v sin i of 4 km s−1.
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Figure 5.17: Comparing the Bruntt et al. (2012) v sin i values with the v sin iastero

values show that the Bruntt values are systematically higher. The outliers that have
v sin iastero too high for the line profiles are also shown on the plot. The solid line is a
1:1 relationship.

5.8 Implications for the RM effect

5.8.1 The influence of different vmac calibrations on v sin i.

The choice of macroturbulence calibration has a significant effect on the v sin i value

that is obtained. To demonstrate this, I determined the solar v sin i from the Kitt

Peak Solar Atlas using the same set of lines as I did for measuring vmac. I used the

vmac values of 3.98 (Valenti & Fischer 2005), 3.5 (Gray 1984a) and 2.5 km s−1 (Bruntt

et al. 2010a), which resulted in a v sin i of 0.59 ± 0.45, 1.62 ± 0.32 and 2.67 ± 0.18

km s−1 respectively. However, when the Bruntt value is corrected for the
√

2 difference,

it is in better agreement with Gray. Clearly, using the Gray vmac obtains the most

realistic solar value, compared to the synodic solar v sin i which is given as 1.73 ± 0.25

in Soderblom (1982), 1.85 ± 0.1 in Bruning (1984), 1.9 km s−1 in Takeda (1995) and

Gray (2008).

The Valenti & Fischer (2005) vmac value is too high for the solar lines and it

makes the cores of the lines too shallow. This inevitably makes it difficult to fit v sin i,
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Table 5.8: Pairs of Fe i lines used to infer Zeeman broadening

High Landé g lines (Å) Low Landé g lines (Å)
6173.34 6240.65
6302.50 6408.03
6733.16 6627.55
6842.70 6810.27

which is why v sin i is too low for the Sun using this calibration. The Gray (1984a)

macroturbulence value returns reasonable fits for most lines, although there are still

some subtle differences in the line profiles.

I also noticed that while for some lines the different combinations of vmac and v sin i

are visually indistinguishable, there are other lines that show clear differences in the

shape of the line profile depending on the vmac value used. This indicates that different

lines have varying sensitivities to macroturbulence, which is discussed in Section 5.9.

5.8.2 New v sin i values for the WASP stars

Using Equation 5.10 to yield the vmac, I redetermined the v sin i for the WASP planet

host stars using HARPS spectra. The resolution was determined individually for these

spectra from the telluric lines, as the spectra were of a S/N high enough to do so.

The typical resolution is ∼112,000, in agreement with Mayor et al. (2003), where the

resolution is given as 115,000. These new v sin i values (v sin ispec) are given in Table 5.9.

Two different errors are listed in the table; σsd is the standard deviation of v sin ispec, and

σmac is the standard deviation added in quadrature to the error on the vmac calibration.

Also give in the table are the original spectroscopic v sin i (v sin ioriginal) and the

v sin i determined from the RM effect (v sin iRM). The v sin ioriginal values are typically

those determined in the discovery papers, and are the values given in the RM papers.

A direct comparison with v sin ioriginal (and the RM values that used a spectro-

scopic prior) is difficult, as the vmac determination is inconsistent. However, there are

some interesting comparisons to be made with the v sin iRM values that did not require

a spectroscopic prior. For example, v sin ispec for WASP-40 seems to be higher than

v sin iRM. The Zeeman effect can cause additional line broadening in cooler stars, so I

checked to see if any such broadening was present using pairs of lines with high and

low Landé g-factors as determined by Robinson (1980). The pairs of lines are given in

Table 5.8.
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Table 5.9: The vmac has been calculated from Equation 5.10 and has an error of 0.73
km s−1. The v sin i values redetermined for this work are given as v sin ispec, and
the previous spectroscopic values (v sin ioriginal) and the values obtained from the
RM effect are also given. σsd is the standard deviation of v sin ispec, and σmac is the
standard deviation added in quadrature to the error on the vmac calibration. The
Teff and log g are determined from spectroscopic analyses from the given references.

Star Teff log g vmac v sin ioriginal v sin iRM v sin ispec σsd σmac Ref.
K km s−1 km s−1 km s−1 km s−1 km s−1 km s−1

WASP-2 5175 ± 95 4.46 ± 0.12 2.49 1.60 ± 0.70 0.99 +0.27
−0.32 0.88 0.61 0.95 1,2

1.30 ± 0.50 < 0.5 3
WASP-4 5400 ± 90 4.47 ± 0.11 2.56 2.00 ± 1.00 2.14 +0.38

−0.35 2.43 0.37 0.82 1,2

WASP-5 5690 ± 80 4.28 ± 0.09 3.34 3.50 ± 1.00 3.24 +0.35
−0.27 3.45 0.37 0.82 1,2

WASP-6 5375 ± 65 4.61 ± 0.07 2.26 1.40 ± 1.00 1.6 +0.27
−0.17 2.36 0.31 0.79 1,4

WASP-7∗ 6550 ± 70 4.32 ± 0.06 6.45 17.00 ± 2.00 14.00 ± 2.00 17.89 0.68 0.99 1,5
WASP-8 5560 ± 90 4.40 ± 0.11 2.88 2.00 ± 0.60 1.59 +0.08

−0.09 1.84 0.38 0.82 1,6

WASP-15 6405 ± 80 4.40 ± 0.11 5.54 4.00 ± 2.00 4.27 +0.26
−0.36 4.52 0.46 0.86 1,2

WASP-16 5630 ± 70 4.21 ± 0.11 3.37 2.3 ± 0.4 1.20 ± 0.3 1.90 0.53 0.89 1,7
3.20 ± 0.90 8

WASP-17∗ 6700 ± 105 4.34 ± 0.23 7.27 9.80 ± 0.50 9.82 +0.40
−0.45 9.36 0.73 1.03 1,2

9.0 ± 1.5 8.61 ± 0.45 9
9.0 ± 1.5 20.0 +69.2

−5.2 10
WASP-18 6400 ± 75 4.32 ± 0.09 5.68 11.00 ± 1.50 11.20 ± 0.60 10.96 0.43 0.85 1,2,8
WASP-19 5460 ± 90 4.37 ± 0.14 2.81 5.0 ± 0.3 4.63 ± 0.26 4.86 0.17 0.75 1,11

4.0 ± 2.0 4.40 ± 0.90 8
WASP-20 6000 ± 100 4.40 ± 0.15 3.91 3.5 ± 0.5 4.71 ± 0.50 3.92 0.28 0.78 12
WASP-21 5800 ± 100 4.2 ± 0.1 3.57 1.5± 0.6 1.88 0.42 0.84 13
WASP-22 6000 ± 100 4.5 ± 0.2 4.28 4.5 ± 0.4 4.42 ± 0.34 3.97 0.30 0.79 14,15
WASP-24 6075 ± 100 4.15 ± 0.10 4.58 7.0 ± 1.0 7.32 ± 0.88 5.95 0.28 0.78 16,17
WASP-25 5750 ± 100 4.5 ± 0.15 3.03 2.6 ± 0.4 2.90 ± 0.3 2.35 0.41 0.84 18,7
WASP-26 5950 ± 100 4.3 ± 0.2 3.95 3.90 ± 0.4 2.20 ± 0.70 3.31 0.31 0.79 8,19,15
WASP-28 6100 ± 150 4.5 ± 0.2 4.05 3.1 ± 0.6 3.25 ± 0.34 3.54 0.49 0.88 12
WASP-30 6190 ± 50 4.18 ± 0.08 5.03 12.1 ± 0.5 12.1 +0.4

−0.5 11.84 0.26 0.78 20
WASP-31 6300 ± 100 4.4 ± 0.1 5.23 7.6 ± 0.4 7.50 ± 0.7 7.56 0.38 0.82 21,7

6.80 ± 0.60 8
WASP-32 6100 ± 100 4.4 ± 0.2 4.25 5.5 ± 0.4 3.9 +0.4

−0.5 5.18 0.27 0.78 22,23

WASP-38 6150 ± 80 4.3 ± 0.1 4.64 8.3 ± 0.4 7.7 +0.1
−0.2 7.97 0.25 0.77 24,23

8.60 ± 0.40 17
WASP-40 5200 ± 150 4.5 ± 0.2 2.41 2.4 ± 0.5 0.6 +0.7

−0.4 1.71 0.39 0.83 25,23
WASP-41 5450 ± 100 4.4 ± 0.2 2.74 1.6 ± 1.1 2.74 0.24 0.77 26
WASP-50 5400 ± 100 4.5 ± 0.1 2.50 2.6 ± 0.5 2.65 0.29 0.78 27
WASP-54 6100 ± 100 4.2 ± 0.1 4.65 4.0 ± 0.8 3.49 0.42 0.84 28
WASP-55 5900 ± 100 4.3 ± 0.1 3.81 3.1 ± 1.0 2.42 0.48 0.87 29
WASP-61 6250 ± 150 4.3 ± 0.1 5.04 10.3 ± 0.5 10.29 0.36 0.81 29
WASP-62 6230 ± 80 4.45 ± 0.10 4.66 8.7 ± 0.4 8.38 0.35 0.81 29
WASP-71 6050 ± 100 4.3 ± 0.1 4.28 9.4 ± 0.5 9.89 ± 0.48 9.06 0.36 0.82 30
WASP-76 6250 ± 100 4.4 ± 0.1 4.84 3.3 ± 0.6 2.33 0.36 0.82 31
WASP-77A 5500 ± 80 4.33 ± 0.08 2.94 4.0 ± 0.2 3.17 0.34 0.81 32
WASP-78 6100 ± 150 4.10 ± 0.20 4.85 4.1 ± 0.2 6.63 0.16 0.75 33
WASP-79∗ 6600 ± 100 4.2 ± 0.15 6.96 19.1 ± 0.7 17.5 +3.1

−3.0 18.53 0.40 0.83 33,34
∗ Extrapolating the calibration beyond 6400 K.
References: 1. Doyle et al. (2013), 2. Triaud et al. (2010) , 3. Albrecht et al. (2011), 4. Gillon et al. (2009), 5.
Albrecht et al. (2012a), 6. Queloz et al. (2010), 7. Brown et al. (2012a), 8. Albrecht et al. (2012b), 9. Bayliss et al.
(2010), 10. Anderson et al. (2010), 11. Hellier et al. (2011), 12. Anderson et al. (2014b), 13. Bouchy et al. (2010),
14. Maxted et al. (2010b), 15. Anderson et al. (2011b), 16. Street et al. (2010), 17. Simpson et al. (2011), 18.
Enoch et al. (2011), 19. Smalley et al. (2010), 20. Triaud et al. (2013b), 21. Anderson et al. (2011c), 22. Maxted
et al. (2010a), 23. Brown et al. (2012b), 24. Barros et al. (2011), 25. Anderson et al. (2011a), 26. Maxted et al.
(2011), 27. Gillon et al. (2011), 28. Faedi et al. (2013), 29. Hellier et al. (2012), 30. Smith et al. (2013), 31. West
et al. (2013), 32. Maxted et al. (2013), 33. Smalley et al. (2012), 34. Addison et al. (2013)
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Figure 5.18: The magnetically sensitive Fe line at 6842 Å (red crosses) is overplotted
with the non-magnetically sensitive Fe line at 6810 Å (black circles) for WASP-40, show-
ing that 6842 Å exhibits stronger broadening which is likely due to Zeeman broadening.
The solid lines are the synthetic fits to the observed spectrum.

The lines should have similar depth of formation and line strength, so that when

the v sin i is fixed to 1.71 km s−1, the vmac measured from both lines should be the

same if there is no additional broadening. In this sense, vmac was fitted to test for

additional broadening of the lines, rather than to obtain the actual macroturbulent

broadening. If Zeeman broadening was affecting the line profiles, I would expect that

the macroturbulence determined from the magnetically sensitive line would be higher

than the reference line. WASP-40 does show evidence of Zeeman broadening, as seen

in Figure 5.18, which shows the Fe line at 6842 Å which has a Landé g-factor of 2.5

overplotted with the Fe line at 6810 Å which has lower Landé g-factor of 0.86. It is clear

that the magnetically sensitive line at 6842 Å exhibits stronger broadening. The vmac

for this line is 3.15 km s−1, while the vmac for the line at 6810 Å is 2.10 km s−1. This

implies that v sin ispec is overestimated for WASP-40 because the rotational broadening

is used to erroneously fit also the Zeeman broadening.

WASP-6 also shows some evidence of Zeeman broadening, although it is not
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as clear as for WASP-40 and in this case the v sin iRM used a spectroscopic prior.

The v sin ispec is still higher than v sin ioriginal, however the latter was obtained from a

CORALIE spectrum. The v sin ispec is still consistent with the value of 2.4 ± 0.5 km s−1

that I had previously determined in Section 3.6.

There is a small discrepancy in the fits to the lines of WASP-4. Adjusting both

the vmac and v sin i suggests that vmac should be higher and v sin i lower for a precise

fit to the spectral lines. The test for Zeeman broadening is inconclusive in this star,

however as it would explain why a higher vmac is needed to fit the lines, it is a plausible

solution. Therefore, if a spectroscopic prior is required for a cool star, it should be

noted that if there is Zeeman broadening present, then the v sin i could be wrong.

There are also some discrepancies for hotter stars, for example WASP-20, WASP-

24 and WASP-32. WASP-20 has similar discrepancies in the line fits as WASP-4 and

it once again seems that vmac should be higher and v sin i lower, however it can’t be

Zeeman broadening in this case. As differential rotation makes the line profile more

“pointed”, it is possible that the v sin i isn’t fitting properly due to the presence of

differential rotation. The v sin iRM for WASP-24 is too high to fit the spectrum, which

also suggests that differential rotation could be present. While it can be possible to

detect differential rotation via the RM effect for misaligned planets that transit a range

of latitudes (Gaudi & Winn 2007), these three systems are all well aligned.

There is one WASP star not included in Table 5.9. WASP-42, although having

a published Teff of 5200 ± 150 (Lendl et al. 2012), is actually beyond the range of the

calibration. The initial analysis was performed with a poor S/N CORALIE spectrum

and so I performed a spectral comparison with the HARPS spectrum and that of other

cool stars as described in Section 3.6.6. This indicated that WASP-42 is more similar

in Teff to WASP-23 (5020 K), as shown in Figure 5.19, and thus should not be used.

While the calibration could be extrapolated to lower temperatures, the lack of data

points in this region and the problems with Zeeman broadening introduce too much

uncertainty. I also checked the other stars with Teff ∼5200 K, but there were no other

inconsistencies.
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I did extrapolate the calibration at the hotter end to measure the v sin i of WASP-

7, WASP-17 and WASP-79. The v sin ispec of WASP-7 is notably higher than the

v sin iRM, which did not need a prior. This might imply differential rotation; indeed

Albrecht et al. (2012a) also suggest that differential rotation could be present in this

star. The v sin ispec of WASP-17 is in agreement with both v sin ioriginal and v sin iRM,

suggesting that the calibration can still be used at this Teff range. However it should be

emphasised that there is a lot of uncertainty in both the Teff and log g of this star, so the

v sin i might not be an accurate representation. It is also possible that the extrapolation

is invalid at hotter temperatures. The comparison of v sin ispec to v sin iRM for WASP-79

is inconclusive, given the large error in the latter.

Overall, the use of Equation 5.10 to determine vmac, and thus v sin i, has the

advantage of having improved accuracy over the original spectroscopic values. However,

they should still be used with caution as other factors such as Zeeman broadening and

differential rotation can also potentially influence the line broadening.

5.9 Depth dependence

Macroturbulence is usually assumed to be independent of depth in the photosphere,

possibly because it is a large-scale phenomenon. However, the vmac velocity is mostly

due to granulation, and the granulation velocity in the Sun diminishes with height

(Gray 2008; Lefebvre et al. 2008).

Gray (1977b) finds that the RT vmac is larger for weak lines compared to the

strong lines, i.e. it is larger deeper in the photosphere where the weak lines are formed.

If it is assumed that vmac doesn’t vary with depth, then it is impossible to reproduce

the Fourier transform of the intrinsic flux profile using the vmac obtained from only

the strong lines in the Sun. The same is true regardless of whether vmic is constant

or depth-dependent. Simply increasing the microturbulence with depth will make the

Fourier profile more Gaussian in shape than radial-tangential, and this does not match

the observed profile which is dominated by the radial-tangential function. The model

profile will have a lower Fourier amplitude than the observed data unless the vmac is

higher for the weak lines (Gray 1977b).

The results of Takeda (1995) agree with Gray (1977b), and also show that when

vmac is plotted as a function of depth of line formation, it appears that vmac increases

with depth. Takeda also shows that vmac decreases as EW increases, and increases as
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EP increases. This is because the range of depths at which a line is formed depends on

the EP. For Fe i lines with higher EPs, greater temperatures are needed to maintain

the same population of atoms in the lower energy level. This means that the lines can

only be formed deeper in the photosphere where the temperature is high enough, and

thus the range of formation is decreased. The dependence of vmac on line strength is

still governed by EP, as the higher EP lines are generally weak because of the decreased

population of the lower energy level (Grossmann-Doerth 1994).

I have also verified this using the Fe i lines from Table 5.1 for the Sun. Four

additional Fe i lines were used, which were not used in the calibration. Figure 5.20

shows vmac as a function of the optical depth log τ at 5000 Å at which the core of each

line is formed. It is clear that vmac is higher in the lower layers of the photosphere,

however it should be cautioned that an incorrect log gf will result in an incorrect value

of log τ . The bottom panel of the figure also shows variation of vmac with EP. The high

EP lines are formed deeper in the atmosphere. The trends with vmac are not the exact

same for log τ and EP because the lines strength will also play a small role in the depth

of formation.

The difference in vmac for lines of low and high EP can be seen across all of the

Kepler stars. Figure 5.21 shows the relationship between vmac and Teff for the Fe i lines

5956 and 6055 Å. These lines have EP of 0.859 and 4.733 eV respectively. The line

with higher EP is formed deeper in the photosphere and thus has higher vmac.

As different lines will have different values of vmac, assuming an average vmac for

a star will increase the errors in the v sin i. For example, using the average vmac of 3.21

km s−1 for the Sun returns a v sin i value of 1.84 ± 0.35 in the Kitt Peak Solar Atlas.

Alternatively, using each individual vmac value for each line gives a v sin i of 1.88 ± 0.11.

Therefore a depth-dependent vmac calibration would improve the precision of the v sin i.

I attempted to fit individual relationships between vmac and Teff for each of the

lines used in the final calibration. The results for the Fe i lines are shown in Figure 5.22.

The points shown in the plot are the average vmac values as depicted in Figure 5.12,

however there can be a significant amount of scatter for individual lines, so that the fits

shown in Figure 5.22 don’t necessarily accurately represent the vmac relationship with

Teff . It is particularly difficult to include a log g component for most of the individual

lines, therefore only Teff was used. In addition, some lines required a linear rather than

a polynomial fit. Nonetheless, it is still clear that different lines will have different

relationships with Teff .
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Figure 5.20: The top panel shows that the vmac increases with optical depth in the Sun,
and the bottom panel shows that the vmac increases with EP.
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Figure 5.21: The black diamonds are the high EP line Fe 6055 Å and the blue circles
are the low EP line Fe 5956 Å.

5.9.1 Fitting Si lines

In Section 3.4 I mentioned that it is often difficult to fit the Si lines due to unusually

broad wings and asymmetries in the lines. Shi et al. (2008) suggest that the asymmetries

are not due to line blends, but are a direct result of the velocity fields in the photosphere

and cannot be modelled adequately with 1D models. They propose that the use of 3D

models will result in improvement of the line profile fitting. Nonetheless, Shaltout et al.

(2013) used 3D NLTE models and still found that some line profiles were discrepant.

As such, they cited uncertainties in collisional broadening, log gf , and possible blending

as the source of the error.

As the Si lines have high EPs and are formed deep in the photosphere, they will

experience stronger velocity fields compared to lines of other elements, which might

explain why the lines are so difficult to fit. The solar vmac and depth of formation of

the line core are given in Table 5.10.

However Sheminova (1993) notes that Si is particularly sensitive to pressure com-

pared to other elements and Shaltout et al. (2013) state that Si lines are notably influ-

enced by VDW broadening. For the 6721 Å line, I originally obtained a best-fit vmac of
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Figure 5.22: Individual calibrations for each of the Fe i lines used in the final calibration.
The points are the same as in Figure 5.12.

Table 5.10: vmac of Si lines in the Kitt Peak Solar Atlas

λ (Å) EP (eV) log gf Solar EW (Å) log τ vmac (km s−1)
5488.983 5.614 -2.420 0.0215 -0.29 6.944
5517.533 5.082 -2.611 0.0134 -0.29 4.304
5701.104 4.930 -1.581 0.0399 -1.08 3.828
6721.848 5.863 -1.516 0.0488 -0.52 4.984

4.98 km s−1 for the Kitt Peak Solar Atlas. This is shown in Figure 5.23 and it is clear

that the synthetic line is not broadened enough compared to the observed line. Fixing

the vmac of the 6721 Å line to 3.5 km s−1, I found that significantly increasing the VDW

value will result in an improved fit to the line, although it is still not possible to fit it

perfectly. Using this value of VDW and then fitting the vmac again gives a value of 3.83

km s−1, which fits better than the original value of 4.98 km s−1. It is possible that the

vmac given in Table 5.10 is not actually that high due to errors in VDW broadening,

however it is still not possible to precisely fit any of the Si lines.
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Figure 5.23: The black solid line is the observed Si 6721 Å in the Kitt Peak Solar Atlas.
The blue dotted line is the original vmac fit the line, which does not have broad enough
wings. The red dashed line is the fit when the VDW is increased and the vmac is refit.
The latter results in a better fit, although it is still impossible to fit the line perfectly.

5.10 Comparison with other indicators of velocity

fields

Macroturbulence is not the only signature of granulation that can be detected in stellar

line profiles. Line asymmetries and line shifts are also an indication of velocity fields in

the photosphere and both of these vary across the HR diagram in a similar manner to

vmac (Gray 2009; Ramı́rez et al. 2009).

There is a Doppler shift introduced by the upflowing material in the granules and

the downflowing material in the intergranular lanes. The bright, hot material of the

upward moving granule causes the spectral line to be blueshifted as the rising material

approaches the observer. The dark, cool intergranular lanes cause line profiles to be

redshifted. When granulation is unresolved, the net effect is that the line is blueshifted,

but the red wing is broadened from the intergranular material. This causes the spectral

line to be asymmetric in shape (Gray 2008; Ramı́rez et al. 2009).

If the line profile is sliced up into horizontal segments, plotting the midpoint of
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each horizontal line will reveal the bisector of the line. In a solar-like star the bisector

is a “c” shape, although this shape will be reversed in early-type stars (Gray 2008).

The blueshifting of the line means that the core wavelength is displaced from

its rest wavelength, and this is known as convective blueshift. Weak lines exhibit the

strongest shift as they are formed deeper in the atmosphere where the velocity fields

are stronger. The amount of line shift decreases with increasing line strength, and lines

stronger than 100 mÅ in the Sun do not exhibit any line shifts (Allende Prieto & Garcia

Lopez 1998; Ramı́rez, Allende Prieto & Lambert 2008).

Obtaining line bisectors requires very high resolution and high S/N spectra, so

is not possible with the ESPaDOnS and Narval spectra. It is possible to measure line

shifts with lesser quality spectra, however there are still uncertainties in the laboratory

wavelengths, the gravitational redshift and radial velocity of the star. Line shifts for

the Sun were available for most of the Fe i lines that I have in Allende Prieto & Garcia

Lopez (1998). They compared the wavelengths of the lines in the Kitt Peak Solar Atlas

to the laboratory wavelengths of Nave et al. (1994). These line shifts are plotted against

the vmac for each Fe i line in Figure 5.24. The zero velocity shift takes into account the

gravitational redshift of the Sun of 636 ms−1.

The strongest lines have the highest vmac and also the lowest velocity shifts as

expected, showing that these both represent the same phenomenon. The line shifts also

show a similar dependence with log τ as vmac, and this is shown in Figure 5.25. There

is no real trend seen between line shift and EP.

As mentioned in Section 1.8.3.3, 3D models have no need for either vmac or vmic

in order to fit the line profiles as modelling convection in 3D is sufficient to broaden the

lines. Line bisectors and shifts can be successfully measured using 3D models (Asplund

et al. 2000), although as mentioned earlier in this section they are not easy to measure.

Macroturbulence, on the other hand, is much easier to measure and it can be measured

even for spectra of moderate quality, as shown here. While it has been described

as an “fudge factor,” macroturbulence is still a measure of the velocity dispersion of

granulation. Therefore, measuring vmac using 1D models can still be of use for studying

convection in stellar photospheres.
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6 Summary, discussion, and future work

The future of a subject is the product of its past, and the hopes of astrophysics
should be implicit in what the science has already achieved.

- Cecilia Payne, 1925

In this thesis, I have investigated the “traditional” spectral analysis method in

depth, highlighted flaws that are often ignored, and offered suggestions on how to

improve these methods. By comparing my own thorough analyses with other, suppos-

edly similar methods I have revealed a worrying amount of differences in the stellar

parameters derived by different methods. Finally, my in-depth analysis of spectra of

solar-like stars led me to disentangle two of the more prominent broadening factors in

spectral lines; macroturbulence and projected rotational velocity. In this chapter I will

summarise my work, as well as discuss where it could lead next.

6.1 The finer points of spectral analysis

I first checked my spectral analysis method on the Sun and Procyon, to verify that it

returned reasonable parameters. I then applied this method to the HARPS spectra of

22 WASP stars to determine Teff , log g, vmic, vmac, v sin i and elemental abundances.

Despite the high resolution, high S/N HARPS spectra, the overall errors in these pa-

rameters are still quite high, showing that there is only so much that can be done with

high quality spectra. In order to minimise these errors, improvements in laboratory

atomic data need to made first.

6.1.1 Line lists and elemental abundances

All of the stellar parameters listed above rely on the selection of spectral lines for the

method based on EWs, and even methods that fit the entire spectrum still require

accurate atomic data to be sourced. The selection of a good line list is crucial, as it

forms the foundation for the EW method, and is a task that a considerable amount of

thought must go into. There is a misconception in the literature that using hundreds

of Fe lines will automatically make the stellar parameters more reliable, however this

is only true if they are hundreds of good lines.

In Section 3.4, I described how to select a good line list and also how different line

lists should be constructed from stars of different temperatures. A solar line list will not
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return the best results for stars of different Teff to the Sun. A line list should have lines

with a low Landé g-factor, so that there there will be some lines that aren’t affected

by Zeeman broadening. Comparing these lines with lines of a high Landé g-factor can

indicate the presence of Zeeman broadening, and thus activity, although this method

isn’t the most reliable due to the difficulties in fitting lines. It might still be useful

when it isn’t possible to check the Ca ii H and K lines for activity (if the spectral range

isn’t covered by the spectrograph), or if no rotation period from spots is available. A

knowledge of Zeeman broadening is also important as it can affect vmac measurements.

It is also imperative to have a wide range in EP, and in particular to include as many

low EP lines as possible. This is important for the excitation balance Teff , as well as

for investigating depth dependent macroturbulence.

Despite a careful selection of lines, the frustrating lack of accurate laboratory

log gf values hinders the determination of stellar parameters. It is important not to

accept the default atomic data in VALD as the best available without first looking for

alternate sources. It might be helpful to liaise with laboratory physicists to obtain

accurate log gf values. For instance, many of the highest rated lines in the NIST

database are not detectable in the spectra of solar-like stars. Similarly, some of the

most prominent lines in the stellar spectra do not have laboratory measurements.

When measuring the EWs of lines, strong lines should be fit using a least squares

method as the EW measurements will be underestimated due to broad wings. Spectra

with low S/N tend to make continuum placement difficult, which can lead to abun-

dance errors, and even with high S/N unidentified weak lines can cause problems with

normalisation and thus EW measurements.

Differential analysis to the Sun is frequently used in spectral analysis in order to

eliminate the errors associated with the oscillator strength. This is only applicable to

stars with similar parameters to the Sun, yet it is often applied to stars that are not

in the correct parameter space. In such cases, a line-by-line differential analysis won’t

be appropriate as different Teff conditions will mean that the lines no longer simply

scale with the Sun. My analysis did show that the abundances obtained from uclsyn

agreed with the differential analyses to within 0.04 dex, however given the range of

parameters of the WASP stars I would rather use the direct abundances than the

differential ones. Differential analysis can also create a problem for vmic determination,

as seen in Section 4.1.3. The choice of solar vmic used when creating the astrophysical

log gf values will ultimately bias the vmic determined for other stars. Ultimately the
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solution once again relies on better laboratory atomic data.

In Section 5.10, I discussed the difficulties involved in fitting Si lines due to their

exceptionally broad wings. This is likely a combination of the fact that Si lines are

formed deeper in the photosphere than any other elements that are commonly used

in the analysis of solar-like stars, and due to the fact that there are uncertainties in

their VDW values. Even if the lines could be fit perfectly, it is still difficult to get

an accurate Si abundance. As discussed in Section 3.4.1, there are few reliable log gf

values available for this element. This is a matter of concern in relation to planetary

studies. Si is an important element for planet formation due to its presence in silicates,

and it has been suggested that Si is enriched in planet host stars (Robinson et al.

2006; Brugamyer et al. 2011). This supposed Si enrichment needs to be looked at more

carefully.

Ideally, abundance analyses should be performed with 3D NLTE models, and it is

likely that this will become more common in the future as computing power increases.

6.1.2 Microturbulence

Microturbulence is one of the trickiest parameters to measure. I determined a relation-

ship between vmic and Teff for the WASP stars in Section 3.6.3. There is a lot of scatter

in the vmic values, but this does not appear to be partially caused by a log g dependence

as was found with vmac. Unlike vmac, vmic can not easily be fit to the spectral lines be-

cause it is a very subtle effect. It is also possible that vmic is depth dependent, meaning

that it will not be the same for every line of similar strength. Plotting logA (Fe) against

EW to determine the vmic depends on many other factors, so it is understandable that

the vmic values vary so much between different analysis methods. I also investigated

the use of Blackwell diagrams, but found no advantage to using this method as it still

relies on a knowledge of Teff .

Comparing my calibration to others showed that my values are underestimated.

Part of this can be explained by my use of the Magain (1984) method to determine

vmic, but this does not fully explain the discrepancy. However, it should be borne in

mind that there is still no definite answer as to what the vmic of the Sun is, as can be

seen in the literature values given in Table 1.1.

Perhaps with high S/N and high resolution spectra, accurate atomic data, ac-

curate damping parameters, a proper knowledge of the depth-dependent vmac, and an

external measurement of the v sin i, it might be possible to measure the vmic accurately
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from fitting the line profiles, but we are still a long way from that. Similarly, the method

of reducing the slope between logA (Fe) and EW will not improve until the atomic data

does.

6.1.3 Fixing log g to the transit or asteroseismic values

The use of a spectroscopic log g is often frowned upon in the literature when there are

values available from planet transits or from asteroseismology. Indeed, in this thesis I

highlighted a number of issues with determining the spectroscopic log g. For instance,

it is crucial to include as many Fe ii lines as possible for the ionisation balance, as using

only a handful of Fe ii lines will give the wrong log g. It is also vital to know the Na

abundance before determining log g from the Na D lines. However, the abundance of

Na with respect to Fe is abnormally high for stars with Teff < 5000 K which results in

an underestimation of log g.

It is often suggested that the transit log g should be used in spectral analysis

so that the other spectroscopic parameters are determined while keeping log g fixed.

Figure 3.15 shows that no real comparison can be made between the spectroscopic and

transit log g and from this perspective there is no reason to think that one method

should be preferred over the other. In addition, using a log g fixed from the transit can

mean that the spectral analysis is no longer self consistent. However, in this analysis

the “unconstrained” Teff from the excitation balance agreed well with the “constrained”

Teff determined while keeping the log g fixed. Although as Torres et al. (2012) point

out, fixing log g is more likely to effect the Teff for spectral fitting methods, rather than

methods based on Fe line EWs. Without having an obvious answer as to which log g

value is better, it is probably best to show both sets of parameters.

The log g can also be fixed to the asteroseismic value, which is more reliable

than the transit log g as it is not dependent on isochrone models. Unlike a comparison

between the spectroscopic and transit log g, there is a systematic difference between the

spectroscopic and asteroseismic values as shown by Bruntt et al. (2012). They find that

the spectroscopic values are higher by 0.08 dex, with the exception of a few outliers,

but are unable to offer an explanation why. It should be emphasised that this difference

between the log g values is for one spectral analysis method, and there will likely be

a variation in the discrepancy depending on the spectral analysis method used. It

should also be borne in mind that the spectra used for the Bruntt et al. (2012) analysis

were of poor quality. Spectra with higher S/N which are properly sampled might allow
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for a more thorough investigation into the differences between the spectroscopic and

asteroseismic log g values. After all, the spectroscopic log g values I determined for the

Sun and Procyon were accurate, and these were very high S/N, high quality spectra.

If the asteroseismic values are indeed an accurate fundamental value, then a de-

tailed comparison between them and the spectroscopic values might reveal problems

with the latter. Looking at θ Cyg, where my spectroscopic log g is 0.12 dex higher

than the asteroseismic value, does not currently offer any insight as to why the values

are different. The ionisation balance, Na D lines and 6439 Å Ca line all agree well and

none of them are responsible for pulling the spectroscopic value higher. Perhaps for this

particular example, the star is simply too hot to be appropriate for such an analysis.

6.2 The need for homogeneous studies

We don’t just need to compare stars using different methods, we need to understand why

those methods give different results, how we can improve the methods, and ultimately

what is the best possible way of doing it. My additional work on the HoSTS study of

WASP-13 has highlighted some of the differences between spectral analysis methods.

It is difficult to make a comprehensive comparison to sme as this is based on

fitting sections of the spectrum by varying the parameters. However the comparison

with Procyon in Section 4.2 does show good agreement of the abundances between sme

and uclsyn. For WASP-13, it does appear that fixing the vmic has a minimal effect on

the parameters determined by sme, while fixing log g can have a notable effect on the

Teff . This is the opposite to the Fe line based methods, where vmic needs to be left as a

variable.

Theoretically, the three analyses for WASP-13 based on the EWs of Fe lines should

return the same result. In reality, there are some substantial differences between these

results. The 70 K difference in Teff and the 0.33 km s−1 difference in vmic for Method

D can both be explained by the use of different line lists. This was explored in detail,

and revealed that the increased Teff of Method D is due to numerous blended lines in

the list and that the increased vmic is due to the line list being created differentially to

the Sun. The low log g of Method C was also explained by the use of only five Fe ii

lines for the ionisation balance. This one again highlights the importance of carefully

selecting a line list and also that we should be aware of how these different lists can

influence the parameters obtained. Each person or group involved in spectral analysis
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will have their own preferred line list, and while it would be impossible to choose one

line list to suit everyone’s needs, it is important to realise just how much the line list is

responsible for differences between methods.

This work has also indicated that there might be some differences between the

codes uclsyn and MOOG which are creating significant differences in abundances.

This deserves further investigation, as well as comparison with other codes that are

used in spectral analysis.

Many studies use different spectrographs, without taking the potential differences

into account. I found a difference of 0.10 ± 0.05 dex between the HARPS spectral anal-

yses and the previous analyses, which were mostly performed using CORALIE spectra.

The CORALIE spectra typically have lower S/N than their HARPS counterparts, so

that the wings of the lines become lost in the noise and the abundances are underesti-

mated. Even for spectra of similar S/N, there is still a small systematic difference which

may be due to scattered light in CORALIE. These differences between spectrographs

need to be studied in more detail, and to include other high resolution spectrographs

frequently used for the analysis of solar-like stars so that corrections can be made for

the spectrograph used.

Figure 4.7 showing the θ Cyg results is an eye-opener as to the discrepancies that

still exist between different methods for the one star. While this was a particularly

difficult star to analyse with the traditional Fe line method due to its high Teff , this

does not explain why such large differences exist when spectrum fitting methods are

also included. It is clear that more work is needed in order to resolve the discrepancies

between different spectral analysis methods, and ultimately determine reliable stellar

parameters.

6.3 The study of macroturbulence

In Chapter 5, I used v sin iastero values to determine the vmac for a number of Kepler

stars, and ultimately a relationship between vmac, Teff and log g. A statistical compar-

ison between my vmac calibration and those of Gray (1984a), Valenti & Fischer (2005)

and Bruntt et al. (2010a) show that while mine agrees best with the observed data,

the other calibrations also offer reasonable agreement. However, as there is obviously

a log g dependence in vmac, my calibration will ultimately return more accurate values

compared to the others. The Gray (1984a) calibration also proves to be a good cali-
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bration, although it does not include a log g component. The Valenti & Fischer (2005)

calibration should only be used to obtain the upper limit on vmac for stars with Teff <

5800 K, and the Bruntt et al. (2010a) calibration needs to be corrected by a factor of√
2 before it can be used reliably. There is still room for improvement in my calibration

if better spectra are obtained, and it will be interesting to see just how prominent the

log g dependence actually is.

I used this calibration to remeasure the v sin i for the WASP stars so that there

are now more accurate and consistent v sin i values available for these stars, which is

important when the spectroscopic v sin i prior is needed for the RM analysis. I also

highlighted how comparing these new spectroscopic v sin i values with those obtained

from the RM effect (without a prior) can be used to indicate if Zeeman broadening or

differential rotation might be present.

6.3.1 What could be achieved with better spectra

The results presented in Chapter 5 on vmac are based on spectra that are barely ap-

propriate for a detailed analysis of line profile shapes, particularly as the spectra are

undersampled. Ideally spectra of much higher quality, for example those that could

be obtained from HARPS-N, are needed for these stars. Such spectra would have the

resolution and S/N high enough to study the line profiles in great detail. Errors in

continuum placement dominate the current vmac errors but with a S/N & 200, the con-

tinuum errors will diminish and it will be possible to get much greater precision. This

will be particularly helpful for the stars KIC 2837475 and 6508366, which as mentioned

in Section 5.6 have curiously high values of vmac. As both stars also have relatively

high v sin i values, there are few lines that can be used and the vmac signal is starting

to become washed out by the rotational broadening. With better spectra, it would be

possible to verify if the vmac is indeed this high and in turn investigate the implications

of this.

For high resolution (R >100,000), high S/N spectra, Fourier methods can also

be used to disentangle vmac and v sin i (Gray 2008). The vmac relationship determined

here is in reasonable agreement with that of Gray (1984a), which uses Fourier methods

to determine a relationship between vmac and Teff . Asteroseismology can only be used

to obtain reliable v sin i values in the range of ∼5100 < Teff < 6700 K. With higher

resolution spectra, it might be possible to confirm that the Fourier method produces

vmac values in agreement with the values obtained using the asteroseismic v sin i values
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for this sample of stars. This would allow for the vmac calibration to be extended to

higher and lower temperatures, which would be of greater use to those requiring v sin i

values for the RM studies. Fourier methods can also be used to determine differential

rotation (Reiners & Schmitt 2002), which could help to understand the stars that appear

to have v sin iastero too high for the spectra, as discussed in Section 5.6.1.

Another advantage of higher quality spectra would be the ability to thoroughly

investigate depth dependent vmac in stars other than the Sun. Section 5.9 discusses

how vmac varies with depth in the Sun, and Figure 5.22 suggests that there could be

different vmac relationship with Teff for each line, depending on its properties. A depth

dependant vmac calibration would enable incredibly precise measurements of v sin i val-

ues for particular lines, as well as revealing how the velocity fields change with height

in stars of different spectral type.

It may also be possible to measure line shifts and bisectors for higher quality

spectra, which would compliment the vmac measurements and allow for a thorough

analysis of the velocity fields.

6.3.2 Extending the macroturbulence work

Saar & Osten (1997) found evidence that active stars have enhanced vmac and it would

be interesting to investigate this further. Unfortunately, only five stars in the sample

used in this work show evidence of activity but it may be possible to explore this if the

sample is ever extended.

Figure 5.12 shows the upper limit values of three giants from Deheuvels et al.

(2014), which have a higher vmac than the dwarf star equivalents, as expected. Astero-

seismic data is much more plentiful for red giants than it is for solar-like stars. While it

is more difficult to determine δνs sin i for these stars due to the mixed modes, it might

be possible to extend the vmac calibration for stars with log g between 3.0 and 4.0 dex

if the δνs sin i measurements became available. Even an upper limit for more giants

would allow for an investigation of velocity fields in these stars.

It is also possible to study granulation via asteroseismology. Granulation creates

a background signal at low frequencies and this signal can be modelled to yield the

timescale and amplitude of the granulation (Harvey 1985). Mathur et al. (2011) anal-

ysed the granulation signals for 1000 red giants from Kepler data where they showed

that the characteristic timescale of granulation is proportional to
√
Teff/g. When the

granulation signals have been studied for the dwarf stars used in this thesis, it will be
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interesting to see if this granulation timescale follows the same trend with Teff and log g

as vmac does.

Very few stars have accurate v sin i measurements. Stellar rotation is frequently

determined from the rotation period measurements, but this is dependent on the lati-

tude of the spots. The stars here represent the best available for asteroseismic analysis

of solar-like stars, and the v sin iastero values have opened up a new window in the study

of stellar velocity fields, with room for more analysis in the years to come.
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A Line list

Table A.1: Combined line lists. “Star” refers to the star the line was selected from; P
= Procyon, S = Sun, W = WASP-29. The log gf source is given if a log gf value was
selected outside of VALD.

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Al 1 5557.063 3.143 -2.110 P
Al 1 6698.673 3.143 -1.647 S
Ba 2 6496.897 0.604 -0.377 S
C 1 4775.897 7.488 -2.163 S
C 1 5052.167 7.685 -1.648 S
C 1 5053.515 8.537 -2.980 P
C 1 5800.602 7.946 -2.338 P
C 1 6014.830 8.643 -1.585 P
C 1 6587.610 8.537 -1.596 S
Ca 1 4578.551 2.521 -0.697 S
Ca 1 5260.387 2.521 -1.719 S, W
Ca 1 5512.979 2.933 -0.464 S
Ca 1 5715.821 2.709 -3.256 W
Ca 1 5857.451 2.933 0.240 S
Ca 1 5867.563 2.933 -1.570 S, W
Ca 1 6097.266 2.521 -2.754 W
Ca 1 6162.173 1.899 -0.090 S
Ca 1 6166.439 2.521 -1.142 S, W
Ca 1 6424.585 4.443 -1.242 W
Ca 1 6449.806 2.521 -0.502 P
Ca 1 6455.598 2.523 -1.557 S, W
Ca 1 6471.662 2.526 -0.686 W
Ca 1 6493.781 2.521 -0.109 S, W
Ca 1 6499.650 2.521 -0.818 S, W
Ca 1 6654.973 4.735 -0.755 W
Ca 1 6709.893 2.932 -3.165 W
Ca 1 6798.479 2.709 -2.320 W
Ce 2 4418.780 0.864 0.270 S Lawler et al. (2009)
Ce 2 4511.641 1.212 -0.870 S
Ce 2 4544.953 0.417 -0.790 S Lawler et al. (2009)
Ce 2 4550.293 1.123 -0.300 S
Ce 2 4562.359 0.478 0.210 S Lawler et al. (2009)
Ce 2 4572.278 0.684 0.220 S Lawler et al. (2009)
Ce 2 4591.116 1.107 -0.410 S
Ce 2 4612.965 1.048 -1.060 S
Ce 2 4694.871 0.808 -1.110 S Lawler et al. (2009)
Ce 2 4717.881 0.701 -1.140 S Lawler et al. (2009)
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Ce 2 4725.069 0.521 -1.440 S
Ce 2 4773.941 0.924 -0.390 S Lawler et al. (2009)
Co 1 4594.626 3.363 -0.376 W Lobel (2008)
Co 1 5156.356 4.058 0.037 S
Co 1 5212.691 3.514 -0.110 S
Co 1 5230.202 1.740 -1.840 S
Co 1 5280.629 3.629 -0.030 S
Co 1 5342.695 4.021 0.690 S
Co 1 5359.192 4.149 0.340 S, W
Co 1 5381.768 4.240 -0.032 W
Co 1 5483.344 1.710 -1.490 S, W
Co 1 5530.774 1.710 -2.060 S
Co 1 5647.234 2.280 -1.560 S, W
Co 1 5915.552 2.137 -2.000 W
Co 1 6000.663 3.622 -0.990 W
Co 1 6005.025 1.710 -3.320 W
Co 1 6093.143 1.740 -2.440 W
Co 1 6116.996 1.785 -2.490 W
Co 1 6444.675 3.629 -1.410 W
Co 1 6454.990 3.632 -0.250 S
Co 1 6722.759 4.504 -0.808 W
Co 1 6814.942 1.956 -1.900 S
Cr 2 4558.650 4.073 -0.449 W
Cr 1 4576.801 3.079 -1.817 W
Cr 1 4578.298 3.850 -0.860 W
Cr 2 4588.199 4.071 -0.627 S, W
Cr 2 4592.049 4.074 -1.221 S, W
Cr 1 4614.728 3.369 -1.609 W
Cr 1 4641.961 3.850 -0.670 W
Cr 1 4676.358 3.556 -1.589 W
Cr 1 4695.149 2.983 -1.180 W
Cr 1 4700.597 2.710 -1.255 W
Cr 1 4801.047 3.122 -0.131 W
Cr 1 5068.280 1.004 -3.127 P
Cr 1 5072.917 0.941 -2.734 S
Cr 1 5091.875 1.004 -3.039 S
Cr 1 5093.423 1.030 -4.081 W
Cr 1 5123.450 1.030 -2.960 S
Cr 1 5214.140 3.369 -0.740 S, W
Cr 1 5220.912 3.385 -1.034 W
Cr 2 5232.496 4.071 -2.093 P
Cr 1 5238.964 2.709 -1.305 S, W
Cr 1 5241.453 2.710 -2.080 S
Cr 2 5246.768 3.714 -2.466 S
Cr 2 5279.876 4.073 -2.100 S, W
Cr 1 5293.396 3.375 -1.360 W
Cr 1 5296.691 0.983 -1.400 S
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Cr 1 5344.789 3.449 -1.060 W
Cr 1 5348.312 1.004 -1.290 S
Cr 2 5369.358 3.871 -3.045 P
Cr 1 5628.621 3.422 -0.772 S, W
Cr 1 5642.370 3.857 -0.830 W
Cr 1 5648.230 3.826 -1.000 W
Cr 1 5649.385 3.839 -1.160 W
Cr 2 5678.390 6.484 -1.238 P
Cr 1 5719.810 3.013 -1.660 W
Cr 1 5736.605 3.556 -1.442 W
Cr 1 5738.541 3.551 -1.468 W
Cr 1 5772.678 3.556 -1.702 W
Cr 1 5785.024 3.321 -0.380 S
Cr 1 5787.037 3.013 -1.791 W
Cr 1 5788.394 3.013 -1.834 W
Cr 1 5792.184 0.961 -4.533 W
Cr 1 5798.496 1.030 -3.939 W
Cr 1 5824.085 3.111 -2.448 W
Cr 1 5959.171 4.449 -1.180 W
Cr 1 5982.880 3.168 -2.021 W
Cr 1 6047.672 3.850 -1.811 W
Cr 1 6135.734 4.824 -1.157 P
Cr 1 6330.093 0.941 -2.920 W
Cr 1 6501.194 0.983 -4.295 W
Cr 1 6537.929 1.004 -4.069 W
Cr 1 6612.158 4.159 -1.251 W
Cr 1 6630.005 1.030 -3.560 W
Cr 1 6636.317 4.144 -1.715 W
Cr 1 6729.770 4.389 -0.713 W
Cu 1 5105.537 1.389 -1.516 S
Cu 1 5218.197 3.817 0.476 S
Cu 1 4507.408 5.575 -0.340 S
Dy 2 4829.690 2.589 -0.018 S
Dy 2 4923.167 0.103 -2.384 S
Dy 2 5272.249 0.538 -2.143 S
Fe 1 4510.821 3.603 -2.097 W
Fe 1 4546.467 4.186 -2.510 S
Fe 2 4620.521 2.828 -3.210 S Meléndez & Barbuy (2009)
Fe 2 4656.981 2.891 -3.600 S, W Meléndez & Barbuy (2009)
Fe 2 4670.182 2.583 -4.090 S
Fe 2 4720.149 3.197 -4.480 S
Fe 2 4825.736 2.635 -4.829 S, W Kurucz (1988)
Fe 2 4833.197 2.657 -4.640 S, W
Fe 2 4923.927 2.891 -1.260 W Meléndez & Barbuy (2009)
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Fe 2 5000.743 2.778 -4.578 S
Fe 1 5016.476 4.256 -1.690 S
Fe 1 5029.621 3.415 -2.050 S
Fe 1 5044.210 2.851 -2.038 S
Fe 1 5058.496 3.642 -2.830 W
Fe 1 5083.338 0.958 -2.958 S
Fe 1 5088.188 4.154 -1.780 P
Fe 1 5119.901 3.882 -3.050 W
Fe 1 5124.602 3.301 -2.960 S
Fe 1 5127.681 0.052 -6.125 S
Fe 2 5132.669 2.807 -4.094 S, W
Fe 1 5137.395 4.178 -0.400 S
Fe 1 5141.739 2.424 -2.240 S Fuhr & Wiese (2006)
Fe 2 5197.577 3.230 -2.220 W Meléndez & Barbuy (2009)
Fe 1 5213.805 3.943 -2.760 S
Fe 1 5217.389 3.211 -1.070 S Fuhr & Wiese (2006)
Fe 1 5225.525 0.110 -4.789 S
Fe 1 5236.205 4.186 -1.497 S
Fe 1 5236.381 4.312 -2.430 W
Fe 1 5242.491 3.634 -0.967 S, W
Fe 1 5247.049 0.087 -4.946 W
Fe 1 5253.023 2.279 -3.940 S
Fe 1 5253.461 3.283 -1.573 S
Fe 2 5264.812 3.230 -3.130 S Meléndez & Barbuy (2009)
Fe 1 5365.396 3.573 -1.020 S
Fe 1 5379.574 3.695 -1.514 W
Fe 1 5405.340 4.386 -1.390 P
Fe 2 5414.073 3.221 -3.580 S, W Meléndez & Barbuy (2009)
Fe 1 5422.145 4.320 -2.260 P
Fe 2 5425.257 3.199 -3.220 S Meléndez & Barbuy (2009)
Fe 1 5434.522 1.011 -2.122 P
Fe 1 5436.207 5.012 -4.272 P
Fe 1 5445.042 4.386 -0.020 S
Fe 1 5464.278 4.143 -1.402 W
Fe 1 5483.098 4.154 -1.580 W
Fe 1 5491.840 4.186 -2.188 W
Fe 2 5525.125 3.267 -3.970 S Meléndez & Barbuy (2009)
Fe 1 5538.517 4.218 -3.244 P
Fe 1 5543.937 4.218 -1.140 W
Fe 1 5546.500 4.371 -1.310 S
Fe 1 5560.207 4.434 -1.190 S, W
Fe 1 5568.072 4.154 -2.807 W
Fe 1 5576.090 3.430 -1.000 S
Fe 1 5577.031 5.033 -1.550 S
Fe 1 5579.335 4.231 -2.400 P
Fe 1 5587.573 4.143 -1.850 S
Fe 2 5591.368 3.267 -4.590 P
Fe 1 5592.646 4.294 -2.240 W Kurucz (1988)
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Fe 1 5609.962 3.640 -3.240 W
Fe 1 5611.361 3.635 -2.990 W
Fe 1 5622.947 3.640 -3.096 W
Fe 1 5639.323 4.956 -2.733 W Kurucz (1988)
Fe 1 5651.470 4.473 -2.000 S, W
Fe 1 5672.267 4.584 -2.800 W
Fe 1 5673.377 3.695 -3.674 W
Fe 1 5679.025 4.652 -0.920 S, W
Fe 1 5705.466 4.301 -1.355 P
Fe 1 5715.470 4.154 -2.980 W
Fe 1 5724.454 4.284 -2.640 S, W
Fe 2 5725.963 3.425 -4.820 P
Fe 1 5731.782 4.256 -1.300 P
Fe 1 5732.275 4.991 -1.560 W
Fe 1 5741.846 4.256 -1.670 S Fuhr & Wiese (2006)
Fe 1 5759.261 4.652 -2.070 W
Fe 1 5769.307 4.608 -2.257 W
Fe 1 5776.225 3.695 -3.688 W Lobel (2008)
Fe 1 5791.528 4.584 -1.876 W
Fe 1 5796.433 4.607 -2.482 W
Fe 1 5811.917 4.143 -2.430 W
Fe 2 5813.677 5.571 -2.510 S Meléndez & Barbuy (2009)
Fe 1 5844.917 4.154 -2.940 W
Fe 1 5845.266 5.033 -1.820 W
Fe 1 5849.682 3.695 -2.990 W
Fe 1 5853.149 1.485 -5.280 W
Fe 1 5856.083 4.294 -1.328 S
Fe 1 5861.107 4.283 -2.450 W
Fe 1 5871.304 4.154 -2.666 W
Fe 1 5933.792 4.638 -2.230 W
Fe 1 5943.577 2.198 -4.178 W
Fe 1 5955.102 4.584 -3.021 P
Fe 1 5956.692 0.859 -4.605 W
Fe 1 5961.919 4.220 -3.160 W
Fe 1 5969.559 4.283 -2.730 W
Fe 1 5978.130 4.638 -3.053 W Kurucz (1988)
Fe 1 5984.814 4.733 -0.196 P
Fe 2 5991.376 3.153 -3.647 S
Fe 1 6008.554 3.884 -0.986 P
Fe 1 6012.206 2.223 -4.038 W
Fe 1 6027.050 4.076 -1.089 S, W
Fe 1 6027.959 4.608 -3.178 W Kurucz (1988)
Fe 1 6034.033 4.312 -2.420 W
Fe 2 6045.465 6.209 -2.549 P
Fe 1 6050.996 2.559 -4.965 W Lobel (2008)
Fe 1 6054.072 4.371 -2.310 W
Fe 1 6055.992 4.733 -0.460 S, W
Fe 1 6060.621 1.557 -5.524 W Kurucz (1988)
Fe 1 6065.482 2.608 -1.530 S
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Fe 1 6078.999 4.652 -1.120 S, W
Fe 1 6082.708 2.223 -3.573 W
Fe 2 6084.111 3.199 -3.881 S, W
Fe 1 6089.580 4.580 -3.112 W Kurucz (1988)
Fe 1 6098.280 4.559 -1.880 W
Fe 1 6105.152 4.549 -2.050 P
Fe 2 6113.322 3.221 -4.230 S
Fe 1 6139.648 2.588 -4.500 W
Fe 1 6145.408 3.368 -3.700 W
Fe 1 6151.617 2.176 -3.299 P
Fe 1 6173.341 2.223 -2.880 S
Fe 2 6179.384 5.569 -2.797 S
Fe 1 6187.398 2.832 -4.148 W
Fe 1 6199.507 2.559 -4.430 W
Fe 1 6200.319 2.609 -2.437 P
Fe 1 6209.713 3.960 -3.249 W
Fe 1 6221.670 0.859 -6.613 W
Fe 1 6226.729 3.884 -2.220 W
Fe 2 6239.953 3.889 -3.573 S, W
Fe 2 6247.557 3.892 -2.435 S, W
Fe 1 6252.554 2.404 -1.687 S, W
Fe 1 6265.131 2.176 -2.550 S
Fe 1 6271.276 3.332 -2.703 W
Fe 1 6290.545 2.588 -4.330 W
Fe 1 6335.328 2.198 -2.177 S
Fe 1 6336.823 3.686 -0.856 S
Fe 1 6338.896 4.795 -1.060 W
Fe 1 6339.948 3.397 -4.431 W Kurucz (1988)
Fe 1 6351.270 4.312 -3.366 W
Fe 2 6369.462 2.891 -4.110 S, W Meléndez & Barbuy (2009)
Fe 2 6385.451 5.553 -2.715 S
Fe 1 6392.538 2.279 -4.030 W
Fe 2 6432.680 2.891 -3.570 S Meléndez & Barbuy (2009)
Fe 2 6442.955 5.549 -2.440 S
Fe 2 6446.410 6.223 -2.082 S
Fe 2 6456.383 3.903 -2.185 S, W
Fe 1 6464.661 0.958 -5.801 W Lobel (2008)
Fe 2 6482.204 6.219 -1.853 S
Fe 1 6483.943 1.485 -5.130 W Lobel (2008)
Fe 2 6491.246 5.585 -2.899 S
Fe 2 6493.035 5.585 -2.695 P
Fe 2 6506.333 5.589 -2.680 S
Fe 1 6574.225 0.990 -5.023 W
Fe 1 6591.325 4.593 -2.070 W
Fe 1 6593.871 2.433 -2.422 S
Fe 1 6653.850 4.154 -2.520 W
Fe 1 6699.162 4.593 -2.101 W
Fe 1 6725.353 4.103 -2.300 P
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Fe 1 6733.151 4.638 -1.580 P
Fe 1 6750.150 2.424 -2.621 S
Fe 1 6801.864 1.608 -5.043 W Kurucz (1988)
Fe 1 6810.257 4.607 -0.986 P
Fe 1 6837.016 4.593 -1.687 W
Fe 1 6857.243 4.076 -2.150 W
Gd 2 5092.249 1.727 -0.230 S
Gd 2 5098.366 1.621 -0.630 S
Gd 2 5140.830 1.575 -0.840 S
La 2 4662.498 0.000 -1.240 S
La 2 4748.726 0.927 -0.540 S
La 2 5122.988 0.321 -0.850 S
La 2 6390.478 0.321 -1.410 S
Mg 1 4571.096 0.000 -5.623 S Fuhr & Wiese (2006)
Mg 1 4730.029 4.346 -2.347 S Fuhr & Wiese (2006)
Mg 1 5528.405 4.346 -0.498 S Fuhr & Wiese (2006)
Mg 1 5711.088 4.346 -1.724 S Fuhr & Wiese (2006)
Mg 1 5785.313 5.108 -2.110 S
Mg 1 6318.717 5.108 -2.103 S Fuhr & Wiese (2006)
Mg 1 6319.237 5.108 -2.324 S Fuhr & Wiese (2006)
Mn 1 4671.672 2.888 -1.668 W
Mn 1 4739.087 2.941 -0.490 S
Mn 1 4761.512 2.953 -0.138 S
Mn 1 4765.846 2.941 -0.080 S
Mn 1 4969.133 4.726 -1.205 W
Mn 1 5004.892 2.920 -1.630 S, W
Mn 1 5117.934 3.135 -1.140 W
Mn 1 5255.326 3.133 -0.763 S
Mn 1 5288.862 5.396 -0.577 W
Mn 1 5377.637 3.844 -0.109 S
Mn 1 5388.544 3.373 -1.690 S
Mn 1 5399.499 3.853 -0.287 S
Mn 1 5432.546 0.000 -3.795 S
Mn 1 5470.637 2.164 -1.702 S
Mn 1 5516.774 2.178 -1.847 S
Mn 1 5551.977 5.491 0.607 W
Mn 1 6265.612 4.233 -1.317 W
Mn 1 6391.200 4.268 -1.546 W
Mn 1 6440.971 3.772 -1.238 S, W
Mn 1 6519.374 3.772 -1.958 W
Na 1 4751.822 2.104 -2.090 W
Na 1 5148.839 2.104 -2.060 W
Na 1 5682.633 2.104 -0.700 W
Na 1 6154.226 2.102 -1.560 S
Na 1 6160.747 2.104 -1.260 S
Nd 2 4567.605 0.205 -1.310 S
Nd 2 4645.760 0.559 -0.760 S
Nd 2 4914.382 0.380 -0.700 S
Nd 2 4998.541 0.471 -1.166 S
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Nd 2 5130.586 1.304 0.450 S
Nd 2 5132.328 0.559 -0.710 S
Nd 2 5255.506 0.205 -0.670 S
Nd 2 5276.869 0.859 -0.668 P
Nd 2 5293.163 0.823 0.100 S
Nd 2 5485.696 1.264 -0.120 P
Ni 1 4567.407 3.453 -2.410 W
Ni 1 4705.916 3.658 -1.387 W
Ni 1 4829.016 3.542 -0.330 S
Ni 1 5010.934 3.635 -0.870 S, W
Ni 2 5066.328 6.329 -1.799 P
Ni 1 5079.955 1.826 -2.750 S
Ni 1 5082.339 3.658 -0.540 S
Ni 1 5084.089 3.679 0.030 S
Ni 1 5088.532 3.847 -0.980 S
Ni 1 5088.953 3.679 -1.340 P
Ni 1 5094.406 3.833 -1.080 S
Ni 1 5115.389 3.834 -0.110 P
Ni 1 5176.559 3.898 -0.440 S
Ni 1 5347.705 3.796 -2.040 W
Ni 1 5392.327 4.154 -1.320 S
Ni 1 5494.876 4.105 -1.160 S
Ni 1 5537.098 3.847 -2.200 W
Ni 1 5578.711 1.676 -2.640 W
Ni 1 5589.357 3.898 -1.140 P
Ni 1 5593.733 3.898 -0.840 S
Ni 1 5625.312 4.089 -0.700 S
Ni 1 5641.880 4.105 -1.070 W
Ni 1 5796.078 1.951 -3.942 S, W
Ni 1 5805.213 4.167 -0.640 W
Ni 1 5846.986 1.676 -3.210 S
Ni 1 6007.306 1.676 -3.330 W
Ni 1 6025.751 4.236 -1.760 W
Ni 1 6053.679 4.236 -1.070 S
Ni 1 6086.276 4.266 -0.530 W
Ni 1 6108.107 1.676 -2.450 S
Ni 1 6111.066 4.088 -0.870 S, W
Ni 1 6119.749 4.266 -1.350 W
Ni 1 6130.130 4.266 -0.986 S, W
Ni 1 6176.807 4.088 -0.260 W
Ni 1 6191.171 1.676 -2.353 S
Ni 1 6204.600 4.088 -1.100 S
Ni 1 6223.980 4.105 -0.910 P
Ni 1 6322.164 4.154 -1.170 W
Ni 1 6360.806 4.167 -1.790 P
Ni 1 6370.341 3.542 -1.940 W
Ni 1 6378.247 4.154 -0.830 S
Ni 1 6414.581 4.154 -1.180 S
Ni 1 6532.871 1.935 -3.390 S, W
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Ni 1 6598.593 4.236 -0.980 S
Ni 1 6643.629 1.676 -2.300 P
Ni 1 6767.768 1.826 -1.888 W
Ni 1 6772.313 3.658 -0.980 S
Ni 1 4512.986 3.706 -1.470 W
Pr 2 5259.728 0.633 -0.038 S
S 1 4695.443 6.525 -1.920 S
Sc 1 4922.827 1.987 0.418 W
Sc 1 5081.574 1.448 0.469 S
Sc 2 5239.813 1.455 -0.765 S
Sc 1 5356.091 1.865 0.168 W
Sc 1 5484.626 1.851 0.148 S
Sc 2 5526.790 1.768 0.024 W
Sc 2 5552.224 1.455 -2.119 S
Sc 2 5667.149 1.500 -1.309 S
Sc 2 5684.202 1.507 -1.074 S
Sc 1 5686.847 1.440 0.376 S
Sc 1 5724.107 1.433 -0.661 W
Sc 1 6193.666 0.000 -2.760 W
Sc 1 6239.762 0.000 -1.780 W
Sc 2 6245.637 1.507 -1.030 S, W
Sc 1 6258.943 0.021 -1.800 W
Sc 2 6300.698 1.507 -1.887 S, W
Sc 1 6306.020 0.021 -2.150 W
Sc 2 6309.920 1.497 -1.630 W
Sc 2 6320.851 1.500 -1.819 S, W
Sc 1 6413.324 0.021 -2.310 W
Si 1 5258.842 5.616 -2.100 P Lobel (2008)
Si 1 5413.099 5.616 -2.750 S Lobel (2008)
Si 1 5488.983 5.614 -2.420 S Lobel (2008)
Si 1 5517.533 5.082 -2.611 S
Si 1 5621.608 5.082 -3.140 S
Si 1 5645.613 4.930 -2.100 S Brugamyer et al. (2011)
Si 1 5666.677 5.616 -1.650 P
Si 1 5684.484 4.954 -1.620 S Brugamyer et al. (2011)
Si 1 5701.104 4.930 -1.581 S
Si 1 5772.146 5.082 -1.710 S Brugamyer et al. (2011)
Si 1 5873.764 4.930 -2.910 S Lobel (2008)
Si 1 6029.869 5.984 -1.550 P
Si 1 6142.483 5.619 -0.920 S Shi et al. (2008)
Si 1 6155.134 5.619 -0.400 S Shi et al. (2008)
Si 1 6194.416 5.871 -1.540 P
Si 1 6195.433 5.871 -1.540 S
Si 1 6237.319 5.614 -0.530 S Shi et al. (2008)
Si 1 6308.825 5.863 -1.792 P
Si 1 6463.652 5.954 -3.483 P
Si 1 6583.707 5.954 -1.740 P
Si 1 6721.848 5.863 -1.516 S
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Si 1 6741.628 5.984 -1.750 P Shi et al. (2008)
Si 1 6800.596 5.694 -1.967 P
Sm 2 4318.927 0.277 -0.268 S
Sm 2 4566.202 0.333 -0.590 S
Sm 2 4577.688 0.248 -0.650 S
Sm 2 4791.580 0.104 -1.440 S
Sm 2 5100.258 1.493 -0.490 S
Sr 1 5450.834 2.259 -0.340 S
Ti 1 4562.625 0.021 -2.656 W
Ti 2 4583.409 1.165 -2.870 S, W
Ti 1 4747.666 2.249 -0.820 W
Ti 1 4758.120 2.249 0.425 S
Ti 2 4798.521 1.080 -2.670 S
Ti 1 4811.032 1.887 -0.805 W Lobel (2008)
Ti 2 4911.193 3.124 -0.650 S
Ti 1 4926.147 0.818 -2.170 W
Ti 1 4928.887 0.836 -3.547 W
Ti 1 4963.760 3.583 -0.815 W
Ti 1 5001.009 1.997 -0.034 S
Ti 2 5005.157 1.566 -2.730 S
Ti 1 5016.162 0.848 -0.574 S
Ti 1 5062.112 2.160 -0.464 S
Ti 1 5064.081 2.695 -0.484 S
Ti 2 5069.090 3.124 -1.540 P
Ti 1 5071.472 1.460 -1.063 P
Ti 1 5113.448 1.443 -0.782 S
Ti 2 5129.152 1.892 -1.300 S
Ti 1 5152.185 0.021 -2.024 S
Ti 2 5185.913 1.893 -1.370 P
Ti 2 5211.536 2.590 -1.356 S, W Kurucz (1994)
Ti 1 5231.021 2.239 -1.108 W
Ti 1 5247.291 2.103 -0.727 S
Ti 1 5260.001 2.738 -0.180 W
Ti 1 5295.780 1.067 -1.633 S
Ti 1 5351.080 2.778 0.010 W
Ti 2 5396.226 1.584 -3.020 S
Ti 2 5418.751 1.582 -2.110 S, W
Ti 1 5453.643 1.443 -1.610 W
Ti 1 5459.682 1.053 -3.513 W
Ti 1 5465.775 1.067 -3.117 W
Ti 1 5471.197 1.443 -1.400 S, W
Ti 1 5490.150 1.460 -0.933 S
Ti 2 5490.689 1.566 -2.650 S, W Kurucz (1994)
Ti 2 5492.862 1.582 -3.310 S
Ti 1 5514.537 1.443 -0.413 S
Ti 1 5648.567 2.495 -0.260 S
Ti 1 5662.161 2.318 -0.109 S
Ti 1 5679.937 2.472 -0.570 S
Ti 1 5689.488 2.297 -0.360 W
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

Ti 1 5702.693 2.292 -0.590 W
Ti 1 5720.478 2.292 -0.900 W
Ti 1 5739.464 2.249 -0.600 S, W
Ti 1 5741.201 2.506 -1.290 W Lobel (2008)
Ti 1 5756.434 2.256 -2.025 W
Ti 1 5766.330 3.294 0.389 S, W
Ti 1 5813.944 1.067 -2.200 W Lobel (2008)
Ti 1 5832.475 3.336 -0.967 W
Ti 1 5866.452 1.067 -0.840 S
Ti 1 5880.273 1.053 -2.045 W
Ti 1 5899.297 1.053 -1.154 S
Ti 1 5903.317 1.067 -2.145 W
Ti 1 5913.709 0.021 -4.198 W
Ti 1 5918.539 1.067 -1.460 W
Ti 1 5922.110 1.046 -1.466 W
Ti 1 5937.812 1.067 -1.890 W
Ti 1 5944.650 0.000 -4.059 W
Ti 1 5953.162 1.887 -0.329 S, W
Ti 1 5982.556 2.408 -1.843 W
Ti 1 5999.663 2.236 -1.479 W
Ti 1 6018.636 1.053 -2.142 W
Ti 1 6031.677 0.048 -4.199 W
Ti 1 6058.730 1.067 -1.771 W
Ti 1 6064.629 1.046 -1.944 S, W
Ti 1 6069.272 1.879 -2.325 W
Ti 1 6091.174 2.267 -0.423 S, W
Ti 1 6126.217 1.067 -1.425 W
Ti 1 6174.778 2.662 -1.605 W
Ti 1 6205.248 1.460 -4.387 W
Ti 2 6219.940 2.061 -2.819 W
Ti 1 6258.104 1.443 -0.355 S
Ti 1 6266.033 1.749 -2.501 W
Ti 1 6273.386 0.021 -4.248 W
Ti 1 6303.757 1.443 -1.566 S, W
Ti 1 6325.179 0.021 -3.972 W
Ti 1 6419.098 2.175 -1.656 W
Ti 1 6497.684 1.443 -2.085 W
Ti 2 6513.045 4.002 -1.310 P
Ti 2 6559.588 2.048 -2.019 W
Ti 1 6599.133 0.900 -2.085 W
Ti 2 6606.949 2.061 -2.790 W
Ti 1 6689.313 2.250 -1.988 W
Ti 1 6716.707 2.487 -1.409 W
Ti 1 6745.550 2.236 -1.752 W Kurucz (1988)
V 1 4609.641 1.376 -1.956 W
V 1 4635.177 0.069 -1.920 W
V 1 4746.616 2.029 -0.590 W
V 1 4784.467 0.017 -2.670 W
V 1 4832.426 0.000 -1.505 S
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Table A.1: Line list (continued)

El. Ion λ EP log gf Star log gf ref.
(Å) (eV)

V 1 5290.286 1.893 -1.904 W
V 1 5504.885 1.711 -0.882 W
V 1 5592.972 0.040 -3.230 W
V 1 5604.199 1.854 -1.591 W
V 1 5646.108 1.051 -1.190 S, W
V 1 5656.881 2.332 -1.064 W
V 1 5657.436 1.064 -1.020 S, W
V 1 5668.361 1.081 -1.030 S, W
V 1 5670.854 1.081 -0.420 S
V 1 5725.641 2.365 0.010 W
V 1 5727.048 1.081 -0.012 S
V 1 5737.059 1.064 -0.740 S, W
V 1 5783.502 2.708 -0.377 W
V 1 5807.085 3.087 0.293 W
V 1 5817.490 3.099 0.434 W
V 2 5928.862 2.522 -1.598 S
V 1 6002.295 1.218 -1.780 W
V 1 6039.722 1.064 -0.650 S, W
V 1 6090.214 1.081 -0.062 S
V 1 6128.328 1.051 -2.300 W
V 1 6135.060 1.350 -1.790 W
V 1 6135.361 1.051 -0.746 S, W
V 1 6224.529 0.287 -2.010 W
V 1 6243.105 0.301 -0.980 S
V 1 6251.827 0.287 -1.340 S
V 1 6266.307 0.275 -2.290 W
V 1 6274.649 0.267 -1.670 S, W
V 1 6285.150 0.275 -1.510 S, W
V 1 6326.840 1.868 -0.810 W
V 1 6349.475 1.854 -0.890 W
V 1 6531.415 1.218 -0.840 W
W 1 5015.309 0.599 -1.860 S
Y 2 4883.684 1.084 0.070 S
Y 2 5087.416 1.084 -0.170 S, W
Y 2 5119.112 0.992 -1.360 S
Y 2 5205.724 1.033 -0.340 S
Y 2 5289.815 1.033 -1.850 S
Y 2 5402.774 1.839 -0.510 S
Y 2 5544.611 1.738 -1.090 S
Y 2 5728.890 1.839 -1.120 S
Y 2 6795.414 1.738 -1.190 S
Zn 1 6362.338 5.796 0.150 S
Zr 2 4629.079 2.490 -0.590 S
Zr 1 4739.480 0.651 0.230 S
Zr 1 4815.621 0.604 -0.030 S
Zr 2 5350.089 1.827 -1.240 S
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Chanamé J., Ramı́rez I., 2012, ApJ, 746, 102
Chaplin W. J., 2011, in Asteroseismology, Canary Islands Winter School of Astrophysics,

pp. 1–31
Chaplin W. J. et al., 2010, ApJL, 713, L169
Chaplin W. J. et al., 2014, ApJS, 210, 1
Chaplin W. J. et al., 2011, Science, 332, 213
Chaplin W. J., Miglio A., 2013, ARA&A, 51, 353
Chaplin W. J. et al., 2013, ApJ, 766, 101
Charbonneau D., Brown T. M., Latham D. W., Mayor M., 2000, ApJL, 529, L45
Chatterjee S., Ford E. B., Matsumura S., Rasio F. A., 2008, ApJ, 686, 580
Chiavassa A., Bigot L., Kervella P., Matter A., Lopez B., Collet R., Magic Z., Asplund M.,

2012, A&A, 540, A5
Christensen-Dalsgaard J., 2011, in Asteroseismology, Canary Islands Winter School of As-

trophysics, p. 194
Christensen-Dalsgaard J. et al., 2010, ApJL, 713, L164
Collet R., Asplund M., Trampedach R., 2007, A&A, 469, 687
Collier Cameron A. et al., 2007, MNRAS, 375, 951
Collier Cameron A., Donati J.-F., Semel M., 2002, MNRAS, 330, 699



172

Collins G. I., 1989, The Fundamentals of Stellar Astrophysics. W.H.Freeman & Co Ltd
Corliss C. H., Bozman W. R., 1962, Experimental transition probabilities for spectral lines

of seventy elements; derived from the NBS Tables of spectral-line intensities
Cunha M. S. et al., 2007, Astron Astrophys Rev, 14, 217
Dall T. H., Santos N. C., Arentoft T., Bedding T. R., Kjeldsen H., 2006, A&A, 454, 341
Deheuvels S. et al., 2014, A&A, 564, A27
Deheuvels S. et al., 2012, ApJ, 756, 19
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