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Abstract

It has been shown that manipulation of objects by 3D vir-
tual creatures can play an important role in the evolution of
complex, embodied sensorimotor behaviours. In this work
we examine the capacity of virtual creatures that use evo-
lutionary and control architectures already shown to be ca-
pable of sensor-differential gradient-following locomotion
(tropotaxis) to adapt to solve a physical problem involving
the manipulation of 3D objects in their environments. Specif-
ically, the creatures’ task is to guide a physically-modelled
cube through their environments in order to achieve maxi-
mum covered distance of the object. Agents were evolved in
the manipulation environment from random initial genotypes
and from genotypes previously optimised for performance in
a different task. Performance was evaluated both before and
after evolutionary adaptation. We show that the architecture
achieves embodied feedback control in the block movement
task. We observed some overlap between the earlier and later
environments but also that success in the first environment
does not preclude or entail success in the second. We found
that species evolving from scratch do no better or worse than
those optimised for a different environment, and that sensory
feedback is necessary for correct approach and control be-
haviours in agents, although close control is less dependent
on sensory input than distance approach.

Introduction
The evolution of virtual creatures in physically simulated
three-dimensional worlds was first demonstrated in 1994 in
the work of Karl Sims, who first evolved articulated agents
to swim, walk, jump or follow a light source (Sims, 1994b)
and then evolved such agents to compete to gain control of
an object (Sims, 1994a). The diverse range of strategies and
counter-strategies evolved through the latter task demon-
strated both co-evolution’s ability to generate increasingly
complex behaviours and that object manipulation can play
an important role in the evolution of sensorimotor intelli-
gence (beyond mere locomotion and taxis) in simulation, as
in nature.

The 3D River Crossing (3D RC) task, first presented in
Stanton and Channon (2015), provides an ideal base from
where the evolution of sensorimotor intelligence and related
issues of physical embodiment can be explored. In that work
we adapted the shunting model of Grossberg (1988) and

Yang and Meng (2000), used for the first time in an a-life
context in Robinson et al. (2007), to build an evolutionary
environment able to evolve control architectures of 3D vir-
tual creatures that exhibit both reactive and deliberative be-
haviours. However, the problem-solving aspect of the 3D
RC task in that work was abstracted from the physicality of
the agent’s morphology. Although each agent’s joint motors
were driven by some of the outputs from its neurocontroller,
other neural outputs only notionally represented manipula-
tion of physical objects in the agent’s world.

An important extension of the earlier work into richer
interactions is thus to introduce aspects of the deliberative
problem to the agents’ physical world, requiring an intricate
manipulation of simulated objects to solve the challenge. In
this work, we take a first step toward that goal by investi-
gating whether the neural architecture outlined in that work
can successfully constitute the control system for a simple
manipulation task: displacement of a physically-modelled
block in the agent’s world, requiring feedback control, here-
after called the block displacement (BD) task.

Our general approach is to consider populations of agents
in a new environment that provides the physical block chal-
lenge. The agents’ neural control systems are sensitised
to the location of the block by direct interaction with the
shunting model, simplifying the adaptive problem. We in-
vestigate evolution on the BD task from both random (un-
evolved) populations and from populations of creatures pre-
viously evolved in the 3D RC environment. Hereafter we
refer to random populations as unevolved populations and
populations evolved only in the 3D RC environment as naive
populations.

Hypotheses
The objective of this work is the evolution of agents able to
successfully complete the BD task, as observed through 3D
visualisation. In addition, we developed and tested the fol-
lowing hypotheses in order to further understand the inter-
actions between the various components of the system and
explore the limitations of the 3D RC architecture:

H1. The hybrid architecture is sufficient to achieve feedback



control that allows agents to successfully manipulate and
guide an external object;

H2. There is some overlap between the earlier 3D RC task
and the BD task due to the requirement for speedy and
accurate movement in both environments;

H3. Species evolved in the 3D RC task show increased per-
formance after evolution in the BD environment (i.e., it is
possible to optimise this behaviour further), and that suc-
cess in the 3D RC environment does not preclude success
in the BD environment.

H4. Some 3D RC species are on evolutionary trajectories
more suitable for the BD task than others.

The remainder of the paper presents an overview of the
method used to generate the agents, and the results of the
evolutionary and ablative experiments designed to test the
above hypotheses. We then present conclusions and a dis-
cussion that relates the design of the base system to the ob-
served results.

Methods
In this section, we describe how the overall objective of im-
plementing a system capable of using an evolutionary algo-
rithm to produce agents able to manipulate objects in a 3D,
realistic physics world was achieved. The solution is split
into three parts. The first part is the design of the evolution-
ary problem that the agent species must evolve to solve; the
second part documents the abstractions made in the agent’s
morphology and control architecture that are under the con-
trol of the evolutionary algorithm and the third part describes
the evolutionary algorithm itself. Finally we describe the
data collection scheme we use to collect outputs from the
experiments.

The Physical 3D RC Problem
The general problem used in this work is an adaptation of the
3D RC task described in earlier work (Stanton and Channon,
2015), following the same key ideas described and used to
various ends in Robinson et al. (2007) and Borg and Chan-
non (2011). The innovation in this work is the addition of
a requirement for agents to physically manipulate objects in
the environment; in our previous work only the body of the
agent is physically simulated and all environmental interac-
tion is through a two-dimensional, grid-world abstraction. In
the original RC task, 2-dimensional agents are able to move
between discrete cells in a 20x20 grid world containing haz-
ards (traps and water) and resources (stones and resource.
Stones can be carried by the agent and placed into water,
enabling bridges to be built. Success in this environment
is determined by agents’ ability to avoid hazards and reach
the single resource by learning an appropriate action policy
given the current state; this includes capturing an element
of deliberative planning in order to build bridges in worlds
containing an otherwise impassable stretch of water.

This task was extended in our 2015 work to three di-
mensions (the 3D RC task), making the problem signifi-
cantly harder. Agents are embodied in a four-legged fixed-
morphology physical form that is simulated using a New-
tonian rigid-body mechanics system, meaning that physi-
cal control (principally, the locomotive and orienting be-
haviours required for moving between grid cells) must be
part of any solution. The agent’s position in 3D is projected
and quantised to the 2D RC world and any output from the
control architecture translates directly into motor control in
the 3D environment.

This work introduces the Physical 3D RC (P3D RC) task
where the physical problem is extended beyond the agents’
control of their bodies, to the wider environment. Solutions
to the P3D RC task involve manipulation: in addition to the
agents’ bodies, a cube representing a stone in the world is
also physically simulated. Any solution must use physical
motor control to manipulate the cube into a configuration
that allows the agent to access the resource objective.

As a step toward the P3D RC task, we first investigate
simpler problems where agents must simply move blocks
around in the world, without the requirement to solve the
deliberative component of the RC challenge. This paper ad-
dresses the first of these challenges, where the problem is to
move the environmental block as far as possible.

As in our earlier work and summarised here, agents have
a symmetrical quadruped body plan comprising a torso (di-
mension 1.0×1.0×0.2), four upper limbs and four lower
limbs (dimensions 0.5×0.2×0.2 each). Upper limbs are at-
tached to the torso at each lower corner with a 2-axis con-
straint, limiting the range of motion relative to the torso.
Knees connect upper libs to lower limbs, constraining their
relative motion to a hinge. Four small sensors are also mod-
elled in the physical environment as fixed appendages to the
agent’s torso; this is for convenience of updating sensor val-
ues based on their position and the sensors have no effect
on the physical operation of the agent. The physical simula-
tor used was Open Dynamics Engine (ODE) version 0.13.1,
using a fixed timestep of 0.01s, friction pyramid approxi-
mation for contact response (µ = 10.0) between agent and
the ground plane, universal error reduction (ERP) of 0.2 and
force-mixing (CFM) of 5×10−5. In addition to the agents, a
1×1×1 block is simulated at the centre of the environment
(ρ = 0.1). On initialisation, agents are randomly positioned
on a circle with radius 5 units from this point.

Agent Control
Given the above problem, a strategy to solve it neces-
sarily requires a control architecture that receives sensor
data from the environment and produces appropriate mo-
tor stimulation to guide the agent through the challenges
of the world. We use a bespoke, hybrid neural network
(HNN) to this end. The HNN comprises feed-forward net-
works for saliency calculation from sensor data, a locally-



connected, topologically-organised shunting neural network
(Yang and Meng, 2000) for modelling the agent’s world, a
feed-forward bridge between this model and the motor con-
trol parts of the architecture and a series of recurrent leaky
integrator networks in the style of Beer’s Continuous-Time
RNNs (Beer and Gallagher, 1992) that actually produce mo-
tor output from the control system. These components we
label the decision network (DN), the shunting model (SM),
the physical network (PN) and the pattern generators (PG).
Together, these components are able to successfully solve
the 3D RC task, as demonstrated in Stanton and Channon
(2015).

Since the details of this hybrid architecture are elucidated
in previous work, we present a only a summary of the ar-
chitecture below, along with notes on aspects that have been
modified for the present work. See figure 1 for a detailed
exposition in graphical form.

In our 2015 work, the DN and SM follow the ideas pre-
sented in Robinson et al. (2007) closely. Together and prop-
erly configured, they provide a neural-like encoding of a
fixed action policy relating current state (position, local ob-
jects and carrying state) to action (preferred movement di-
rection, and a pick-up or put-down action). In the first part of
the present work, the focus is on physical performance rather
than the species’ capacities to learn an appropriate state–
action policy. As such, we hard-code ι-values (saliency val-
ues) for objects in the agents’ worlds rather than learn ap-
propriate weights in the DN.

The PN controls the agent’s behaviour in the world. The
state transition landscape produced by the agent’s SM is
sampled at four points physically located on the agent’s body
and these values are used as input to this network. Thus,
information about desirable state transitions (in this model,
directions to move) is available to the PN and can be used
by agents to discriminate important features of the preferred
state configuration relative to the agent’s configuration. The
agent’s configuration can then be updated to climb the gra-
dient in the state space.

Actual control of the agent’s body to achieve this recon-
figuration is mediated by the PG network. The network is
an array of five three-neuron oscillator circuits, comprising
simple leaky-integrator neurons governed by a set of cou-
pled differential equations, modelled after those of Reil and
Husbands (2002). The PG network receives input from the
PN that perturbs the oscillating cycles which in turn affects
the agent’s behaviour in the world. The oscillator circuits
are a given abstraction in the agents’ design, generated by a
pre-evolutionary phase that is documented in previous work
and summarised in the next section.

Last, outputs from this network are used as target angles
for the various joints in the agent’s body; actual torques are
applied according to a proportional-derivative (PD) equation
based on the difference between the current and desired an-
gles at the joint.

Figure 1: Neural architecture. The agent’s 3D world, con-
taining the agent and the block, is discretised into a 2D grid
(1 and 2; cell-width is 1 unit in the physical model); grid
locations are given ι-values where salient objects exist and
this is used to generate the diffusive shunting model (3).
Agents sample the landscape (4) at four different continu-
ous positions given by their four sensors (5) by interpola-
tion of values around the sensor location (6). These val-
ues pass through a feed-forward network and affect the dy-
namical trajectories of pattern generators (7) that ultimately
output values to effectors via weighted links to joint motors
(8). Links shown in red are subject to evolutionary optimisa-
tion, both in the pre-evolutionary phase and in the later block
task. This includes the red region around the five preset pat-
tern generators whose interneuron weights are also variable:
within a single generator preset weights are adapted; across
generators weights are initialised at zero but can also move
from this value.



Evolutionary Algorithm
Pre-evolution As noted above, populations exploring the
block task have been pre-evolved in other environments and
also contain specific neural circuits that were produced in an
additional, separate environment. These circuits were pro-
duced in isolation: three-neuron motifs were evaluated for
their capacity to stably generate a 1Hz sinusoidal oscillation
in the presence of an input signal and to be quiescent other-
wise using an objective function based on the Fourier trans-
form of their output over a 10-second window. The major
pre-evolutionary phase involved the simulation of 20 species
of agent in the original 3D RC environment. These species
progressed through the documented incremental evolution-
ary phases of food collection, sprinting and hazard avoid-
ance; the evolutionary process was halted before the deliber-
ative part of the incremental challenge. (Specifically, agent
populations were allowed 250k 3-individual tournaments; it
was found that all 20 species had progressed to the delibera-
tive component by this point.) The 20 species, all capable of
tropotactic locomotion, were then installed in the block envi-
ronment. All evaluation was carried out using a bespoke dis-
tributed evaluation system across approximately 200 CPU
cores, achieving approximately 100 evaluations per minute.

Evolutionary Parameters In all cases the evolutionary al-
gorithm is a three-individual tournament selection-based
optimisation process, operating on a population of 150
genomes. Individuals’ neuro-controllers are represented as
an array of floating-point values. On reproduction, single-
point crossover occurs between the two winning individuals
in the tournament, and Gaussian mutation is applied to alle-
les of the resulting child genome with probability 1/l, where
µ = 0 and σ = 1.

Objective Functions For the pre-evolution of oscillator cir-
cuits, the objective function was the number of non-1Hz fre-
quencies in the frequency domain of a ten-second sample of
the output neuron’s signal in the input-high state, and the
total number of frequencies in the input-low state. During
the pre-evolution of gradient-ascending virtual creatures, the
objective was as defined in (Stanton and Channon, 2015);
agents of high fitness completed many of the incremental
stages of the 3D RC task. For the evolved block-pushing
task, the objective is to maximise the distance covered by
the block in the discrete grid-world.

Data collection
To examine H1, we collected observations of agent be-
haviour, including extracting trajectory data from the
highest-scoring individual from the BD task under various
sensory ablation conditions. Deafferentation of control in-
puts was achieved by systematically disabling sensors, and
the agent’s progress in a controlled version of the BD task
was recorded across a two minute time interval. For each ab-
lation, we examine approach and control. In both cases the
block is positioned at (20,20); for approach the agents start

Figure 2: Visualisation of a single agent in the block-
displacement world. Agent is displaying a low, heavy gait
suitable for block pushing.

far from the block at (5,5), and for control they start very
close at (18,20). The trajectories followed by agents and
block in the two scenarios illuminate the dependence of the
gaits on sensory feedback. To examine H2, we used mean
evolutionary performance data from the final 1000 tourna-
ments of the 3D RC pre-evolution phase in comparison to
the mean score of the same species in the BD task, evaluated
for 2 minute and 10 minute periods (simulation time). To ex-
amine H3, we measure the naive BD score before evolution
takes place of each individual in each population, in 10 ran-
domly initialised trials. Each trial evaluates the individual
for 10 minutes in the BD task. After the evolutionary phase,
we repeat the process. We also collected evaluation data for
each individual in each of 20 populations over 10 trials of
10 minutes each, after 100k tournament evolution when in-
dividuals begin with random genotypes. To examine H4, we
use the evaluation fitnesses for naive and evolved species.

Results
H1: The hybrid architecture is sufficient to achieve
feedback control that allows agents to successfully ma-
nipulate and guide an external object Visualisations of
agent behaviour can be seen at https://youtu.be/
gZaUvXcdMK8, and figure 2 provides a static view of an
agent. The zoopraxiscopic figures (in the style of Eadweard
Muybridge) show a time-series of snapshots that illustrate
how agents approach the block from a distance (figure 3a),
and manipulate the block in their world (figure 3b). The
sensory ablation data are presented in figure 8. Figure 8a
shows the planar trajectory followed by agents approaching
the block from a distant point under various deafferentation
conditions; figure 8b shows the response of agents to the
same sensory culling in a closer, control scenario.

H2: There is some overlap between the 3D RC task and
the BD task due to the requirement for speedy and accu-
rate movement in both environments. A non-parametric
correlation analysis was undertaken between the species’
relative ranks for mean fitness during the final 1000 tour-
naments of the 250k-tournament 3D RC pre-evolutionary
runs and the mean score on the BD task. Figure 4 presents
this correlation graphically for both two minute and ten
minute evaluation times. In the 10m trial we found a statis-

https://youtu.be/gZaUvXcdMK8
https://youtu.be/gZaUvXcdMK8


(a) Approach gait. The agent is moving toward the block from a distance. All limbs are contributing to the movement.

(b) Control gait. The agent is pushing forward with its ‘back’ limbs, maintaining the block between its forelimbs.

Figure 3: Zoopraxiscopic diagrams that show the gaits of the best evolved agent (run 11, individual 105). Presentation is in
natural reading order, left-to-right, top-to-bottom. The viewpoint is fixed but tracks the agent as it moves through the world.

tically significant although weak correlation (ρ = 0.38;H0

p < 0.05). The correlation between 3D RC and BD perfor-
mance in the 2m BD trial is much stronger (ρ = 0.51;H0

p < 0.05).

H3: Species evolved in the 3D RC task show increased
performance after evolution in the BD environment.
There is a clear improvement in all cases over the 25k tour-
nament evolutionary run: the mean fitness over all naive
populations was 37.29, compared to 124.16 in the evolved
set (H0 p < 1010). Figure 5a shows progress of runs begin-
ning from random genotypes over evolutionary time (100k
tournaments in 1k tournament averages). Figure 5b shows
the same view of populations beginning from naive geno-
types, over 25k tournaments. Both treatments show a level-
ling off of fitness and there is no significant difference be-
tween the evaluation performance of the two starting condi-
tions (figure 6).

H4: Some 3D RC species are on evolutionary trajectories
more suitable for the BD task than others. We found a
correlation between naive score and evolved scores across
the 20 species (ρ = 0.59;H0 p < 0.01) but no correlation
between the naive scores and the magnitude of the change in
fitness (ρ = 0.26;H0 p > 0.1). Figure 7 demonstrates these
relationships: δ-fitness is uncorrelated with naive fitness.

Conclusions and Discussion
We have shown that feedback motor control in evolved
agents is possible with the given architecture, and that the
architecture is flexible enough to support and adapt to a va-
riety of evolutionary scenarios presented sequentially. This
demonstrates that the platform has the potential to support
environments that require even more sensorimotor control
and is a reasonable starting point from where physical com-
plexities can be added into the 3D RC task, eventually ap-



Figure 4: Across-species correlation comparing 3D RC per-
formance and BD performance. Outcomes across the two
tasks are more correlated when evaluation time is shorter
(ρ = 0.51), indicating that movement speed is a factor in
success in the block task and shared between the two prob-
lems. However, a strong gait is required to push the block
and this is not selected for in the 3D RC task, hence the
lesser correlation in the 10m task (ρ = 0.38).

proaching a full physical model of the problem. Obser-
vations of the agents’ behaviour gained through 3D visu-
alisation have revealed a rich variety of evolved strategies
for solving the problem. Different classes of gait for ap-
proaching and manipulating the block appear due to the ge-
netic heritage of species, and it is clear that low, heavy gaits
work best for pushing the object in the BD task. From the
deafferentation studies it can be seen that these gaits are not
self-generating, blind gaits that simply aim the agent to the
target location but are more complex aggregates of sensory
data that depend on the agents position relative to the block
in order to successfully achieve increased displacement.

When we consider the two evolutionary scenarios, 3D RC
and BD, we found some overlap between the two problems.
A strong correlation was observed between performance in
the BD challenge before evolution in a two-minute evalua-
tion, and performance at the end of the 3D RC task, indi-
cating that some components of both challenges contribute
similarly to relative agent fitness. This is likely to be the
speed and directness of movement in the world which has a
greater effect in a smaller evaluation period. As the evalua-
tion period grows larger, this correlation decreases indicat-
ing that the block-pushing dimension of fitness in this sce-
nario is not well captured in the 3D RC task and ultimately
is the most important component. (It was also observed by
measuring the time taken by agents to reach the block that
most naive species sacrifice movement speed for block push-
ing capability during evolution, and this aspect should be in-
vestigated more thoroughly to determine whether this is an

(a) Fitness on the BD task (moving average over a 1000-
tournament moving window) for evolution from a random (un-
evolved) population.

(b) Fitness on the BD task (moving average over a 1000-
tournament moving window) for evolution from a naive (evolved
in 3D RC) population.

Figure 5: Progress of runs over evolutionary time; note that
the x-axis differs due the different starting conditions and
number of tournaments for each treatment.

artefact or a consistent trend.) We showed that performance
from either starting point (3D RC or unevolved genotypes)
is comparable, demonstrating that an incremental approach
incorporating both types of environment is possible in prin-
ciple. We noted one extremely high-fitness run in the ran-
dom category; upon visual inspection this species is a clas-
sic degenerate solution whose strategy is to rapidly vibrate
the block to achieve high fitness. It is possible that more
complex environments (such as 3D RC) prevent this kind
of trivial solution by requiring a richer agent–environment
interface. Our results comparing BD fitness before and af-
ter evolution demonstrate that whilst naive performance is
an indicator of final performance, it is not an indicator of
how much any particular species will improve. There is a
risk that incrementally presenting new environments to only
the most successful species could exclude good general so-
lutions, a problem potentially mitigated by heterogeneous
presentation of multiple environments.



Figure 6: Comparison of the best individuals from the naive
population, and from populations evolved from the random
(unevolved) and naive-evolved populations.

Further work Ongoing work is toward the P3D RC task:
a physically-embodied deliberative river crossing problem.
The next step is to consider not just displacement but also
positioning of the block using the shunting landscape. This
is likely to demand significant revision of the underlying
control architecture to incorporate reasoning about relative
positioning. Additionally, the question of whether specific
types of solutions in the 3D RC world have specific perfor-
mance profiles in the BD world could be addressed by ex-
amining in detail whether some species always slow down
and some always speed up. Additionally, it is possible that
evolved morphology could significantly contribute to physi-
cal manipulation behaviours.
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(a) Approach task. The agent begins at (5,5) and attempts to reach the block. The unaltered agent’s trajectory is shown in the top left; this
agent tends to overshoot its target and then correct by rotating, as the two loops in the path record. All sensors have some effect on this
behaviour although sensor 1 is by far the most pronounced difference in a single cut. In complete deafferentation (bottom right) the agent
moves randomly.

(b) Control task. The agent begins at (18,20), adjacent to the block. The unaltered agent pushes the block in a tight circle to maximise fitness
(top left). Sensor ablations do not have a catastrophic effect as in the approach task; all single cuts still maintain block movement although
the trajectory is less efficient, as does the dual cut of sensors 1 and 2. Only by cutting sensors 3 and 4 or complete deafferentation did we
observe failure to displace the block at all.

Figure 8: Agent-block trajectories of best agent from best overall trained population under various sensor ablation treatments.
The figure demonstrates how a combination of sensory inputs is necessary for reliable gait generation for distance approach
and to control the block. In all cases the block initially rests at (20,20).
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