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ABSTRACT

Context. Very high quality light curves are now available for thoudsiof detached eclipsing binary stars and transiting exepla
systems as a result of surveys for transiting exoplanetotrat large-scale photometric surveys.

Aims. | have developed a binary star model1c) that can be used to analyse the light curves of detachguseddi binary stars and
transiting exoplanet systems that is fast and accuratethatadan include theffects of star spots, Doppler boosting and light-travel
time within binaries with eccentric orbits.

Methods. The model represents the stars as triaxial ellipsoids. Pparant flux from the binary is calculated using Gauss-Ldgen
integration over the ellipses that are the projection o$¢hellipsoids on the sky. The model can also be used to ctddla flux-
weighted radial velocity of the stars during an eclipse @Res-McLaghlin éfect). The main features of the model have been tested
by comparison to observed data and other light curve models.

Results. The model is found to be accurate enough to analyse the vghycdiality photometry that is now available from space-
spaced instruments, flexible enough to model a wide rangelipeng binary stars and extrasolar planetary systentsfast enough

to enable the use of modern Monte Carlo methods for data sinand model testing.
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—1. Introduction example, Mandel & Agol (2002) presented exact analytic for-
mulae for the eclipse of a spherical star described by qtiadra
(¥ The discovery of transiting extrasolar planets at the stittis  or nonlinear limb darkening by a planet or other dark bodysTh
= ‘century has motivated considerabfoets to produce very high enabled the development of the Monte Carlo techniques that a
<I" quality light curves that can be used to discover and stuelyeth now the standard tools for the analysis of exoplanet obtiens
systems. Instrumentation, observing techniques and d&ta a(Collier Cameron et al. 2006; Eastman et al. 2013).
<I" 'ysis methods for ground-based observations have all been im
CO proved o thatits is now possible to detect eclipses withitegs The data produced by surveys for transiting extrasolar-plan
© small as 600ppm on individual targets (Delrez et al. 2018)lev ets are a bonanza for studies of all types of variable stafs, i
) ground-based surveys such as WASP (Pollacco et al. 2006) giding eclipsing binary stars. The Kepler archive alonetaims
) HATNet (Bakos et al. 2004) now routinely discover trangtinpigh-quality photometry for 2878 eclipsing binaries (Kekal.
(O extrasolar planets with eclipse depthsl% from surveys that 2015). Microlensing surveys have also been a fruitful sewrfc
— monitor millions qf stars using dedicated robotic instrumse ey DEBS, e.g., the OGLE-III survey discovered over 11000
- . The CoRoT satellite produced light curves for thousandseoés new eclipsing binary stars from a photometric survey of the
= with a photometric precisios 0.1% during its 6-year mission Gajactic disc (Pietrukowicz et al. 2013) and thousands more
> lifetime (Auvergne et al. 2009; Moutou et al. 2013). The Kepl haye been identified in the Magallenic Clouds by this survey a
+ ‘mission has discovered hundreds of transiting extrasdar-p other microlensing projects (Pawlak et al. 2013; Muravehal.e
(T ets from a survey of approximately 150,000 stars over itedy 2014). The analysis of the light curves for detached eciipbi-
mission lifetime (Mullally et al. 2015). The quality of thévp-  nary stars (DEBS) combined with radial velocity measuresien
tometry produced by the Kepler instrument €0ppm preci- for poth stars in the binary make it possible to measure geeci
sion on a time scale of 6-hours, Jenkins et al. 2010) is ordeggodel-indendent masses and radii for a wide variety of stars
of-magnitude better than that available prior to this rdeably from white dwarfs in binaries with orbital periods of a fewus
successful mission. The volume and quality of data are etth g3oyrs et al. 2014) to red giants binaries with orbital pesio
to improve as a result of current and future transiting piane-  of months or years (Pietriki et al. 2013). These fundamen-
veys such as the K2 mission (Howell et al. 2014), PLATO (Raugy| data for stars can be used to calibrate empirical matissa
et al. 2014) and TESS (Ricker et al. 2015), and other large sifminosity relations and to test stellar models for normars
veys such Gaia (Dischler & Soderhjelm 2005). (Torres et al. 2010), to study the influence of factors suabias
These advances have motivated researchers to develop ail; magnetic activity and composition on the structurstafs
ysis techniques and models that can exploit the full poaénfi (Feiden & Chaboyer 2014), and to improve age and distance es-
these very high quality data to study stars and planets inya wanates for stellar clusters in which DEBS reside (Brogasiral.
not possible before the advent of photometry from space. RR912).
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| have developed a new binary star model that is designed z
for the analysis of the light curves and radial velocity @sof
detached eclipsing binary stars and transiting extragpddarets.

My motivation for developing this software is to have a tdwtt
is accurate enough to analyse the very high quality photome-
try that is now available from space-spaced instrumentsbfke
enough to model a wide range of eclipsing binary stars and ex

trasolar planetary systems, and fast enough to enable ¢hefus/ X
modern Monte Carlo methods to explore the potentially large e
parameter spaces that result when dealing with “real watéda v

sets that include astrophysical, environmental and ingtntal
noise sources. The light curve model is calidd c, and is im-

plemented as f_ortran subroutines Ca!led directly from a use Fig. 1. Coordinate systems used to define the shape and positiontof ea
terface written in python. Here | provide a complete destip gar The companion is located on the positivaxis and the angular
of tlhe ellc |'9h.t curve r_nodel and give examples of its applimomentum vector for the orbital motion is parallel to thexis. The
cation to a variety of binary star and exoplanet systems. Tiglination of the orbital axis to the line of sightisThe origin of the
source code and examples are available as an open-source &0, w) coordinate system is at the centre-of-mass of the binateay.
ware project. Other symbols are defined in the text.

2. The light curve model
whichA = B=C = RandD = 0. This model can be very use-
ful for rapidly calculating a large number of light curvesdan
accurate enough for many cases. The Roche potential isywidel
used to approximate stellar shapes in light curve modelavé h
used the definition of this potential described by Wilson7@®
2.1. Coordinate systems which includes a modification of the potential to allow fomRo
_ ) ) ) synchronous rotation of the star. The direction of the stafta-

The shape of each star is d_eflned on a Cartesian coordinate ggHal angular momentum vectdr,; is assumed to be parallel
tem (x, y, z) where the origin is at the star's centre-of-mass Xheto ;.. The values of\, B, C andD are set by requiring that the
axis points towards the centre of the companion staryties value of this potential is equal at the six points where thig-el
is perpendicular to the-axis in the orbital plane and theaxis = soid intersects the, y andz axes, i.e. the ellipsoid matches the
is parallel to the orbital angular momentum vectafip. This is  |ocation of an equipotential surface at these points. ThehRo
a right-hand coordinate system so the direction of orbiation  potential makes the assumption that the entire mass ofahésst
is towards the negativiedirection. located at the centre of mass. More realistically, the miss d
~ The projection of the binary system onto the plane of the sigihution within a star can be calculated by assuming a poly-
is described using a Cartesian coordinate system ) with its  tropic equation of state. The equilibrium shape of a polyéro
origin at the binary centre-of-mass, theaxis pointing towards in the tidal field of a companion star has been calculated by
the observer, and theaxis parallel to the projection afor, ONto  Chandrasekhar (1933b). Chandrasekhar also calculateef-the
the plane of the sky. The inclination of the binary orhits mea- fect of rotation on a polytropic star (Chandrasekhar 1928l
sured in the normal way, i.e. the angle of the vedtgp to the  discussed how, to a good approximation, rotation and tiikal d
line of sight. These coordinate systems are illustrateddnE  tortion can be treated independently to describe the shipe o

_The shape of the star is approximated using a triaxial ellitar in a binary system (Chandrasekhar 1933c). | take the sam
soid. The projection of this triaxial ellipsoid onto the péaof the  approach and use Chandrasekhar’s calculations for tHetdfisla
sky is an ellipse. The specific intensity distribution ove vis- tortion of a polytrope. For the rotational distortion the deb
ible surface of the star is calculated using a Cartesiandioate jnterpolates the results tabulated by James (1964) fotmpgs
system 1) defined by the major and minor axes of this ellipsgyith polytropic indexn = 1.5 orn = 3. A polytrope withn = 1.5

For convenience | refer to the two bodies in the binary system
stars, but the description below applies equally to browarfisv
or exoplanets.

respectively. ) o ~is a good approximation for stars where energy transpotten t
All lengths are measured relative to the semi-major axis gfiter layers is dominated by convection and for gaseoufsian
the binary star orbita. n = 3 is more appropriate for stars whose structure is dominated

by radiation pressure. Théteet of the star towards the compan-
ion is D = Asq(R/d)* (R/a) where the cofficient A3 is taken
from Table VI of Chandrasekhar (1933lo))js the distance be-
The shape of the star is approximated by a triaxial ellipseitt tween the stars’ centres-of-mass, arig the mass ratio. The co-
tred at a positionx,y,2) = (D,0,0) with semi-axes4, B,C) efficientsé, andé, from Table 1 of James (1964) are used to cal-

2.2. Star shapes

aligned with thex, y andz axes, respectively, i.e. culate the polar and equatorial radii of an oblate spherendred

) at (x,y,2 = (D,0,0) with its minor axis parallel td .. | then

(x-D)” ¥y N zZ _ 1 apply the model for the tidal distortion of this surface givia
A2 B2 Cc2 equation (35) of Chandrasekhar (1933b) to this oblate sydher

All lengths are relative to the semi-major axis of the binary again assuming that is parallel ol or.

bit. This is the approximation that was also used in the WINK For eccentric orbits | model the star using the equilibrium
light curve model (Wood 1971). Three methods can be usedstwape at each point in the orbit, i.e. | do not include any dyna
determine the values & B,C andD. The simplest model is ical tidal &fects in the model. The shape of the star will vary
a spherical star of radiuR centred at the centre-of-mass, fothrough the orbit as a result of the variations in the tiddtfie
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due to the companion but the volume is assumed to be constadt Specific intensity distribution

(Chandrasekhar 1933b). The specific intensity of the poing,(t) on the stellar disc is given

by
Ti(st) = ToU)G(s 1) + H(s )Un (),

where Iy is a constant for each stdd(u) is the limb dark-
ing law,G(s,t) accounts for gravity darkening and the term
s, t)Uy(u) accounts for the irradiation of the star by its com-
panion.

| have implement several limb-darkening laws to account for
variation of specific intensity with the cosine of thewiieg
angleu. The simplest limb-darkening law is linear limb darken-

half an orbit later. | assume that the stars follow Kepleigan ing, which depends only on a single limb darkening parameter

bits with fixed orbital eccentricitye. At time ty the longitude of u(Schwarzschild 1906):

periastron for star 1 iy and the orbital inclinationo. Apsi- () = 1 - u(1 - ).

dal motion can be included by specifying a non-zero value for

W= %—“t‘ so that the longitude of periastron for star 1 at tine Two-parameter limb-darkening laws implementedeirilc in-

is w1 = wo + wt and the longitude of periastron for star 2 iglude a square-root limb-darkening law (Diaz-Cordoves &
wy = wi + m. Similarly, the inclination of the orbit at timg is  Gimenez 1992)

assumed to be = ig + %ti. The longitude of periastron is not

defined for circular orbits, in which case | fixy = 0. Up) =1-ag(l-p)-ax(l- vu),
At time tp the true anomaly of star 1i§ 9 ~ n/2 — wo. The

exact value ot g is calculated by finding the value of o that

minimises the projected separation between the starstentU(u) = 1 - ay(1 - p) — ay/(1 - €),

of-mass (Lacy 1992). At other times the position of star 1 is

calculated using Kepler’s equatiol, = E — esinE, to find the a logarithmic limb-darkening law (Klinglesmith & Sobieski

eccentric anomalf from the mean anomalyl = 2n(ti—tp)/P,, 1970)

where the anomalistic peridel, is assumed to be constant. The

2.3. Star positions

Times are measured relative to a reference tywehen the sep-
aration of the stars’ centres-of-mass projected on thesky &
minimum. The two stars in the binary are labelled 1 and 2 Wiﬁ1
star 1 furthest from the observer at timig i.e. star 1 will be (
eclipsed by star 2 at timg if the inclination of the binary is
i = 90C°. If star 1 is hotter than star 2 and the orbit is approx{he
mately circular then this eclipse will be the primary ectipse.

deeper than the secondary eclipse that will occur apprdeisna

an exponential limb-darkening law (Claret & Hauschildt 3D0

true anomaly of star 1 is then U) =1-a(l-p) —agulnpy,
and a quadratic limb-darkening law (Kopal 1950)
v, = 2tan?t [ \/ %z tan(E/Z)}, U) = 1-ca(1-p) — co(1— p)

Claret (2000) introduced the following four-parameter dim
darkening law that has also been implemented:

andv, = vy + x for star 2. The angle from theaxis towards the

projection of the line of sight in th&-y plane for star 1 is then 4 o

¢ = v1—n/2+w measured clock-wise looking towards the origit/ () = 1 - Z aj(1-p?).

along thez-axis (Fig. 1), and similarly for star 2. ji=1

The separation of the centres-of-mass at timelative 10 The 3-parameter limb-darkening law defined (Sing et al. 2009
the semi-major axis of the orbit = 1 — ecosE) so the posi- \yhjch is equivalent to Claret four-parameter with= 0 has also
tion of star 1 in the observer's(v, w) coordinate system definedpgean implemented.
previously is (i1, v, wi), where For gravity darkening | assume that the specific intensity ca
be related to the local gravity by a power law with expongn}.
Note thaty(1) is a wavelength dependent quantity, not the bolo-
metric gravity darkening exponent often used in other lghte
models. Appropriate values §{1) and limb-darkening cdg-
cients for various passbands can be found in Claret & Bloemen
(2011). The local gravity can be calculated using the gradie
di = dg/(1+ qg), andg = M2/M; is the mass ratio. The apparendf the Roche potential at any given point on the surface, but
position on the sky of star 1 at timgeaccounting for the light this calculation has a significant impact of the speed of tioe p
travel time across the orbit is given to a very good approxiona gram if it is done for every integration point used in the calc
by the actual position of star 1 at tinhe= t; + wya/c, wherecis lation. Instead, by default the program calculates theigraaf
the speed of light andis the semi-major axis of the binary orbit.the Roche potential at the four points ¥,2) = (D + A,0,0),
The light travel time across the orbit can be ignored by mgtti (D — A, 0, 0), (D, B, 0) and D, 0, C) and then uses a simple func-
a = 0, but in this case the Doppler boostinfieets discussed tion to interpolate the value of the surface gravity at ofants
below with not be calculated. The position of star 2 is calted on the stellar surface. An option is provided to use the pojnat
in a similar way using», = vi+mandr, = d/(1+q). If a> Othen point calculation of the local surface gravity so that thep@ut
equation (25) from Borkovits et al. (2015) is used to caltauba of this approximation can be quantified. For example, in teec
correction to the value af for the light travel time across theof KPD 1946+4340 shown below we used this option to check
orbit so that the apparent time of mid-eclipse occurs atithe t that using the default method changes the light curve bythess
to specified by the user. 250 ppm at all phases.

u; = d; (cosvi cosw; — Sinv; Sinwy),
vy = d; cosi (Sinvy COSw1 + COSv; Sinws),
wy = dj Sini (Sinv coswy + €osv; Sinwy) ,
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Irradiation of the star by its companion can béfidult to companion along thr axis. This integration is done using equa-
deal with because the incident energy of the companion @santion (1) discussed below. The specific intensity normal ® th
the thermal structure of its atmosphere. As a result, theremsurface is taken to be
gent spectrum can be veryfifirent to that of the incident radi-
ation, e.g., ultraviolet photons from the companion can be aH(s,t) = HoFir(s )™
sorbed and re-emitted as emission lines at optical wavéieng
The change in thermal structure also changes the local linfeveral geometrical factors of order 1, albedi@es and the
darkening law (Vaz & Nordlund 1985). In extreme cases, thedistribution of incident energy into the observed wangta
incident radiation may produce an optically thin layer ia tip- region are all subsumed into the parametigr The parameter
per layer of the star's atmosphere that will then appearimbli can be used to give some control over how the specific in-
brightened. If the incident radiation is absorbed and réteth tensity depends on the strength of the irradiation. Usings> 1
with a different spectrum then a complete physical model wouldll create a “hot spot” near the point closest to the compani
require as input an accurate estimate of the incident fluxitsndwhereasH; = 0 will result in approximately uniform brightness
spectrum. This spectrum may befdiult to observe and hard tofor all points with cog/ > A.
predict accurately from models, particularly at ultraetolvave-
lengths where the majority of the flux from hot stars is emi
ted, interstellar absorption is severe and the models evagy
affected by line-blanketingfects. In principle, calculating the To obtain the observed flux the specific intensity must be in-
spectrum of the incident radiation at each point on thesstar’- tegrated over the visible area of the star. This integratdm-
face would require integration of the emergent spectrunt oyslemented using a combination of numerical Gaussian-Ldmgen
the visible surface of the companion accounting for thearariquadrature and exact analytical expressions for the afeasn
tion in limb darkening and gravity darkening with wavelemgt lapping ellipses. The integral required can be written
and then iterating to account for the radiation re-emittedhe
star back to its companion. For exoplanets the situationibes N; ff dfdg
even more complicated because of the possibilty of aduectié, = fffﬁ(s t)dfdg ~ ZWj],}(Sj,t])T. (1)

i.e. the incident energy may not be emitted at the locatioarah =1 Zj:'1 Wi

it is absorbed. As a result, implementing a prescriptionifor

radiation based on physical models in a general purpose lighe first summation in this expression represents Gaussian-
curve model would lead to a large computational overhead, thegendre quadrature over a two-dimensional non-rectangul
results may then depend on model parameters in a way thagrisl of N; points at locationsgj, t;) with weightsw;. The size of
difficult for the user to understand and control, and the resulte grid is specified by the number of grid points along theoma;
may be no more accurate than a more simplistic approach. Bgis on the ellipse. In the current implementation this gafuei-
these reasons | have implemented a simple prescriptionréer i ther 4, 8, 16, 24 or 32. The distribution of the integratiomp®
diation based on three parameters that relate directlydoifip is approximately uniform over the visible area. The sumarati
intensity distribution on the surface of the star and itsudauig in the denominator of the ratio is an estimate of the area®f th
dependence. In cases where an accurate physical model fovigible stellar disc calculated in the same way. The actusd a
radiation is available, e.g., simple reflection by scatigfrom of the stellar disc that is visible is given by the integralle
free electrons, it is then possible to set the values of thassm- numerator of the ratio, and can be calculated exactly sinice i
eters appropriately. For cases of weak irradiation, thepkaity  either the area of an ellipse, or thefdrence between this area
of the model will not be an issue because tffe@ on the result- and the area common to two overlapping ellipses. The ratio of
ing light curves will be small. If the observed light curve® a the integral and sum has a fixed value for a given combination
clearly &fected by irradiation then some or all of the parameteo$ N;, (sj,t;) andw;, and serves as a correction that improves
can be included as free parameters in the fit in order to egpldhe accuracy of the numerical integration. An alternatiiexw
how much the parameters of interest affeeted by the way ir- of the same expression is that flux is calculated from thélési
radiation is dealt with, or to gain some insight into the pbys area of the ellipse, which can be calculated exactly, weidjby

of irradiation. the average intensity over the visible area, which is cateal by

The specific intensity of the poins(t) includes the term numerical integration. The calculation of the overlap arEavo
H(s t)Un (1) to deal with irradiation. The factddy(u) is a lin-  ellipses requires a very robust algorithm to calculate then
ear limb darkening law with cdicientuy. The angle between ber and positions of the intersections between two ellipEks
the local surface normal and the vector from the pomt)(to algorithm | have developed is described in Appendix A.
the centre of the companiom, is calculated by assuming that
the surface of the ellipsoid can be approximated by a sphitie w; . .
the same radius as the distance of the point from the centhe of 26 Flux scale and surface brightness ratio
ellipsoid (s, t). The distance from the poing,t) to the centre of The surface brightness ratio is an ambiguous quantity fiolodi
the companion is and the companion is assumed to be a sphefgrkened stars in a binary that do not emit isotropicallyddtine
of radiusr, = (ABC)s3. If cosy > A = (r(s,t) —r¢) /d then the aflux scale irellc | first set the specific intensity normal to the
entire disc of the companion is visible so | take the irrad@t surface at the point on star 1 closest to its companion teel, i.

5.5. Integration

flux to be To1 = 1. | then use equation (1) to calculafg, the integral
Foo/d? cosy > A, of the surface-brightness distribution for the star 1 foristesht
- (st) = 2 pbserver viewing the star along 'glxems. This calculathn step
Fin(s,1) gO»C(COSV +4)/(281%) | cosyl < A, ignores eclipses, spots and heatifigets by the companion, but

cosy < —A, does include the tidal distortion terms. The same cal@ndtr
where o is the specific intensity integrated over the visibletar 2 withZ»> = 1 gives the quantityo2(Zo2 = 1) which is
hemisphere of the companion for a distant observer viewirg then used to set the value 6§, used in all subsequent steps in
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the calculation such that that is also used to define the shape of the star with rotaten p
riod Pyq. Alternatively, the projected equatorial rotation vetgci
Loz = SiF0a/Fo2llo2 = 1), at the stars’ equato¥ Sini, can be used to determine the pro-
whereS, is the value specified by the user for the disc-averagi&§ted rotational velocity over the stellar surface. Tieat of
surface brightness ratio at the wavelength of observation ~ Star spots on the flux-weighted radial velocities is accoeain
The next step in the calculation is to set a normalising faf2r by multiplynig the flux-deficit due to the spot by the pro-
tor for the output light curves. This is done in the same wd§cted rotational velocity at its centre. This approxiroatwill
as the calculation fofFo; but in this case the irradiation factor0t be accurate for large spots.
is included. This calculation yields two normalising facf 1 The dfect of eclipses on the flux-weighted radial velocity is
andFy2. The calculation of the light curve then proceeds usccounted for and sellc can be used to model the Rossiter-
ing equation (1) to calculate tig ; and¥; », the apparent fluxes McLaughlin (R-M) efect for stars in which the rotation axis is
at timest; for stars 1 and 2, respectively, including irradiatioraligned with the orbital axis. It is also possible wigllc to
eclipses, star spots and Doppler boosting. The valugscdnd model the R-M €&ect for a spherical star eclipsed by star or
Fi.» can be obtained directly using the routifirixes in the py- planet described by the Roche potential, a polytrope or arsph
hton moduleellc. The light curve generated by the routihe for which the projection of the rotation axis on the sky dagrin

in the same module returns the value the eclipse is at an angleto the orbital axis, as defined by Ohta
5o JutFiat s etal. (2005).
Fna+ Fnz + Fa
whereFs = (3(Fi1+ Fiz) and (3 is a value for “third-light' 25 Doppler boosting
specified by the user. The flux-weighted radial velocity can be used to correct ihe a

parent flux for the ffects of Doppler boosting, which increases
the flux by a factor (X v;/c)3, and the Doppler shift, which re-
duces the flux by a facter (1-v;/c)? that depends on the wave-
Integrating the illumination pattern on one star by the ott@ length gradient of the stellar spectrum (Maxted et al. 2086}
resultin severe numerical noise in the light curve due tatizgp radial velocitiesy, < c the two dfects can be combined into a
boundary between the illuminated and non-illuminated hemingle factor 1- B%, whereB = 5 + 4" is calculated sep-
spheres if a sparse integration grid, must be used, e.glaifa arately (Bloemen et al. 2011), or can be set to zero to ignore
number of approximate light curves need to be calculated+o ¢hese &ects. The flux-weighted radial velocity accounts for the
plore the parameter space of a least-squares fitting proldlem eclipse of the star and s 1c can be used to model the photo-
avoid this problem a simplified model for the reflectioffieet metric R-M dfect (see section 3.5, below). Using centre-of-mass
is available which is useful in cases where the amplitudé&ef tradial velocities with Doppler boosting gives inconsistesults
reflection dfect is low. In this simplified model the flux of eachfor the eclipses in the light curves (because the photooi@tiv

star increased by an amount effect is not included) and so is not recommended.

2.7. Simplified reflection effect

1 1 ., . L
Ri2 = a1200,21)(Ri2/d)? 5+ Esm2|sm2 praxsinisingral, o o spots

where the positive and negative cases of the final term appiye efect of circular spots on the light curve of a spherical
to stars 1 and 2, respectively. During the eclipse this dyantstar with quadratic limb-darkening have been calculateBksr
is reduced by a factor equal to the fractional loss of flux fron994a) and the resulting integrals are provided in corarni
the eclipse star. This is the same model for the reflection &brm in the appendix to that paper together with an erratukefE
fect used iresor (Etzel 1981) except thasor includes a factor 1994b). | use these equationsdhlc to calculate the variation
(Ri2/@)? in “geometric reflection cd@icient” whereas | use the in flux from each star due to spots in the model. In cases where
factor (Ry.2/d)* explicitly in the model. the limb-darkening law used is not quadratic | set the limb-
darkening cofficients used in the spot model so that it matches
the actual limb-darkening law used at the poijats 0,0.5 and
1. In cases where the spot is eclipsed by the companion | eeduc
If the semi-major axis of the binary orbi) is set to a non-zero the dfect of the spot by a factor equal to the fraction of the spot
value then the radial velocityy) of each star is calculated. Thecovered by the companion. The position of the centre of the sp
centre-of-mass radial velocity is calculated from the Ieejpin  on the sky is calculated based on its longitude and latitmdé®
orbit of the star and can be obtained using the routwé the triaxial ellipsoid and its shape is calculated by approXingthe
ellc python module. A check is made in the program for a nosurface of the triaxial ellipsoid by a sphere with the santus
zero value ofa and an orbital period valuB, = 1, which is as the distance from the centre of the spot to the centre of the
assumed to be an error in input becaBge- 1 is used to denote ellipsoid. The calculation of the eclipsed area is strdayiatard
that the input times for calculation are in phase units, gsds if it is not on the limb of the star because the projected sbape
required for the correct calculation of the radial velocity the spot and the companion are both ellipses. The calcnlatio
The default behaviour in the current versionmaf is to re- more dificult if the spot intersects the limb of the star because
turn radial velocity values that are weighted by the flux front involves the intersection of two ellipses and a circlee&rea
every point on the visible surface of the star (“flux-weighta- required can be found as the sum of various ellipse segments
dial velocity”). These are calculated in the same way as the fland triangles so is quick to calculate, but this does recaginee
values used for the calculation of the light curves. Thequrgid effort to implement as there are approximately 9@edent pos-
rotational velocity at every point on the star’s surfacelsarcal- sible configurations for the two ellipses and the circle thast
culated using the asynchronous rotation fackes; = Pa/Prot, be considered.

2.8. Radial velocity

Article number, page 5 of 16



A&A proofs:manuscript no. ellc-s2

1.002 ‘ ‘ ‘ ‘ ‘ radii (Ry = 0.1R,). The semi-major axis of the orbit is K}
1.000 and the inclination of the orbit is = 90°. The quadratic limb-
0.998} 1 darkening cofficients aree; = 0.1 andc, = 0.3. The eccentricity
X 0996} 1 ofthe orbitise = 0.1 and the longitude of periastronds= 60°.
i 0.904] 1 The next panel down in this figure shows th&elience between
0.992¢ 1 this light curve and light curves calculated usiablc with a
0.990¢ 1 grid size of 8 (“sparse”), 16 (“default”) or 24 (“fine”). Theou-

0.988

els agree to better than 10ppm at all phases of the tranghdor
sparse grid and to within a few ppm for the default and finegyrid
This level of precision is more thanfigient given the level of

—0.04 —0.02 0.00 0.02 0.04

15t — default

either a Roche potential or a polytrope with= 1.5 to calculate

£

S oll-- fine | systematic error due to astrophysical phenomena not iadlird

§ st sparse o e 1 these models. To give just one example, the next panel down in
g o \}*"V Fig. 2 shows the diierence between the same light curve calcu-
£ 5 1 lated withbatman and light curves calculated usird1c using

5 ]

X

=}

the shape of the planet assuming that the mass raiie-i6.001.

~0.04 ~0.02 0.00 0.02 0.04 The diference of about 15ppm seen in this panel is a due to

= 2 \ \ —— \ \ the systematic error in light curve calculated withitman that
g 15| — Polytrope 1 arises from using a sphere to approximate the shape of tidal
o = Roche 1 disorted planet. The current versiontaftman does not include
§ ol | the option of calculating light curves for non-sphericaimets.
3 sl | This systematic error can result in the measured radiughein
5 -10| 1 low by 1-10% for a typical hot Jupiter systems (Leconte et al.
ERt 1 2011a,b).
I — 002 0.00 0.02 0.08 | also testecellc against the results fromatman for the

80 ‘ ‘ ‘ ‘ ‘ same planetary system viewed at an inclinatioa 87°. The

sof[ — i=s7"] | results shown in the lower panel of Fig. 2 shovfeliences of

4o} {1 about 50ppm between the two light curves during ingress and

20¢ 1 egress. Inspection of the source codedfatman shows that the

time of periastron relative to the time of mid-transit isatdated
:ig: | using an expression that assumes 90°. This approximation
6ol | is not justified at this level of precision for inclinations: 90°.
—80 This problem was fixed ibatman version 2.0.0.

Flux difference [ppm]
o

—6.04 —6.02 0.60 0.62 0.b4
Time from central transit

) ) ) ~3.2. Double-partial eclipses

Fig. 2. Upper panel Light curve for a planet on an eccentric orbit

with i = 90° calculated usingpatman. Upper-middle panel Difference If two stars in an orbit with ~ 90 are of similar size and one of

between the light curves calculated usiellc for a spherical planet the stars rotates close to its break-up velocity, then thiellyaro-

with the grid sizes indicated and wittatman for the casé = 90°. tating star will be significantly oblate. This makes it pbésifor

L ower-middle panel Difference between the light curves calculateghe eclipse of this oblate star to produce a configurationl laca

usingellc W|t_h the default grid size _for planet descrlbt_ad by either adouble-partial eclipse” in which the poles of the oblatarsire

Roche potential or a polytrope with index= 1.5 and withbatman eclipsed while the equator is visible on both sides of thevisto

for the casé = 90°. Lower panel Difference between the light curves

calculated usingllc with the default grid size and a spherical plane'iOtating star. Theféect on the light curve of this configuration is

and withbatman for an eccentric orbit witti = 87°. The diference in guite subtle, but the Rossiter-McLaghlin (R-Mject during the
flux of approximately 50ppm during ingress and egress is¢baltof double-partial eclipse has a characteristic large andi@pnge
an inaccurate estimate for the time of periastron irttivenan model. ~ from positive to negative velocity at the mid-point of théipse.
To test whetheellc can reproduce thisfiect correctly | com-
pared light curves and radial velocity curves for a hypadtaébt
3. Examples binary system with double-partial eclipses calculatedhwitlc
to those calculated using Nightfajwichmann 2011). The re-
sults are shown in Fig. 3. The details of these simulatioms ca
be found in the information provided with the software pagka
which includes the python scripts used to generate thisguidt
the configuration file for Nightfall. There are smalffgrences
between the light curves and radial velocity curves gepdrat
3.1. batman by the two models, but overall the agreement betweed the two
models is very good. The rapid change from positive to negati
Kreidberg (2015) has developed a python package for maglelifelocity at the mid-point of the eclipse is seen very clearljne
exoplanet transit and eclipse light curves with an algarithat  radial velocity curve generated lejt1c.
provides very high numerical precision. | have usedman to The calculation of light curves in 11 bands and radial ve-

evaluate the numerical precision of the light curves caled |ocites at 8192 phase points using Nightfall version 1.8@sa
usingellc. The upper panel of Fig. 2 shows the light curve cal-

culated usingatman version 2.1.0 for the case of the transit of nhttp://www.hs.uni-hamburg.de/DE/Ins/Per/Wichmann/
a spherical star by a spherical planet with a radius of Ollaste Nightfall.html

In this section | test the reliability oé11c by comparing it to
other binary star models and show hedlc can be used to
analyse light curves and radial velocity observations fiips-
ing binary star systems using Monte Carlo methods.
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Fig. 3. Comparison of the light curves and radial velocity curvesgdinary system showing double-partial eclipses compusiag Nightfall
(dashed lines) anell1c (dotted lines).

2.3s on a MacBook Pro with a 2 GHz Intel Core i7 CPU. This the same as the planet. This gives a good test of the nuaheric
time taken to calculate a lightcurve in a single band and fatadstability of the algorithm used to calculate the intersatdibe-
velocity curves withellc and to generate the plot on the samiveen the projected edges of the spot and planet. The raflius o
machine is 2.5s. | also attempted to use Nightfall to gereaatthe other spot is a factov2 larger. The dimming factor for both
similar plot for an eccentric orbit but found that there isumb spots is 0.5. Both stars are on the stellar equator and age sep
in this version of the program that inverts the shape of td Rrated by an angle of 80The results are shown in Fig. 4. A few
effect for eccentric orbits. The execution time in this case wasthe points in the light curve calculated using KSint ardlpa
113.4s. This is much slower than the calculation for theweircaffected by numerical noise, e.g., the low points in the ranges
lar orbit because Nightfall uses a grid of points in 3-dimenal 19 .88—19.95 days and 23.86 —23.94 days, and a few high points
space to represent the stars. There is a large overheade®qyiear the first and last contact points of some transits. Byrash

to re-calculate the positions of all the points on this gtié@ch the light curve calculated usireg 1c shows very little numerical
phase point to account for the varying potential in an ec@entnoise. In other regions of the light curve, the agreementéen
orbit. There is no significant increase in the execution tfore the two models is excellent.

ellc for an eccentric orbit compared to a circular orbit in this

case.
3.4. KPD 1946+4340

3.3. KSint KPD 1946+4340 is a subdwarf-B star in a short-period binary
system P ~ 0.4d) with a white dwarf companion (Bloemen

KSint is a fast numerical algorithm for accurately calcingt et al. 2011). This configuration together with the very higlalg

light curves for transiting extrasolar planets orbitingted stars ity light curve of this binary obtained by the Kepler mission

(Pal 2012; Montalto et al. 2014). The model assumes that #ake KPD 19464340 a useful test case for the calculation of

star and planet are spherical. As willc, the spot profile is the ellipsoidal &ect and Doppler boosting witel1c. | down-

defined from the interception of a cone with its vertex at thie-c loaded all the observations of KPD 1946340 obtained with

ter of the sphere with the surface of the sphere. | have elskd  Kepler in short-cadence mode from the Kepler data arétene

and KSint version 1.0 to calculate the light curve for a sphesed the flux values provided in the colummsap_rLux of the

cal star with a rotation period of 23.9 days with two dark spoarchive data tables to create the phase-binned light cliwers

and a planetary companion on a circular orbit with a period #f Fig. 5. This phase-binned light curve is formed from 1 060 1

1 day and an inclination= 90°. The radius of the planet is 0.1photometric measurements from Kepler excluding flagged dat

stellar radii R, = 0.1R,) and the semi-major axis of the orbit ispoints and a few obvious outliers. The ephemeris used to cal-

2.765R,. In reality a planet on such a short-period orbit wouldulate the phase is from Bloemen et al. (2011) convertedeto th

be appreciably non-spherical, but | have assumed that &mepl Barycentric Kepler Julian date (BKJD) time system usedlier t

is spherical for the calculation of the light curve wighlc so Kepler archive data, i.e.

that the results are directly comparable to those calailatth

KSint. The limb darkening cdicients for the quadratic limb BKJD = 5365284813(62)+ 0.40375026(16F,

darkening law are; = 0.4 andc, = 0.3. The angular radius of

one spot £ 5.74°) is set such that its projected size on the sk http://archive.stsci.edu/kepler/
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Fig. 4. Comparison of the light curves for a spherical star with twoutar spots eclipsed by a spherical dark body calculasdgellc (thin
line) and KSint (points).

The eclipse of the white dwarf occurs at phase 0. The dhan 20 times as much Kepler data available for this stanirzan
lipsoidal variation due to the tidal distortion of the sdBarst available at the time of the study by Bloemen et al.. A fulllana
by the much-fainter white dwarf companion can be seen ayss will require very careful handling of any systematicoes
smooth variation with a period half that of the orbital perio in the data since the signal being analysed here are very.smal
The Doppler boosting of the light from the sdB star is also ofhis analysis is beyond the scope of this description of ¢fie s
vious from the asymmetry in the light curve between phasg 0.®are, but | demonstrate below theltlc can be used to analyse
when its is receeding from the observer and phase 0.75 whehigh-quality data such as these using Monte Carlo techsique
is approaching. Theséfects are only obvious because of the su-
perb quality of this light curve — the rms scatter is appraadety
0.01% and the entire flux range plotted in Fig. 5 is less than 1%

| used the parameters for this binary system from Bloem@ihe photometric R-M ect is essentially the same phenomenon
et al. (2011) to simulate the light curve of KPD 1948340 as- as the spectroscopic R-Mrect measured using the Doppler shift
suming either a Roche potential for the stars or a polytroitie wof stellar spectral lines. The variations in apparent flux thie
indexn = 1.5. Other details of the simulation can be found byesult of Doppler boosting of the light from fiéiérent parts of
inspection of the python script used to generate this figuaé ta rotating star during an eclipse (Hills & Dale 1974). The am-
is included with the software distribution. The simulatéght plitude of the signal is generally very small so there areaio r
curve using the Roche potential gives an excellent matcheo ported detections of this phenomenon to-date. Groot (2048)
light curve at all phases. In particular, the asymmetry anlight  discussed the prospects for detecting this signal usinglaim
curve due to Doppler boosting is very well reproduced when ttions that include limb darkening and obliquity but that leety
orbital velocity of the sdB star (which dominates the flux3ét the oblateness of the stars. Fig. 6 shows a simulation wdihg
to the value measured from its orbital Doppler shift. Using far a pair of white dwarfs in a binary system with parameters
polytrope to describe the shape sdB star results in a workghmasimilar to those used by Groot, i.e. an orbital period of 38id-
to the the ellipsoidal variation, but the parameters usedhis utes,i = 90° and rotational velocities close to their maximum
simulation were based on a least-squares fit to the Keplet ligpossible values. The details of this simulation can be fdund
curve of KPD 19464340 using a Roche potenttial, so it maynspection of the python script used to generate this figuae t
be that a better fit to the light curve can be achieved for a-polg included with the software distribution. To estimate thax-
tropic model by adjusting the other parameters in the mddhés. imum possible size of the photometric R-Mfext Groot com-
would certainly be an interesting exercise now that thenedse pared the light curves for the stars rotating at their brgpk-

5. Photometric R-M effect
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Fig. 5. Phase-binned Kepler short-cadence data for KPD 49380 (points) compared to light curves generated usikiy: using the Roche
potential (solid line) and a polytrope with index= 1.5 (dashed line).

velocity to stars rotating synchronously with the orbit. itns

lar comparison wittkel1lc shows that the dlierences in the light 1.0
curves are completely dominated by the change in shape of 0.9} ,
stars and the change in the surface brightness distribdtien x
to gravity darkening. Instead, to generate the flufedence due = %[ l
to the photometric R-M féect shown in Fig. 6 | calculated the 0.7} .
light curves for stars rotating near their break-up velouwitth o6l |
both prograde and retrograde rotation and have plotteddfalf ' ‘ ‘ ‘ ‘ ‘ ‘
the diference between these results. The shape and amplitud —01 00 01 02 03 04 05 06
the signal are similar to the results shown by Groot. Alsawsho ‘ . 200
in Fig. 6 is the photometric R-MfEect for the same system as- — 1000f . 1 2 150f 1
suming that the sky-projected rotation axis is misaligneth w % % 100F
the rotation axis by an angle= 60°. This light curve was cal- = 200 g 50r
culated for spherical stars because the current versieibt & g 0
does not include misaligned rotation for non-sphericabsta s 2 —Igg:

& —500 E; —150} 4
3.6. GD448 ~0.02 0.00 0.02 ~2005 48 050 052

Phase Phase

GD448 is a non-eclipsing, short-period{®103d) M-dwarf —
white-dwarf binary system (Maxted et al. 1998). This binsyg-
tem shows a reflectiorfiect in the light curve with an amplitude
of about 0.1 magnitudes in the I-band. Fig. 7 shows the I-ba ity in an eclipsing binary with a period of 39.1 minutedheTupper

light curve of GD448 simulated using Nightfall using the pasaneis show the light curve of the binary and the two lowerfsshow
rameters for the binary from Maxted et al. (1998). Ti@&tive the contribution to this light curve due to the photometrid/Reffect.
temperatures of the stars used in this simulation were 1&006h all panels, the solid line is calculated using Roche geonfer stars

and 3 000K, respectively. Further details of the simulatian with rotation axes aligned with the orbital axis and daslieelsl are for
be found by inspection of the python script used to genehége tmodels of spherical stars with= 60°.

figure and other files that are included with the softwareridist

bution. The amplitude of the reflectiofffect is underestimated

in this simulation, partly because the model atmosphera#-av

able in Nightfall are not accurate when applied to a whitedwa

It would be possible to get a better match the observed ampli-

tude of the reflectionféect in GD448 by adjusting the assumed

albedo value in the model from its default value of 0.5. Alstameters in the irradiation model but, as with other lightveu
shown in Fig. 7 are light curves simulated uskiglc with two models, these free parameters need to be adjusted to match th
sets of irradiation parameteky, H; = (0.6,3.5) and (10,1.5). shape and amplitude of the reflectidifieet in the observed light
These values were set “by-eye” to produce a similar shape anulves of actual binary stars. The result of using the siiegli
amplitude to the reflectionfiect calculated using Nightfall. Thisreflection éfect model is also shown in Fig. 7 with the reflec-
demonstrates thafl1c can be used to calculate light curves thaton codficient adjusting “by-eye” to match the amplitude of the
include the reflectionféect using reasonable values for the paeflection défect calculated using Nightfall.

Fig. 6. Simulation of the photometric Rossiter-McLaughlin (R-M) e
t for a pair of white dwarf stars rotating close to theiedk-up ve-
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Table 1. Parameters for the eclipsing binary system J@RI3using

1.06l 0 é 35 | ellc andemcee. Results in the column headed GM2014 are from
o Gomez Maqueo Chew et al. (2014). The secondary eclipse depth
tost 72 N\ | LO,L5 ) AFgec = S;(r2/r1)%.
- a=21
1.04 Nightfall Parameter  This work GM€E2014
X5 1037 r 0.0533+ 0.0004 00534+ 0.0021
w rp 0.00783+ 0.00008 00081+ 0.0004
1.02 i[°] 89.09+ 0.05 8908+ 0.04
e 0.3096+ 0.0007 03098+ 0.0005
101 w[°] 2789+ 0.03 27885+ 1.29
AFsec 0.00749+ 0.00018 000737+ 0.00024
1008 | | | | Ky [kmy/s] 1587+ 0.02 1584+ 0.01
-0.2 0.0 0.2 0.4 0.6
Phase

Fig. 7. Light curves of the short-period M-dwarf — white-dwarf bipa Standard deviation of parameter values in the chain exuofyithie
GD448 simulated using Nightfall and usied1c with two sets of heat- first 500 steps of each walker. The joint posterior probgilis-
ing/iraddiation parametetdo, Hy, as indicated, and also using a simplitributions for the parameters are shown in Fig. 9. Furthéaitie
fied model of the reflectionfeect witha = 2.1. of the analysis can be found by inspection of the python scrip

used to generate these figure that is included with the sodtwa
3.7. 1ISWASP J011351.29+314909.7 distribution.

“ ' ' The total number of chain steps is 350000 and the accep-
1SWASP J011351.2814909.7 (J011831) is a metal-poor tance fraction for each walker is 0.5 so the number of simu-
([Fe/H] = —0.40+ 0.04), solar-type star eclipsed by a low-mastted data sets calculated to produce these resuisrig0 000.
M-type dwarf in a binary with an orbital periodl ~ 143days The calculation took 17 minutes using 4 threads on a Mac-
and an eccentric orbie(x 0.3). This eclipsing binary was dis- Book Pro with a 2 GHz Intel Core i7 CPU. For comparison,
covered using photometry from the WASP project becauseGMC+2014 used a Linux cluster with over 6,000 processor
shows a transit in the light curve with a depth of about 2.5%0res and a peak performance of roughly 24.5 TFLOPS to sam-
Gémez Maqueo Chew et al. (2014) (GM2014, hereafter) have ple 36 972 combinations of four parametersffective temper-
presented a thorough analysis of this binary system basedagie ratioT1/T2, r1 andrs) using the Wilson-Devinney binary
additional photometry at optical wavelengths through thie pstar model within the PHOEBE software package (Prsa & Zwit-
mary eclipse (transit) from three instruments (NITES, O a ter 2005; Wilson 1979). They did not include the WASP and
BYU) and J-band photometry of the secondary eclipse obdain8I TES photometry in their analysis. The computation of 10 00
with the FLAMINGOS instrument and Kitt Peak National Oblight curves with this cluster took about 6 hours (Hebb, priv
servatory (KPNO). Full details of these observations arergin - comm.)

GMC+2014. The agreement between my results and those of GRO%4

| have use@11c to analyse these observations of J0£38. is excellent and the precision of radius measurements fexs be
To explore the model parameter space | usedee (Foreman- much improved. The small change in the valuekafmay be
Mackey et al. 2013), a python implementation of #ire invari- the result of an fiset between radial velocity measurements ob-
ant Markov chain Monte Carlo (MCMC) ensemble sampler. THained with two diferent instruments that has not be included in
free parameters in the fit werg andr, — the radii of the stars My analysis. Itis beyond the scope of this paper to intethreete
relative to the semi-major axis of the binary; the inclination, results (which are consistent with those from GM&D14) and
fs = vesinw) and f. = vecosw), S; — the surface bright- further analysns is requm_ad to determine the sens_ltlvft;he_}se
ess ratio in the J-band, am — the semi-amplitude of the pri- results to important details such as the adopted limb-atemke
mary star’s spectroscopic orbit. The eccentricity andraeigon codficients. Nevertheless, it is clear thetlc m.akes it feasible
of the orbit are described by the parametéysind f. because t0 employ Monte Carlo methods to analyse light curves and ra-
these have a uniform prior probability distribution. Unifopri-  dial velocity data for eclipsing binary stars and that itsumuch
ors were also adopted for the other parmeters in the analy&éter than other binary star models when applied to birtarg s
There are 7 free parameters and | used 50 walkers with 108ith eccentric orbits.
chain steps to calculate their posterior probability disttion.
To speed-up the calculation | only included WASP data withi§18 HD 23642
0.02 phase units of the transit in the analysis. The NITE&lig™
curve was observed at high cadence so | usElt to calcu- The ellc package includes a python script called
late this light curve for 1-in-10 of the observed data poamsl ellc_emcee.py that can be used to analyse a single light
then used an option implementedehl c to interpolate the light curve using thellc binary star model. The best-fit light curve
curve to other times of observation. The walkers were iiggal and the posterior probability distribution of the free pa&ders
using randomly selected parameter values from Gaussitiit disn the model are calculated using thecee algorithm. The
butions with mean and standard deviation set from the ®sudtript prompts the user for the values of the fixed and free
of some test runs oémcee. The convergence of the chain waparameters and any priors to be imposed on the parameters
judged “by-eye” by inspection of the parameter values ard tbf the problem. Output file names and other options such as
log likelihood as a function of step number. The best-fit ealuthe grid size can be set using command-line options. A log
and standard errors of selected model parameters and derfile is produced that includes a copy of the user input that can
values given in Table 1 were calculated from the median ambdified and then used directly as input into subsequent runs
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Fig. 9. Parameter correlation plots for my fit usia@lc to the radial velocity data and light curves of the eclipdingary J011331 from Gémez
Maqueo Chew et al. (2014) (GM2014). The adopted parameter values from GNGQ14 are indicated by lingints in each panel. The
contours in each panel show the 0.5-, 1-, 1.5- and 2-sigmfidemte regions for each joint parameter distributionsn®abutside the 2-sigma
confidence region are individual steps from tieee MCMC chain.

of ellc_emcee.py, €.9., for reanalysis of the same light curvéhe fit, interpolate the model across data, or to use nunierica
with a different set of free parameters offdient starting values interpolation to account for the exposure time are all setgus
for free parameters. Up to 2 spots per star can be includedaiminteger flag value in the input light curve data.

the model. Limb-darkening and gravity-darkening are djesti .
using the @ective temperature and surface gravity of each 10 demonstrate some of the capabilitiesedfic_emcee. py
star and the metallicity of the binary system. These pararset! have used this script to analyse the Kepler K2 light curve of
are then used to look-up the limb-darkening fiogents for HD 23642._‘I’h|s is an eclipsing binary in the P_Ielades_staste_lu

a 4-parameter limb darkening law and the gravity-darkeniH‘%th an orbital period of about 2.5 days showing partialfgssis
coeficients for each star using linear interpolation in the tabulP€tween two A-type stars (Southworth et al. 2005; David et al

tion of Claret & Bloemen (2011). Options to exclude data frord016)- | used the Kepler K2 data corrected for systematic er-
rors using the algorithm of Vanderburg & Johnson (2014) for
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analysis can be found by inspection of the files included & th
sub-directoryexamples/ellc_emcee that is included with the
software distribution.

The agreement between my results and the analysis by David
et al. (2016) usingiktebop (Southworth 2013) is very good.
There is a slight dference between the surface brightness ratio
derived here and by David et al. (2016), partly becaide de-
fines this ratio for the stars when viewed at conjunction,nebge
the ebop model used by David et al. defines this quantity at
quadrature.

0.00 fine it

0.05

0.10

4. Caveats

4.1. Radius and volume

o
=
w1

The values oA, B andC that are used to specify the shape and
size of the triaxial ellipsoid used in the calculation of frght
curves are set by requiring that the volume of the ellipssid i
equal to the volume of a sphere with a radRspecified by
the user, i.eABC = R®. For highly-distorted configurations this
means that the volume of the star will not be the same as the
volume of the triaxial ellipsoid used to approximate its [sha
The correct way to deal with thisfliérence will depend on the
contextin whichellc is being used. For exampledfilcis be-
ing used to perform a least-squares fit to a total eclipse tdra s
by a highly-distorted companion, it may be useful to caltila
a correction based on the ratio of the projected area of & tria
ial ellipsoid and an equipotential in the Roche potentialmaéd
at mid-eclipse. Comparing the results obtained usihgc for

‘ * : * ] spherical stars to those obtained for a Roche potential ohya p
—0.02 -0.01 0.00 0.01 0.02 trope (as was done in Fig. 2) will give an upper limit to theesiz
Phase of any correction of this sort and so enable the user to déterm
if any correction is necessary.

Magnitude

0.20

0.25

0.30

0.35

Fig. 8. Observed light curves for the eclipsing binary J0£33 (points,
Go6mez Maqueo Chew et al. 2014) compared to light curves garter

usingellc for the parameters shown in Table 1 (solid lines). 4.2. Radial velocities

The flux-weighted radial velocity calculated usirdlc may
. : ) : . ._not accurately reproduce high-precision radial velocigasure-
this analysis: To speed-up the calculation | used InterlOOI‘T{'OEnents because somffexts are not included and the definition of

tS%&2&3%%2@;;2%2@:{5;?;28%?;3?&3!63;tg?m?izé,, the Doppler shift is am_biguous if_th_e line profiles_ that areame
size (N = 4) for the numerical integration of the flixes frorrfured are not symmetric flects missing fronellc include the

: : . . __tranverse Dopplerféect and gravitational redshift. Asymmetric
both stars. For observations through the eclipses nunhénica line profiles cgﬁ be caused t?y convective blue-shift ir>1/ ctaobks
tegration using 5 integration points was used to accourthir the R-M dfect, pulsations, star spots, and instrumentésoss,

integration time of 1766 s. The residuals from a preliminiry . e ; :
to the data show that the scatter around the best fit is quite vg Fhe line profile is asymmetric then iierent methods to deter_—
mine the Doppler shift will give dferent results, e.g., a best-fit

able with time — there is a block of very good data with SII!ahthaussian profile will give a elierent result to a value based on

noisier data either side — so | set the estimated standasdafrr the maximum of a cross-correlation function. The size okéhe
each observation to one of three values according to thedime ; . . ;
ystematic errors will be comparable to the line-width aad c

observation. The values were choosen to achieve a redﬁce& :
value for the best fit model close to 1. | excluded 10 discrEpa[(I?'{:ley befgl)ropeélyhaccourr]]t%d fordby modelling %Oth tg.elobs]er\_/e
observations from the analysis. The MCMC chain was calcu- profile and the method used to measure the radial vglocit
lated using 40 walkers and 5000 steps. This calculation 5&ok
minutes using 8 threads on a MacBook Pro with a 2 GHz Inted.3. Star spots
Corei7 CPU. . . '
The best-fit parameters and their standard errors are shaj llght curves for stars with spots are calculated for adfixe
in Table 2. These were calculated using the median and st&?-ue of the inclinationif) and are then corrected for thifeets
dard deviation of approximately 145000 values in the MCM' the eclipses. This means that light curves for spottets sta
chain after discarding the firSloum-in points from each walker, In binary systems with varying inclination will not b_e redie.
whereNsum_in is 4x the largest autocorrelation length scale of N€re are several approximations used to enableffivieat cal-

the chains for all the parameters for each walker. The beS,t,Qﬁ”ation of light curves and radial velocities for starshwépots

light curve model is shown in Fig. 10 and the distributions rﬁ‘ ellc. Detailed modelling of spotted stars is a problem well

selected parameters are shown in Fig. 11. Further detaiteof 28y0nd the scope of what can be done veliic or any other
binary model that uses “dark circles” to approximate the €om

3 https://archive.stsci.edu/k2/ plex phenomena associated with magnetic activity on cao$st
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Table 2. Parameters for the eclipsing binary system HD 23642 usiig_emcee. Tig; and Tq, are the parameters used to interpolate the limb-
darkening cofficients for stars 1 and 2 from the tabulation of Claret & Bloar(@011). The time of primary eclipsk,is given as BJD-2457000.

Parameter This work David et al. (2016) Notes
to 119.52218+ 0.00006 119.5220% 0.00002 BJD-2457000 for mid-primary eclipse.
P [days] 2.461136% 0.0000048 2.4611344 0.0000005
ri=Ry/a 0.1435+ 0.0032 0.145@- 0.0023
r, =Ry/a 0.1274+ 0.0050 0.1262 0.0037
Sk, 0.4756+ 0.0053 0.4852 0.0068 Surface brightness ratio
i[°] 78.28+ 0.15 78.21+0.11
/0, 0.38+ 0.05 0.355+ 0.035 Both studies impose pri6s/¢, = 0.354+ 0.035
a1 =0.35 0.117 0.002 Reflection cdg&cient
a; 0.344+ 0.008 0.407% 0.007 Reflection cd&cient
Tiga [K] 11600+ 900 — Limb-darkening look-up parameter
Tig2 [K] 8150 + 160 — Limb-darkening look-up parameter
"TT [107€] 16.4+ 0.7 — Linear trend in magnitude
o [mmag] 0.67 0.67 Root mean square residual
-0.02 -0.02

0.00} , 0.00 - -
— 0.02 0.02 1
g 0.04 0.04 _ |
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Fig. 10. Observed light curves for the eclipsing binary HD 23642 jp®)i compared to light curves generated ustidc_emcee.py for the
parameters shown in Table 2 (solid lines).

Nevertheless, the star spot modekihlc can be used to quani-4.4. Irradiation
tify approximately the likely &ects of star spots on the light

curves of cool stars if the user is aware of the limitationghef
model. No account is made for the irradiation of a star due to thevts o

radiation being re-emitted by its companion. Extreme \&lofe
the parameteld; that determines the pattern of emission due to
irradiation produce numerical noise in the light curvesasuse
numerical integration schemes do not produce accuratésésu
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Fig. 11. Parameter correlation plots for selected parameters frgnfinusing ellc_emcee to the Kepler K2 light curve of HD 23642. The
parameter values from the analysis of David et al. (2016)ratieated by linegpoints in each panel. The contours in each panel show theld,5-
1.5- and 2-sigma confidence regions for each joint parandéteibutions. Points outside the 2-sigma confidence regie individual steps from
theemcee MCMC chain.

the integrand varies rapidly on a scale smaller than thepgpiict  put parameters for whickl1c will not produce reliable results.
separation. Users ofellc are strongly advised to test the results produced
by ellc against other binary star models to check that they are
reliable. Theellc binary star model will be made available as
4.5. Bugs an open-source software project so that users can comribut
its development, submit bug reports and access the latessore
The examples above show theltlc can be used to calculategf the software"
accurate light curves and radial velocity curves for a wilgge
of binary systems. The tests described here have also giigéd
some problems with the current versions of some existingrigin
star models. Similarly, there will certainly be combinatimfin- 4 https://pypi.python.org/pypi/ellc/
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Fig. A.1. The intersection of two ellipses in a configuration that nsake
the calculation of the intersectionsflitult using floating point arith-
metic. The lower panel shows a sketch of an exaggerated \@awthe
intersection region. The dashed lines show the values aridy that
should be obtained by solving the relevant quartic polyradgniDots
mark the intersection points and open circles mark spursoligtions
of both quartics.

guartics will give inaccurate estimates of the positionarof in-
tersections in these cases no matter how good the root-findin
algorithm. This makes it extremelyfficult to find a robust way
to determine if some, none or all of the combinations of roots
correspond to actual intersections, tangent points (whidh
not consider to be intersections in this context), “neasses”
or spurious solutions of the quartics that correspond torict
combinations ok andy.

Most of these problems are the result of the relative orien-
tations of the ellipses, so to find which combinationsxand
y correspond to actual intersections the coordinate systent i
tated by 45, the quartic equations fo¢ andy’ are solved in the
transformed coordinate system, and then apply the inveass-t
formation to the resulting real roots. Only combinationgahd
y that correspond to intersection points or tangent poinisawi
pear in the lists of paired real roots calculated for botlemta-
tions. Since it is not knowa priori which of the two orientations
gives reliable results, this analysis is repeated for @ thirenta-
tion rotated by 60to the first and search for combinationsyof
andy that are common to at least two orientations. The resulting
list of candidate intersection points is then searched tgplid
cates with a tolerance of 1% which are then removed. If only
one candidate intersection point remains then this mustae-a
gent point. If two unique candidate intersection pointsfatmd
a simple test of whether the mid-points between these pomts
the circumference of one ellipse lie inside or outside theeot
ellipse is stficient to determine if one ellipse is tangent at two
points to the other. A similar test can be used to identifytéme
gent point in the case of 3 candidate intersection points.
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