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[ABBREVIATIONS] 

The abbreviations used are: AF, adult female; AM, adult male; Mf, microfilariae; vL3, vector-derived 

third-stage infective larvae; iuMf, intrauterine microfilariae; NF, nodule fluid; AEX, anion exchange; BR, 

Britton-Robinson; ESP, excretory-secretory products; WBE, whole-body extracts; Prx, peroxiredoxin; 

TGF, transforming growth factor; GST, glutathione transferase; MPP, mitochondrial processing 

peptidase; PSP, protein serine-threonine phosphatase; TrxR, thioredoxin reductase; ASP, activation-

associated secreted protein; PAG, protein ambiguity group; PAL, peptidoglycan-associated lipoprotein; 

PGLYRP1, peptidoglycan recognition protein; WSP, Wolbachia surface protein; wOo, Wolbachia 

endosymbiont of Onchocerca ochengi. 
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[SUMMARY] 

In spite of 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important 

neglected tropical diseases, with 17 million people affected. The aetiological agent, Onchocerca volvulus, 

is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and 

blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies 

and the development of novel strategies for disease control and diagnosis. Here, we utilise the closest 

relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes 

and host-parasite interactions within the secretome. We identified a total of 4,260 unique O. ochengi 

proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from 

intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. 

Observed protein families that were enriched in all whole body extracts relative to the complete search 

database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and 

proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, 

the larval stages exhibited enrichment for several mitochondrial-related protein families, including 

members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. 

Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative 

analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of 

transforming growth factor- and a second member of a novel 6-ShK toxin domain family, which was 

originally identified from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 

bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially 

cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle 

highlights its profound complexity and emphasises the extremely close relationship between O. ochengi 

and O. volvulus. The insights provided here provide new candidates for vaccine development, drug 

targeting and diagnostic biomarkers. 
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[INTRODUCTION] 

In spite of 40 years of vector control and mass drug administration programmes, onchocerciasis 

(river blindness) remains one of the most important of the neglected tropical diseases, infecting nearly 

17 million people in sub-Saharan Africa (1). The disease is caused by a filarial nematode, Onchocerca 

volvulus, which resides within subcutaneous nodules and achieves a reproductive lifespan of >10 years 

(2). An adult female worm releases ~1,000 first-stage larvae (microfilariae, Mf) per day (3) , which 

migrate to the skin and eyes, ultimately causing onchodermatitis and ocular pathology. Recent 

estimates of disease burden indicate that 4.2 million people are affected by severe itching, 746,000 

experience poor vision and 265,000 individuals are rendered blind, resulting in a total global morbidity 

of almost 1.2 million years lived with disability (1, 4). 

Historically, vector control was implemented on a massive scale, but the mainstay of current 

control efforts is a single anthelminthic, ivermectin, which suppresses microfilaridermia for several 

months following a single annual dose but does not kill the adult worms (5). However, resistance to 

ivermectin may be emerging in West Africa (6, 7), and this drug is contraindicated in individuals heavily 

co-infected with Loa loa (a filarial parasite co-endemic in Central Africa) due to the risk of severe 

adverse events, such as potentially fatal encephalopathy (8). Two potential adulticidal treatments are 

under evaluation to accelerate elimination efforts: flubendazole, another anthelminthic used primarily 

for veterinary indications (9); and antibiotics such as tetracycline derivatives, which target the obligate 

Wolbachia endobacteria present in all stages of O. volvulus (10). These drugs will have to overcome 

bioavailability and safety issues [in the case of flubendazole (11)] or undergo a significant contraction in 

the duration of the regimen [in the case of doxycycline (10)] before they could be implemented on a 

wide scale. Vaccine development against onchocerciasis has a long history (12), but despite some recent 

breakthroughs with antigens such as a mutated form of cysteine proteinase inhibitor (13, 14), a vaccine 

candidate is yet to reach preclinical development.  
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An equally pressing challenge for onchocerciasis is rapid, sensitive and specific diagnosis of the 

disease in a format appropriate for rural Africa. The classical method, which is to examine skin snips for 

Mf, is far from ideal due to its insensitivity, capacity to cause significant discomfort, and the logistics 

associated with the biosafety of the biopsy punch (15). Immunoassays for O. volvulus antibodies are an 

important tool for monitoring the potential re-emergence of infection following regional elimination 

(16), but they can only be used in young children due to the longevity of the humoral response. Other 

diagnostic approaches include the diethylcarbamazine patch test [based on a hypersensitivity reaction in 

infected individuals (15)] or measuring transmission at the level of the vector by PCR of pooled blackflies 

(17). However, the desirability of a simple, non-invasive test to determine if an individual harbours one 

or more viable adult nematodes has spurred the hunt for onchocerciasis biomarkers in body fluids such 

as urine (18). 

Our understanding of filarial genomics and molecular biology has been shaped largely by the 

publication of the Brugia malayi genome (19) and follow-up studies of its transcriptome (20-22), 

secretome (23-25) and structural proteome (26). This species is geographically restricted cause of 

lymphatic filariasis in humans, but is also popular as a laboratory model, as it will complete its lifecycle in 

jirds and will undergo limited development in mice (27). Furthermore, its availability from a central 

facility in Athens, Georgia, has greatly facilitated genomic and post-genomic studies on this parasite 

(28). However, B. malayi differs greatly from O. volvulus in its much shorter lifespan, location of Mf 

(which circulate in peripheral blood rather than migrating through the skin), and the lifestyle of the adult 

worms, which are located in the lymphatic vessels rather than nodules (27) and do not become heavily 

accreted with host material, unlike O. volvulus (29). The number of available filarial genomes has 

expanded recently with the publication of draft assemblies for Loa loa (30), the canine heartworm, 

Dirofilaria immitis (31), and the release of an unpublished O. volvulus genome assembly by the 

Wellcome Trust Sanger Institute 
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(http://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index). Nevertheless, RNA and 

protein expression in Onchocerca spp. have yet to be explored in a high-throughput manner. 

Here, we utilise the closest relative of O. volvulus, the bovine parasite O. ochengi (32, 33), to 

perform the first global expression study of an Onchocerca spp. across the major stages of the lifecycle 

(Fig. 1). For the past two decades, O. ochengi has been exploited in its natural host as an advanced 

screen for drug (34) and vaccine development (35), and has also revealed fundamental insights into the 

symbiosis between filariae and Wolbachia (36, 37). We show that the proteome of O. ochengi exhibits 

both qualitative and quantitative dynamic changes during development and that the protein families 

undergoing regulation have almost identical orthologs in O. volvulus. Furthermore, we quantify several 

hundred host and parasite proteins in fluid derived from O. ochengi nodules (Fig. 1), revealing the 

presence of a novel vaccine candidate (a 6-ShK-domain protein), homologs of transforming growth 

factor (TGF)-, and bovine antimicrobial proteins that probably derive from neutrophils. A key 

unexpected finding is that the many of the protein families exhibiting stage-specific enrichment across 

the O. ochengi lifecycle are associated with mitochondria, suggesting regulation of energy metabolism 

during development. These data provide a substantial new resource for the development of new 

vaccine, drug and diagnostic candidates for this chronically neglected disease. 

 

EXPERIMENTAL PROCEDURES 

Parasite material 

Intradermal nodules were excised from the skin of cattle slaughtered at Ngaoundéré abattoir, 

Adamawa Region, Cameroon, and dissected immediately in PBS to obtain adult males (AM) and adult 

females (AF; Fig. 1); or were fixed in 50% ethanol. The AM were frozen at -80°C, while an incision was 

made in the body wall of viable, gravid AF and the uteri were carefully exposed. The uteri were 

punctured and the AF were transferred into RPMI medium (supplemented with 200 U/ml penicillin and 

http://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index
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200 g/ml streptomycin) and incubated at 37°C. Periodically, supernatant fractions were removed from 

the AF cultures, spun at 300 g for 10 min, and intrauterine microfilariae (iuMf) were counted and 

assessed for viability (rapid motility). Individual batches displaying >10% sluggish or immotile iuMf were 

discarded. Following a single wash in PBS, iuMf were frozen as dry pellets at -80°C. Skin Mf were not 

collected due to the high prevalence of co-infection with other Onchocerca spp. in cattle from this 

region (38) and the difficulty of reliably separating these species in large numbers. For the collection of 

vector-derived third-stage larvae (vL3), naturally infected cattle from the Adamawa Region were 

identified at local markets and transported to the Research Foundation for Tropical Diseases and 

Environment in Buea. Competent vectors (Simulium damnosum sensu lato) were fed on the bait animals, 

and vL3 were obtained from the blackflies after 7 days (Fig. 1) as previously described (39), except that 

the vL3 were purified on 20% Percoll gradients and stored at -80°C in serum-free Grace’s Insect Medium 

(Sigma-Aldrich) without full cryopreservation. Nodule fluid (NF) was harvested from abattoir-derived 

material as reported previously (40). The AM, iuMf, vL3 and NF were shipped to the UK on dry ice, 

whereas fixed nodules were transported chilled. 

To obtain AF largely free of host tissue, we applied the enzymatic digestion method of Schulz-

Key & Karam (41) to ethanol-fixed nodules, which were incubated at 35°C with orbital shaking at 150 

rpm in 0.05% type I bovine collagenase (Sigma-Aldrich). To remove collagenase and host debris, AF were 

washed in PBS for 2 – 3 hr before any AM were located and discarded. Only young AF that could be 

liberated from all host tissue after 24 hr of digestion were used for proteomic analysis. This reduced the 

proportion of bovine protein identifications from 70% in AF rinsed in PBS without collagenase digestion, 

to ~30% after digestion (data not shown). 

 

Protein extraction 
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Soluble nematode whole body extracts (WBE) were prepared by adding pooled material for 

each O. ochengi life stage to fresh lysis buffer [40 mM Tris, 6 M urea, 1.5 M thiourea, 66 mM 

dithiothreitol (DTT, Sigma), complete protease inhibitor cocktail (Roche)] and a 1:1 mixture of 1 mm 

glass and 0.1 mm zirconia-silica beads. Sample were homogenised using a Mini-Beadbeater (Biospec) for 

four, 1-min cycles at top speed (with 2-min rest periods on ice between cycles). Samples were 

centrifuged at 12,000 g for 10 min (4°C), and both pellet and the supernatant were retained. Protein 

concentrations were determined using the Pierce Coomassie Plus (Bradford) Protein Assay (Thermo 

Scientific). 

 

Experimental design and statistical rationale 

To minimise potential bias and to increase coverage, extracted proteins from each life stage 

were analysed using four methodologies. The soluble fraction was subjected to (a) direct tryptic 

digestion without fractionation, (b) anion exchange fractionation (AEX) of peptide mixtures, and (c) 

geLC-MS of proteins prior to tryptic digestion. Subsequently, the remaining insoluble pellet was exposed 

to trypsin to release additional peptides. Furthermore, three analytical replicates of the global 

(unfractionated) soluble WBE were performed for each life stage. For NF, five biological replicates were 

analysed without fractionation in either protein or peptide space. Only protein identifications supported 

by ≥2 unique peptides present in ≥3 replicate analyses per stage were used for protein abundance 

comparisons in all cases. 

Enrichment of protein domains was assessed using Pfam [EBI, v. 27.0 (42)] as previously 

described (43) using the gathering threshold as a cut-off. Briefly, a hypergeometric test for enrichment 

of Pfam domains in the observed proteome (for identifications supported by ≥2 unique peptides only) 

relative to the complete search database was performed using R (phyper). The Benjamini & Hochberg 
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step-up FDR-controlling procedure was applied to the calculated p-values (44), and enrichment was 

considered statistically significant where p < 0.01. 

 

GeLC-MS 

Proteins were fractionated using a NuPAGE® (Life Technologies) precast 4-12% Tris-Bis gradient 

gel. Each gel lane was cut into 20 slices and in-gel tryptic digestions were performed as described 

previously by Darby et al. (37). 

 

Tryptic digestion 

Soluble proteins (100 µg) were precipitated by addition of an equal volume of ice-cold 30 % 

(w/v) TCA in acetone with incubation at -20°C for 2 hr. Samples were centrifuged at 12,000 g for 10 min 

(4°C) to pellet proteins. Pellets were washed three times with ice-cold acetone and allowed to air dry. 

Protein pellets were re-suspended in 25 mM ammonium bicarbonate, 0.1 % (w/v) RapiGest SF (Waters). 

Insoluble material from the initial worm homogenisation step was washed three times with 25 mM 

ammonium bicarbonate and then suspended in 25 mM ammonium bicarbonate, 0.1 % (w/v) RapiGest 

SF. The NF samples were centrifuged at 12,000 g for 10 min (4°C) and the supernatant retained. The NF 

protein concentration was determined as described above, and the sample was diluted in 25 mM 

ammonium bicarbonate, 0.1 % (w/v) RapiGest SF. All protein samples were digested as described 

previously by Armstrong et al. (43).  

 

Anion exchange fractionation 

Peptides were fractionated by strong AEX chromatography into four fractions using a method 

described previously (45). Peptide samples were neutralised with absolute ammonium hydroxide and 

diluted fourfold in binding buffer [20 mM Britton-Robinson (BR) buffer, pH 11]. The peptide mixture was 
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applied to a stack of six layers of Empore anion exchange discs (Agilent) assembled inside a 200 µl 

pipette tip and centrifuged at 1,000 g for 5 min. The filter was washed with BR buffer and the wash was 

pooled with the flow-through. Peptides were successively eluted from the anion exchange membrane in 

20 mM BR buffer at pH 8, pH 5 and pH 3. Each eluate was desalted and dried as above, before being re-

suspended in a 0.1 % (v/v) TFA, 3 % (v/v) ACN solution for analysis by MS. 

 

NanoLC MS ESI MS/MS analysis 

Peptide solutions were analysed by on-line nanoflow LC using the nanoACQUITY-nLC system 

(Waters) coupled to an LTQ-Orbitrap Velos (Thermo Scientific) MS as reported previously (43). The 

gradient consisted of 3 - 40% ACN, 0.1% formic acid for 45 min (in-gel digests) or 150 min (non-

fractionated soluble and insoluble digests), then a ramp of 40 - 85% ACN, 0.1% formic acid for 3 min in 

positive ionisation mode. 

Peptide samples separated by AEX were analysed by on-line nanoflow LC using the Thermo 

EASY-nLC 1000 LC system (Thermo Fisher Scientific) coupled with Q-Exactive mass spectrometer 

(Thermo Fisher Scientific). Samples were loaded on a 50 cm Easy-Spray column with an internal 

diameter of 75 µm, packed with 2 µm C18 particles, fused to a silica nano-electrospray emitter (Thermo 

Fisher Scientific). The column was operated at a constant temperature of 35°C. Chromatography was 

performed with a buffer system consisting of 0.1% formic acid (buffer A) and 80% ACN in 0.1% formic 

acid (buffer B). The peptides were separated by a linear gradient of 5 – 50% buffer B over 240 min at a 

flow rate of 300 nl/min. The Q-Exactive was operated in data-dependent mode with survey scans 

acquired at a resolution of 70,000. Up to the top 10 most abundant isotope patterns with charge states 

+2, +3 and/or +4 from the survey scan were selected with an isolation window of 2.0 Th and fragmented 

by higher energy collisional dissociation with normalized collision energies of 30. The maximum ion 

injection times for the survey scan and the MS/MS scans were 250 and 100 ms, respectively, and the ion 
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target value was set to 1e6 for survey scans and 1e4 for the MS/MS scans. Repetitive sequencing of 

peptides was minimized through dynamic exclusion of the sequenced peptides for 20 s. 

 

Protein identification and quantification 

Spectra were imported into Progenesis QI (v. 2, Nonlinear Dynamics) and processed as described 

previously (43). Tandem MS data were searched against 13,991 partially revised Onchocerca gene 

models (see Proteogenomics below) and those from the Wolbachia symbiont, wOo [36] (UniProt release 

2014_03; 647 protein sequences); together with predicted proteomes for the bovine host (Bos taurus, 

UniProt release 2014_02; 24,233 protein sequences) and a general contaminant database (GPMDB, 

cRAP version 2012.01.01; 115 protein sequences). The search parameters were a precursor mass 

tolerance of 10 ppm and a fragment mass tolerance of 0.8 (LTQ-Orbitrap Velos) or 0.01 Da (Q-Exactive). 

Two missed tryptic cleavages were permitted. Carbamidomethylation (cysteine) was set as a fixed 

modification and oxidation (methionine) set as a variable modification. Mascot search results were 

further validated using the machine learning algorithm Percolator embedded within Mascot. The 

Mascot decoy database function was utilised and the false discovery rate was <1%, while individual 

percolator ion scores >13 indicated identity or extensive homology (p < 0.05). Mascot search results 

were imported into Progenesis QI as XML files. Relative protein abundance was calculated by the Hi-3 

default method in Progenesis (46), in which the abundance of each peptide is calculated from all its 

constituent peptide ions and the average abundance of the three top-ranked peptides is used to 

calculate the protein signal. Protein abundance was normalised across samples by average intensity 

utilising the Normalyzer software package (47). Dirofilaria immitis excretory-secretory product (ESP) 

spectral data [MGF files obtained from (48)] were searched against the D. immitis theoretical proteome 

(http://parasite.wormbase.org/Dirofilaria_immitis_prjeb1797/Info/Index; 12,857 protein sequences) 

using the Mascot (version 2.3.02, Matrix Science) search engine with settings as described above. Data 

http://parasite.wormbase.org/Dirofilaria_immitis_prjeb1797/Info/Index
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were deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) 

via the PRIDE partner repository (49) with the dataset identifier PXD002889 and 10.6019/PXD002889. 

 

Proteogenomics 

An unpublished draft O. ochengi genome, generated by Gaganjot Kaur and Georgios 

Koutsovoulos of the Blaxter Laboratory, University of Edinburgh, was downloaded from WormBase 

ParaSite (http://parasite.wormbase.org/Onchocerca_ochengi_prjeb1809/Info/Index, version nOo.2.0; 

13,990 predicted protein-coding genes). The genome assembly was obtained from pooled individuals, 

and has a Core Eukaryotic Genes Mapping Approach (50) score of 94.4%. However, it is relatively 

fragmented, comprising 1,818 contigs with a N50 length of 12.7 kb. The Wellcome Trust Sanger Trust 

has released a highly contiguous reference genome for O. volvulus 

(http://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index, O_volvulus_Cameroon_v3; 

12,143 predicted protein-coding genes; 703 scaffolds with an N50 length of 25.5 Mb) based on 

sequencing of a single individual, optical mapping, and extensive manual curation (Matthew Berriman 

and colleagues, unpublished). As split gene models (i.e., a single gene incorrectly annotated as two or 

more genes due to fragmentation between contigs and/or frameshift errors) affect the accuracy of 

protein identification and quantification, the ProteoAnnotator pipeline (51) was used to objectively 

assess the strength of evidence for peptide-spectrum matches against O. ochengi versus O. volvulus 

gene models. 

The O. ochengi gene models from release nOo.2.0 were considered “official” models, whereas 

O. volvulus protein annotations from release WBPS2 were designated as an “alternative” set. In 

ProteoAnnotator, 642 protein ambiguity groups (PAGs) were identified in which the lead protein was 

derived from O. volvulus rather than O. ochengi; thus, these O. volvulus gene models were provisionally 

considered better matches to the MS data and were divided into four groups. In group 1 (n = 271), the 

http://proteomecentral.proteomexchange.org/
http://parasite.wormbase.org/Onchocerca_ochengi_prjeb1809/Info/Index
http://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index
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PAGs contained only O. volvulus gene models, presumably due to unassembled regions of the O. ochengi 

draft genome or errors in assembly and prediction. For group 2 (n = 273), the lead O. volvulus gene 

model exceeded the length of all O. ochengi models in its PAG by ≥10%, which suggests that the O. 

ochengi models were a fragmented subset of the full-length O. volvulus model. In group 3 (n = 30), the 

PAGs contained multiple O. volvulus and O. ochengi gene models and the retained model (from either 

species) was selected by manual review of the position of unique peptides following alignment of all 

sequences in the PAG. Finally, in group 4 (n = 68), the lead protein was an O. volvulus model that was 

<10% longer than O. ochengi models in the same PAG. The search database was revised by adding O. 

volvulus sequences from group 1, replacing existing O. ochengi sequences with O. volvulus models for 

group 2, and amending O. ochengi models or replacing with O. volvulus sequences as appropriate for 

group 3. For group 4, we took a conservative approach and retained the unmodified gene models from 

the cognate genome. This amended database contained a total of 13,991 gene models, of which 572 

were derived from O. volvulus. 

 

Bioinformatics 

Venn diagrams were created using the Venn diagrams freeware 

(http://bioinformatics.psb.ugent.be/webtools/Venn), whereas heat-maps were created using GENE-E 

(http://www.broadinstitute.org/cancer/software/GENE-E) freeware. Functional annotation by Clusters 

of Orthologous Groups was obtained via the WebMGA server (52).The conserved domain structure of 

selected proteins was also interrogated in InterProScan 5 (53); sequence alignment was performed using 

UniProt (Clustal Omega), and sequences were annotated using jalview2 (54). Protein-protein 

interactions were determined using STRING version 9.1 (55). Prediction of classical N-terminal signal 

peptides, non-classical secretion signatures, transmembrane domains, propeptide cleavage sites, N-

glycosylation sites and mitochondrial targeting signals was performed using the SignalP 4.0 server (56), 

http://bioinformatics.psb.ugent.be/webtools/Venn
http://www.broadinstitute.org/cancer/software/GENE-E
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the SecretomeP 2.0 server (57), the TMHMM 2.0 Server (58), the ProP 1.0 server (59), the NetNGlyc 1.0 

server (http://www.cbs.dtu.dk/services/NetNGlyc) and MitoProt (60), respectively. Orthologs to O. 

ochengi proteins in the B. malayi (Uniprot release 2013_08; 11,338 protein sequences), L. sigmodontis 

(http://parasite.wormbase.org/Litomosoides_sigmodontis_prjeb3075/Info/Index; 10,246 protein 

sequences), D. immitis (http://parasite.wormbase.org/Dirofilaria_immitis_prjeb1797/Info/Index; 12,857 

protein sequences)and O. volvulus 

(http://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index; 12,143 protein sequences) 

theoretical proteomes were determined using reciprocal BLAST (61) with a bit score cut-off of 50. 

For phylogenetic analysis of glutathione-domain proteins supported by peptide evidence, O. 

ochengi sequences containing the canonical glutathione transferase (GST) C-terminal and N-terminal 

domains (Pfam identifiers PF02798 and PF00043, respectively) were obtained from predicted protein-

coding sequences available from the WormBase ParaSite. Protein sequences for GSTs from seven 

species-independent cytosolic GST classes (alpha, mu, omega, pi, sigma, theta, and zeta) and to 

glutathione-domain containing proteins belonging to the MAPEG (membrane associated proteins in 

eicosanoid and glutathione metabolism), mPGES2 (membrane-associated prostaglandin E synthase-2), 

CLIC (chloride intracellular channel protein), EF (eukaryotic elongation factors 1-gamma) and metaxin 

families were retrieved via BLAST analysis (61, 62) of the NCBI database at http://www.ncbi.nlm.nih.gov 

(non-redundant GenBank CDS translations, PDB, SwissProt, PIR and PRF, excluding those in env_nr; 

posted date - Aug 13, 2015 2:33 am). Arthropod and vertebrate glutathione-domain protein sequences 

were included in the analysis for comparative purposes as representatives of the intermediate and 

definitive hosts for O. ochengi and other filariae. The GST domain-containing protein homologs were 

subjected to multiple sequence alignment using MUSCLE (63). Phylogenetic bootstrap neighbour-joining 

trees (subjected to 1,000 bootstrap replicates) were produced as PHYLIP output files according to the 

neighbour-joining method of Saitou & Nei (64) within ClustalX Version 2.1 (65, 66). Default settings for 

http://www.cbs.dtu.dk/services/NetNGlyc
http://parasite.wormbase.org/Litomosoides_sigmodontis_prjeb3075/Info/Index
http://parasite.wormbase.org/Dirofilaria_immitis_prjeb1797/Info/Index
http://parasite.wormbase.org/Onchocerca_volvulus_prjeb513/Info/Index
http://www.ncbi.nlm.nih.gov/


15 
 

alignments were accepted using the GONNET protein weight matrices with PHYLIP tree format files 

viewed within the TREEVIEW program (67). 

 

RESULTS 

Overview of protein identifications and comparison with B. malayi 

In this study, we took advantage of the remarkably close relationship between O. ochengi and O. 

volvulus to refine our MS search database using a proteogenomic approach based on gene predictions 

from both species. We identified 4,260 unique O. ochengi proteins across NF and the four WBE 

examined, together with 135 proteins from the Wolbachia symbiont (wOo), representing 30.4% and 

20.8% of the theoretical proteomes, respectively (Fig. 2A and 2B; supplemental Table S1). Both the 

greatest total number and largest stage-specific set of protein identifications were derived from iuMf, 

whereas 16.2% of proteins were shared between all WBE (Fig. 2A; supplemental Table S2). The most 

effective methodology for protein identification, by a wide margin, was fractionation by anion exchange 

(85.4% of nematode dataset), while digestion of insoluble pellets uniquely contributed 5.4% of the total 

(Fig. 2C and 2D). However, the greatest proportion of predicted transmembrane proteins identified by a 

single approach (32.9%) was observed by digestion of insoluble pellets (supplemental Table S1). For 

wOo, 85.9% of all identifications were derived from a single stage (AF) (Fig. 2B; supplemental Table S2), 

which reflects the previously reported dynamics of Wolbachia in filarial nematodes and in particular, the 

large number of bacteria that accumulate in gravid AF during embryogenesis (68, 69). Classification of 

the detected wOo proteins by Clusters of Orthologous Groups, although purely qualitative 

(supplemental Fig. S1), clearly reflected the functional allocation of resources in wOo towards 

translation, post-translational processing and energy conversion, with little representation of coenzyme 

and secondary metabolism. 
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The only large-scale study of a filarial structural proteome published previously involved analysis 

of five lifecycle stages of B. malayi (the same WBE as the current study, plus mature Mf) by very 

extensive (~100 fractions) separation of peptides by strong cation-exchange LC (26). Restricting the 

comparison to the stages common to both studies, this resulted in the identification of 6,697 unique 

proteins (Fig. 3A; supplemental Table S3). Notably, the two studies accorded in attaining the greatest 

number of protein identifications from iuMf, and the least from vL3 (Fig. 3D and 3E; supplemental Table 

S3). Comparisons of orthologous groups revealed that 16.9% of identified B. malayi proteins had no 

ortholog in the O. ochengi genome, which was more than double the reciprocal figure (i.e., 8.1% of 

identified O. ochengi proteins had no ortholog in the B. malayi genome) (Fig. 3A). At the genome level, 

the number of non-orthologous genes in B. malayi is only ~1.4 times greater than the non-orthologous 

complement in O. ochengi, suggesting that Bennuru et al. (26) achieved deeper sampling of low-

abundance proteins. 

To determine whether the protein identifications in each of the shared and unique sets 

exhibited significant differences, we performed a Pfam domain enrichment analysis between detected 

proteins and the complete theoretical proteome of B. malayi (or O. ochengi in the case of non-

orthologous proteins from this species). A single domain, “regulators of G protein signalling” (RGS), was 

overrepresented in the set of B. malayi-only orthologs (supplemental Fig. S2). This was due to the 

detection by Bennuru et al. (26) of all six RGS proteins encoded by the B. malayi genome, whereas only 

two of 14 proteins containing RGS domains in the O. ochengi genome were identified. Interestingly, 

collagens were highly enriched in the set of non-orthologous O. ochengi proteins, especially those 

detected in iuMf only, suggesting a gene expansion in this species or loss of some collagen genes from B. 

malayi. However, most enriched domains (“GTP_EFTU_D2”, “pro_isomerase” and proteasome) were 

shared between the two parasites (supplemental Fig. S2). We conclude that there is no evidence of 
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significant systematic bias between the two studies, although our vL3 dataset is probably restricted to 

the most abundant proteins in this stage. 

 

Protein family domain enrichment analysis 

To identify the protein families that dominated the proteome of each lifecycle stage, we 

performed an enrichment analysis by comparing Pfam domain counts in observed proteins against those 

present in all sequences contained in the Onchocerca search database. A total of 64 Pfam domains were 

enriched in one or more lifecycle stages; although only two, actin and I-set domains, were significantly 

overrepresented in all WBE (p < 0.01; Fig. 4). The I-set domain represents the intermediate module from 

a larger family of immunoglobulin (Ig) domains, which included additional members that were 

significantly enriched in AF and vL3 only (Fig. 4). In total, 28 proteins were identified with I-set and/or Ig 

domains, of which 13 were detected in all WBE (supplemental Fig. S3). 

We found several members of the pleiotropic -galactoside-binding protein family (“Gal-

bind_lectin” or simply galectin; Fig. 4, supplemental Fig. S4) to be enriched in AF, iuMf and vL3, including 

almost identical orthologs (nOo_08682 and nOo_10718) of Ov-GBP-1 and Ov-GBP-2, respectively, which 

are previously described galectins from O. volvulus (70, 71). A more novel finding was the strong 

representation of Pfam domains associated with intracellular trafficking, including Arf, “Adaptin_N”, 

Snf7 and WD40, in AF and/or iuMf (Fig. 4, supplemental Fig S5). However, in a clear example of how the 

Pfam enrichment analysis accorded with classical biochemical studies of filarial nematodes, vL3 was the 

only stage displaying significant overrepresentation of enzymes containing “glyco_hydro_18” and 

“peptidase_C1” domains (Fig. 4). The former group contained chitinases (supplemental Fig. S6A), 

whereas the peptidase domains were found in a group of seven cathepsins (supplemental Fig. S6B). 

Both of these enzyme families are known to be strongly associated with the L3 stage (72-75). A third 

enzymatic domain specifically enriched in vL3 was the Ras superfamily of small GTPases (Fig. 4, 
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supplemental Fig. S6C), which comprises a very large family of regulators and signalling molecules with 

56 members in Caenorhabditis elegans (76). To the best of our knowledge, Ras proteins have not been 

reported to be overrepresented in the L3 stage of filarial nematodes previously. 

 

Redox and detoxification enzymes 

All stages displayed significant Pfam enrichment for one or more enzyme families with roles in 

redox reactions and/or detoxification, comprising proteins with thioredoxin, GST or peroxiredoxin 

(AhpC-TSA/1-cysPrx_C) domains (Fig. 4). Although GST domains were only significantly overrepresented 

in AF and iuMf, two members of this family were widely distributed across all WBE (Fig. 5A). These 

belonged to two different cytosolic GST subgroups: nOo_00341 within the pi class and nOo_09064 from 

the sigma class (Fig. 5B).  

The pi-class GST nOo_00341 is orthologous to OvGST2 that is reportedly the dominant cytosolic 

GST of O. volvulus, abundant in all tissues and life stages (77). In contrast to this single pi-class member, 

we identified several distinct sigma-class GSTs (Fig. 5B), although only nOo_09064 was detected across 

the entire lifecycle. This GST is homologous to OvGST1 from O. volvulus, which has been reported to 

function as a glutathione-dependent prostaglandin D synthase and is novel amongst the GST 

superfamily in containing glycosylated residues (78). The third subgroup of GSTs that have been 

reported from O. volvulus is the omega class, represented by OvGST3, which contains a signal sequence 

and undergoes alternative splicing (79). This GST is the only member of the superfamily that is 

significantly upregulated during exposure of O. volvulus AF to oxidative stressors (80). Moreover, 

OvGST3 exhibits highly restrictive expression in O. volvulus adult worms, in that it localises exclusively to 

the eggshell of developing embryos from the morula stage onwards (79). Interestingly, although we 

detected several distinct omega-class GSTs (Fig. 5B), they were only robustly identified in AF, iuMf, and 

(in the case of nOo_09038) NF (Fig. 5A). This suggests that these GSTs may be expressed during 
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embryogenesis, although further studies would be required to determine if they are found only in the 

eggshell. 

Two canonical GST superfamily domains typically identify GSTs and reside in the N-terminal and 

C-terminal regions (PF02798 and PF00043, respectively). In addition to the cytosolic GST forms such as 

the pi and sigma classes, class-specific C- and N-terminal domains may also occur in other functionally 

distinct and unrelated proteins that may lack classical glutathione-conjugating activity, including the 

mPGES2 (81), CLIC (82), EF (83), and metaxin families (84). The single EF family member identified in the 

current study, eukaryotic elongation factor 1-, is essential for delivery of aminoacyl tRNAs to the 

ribosome and was present in all WBE as expected (Fig. 5A). However, we also identified seven proteins 

that contained a specific GST-like C-terminal domain (PF14497), including five from the metaxin family 

that were expressed in adult worms and iuMf (Fig. 5A). These represent components of the preprotein 

import complex of the mitochondrial outer membrane; although their function remains obscure (84, 

85). The other proteins containing domain PF14497 were prostaglandin E synthase-2 from iuMf only and 

a CLIC family member, chloride intracellular channel EXC-4, detected in all WBE except vL3 (Fig. 5A). The 

former is a microsome-associated enzyme with a broad specificity for thiol cofactors (81), whereas the 

latter is essential for the formation and maintenance of correct tubular architecture in the excretory 

canal of C. elegans (86). 

Peroxiredoxins (Prx; also known as thioredoxin peroxidases, TPX) are cysteine-dependent 

antioxidant enzymes that play a major role in the scavenging of reactive oxygen and nitrogen species 

(87). In O. volvulus, Ov-TPX-2 is a member of the Prx1 family of typical 2-Cys Prxs, and is expressed from 

the late L1 stage in the vector through to adult worms, where it is associated with the body wall, 

intestine and uterus (88). Embryos and Mf of O. volvulus do not express Ov-TPX-2, but are “bathed” in 

this protein in utero, and it can still be detected on the Mf surface after birth (88). The O. ochengi Prxs, 

nOo_08778 and nOo_10285, are almost identical orthologs of Ov-TPX-2, while nOo_02155 represents a 
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closely related Prx1 isoform with an N-terminal extension of ~40 amino acids. In accordance with the O. 

volvulus data, we observed these Prx1 proteins in all WBE, and two isoforms were also significantly 

enriched in NF (Fig. 4; see Secreted Onchocerca proteins in nodule fluid below). A fourth Prx1 family 

member, OVOC4328, was only identified from AM extracts and in common with Bm-TPX-1, contained a 

predicted N-terminal mitochondrion-targeting domain (89). Indeed, the C. elegans ortholog of 

OVOC4328, PRDX-3, has a key role in the detoxification of mitochondrial hydrogen peroxide generated 

by the electron transport chain (90). We also identified a single member of the Prx6 family (composed 

predominantly of 1-Cys members), which is orthologous to OvPXN-2 from O. volvulus (91). As reported 

for O. volvulus, this was detected consistently throughout the lifecycle (91). 

Significant enrichment for thioredoxin domains was apparent in AF, iuMf and vL3 (Fig. 4), 

although most of the 14 proteins detected that contained these domains were also identified in AM. 

Orthologs for two of these proteins (OVOC4952 and nOo_05700) included a protein disulphide 

isomerase from O. volvulus (92) and DPY-11 from C. elegans (93), respectively. Both of these proteins 

are localised to the hypodermal syncytium (as well as iuMf in O. volvulus) and are thought to have a role 

in the catalysis of disulphide bond formation in cuticular collagens (92, 93). Furthermore, an ortholog of 

OVOC4952 was identified on the surface of AF in L. sigmodontis, although not in ESP (43). Two 

additional proteins detected in all WBE (nOo_01735 and OVOC82) were orthologs of a bi-functional 

protein disulphide isomerase/transglutaminase from Dirofilaria immitis that has been characterised 

experimentally (94). The transglutaminase activity may be required to form the covalent -(-glutamyl) 

lysine isopeptide bonds that are also present in nematode cuticles (94). 

 

Mitochondrial proteins 

Mitochondria are dynamic organelles that constantly undergo fission and fusion depending on 

the energy requirements of the cell and levels of oxidative stress. We identified a number of proteins 
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involved in mitochondrial fission and fusion among the “dynamin_N” Pfam group that was significantly 

enriched only in iuMf (Fig. 4). These included FZO-1, a “mitofusin” that is required for the formation of 

tubular mitochondrial structures in the body wall muscle cells of C. elegans (95); and EAT-3, a second 

mitofusin which is essential for optimal ATP production and resistance to damage caused by free 

radicals (96). Recently, experiments utilising C. elegans mutants have demonstrated a major role for 

FZO-1 in the rate of growth of L1 and in energy metabolism as measured by oxygen consumption (97). A 

third dynamin-domain protein identified in iuMf, dynamin-related protein-1, is involved in mitochondrial 

fission and control of apoptosis (98). 

The mitochondrial tRNAs of chromadorean nematodes are unusual in that all lack the typical 

cloverleaf tRNA structure, with 20 classified as “T-armless” and the remaining two as “D-armless” (99). 

These tRNAs require specialised elongation factor-Tu proteins, termed TUFM-1 and TUFM-2, to 

recognise the T-armless and D-armless molecules, respectively. Several elongation factors, eukaryotic 

translation initiation factors and peptide chain release factors contributed to the significant enrichment 

of “GTP_EFTU” domains in AF (Fig. 4), most of which were cytosolic and detected in all WBE except vL3. 

However, a TUFM-1 homolog was also identified in all WBE, whereas a TUFM-2 homolog was restricted 

to AF and iuMf. The latter binds solely to two D-armless tRNASer molecules in chromadorean nematodes 

(100), and we only detected the mitochondrial form of seryl-tRNA synthetase in iuMf, which contains 

the Pfam domain “tRNA-synt_2b” (significantly enriched in iuMf; Fig. 4). 

Several proteins with pyridine nucleotide-disulphide oxidoreductase (Pyr_redox_2) domains 

were significantly overrepresented in vL3 only (Fig. 4). These included apoptosis-inducing factor-1 and 

dihydrolipoamide dehydrogenase, which in healthy cells have roles in redox homeostasis of the 

respiratory chain and the mitochondrial matrix, respectively (101, 102). A third Pyr_redox_2 domain 

protein with a mitochondrial-targeting signal peptide was homologous to C. elegans thioredoxin 

reductase (TrxR)-1, a cytosolic enzyme (103). However, the mitochondrial targeting sequence suggests 
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that it is functionally more closely related to C .elegans TrxR-2, which is the mitochondrial isoform in this 

species. 

Both vL3 and iuMf exhibited enrichment for proteins containing peptidase family M16 domains 

(Fig. 4), with five and seven members detected with confidence (≥2 peptides), respectively. Four of 

these (nOo_00369, nOo_00741, nOo_04056 and nOo_04374) resembled core proteins of the 

cytochrome bc1 complex or mitochondrial processing peptidase (MPP) [which are closely related (104)]. 

The role of MPPs is to cleave the N-terminal import signal from nuclear-encoded mitochondrial proteins, 

and the core proteins of the bc1 complex may function as specialised MPP proteins which target the 

signal peptide of the Rieske iron–sulphur protein (105); although such peptidase activity has not been 

demonstrated for C. elegans core proteins (104). An additional peptidase family M16 domain protein 

(nOo_01854), homologous to the mitochondrial presequence protease Cym1, was robustly detected in 

iuMf only. The role of Cym1 is to degrade the cleaved presequences generated by MPPs in the 

mitochondrial matrix and release the fragments to the cytosol (106). Since MPPs and Cym1 are also 

encoded by the nucleus, they should feature an N-terminal mitochondrial targeting sequence. We 

identified this signal in the O. ochengi MPP homologs (Fig. 6), but not in the Cym1 homolog nor in 

nOo_04749, a further peptidase family M16 domain protein identified in all WBE and annotated as 

“insulin-degrading enzyme”. However, manual curation of the nOo_04749 gene model with reference to 

the O. volvulus ortholog, OVOC6041, revealed the correct start site and a mitochondrial targeting 

peptide. This suggests that nOo_04749 is also a MPP, although a highly divergent member of the family 

(Fig. 6). 

 

Quantitative differences between stages 

To further explore potential differences in protein expression across the O. ochengi lifecycle, we 

compared protein abundance by a label-free method (Hi-3) for 1,313 proteins for which we had 
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detected ≥2 unique peptides across two MS platforms and three sample preparation methodologies 

(supplemental Table S5). Each lifecycle stage showed a cluster of protein expression containing a 

variable number of unique proteins (supplemental Fig. S7A) that displayed some overlap with the 

qualitative Pfam enrichment analysis, but was not dependent on tallies of conserved domains. As most 

proteins derived from wOo were of low abundance, only 13 endosymbiont products fulfilled our criteria 

for quantification by Hi-3. The pattern of protein expression was clearly related to the known dynamics 

of Wolbachia replication as determined for B. malayi, in which Mf and L3 have the lowest bacterial 

numbers, AM harbour an intermediate level, and gravid AF contain the largest bacterial population (68) 

(supplemental Fig. 7B). 

 

Secreted Onchocerca proteins in nodule fluid 

In NF, we identified 94 O. ochengi and 498 bovine proteins with ≥2 unique peptides in ≥3 

biological replicates. As expected, the most abundant filarial proteins in NF all featured classical or non-

classical secretion signatures (Fig. 7A). The ESP repertoire from NF displayed remarkable parallels with 

that of L. sigmodontis gravid AF, with shared orthologs for abundant transthyretin-like and von 

Willebrand factor type-d domain proteins (43), cysteine proteinase inhibitors (107), and poorly 

characterised filarial antigens [Av33 (108), Ov16 (109) and RAL-2 (110)]. In addition, an uncharacterised 

NF protein (nOo_00893) had a ML (lipid-binding) domain and was orthologous to an abundant secreted 

L. sigmodontis protein sharing this same motif (43). However, the most important similarity between the 

NF and L. sigmodontis secretomes was the presence of a ShK domain protein (43), which is related to 

the metridin-like cnidarian toxins that can block Kv1.3 potassium channels in memory T-cells (111) (Fig. 

7B). Recently, a synthetic C-terminal ShK domain peptide from a B. malayi astacin was demonstrated to 

exhibit Kv1.3-channel-blocking activity for human T-cells, albeit with lower potency than cnidarian ShK 

peptides (112). In L. sigmodontis, the most abundant secreted ShK-domain protein (nLs_04059) is not an 
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astacin and is unusual in containing six ShK domains. We detected several peptides that matched to an 

O. volvulus ortholog (OVOC2486) of nLs_04059, and this sequence enabled us to reconstruct the O. 

ochengi ortholog from two split gene models (nOo_12220 and nOo_06172) covering the central portion 

along with the N- and C-terminal domains located on other contigs. With the exception of a longer N-

terminal region immediately downstream of the signal peptide, the combined 

“nOo_12220/nOo_06172” gene model is identical to OVOC2486 (Fig. 7B). The proteins from both 

Onchocerca spp. exhibit a single lysyltyrosine dyad in the sixth ShK domain (as opposed to two in 

nLs_04059), which is essential for Kv1.3 channel-blocking activity (111). It is unclear whether cleavage of 

the sixth ShK domain (the only one containing a KY dyad) from the remainder of the molecule is required 

for activity in vivo, since although nLs_04059 has a propeptide cleavage site upstream of the sixth 

domain, the only predicted cleavage site within the Onchocerca proteins is located in the middle of the 

molecule (Fig. 7B). 

The high level of concordance between the NF and L. sigmodontis secretomes was maintained 

when the complete NF dataset was compared with those from other published filarial secretome studies 

(supplemental Fig. S8). Remarkably, only three proteins were observed in every study, including 

triosephosphate isomerase, which has recently been shown to have an essential role in Mf production in 

B. malayi (113). As noted by us previously (43), the three B. malayi secretome studies display a limited 

degree of overlap, highlighting the potential impact of methodology on proteomic data; although we 

observed a strong correlation between our NF dataset and that of Moreno & Geary (24) for B. malayi 

(supplemental Fig. S8). Seven proteins were shared uniquely between the NF, L. sigmodontis and D. 

immitis secretomes, including orthologs of nematode secreted protein 22U (114), a cyclophilin (23), and 

a single transthyretin-like protein. 

A striking feature of NF, which has not been observed previously in high-throughput secretome 

analyses of filarial nematodes, was the presence of two TGF- homologs (Fig. 8). The TGF- superfamily 
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has members present in all multicellular organisms, and is involved in development, regulation of the 

mammalian immune response and immunomodulation by parasites. The prototypic TGF- family 

member, human TGF-1, has an N-terminal moiety composed of a signal peptide, a pro-region and a 

protease cleavage site (RXXR), targeting of which releases the C-terminal active domain capable of 

binding to the receptor. The active domain of TGF-1 contains nine cysteines necessary for correct 

folding and dimerization (115).  

The first TGF- family member we identified, nOo_02612, has an identical ortholog from O. 

volvulus, OVOC7660, and is closely related to a B. malayi TGF- family member, Bm-TGH-2. Although the 

predicted sequence of nOo_02612 showed a C-terminal extended region, lacking the CXC motif 

characteristic of TGF- family members, closer inspection revealed that this was due to miscalling of an 

intron-exon boundary (Fig. 8). The second TGF- family member detected in NF, nOo_06906, also has an 

identical O. volvulus ortholog, OVOC7290, and displays significant homology to another B. malayi 

protein, Bm9118 (Fig. 8). However, Bm9118 lacks the protease cleavage site and first three cysteines of 

the TGF- family active domain, suggesting that the gene model may be incomplete. All peptides 

detected in NF from nOo_02612 were contained in the pro-region of the protein, while all peptides 

identified from nOo_06906 were located in the active C-terminal domain (Fig. 8), indicating that 

nOo_06906 at least is present in secretions in its active form. 

As reported above (see Redox and detoxification enzymes), the repertoire of Prxs in NF (one 

Prx6 and two Prx1 isoforms) overlapped with those detected in all WBE, although a single Prx1 observed 

in all of the structural proteomes (nOo_02155) was not found in NF. This was orthologous to a molecule 

identified on the surface of L. sigmodontis (TPX-1, nLs_01344) that was also not secreted (43). 

Unexpectedly, nodule fluid also contained six filarial immunoglobulin-domain proteins (supplemental 

Fig. S3) that are known to localise to extracellular matrices in C. elegans. One of these proteins 

(OVOC10067) was homologous to the perlecan-like proteoglycan UNC-52; a major component of the 
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basement membrane of contractile tissues, including the pharynx and anus, in developing embryos and 

subsequent stages of C. elegans (116). In addition to its structural role, UNC-52 is required for control of 

directionality during axon outgrowth in C. elegans (117); while another immunoglobulin-domain protein 

detected in NF, hemicentin, is involved in the anchoring of mechanosensory neuron axons (118). 

Furthermore, a peroxidasin homolog related to C. elegans PXN-2 was present in iuMf and NF, and this 

was orthologous to a L. sigmodontis peroxidasin that was observed in the secretome of AF and 

immature Mf (43). In C. elegans, PXN-2 is located in the extracellular matrix and is required for late 

embryonic elongation, muscle attachment, and motoneuron axon guidance choice (119). Finally, a 

surprising component of NF was a giant (predicted molecular weight, ~690 kDa) immunoglobulin-

domain protein homologous to C. elegans DIG-1 (supplemental Fig. S9), the largest secreted protein 

from any organism described to date (120). 

 

Bovine proteins in nodule fluid 

In addition to serum components, the bovine proteins quantified in NF displayed a high 

abundance of molecules involved in innate immunity. The predominant 100 bovine proteins were 

analysed for interaction networks and GO term enrichment (Fig. 9). The most numerous host cell type in 

both O. ochengi and O. volvulus nodules is neutrophils, which form a dense layer around the adult 

nematodes without causing any apparent damage to the parasites (36, 121, 122). Accordingly, several 

proteins known to be abundant in bovine neutrophils were significantly enriched within the GO term 

“defence response” (FDR-corrected p < 0.01), including cathelicidin-2 (bactenecin-5), cathelicidin-4 

(indolicidin), cathelicidin-7 (bovine myeloid antimicrobial peptide-34) (123, 124), haptoglobin (125), 

PGLYRP1 [peptidoglycan recognition protein (126)], and S100A12 (calgranulin C) (127) (Fig. 9). All of 

these proteins are major constituents of neutrophil granules except for calgranulin C, which is cytosolic. 
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This has been purified from extracts of collagenase-treated O. volvulus (128), suggesting a tight 

association with the parasite surface, and has some antifilarial activity, especially against Mf (129). 

 

DISCUSSION 

This study represents the first expression analysis of an Onchocerca spp. across the major 

lifecycle stages and at the immediate host-parasite interface of the nodule. A recurring theme of our 

analyses was the remarkable similarities between protein families identified by unbiased, proteomic 

methods in O. ochengi and those reported from O. volvulus as highly expressed according to classical 

approaches, such as representation in cDNA libraries from each stage. However, other discoveries 

emerging from this work, such as the differences in mitochondrion-related protein families dominating 

in each stage, were not anticipated. Moreover, quantification of nodule fluid proteins provided new 

insights into the immunomodulatory milieu surrounding the adult worms. 

Bennuru et al. (26) achieved deeper coverage of the B. malayi proteome than we experienced in 

our study of O. ochengi. In all likelihood, this can be attributed to the fractionation protocol they 

employed. However, other factors may have contributed, such as the manual curation that 

accompanied the publication of the B. malayi genome (19), the utilisation of a B. malayi EST dataset in 

addition to gene predictions from the genome (26), the application of a less stringent FDR (2% versus 1% 

in the current study), and the host contamination in O. ochengi samples that is more challenging to 

minimise than is the case for B. malayi (due to the nodular lifestyle of the former; see Experimental 

Procedures). In addition, there may be intrinsic differences in the dynamic range of protein expression 

between the two parasites; or a greater proportion of O. ochengi proteins may only be expressed in 

stages that were outside the scope of this study (mature Mf, L2 and L4). In general, the relative 

distribution of orthologous and non-orthologous proteins detected in each study across the lifecycle was 

similar, although vL3 was a significant outlier. This may reflect the challenges of obtaining O. ochengi vL3 



28 
 

in significant numbers for analysis, or fundamental differences in the complexity of the infective stage 

between the two species. 

Proteins containing GST domains constituted one of the largest families that were enriched in AF 

and iuMf. The GSTs are a superfamily of multifunctional proteins that are ubiquitous across animals, 

plants and bacteria and are much studied in their cytosolic form because of their importance as phase II 

detoxification enzymes (130). In addition to detoxification, where typically they enzymatically conjugate 

glutathione with electrophilic, lipophilic and non-polar compounds including xenobiotics, GSTs have 

been reported to carry out a range of other functions. These include binding and transport of 

hydrophobic ligands (131); synthesis of eicosanoids with roles in immune modulation (132, 133); 

catabolism of amino acids (134); and inhibition of the Jun N-terminal kinase signalling pathway, thus 

protecting against hydrogen peroxide-induced apoptosis (135). Proposed functions of OvGST2 include 

the neutralisation of lipid peroxidation products arising from immune-mediate damage to the parasite 

(77, 136). Conversely, OvGST1 is located in the outer hypodermal lamellae and cuticle, and is released in 

ESP from AF, suggesting it may have an immunomodulatory role at the host-parasite interface via the 

generation of prostanoids (137). Thus, our detection of an OvGST1 ortholog (nOo_09064) in NF is likely 

to reflect an equivalent function for this secreted GST in O. ochengi. 

A striking feature of our study was the number of mitochondria-related proteins that were 

overrepresented in different stages, particularly in iuMf and vL3. Notably, it has been known for decades 

that most adult filariae depend primarily on fermentation of glucose for their energy requirements, 

whereas Mf also use oxidation of pyruvate obtained from catabolism of glucose or amino-acids (138, 

139). The importance of aerobic respiration in iuMf is likely to place significant demands on 

mitochondrial function. Thus, as expected for an enzyme involved in protection of mitochondria from 

oxidative stress, deletion of the trxr-2 gene, which is mainly expressed in body wall and pharyngeal 

muscles in C. elegans, led to delayed development and reduced longevity under stress conditions (103). 
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Moreover, inhibition of TrxR in a filarial parasite of cattle, Setaria cervi, impaired the motility and 

viability of adult worms and iuMf, and was associated with oxidative damage to lipids and proteins, 

leading to mitochondrial-mediated apoptosis (140). In B. malayi, many transcripts encoding 

mitochondrial metabolic enzymes were upregulated in vL3 relative to L3 cultured in vitro for two days 

(20). During development in the insect vector, the transcriptional profile of B. malayi suggests that it 

primarily uses anaerobic dismutation of malate for its energy needs (141), which occurs in the 

mitochondrial matrix (142). This process may be associated with an increase in the importation and 

processing of Krebs cycle enzymes in mitochondria, or vL3 may be “primed” to shift to oxidative 

phosphorylation for the energy-expensive processes of skin penetration and migration to the lymphatics 

in the definitive host (20). In this context, it may be informative to examine the interplay of 

mitochondria and Wolbachia during L3 to L4 development, as the latter replicate rapidly during this 

phase (68) and display high levels of expression for respiratory chain components (37). 

Several of the mitochondrial proteins identified in our study have been proposed as drug 

targets, such as the nematode MPPs, which are poorly conserved relative to their mammalian 

counterparts (104).Moreover, the divergent TUFMs of nematodes, which exhibit unique C-terminal 

extensions, constitute attractive targets for highly specific anthelminthics (99). Recently, the gold-

containing compound auranofin was identified as a lead adulticidal drug candidate that specifically 

inhibits filarial TrxR. Importantly, auranofin-treated AF of O. ochengi were found to be depleted of 

mitochondria (143). 

A key discovery in NF was the presence of two TGF- homologs. Bm-TGH-2 is a TGF- family 

member that can be detected by Western blot in B. malayi ESP and can bind and signal through the 

mammalian TGF- receptor (144). As TGF- signalling can inhibit immune responses, suppressing T-cell 

proliferation and inducing regulatory T-cells, secretion of this filarial homolog has been proposed to 

have immunomodulatory effects. However, since the identification of Bm-TGH-2, no proteomic analyses 
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of B. malayi ESP have identified secreted TGF-B family members (23-25). In O. volvulus and O. ochengi, 

TGF- family members were reported to be expressed in the basal layer of the cuticle, the intestine, and 

the reproductive tracts of male and female adult worms, including in the uterine and vaginal muscles, 

but no attempt to measure secretion was undertaken (145). In contrast, ESP from the gastrointestinal 

nematodes Heligmosomoides polygyrus and Teladorsagia circumcincta both contain TGF- mimics that 

can signal through the mammalian TGF- receptor, inducing regulatory T-cells in vitro (146). Although H. 

polygyrus also transcribes a TGF- family member (147), this has been proposed to have a 

developmental role, and could not be detected in proteomic studies of H. polygyrus ESP (148, 149). 

While it is unknown whether the O. ochengi TGF- homologs identified here can signal through the 

mammalian TGF- receptor in a similar manner to Bm-TGH-2, or simply have an internal developmental 

role associated with “spill-over” into the mammalian host, their presence in NF is suggestive of an active 

immunomodulatory function. 

An initial analysis of the wOo proteome has been published, in which 122 proteins were 

identified from AF (37). The limited number of additional identifications achieved in the current study 

was anticipated, since the published analysis was based on a semi-purified sample of bacteria, whereas 

no biological fractionation of O. ochengi was attempted here and Wolbachia proteomes have a 

substantial dynamic range (150). A comparison of the wOo proteome with that of its counterpart in B. 

malayi has been explored previously (37). It has been postulated from proteomic data obtained from 

Wolbachia within B. malayi, which was dominated by single-peptide identifications as in our study, that 

the endosymbionts exhibit extensive stage-specific expression during filarial development (26). 

Considering the stochastic nature of peptide identifications from very low abundance proteins, we find 

this scenario unlikely and in any case conflated by the substantial changes in Wolbachia density 

throughout the filarial lifecycle. 
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On the basis of the quantities of bovine antimicrobial proteins observed in NF, Wolbachia 

appears to be a major driver of innate immune responses in the nodule. Depletion of Wolbachia 

endosymbionts with antibiotics leads to a decline in neutrophilia in O. ochengi nodules and an influx of 

eosinophils, which degranulate on the parasite cuticle and ultimately kill the adult nematodes (36, 122). 

Wolbachia proteins that are known to activate neutrophils include WSP (151) and PAL (152), and GroEL 

may also have a role as there are precedents in other bacteria (153). Surprisingly, and in contrast with 

AF ESP from L. sigmodontis (43), we did not consistently detect Wolbachia proteins in NF. However, 

since WSP has been detected on the surface of B. malayi (154) and L. sigmodontis (43), symbiont 

proteins on the cuticle (rather than secreted products) may be a more important trigger for neutrophil 

activation in onchocerciasis. Both cathelicidins (124) and PGLYRP1 (155) have potent antibacterial 

activity, and might be liberated by neutrophils following activation of Toll-like receptors 2 and 4 by WSP 

(156). Importantly, although Wolbachia lacks a peptidoglycan-based cell wall (157), PGLYRP1 has been 

reported to kill other pathogens that lack peptidoglycan (158). 

 

Conclusions 

We have revealed a remarkable complexity and dynamism of the O. ochengi proteome 

throughout the major lifecycle stages, particularly with respect to mitochondrion-associated proteins, as 

well as the presence of TGF- homologs in the O. ochengi secretome. In addition, the developmentally 

regulated protein families that have been identified in O. ochengi are represented by almost identical 

orthologs in O .volvulus, suggesting that their patterns of expression will be conserved in the human 

parasite. While L3 have historically been the main focus of attention for vaccine design, our data on the 

overrepresentation of the peptidase M16 family suggests that it may be possible to design drugs to 

target this stage; whereas another potential source of vulnerability for both immunoprophylactic and 

chemotherapeutic approaches is embryogenesis. Indeed, mutated forms of cysteine proteinase inhibitor 
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are highly effective at reducing female worm fertility in B. malayi (14) and microfilaraemia in L. 

sigmodontis (13), and immunologically targeting of triosephosphate isomerase can also impede 

embryogenesis in B. malayi (113). The evaluation of the ShK-domain protein as a vaccine in animal 

models is now a priority, and other components of the nodule secretome may constitute promising new 

diagnostic biomarkers if they can be shown to reach the peripheral circulation. In conclusion, the O. 

ochengi system in cattle will continue to play a critical role in our understanding not only of O. volvulus 

biology, but the means to its ultimate eradication. 
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[FIGURE LEGENDS] 

FIG. 1. The lifecycle of Onchocerca ochengi, highlighting the sampling strategy of this study. Simulium 

damnosum blackflies were blood-fed on naturally infected Cameroonian cattle harbouring Mf in their 

skin. The blackflies were reared in the laboratory for 7 days and vL3 [1] were obtained on dissection of 

the head. To obtain NF, freshly excised intradermal nodules containing adult O. ochengi were pricked 

with a hypodermic needle [2], and the expressed liquid was collected. For the harvesting of adults, 

ethanol-fixed nodules were digested with collagenase to ensure minimal host contamination on AF [3], 

whereas AM [4] were obtained directly from freshly dissected nodules. Finally, iuMf [5] were collected 

from viable AF by puncture of the uteri and harvesting of culture supernatants. 

 

FIG. 2. Venn sets of protein identifications by lifecycle stage and proteomic methodology. The total 

number of proteins identified in O. ochengi (A) and wOo (B) in each stage, and the total number of 

proteins identified in O. ochengi (C) and wOo (D) by methodology. Protein identifications contained in 

each set are provided in supplemental Table S2. 

 

FIG. 3. Venn sets of proteins identified in O. ochengi compared with published data for B. malayi. The 

number of orthologous (blue circles, B. malayi; yellow circles, O. ochengi) and non-orthologous (lilac 

circles, B. malayi; beige circles, O. ochengi) proteins is shown for (A) all stages combined, (B) AM, (C) AF, 

(D) iuMf and (E) vL3. Note that the number of proteins per stage is lower than in Fig. 2 due to the 

exclusion of paralogous gene families. Protein identifications contained in each set are provided in 

supplemental Table S3. 

 

FIG. 4. Pfam enrichment analysis across the lifecycle of O. ochengi. Hierarchically clustered heat-map 

of protein families that were significantly overrepresented (p < 0.01) in the observed proteome (≥2 
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unique peptides) relative to the complete search database. The intensity of shading is proportional to 

fold-enrichment. 

 

FIG. 5. Detection and phylogeny of GST-domain proteins observed across the O. ochengi lifecycle. (A) 

Distribution of GST-domain proteins in each lifecycle stage (black, detected with ≥2 unique peptides; 

grey, detected with one unique peptide only; white, not detected). (B) Phylogenetic neighbour-joining 

tree of GST-domain proteins identified from O. ochengi (in bold type) displaying classes present in C. 

elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, and selected parasitic nematodes and 

platyhelminths. Numbers shown alongside branches are bootstrap values of 1,000 replications. 

Complete accession numbers for all GST-domain sequences are provided in supplemental Table S4. 

MAPEG, membrane associated proteins in eicosanoid and glutathione metabolism; mPGES2, membrane-

associated prostaglandin E synthase 2; CLIC, chloride intracellular channel protein; EF, eukaryotic 

elongation factor 1-. 

 

FIG. 6. Domain structure and lifecycle distribution of peptidase family M16 domain proteins. 

Schematic representation of O. ochengi peptidase family M16 domain proteins and their orthologs in O. 

volvulus. Locus tags containing the suffix “m” refer to modified O. ochengi gene models that were 

manually corrected using O. volvulus gene models as a template. Text in blue refers to the lifecycle 

stages in which the proteins were detected (≥2 unique peptides). Protein signature identifiers from 

InterProScan 5 (53) are provided for the N- and C-terminal peptidase M16 domains. 

 

FIG. 7. Abundant O. ochengi proteins in nodule fluid and structure of a ShK-domain protein. (A) 

Proteins in NF were quantified by the Hi-3 method and ranked by abundance; the top 30 (from a total of 

94 robustly identified) are shown. An asterisk indicates prediction of a classical signal peptide, whereas a 
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plus sign demarks proteins predicted to be secreted by a non-classical pathway. (B) Reconstruction of a 

full-length, six ShK-domain protein in O. ochengi using the O. volvulus gene model OVOC2486 as a 

template, and alignment against the L. sigmodontis ortholog nLs_04059. Highlighted features comprise 

predicted signal peptides (orange boxes), ShK toxin-like domains (black boxes), conserved cysteine 

residues (yellow shading), predicted propeptide cleavage sites (red boxes), and lysyltyrosine dyads (bold 

type). Residues in different colours represent translations from separate contigs. 

 

FIG. 8: TGF- homologs detected in O. ochengi nodule fluid. Alignment of O. ochengi TGF- homologs 

from NF against orthologs from O. volvulus and B. malayi. Highlighted features comprise predicted signal 

peptides (red boxes), start methionines (red type), tetrabasic protease cleavage site (cyan shading), 

conserved cysteines (yellow type and black shading), potential N-glycosylation motifs (blue boxes), and 

peptides detected by MS (orange type). The green box represents the corrected C-terminus of 

nOo_02612. 

 

FIG. 9. Protein interaction network of the most abundant bovine proteins in nodule fluid. The 100 

most abundant bovine proteins in nodule fluid, as determined by the Hi-3 method, were subjected to 

network analysis. The significantly enriched GO term “defence response” (FDR-corrected p < 0.01) is 

highlighted by the red nodes, and orange boxes contain normalised (log2) abundance values. CAMP, 

cathelicidin-7; CATHL2, cathelicidin-2; CATHL4, cathelicidin-4; FGA, fibrinogen alpha-chain precursor; 

FGB, fibrinogen beta-chain precursor; AHSG, alpha-2-HS-glycoprotein; HP, haptoglobin precursor; LTF, 

lactotransferrin; MIF, macrophage migration inhibitory factor; COTL1, coactosin-like protein; PRDX1, 

peroxiredoxin-1; ORM1, alpha-1-acid glycoprotein precursor; C3, complement C3 preproprotein; 

PGLYRP1, peptidoglycan recognition protein-1. 
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nOo.t12220/t06172 MFRLIFLPLLIGTISGANTEFGCYSCAETCSFCGSSSLEIEFENHYCFLEVMTILHKIRKGIGILHSSSKSGLCYDKDLDCSDDICQNYPYTAKERCPKF 100 

OVOC2486  MFRLIFLPLLIGTISGAN-------------------------------------------TGILHSSSKSGLCYDKDLDCSDDICQNYPYTAKERCPKF 57 

nLs_04059  MSPFILLALL-----------------------------------------INAPANCRPDNGISRSRDASSACYDKDPDCSSDICKNYPYTAKERCPKF 59 

 

nOo.t12220/t06172 CGLCHDSSIGSSDRLSSGFSSSHQQSSSSSSSKSGITESTTIKKESRSFCVDKNSDCTMEICRNYPYTAKERCAKTCGLCSGDTSSSG---TTSGHRTIM 197 

OVOC2486  CGLCHDSSIGSSDRLSSGFSSSHQQSSSSSSSKSGITESTTIKKESRSFCVDKNSDCTMEICRNYPYTAKERCAKTCGLCSGDTSSSG---TTSGHRTIM 154 

nLs_04059  CGLCSDTVSGSSARPSSQFLPSSSQRQSLALTS-G---AVEKERKSLTSCTDKDSDCTAEICRNYPFTARERCAKTCGRCSDDVAIGSGSTTAAHRSTAF 155 

 

nOo.t12220/t06172 GIDKFKGETTS-LSPPRRGNEPFSSGLCFDKSLDCRRETCRDFPFTAKEECAKTCGYCSGDGAMSSSSSGTAFGTLSPSRHASIRTNERGGITGSSISRH 296 

OVOC2486  GIDKFKGETTS-LSPPRRGNEPFSSGLCFDKSLDCRRETCRDFPFTAKEECAKTCGYCSGDGAMSSSSSGTAFGTLSPSRHASIRTNERGGITGSSISRH 253 

nLs_04059  GVEKFKGGSASSSLSPRIGNALISGSLCFDRKFDCSREICRDFPFTARQECAKTCGFCSVDTSISSSSSNATLRVMSPSV-------EIGGSSGGTSSHR 248 

 

nOo.t12220/t06172 SAKHERYDTSHTTPQYSILAKDKELKCIDLNTDCNQQICNDYPYTAKQRCAKTCGFCRKQQTDGGTTNVGDRYSFTDKSRSRTPESDLSSSRGSKPSAIT 396 

OVOC2486  SAKHERYDTSHTTPQYSILAKDKELKCIDLNTDCNQQICNDYPYTAKQRCAKTCGFCRKQQTDGGTTNVGDRYSFTDKSRSRTPESDLSSSRGSKPSAIT 353 

nLs_04059  TAKQDSYEANHNIPAYPRLSRGEELECVDVNIDCTQQTCKDYPFTARERCAKTCGFCRKGSVVE------------------ERHSSLPAAQGNKATAIT 330 

 

nOo.t12220/t06172 AGCRDESPHCSEQSCLDRPYTARTKCAKTCGFCGQSLPGSTVDLDESSPVDNSDRGDVITLDDNDDDAGTTQSTTFGRHSPSRGGT---PTLTSRHSSIG 493 

OVOC2486  AGCRDESPHCSEQSCLDRPYTARTKCAKTCGFCGQSLPGSTVDLDESSPVDNSDRGDVITLDDNDDDAGTTQSTTFGRHSPSRGGT---PTLTSRHSSIG 450 

nLs_04059  KECKDEDSQCSERSCLEHPYKASRKCAKTCGFCGEKSSYGSVIELESPIAASSDEGSVIALDSDGNDGSSTRSTMTSERRLTSGSGDTMSMQKPKHSSIR 430 

 

nOo.t12220/t06172 SRTDPSHRPSPSSTLIQKPANKPFSGIHGRYPGRTGPCIDENSYCEEQDCYKYPRFAQRYCEKTCNYC     561 

OVOC2486  SRTDPSHRPSPSSTFIQKPANKPFSGIHGRYPGRTGPCIDENSYCEEQDCYKYPRFAQRYCEKTCNYC     518 

nLs_04059  GRTDPIRSSSSASTAHIQQPTNKQYLGTQRYPGRTGPCTDANQLCEKADCYKYPNFSQKYCEKTCNYC     498 
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B 
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nOo_02612       MKLLLAASIHSIFLASSLFSSSQSTTTYGTTVWRHLSSNNNNNNNHSCHGCAEARDELAK 60  

OVOC7660        MKLLLAASIHSIFLASSLFSSSQSTTTYGTTVWRHLSSNNNNNNNHSCHGCAEARDELAK 60  

Bm-TGH-2        MT-FIAVSIHSIFLALSL-SCSPS--THGTTAWHHHS-------NHSCHGCAEARDELAK 49  

nOo_06906       ------------------------------------------------------------  

OVOC7290        ------------------------------------------------------------  

Bm9118          ------------------------------------------------------------                                                                                

 

nOo_02612       IRLEIIKREILEKLGLDAPPQVRPQDGFPTIPQVAKYLKYQLRYDSPVASMQHTSFLADE 120  

OVOC7660        IRLEIIKREILEKLGLDAPPQVRPQDGFPTIPQVAKYLKYQLRYDSPVASMQHTSFLADE 120  

Bm-TGH-2        IRLELIKREILEKLGLDAPPQVRPQDGFPAIPQVAKYLKYQLRHDS-VTTSVHTSFLADE 108  

nOo_06906       ------------------------------------------------------------  

OVOC7290        ------------------------------------------------------------  

Bm9118          ------------------------------------------------------------                                                                                

 

nOo_02612       LMMPERKAERTIVLAEQIPAHFNLNPDQVFAHFKFSDELMSKLLLSTVLNIYLQKSTKLH 180  

OVOC7660        LMMPERKAERTIVLAEQIPAHFNLNPDQVFAHFKFSDELMSKLLLSTVLNIYLQKSTKLH 180  

Bm-TGH-2        LMLPERKAERTIVLAE--------------------------LLLSAVLNIYLRKPTKLH 142  

nOo_06906       -MFQCFSAKSSLLVAI--------------------------ILICFVCQINKSSSSSLS 33  

OVOC7290        -MFQCFSAKSSLLVAI--------------------------ILICFVCQINKSSSSSLS 33  

Bm9118          ------------------------------------------------------------                                                                                

 

nOo_02612       PDSRIAAVQVLVKEVIKNGSIGAALAERKRHIDLSKDGYIQIPIRVDDVQRWWSSNDFIG 240  

OVOC7660        PDSRIAAVQVLVKEVIKNGSIGAALAERKRHIDLSKDGYIQIPIRIDDVQRWWSSNDFIG 240  

Bm-TGH-2        PDSRIATVQVLVKEVVKNGSIGAALAERKRHVDLSKDGYIQIPIRVDDVQRWWSGNDFMG 202  

nOo_06906       ----ILSFLISPNLPLPSPSTSPMPCSSGNHLFEAN------------EQLFFASRSIDK 77  

OVOC7290        ----ILSFLISPNLPLPSPSTSPMPCSSGNHLFEAN------------EQLFFASRSIDK 77  

Bm9118          ------------------------------------------------------------                                                                                

 

nOo_02612       LYVEAFYKGENLALHPQHDSKNMMYLELTTMEEWSRHKRSYQEVCTKEMNEPSCCLYSLV 300  

OVOC7660        LYVEAFYKGENLALHPQHDSKNMMYLELTTMEEWSRHKRSYQEVCTKEMNEPSCCLYSLV 300  

Bm-TGH-2        LYVEAFYKGENLAIHPQQDSKNMMYLELTTVEEWGRRKRSYQEVCTKEMNEPSCCLYSLV 262  

nOo_06906       KLPMPIHHSTKPNIGFRKSKNKYTSTSDKGYRNHTRKRRDIDQDCTTGF----CCLKIMY 133  

OVOC7290        KLPMPIHHSTKPNIGFRKSKNKYTSTSDKGYRNHTRKRRDIDQDCTTGF----CCLKIMY 133  

Bm9118          ------------------------------------------------------------                                                                                

 

nOo_02612       VDFEAAGWDFVIAPKLYDAHMCSGECHLHHVVRSP-----HSKIT--SSTKKNAVSGCCH 353  

OVOC7660        VDFEAAGWDFVIAPKLYDAHMCSGECHLHHVVRSP-----HSKIT--SSTKKNAVSGCCH 353  

Bm-TGH-2        VDFEAAGWDFVIAPKLYDAHMCSGECRLHHAGRSA-----HSKIT--SSTKKNAVSGCCH 315  

nOo_06906       FDFHEHGMDNIISPSGFNMNICEGECRTDIPTNDRNTLTFYDEYD-PESPFKIRLS-CCV 191  

OVOC7290        FDFHEHGMDNIISPSGFNMNICEGECRTDIPTNDRNTLTFYDEYD-PESPFKIRLS-CCV 191  

Bm9118          -------MDNIIRPSGFNMNFCDGECNMQIETNDRDALILQDRINHPESPFRRRLS-CCI 52  

 

nOo_02612       PTEYDPITLVYMTQEKELKIREVPGMIARRCACA- 387  

OVOC7660        PTEYDPITLVYMTQEKELKIREVPGMIARRCACA- 387  

Bm-TGH-2        PTEYDPITLVYMTQEKELKIREVPGMIARRCACA- 349  

nOo_06906       PIKWSSIEVVENRNGIEFN-RTLENVKVTECGCIL 225  

OVOC7290        PIKWSSIEVVENRNGIEFN-RTLENVKVTECGCIL 225  

Bm9118          PIKWSSVEIVEFRNGTEFN-RVLENVKVMECGCVI 86 
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