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Abstract 

Digital imaging devices, such as digital cameras or mobile phones, are prevalent in 

society. The images created by these devices can be used in the commission of crime. 

Source device identification is an emerging research area and involves the identification 

of artefacts that are left behind in an image by the camera pipeline. These artefacts can 

be used as digital signatures to identify the source device forensically. The type of digital 

signature considered in this thesis is the Sensor Pattern Noise (SPN), which consists 

mainly of the PRNU (Photo Response Non-Uniformity) of the imaging device. The PRNU is 

unique to each individual sensor, which can be extracted traditionally with a wavelet 

denoising filter and enhanced to attenuate unwanted artefacts. 

This thesis proposes a novel method to extract the PRNU of a digital image by using 

Singular Value Decomposition (SVD) to extract the digital signature. The extraction of the 

PRNU is performed using the homomorphic filtering technique, where the inherently 

nonlinear PRNU is transformed into an additive noise. The range of the energy of the 

PRNU is estimated, which makes it easier to separate from other polluting components to 

obtain a cleaner signature, as compared to extracting all the high frequency signals from 

an image. The image is decomposed by using SVD, which separates the image into ranks 

of descending order of energies. The estimated energy range of the PRNU is used to 

obtain the interesting ranks that are utilised to form part of the digital signature. A case 

study of an existing image analyser platform was performed by investigating its 

identification and classification results. The SVD based extraction method was tested by 

extracting image signatures from camera phones. The results of the experiments show 

that it is possible to determine the source device of digital images. 
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Chapter 1 Introduction 

Digital imaging devices, like digital cameras or mobile phones, are widespread 

everywhere in society. The images created by the digital cameras found in bespoke 

cameras, mobile phones, tablets or video camcorders can be used for illicit purposes and 

in the commission of crime. The ability to identify the source device that created a 

suspect image can be a valuable tool for a forensic investigator. The work presented in 

this thesis seeks to facilitate the source identification of digital images for forensic 

analysis. 

 

1.1 Digital Image Forensics 

Digital images are usually created by computer systems or digital cameras. The digital 

images created by computer systems are performed using image processing software 

(graphics) and drawing software (drawings). Digital images can also be created by the 

scanning of paper photographs using scanners or by taking pictures using digital cameras 

found in bespoke cameras, mobile phones, tablets or video camcorders. Moreover, digital 

pictures can be stored online using social networking sites and exchanged or downloaded 

through online communication software. It is estimated that an average of 2.7 million 

photographs are uploaded to the Facebook social network every 20 minutes and that the 

average person has 350 pictures stored on the site (Greengard 2012). The majority of 

these pictures come directly from a mobile phone or digital camera without any 

processing applied. 
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These images could be used for illicit purposes. When a forensic investigator recovers 

images from a suspect source, for example a hard disk, a mobile phone or a database, 

they might want to gather information associated with the images. The investigator may 

choose to identify the source device that created the image in order to link the images to 

a suspect or find out if the content of the images have been tampered. Digital image 

forensics can help the investigator obtain the information and knowledge required to 

solve a case.  

 

1.1.1 Source Identification 

During the image acquisition process inside a camera, the light photons go through 

several hardware and software processes before being converted to a digital image. 

These hardware and software processes leave artefacts in the image that have been 

created by the camera. Source device identification is an emerging research area, where 

the different artefacts are used as digital signatures to identify the source device. 

These digital signatures can allow the identification of the make or model of the source 

device analogous to the use of fingerprints to identify humans. Most image processing 

artefacts enable the identification of the camera make or model and some artefacts that 

are linked to the hardware of the camera can be used to identify the specific camera that 

took the photograph. In a forensic case it might be useful to pinpoint the exact device 

that created a digital picture, in order to link the device to the location or suspect of a 

crime. Some examples of cases where source device identification may be valuable are: 
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 Child pornography cases 

 Gang trophy picture cases 

 Identify network of image possessors (e.g. terrorist cells, child abuse) 

 Image intellectual property (IP) violation cases 

One type of device signature that allows identification of specific devices is part of the 

sensor noise. 

 

1.1.2 Sensor Noise 

The sensor at the heart of a camera is its most expensive part. The sensor is where the 

light photons are converted to electrical signals. There are two types of sensors that are 

generally used in consumer cameras, namely the complementary metal–oxide–

semiconductor (CMOS) and the charge-coupled device (CCD). These two sensors are 

made from silicon, which is a natural material. A pattern is formed in each image created 

by the sensor due to the variations in absorption of light illumination of the silicon photo 

elements in that sensor. This pattern, also called Sensor Pattern Noise (SPN), can be 

thought of as unique to each sensor. This also extends to each camera, due to the 

random nature of the patterns and the number of pixels that exist in each sensor. 

 The SPN consists mainly of the PRNU (photo-response non-uniformity) noise and other 

non-unique artefacts (NUA) (Lukas, Fridrich et al. 2006). It is the PRNU that creates the 

unique pattern that is used in the identification of cameras. The PRNU, which appears as 

a medium to high frequency signal, can be extracted from digital images by using a 

denoising high pass filter. 
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1.2 Existing Image Analyser Platform 

There is an existing image analyser platform, which has been developed by Forensic 

Pathways Ltd1, which can be used to identify the source of an image or to cluster together 

images that come from the same device. It consists of an identifier and an image classifier 

(Forensic Pathways Limited 2009). 

The identifier is used when the source device that created the suspect image is present. 

The camera reference signature of the device can be created in order to identify whether 

the suspect image originates from that device. The second scenario is more complex and 

occurs when a large group of images are recovered and the source devices that created 

these images cannot be located. An unsupervised image classifier is used to group 

together images that come from the same source device. The platform allows forensic 

technology analysts to link suspect images to imaging or storage devices recovered from 

crime scenes. 

The image analyser uses a wavelet based filter method to extract the SPN from the 

images and the uniqueness of this application is the use of a signature enhancer (Li 2010). 

The weaker SPN components are corrupted by high magnitude scene details which 

increase the mis-identification rate. The enhancer aims to attenuate the strong scene 

details while keeping the weaker pattern noise components. The enhanced SPN was 

                                                      
1 Forensic Pathways Ltd is a company based in Tamworth, UK which owns the patent 

(Patent No. GB2467767) for the image enhancer. Forensic Pathways Ltd partly funded 

background work for this research project and provided technical support. Their image 

analyser platform was used during the experimentation processes. 
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shown to increase the identification rate of images from digital cameras and allows the 

use of smaller image crop size.  

 

1.3 Motivation 

Not all pixels are the same since the sensors of different cameras differ in size, for 

example the size of the sensor of a Samsung Galaxy S camera phone is 2.5 x 2.5 mm and 

that of a mid-range digital camera like the Pentax Optio RW18 is 6.1 x 4.6 mm (Grotta, 

Grotta 2012). Both cameras produce image sizes of comparable size but the quality of the 

images are different; the one from the camera phone is of lower quality, which renders 

source identification more challenging. The SPN enhancer of the existing platform is not 

effective for the identification of highly compressed images mainly from low to medium 

end camera phones. The motivations for performing this research project are: 

 The existing state-of-the-art used by the existing platform does not perform well 

for the identification of camera phones.  

 The denoising algorithms used for extracting the digital signature of images are 

somewhat complex and largely empirical by nature. They extract the high 

frequency scene details along with the high frequency PRNU component. 

 The denoising does not consider the characteristics of the PRNU. The choice of the 

levels of decomposition of the image in the frequency domain is based mainly on 

empirical techniques. 

 The enhancement procedures used to minimise the scene details is heuristic and 

affects the quality of the weak PRNU component. In the case of camera phones 
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the PRNU component is already attenuated by the compression process. Thus 

enhancing the digital signature can result in damaging the weak PRNU 

component. 

 

The main aim of the research project presented in this thesis is to perform source 

identification of camera phones. In order to achieve this aim, a set of objectives are 

defined: 

 The performance of the existing platform has to be assessed. The cropping 

process needs to be automated and the classification of images for varying sample 

sets studied. 

 The characteristics of the PRNU need to be studied. The nature of the PRNU can 

be analysed and the range of its energy in relation to the image can be estimated. 

 The design of a signature extraction method that can distinguish between the 

PRNU and scene component during the signature extraction process. By 

decomposing the image, its scene and noise components can be separated. The 

estimated PRNU can be extracted more efficiently.  

 

 

 

 



Chapter 1 Introduction 

23 
 

1.4 Contributions 

The main contributions of this research project presented in this thesis are:  

 The performance of the existing platform has been assessed. The optimum 

cropping position of images has been identified and it has to be located in an area 

where there are less saturated or dark pixels in order to maximise the 

identification of images. In addition, cross validation technique was used to assist 

in finding the optimum training size that provides the best classification rate for 

varying sample sizes. 

 The energy range of the PRNU for CMOS and CCD sensors was studied based on 

research performed in developing sensor noise models. The estimation of the 

energy range of the PRNU in natural images has been proposed, which should 

allow separation of the PRNU from other polluting components and obtain a 

cleaner signature as compared to extracting all the high frequency signals from an 

image. 

 The design of a novel SVD based signature extraction method is proposed. The 

extraction of the PRNU is performed in the logarithmic domain, as per the 

homomorphic filtering technique, where the inherently nonlinear PRNU is 

transformed to an additive noise. The image is decomposed by using SVD, which 

separates the image into unit ranked images of descending order of energies. The 

estimated energy range of the PRNU is used to obtain the interesting unit ranked 

images that are used to form part of the digital signature. The results of the 

experiments performed in this research project show that it is possible to 
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determine the source device of digital images using the SVD based extraction 

method. 

 

1.5 Organisation of Thesis 

The thesis is structured as follows: 

 Chapter 2 – An introduction to digital image forensics is provided. The human 

visual system is described and the image acquisition process in a digital camera is 

explained. This is followed by a review of different types of device signatures and 

a description of state of the art in the area of source device identification. 

 Chapter 3 – A description of the different types of noise that form part of the 

sensor noise as well as an investigation of the characteristics of the PRNU. Two 

signature extraction methods are also detailed. 

 Chapter 4 – Two clustering techniques that do not require presence of source 

device are described. The existing image analyser platform is described. The 

experiments that were developed on the current platform is discussed in 

conjunction with the limitations that were observed from the results of these 

experiments. Finally, further proposal to address the limitations is described. 

 Chapter 5 – The concept of signal decomposition is presented and the Singular 

Value Decomposition (SVD), which can separate an image into ranks of descending 

order of energies, is investigated. The homomorphic filtering approach is 

described, which is followed by the presentation of a new signature extraction 
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model that can better locate the PRNU within an image for the purpose of 

subsequent extraction. 

 Chapter 6 – The experiments performed on the existing platform are described, 

which include the cross validation experiments and cropping position for images in 

order to obtain stronger digital signatures. The results of the experimentation 

process are presented beginning with the results on identifying the most 

appropriate image cropping position. The results of the classification experiments 

performed on the existing classifier are elicited. A discussion of the results 

obtained is performed. 

 Chapter 7 – The experimentation performed on the proposed SVD based signature 

extraction model is described. A description of the results obtained from the tests 

carried out on the SVD based signature extraction method for ranks estimation 

and source device identification. Finally a discussion of the results is presented. 

 Chapter 8 - The thesis is summarised and the conclusions of the research project 

are elicited followed by some suggestions for further works. 
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Chapter 2 Digital Image Forensics 
 

2.1 Introduction 

Digital image forensics is a relatively new area of research that stems from the existing 

Multimedia Security field which involves watermarking and steganography (Redi, Taktak 

et al. 2011).  It makes use of image processing techniques and statistical analysis tools to 

recover information about digital images. The information gathered can be in terms of 

the image creation process or any manipulations that the image has undergone after 

being created. There are two main sub-categories of the digital image forensics research 

field that are being investigated by researchers to extract the required information from 

images.  

The first sub-area investigates whether an image has undergone any post-processing, 

after it was created, by studying its statistical properties. The post-processing is usually 

performed for malicious purposes, also called tampering, in order to hide or add 

erroneous information about the image source. The second area looks into the creation 

of the image itself in the camera pipeline, by trying to identify the source device that 

created the image. The artefacts left behind in the digital image by the camera can be 

from the characteristics of the imaging device itself or the processing inside the device 

(Gloe, Kirchner et al. 2007). Most of the time, forensic investigators do not have any 

previous knowledge about the images they recover and digital image forensics usually 

works in a ‘blind’ approach without needing à priori knowledge about the images.  
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A brief discussion about human vision system will be performed followed by a detailed 

description of the image acquisition process in digital cameras which will be followed by a 

review of how artefacts left in images created by digital cameras can be used as device 

signatures. The different types of digital signatures that have been studied will be 

described followed by the concept of device identification and linkage. 

 

2.2 Human Vision System 

The human vision system (HVS) is responsive to the intensity and colour of light incident 

on the human eye. The HVS has a non-linear perception of intensity, because of the 

complex rapport between intensity and perceived brightness that depends on several 

factors, including the level of surrounding light (Stone 2003). The human eye captures 

light in the rods and cones of the retina. The rods are highly light sensitive and allow 

vision in dim lighting conditions. There are three types of cones namely short, medium 

and long which are sensitive to blue, green and yellow-green light respectively and these 

sensitivities form the basis of the Red, Blue and Green (RGB) colour primaries in digital 

imaging (Irie 2009). The short cones are more scarce compared to the medium and long 

cones and thus the human eye is more sensitive to the green colour. 

Digital cameras try to mimic the HVS. They have an automatic white-balance mode which 

adjusts captured images according to a white reference so that images are displayed to a 

uniform lighting. This white balancing is performed in the HVS to allow us to see objects 

with the same colour under different light intensity and colours. The image acquisition 

process in digital cameras is described in the following section 2.3. 
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2.3 Image Acquisition 

The image acquisition process of a digital imaging device, such as a digital camera or 

phone camera, takes place in sequential stages starting from the point the light passes 

through the aperture of the camera optical system to the final stage of outputting the 

digital picture for storage. Cameras use hardware or software at each stage that 

corresponds to the quality of the final image to be produced. High-end digital cameras 

will use better quality hardware, e.g. lens or sensor, and provide more options for altering 

the software parameters and quality of the image. Furthermore high-end cameras can 

produce digital images in raw (uncompressed) format, which allows users to store the 

images at the highest fidelity possible without any loss in quality. Most of the mid-end to 

low-end digital cameras have to find a trade-off between the quality and price of the 

hardware or software used in the camera pipeline in order to optimise the quality of the 

image produced at the end. Most of these cameras store the digital image in a 

compressed format in order to save on storage space. Mobile/cell phones with digital 

cameras have the ability to perform all the standard functions of a normal phone with the 

added functionality of having a digital camera as part of the phone. Phone cameras have 

to incorporate the camera pipeline in a casing that includes all the other hardware and 

software of the phone, hence the quality of the components of that camera pipeline will 

be less than digital cameras. All camera phones store their pictures in a compressed 

format. 

The various image processing stages or components used in a digital camera leave traces 

in the resultant images produced and these artefacts can be used to identify the source 
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device. Figure 2.1 depicts these different stages in the image acquisition process in the 

camera pipeline.  

 

 

The light passes through the aperture in front of the optical lens and enters the camera 

through the lens or assembly of lenses, where the light is then focused on the image 

plane. The purpose of the lens, which is similar to the lens in the human eye, is to project 

the scene being photographed onto the image sensor. The size and quality of the image 

formed depends on the size of the aperture or focal length of the lens. Most digital 

cameras use lenses made of glass and low-end digital cameras or camera phones use 

plastic lenses, which are cheaper and easier to manufacture. A glass lens is produced by 

polishing a piece of glass whereas a plastic lens is pressed in a mould. The size of a plastic 

lens is limited since a larger plastic surface area will expand or shrink too much with 

varying temperatures (Bartlett 2012).  

The anti-aliasing filter acts as a low-pass filter to prevent spatial frequencies higher than 

that of the individual pixel in the sensor from passing through, which can otherwise 

create aliasing (Moiré effect). The Moiré waves make a set of closely laid lines appear 

 

Image Anti-aliasing Filter Colour Filter 

Array 

Sensor ADC, camera settings 

and compression 

System 
parameters 

Lens 

Figure 2.1. Image acquisition process inside a digital camera. 
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curvy or interlaced and the patterns appear in an image when the spatial frequency of the 

scene is higher than the resolution (Nyquist frequency) of the camera. The Nyquist 

frequency is half the sampling frequency of a discrete signal system. The filter can be 

placed anywhere in the optical path between the lens and the imaging sensor. The anti-

aliasing filter, placed along the imaging path, will ‘blur’ the incoming light by eliminating 

all frequencies above the Nyquist frequency of the resolution of the imaging sensor 

(Davies, Fennessy 2001).  

The colour filter array (CFA) captures the colour components of the light stream and is 

used because the sensor of a camera is monochromatic (captures only the light intensity 

and is grayscale). There are different types of CFAs such as the RGB (Red, Green and Blue) 

filter, the RGBE (Red, Green, Blue and Emerald) filter and the CYGM (Cyan, Yellow, Green 

and Magenta) filter. The most commonly used filter in digital cameras is the RGB filter 

known as the Bayer filter, shown in Figure 2.1, which stores the red, green and blue (RGB) 

colours. Each pixel will store one colour and interpolates the other two colours from the 

neighbouring pixels. In the Bayer filter, there are twice as many green pixels as red and 

blue because the human eye is more responsive to the middle frequency in the colour 

range, which is green. Camera manufacturers use different methods, known as CFA 

interpolation and demosaicing, to calculate the remaining colours that the pixel does not 

store. Demosaicing is the most computationally intensive stage in the processing pipeline 

(Ramanath, Snyder et al. 2005). 

The sensor is where the light photons are converted to electrical signals. The sensor 

contains light sensitive photodiodes which will absorb the energy of the photons and that 

energy is also the intensity of the light stream. The photodiodes are monochrome and do 
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not differentiate between the different wavelengths of colours in the light stream. The 

energy of the photons is then converted to analogue electrical charge (e.g. electrons 

charge). The signal created by a sensor is stored as a grayscale image. The sensor can be 

seen as a two-dimensional (2D) array containing a photodiode at each pixel location. The 

sensor is the most expensive component of the camera and is usually of two main types, 

the complementary metal–oxide–semiconductor (CMOS) and the charge-coupled device 

(CCD). There is a third type of sensor used in digital cameras, the Foveon sensor, which 

makes use of the property of silicon such that different wavelengths of light penetrates to 

different depths in the silicon (Hytti 2006). The Foveon sensors use three layers of pixels 

embedded in silicon, which leads to each layer recording the red, green and blue colour 

respectively. The resolution and colour accuracy from this type of sensor is better than 

sensors using normal Bayer CFA. The PRNU extraction from the Foveon sensor is beyond 

the scope of this study. 

The main difference between these former two technologies is that in the CCD the charge 

is shifted out of the array, converted into voltage using one amplifier and then serially 

read out. That is, when the exposure is complete each pixel’s charge packet is transferred 

sequentially to a common output structure, which converts the charge to a voltage, 

buffers it and sends it off-chip. On the other hand, in a CMOS sensor, an amplifier is 

attached to each photodiode and the voltage signals are read out one row at a time (El 

Gamal, Eltoukhy 2005). The charge-to-voltage conversion takes place in each pixel. Each 

read-out method had its own advantages and disadvantages. CCD sensors can be 

designed to contain very small pixels and since charge transfer is passive, they do not 

introduce temporal noise and fixed pattern noise (FPN). These noises are the pixel to pixel 
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variations due to device mismatches. On the other hand, the CMOS read-out has several 

active devices that introduce temporal noise and FPN. The serial read out of charge in 

CCD makes it slow and more expensive to produce due to the high cost of the specialised 

technologies. Another advantage of CMOS is that it can be manufactured on similar 

processing lines as normal processors as compared to specialised lines for CCD. 

Traditionally, CCD has been more commonly used but CMOS is being utilised more often, 

mainly in mobile (cell) phones cameras, because it consumes less power and cheap to 

produce.  

After the light sensing stage, the analogue charges are converted to digital signals by 

using ADC (analogue to digital converters) and various camera settings are then applied. 

These settings can be demosaicing, colour processing, gamma correction and ISO settings. 

In high-end digital cameras, the raw digital image formed after the ADC conversion can be 

stored along with a separate metadata file containing all the information about the 

settings and software processing. In most low-end and medium-end digital cameras, the 

raw image is compressed and stored in memory in order to save storage space. Most 

digital cameras use JPEG (Joint Photographic Experts Group) compression to store the 

digital image. JPEG is a lossy compression technique that eliminates the low and high 

frequencies (which are mostly outside the human visual range) of an image depending on 

the intended quality of the output image. The higher the compression ratio is, the smaller 

the size, and poorer the quality, of the resulting image file will be. 
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2.3.1 JPEG Compression 

The JPEG (Joint Photographic Experts Group) is the short name for the image file format 

JFIF (JPEG File Interchange Format). JPEG is a lossy compression method based on the 

Discrete Cosine Transform (DCT), which allows for substantial compression to be achieved 

and generate a reconstructed image with high visual fidelity (ISO/IEC JTC 1991, Wallace 

1991). Compression is usually performed on each colour channel separately. The amount 

of compression is dependent on the characteristics of the image, the final image quality 

and the speed of compression process needed. 

In the lossy baseline coding compression method, the image is converted from the RGB 

(Red, Green and Blue) colour space to the YCbCr (Luma, Blue and Red difference Chroma) 

and divided into 8 x 8 pixel blocks where each block is transformed by the forward DCT 

into a set of 64 values known as the DCT coefficients. The compression is performed in 

three sequential steps (Gonzalez, Woods 2002): 

1. DCT computation 

2. Quantization 

3. Variable-length code assignment 
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The pixels are processed from top to bottom and left to right. The first element of the 

block, top left, is called the DC coefficient and the other elements are called the AC 

coefficients. Each element is level shifted by subtracting the quantity 2n-1, where 2n is the 

maximum number of grey levels. For example, if the image consists of 256 possible values 

(from 0 to 255) then the number to be subtracted from each pixel will be 28-1 = 27 (128). 

Each of the 64 coefficients is then quantized using one of the 64 corresponding values 

from a quantization table. These tables differ between camera manufacturers. A set of at 

least four quantization tables are used by any JPEG compression method. Following this, 

the coefficients are prepared for variable-length coding by recording the difference 

between the DC coefficient of the current block and the DC coefficient of the previous 

block. The AC coefficients are encoded by using a zigzag sequence, which will create a 1-D 

sequence of quantized coefficients. The data is compressed further by passing the 

quantized coefficients to an entropy coding process. An example of such a coding process 

is the Huffman encoding, which is performed by providing the Huffman table 

specifications to the encoder. Once the encoding is performed, the compressed data is 

still in the frequency domain and has to be converted back to the spatial domain. The 

reverse procedures are performed by applying an entropy decoder that decodes the 

quantized DCT coefficients followed by the de-quantization process. The DCT coefficients 

are transformed to an 8 x 8 pixel block by applying the inverse DCT. During the 

quantization process some AC coefficient values are rounded off and are eliminated from 

the data, thus leading to information loss. 
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2.4 Devices Signatures 

Each stage in the camera processing pipeline produces some artefacts that become part 

of the resulting digital image. These artefacts can be used to identify the make or model 

of a camera. In some instances they can also help to identify the specific device that 

created the image. When these artefacts are detected and extracted, they can be used as 

digital signatures for the camera. Each section of the camera pipeline will produce a 

different type of signature.  

 

2.4.1 Types of Signatures 

Some of the artefacts in the camera pipeline are common to cameras of the same make 

or model. The ‘make’ of a camera is the brand of that camera and usually will be linked to 

the name of the company that produces this type of camera, for example, Sony, Nikon, 

Canon or Samsung and camera phone makers like Nokia or Apple (iPhone). Each camera 

manufacturer offers different ‘models’ of camera that target different sections of the 

market or to represent updates to the cameras. For example, most digital camera makers 

have a low, mid and high range camera model, which reflect on the quality and size of the 

cameras as well as the price of the camera. A low-end camera will cost less that high-end 

counterparts but the options on the camera will be more limited and a lower quality of 

hardware is used during the manufacturing process. The mid-range models will contain 

superior hardware, and an increased number of options, but the price will also be higher. 

The same applies to high-end cameras, which are mainly used by professional 

photographers and experienced amateurs. In these cameras, the options offered to the 

user are more varied and most often feature interchangeable lenses. The camera can also 
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store images in the raw format as opposed to the low and mid-end cameras, which most 

often store images in the JPEG format (as explained in section 2.2.1). 

When a picture is taken, most digital cameras store information about the settings on the 

camera at that time. This attached information is usually called tags, EXIF (exchangeable 

image file format) or metadata of the image and contains details about the date and time 

the picture was taken, camera firmware, flash fired, image dimension, resolution or 

geotagging (geographical location of phone when image taken) amongst other some 

examples. The source of digital images can be identified using the metadata or EXIF 

headers that are attached to each image taken. However, this method of identification is 

not reliable since the metadata can be easily removed or modified by image editing 

software and when uploaded to a website (e.g. Facebook social networking site). A small 

number of camera models have a watermark inserted into each picture and, because of 

the limited amount of cameras having this facility, this signature cannot be used for 

normal cameras. In addition, it would be difficult to get all the camera manufacturers to 

insert a watermark facility in all their cameras, and this would not be immune to 

tampering nonetheless. Therefore, other types of identification methods which are more 

robust to editing have to be used for camera identification. There are several techniques 

that can be applied to the artefacts left by the stages in the camera pipeline for 

generating a digital signature, such as the following: 
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 Lens aberration 

 Colour filter array (CFA) interpolation and demosaicing 

 Camera response function (CRF) 

 JPEG quantization tables 

 Sensor pattern noise (SPN) 

 Higher order wavelet statistics.  

The following subsections describe the different device signatures. 

 

2.4.2 Lens Aberration 

Aberrations and distortions in lenses are unwanted artefacts of the design and 

manufacturing processes of lenses. Some of the distortions and aberrations are:  

 Lens radial distortion 

 Chromatic distortion  

 Spherical aberration 

 Coma 

 Astigmatism 

 Field curvature 

More research in the field of device identification has been undergone on the first two 

types of distortions and therefore they will be explored in greater details. Lens radial 
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distortion occurs when straight lines from the object are rendered as curved lines on the 

sensor of the camera, and the difference between the distorted line and the straight line 

can be measured and used to identify the camera (San Choi, Lam et al. 2006). The lens 

has various focal lengths and magnifications in different areas across its spherical surface. 

It is the degree of the radial distortion between a distorted line and a corresponding 

straight line that can be used as a signature. Chromatic distortion occurs when light of 

different wavelengths converges at different positions on the camera sensor, which 

causes misalignment of the RGB channels. There are two kinds of chromatic distortion 

namely, longitudinal aberration and lateral aberration. The former occurs when different 

wavelengths focus at different distances from the lens and the second occurs when the 

wavelengths focus at different positions on the focal plane. The distorted parameters 

between the RGB colour channels for lateral aberrations can be estimated and used to 

identify source devices.  

Lens radial distortion has been used to classify images from three cameras. However 

there is a major limitation to this method, the lens distortion cannot be used effectively 

as a signature when there is manual zooming. Given that most digital cameras nowadays 

provide the facility to perform manual zooming, therefore this method cannot be used to 

identify cameras effectively. Lateral aberration, used on its own, is not a good method of 

identifying cameras from the same model (Van, Emmanuel et al. 2007) and the authors 

have not used both lateral and longitudinal aberration together as feature sets. Although 

they used digital images from cell phones, none of the images had been taken with zoom 

activated and only two cameras came from the same make and model. These latter 

cameras did not provide a good identification result to differentiate between them. 



Chapter 2 Digital Image Forensics 

39 
 

2.4.3 Colour Interpolated Algorithms 

The CFA does not store all the colours at the pixels locations. Instead only one colour 

channel is stored at any pixel. Camera manufacturers use different demosaicing or 

interpolation algorithms by using the pixel neighbourhood information to estimate the 

values of the pixel colours that were not measured. Different camera manufacturers use 

algorithms with kernels of different sizes and shapes, which are usually unique to each 

camera ‘make’. Sometimes, however, the algorithms can be different between models of 

the same camera. The interpolation algorithms inserted within each digital image created 

by the camera results in an artefact that relates to the camera make or model.  

These algorithms can be detected in an image and used as a digital signature to identify 

the model or make of the camera. The identification of the CFA interpolation and 

demosaicing algorithms present in digital images can be performed by calculating the 

correlation between the different colour channels in a colour image and estimating the 

demosaicing algorithm used to produce it (Bayram, Sencar et al. 2005, Gunturk, 

Glotzbach et al. 2005). The CFA pattern of the image is estimated by creating a set of 

search patterns. For each pattern, the interpolation coefficients in different types of 

texture regions of the image are estimated by fitting linear filtering models. These 

coefficients are then used to re-estimate the output image and find the interpolation 

error (Swaminathan, Wu et al. 2007).  

The identification of the CFA interpolation algorithm is heavily affected by compression 

(JPEG) of images, where the spatial correlation between the pixels due to the CFA 

interpolation are suppressed and removed. Hence this method will not provide reliable 

identification of images from camera phones or heavily compressed images. Another 
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limitation of this method is that many of the interpolation techniques used are non-linear 

and dependent on scene details. After the CFA interpolation, non-linear (e.g. gamma 

correction) and lossy (e.g. JPEG compression) operations are performed to produce the 

final image and usually investigators do not have access to the raw images. 

 

2.4.4 Quantization Table & CRF 

The camera response function (CRF) maps the photon energy captured by the sensor 

(irradiance) to the light intensity in the image (image intensity) produced by the camera. 

The mapping can be estimated by fitting a function to corresponding values of intensity 

and radiance. Using a set of images, the CRF can be fitted to their intensity values and 

radiance ratios. The CRF can also be estimated by finding the mapping algorithm using a 

single image, and the generic imaging device can be identified as the source of that image 

(Lin, Jinwei Gu et al. 2004, Ng, Chang et al. 2007). The CRF estimation method has also 

been applied to the detection of image splicing (cut and paste). Automatic segmentation 

is performed on the image and the CRF is estimated followed by a boundary segment 

classification to detect if splicing occurred (Hsu, Chang 2007). 

Celiktutan et al (Celiktutan, Avcibas 2008) have used higher order wavelets statistics 

together with binary similarity measures and image quality measures as digital signatures 

for digital images. They applied a support vector machine (SVM) classifier to the 

signatures to aid in the identification of the camera makes and models. 

The last image processing stage in most digital camera pipelines involves compressing the 

raw images before storage in memory. The JPEG compression algorithm is used to 

compress the image, and quantization tables are used to determine the quantized effect 
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(rounding off) on the high and low spatial frequencies of the image in the frequency 

domain (JPEG compression was explained in section 2.2.1). The main source of variation 

between the different encoders is the quantization methods that control the compression 

rates and artefacts. Quantization tables vary between camera manufacturers, and 

different camera models from the same manufacturer, however the variation is more 

distinct across manufacturers (Farid 2006). Digital images are usually recompressed for 

storage or transmission and in these cases the generic device can be still identified (Sorell 

2008).  

The JPEG quantization tables can also be used to detect whether an image has been 

processed by an image editing software like Adobe Photoshop (Kornblum 2008). By 

identifying these images an investigator can eliminate from the investigation the images 

that have been tampered or generated by image editing software. A large scale test was 

performed by Farid to examine the effectiveness of using quantization tables to identify 

the generic source device make or model from a large sample of images downloaded 

from the Flickr website (Farid 2008). It was found that using the quantization tables can 

be reasonably effective in narrowing the source of an image to a single camera make and 

model or to a small set of possible cameras. 

The CRF estimation has been used mainly to identify image splicing and has not been 

shown to work effectively in camera identification. There has not been any further works 

in CRF estimation either from the authors. Quantization tables can be used to identify 

camera makes or model, but it is easily suppressed or changed by simply re-saving the 

digital image in an image editing software. Furthermore, many digital cameras use 



Chapter 2 Digital Image Forensics 

42 
 

different quantization tables for different image light levels or scene details, which makes 

it very difficult to identify the quantization table of the cameras.  

 

2.4.5 Sensor Pattern Noise 

The sensor pattern noise (SPN) consists mainly of the PRNU (photo-response non-

uniformity) noise and occurs in the sensor of the camera (Lukas, Fridrich et al. 2006). The 

properties of PRNU make it unique to each camera sensor. The SPN can be used to 

identify source devices and to determine whether an image has been tampered with 

(Chen, Fridrich et al. 2008). Sensor noise also consists of two types of noise; temporal and 

spatial (Vrhel, Saber et al. 2005). Temporal noise consist of dark noise, shot noise, noise 

from mechanical vibrations and noise from illumination fluctuations. Spatial noise 

examples are variations of light sensitivity of sensor elements and dark current non-

uniformity. The temporal noise sources can be reduced by averaging and the spatial noise 

can be minimised by frame subtraction or gain/offset correction methods. 

The PRNU is due to imperfections arising from the manufacturing process of the sensor 

and due to slight variations in conversion of light to electrical energy by individual pixel 

sensors (Fridrich 2009). A combination of the uniqueness of the imperfections in the 

silicon material and the different sensitivity of the pixels makes the sensor noise ideal for 

differentiating between sensors, even if they are made from the same silicon wafer, and 

hence the respective cameras into which they are embedded. The SPN, n, which appears 

as a high frequency signal, can be extracted from an image, I, based on the model 

proposed in (Lukas, Fridrich et al. 2006) as a high pass filter: 

)(IfIn   
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where f is a denoising function, which acts as a low pass filter to extract the noise from 

the image.  

There are several denoising filters that can be used and two of the methods implemented 

for the signature extraction are a Gaussian filter in the spatial domain and a wavelet 

domain based approach. The Gaussian filter is two dimensional where the variance of the 

filter can be adjusted to choose the cut-off frequency that will determine the level of 

scene content and sensor noise (Alles, Geradts et al. 2008). The second approach applies 

wavelet decomposition to represent the image in separate detail levels. Then a noise 

filter, which is a Wiener filter, is applied to the details levels and an image reconstruction 

is performed to obtain the noise free image. The wavelet domain filtering approach is 

claimed to give better results than others (Mihcak, Kozintsev et al. 1999, Lukas, Fridrich et 

al. 2006). The SPN is not the dominant component of the noise residuals that are 

extracted from the image, thus a smoother image (with less scene details) will provide 

better magnitude of SPN. However, as reported in (Sencar, Memon 2007), there are some 

limitations to using SPN as a fingerprint; it is easily contaminated by details of the scene 

(which are also high frequency signals with higher magnitude), by saturation due to light 

sources (flash, sun, light bulb) and rotation. This leads to a high misidentification and 

misclassification rate. A whole image has to be used for the extraction of the fingerprint 

in order to get a reasonable identification rate. Furthermore, the extraction process can 

take a long time and it is reported in Hoglund (Hoglund 2009) that it takes about 30 hours 

to calculate the reference noise using 200 images of sizes 3072 x 2304 pixels. Instead of 

using a whole image, the computational cost of the extraction process can be greatly 
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improved by using only part (crop) of the image. A trade-off must be found between the 

speed and accuracy of identification and classification rate. 

The SPN can also be contaminated by the blockiness (row/column noise) created by the 

JPEG compression and other processing operations performed in the camera pipeline. 

Consequently, further processing is often applied to facilitate the estimation of the SPN, 

including the attenuation of non-unique artefacts (NUA) such as the FPN, blockiness and 

colour interpolation (Chen, Fridrich et al. 2008). The accuracy of SPN can also be 

improved by attenuating the interference of scene details with the enhancer described in 

(Li 2010), where the enhanced SPN was shown to increase the identification rate and 

allow the use of smaller image crop size. 

The existing SPN extraction methods extract all the higher frequency details from the 

digital image which leads to contamination of the signature. Post processing has to be 

performed on the SPN signature in order to reduce the amount of contamination and the 

post processing decreases the strength of the signature. For highly compressed images 

the post processing can prevent source identification due to the already weak SPN signal. 
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2.5 Device Identification 

The source device that created an image can be identified by using one or a combination 

of the different device signatures described in the previous section. Some of the device 

signatures allow the identification of the model or make of the source device, whilst other 

signatures enable the identification of the specific source device. There are two main 

types of device signatures that can be used for device identification: 

 Image processing methods 

 Hardware methods 

The CFA, CRF, JPEG compression and statistical techniques, which form part of the image 

processing identification methods, can be used to identify a particular model or make of a 

camera. The hardware identification methods comprise the lens aberration and SPN 

techniques, which can be used to ascertain distinct devices of the same model. While 

some of these methods need specific assumptions to be made before processing images 

the SPN technique does not. Given that the lenses of higher end digital cameras are 

exchangeable and lenses can also be swapped with relative ease on lower end ones, the 

lens aberration component of an image will also change which implies that the camera 

identification will fail. The sensor, which is relied upon by the SPN technique, is much 

harder to change as well as being more expensive and hence it is uncommon for a sensor 

to be swapped. 

Another useful capability provided by device signatures for a forensic investigator, is the 

ability to identify the device type that created the image. For example, being able to 

determine whether an image was produced by a digital camera, camera phone, scanner 
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or generated by computer software can help to decrease the number of images to 

process (McKay, Swaminathan et al. 2008). A fusion of features consisting of the colour 

interpolation coefficients and the statistical noise features were extracted from the 

images by McKay et al. Their results based on experiments performed using five cell 

phone cameras, four scanners, five digital cameras, and computer graphics images show 

that it is possible to differentiate between generic source device types. 

 

2.5.1 Device Linkage 

Extracted device signatures from digital images are very useful to ascertain the source 

device. When a collection of images are recovered, the signatures can be extracted and 

compared against device signatures already in the possession of the forensic investigator 

in order to find a match. Device signatures can be estimated and stored in a database. 

When suspect images are recovered they can be matched against the device signatures in 

the database and this can help in showing a network of linked users of the images. 

Images that are recovered from secondary storages (e.g. hard disks, memory sticks) or 

downloaded from online social networks (e.g. Facebook, Flickr) can have their signatures 

extracted and checked against other signatures of individual images (not device reference 

cameras). The purpose of these checks is to find one or a set of common source devices 

that contributed to create these images. This is called device linkage. The signatures can 

be classified according to their respective source device, for example, the make or model 

or even specific device. The images can be checked against signatures previously 

recovered from suspect devices and links can be inferred. 
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Chapter 3 Sensor Noise and Signature Extraction 

 

3.1 Introduction 

The sensor used in a digital imaging device is usually the most expensive hardware part 

and is at the heart of that device, which makes the changing of sensors in camera a non-

trivial process. Forensic investigators can therefore safely link a sensor, for investigative 

purposes, to a specific imaging device that they suspect created the image. The creation 

of a digital image will contain artefacts from the camera sensor, which are the sensor 

noises. Parts of these noises can be used to identify the specific source of the camera. The 

SPN consists mainly of the PRNU noise that is unique to the individual sensor of a camera 

and as described in section 2.4 of Chapter 2, using the SPN for device identification does 

not require any prior assumptions to be made about the type of camera or software used 

inside the camera and can differentiate between devices of the same model.  

This chapter describes the different types of noises that form part of the sensor noise and 

how they can be used or attenuated in order to assist in device identification. The 

characteristics of the PRNU will be elaborated where its multiplicative nature and its 

energy will be explained. Finally, two signature extraction methods will be described with 

particular attention on the wavelet based denoising method. 
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3.2 Sensor Noise 

The two sensors used in the large majority of digital cameras and camera phones are the 

complementary metal–oxide–semiconductor (CMOS) and the charge-coupled device 

(CCD) and they are the two types of sensors whose noise sources will be studied. There 

are different noise components that form part of what is called the sensor noise (Hytti 

2006, Irie, McKinnon et al. 2008): 

 PRNU 

 Photon shot noise 

 Fixed pattern noise or amplifier gain non-uniformity 

 Dark current shot noise 

 Read-out noise (thermal noise, reset noise) 

 

The photo response non-uniformity occurs due to the different responses to light of 

individual pixels (photodiodes) on the sensor. The photon shot noise occurs due to the 

discrete nature of electronic charge. When current flows past any point in a circuit, the 

arrival rate of electrons will fluctuate slightly and give rise to variation in current flow at 

that point. The capture of photons is a Poisson process and increases proportionally to 

the square-root of the sample mean. The fixed pattern noise (FPN) arises from changes in 

dark currents due to variations in pixel geometry during fabrication of the sensor and it is 

the pixel to pixel difference when the sensor is not exposed to light. If the average value 

of the dark currents is subtracted from every pixel the variation remaining is referred to 
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as FPN, which does not vary much from image to image. Furthermore, FPN depends on 

the exposure time, temperature and is commonly referred to as amplifier gain non-

uniformity. Dark current shot noise arises from the leakage of current in each pixel of the 

sensor (mainly CCD sensors) and this noise usually doubles with each 8oC rise in 

temperature of the sensor. Thermal noise arises from equilibrium fluctuations of an 

electric current inside an electrical conductor due to the random thermal motion of the 

charge carriers. Read-out noise is generally defined as the combination of the remaining 

circuitry noise sources between the photoreceptor and the ADC circuitry. Read-out 

includes thermal noise and reset noise among other minor noises.  

The various noise sources that originate from the sensor can be classified in different 

ways (Hytti 2006). The first classification separates the noise components in three types: 

 Signal dependent 

 Temperature dependent 

 Time dependent 

 

The signal dependent noise components comprise of photon shot noise, PRNU and 

amplifier gain non-uniformity (aka FPN). Temperature dependent noise components 

include thermal noise and dark current noise and finally time dependent noise 

components consist of photon shot noise, dark current shot noise, reset noise and 

thermal noise. 
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The second classification method of the noise components is to separate them into 

random and pattern components. Random components include photon shot noise, dark 

current shot noise, reset noise and thermal noise. Pattern components are amplifier gain 

non-uniformity, PRNU, dark current non-uniformity and column amplification offset. As 

can be observed from the two classifications, the PRNU is a signal dependent noise reliant 

on the amount of light falling on the sensor and which will have the same pattern for all 

the images taken from the same sensor. 

There are several noise models that have been developed to show the relation between 

the different sources of noise occurring due to the sensor and how they affect the 

resulting image produced. The noise models also show how the PRNU is distributed 

among the other source of noises and the light intensity. All the noise models were 

developed using RAW images, i.e. not compressed. Three models are showed below and 

the energy of the PRNU of each model will be described in more details in section 3.3.2. 

Irie et al (Irie, 2008) performed a study to present a measurement of CCD sensor noise, 

where the noisy image capture model, Icap is represented as:  

Icap= (I+I×PRNU+SNph(I)+FPN+SNdark+Nread)×ND×Nfilt+ NQ(Ifilt) 

where I is the clean image with light intensity, SNph is the photon shot noise, SNdark is the 

dark current shot noise, Nread is the read noise, ND is the demosaicing effect, Nfilt is the 

digital filtering, and NQ(Ifilt) is an additive noise source dependent on the image content 

after digital filtering. This model shows that the PRNU is multiplicative in relation to the 

light intensity. 
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In another study, El Gamal & ElToukhy (El Gamal, Eltoukhy 2005) presented a simplified 

noise model for a CMOS sensor: 

Average noise power = q(iph + idc)tint + q2(σ 2read + σ 2DSNU) + (σPRNU iph tint)
2 

where iph is the photo current, tint is the time interval, q is the electron charge, σ 2
read is 

the quantization noise with average power, σ 2
DSNU is the DSNU (dark signal non-

uniformity) with average power, σPRNU iph tint is the PRNU with average power. This model 

also showed that the PRNU is dependent on the light intensity falling on the sensor. 

Chen et al (Chen, Fridrich et al. 2008) presented a sensor output model mainly for source 

device identification purposes as: 

     (   )           

where I is the noisy image, g is the colour channel gain, γ is the gamma correction factor, 

K is the PRNU signature, Y is the incident light intensity, Λ is a combination of the other 

noise sources including the dark current, shot noise, and read-out noise and Θq is the 

quantization noise. In this model, it can be seen that the PRNU is again dependent on the 

light intensity. 

The noise models show how the different noises contribute to the overall artefacts in an 

image associated with the sensor. More specifically, the models show how the PRNU is 

related to the light intensity, a clean (noiseless) image and the other noises affecting the 

resultant image produced.  

The pattern components and signal dependent components of the sensor noises are the 

parts that are used as the Sensor Pattern Noise (SPN) for source device identification. The 



Chapter 3 Sensor Noise & Signature Extraction 

52 
 

SPN consist of two main components the FPN and the PRNU as shown in Figure 3.1 

(Lukas, Fridrich et al. 2006). The FPN can be removed by subtracting a dark frame from an 

image that was taken by the camera and some mid to high-end digital cameras 

automatically subtract a dark frame from every image. The main component of the SPN in 

natural images is the PRNU, which is composed of the pixel non-uniformity (PNU) is the 

actual difference in sensitivity of pixels to light intensity. The PNU is property that makes 

the PRNU unique and contributes to the pattern-like nature of the SPN. The PRNU also 

contains low frequency defects which are due to light refraction on dust particles and 

optical surfaces as well as camera zoom settings. These components are known as 

“doughnut” patterns and vignetting (Janesick 2001). 

 

 

 

 

 

 

3.2.1 PRNU 

The photo response non-uniformity (PRNU) occurs due to the different responses to light 

of individual pixels (photodiodes) on the sensor. When photons reach the sensor, the 

photodiodes absorbs the energy of the photons and converts the energy to electrical 

charge. In theory all the pixels should store the same amount of electrical charge for the 

same amount of photon energy. In uniform illumination conditions, each photodetector 

Sensor Pattern Noise 

Fixed Pattern Noise PRNU 

Low frequency defects PNU 

Figure 3.1. Sensor Pattern Noise of imaging sensors (Lukas et al, 2006) 
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cell of an image sensor should exhibit the same output voltage. However, this is not the 

case due to variations in pixel geometry, substrate material, and microlenses. For 

example, if 1000 units of photon energy are absorbed by a pixel it should store 100e 

(elementary charge) of electrical charge, thus all the pixels present on the sensor that 

obtains 1000 units of photon energy should store 100e. In practice, different pixels will 

store different amount of electrical charge, some might store 90e while others might 

store 75e.  

This difference in charge stored will create a pattern across the sensor and it is this 

pattern that forms the part of the Sensor Pattern Noise (SPN) which consists mainly of the 

PRNU noise. The difference in charge stored is linearly proportional to the light intensity 

falling on the photodiode, which means that stronger intensity of light falling on the 

photodiode will result in higher magnitudes of the PRNU for that resultant pixel in the 

image. On the other hand if the intensity of light is very low, i.e. dark image, the 

magnitude of the PRNU is very low. When a pixel is saturated (too much illumination), the 

PRNU cannot be extracted. Thus, PRNU is stronger at high illumination and cannot be 

extracted in dark or saturated pixels. The SPN will consist mainly of the PRNU at normal 

and higher illumination and the mainly the FPN at low level of light. 

The PRNU is due to imperfections arising from the manufacturing process of the sensor. A 

combination of the uniqueness of the imperfections in the silicon material and the 

different sensitivity of the pixels makes the sensor noise ideal for differentiating between 

sensors, even if they are made from the same silicon wafer. The natural imperfections 

allow the pattern to be unique, due to the randomness of the imperfections, if sufficient 

numbers of pixels are picked for creating the digital signature. An image of size 128 x 128 
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pixels will provide a total of 16384 different values of pixels, which due to the 

randomness of the imperfections should provide enough pixel differences to produce a 

unique pattern for its respective sensor. An image of larger size (3264 x 2448 pixels) will 

provide a stronger signature with more unique patterns but the downside is that the 

computation complexity increases due to the increase in number of pixels (dimensions).  

 

3.3 Characteristics of PRNU 

The sensor at the heart of every camera determines the quality of the digital picture that 

can be taken by that camera (Grotta, Grotta 2012). The usual metric used by most 

manufacturers about the pixel count (in megapixels) merely indicates the quantity of 

pixels in the image but not the quality of these pixels. Consider the £100 Nikon Coolpix 

S3300 digital camera and the £4000 Nikon D4 DSLR (digital single lens reflex) camera, 

where both cameras produce images of 16-megapixel. The quality of pictures from the 

Nikon D4 camera is of a much higher quality than the Coolpix S3300 and this is down 

mainly to the quality and size of the sensor in the Nikon D4 camera, together with the 

more precise settings and exchangeable lenses and other higher quality hardware and 

software (Grotta, Grotta 2012).  

A larger sensor will result in larger wells that can collect more electrons for each pixel. 

Thus, the point where the pixel flips between a ‘0’ and ‘1’ can be much more precise, 

which means less software processing of the image created by the sensor and a higher 

signal to noise ratio. Larger sensors produce better noise pattern due to more precise 

measurement of the PRNU difference as well as less image processing, which degrades 

the quality of the PRNU. Furthermore, the characteristics of the PRNU, such as its 
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multiplicative nature and its energy in relation to the image energy, are dependent on the 

quality of the sensor used. Digital cameras with better and larger sensors should produce 

stronger digital signatures based on SPN extraction and camera phones with very small 

sensors should produce weaker SPN that will reduce the ability to identify source devices. 

Since PRNU is caused by the physical properties of a sensor, it is nearly impossible to 

eliminate and is therefore usually considered a normal characteristic of the sensor array 

used in any CCD or CMOS camera. Therefore the characteristics of the PRNU are 

interesting too. 

 

3.3.1 Multiplicative noise 

A noise is said to be multiplicative if the noise amplitude depends on the state variables 

themselves. By contrast the amplitude of an additive noise is independent of the state 

variables and will change according to other outer variables. The model for a purely 

additive noise can be given as (Song, Uhm 1991): 

       

where Y is the observed signal component, θ is a signal strength parameter, X is the signal 

component and W is the additive noise component. 

The purely additive noise component W is usually taken to be independent and identically 

distributed random variables with a common PDF (probability density function), zero 

centred mean and variance σ2. The random signal and purely additive noise from the 

model are assumed to be statistically independent.  
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The model for a multiplicative noise can be represented as: 

     

Where Y is the observed signal component, X is the signal component and Z is the 

multiplicative noise component. 

The multiplicative noise component Z is a random variable following a Gamma 

distribution or sometimes normal distribution with unit mean and variance 1/ (average of 

number of samples). The random signal and the multiplicative noise are assumed to be 

dependent. 

The PRNU is proportional to illumination falling on the sensor and is prominent under 

high illumination levels. Since the PRNU is dependent on the light intensity, it is a 

multiplicative noise as shown in the sensor noise models in section 3.2. PRNU is assumed 

to be a zero mean noise-like signal and it is dependent on the light intensity incident at a 

pixel.  

                      

The PRNU is proportional to the light intensity and can be extracted more effectively by 

either using a multiplicative denoising filter or converting the PRNU noise to an additive 

noise and applying an additive denoising filter. The multiplicative nature of the PRNU will 

make it non-existent in very dark or saturated sections of an image. When the PRNU is 

converted from the spatial domain to the frequency domain, it is found to be a medium 

to high frequency signal outside the human visual range (Lukas, Fridrich et al. 2006). 
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3.3.2 Energy of PRNU 

The energy of the PRNU in an image depends on the type of device that produced the 

image. There are two types of sensors that are primarily used in digital cameras, the CCD 

(Charge-Coupled Device) and the CMOS (Complementary metal–oxide–semiconductor). 

The CCD is used in most digital cameras both at the low and high-end of the market, 

whereas the CMOS is used primarily in mobile phones and webcams. The CCD produces 

less noise but requires more power when compared to the CMOS, hence the reason 

CMOS used most often in mobile phones where space and battery life is crucial. CMOS 

sensors are also cheaper to manufacture. The energy of the PRNU in a CMOS will be 

affected by other sources of noises and the magnitude of the PRNU can be reduced. Dark 

current (dark noise) in CMOS sensors can be much higher than in CCD sensors and the 

dark current increases exponentially to rise in temperature (roughly doubling for every 

8oC rise). Most of the experiments performed on the sensors in order to calculate the 

energy of the PRNU were in the research field of Optics or Radiometry and were related 

to creating a sensor model for the specific type of sensor used (CMOS or CCD).  

In Irie et al (Irie, McKinnon et al. 2008), the PRNU was calculated by illuminating a Gretag 

Macbeth ColorChecker Color Rendition Chart (the chart consists of 24 squares of different 

colour paint applied to paper then mounted to a cardboard backing with a black frame 

around all the patches) with controlled lighting to provide a range of reflectances for 

measurement of the PRNU for a CCD sensor. The captured images were low-pass filtered 

by defocusing the lens thereby reducing the effect of any high frequency content present 

in the scene. The PRNU in CCD was measured by calculating the variance (σ2) of the noise 

for sets of 100 images. The percentage energy values for the red, green and blue (RGB) 

responses of the camera were: 
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σR = 0.010R - 0.008 

σG = 0.006G + 0.122 

σB = 0.013B + 0.024 

The statistical variation of each component is added in the three values. The percentage 

energy of the PRNU in relation to the total energy of the image is shown above. 

 

The average power of PRNU for a CMOS sensor is given by (El Gamal, Eltoukhy 2005): 

 

  
(            )

 
 

where q is the electron charge,       
2 is the variance of PRNU, iph is the photocurrent 

and tint is the integration time. The average power of the PRNU forms part of the sensor 

noise model for the average noise power in section 3.2. The standard deviation of the 

PRNU in the example used in el Gamal  & Eltoukhy was around 0.6%. The electron charge 

is a constant and the integration time and the effect of photocurrent is similar for most 

CMOS sensors and is beyond the scope of this project. Hence the energy of the PRNU can 

be simplified to the variance of PRNU again. In this case, the energy of the PRNU is 

around 0.36%. 

In Fricker et al (Fricker, Rainer et al. 1999), the lighting levels were varied in order to 

obtain different PRNU values for an airborne digital CCD sensor and found that up to a 

PRNU value of 0.02 % of the total energy the SNR (Signal to Noise Ratio) is determined 

exclusively by the photon noise of the signal, the RMS (root mean square) noise of the 

CCD and the noise of the analogue channel. At 0.1 %, the PRNU influence becomes 
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dominant. Hence the SNR decreases for PRNU values above 0.1%, which is to be 

expected.  

From these three experiments it can be assumed that the energy value of the PRNU can 

vary between 0.02 to 0.4 % for the CMOS and CCD sensors. These experiments were 

performed in laboratory controlled lighting conditions, where the images were taken at 

maximum resolutions in a protected environment. In normal conditions for normal digital 

cameras or mobile phones the energy of the PRNU will represent an approximation of the 

energy value represented by the results of these experiments. Moreover, other external 

factors like illumination levels, the camera internal software settings, resolution of the 

picture and zooming will affect the value of the PRNU. The deterioration of the PRNU will 

depend on the magnitude of the noise in the image as shown in section 3.2, where the 

sensor noise models were described. 

 

3.4 Signature Extraction of SPN/PRNU 

Two of the most commonly used denoising filters for signature extraction are the 

Gaussian filter in the spatial domain and the wavelet domain based approach (Alles, 

Geradts et al. 2008). The estimated PRNU, n, which appears as a high frequency signal, 

can be extracted from an image, I, based on the model proposed in (Lukas, Fridrich et al. 

2006) as a high pass filter: 

n = I – f (I)  
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where f is a denoising function, which acts as a low pass filter to aid the extraction of the 

desired spectrum of noise from the image. Most signature extraction methods usually 

extract the SPN which contains both the FPN and PRNU.  

Lines and sharp edges are examples of high frequency scene details in digital images. By 

subtracting the low frequency details from the image to obtain the SPN, the medium to 

high frequency scene details are still present in the image as shown in Figure 3.2 and 

Figure 3.3. 
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Figure 3.2. Original image showing a tree (high frequency details) and sky 

(low frequency details) 

Figure 3.3. Extracted SPN from image in figure 3.2 with high frequency details 

clearly visible and low frequency details absent (sky).  
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The picture in Figure 3.2 shows the original natural image with a tree, some houses and a 

road with the sky in the background. The tree and pavements contain strong lines and 

edges which are high frequency details whereas the sky and road surface are smooth 

areas of the images which are low frequency details. When the SPN of the picture is 

extracted, Figure 3.3, the trees outline and the pavements are clearly visible in the 

signature because they are high frequency details. On the other hand, the smooth areas 

of the sky and road surface are plain with no details because they are low frequency 

details which have been filtered out. The SPN is invisible in the signature since it is in the 

high frequency region and is of very small magnitude. Hence scene content of the image 

and other stochastic noises can interfere and deteriorate the SPN. The SPN can also be 

contaminated by the blockiness (row/column noise) created by the JPEG compression and 

other processing operations performed in the camera pipeline. 

3.4.1 Gaussian Filter 

The Gaussian filter is two dimensional where the variance of the filter can be varied to 

choose the cut-off frequency that will determine the level of scene content and sensor 

noise. It is claimed that the Gaussian filter is faster than the wavelet method and obtains 

comparable identification results (Alles, Geradts et al. 2008). The Gaussian filter approach 

has 3 parameters that can be altered to allow the extraction of the sensor noise without 

too much degradation: 

 The variance of the Gaussian filter 

 The threshold level to suppress scene content 

 The macro element size 
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The variance σ of the kernel of the Gaussian filter determines the cut-off frequency of the 

filter in order to separate the PRNU from the scene details and stochastic noises. The 

reference signature of a camera is estimated from 300 images using varying values of σ 

(Alles, Geradts et al. 2008). The same filter is used to extract the PRNU from another two 

sets of images with one set originating from the same camera and the second set 

originating from other cameras. The correlation coefficient values between the camera 

reference signature and the two sets of signatures are calculated and plotted and the 

optimal value of variance is chosen (σ = 0.6).  

A similar set of experiments as the ones performed for finding the variance (σ = 0.6) are 

carried out to determine the threshold t to suppress the scene content (Alles, Geradts et 

al. 2008). The camera reference signature is calculated and the two sets of signatures 

extracted from the same camera and different cameras with varying levels of t. All pixel 

values above the threshold t are masked out. The optimal value for the threshold was 

found to be 4. The macro element size is performed to remove the blockiness artefacts, 

where a group of 2 x2, 4 x 4 or 8 x 8 pixels are averaged into one macro element. From 

the experiments, the 4 x 4 averaging was found to provide the best results. 

This filter is not able to distinguish between noise and signal features, this method will 

also distort (blur) the edge integrity (Geradts, Gloe 2009). From the results, it can be seen 

that the Gaussian filter is more suited for a closed set problem, where the most likely 

camera is chosen from a fixed group of cameras, as opposed to the open set problem 

where single images were used and the false rejection rates were unsatisfactory (Alles, 

Geradts et al. 2008). 
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3.4.2 Wavelet Based Filter 

The Gaussian filter described in the previous section 3.4.1 operates in the spatial domain 

and a filter that performs the denoising in the frequency domain might produce better 

results since the sensor noise is understood to be in the mid to high frequency spectra 

region. The sensor noise in digital images can be seen as non-periodic signals with sharp 

discontinuities (Geradts, Gloe 2009).  A Fourier based filter could be applied to extract the 

SPN, given that Fourier Transform is in the frequency domain and that any function 

expressed in the Fourier Transform can be recovered fully, with no loss of information, 

back in the spatial domain through an inverse process. 

The Fourier Series for any function that periodically repeats itself, can be expressed as the 

sum of sines and/or cosines of different frequencies, each multiplied by a different 

coefficient. The Fourier Transform states that periodic or even stationary functions (e.g. 

images), with a finite area under the curve, can be expressed as the integral of sines 

and/or cosines multiplied by a weighing function (Gonzalez, Woods 2002). The Fourier 

Transform, F(u), of a single variable continuous function, f(x), is defined as: 

 ( )   ∫  ( )         
 

  

 

where    √    . 

More specifically in the time domain the Fourier Transform can be shown as: 

 ( )   ∫  ( )        
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which performs the conversion of the time signal, f(t), into a frequency signal F(u). The 

localisation of the pixel deviations is analogous to localising the time of the frequency 

change. 

When the expression is integrated over the range of -∞ to +∞, the Fourier Transform is 

invariant to where in time a frequency change occurred. If the signals used to perform the 

conversion are stationary then it is not a limitation. When the image is considered as a 

whole it can be viewed as a stationary signal, but in order to extract the signature each 

discontinuity (each deviating pixel) in the image needs to be localised. The Fourier 

filtering proves to be a limitation in this instance and is not suitable since the frequencies 

are not localised.  

The short time Fourier Transform (STFT) (windowed Fourier Transform) could be used to 

cater for the limitation of Fourier Transform by using a small time window to localise the 

frequency in some time interval. By minimising the window size, the localisation of the 

pixel variations can be estimated but the minimisation of the window size greatly reduces 

the precision of the frequency estimation. To solve these issues a wavelet based approach 

is used to denoise the image. 

The basis functions of the Fourier Transform are sinusoids whereas the wavelet 

transforms are based on small waves, known as wavelets, of varying frequency and of 

limited duration (Gonzalez and Woods 2002). Therefore unlike the Fourier Transform 

which provides only frequency information, the wavelet transforms provide both the 

frequency and temporal information of the signal. Wavelets transformations can be the 

generalised wavelet series expansion, the discrete wavelet transform and the continuous 

wavelet transform depending on the type of signal being converted to the wavelet 
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domain. For the scope of image conversion to the wavelet domain, only the discrete 

wavelet transform will be reviewed. 

The discrete wavelet transform (DWT) is the set of coefficients obtained when a function 

being expanded is a sequence of numbers instead of being a continuous signal and the 

detail coefficients, Wψ(j,k), can be defined as: 

  (   )   
 

√ 
 ∑ ( )    ( ) 

where f(x) is the signal and ψj,k(x) is the wavelet function (also known as mother wavelet) 

and M is the upper limit for variable x. The mother wavelet can be modified, by scaling 

and translation of its parameters, which will result in the size of the time-window 

changing allowing localisation of where (or when) there is a change in frequency and 

different functions obtained (daughter wavelets). A slow varying daughter wavelet will be 

caused by large scale parameters and conversely a fast varying daughter wavelet will be 

the results of small scale parameters. 

Wavelet transformations for images are performed in the two-dimensional space, where 

the one-dimensional wavelet transform is applied to the rows of the image followed by 

the one-dimensional wavelet transform of the resulting columns. In the two-dimensional 

wavelet transform three sets of detail coefficients are produced – the horizontal, vertical 

and diagonal details. The rows of the image are convolved with a scale and down-

sampling its columns will produce two sub-images whose horizontal resolutions are 

reduced by a factor of 2. A fine scale detects high frequencies (details coefficients) and 

large (coarse) scale detects the low frequencies. Both sub-images are then filtered along 

the columns and down-sampled to produce four sub-images (quarter of the size of 
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original image) – IA, IH, IV and ID as shown in Figure 3.4(b). A second iteration of the 

filtering process produces a two-scale decomposition of IA shown in Figure 3.4(c). 

 

 

 

 

 

 

 

 

The decomposition of the signal in two dimensions will also separate the high and low 

frequencies of the image at each decomposition level. The DWT of an image is both 

localised in space and in frequency, thus accommodating for the pixel variations. There 

are different types of discrete wavelets and some of the most common ones are Haar, 

Coiflet, Daubechies. All the wavelets have at least one vanishing moment, where the 

wavelet coefficients are zero for polynomials of degree vanishing moments minus one (p - 

1), where p is the number of vanishing moments. For example the Daubechies wavelets 

can have 2, 4, 6, 8, 10 up to 20 vanishing moments and these types of wavelets are 

commonly used in image processing (image denoising). 

Figure 3.4. (a) Two-dimensional image; (b) 1st level wavelet decomposition with the four sub-

images IA, IH, IV and ID; (c) 2nd level wavelet decomposition 
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The second SPN extraction approach applies wavelet decomposition to represent the 

image at different levels of details and to perform the denoising process. The extraction 

filter was first presented by Lukas et al (Lukas, Fridrich et al. 2006), where it is described 

in details, and it is based on a wavelet image denoising method proposed in Mihcak et al 

(Mihcak, Kozintsev et al. 1999). The method provides a more effective sensor noise 

extraction when the size of the image is dyadic (powers of 2). A similar extraction method 

is used by Li (Li 2010) to extract the SPN.  

The image is decomposed by performing a four level 2-D (two-dimensional) discrete 

wavelet transform using the Daubechies 8-tap wavelet QMF (Quadrature Mirror Filters). 

When a filter is applied to a signal and the reverse filtering process is applied to the 

results obtained, the same original signal can be recovered, this type of filter is a QMF. 

The horizontal, vertical and diagonal sub-bands (detail coefficients) are obtained at each 

level, which represents the high and low frequency components (fine and coarse details) 

of the image. The local variance is estimated for each coefficient, in each sub-band, with a 

local square neighbourhood of size 3, 5, 7 and 9 pixels. The minimum variance for each 

pixel is taken as the final estimate among the varying size neighbourhoods. The image is 

assumed to be distorted by a zero mean white Gaussian noise (WGN) with variance σ2. 

The σ2 parameter determines the strength of the noise suppression and is dependent on 

the image and on the size of the noise (Geradts, Gloe 2009). 

The denoised wavelet coefficients are obtained by applying a Wiener filter to the 

horizontal, vertical and diagonal detail coefficients at each level. The Wiener filter, also 

called minimum mean square error filter, considers both the degradation function and 

the statistical characteristics of the noise affecting the image. The aim of the Wiener filter 
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is to find an estimate of the uncorrupted image such that the mean square error between 

them is minimised (hence the name, Wiener filter). The Wiener filter  is represented as: 

     (   )     (   )
 ̂ (   )

 ̂ (   )     
  

where CHden(i,j) is the denoised horizontal detail coefficient, CH(i,j) is the horizontal detail 

coefficient,  ̂  and   
  are the estimate uncorrupted variance and variance respectively. 

The denoising is performed for the vertical and diagonal detail coefficients similarly. The 

process is repeated at each decomposition level. The inverse DWT is applied to all the 

detail coefficients that have been denoised in order to obtain a denoised image. The 

sensor noise is obtained by subtracting the denoised image from the original image. The 

sensor noise can also be obtained in the wavelet domain by subtracting the denoised 

detail coefficients from the original decomposed detail coefficient. If a colour image is 

used, the denoising can be performed for each colour (RGB) channels or the colour image 

can be converted to a grayscale image.  

The wavelet domain filtering approach is claimed to give better results than others 

(Mihcak, Kozintsev et al. 1999, Lukas, Fridrich et al. 2006). The Wiener filter acts as a low 

pass filter and removes all the medium and high frequency details from the image, which 

when subtracted from the original image leaves some of the medium to high frequency 

scene details in the signature. The SPN is not the dominant component of the noise 

residuals that are extracted from the image, thus a smoother image (with less scene 

details) will provide better magnitude of SPN. However, as reported in (Sencar, Memon 

2007), there are some limitations to using SPN as a fingerprint; it is easily contaminated 

by details of the scene (which are also high frequency signals with higher magnitude), by 
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saturation due to light sources (flash, sun, light bulb) and by rotation. This leads to a high 

misidentification and misclassification rate. A whole image has to be used for the 

extraction of the fingerprint in order to get a reasonable identification rate. Care must be 

taken in applying those additive-noise-model-based wavelet approaches directly to 

multiplicative noise such as PRNU (Xie, Pierce et al. 2002). 

The SPN can also be contaminated by the blockiness (row and column noise) created by 

the JPEG compression and other processing operations performed in the camera pipeline. 

Consequently, further processing is often applied to facilitate the estimation of the SPN, 

including the attenuation of non-unique artefacts (NUA) such as the FPN, blockiness and 

colour interpolation (Chen, Fridrich et al. 2008). The rows and columns of the pattern 

noise can be zero-meaned by subtracting the column mean from each pixel in the column 

followed by the subtraction of the row mean value from all the pixels in the rows. Further 

processing can be performed by converting the signature in the Fourier domain and 

applying Wiener filtering to remove the NUA. The accuracy of SPN can also be improved 

by attenuating the interference of scene details (Li 2010). 

 

3.4.3 Enhancer 

The scene details in the resulting signature tend to have higher magnitudes than the 

PRNU magnitudes. The enhancer developed by Li (Li 2010) aims to attenuate the strong 

scene details by using a hypothesis where, the stronger signal components in the 

signature are assumed to be associated to the scene details and are thus less trustworthy 

components. By assigning less significant weighting factors to strong components in the 

signature, a better enhanced signature can be obtained with attenuated scene 
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interference. The enhancer works in the Discrete Wavelet Domain (DWT), which was used 

to extract the signature. 

Five mathematical models were proposed to perform the enhancement of the signature 

and they are chosen based on the amount and type of scene details in the image. If the 

magnitude of a component is above a threshold, α, it is considered a strong component 

and needs to be attenuated monotonically. For the weaker components of the signature 

they are weighted more than stronger components (which are attenuated). One of the 

models that were found to perform with most types of scene details is: 

  (   )   {
 
      (   )

             (   )   

  
      (   )

                       

 

where ne(i,j) is the enhanced component, n(i,j) is the un-enhanced component and α is 

the cut-off magnitude threshold. The model can be represented graphically as shown in 

Figure 3.5, where the magnitude of strong components in the signature is attenuated and 

the weak components are not attenuated.  

 

 

Figure 3.5. Graphical enhancer model, where the magnitude of strong components in the 

signature is attenuated and the weak components are not attenuated. 
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The extraction process can take a long time and it is reported in Hoglund (Hoglund 2009) 

that it takes about 30 hours to calculate the reference noise using 200 images of sizes 

3072 x 2304 pixels. Instead of using a whole image, the computational cost of the 

extraction process can be greatly improved by using only part (crop) of the image. A 

trade-off must be found between speed and accuracy of identification and classification 

rate. The enhanced SPN was shown to increase the identification rate and allows the use 

of smaller image crop size (Li 2010). The development of the enhancer has led to a patent 

for Forensic Pathways Ltd (Forensic Pathways Limited 2009). 
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Chapter 4 Practical Case Study 

 

4.1 Introduction 

One of the motivations that inspired this research project was to assess the existing 

image analyser platform and detect any of its limitations. There has been a fair amount of 

research performed in recent years on the identification of source devices using their 

digital signatures, but the classification of images for forensic investigation purposes has 

not been investigated to the same depth. Identification of source devices is performed 

when the source device is present and the camera reference signature can be extracted. 

However, in the case when the source imaging device is not present, the signature of the 

images can be clustered according to their source device. Some of the device 

identification methods mentioned in chapter 2, Digital Image Forensics, performs 

classification of images, for example by using a support vector machine (SVM). But 

classification, in these methods, is mainly employed for the purpose of using or combining 

sets of different features, extracted from digital images known to come from the source 

device, to obtain the fingerprint of that source device. In the majority of cases when 

forensic investigators recover digital images from storage devices, they do not possess 

the source device that created the image. Hence a classification technique that does not 

require any prior knowledge of the source has to be employed to link the images coming 

from the same source.  

Two classification techniques that do not need the presence of the source devices are 

described followed by a description of the existing image analyser platform. The different 
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components of the current platform will be investigated in details, such as the signature 

extraction process, the identifier and classification stages. Some experiments that were 

performed on the current platform will be detailed followed by the limitations that were 

observed from the results of these experiments. Finally a plan to address these limitations 

identified will be described. 

 

4.2 Clustering Platforms 

There are two clustering techniques that use the SPN as the digital signature and that do 

not require the source devices that created the images and they are Bloy (Bloy 2008) and 

Li (Li 2010). In Bloy, images are classified from a mixed set of images without any previous 

information about the source devices. The extraction of the signatures is simplified in 

order to decrease the computing complexity. A median filter is used to perform the 

denoising instead of using a wavelet based one and only the green (G) channel, of the 

RGB colour channels, of the image is used. A threshold value is calculated by correlating a 

selection of signatures, created using different amount of images, from a given camera 

with single images from a different camera. The stages of the classifier are summarised 

below: 

1. Iterate randomly through pairs of images in the dataset until the correlation 

between two images (one pair) is greater than the threshold and average this pair 

to form the signature. 
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2. Correlate the rest of the images with the fingerprint, each time assign the 

signature to the fingerprint until 50 images have been averaged (clustered) or all 

images have been used. 

3. Correlate the remaining unclustered images with the signatures obtained in step 2 

and checking against the threshold (a maximum of 50 images are used to form the 

fingerprint but more than 50 images can be associated with the cluster). 

4. Repeat step 1 until the stopping condition is reached, i.e. tried enough pairs or all 

of them without success. 

 

This classifier needs a level of knowledge about the different cameras, or using some 

other camera sources, at the initial stage of the classification process to be able to 

calculate the threshold. Furthermore this technique needs fifty (50)  signatures in order to 

form the fingerprint cluster, which suggests the need to know prior information about the 

source devices. The aim of the unsupervised image classifier in Li (Li 2010) is to cluster a 

large set of images taken from an unknown number of cameras into groups of images 

corresponding to their source cameras. This classifier does not assume any prior from the 

images or signatures. The latter will be described in further details in the following section 

(section 4.3). 
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4.3 Existing Platform 

The existing platform is an image analyser, which is used to extract the signature of the 

images to identify the source device that created the image or to group together images 

that comes from the same source device. The platform can be used by forensic 

technology analysts as a forensic analysis tool to link suspect images to imaging or storage 

devices recovered from crime scenes. The platform uses SPN as the device signature, 

which is extracted by using the wavelet extraction technique. The signature extraction 

pipeline is shown in Figure 4.1. 

 

 

The signature extraction is performed in stages, starting when the image (in JPEG format) 

is loaded. The image can be cropped to a smaller size in order to increase the speed of 

signature extraction. The usual size of the cropped image is 512 x 512 pixels, which has 

been shown to provide reliable identification results (Li 2010). An image cropped to 256 x 

256 pixels can also be used, albeit with a lower identification rate. The bigger the size of 

the image, the more of the sensor pattern noise will be present in the signature. This will 

Load image Crop image 

Wavelet 
Extraction 

Filter 

Enhance 
signature 

Save signature  

Choose enhancer 
model & threshold 

Figure 4.1. Signature extraction pipeline in existing platform  
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make the signature stronger and increase the identification rate but the downside of 

using images with increased sizes is the time taken to extract the signature and more 

scene details present in the resulting signature. Once the image is cropped, it is passed to 

the wavelet extraction filter. 

The wavelet extraction filter makes use of the Daubechies 8-tap wavelets and the 

decomposition levels goes down to 4 levels, which is chosen because level 4 is the 

maximum number of wavelet decomposition level for an image of size 256 x 256 pixels. 

The determinant coefficients at each level are denoised by using a Wiener filter, which 

acts as a low pass filter. The Wiener filter works by trying to minimise the mean square 

error between an uncorrupted image and its estimated image. All the coefficients 

obtained from the 4 levels of decomposition are summed and subtracted from the main 

wavelet coefficient. The subtraction result is the sensor pattern noise that represents the 

digital signature of the image. The denoising filter is described in further details in 

Chapter 3, section 3.4.2.  

The resultant signature extracted contains a lot of scene details, which corrupts the 

signature and reduces the identification rate of the signatures. The main innovation of 

the existing platform is the enhancing of the signature extracted in order to reduce the 

amount of scene details present in the signature extracted, which results in a cleaner 

SPN. There are five different models of the enhancer that are used by the image analyser. 

The threshold is the magnitude value above which the enhancing will be performed. 

When the magnitude of the contaminated fingerprint is less than the threshold, the 

"enhanced" fingerprint should grow monotonically in accordance with contaminated 

fingerprint. Otherwise the "enhanced" fingerprint should decrease monotonically in 
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accordance with contaminated fingerprint. The enhancer model and threshold can be 

chosen according to the type of scene details in the image, but for most types of scene 

details only one model and a static threshold is used. After the enhancing step the 

signature is saved.  

The image analyser consists of: 

1. Identifier 

2. Classifier 

There are two distinct circumstances when either the identifier or classifier will be used. 

When a number of images are recovered and the source device that created these images 

is present, the camera reference signature of the source device can be created and used 

to identify the images that came from the device. The second scenario occurs when a set 

of images are recovered, but no source device is present. This second case is more 

complex since the camera reference signature cannot be created and matched against 

the images. An unsupervised image classifier is used to group together images that come 

from the same source device.  

 

4.3.1 Identifier 

The identifier is used when the source device that created the images is present. For 

example, a set of images from a laptop or a storage device is recovered along with a 

digital camera or mobile phone. The camera reference signature of the recovered camera 

is created and stored to be used in order to find a match from suspect images. Figure 4.2 

shows the steps required to create a camera reference signature. 
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The camera reference signature of a camera can be created if the imaging device is 

present. A selection of test pictures are taken from the camera of scenes with uniformly 

lit backgrounds, also called flat field pictures because they do not contain any scene 

details or contain minimal scene details. The test images should contain minimum scene 

details so that the reference signature will contain a cleaner representation of the camera 

digital fingerprint. Good examples of test images are blue sky pictures or images of a 

blank white (or light coloured) background (e.g. a wall). The flash on the camera should 

not be fired (flash off) and if taking images of blank background the pictures should be 

preferably out of focus so that the features of the wall are not standing out in the 

pictures. The test images can be images of the same spot on the wall or sky and if the 

pictures come from different areas, they should have minimal scene details. By using 

more images to create the camera reference signature, the random noises and low 

frequency noises in the images are eliminated. Thus the SPN, which is a medium to high 

frequency noise, will be more prominent in the camera fingerprint. 

The number of test images used in the image analyser has been calculated previously in 

Hoglund (Hoglund 2009). The purpose of Hoglund’s experiment was to determine the 

Load test 
images 

Extract 
signatures 

(no enhancement) 

Sum all 
signatures in 

temp_sig 

Average temp_sig 
by number of 

images 

Store camera reference 
signature 

Figure 4.2. Camera reference signature pipeline in existing platform  
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number of images that are needed to create the camera reference signature. Hoglund 

increased the number of test images used to create the reference signature up to 200 per 

reference signature. A set of images coming from the same camera was matched against 

the reference signatures and the correlation value recorded. Hoglund found that using at 

least 50 test images provided a correlation value of nearly 1 (about 0.99) and after 75 

images the reference signature did not change much. Using about 25 images provided a 

good enough reference signature to give a correlation of about 0.98. Thus 50 test images 

are used to create the camera reference signature. 

The test images are loaded and cropped according to the required size and position, the 

signature of each test image is extracted. There is no need to enhance the signatures of 

the test images, since there are not prevalent scene details to pollute the signatures. 

Furthermore, enhancing the signatures of blank images can lead to a weaker signature 

overall since the magnitude across the signature is constant. The signatures of all the test 

images are summed and averaged by the number of test images used. The averaging of 

the signatures provides a stronger final SPN, which is the camera reference signature. 

Once the camera reference signature is created, it can be used to match against the 

signatures of suspect images in the identifier. The identifier execution pipeline is shown in 

Figure 4.3. The camera reference signature and the suspect images are loaded in the 

identifier. The suspect images are cropped to correspond to the size and crop position of 

the camera reference signature, since both the suspect signature and reference signature 

need to the same size in order to be able to find the correlation coefficient. The 

signatures of the suspect images are extracted and enhanced to improve the quality of 

the signatures. Due to the nature of the SPN being a pattern in relation to the sensor of 
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the camera, it is located spatially in every image. Hence if the image is rotated 

geometrically the SPN will change (de-synchronisation of the SPN occurs)) and a match 

against the reference signature will not be positive. To circumvent this problem, the 

signature of the suspect images are rotated and correlated against the reference 

signature and the highest correlation value is used. Some digital cameras rotate a picture 

that was taken automatically to match the orientation of all pictures taken by that 

camera. Most users of image editing software and all cameras editing software will only 

rotate images in 90 degrees angle steps. For example, an image will be rotated by 90 

degrees from portrait to landscape or by 180 degrees if the camera was upside down 

when the image was taken.  

 

 

 

 

Load camera 
reference 
signature 

Load suspect 
images 

Extract signatures of  
suspect images 

(with enhancement) 

Display results 
as list of 

boolean values 

Rotate signatures and 
correlate suspect signatures 

against camRef 

Choose highest correlation 
value from different angles 

Return true  
if max. correlation value is higher 

than acceptance threshold 

Iterate for each suspect image 

Figure 4.3. Identifier execution pipeline in existing platform  
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After the suspect image has been correlated against the camera reference signature for 

all four angles of 0, 90, 180 and 270 degrees, the highest correlation value is chosen and if 

that value is above the acceptance threshold, a positive match has been found. The 

identifier will iterate through all the suspect images and display the results of the 

matching as a list of Boolean (true or false) values indicating a positive or negative match 

against the camera reference value.  

There is a need to determine the acceptance threshold value above which the correlation 

value will be considered a match between the reference signature and the suspect 

signature. Since each image provides a correlation value, a large number of images from 

the same camera can be used to estimate the distribution of the correlation value from 

that camera. Similarly, a distribution can be obtained by correlating images coming from 

other cameras against the reference signature of that camera. By deciding to which 

distribution the correlation value belongs, the suspect image can be linked to the camera. 

Previous research uses the two distributions obtained by using the reference camera and 

other cameras to find a point between them (Chen, Fridrich et al. 2007, Fridrich 2009). 

They model the distribution for each camera as a Generalised Gaussian distribution 

describing a probability density model. The Generalised Gaussian is a parametric model. 

The threshold is set to where the False Acceptance Ratio (FAR) is 0.01 (Li 2010). The 

identifier acceptance threshold for the image analyser is set to a correlation value of 0.01. 
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4.3.2 Classifier 

The classifier of the image analyser is used when a set of images are recovered but no 

imaging device is present. The camera reference signature cannot be created, which 

makes the problem of identifying the images non-trivial. These images can be grouped 

together according to the source device that created them. The classification of images 

on the existing platform is performed by using an unsupervised clustering of the 

signatures, since the number of classes (groups) is unknown at the start of the 

classification process. The classifier finds the hidden pattern amongst the unlabelled 

image signatures provided. The classifier consists of a training phase that makes use of a 

similarity matrix to find the number of clusters on a select pool of signatures and a 

classification phase that groups the rest of the signatures into the formed clusters. 

The different stages of the classifier are shown in Figure 4.4 below. These stages involve 

the classification process starting with the images and ending with all the signatures being 

placed in its respective cluster. 
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In Stage 1, all the images are cropped to the same size. Usually the size of the cropped 

images is 512 x 512 pixels but in some instances when some of the images are smaller 

than 512 x 512 pixels, they all have to be cropped according to the smaller size images. 

Furthermore, all the signatures have to be of the same size in order to be able to perform 

the cross correlation. The SPN of each image is extracted and enhanced by choosing the 

same model and threshold of the enhancer.  

For Stage 2, the training set (M) is randomly selected from the dataset and the similarity 

matrix (S), of size MxM, is created by calculating the correlation between all the SPNs. In 

Stage 3, the classifier trainer, uses conditional Markov random fields (MRF), in the 

training phase of the classifier. To determine the class label for each SPN i, the classifier 

establishes a membership committee Ci with c SPN members from the training set that 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

Figure 4.4. Stages of the unsupervised classification of images. 
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are most similar to i. In so doing, the local characteristic of Markov random fields (also 

known as Markovianity) can be ensured. In terms of Markov random fields, when a SPN i 

is being visited, the probability (or suitability), p(•), of assigning each class label fj 

currently attached to members of Ci and its current class label fi (if not attached to any 

members of Ci), are calculated. It is executed based on S and for each fingerprint a 

membership pool is created and the class labels are updated iteratively until a predefined 

stopping condition (no change in membership throughout an entire iteration) is reached. 

A typical strategy for a stopping condition may limit the amount of class label changes. At 

this stage clusters of class labels are formed and in the following Stage 4, the rest of the 

images are compared to the centroids of the clusters and are subsequently assigned to 

the respective cluster of which the centroid is closest to the images. A description of the 

classifier is provided in more details below, preceded by a description of the similarity 

matrix creation shown in Figure 4.5. 
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4.3.2.1 Similarity Matrix 

 

 

The size of the similarity matrix is chosen according to the number of images to be 

classified in the dataset (the choice for optimum size of the matrix is explained in detail in 

section 4.4). The index of each signature in the dataset is recorded and shuffled. The 

number of required signatures is picked at random based on the shuffled indices. The first 

signature that is picked is cross correlated against all the signatures with higher indices in 

the list and the cross correlation coefficient value is saved as a matrix row. The rest of the 

signatures are iterated through until the end of the list is reached. Therefore the higher 

the number of signatures in the similarity matrix, the longer it takes to create the matrix. 

The correlation values are calculated only for half of the matrix (upper triangular half) 

since the values are mirrored in a triangular shape. Thus, the whole matrix is filled when 

the higher triangular half is copied into the lower half. The similarity matrix is saved 

together with the indices of the signatures that were used to create the matrix. 
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Figure 4.5. Similarity matrix pipeline in existing platform  
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The classifier is divided into two sections, the training phase and the classification phase 

respectively and is shown in Appendix A. The training phase uses the similarity matrix 

(SM) to create the clusters. In the classification phase the rest of the signatures, not 

forming part of the SM, are placed into the clusters created in the training phase. 

For each signature in the SM, i.e. each row of the matrix, the similarity rankings of that 

signature to the rest of the signatures are stored in descending order. The number of 

classes is not known beforehand and consequently for each signature, a reference 

similarity is calculated by finding the boundary between the intra-class and inter-class for 

that signature. Most signatures that belong to the same class as the current signature will 

belong to the same class (intra-class) and most signatures that belong to different classes 

as the current signature will belong to separate classes (inter-class). 

A kMeans clustering algorithm is performed on the current row of matrix (minus the self-

correlation of the current signature) by dividing the rest of the training set into 2 groups. 

This will provide two clusters consisting of intra-class and inter-class values for that 

signature respectively. The centroids of the 2 clusters are found and the mean of these 

two centroids is then calculated, which represents the boundary between intra-class and 

inter-class for this signature. Hence when the correlation value of other signatures will be 

compared to the current signature later, if the correlation value between them is greater 

than the boundary value, it is more likely that the two signatures belong to the same 

class. Conversely, if the correlation value between the two signatures is less than the 

boundary value, it is more likely that the signatures belong to different class. 
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4.3.2.2 Training Phase 

Once the values for the similarity ranking and boundary for all the signatures in the SM 

are calculated, the training phase starts, which is an iterative process that will stop when 

there is no change in class membership for two consecutive iterations. The training phase 

starts by assigning a set of singleton clusters corresponding to each signature in the 

similarity matrix.  

For the first iteration, the size of the voting pool can be varied to reduce the time 

complexity at the expense of accuracy. The size of the voting pool should be chosen so 

that there are enough signatures selected from the similarity matrix in order to identify 

the correct number of clusters. For large training sets (similarity matrices), reducing the 

size of the voting pool will not have a big impact on the accuracy because more signatures 

are involved in forming the clusters.  

For each signature, i, its voting pool is formed and the class ids are allocated according to 

the similarity ranking order. Each voter is assigned a different (temporary) class id. The 

cost of the class ids are calculated by calculating the difference between the correlation 

coefficient of signature i and signature j, ρ(i, j), and the threshold boundary value for 

signature i (bi). If the class id for the lowest cost is different from the class id of i, then the 

new class id is assigned to signature i. 

After all the signatures in the voting pool have been assigned the corresponding lowest 

cost class id, the vector is stored. 

The second and successive iterations are similar to the first one, except that the full size 

of the training set is used. Moreover, the successive iterations are faster since the class 
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ids that formed the singleton clusters have been assigned to more relevant clusters. Also, 

after the temporary class ids are assigned, the duplicates are removed from that list 

based on the vector that was formed in the previous iteration. When the class ids do not 

change in two successive iterations or a set maximum number of iterations have been 

reached, the training phase will end. 

 

4.3.2.3 Classification Phase 

The centroids of the clusters formed in the training phase are calculated by averaging all 

the signatures that form part of their respective cluster. The rest of the signatures that 

did not form part of the correlation matrix are loaded. 

The correlation coefficients between a signature and the centroids of the clusters are 

calculated. The signature is placed in the cluster with the highest correlation value, which 

indicates that this cluster is the closest in similarity to that signature. The process is 

repeated until all the signatures have been assigned to its respective cluster. 

A Graphical User Interface (GUI) was developed to enhance the usability of the current 

image analyser platform and to facilitate the testing of the platform. The signature 

extraction process, camera reference signature creation, identifier, similarity matrix 

creation and classifier process each had GUIs created and several scenarios were created 

to test the platform.  
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For example, the classifier GUI accepts the following parameters: 

 similarity matrix of signatures 

 directory of signatures to be classified 

 size of voting pool 

 directory where the results (information about which signature belongs to which 

cluster) are saved. 

Once the signatures are placed in their respective clusters, the cluster contents are saved 

for inspection by an analyst or for visualisation purposes. The results can also be saved in 

a database so that if at a later date more images are recovered, the latter can be checked 

against the database. 

 

4.4 Testing Experiments on Existing Platform 

Once the GUIs had been developed for the image analyser, the testing could be 

performed to check the performance of the platform under different conditions. The 

algorithms for identifying and classifying imaging source devices had to be improved in 

order to (Soobhany 2009): 

 Work with images of varying sizes and resolutions. 

 Automate the image cropping process. 

 Identify images that had been rotated. 
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Different camera models will produce images of varying sizes and resolutions due to the 

quality of the cameras. For example a low-end digital camera will create images at its 

highest resolution that are smaller than a high-end digital camera. Furthermore, the 

quality of the images between the two cameras will vary greatly. The cross correlation 

coefficient is calculated for the two signatures, which signifies that both signatures need 

to be of the same size and this can be achieved by cropping all the images to the same 

size. The image cropping process should be automated in order to allow the processing of 

large numbers of images from different camera types.  

Some cameras usually rotate the digital image they produce automatically according 

software settings or preferences. Furthermore it is trivial to rotate a digital picture using 

normal image processing software and almost all of these rotations are performed so that 

a picture that was taken in portrait can be viewed better in landscape or vice versa. 

Hence all these rotations are performed by ninety degree steps, for example by 90, 180 or 

270 degrees. Given that the SPN is not invariant to image rotation, the image analyser 

platform had to be modified in order to identify rotated images. The SPN occurs across 

the sensor in a set pattern according to the position of the photodiodes and the pattern 

will change if the image is rotated. Whenever the source of a suspect image needs to be 

identified against a camera reference signature, correlation is calculated for all four 

possible 90 degree positions of the suspect image and the highest correlation coefficient 

value is taken as the result to check against the acceptance threshold. In the case of the 

camera reference signature, there is no need to check for rotations because the test 

images are taken under controlled situations. 
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4.4.1 Testing of Image Analyser Identifier 

The testing for the existing platform was performed in two stages, by using photographs 

taken from several digital cameras as well as different mobile phones. The first testing 

stage was performed on the identifier and the second stage performed on the classifier 

part. For the purpose of calculating the camera reference signature a set of uniformly 

illuminated pictures of a flat surface was taken. The size of the set consisted of about 50 

images. The pictures were neutral grey images with minimum variation in light or of a 

blue sky. There was a mixture of test images, either blue sky or uniformly lit background 

was used for the different cameras, and the type of images was not mixed within the 

same test image set for a camera.  

The time taken to calculate the camera reference signature is related to the size of the 

pictures in the set (50 images). A set of crop size, 512x512 pixels, will take approximately 

3 minutes and a crop size of 2592x1944 pixels will take on average 36 minutes. Therefore 

the smaller the size of the crop images, the time complexity for calculation will be 

reduced. Table 4.1 shows the time taken to calculate the camera reference signature 

when the quality (compression) and size of the images are altered.  The crop size remains 

constant at 512x512 pixels and the reference camera is a Nikon Coolpix 5200 digital 

camera. As can be seen from table 4.1, the quality and size of the image does not have a 

significant effect on the time taken to calculate the reference signature. The size of the 

crop has a major impact on the time taken for the calculation of the reference signature 

as opposed to the resolution of the images before the cropping. 
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Quality of 

images 

Original size of images 

before cropping 

Time taken to calculate 

reference snp (mins) for crop 

size of 512x512 

Basic  2048x1536 3 

Normal 2048x1536 3 

Fine  2048x1536 2.5 

Basic 1024x768 2 

Normal 1024x768 2 

Fine 1024x768 1.8 

 

 

Experiments were performed on a Blackberry curve 8320 (PDA) using a combination of 

high (superfine) and low (normal) quality JPEG images to create the camera reference 

signature. When the quality of the test images for creating the camera reference 

signature are of different quality to that of the suspect image, the correlation matching is 

less than the threshold as shown in table 4.2. In the case when the quality of the images is 

different, there can be false negatives in the identification process. 

 

 

 

 

Table 4.1. Time taken to calculate the camera reference signature, of size 512x512, in relation to 

quality and original size of images before cropping 
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Quality of images for camera 

reference signature 

Quality of a suspect image Correlation > threshold 

High High Yes 

High Low No 

Low High No 

Low  Low Yes 

 

 

The same experiments, as the ones performed on the Blackberry curve 8320, were 

carried out on the Nikon Coolpix 5200 digital camera with the different qualities and sizes 

of both the reference (test) images and suspect images. When the size of the images was 

kept constant and the quality of the images was varied, there was no effect on the 

correlation. All the test images used for identification gave a correlation above the 

acceptance threshold, hence giving a positive result that the picture was taken from the 

camera. On the other hand, when the quality was kept constant and the size of the 

images was altered, the correlation value was less than the acceptance threshold.  

The results indicate that the quality of the images does not affect the identification 

process when all the images are of the same sizes, i.e. same resolution. Conversely, when 

the size of the images differs the matching process will provide more false negatives. 

Cameras create images of different sizes by performing stronger JPEG compression on the 

raw images. The results obtained show that identification of imaging source devices using 

sensor pattern noise (SPN) is more difficult when images of different resolutions (sizes) 

Table 4.2. The correlation between using combination of high (superfine) and low (normal) 

quality images for creating the camera reference signature and suspect image. 
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are used. The suspect images should be of similar resolutions to the test images used to 

create the camera reference signature. 

Several images taken from the Nikon Coolpix 5200 were rotated and then tested using 

the identifier. The identifier cannot detect if the rotated picture had been taken by the 

camera. The correlation value is much less than the acceptance threshold. Hence, if the 

image is rotated, the SNP of the picture is altered. The improvement to the identifier has 

been explained in section 4.3 above. 

The identifier cannot identify images that were taken from camera phones with low 

quality cameras. The quality and size of the images were altered as well as different 

background images were used as reference images to create the camera reference 

signature. The identifier did not manage to recognise if any of the suspect images were 

taken from the corresponding mobile phone camera. The mobile phones are performing 

some post-processing of the photographs taken and hence inserting a higher level of 

noise in the photograph, for example stronger compression of the images. As a result of 

the increased noise, the Wiener filter cannot perform the denoising to extract the 

relevant SPN. 

The testing performed mainly concentrated on the signature extraction and identification 

processes of the image analyser. For the image classification process the next two 

sections, section 4.4.2 and section 4.4.3, describe some of the testing that was performed 

on the classifier. 
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4.4.2 Classifier Grand Tour Visualisation 

The preliminary testing on the classification process was performed in two stages by first 

creating the similarity matrix on some randomly chosen signatures and using the resulting 

matrix to train the classifier to identify the clusters. The creation of the similarity is the 

most computationally intensive process in the classification process. Figure 4.6 shows the 

plot of the average time taken to create the matrix for 231 images, i.e. the size of the 

matrix is 231 rows by 231 columns. The experiments were run on a laptop with a single 

core processor with 2 GB of RAM. The extracted signatures of the images are in the high 

dimensional space, for example a crop size of 512x512 can produce a signature of nearly 

900K dimensions for all the three primary colour channels. The difference in dimensions 

of the signature between the 256x256 crop and the 512x512 crop is nearly 4 times as 

much. Thus the time taken to create the similarity matrix for signatures of size 512x512 

will be expected to be four times as long as the 256x256 crops, but due to other loads 

(operating system and other software) on the processor and memory, the time taken is 

more than four fold.  
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Figure 4.6. Plot of the average time to create similarity matrix, in minutes, 

based on different image crop size 
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In order to understand the meaning of the values in the similarity matrix, another method 

of clustering the signatures according to their source device was applied to the matrix 

which would help the visualisation of the clusters. The clustering process was geared 

towards computational methods that ‘tour’ the data systematically looking for interesting 

structure – clusters, outliers and holes.  These are variants of Asimov’s Grand Tour (Buja, 

Asimov 1986, Buja, Cook et al. 1996, Asimov 1985) and, more generally, projection 

pursuits that try to look at data set in many 2/3D views with the goal of discovering 

something interesting and information (Cook, Buja et al. 1995, Lam, Emery 2009). 

The Grand Tour procedures are dynamic but are not generally interactive in the sense 

that the user cannot guide the tour path in the N-dimensional space, by selecting or 

specifying the starting and end planes (or subspaces) onto which the data are projected. 

Such interactive tours then proceed from one plane to the other by geodesic 

interpolation paths between the two subspaces, thus presenting to the user a different 

view of the data at each step of the interpolation sequence. The latter is also known in 

some literature as an interpolation tour, whose underlying mathematical foundation was 

presented in detail in (Asimov & Buja 1994, Hurley & Buja 1990). 

A major consideration of such tours concerns the specification of the target spaces. The 

commonly suggested sub-spaces include those spanned by subsets of the eigenvectors in 

Principle Component Analysis (PCA) (Lam & Emery 2009). In pattern classification, a 

number of statistical methods exist including the projection pursuit. Whilst the original 

technique of projection pursuit is not a visual tour, its use in exploratory analysis, and 

other similar applications, is well documented (Huber 1985, Friedman & Stuetzle 1981, 

Jones, Sibson 1987). This tour seeks subspaces that have maximal structure as defined by 
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some measure, commonly known as the projection index, on which a direct search is 

based. In this sense, the tour is guided by the data with such indices that indicate certain 

types of structure that the user is looking for. It keeps touring until possible structures are 

found. 

Standard statistical techniques attempt to test a hypothesis (confirmatory analysis), they 

tell us how well a dataset fits to a hypothesis. Exploratory analysis is a complementary 

activity; it looks for underlying patterns within a dataset in a hypothesis free approach, 

which is similar in some respects to the unsupervised classification method that the 

current platform uses. The Grand Tour allows the analyst to view the data from different 

angles in the high-dimensional signature space and to determine different patterns. The 

similarity matrix that was created from the signatures was loaded in the visualisation 

platform developed by Emery & Lam (Emery, Lam 2008). Functions like record, stop, save, 

etc are used to stop the movie to view that particular pattern.  

A selection 50 images in total from four different cameras was used. The Grand tour 

platform was found to be limited to visualise 50 dimensions. Beyond that amount of 

dimensions the computation complexity made it difficult to visualise the ‘tours’. The 

images were sourced as follows: 

 10 images from an Olympus Mju Stylus 1030sw 

 15 images from a Canon Digital IXUS 500 

 7 images from a Blackberry Curve 8310 

 18 images from a Nikon Coolpix E5200 
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The similarity matrix was created using all the 50 signatures extracted from the images 

with a centre crop size of 512x512 pixels. The system accepts the similarity matrix of the 

SPNs and the user starts the animation. Figure 4.7 shows a snapshot of a guided tour with 

four distinct clusters formed suggesting that the images come from four devices 

(Soobhany, Lam et al. 2009). Once the animation is started, all the planes are visited in 

turn and they are displayed as a sequence in the 3D plot on the right side of the window. 

The ‘tour’ displays each plane like the image frames in a video sequence (movie). The user 

can alter the speed of the animation and can also switch the guided mode off.  

 

 

 

The user watches the animation until s/he finds an interesting projection plane, similar to 

the one displayed above, where all the clusters are clearly defined. If the user is looking to 

Figure 4.7. Snap shot of the Guided Tour of 50 signatures and 3D plot on 

the right side shows the four separate clusters. 
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find some outliers or specific plane, then the step control buttons can be used to look at 

each plane in turn. In the example used, the four clusters are shown in Figure 4.7 and 

they are clearly defined. Practical implementation requires that the sequence of planes is 

uniformly distributed, so that the movie does not stay too long in one part of the high 

dimensional space. Computationally, the sequence of projections is dense in the space of 

all planes and the tour converges to form a pattern. 

 

4.4.3 Cross Validation 

The accuracy of a classifier can be estimated by finding its associated prediction error. 

The main techniques that can predict the errors of classifiers are Holdout (Webb 1999), 

Bootstrap (Efron, Tibshirani 1997) and cross validation, which is probably the simplest and 

most often used (Hastie, Tibshirani et al. 2009). Cross validation can be used to compare 

between classifiers or, in our case, implemented to predict the performance of a single 

classifier with different sample sizes. This technique is most commonly used in supervised 

learning, by dividing the dataset into 3 parts, namely training set, validation set and test 

set and can be used to predict the performance of the supervised learning classifier. The 

training is performed on the training set, then cross validation is applied to calculate the 

training error, and finally the test error is calculated based on the test set. The training 

error can be compared against previous values that were learnt by the classifier. For 

unsupervised learning classifier, since there is no memory of previous datasets or 

features, the application of cross validation is not straightforward. Only a training set and 

a test set were used, since the clusters formed after the classifier training (stage 3 in 
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Figure 4.4) are already available. The prediction error is calculated by finding the number 

of class labels that have been misclassified from our dataset. 

K-fold cross validation is a method where the dataset δ of size N, is randomly partitioned 

into k mutually exclusive sets (folds) of roughly the same size. The classification is 

performed on k - 1 partitions (training set) and the remaining partition is applied to the 

classifier (test set) as shown in Figure 4.8, where the grey boxes correspond to the test 

set and the white boxes to the training set. The number of labels that are falsely classified 

from the test set will provide the prediction error ξ(xi) of the ith partition xi. The process is 

repeated K times, where each partition is used as the test set in turn, and the overall 

prediction error CVerr is given by 





k

i

iierr xx
K

CV
1

))(,(
1

  

Take the example when the value of k is 5 and the size of the dataset is 100, with 20 

acquired by each camera. There will be 5 partitions of about 20 items in each and cross 

validation will be executed 5 times. The value of k can be 10 or 20 and if the value of k is 

2, k-fold becomes a variation of the holdout method. In the case when the value of k is 1 

(also known as leave-one-out), the cross validation will be run 100 times, which is 

computationally expensive as well as giving a high variance. Although there is a high 

variance the bias is zero, because all the readings are used for the cross validation. The 

other values of k will give more bias than leave-one-out but their variance is lower. The 

typical value of k = 10 gives a good trade-off for bias and variance as well as being less 

computationally intensive. 
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The folds (partitions) can also be stratified, where they will each contain approximately 

the same amount of labels as compared to the dataset. This ensures that the folds are 

representative of the distribution of labels in the dataset. Repeating the cross validation 

multiple times by using different labels for the partitions after each complete run, 

generally provides a better Monte-Carlo estimate at an added cost (Kohavi 1995). E.g., 

running the 10-fold cross validation ten times, hence 100 times in total, will provide a 

better estimation of the error with less variance. The repeated cross validation was not 

implemented in this experiment due to the additional computational cost it involves and 

the single cross validation provided a good Monte-Carlo estimate. 

 

For the purpose of the experiments 1000 pictures were used from 5 source devices 

comprising of 4 digital cameras and one camera phone. The devices were BlackBerry 

Curve 8310, Nikon Coolpix E5200, Canon Digital IXUS 500, Olympus C-730 UZ, and 

Olympus Mju Stylus 1030SW. Since images in real forensic situations come from different 

cameras with different specifications and settings, I did not want to set a specific size for 
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Figure 4.8. k partitions blocks for cross validation 
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the photos from the cameras, therefore the sizes ranged from 1600 x 1200 pixels to 3648 

x 2736 pixels, which still give a wide margin for cropping of the images. Most of the 

images were taken at the highest resolution possible for the specific camera. All the 

images were in JPEG format with a compression quality ranging from about 75 % to 97 % 

quality. The pictures contain a wide variety of indoor and outdoor sceneries of urban and 

rural settings, night and day lighting as well as offices and various buildings and some 

holiday pictures; overall images that would be as close to natural real world situations as 

possible were captured. 

The cropping was performed on the images and the signatures (SPN) were extracted by 

using a Discrete Wavelet Transform (DWT) followed by a low pass filter and the SPN were 

enhanced by using one of the models developed in Li (Li 2010). The model chosen was 

the: 

this has been shown to work in (Li 2010) for natural images and the optimal value of α 

was 7.  

To perform the cross validation on the dataset, the folds were randomly selected before 

the training stage of the classifier. The next step was to create the similarity matrix which, 

being the most computationally intensive stage of the classification process was no longer 

a trivial process since for each fold the matrix had to be recalculated. This had the 

prospect of making the cross validation prohibitively expensive computationally and 

arises due to the change of size of the matrix by changing the size of the fold and the 

ne (i,j) =  

 

, if 0 ≤ n (i,j) 

, otherwise 
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different images present in the training phase for each partition. To overcome this 

problem, the similarity matrix was created at the start of the cross validation process for 

all the SPNs. Row and column deletions were performed in the matrix as the population 

of the partitions changed and the size of the folds were altered. This method increased 

the time complexity to create the similarity matrix, but it had to be created only once, 

which decreased the time complexity during the cross validation process. 

The sizes of the folds were chosen as 20, 10, 5, and 2, which provided a wide range of 

prediction errors. The size of the dataset was decreased from 1000 to 500 and to 250 so 

as to provide a learning curve that will indicate what effect the sample size has on the 

classifier. Once the value of k is chosen for the cross validation and one partition set aside 

for testing, the other partitions are combined to provide data for the training phase and 

classification phase. In Li (Li 2010), the selected sizes of the classifier trainer set were 120 

and 300, where there was little variation of classification performance between the two 

sizes. The size of the trainer set was altered with different dataset sizes. Moreover, the 

partitions were stratified, so that each partition contained approximately the same 

amount of labels. 
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4.5 Limitations 

The testing performed on the Image Analyser platform provided some interesting results 

for both the Identifier and Classifier. Some limitations of the software platform were 

already identified before the testing procedure started. Therefore these improvements 

were performed on the current platform prior to starting the testing experiments (in 

section 4.4), such as: 

 Processing of images of varying sizes and resolutions 

 Automation of the image cropping process 

 Identification of images that had been rotated 

The cropping of the images has been shown to greatly improve the signature extraction 

time. For example signature extraction from an image of crop size of 512x512 pixels will 

take approximately 3 minutes and a crop size of 2592x1944 pixels will take on average 36 

minutes. The image cropping process is performed in an ad hoc way, where most of the 

image cropping is performed from the centre of the image. Thus a limitation of the 

software platform is the ad hoc nature of the cropping process. 

The testing on the Identifier with pictures from digital cameras provided positive 

identification matching results when the respective reference camera signatures were 

tested against suspect images. The purposes of the tests were mainly to test the findings 

of Li (Li 2010), and the results for digital cameras and some mobile phones did provide 

positive matching. Images from the digital cameras were successfully identified when 

matched against the respective camera reference signatures. One limitation of the 

identifier was found to be the identification of cameras that produced low resolution 
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images and highly compressed JPEG images. Test images were taken from Nokia N95 and 

Nokia C2 camera phones, where the camera reference signatures were created. When 

some sample images were tested against the reference signatures, the matching values 

were much lower than the acceptance threshold which indicated false negatives. The 

inability to identify highly compressed images extends to the clustering of images in the 

classifier. The images from the camera phones were not placed in the clusters 

corresponding to the source devices. 

The software tool based on the guided tours did provide a way to visualise the formation 

of the clusters. The stopping condition for the formation of the clusters is dependent on 

the human analyst/user seeing an interesting pattern or outliers. When the amount of 

signatures to be classified is low, it is trivial to observe the formation of the clusters, but 

when the number of signatures increases the number of dimensions will increase too. 

Thus the computing complexity to project the different planes increases and makes it 

difficult to visualise the formation of the clusters. Moreover, it can take a long time to 

‘tour’ through the planes which will render the task of the analyst almost impossible to sit 

and go through all the ‘tours’. The limit of the dimensions that could be visualised in the 

experiments was found to be about 50 dimensions. 
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4.6 Plan to Address Limitations 

The cropping position of the images prior to extracting the signatures can be chosen in a 

systematic way based on some statistical properties (e.g. mean and variance of scene 

interference) or empirical methods. An experiment will have to be performed based on 

images from different cameras taken at different times of the day and night as well as 

different scenes. The images will have to be cropped from different positions and the 

signatures extracted, which can be processed by the image analyser.  

The most significant limitation of the current image analyser platform is the lack of 

effectiveness of identification or classification of images from low-end to medium end 

camera phones. These images are highly compressed JPEGs, which have low resolutions 

and are smaller in size too. The compression of digital images in the JPEG format is 

performed by transforming the image in the frequency domain where the high frequency 

details of the image is removed, since the human visual system is more attuned to the 

medium frequencies. The lossy nature of the compression method makes the image 

smaller and easier to store. Moreover, the compression process introduces blockiness in 

the image when the pixels are grouped together in blocks of 8 by 8 to be quantized. The 

JPEG compression is explained in more details in section 2.2.1. 

The Sensor Pattern Noise comprising of the PRNU lies in the medium to high frequency 

region of the image details and is attenuated when the images are highly compressed and 

processed, which makes it more difficult to be extracted. The signature extracted by using 

the wavelet method usually contains residual high frequency details from the image, 

which contaminates the signature. The enhancing process of the signature usually 

decreases the magnitude of the overall SPN which attenuates the high frequency 
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contaminating details in the signature but does not make it an ideal solution for the low 

resolution images on its own. After the SPN has been enhanced, the rows and columns of 

the SPN can be zero-meaned and a Wiener filter applied after a Fourier transform was 

performed in order to reduce the blocking effect of JPEG compression. It will not allow 

the identification of low resolution images and highly compressed JPEG images. The 

reason for this is because; when the enhancer is applied to a signature, the magnitude of 

the overall signature decreases and the already weak PRNU can be attenuated by a small 

proportion. Therefore when the zero-meaning and the wiener filtering are performed, the 

SPN is too weak to act as a reliable signature. A different method would be to explore the 

nature of the PRNU noise and try to estimate where it lies within the image. Once the 

PRNU is located, it can be isolated and extracted to produce a stronger signature for 

highly compressed images. 
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Chapter 5 SVD Based Signature Extraction Model 

 

5.1 Introduction 

The image analyser platform investigated in Chapter 4 uses the wavelet based extraction 

method in conjunction with the signature enhancer. One of the limitations of the 

platform is the identification of images that originates from low to mid-end camera 

phones, which are heavily compressed images. The characteristics of the SPN, which 

contains the PRNU, were explored and if the PRNU can be converted from a multiplicative 

noise to an additive noise, it will therefore be much easier to extract the signature from 

the image. Furthermore, if the range of the energy of the PRNU within an image can be 

estimated, it will be easier to separate the PRNU from other polluting noises and get a 

cleaner signature. 

The concept of signal decomposition, by extension the 2D image decomposition, is 

presented and the Singular Value Decomposition (SVD), which can separate an image into 

ranks of descending order of energies, is investigated. The homomorphic filtering 

approach is explored and finally a new signature extraction model is presented that can 

estimate where the PRNU lies within the image. Once the PRNU is located, it can be 

isolated and extracted to produce a stronger signature for highly compressed images. 
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5.2 Signal Decomposition 

Signal decomposition is an important practical problem as the energy in most real-world 

signals has unevenly distributed frequency spectra. The uneven distribution of signal 

energy in the frequency spectra has made signal decomposition an important problem 

whose solution provides the practical foundation for signal compression techniques 

under the classical rate-distortion formalism in source coding applications (Berger 1971). 

The basic principle is to divide a spectrum into signal subspectra (or subspaces) in order 

that those with more energy content will be given a significantly higher priority for 

further processing. By analysing and discarding signal subspaces with lower priority, one 

can thus expect a negligible (synthesis) error in the reconstructed signal to occur 

subsequent to the decomposition-synthesis procedure widely adopted in many real-world 

applications. In addition to signal compression/coding, such procedure also forms the 

mathematical basis of modern or non-classical time-frequency based techniques for 

investigating signal subspace/subbands, providing an expansive means of spectral analysis 

that naturally leads to the transform coding methods representative of the non-

parametric or eigen decomposition approach of spectral estimations.  These methods are 

frequently described in the literature as having higher resolution and better frequency 

estimation characteristics particularly at high noise to signal ratios (or low SNRs). For 

example, they are particularly effective in identifying narrowband processes in white 

noise. 

Broadly speaking, most eigenvector approaches work by separating the information 

contained in a signal into two subspaces, which are commonly referred to the signal and 

noise subspace respectively. The related decomposition/transform generates eigenvalues 
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of decreasing order and, importantly, eigenvectors that are orthonormal. This latter 

property is most crucial in ensuring eigenvectors that are deemed part of the noise 

subspace can be identified, thus allowing influence of that noise to be eliminated 

effectively.  The most challenging aspect of applying eigenvector spectral analysis is the 

selection of the appropriate dimension of the signal or noise subspace; e.g. if the number 

of narrowband processes is known, then the signal subspace can be dimensioned on this 

basis.  In general, however, the determination of the signal subspace often relies on trial-

and-error approach. 

Historically, the purpose of transform coding is to decompose a set of correlated signal 

samples into a set of uncorrelated spectral coefficients, with energy concentrated in as 

few of them as possible. Indeed, the orthogonal expansion of a continuous variable 

function is a subject of extensive studies documented in classic literature (examples are 

Fourier series and wavelets), which gained in both depth and intensity in the 70s, 

providing the theoretical underpinnings for many modern applications.  From a practical 

signal processing viewpoint, the decorrelation and energy compaction properties of these 

transforms constitute the central issues in their applicability for signal coding, laying the 

important foundations for signal classification and identification particularly for speech 

and images.  Using established concepts from linear vector spaces, a vector-matrix 

formulation providing a succinct format for block transform manipulation/interpretation 

is given below. 
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For the rest of the thesis the following notations will be used: 

 Scalar sequence: normal font, lowercase 

 Vector: bold font, lowercase 

 Matrix: bold font, uppercase 

 

5.2.1 One-Dimensional Transform Coding 

Let f(h) be the one dimensional (1D), discrete time signal, sequence representing a the 

continuous time signal f(t), defined over the interval [0, N-1]. Accordingly, f(h) can be 

expressed as an N-dimensional vector f by means of the principle of superposition (c.f. 

linear systems theory): 

   [

 ( )
 ( )
 

 (   )

]   ( ) [

 
 
 
 

]   ( ) [

 
 
 
 

]       (   ) [

 
 
 
 

] 

 

   ( )    ( )        (   )     

This formulation allows f to be viewed as a point in the N-dimensional Euclidean space 

spanned by the basis vector set: { ej,  where j = 0, 1, …, N-1} and these vectors are also 

linearly independent.  

By definition, two sequences f(h) and g(h) with the same support are orthogonal if and 

only if the inner (or dot) product vanishes, viz, 

∑ ( ) ( )       
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Thus, the basis vector ej as described earlier are orthogonal, given that 

∑  ( )  ( )

   

   

    
            

with norm(||ej||) of each basis vector equal to unity: 

∑    ( ) 
 

   

   

                 

ej provides the simplest set of basis vectors for which the orthogonal expansion of f(t) 

evaluates to f(h).   

In general, f can be characterised using a broad class of orthogonal expansions defined as 

follows. 

Let Xn(h), 0 ≤ n, h ≤ N-1 be a family of N linearly independent sequences which are 

defined on the interval [0, N-1]. The orthogonality property requires that, 

∑  ( )  ( )     
        {

  
             
            

   

   

  

where ln = ||Xn(h)|| and Xm
* denotes the complex conjugate of Xm. In practice, the 

orthogonal family is normalised with norm (Xn) = 1 to form the orthonormal family; that 

is, 

  ( )   
 

  
   ( )          

giving  ∑   ( )   
    

   ( )        

 where δn, m is the Kronecker-delta sequence as given by 
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      {
                      
            

 

A familiar example of the orthonormal basis, in the time vector space for the orthogonal 

expansion, is the Discrete Fourier Transform (DFT) of f, with   ( )   
 

√ 
       

  ( )

   

where    √   and f(h) uniquely characterised as 

 ( )   ∑     ( )        

   

   

 

where the spectral coefficients θi is given as 

    ∑  ( )  
 ( )        

   

   

 

(which can be computed by multiplying f(h) by Wm
*(h) and summing over h). That is, 

∑ ( )  
 ( )   ∑   

  

∑  ( )  
 ( )

 

   ∑       
 

     

 

In the most general case, the set of coefficients θi , 0 ≤ i ≤ N-1 specifies the spectral 

characterisation of f relative to the given orthonormal basis function W, for which the 

classical DFT is a special case where Wn(h) is sinusoidal. In particular, the energy of a 

signal sequence, computed as the sequence of norm |f(h)| 

∑‖ ( )‖ 
   

   

 

can be computed equivalently as the sum of square of norm |θn(h)| as per the Parseval 

Theorem. 
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That is, 

∑ ( )  ( )

   

 

  ∑ (∑     ( )

   

 

)(∑     ( )
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  ∑     
 

   

 

 

or  

∑‖ ( )‖   ∑     
 

   

   

   

   

 

which asserts that the signal energy is preserved under an orthonormal transformation 

and can be measured by the square of the norm of either the signal samples, f(h), or the 

spectral coefficients obtained via the orthogonal expansion of f(h). 

The mathematical development leading to unitary matrix X-1 = X*T, subsequently 

reinstating the Parseval Theorem; i.e. energy preserving relation of f and f(h); i.e.  WT W = 

fT f*, and, ideally, derivation of the resulting least squares estimator.   

Typically the decorrelated components of W, {w}, have different variances which simply 

state that the corresponding signal coefficients sequence is non-stationary. Thus a second 

important objective of the transformation is to repack the signal energy (see above 

equation) into a relatively small number of spectral coefficients; that is, the 

performance/metrics or quality of an orthonormal transformation depends on its signal 

decorrelation and energy repacking properties.  Computationally, the classical technique 

of zonal sampling is often used for approximating f wherein only a small subset of the 

spectral coefficients is used to represent the original signal vector (least squares 

approximation already addressed in the above derivation). Thus the best zonal sampler is 

one that packs the maximum energy into the first L coefficients {wL, L = 1, N}, where L = 
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min{N}.  The Karhunen-Loeve transform (KLT), a signal/input dependent block transform 

best known for its optimality in data compaction (Jolliffe 1986), has this property.2  A brief 

summary of KLT is presented below (Lam, Emery 2009). 

Given x is an N random vector, KLT computes orthogonal transforms that maximise the 

amount of data variance with the goal of seeking a projection to best represent the data 

in a least-squares sense. Geometrically, this can be understood by noting that whilst the 

mean vector mx of the set of d-dimensional samples {x1, x2, …, xn} offers the minimum 

sum of squared distances between itself and the set of samples that it represents, a more 

interesting representation of the data set can be obtained by projecting the data onto a 

line running through mx. The procedure is followed by finding an optimal set of 

coefficients {ak, k=1, n} which minimises the squared-error criterion function J concerning 

the sum of squared differences between xk and (mx + ak e), where e denotes a unit vector 

in the direction of the line sought. In other words, the least-squares solution is achieved 

by projecting the vector xk onto the line in the direction of e that passes through the 

sample mean mx.  Now let the matrix A define a linear transformation that generates a 

new vector y from x, as y = A (x – mx), where A is constructed such that its rows are the 

eigenvectors of Cx, the covariance matrix as defined by: 

    {(    )(    )
 }   

 

 
 ∑    

      
   

                                                      
2 In essence, KLT is a continuous signal transformation analogous to that developed by Hotelling (Hotelling 

1933) removing the correlation among the elements of a random vector and hence, the widely known 

method of principal components.  
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which is real and symmetric, with diagonal elements representing the variances of the 

individual random variables whilst the off-diagonals are their covariances. For 

convenience, the row eigenvectors of A are constructed in order of decreasing 

magnitudes of the corresponding eigenvalues. The transformed vector y is a zero-mean 

random vector whose covariance matrix (Cy) is related to that of x by Cy = A Cx A
T ; i.e.  x 

and y are similar under the similarity transformation that preserves eigenvalues (as A is 

real and unitary), with  

    [
  

 
  

] 

that represents a diagonal matrix having the eigenvalues of Cx along its diagonal.  Thus, 

the linear orthogonal transformation of A removes the correlation amongst the original 

variables of x, resulting in elements of y which are uncorrelated (as the off-diagonal 

elements of Cy are all zero).  Furthermore, each λk is the variance of yk, the kth element of 

y, which is ordered in decreasing value of k in accordance with the order of the 

eigenvectors in A.  As such, the dimensionality of y can be reduced by ignoring one or 

more eigenvectors that have small eigenvalues; that is, given M << N, the transformation 

matrix B (MxN) having the first M rows of the matrix A will produce new transformed 

vectors of ỹ which are smaller (M columns), as given by  ̃     ̃. Here the reconstructed 

vectors  ̃ can be obtained by means of the inverse relation as  ̃      ̃, whose mean 

square error (MSE) is simply the sum of the eigenvalues corresponding to the discarded 

eigenvectors. That is, ỹ represents the least squares fit of xx; viz.,  

     ∑   
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More importantly, if Cx is singular, its rank R is less than N and it will have N-R zero 

eigenvalues. Thus PCA (Principal Component Analysis) or the associated KLT/Hotelling 

Transform always reduces the dimensionality from N to R, gracefully yielding a 

computationally more tractable solution.  

 

5.3 Singular Value Decomposition 

Using signal compaction techniques, the energy of a signal can often be redistributed into 

a significantly smaller number of frequency sub-bands, allowing them to be divided into 

sub-spectra in order that those with more energy content will be given a significantly 

higher priority for further processing. By analysing and discarding signal subspaces with 

lower priority, a signal can be reconstructed or approximated by a decomposition-

synthesis procedure described in section 5.2.1.  

Most eigenvector approaches work by separating a multidimensional signal into two 

subspaces, which are commonly referred to the signal and noise subspaces. In practice, 

the most challenging part of eigenvector spectral analysis is to compute the appropriate 

dimension of the signal or noise subspace, which often resorts to a trial and error 

procedure. Mathematically, a matrix A with m rows and n columns with rank r, r ≤ n ≤ m, 

can be expanded or decomposed into: 

         

where U and VT are two orthogonal matrices of size mxm and nxn respectively (Moler 

2004). S is the diagonal matrix, of size mxn, containing r non-zero singular values. The 

decomposition of matrix A is known as Singular Value Decomposition (SVD). When an 
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image is decomposed using SVD, the ranks of the image can be represented as 

component matrices with decreasing energy contents as shown in Figure 5.1 (Andrews, 

Patterson 1976). SVD can be used to separate the spectra of the image and the ranks can 

be selected in accord with the aggregated total image energy of the individual ranks; that 

is, sum of √  
 , where λi represents the eigenvalue associated with that eigenvector (ei). 

 

 

 

 

 

 

5.3.1 2D Block Transform Coding 

The 2D formulation of transform coding is easily extrapolated from the discussion in 

section 5.2.1. Generally, a 2D array or image is divided into (NxN) subblocks, each of 

which is separately encoded. These blocks are usually square, with 4x4, 8x8 and 16x16 

being representative sizes.  In a similar vein, the extension of the least square fit 

procedure of KLT to 2D images leads to an efficient image dependent decomposition 

known as the Singular Value Decomposition (SVD). Here an NxN image/block F is 

computed using the weighted sum of the N2 basis array           
 , wherein the {  } 

are columns of a preselected unitary matrix.  An outer product expansion is sought, 

wherein the outer products are matched specifically to the particular image so that the 

Figure 5.1. SVD of matrix A with each rank as a separate matrix 

 
= 

   
  

Matrix A Rank 
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double sum over N2 basis images reduces to a single sum over R arrays, where R≤N.  The 

matrix expansion required has the form: 

   ∑      
 

 

   

  ∑√      
 

 

   

 

where R is the rank of F (see above); viz. R = rank (F).  The expansion (or decomposition) is 

most commonly known as the SVD, which can be constructed as follows.  Define the NxR 

transformation matrices Φ and ψ such that the R columns of each of these matrices are 

the R non-zero eigenvectors of FTF and FFT respectively. Further, since both FTF and FFT 

have the same eigenvalues, we have  

(   )         

 

(   )                    

with non-zero eigenvalues {λk} are the singular values of F. It can be shown that F can be 

written as the well-known expression: 

     √     

which, upon expansion, produces 

   ∑√  

 

   

     
  

as described above.  As with the 1D expansion, for R << N, the signal compaction achieved 

by SVD is always optimal in the least squares sense. As such, the N2 image samples often 

need only be encoded with 2NR samples; i.e. R times of the N samples for each Φk and 
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ψk.  In other words, Φ and ψ are determined solely by the particular image being 

analysed (cf. KLT) and, as such, must be re/calculated for each image block in order that it 

can be expanded by SVD with least squares error.  The familiar outer-product expansion 

of    √    that we have been applying to F can be viewed as a limiting case where N 

= 1; i.e.  2D transform applied to each image pixel. 

 

5.1.1 Interpretation of SVD components 

The major issue associated with SVD is the interpretation of the linearly combined 

components (planes) that are created. The energy of the ranks in relation to the 

aggregated total image energy can be represented by the eigenvalue, λi, where i = {1, 2, 

…, N} , where N is the number of ranks. The variance, σ2, of the image is proportional to 

the sum of the eigenvalue squares. 

     ∑  

 

   

 

A scree plot, line plot showing the fraction of total variance in an image, can be used to 

display how the components are distributed. The energy of an image is proportional to its 

variance and the relevant components of the SVD can be computed by using the 

properties of the variance and eigenvalues. 
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5.4 Homomorphic filtering 

Homomorphic filtering is a process where a multiplicative noise, such as the PRNU, can be 

transformed to an additive noise. The process works by mapping the signal (or image) to a 

different domain where linear filtering techniques can be applied to denoise or enhance 

the signal. Consider a signal f(x) in the spatial domain, which is a combination of two sub-

signal components m(x,y) and n(x,y) represented as 

 (   )   (   ) (   ) 

The relationship between m and n is multiplicative and it can be difficult to separate 

these two signal components in the spatial domain using linear techniques. If the 

frequency components of m and n had to be operated separately, then the above 

equation cannot be used directly because the Fourier transform of the product of two 

functions is not separable (Gonzalez, Woods 2002). 

 { (   )}    { (   )}  { (   )} 

 To circumvent this problem the signal f can be converted to the logarithmic domain 

where the property of logarithm converts a product to a sum. Thus, transforming f to the 

logarithmic domain will provide 

 (   )      (   )       (   )       (   ) 

 Then the Fourier transform can be applied to f in the logarithmic domain 

 {    (   )}      {    (   )}    {    (   )} 

where any enhancement or filtering can be performed in the frequency domain and the 

inverse Fourier transform followed by  application of the exponential function (inverse 
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operation of logarithm) can be applied to convert the signal back to the spatial domain.  

Homomorphic filtering is used in the field of image processing to enhance (denoised) 

images that have been corrupted by multiplicative noises such as speckle noise 

(Chitwong, Thongsila et al. 2005). It has also been used in adaptive image thresholding to 

separate the illumination and reflectance of the image (Lam 1998). 

 

5.5 Signature Extraction Model 

The existing denoising approach uses the wavelet method, and scene details can be 

included in the extracted signature. Hence the SPN will contain the PRNU and some of the 

NUA. If the signature of an image can be extracted by separating the PRNU from the 

scene details which lie in the similar frequency region, this will create a cleaner PRNU that 

in turn should provide a better SPN. A novel signature extraction model is proposed, 

which is described in more detail below. 

By performing homomorphic filtering of the 2D image, the PRNU can be separated from 

the scene components. Moreover, if the range of energy of the PRNU can be estimated, it 

is easier to apply a filter to separate the PRNU from the image content. The Singular Value 

Decomposition (SVD) can be used to decompose the image into unit ranked images of 

descending energy. It is difficult to interpret the SVD separated planes in a linear fashion. 

By using the estimated energy of the PRNU the range of planes where the PRNU is 

located can be estimated. These ranks (planes) can be grouped together to form the 

extracted PRNU. Gul & Avcibas have investigated the use of SVD to identify the model of 

a mobile phone. Their method uses the singular values of SVD to estimate the relative 
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linear dependency of image rows/columns, which identifies the CFA interpolation 

algorithm of the camera (Gul, Avcibas 2009).  

Let us consider the sensor output model presented in (Chen et al, 2008) for source device 

identification purposes. They presented a mathematical model relating the clean image 

and the PRNU together with the other noises that form part of the noisy image as shown 

in Chapter 3 (section 3.2). 

     (   )           

 where I is the noisy image, g is the colour channel gain, γ is the gamma correction factor, 

K is the PRNU signature, Y is the incident light intensity, Λ is a combination of the other 

noise sources including the dark current, shot noise, and read-out noise and Θq is the 

quantization noise. Since in natural images the dominant term is the light intensity Y, it is 

factored out and only the first two terms of the Taylor expansion 

(   )         (  )          

 are kept to provide: 

   (  ) [    
 

 
]
 

      (  ) (      
 

 
)     

To simplify the notation and avoid using too many symbols, the gamma correction factor 

is absorbed in the PRNU factor K. (  )  is represented by I0 and γ I0 Λ/Y +    is 

represented by η. 

Hence the simplified model for a noisy image I can be represented as 
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where I0 is the clean image (perfect absorption of light energy by pixels), K is the PRNU 

and η is the remaining noise, such as shot noise, dark noise and read-out noise, 

associated with the image. The noisy image is comprised of the clean image to which is 

added the product of the clean image and PRNU and the random noise components. The 

model can be represented as 

     (   )    

The purpose of grouping the PRNU component K using the brackets is to make the 

multiplicative nature of the PRNU in relation to the clean image (sensor output in the 

absence of noise). 

The image model can be transformed from the spatial domain to the logarithmic domain 

(Xie, Pierce et al. 2002). Thus, the result is an additive model consisting of the image and 

PRNU noise, as follows 

        

where Í = log(I), Í0 = log(I0), Ḱ= log(1+K) and the noise components η are suppressed from 

the equation by averaging many images created by the sensor. The log (1+K) 

representation ensures that the PRNU in logarithm is never an undefined value (due to 

possibility of log (0)) and the value of K is always positive. 

The next stage is to determine the energy of the PRNU in an image, which depends on the 

type of device that produced the image and is a fraction of the total energy of the image. 

There are two types of sensors that are primarily used in digital cameras, the CCD 

(Charge-Coupled Device) and the CMOS (Complementary metal–oxide–semiconductor). 

The exact energy of the PRNU in each image is computationally intractable to calculate, 
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thus the range of energy where the PRNU lies can be estimated instead based on the type 

of sensor. The type of scene content might have an impact on the energy of the PRNU, 

hence the reason of estimating the range where the PRNU is located. The CCD produces 

less noise but requires more power when compared to the CMOS, hence the reason 

CMOS is used most often in camera phones where space and battery life are crucial. The 

energy of the PRNU in a CMOS will be affected by other sources of noises and the 

approximate energy (variance) of the PRNU can be reduced (El Gamal, Eltoukhy 2005). 

The PRNU in CCD was measured by calculating the variance (σ2) of the noise in 100 image 

sets (Irie, McKinnon et al. 2008). Further details about the PRNU energy experiments can 

be found in chapter 3 (section 3.3.2). The energy of the PRNU can be estimated to be in 

the range of 0.01% to 1.5%, depending on the type of image and sensor.  

The range has to be increased from the findings in the experiments because these 

experiments were performed in highly controlled environments where the images used 

were carefully selected based on the scene contents and lighting of the sensor. On the 

other hand, the range of energy to be used in the extraction model will be based on real 

world images of natural images taken from a wide range of cameras, where the lighting 

and scene contents will vary greatly. 

Once the energy range can be estimated, the next stage is to identify the location of the 

PRNU in the energy spectrum of the image. The logarithmic image model is then 

decomposed into ranks by using SVD. The energy of the PRNU can be used as a guide to 

select the relevant ranks using the property of the relationship (as described in section 

5.3.2) between the variance of an image and the singular values of the SVD components. 

The estimation of the PRNU in the signal subspace can be performed empirically by using 
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a trial and error approach in relation to the total energy (variance) of the image; more 

details on the approach used will be explained in chapter 6. If the PRNU is being extracted 

from a colour image, the SVD process should be applied to each colour (RGB) channels 

separately or the image converted to a grayscale image. Figure 5.2 shows the process 

stages of the novel signature extraction model. 

 

 

 

 

 

When the PRNU ranks have been estimated, they are grouped together and the 

logarithmic signature is reconstructed using the selected range of ranks in accordance 

with their associated energy. The latter should be chosen to contain the PRNU of the 

camera that created the image. The digital signature can be converted back from the 

logarithmic domain to the spatial domain, using the exponential function. In this case, the 

original image cannot be recovered, which signifies that the signature can be stored or 

transferred securely. The signature obtained can be stored and processed in the 

logarithmic domain itself. The signatures extracted by this method can be used to create 

the camera reference signatures of the source device for identification purposes or 

compared against the reference signatures of other cameras for linkage purposes.  

 

Figure 5.2. Process stages of the novel signature extraction model. 
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Chapter 6 Experiments for Existing Platform 

 

6.1 Introduction 

The experiments were divided into two main categories where firstly the existing 

platform was assessed and secondly the SVD based extraction method was tested. The 

experiments on the existing platform, presented in section 6.2, were designed in order to 

find: 

 The best cropping position of an image prior to extracting its digital signature in 

order to obtain a stronger signature, which will help reduce identification and 

classification error rates. 

 A good training size to sample size ratio of the classification process of images in 

order to get better clusters that will provide lower classification error rates.  

The tests for the existing platform were performed using 5 cameras, and images of 

varying level of scene details as well as different times of day and night were taken.  

The second experimentation process, described in section 6.3, was designed to evaluate 

the proposed SVD based signature extraction method. This test is performed in two parts 

to better achieve the objectives of the research: 

1. The range of energy of the PRNU has been estimated and the test is designed to 

locate the PRNU in the SVD separated planes for the images. The most 

appropriate ranks that contain the PRNU for most types of cameras are located 

empirically. 
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2. The range of ranks that was located in test 1 is used to validate the SVD based 

extraction method. The camera reference signatures from a set of images from 10 

mobile phones are calculated and the source identification of unknown images is 

performed. The results obtained from the SVD based method will be compared 

against the wavelet based method. 

 

6.2 Experimentation on Existing Platform 

For the purpose of the experimentation on the existing platform, 1000 pictures were used 

from 5 source devices comprising of 4 digital cameras and one camera phone with device 

contributing 200 images each. The devices were:  

 BlackBerry Curve 8310 (camera phone) 

 Nikon Coolpix E5200 

 Canon Digital IXUS 500 

 Olympus C-730 UZ 

 Olympus Mju Stylus 1030SW 

Since images in real forensic situations come from different cameras with different 

specifications and settings, a specific size for the photos from the cameras were not set, 

therefore the sizes ranged from 1600 x 1200 pixels to 3648 x 2736 pixels, which still give a 

wide margin for cropping of the images. Most of the images were taken at the highest 

resolution possible for the specific camera. All the images were in JPEG format with a 

compression quality ranging from about 75 % to 97 % quality. The pictures contain a wide 
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variety of indoor and outdoor sceneries of urban and rural settings, night and day lighting 

as well as offices and various buildings and some holiday pictures; overall images that 

would be as close to natural real world situations as possible were captured. 

 

6.2.1 Image Cropping Position 

The cropping position of the images, prior to performing the extraction of the signatures, 

can be chosen in a systematic way. Different areas of the image will be affected by 

varying scene details and camera software processing. For example when a picture is 

taken at night, the flash fires and the centre of the image can be saturated. A trivial 

solution would involve cropping the images in the dataset at different positions in order 

to obtain the least scene details or better illumination levels. But the sensor pattern is 

spatially distributed in the image, which indicates that the cropping position will have to 

be the same for all the images in the dataset. Images of different resolutions and sizes will 

have different numbers of pixels in the cropping area, but overall a majority of pixels will 

be overlapping for most of the cropped images. The experimentation process will have to 

address the following points: 

 Select an area where pixel saturation is less for most images 

 Identify the area of images where different scene details varies most 

 Most importantly, the cropping area will need to provide a strong signature 

The experiment was designed using images from different cameras taken at different 

times of the day and night as well as different scenes. The experiment was performed on 

real world natural images. The combination of images from day and night provides 
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different illumination levels and areas of illumination in the image. Moreover the set of 

images contains images with indoor and outdoor scenes with some close ups and 

panoramic pictures. The images were cropped from different positions and the signatures 

extracted, which was processed by the current image analyser platform. 

The images were cropped to a size of 512 x 512 pixels, which provide a trade-off between 

the computational complexity and the accuracy of the signature. Furthermore, the 

512x512 size provide reasonable processing time given the limited computing resources 

and as reported in Hoglund (Hoglund 2009), it takes about 30 hours to calculate the 

reference noise using 200 images of sizes 3072 x 2304 pixels, whereas 512x512 takes less 

than one hour. Hence cropping the images from their normal sizes greatly reduces the 

computational complexity. The magnitude and accuracy of the SPN does not deteriorate 

greatly when the image is cropped to 512 x512 and preliminary tests performed in Li (Li 

2010) indicated the size of the cropping can be as low as 256 x 512. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Three cropping positions (red squares) on a picture; top-left, 

centre and lower-left cropping positions. 
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The images were cropped from three positions; the centre, the upper left corner and 

lower left corner as shown in Figure 6.1. The preference for choosing these positions was 

based on the fact that there can be large differences in light levels and scene details 

between the lower and upper parts of the images as well as the centre. Moreover, the 

right side and left side of a picture present approximately the same amount of lighting 

and same average scene details, hence the decision to use only one side of the images to 

perform the cropping. The average entropy (measure of light intensity and scene 

contents) of the left side and right side of 1000 images were calculated and the results for 

both sides were found to be between 7.3 and 7.4, which shows that the light intensity for 

both sides are the equivalent. The choice of left side cropping over the right side is due to 

the pixel numbering starting from the left side of the picture. These three chosen 

positions provide a good distribution of light levels, zooming effect and brightness when 

the flash is fired. The optimum cropping position will be the one that provides the lowest 

classification error rates. The results are presented in section 6.3. 

 

6.2.2 Training Size Selection 

The setup for performing the cross validation experiments on the existing image analyser 

platform is described in this section. The cropping was performed on the images and the 

signatures (SPN) were extracted by using a Discrete Wavelet Transform (DWT) followed 

by a low pass filter and the SPN were enhanced by using one of the models developed in 

Li (Li, 2010). The enhancing model chosen was the: 

  (   )   {
 
      (   )

             (   )   

  
      (   )
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where ne(i,j) is the enhanced version of the n(i,j) component and this model has been 

shown to work for natural images in Li (Li 2010) and the optimal value of α was 7.  

To perform the cross validation on the dataset, the folds (explained in Chapter 4, section 

4.43) were randomly selected before the training stage of the classifier. The next step was 

to create the similarity matrix which, being the most computationally intensive stage of 

the classification process was no longer a trivial process since for each fold the matrix had 

to be recalculated. This had the prospect of making the cross validation prohibitively 

expensive computationally and arises due to the change of size of the matrix by changing 

the size of the fold and the different images present in the training phase for each 

partition. To overcome this problem, the similarity matrix was created at the start of the 

cross validation process for all the SPNs. Row and column deletions were performed in 

the matrix as the population of the partitions changed and the size of the folds were 

altered. This method increased the time complexity to create the similarity matrix, but it 

had to be created only once, which decreased the time complexity during the cross 

validation process. 

The sizes of the folds were chosen as 20, 10, 5, and 2, which provided a wide range of 

prediction errors. The size of the dataset was decreased from 1000 to 500 and to 250 so 

as to provide a learning curve that will indicate what effect the sample size has on the 

classifier. The same number of images was chosen from each device for each sample size. 

Once the value of k is chosen for the cross validation and one partition set aside for 

testing, the other partitions are combined to provide data for the training phase and 

classification phase. In Li (Li 2010), the selected sizes of the classifier trainer set were 120 

and 300, where there was little variation of classification performance between the two 
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sizes. The size of the trainer set was altered with different dataset sizes. Moreover, the 

partitions were stratified, so that each partition contained approximately the same 

amount of labels. 

 

6.3 Results for Existing Platform 

The results for the experiments performed on the existing platform are separated in two 

sections. The first sets of results are described for the image cropping position and the 

second sets are for the training size selection results. 

 

6.3.1 Image Cropping Position 

The first set of results obtained when performing cross validation (for k=10), was giving a 

higher error rate than expected (table 6.1) when cropping from the centre of the images. 

The position of the cropping was then changed from the centre to the upper left corner 

and subsequently to the lower left corner of the image and the experiment repeated each 

time. All three different positional cropping of the SPNs were used to classify the same set 

of images to determine the position with the lowest classification errors. The average 

percentage classification errors for the centre, upper-left corner and lower-left corner are 

shown in table 6.1. 
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Cropping Position Percentage error 

(%) 

Centre 2.2 

Upper left 2.5 

Lower left 0.81 

 

 

The results show that, for the dataset used for the experiments, the best position to 

perform cropping of an image for classification is the lower left corner (Soobhany, Leary 

et al. 2011). 

 

6.3.2 Training Size Selection 

Cross validation was performed with sizes of folds of 2, 5, 10, and 20 and it was found 

that the variance of the error rates increases when the number of folds decreases. Figure 

6.1 shows the error and variance for different folds when cross validation was performed 

on 1000 images. 

Table 6.1. The average percentage classification error for three different 

image cropping positions. 
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Two fold and five fold cross validation produced higher values of variance whereas twenty 

fold produced the least variance of errors, but the variance of ten and twenty fold are 

close to each other.  
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Figure 6.1. Variance and error classification rate with respect to number of 

folds when cross validation was performed on 1000 images. 

Figure 6.2. Effect of number of folds on percentage error rate for different 

sample sizes (250, 500, 1000) of images. 
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In Figure 6.2, the error rates for all three sample sizes (1000, 500, 250) are shown with 

different sizes of folds. The error rates for k = 10 and k = 20 are quite similar for all three 

curves and there is large difference when the number of folds goes towards k = 2. It is 

interesting to note that when the sample size is 500, the error rates are at their lowest 

values. For a smaller sample size, 250, the error rate increases drastically when the value 

of k is less than 5. 

 

Sample 

Size 

Classifier Trainer Size 

900 500 250 125 

1000 0.83 0.79 0.74 0.91 

500 
 

0.54 0.58 0.88 

250 
  

1.84 1.12 

 

 

The error rates in Table 6.2 shows that the unsupervised classifier performs better when 

the size of the training set is less than 50% of the size of the sample space but more than 

approximately 125 images. When the size of the sample space is 1000 and 250, the error 

rates obtained were higher when the training set was nearly as large as the size of the 

sample space.  

 

Table 6.2. Percentage error rates for different sample sizes and varying 

classifier trainer size when k =10. (E.g. 0.83 %) 
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Furthermore, an additional test was performed to check if the classifier will perform with 

a small dataset of 50 images comprising of 7, 18, 15 and 10 pictures from the BlackBerry 

Curve 8310, the Nikon Coolpix E5200, the Canon Digital IXUS 500, and the Olympus Mju 

Stylus 1030SW respectively. The signatures were clustered in their respective groups 

according to their camera source together with an outlier group that consisted images 

that had high level of saturation and darkness. The purpose of this last was to check the 

suitability of the classifier to cluster small image sets. 

 

6.4 Discussion of Results 

The discussion will be structured into two parts, namely image cropping position and the 

training size selection. 

 

6.4.1 Image Cropping Position 

The image cropping from the lower left corner provided the best classification accuracy. 

The centre of the image usually has a high light intensity (saturation) in the event the 

flash is activated when the picture is taken at night or in low light, similarly the upper left 

corner of the image can have high intensity of light since light sources from light bulbs or 

sunlight, are most often present in that space of the picture. Outdoor pictures taken at 

night will affect the top of the image too, due to the low light intensity in this area of the 

image which will adversely affect the multiplicative nature of the PRNU. The saturation of 

the pixels in these areas of the images usually corrupts the signature of the image.  
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The lower left corner of the image usually has normal light intensity and less scene details 

than the centre of the image. Hence cropping the images from the lower left corner 

provide better results for this image set. These findings are different from Li (2010) 

because this image dataset had a proportion of images taken during the night and 

indoors, when the flash was fired as well as in bright sunlight where the top part of the 

image was saturated. The edges of the images can be providing some further help to 

enhance the sensor pattern signature due to the edge effect. Therefore the optimum 

cropping position for images that have been recovered from a crime scene or suspect 

device should be performed in the lower left corner if the images contain night scenes or 

highly saturated sunlit images.  

 

6.4.2 Training Size Selection 

It can be observed from Figure 6.1 that simply adding more folds beyond k = 10 does not 

necessarily yield drastically better results. The performance of the clustering process will 

plateau after k = 10 folds are used, meaning computing time can be improved by choosing 

k = 10, while keeping error rates low. It was also observed from the results that when the 

size of the sample space was increased the variance tends to decrease, because the 

classifier has more images during the training stage of classification which increases the 

ability to create better clusters. Both outcomes were expected and are in line with 

previous studies in the area. 

When the sample size is 500, the error rates are at their lowest values when it should 

have been lowest when the sample size is 1000. For a smaller sample size, 250, the error 

rate increases drastically because insufficient training of the limited number of signatures 
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are being picked during the training phase of the clustering process. It was stated in (Li, 

2010) that the unsupervised classifier needed a large sample of unknown images to work 

best. The error rates were found to be smaller when the training sample size was less 

than half the sample space.  

When the training sample size is too close to the sample space over training might occur 

in stage 3 of the unsupervised classifier as depicted in chapter 4 (section 4.3.2), where the 

intra class and extra class boundaries of the clusters appear to overlap and are thus 

indistinguishable. The error rates included in table 6.2 are the estimated prediction error 

rates (Pest). They are the maximum likelihood estimate of the true error rate (Ptrue) of the 

classifier. The relationship between Pest and Ptrue with a 95% confidence interval (95% 

being considered high enough to be accepted by a forensic investigator, obtained during 

interviews with forensic investigators) for different sample size has been calculated. The 

average Pest including all the tests was below 2%, giving Ptrue between 0.5% to 6% and 

1.6% to 3% for sample size of 125 and 1000 respectively. 
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Chapter 7 Experiments for SVD Extraction Method 

 

7.1 Introduction 

This chapter presents the results of the experimentation process beginning with the 

results on identifying the most appropriate image cropping position. The results of the 

classification experiments performed on the existing classifier are described followed by 

the results obtained from the tests carried out on the SVD based signature extraction 

method for ranks estimation and source device identification. Finally a discussion of the 

results is presented. 

 

7.2 Experimentation for SVD Based Signature Extraction  

The experiments for the SVD based signature extraction were performed in two stages. 

Firstly the ranks corresponding to the PRNU had to be determined and, secondly, the 

associated single rank images were combined (linearly) to produce the signature that 

would facilitate identification of the respective camera phones. 

 

7.2.1 Estimation of PRNU ranks 

The range of energy of the PRNU has to be located based on the energy of the images. 

Given the mathematical property of (σ2 = λ), SVD was performed on a set of images 

(cropped to 512x512 pixels) and single rank images with different energy levels were 

recombined to form the signature. The process was performed empirically by estimating 
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the ranks where the PRNU might be located and refining the range of energy by using the 

classifier of the existing image analyser platform. 

A set of 15 images were used for the experiments originating from 3 cameras. The 

cameras were: 

 Nikon E5200 Coolpix digital camera 

 Nokia N95 camera phone 

 Nokia E71 camera phone 

Only 5 images were chosen from each camera in order to keep the processing time to a 

minimum while keeping in mind that the accuracy of the classifier might be affected. 

Some preliminary tests were performed on the wavelet based extraction method to 

determine whether the choice of these images and cameras will produce reliable results. 

It was found that most of these images could be clustered according to their source 

device.  

 

7.2.2 Source Identification using PRNU ranks 

For the purpose of the source device identification experiments, a total of 1000 images 

were chosen evenly from 10 mobile phones; i.e., each device contributed 100 images. 

Most of these phones were older models of the respective make and, as such, offer a 

significantly lower image quality, particularly when compared with images taken from 

digital cameras. To demonstrate that the proposed extraction method can differentiate 

between devices of the same make and model, there were five different makes/models, 

each of which has two phones.  
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Mobile Phone Alias 
Max Image 

resolution 

Number of images 

Indoor Outdoor 

nokia_C2_01_A cam_1 1536x2048 70 30 

nokia_C2_01_B cam_2 1536x2048 77 23 

nokia_E72_A cam_3 2592x1944 42 58 

nokia_E72_B cam_4 2592x1944 15 85 

nokia_N95_A cam_5 2592x1944 45 55 

nokia_N95_B cam_6 2592x1944 34 66 

samsung_galaxy_S2_A cam_7 3264x2448 20 80 

samsung_galaxy_S2_B cam_8 3264x2448 73 27 

zte_orange_sanfrancisco_A cam_9 1536x2048 19 81 

zte_orange_sanfrancisco_B cam_10 1536x2048 14 86 

 

 

Table 7.1 shows that, for each model, the two phones of the same make share the same 

prefix but are distinguished by different labels ‘A’ and ‘B’ appended as suffix. Most of the 

phones are products from Nokia, since it is one of the most popular makes in the low-to-

medium end of the camera phone market. Camera (or phone) manufacturers use the 

same colour interpolation algorithms or quantization tables for JPEG compression for 

several camera (or phone) models, which provide NUA across camera models from the 

same manufacturer. In addition, the inclusion of different phone models from the same 

make was also expected to better demonstrate the identification performance of our 

method. In all cases, the pictures were taken at the highest native resolution of the 

cameras and stored in the JPEG format, which is the de facto compression format for still 

images from camera phones. To ensure generality, the pictures were natural images 

consisting of a mixture of outdoor and indoor scenes, captured during the day and at 

Table 7.1. Names of mobile phones and their aliases used to represent them in the 

experimentation. The maximum image resolution of each camera and the number of 

images taken indoor and outdoor are also listed. 
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night as showed in table 7.1. The images captured at night were all of indoor scenes. 

Further, given the expectedly different sizes of the captured images, they were all 

cropped to the same size of 512x512 pixels, consisting of the lower left corner of the 

image as described in (Soobhany, Leary et al. 2011). The mixture of different types of 

scenes for the image dataset and cameras with different native resolutions will make 

identification of source devices more challenging but more realistic. Furthermore, some 

of the images were taken in low light levels and the flash of the camera has been fired, 

which usually distorts the synchronisation of the sensor pattern noise. This represents a 

more realistic scenario where the external/environmental factors vary and out of the 

control of an investigator.   

The SVD based signature extraction procedure as described in Chapter 5 (section 5.5) was 

applied to these cropped images, allowing the creation of reference signatures for the 

individual cameras. The experiments are based on real world natural images, which could 

have been recovered from suspect devices or downloaded from the web. The ability to 

take uniformly illuminated pictures from the cameras is therefore restricted. Hence the 

camera reference signatures are created by extracting the signature of 50 images 

randomly out of the 100 sample, which are natural images with varying scene details, and 

the extracted signatures are averaged. The creation of the camera reference signature 

process is described in chapter 4, section 4.3.1. The remaining 50 signatures from each 

camera dataset were then compared against the ten camera reference signature 

computed for the individual cameras, similar to the identification of cameras described in 

chapter 4, section 4.3.1.  
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To determine whether a specific image was taken by a camera, the cross correlation 

between the signature of the suspect image and the camera reference signature is 

calculated. The 2D cross correlation coefficient, r, is given by 

   
∑ ∑ (      ̅)(      ̅)  

√(∑ ∑ (      ̅)   ) (∑ ∑ (      ̅)   ) 
 

where X and Y are 2D matrices of size mxn,  ̅ is the mean of X and  ̅ is the mean of Y. 

It is assumed that there was no geometrical transformation, such as rotation or rescaling, 

applied to the images and the tests were mainly to check the effectiveness of the 

proposed extraction method. It has been shown in previous research in source device 

identification that an acceptance threshold of 0.01 for the cross correlation coefficient 

was reasonable (Li, 2010). Hence, the same threshold will be used to determine a suspect 

image originates from the same camera as the camera reference signature. 

 

7.3 Results for SVD Based Signature Extraction  

The required energy range for the extraction of the PRNU was found to vary slightly 

(across the range described in Chapter 3 (section 3.3.2) depending on the amount of 

scene detail in the image. Generally, images with high scene detail content will have their 

energy spread out more widely across the top ranks after performing SVD, whereas less 

‘busy’ images had most of their energy concentrated among the first couple of high 

energy ranks.  



Chapter 7 Experiments for SVD Extraction Method 

146 
 

 

 

Figure 7.1 shows the plot of the log-scaled singular values of a natural image with 512 

ranks. There is a sharp drop after the first rank (from 7.6 to 4.4). For a blue sky image, the 

drop is from about 7.8 to 0.4. The result indicates that most of the scene detail energy is 

concentrated in the first (topmost) rank. The difference between the blue sky image and 

the natural image further suggest that most of the smooth scene details will be 

concentrated among the first few higher ranks and the stronger details is located further 

down the ranks. 

 

0 50 100 150 200 250 300 350 400 450 500

-6

-4

-2

0

2

4

6

8

ranks of image

lo
g
-s

c
a
le

 s
in

g
u
la

r 
v
a
lu

e
s

Figure 7.1. Plot of log-scaled singular values of a natural image with 512 ranks after 

SVD decomposition. 
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7.3.1 Estimation of PRNU Ranks 

Preliminary results obtained from experiments to choose the ranks based on PRNU 

energy suggested that the location of the PRNU is widely spread among ranks in images 

from different types of cameras. Table 7.2 shows the clustering percentage error based 

on different selection of ranks for images of 512 ranks from two mobile phones and one 

digital camera (Nokia E71, Nokia N95, Nikon E5200 Coolpix). 

Ranks 

 

Average 

Energy 

Percentage error (%) for each camera 

Nokia E71 (C1) Nokia n95 (C2) Nikon E5200 (C3) 

4-20 0.2128 40 60 60 

4-100 0.1819 80 60 40 

4-200 0.1770 60 80 60 

25-150 0.0366 80 80 20 

30-150 0.0315 40 60 60 

35-150 0.0281 20 20 0 

40-150 0.0252 20 20 20 

45-150 0.0228 0 20 20 

50-100 0.0242 40 40 20 

50-115 0.0230 40 40 20 

50-125 0.0224 20 20 20 

50-130 0.0221 0 40 20 

50-135 0.0219 0 0 20 

50-150 0.0212 0 0 20 

50-200 0.0197 0 0 20 

50-250 0.0187 0 0 20 

75-150 0.0153 20 60 20 

100-150 0.0123 40 40 0 

100-200 0.0108 20 80 100 

150-200 0.0077 60 80 20 

 

 

The three cameras produced three clusters where Nokia E71, Nokia N95 and Nikon E5200 

Coolpix are the clusters C1, C2 and C3 respectively. When the ranks combinations contain 

high energy ranks, for example ranks 4 – 100, it can be observed that the results produce 

Table 7.2. Clustering results for 15 images from 3 cameras (Nokia E71, Nokia N95, Nikon E5200 

Coolpix) based on different rank combinations used to create the signature. The cells shaded 

with pink are the ranks that provided the best c results. 
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mixed clusters with high percentage error. The energy of the starting ranks in the 

signature was decreased each time by 5 ranks and the clustering results can be seen to 

improve. The best clustering results were observed consistently when the starting energy 

ranks started around 50. The ranks combinations of 50 up to 250 provided the best 

results with lowest percentage error and the ranks combination were narrowed down to 

use the ranks between 50 and 150 for extracting the signature of the images. The average 

energy of the combined ranks can be found to agree in broad terms with the range of 

energy in Chapter 3 (section 3.3.2). 

 

7.3.2 Source Identification of Camera Phones 

The Figure 7.2 shows the result of using blue sky images to create the camera reference 

signature for cam_5. There were 100 images used where each camera contributed 10 

images each and images 51 to 60 originate from cam_5. The red line indicates the 

acceptance threshold of the correlation coefficient as discussed in section 6.3.2.  

 

0 20 40 60 80 100 120
-0.01

-0.005

0

0.005

0.01

0.015

0.02

number of images 

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t 

Figure 7.2. Nokia_N95_A (cam_5) camera reference signature created from blue sky 

images and correlation with 100 images. Images 51 to 60 originate from this camera 

and other 90 images from the 9 other cameras. Red line is the acceptance threshold. 
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The same camera phone was used as source device to create its camera reference 

signature from natural scene images. Figure 7.3 shows the plot of the correlation was 

performed between the 100 suspect images and the camera reference signature. The red 

line indicates the acceptance threshold of the correlation coefficient, similar to Figure 7.2. 

The rest of the experiments were performed with the camera reference signature created 

using natural scene images. 

 

 

 

The graph in Figure 7.4 shows the result of comparing the camera signature of the ZTE 

Orange San-Francisco A (cam_9) with 100 signatures consisting of ten images from each 

camera. The images 81 to 90 come from this camera, images 91 to 100 from ZTE Orange 

San-Francisco B (cam_10) and the rest of the images originate from the other 9 cameras. 

The red line indicates the acceptance threshold of the correlation coefficient. The cam_9 
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Figure 7.3. Nokia_N95_A (cam_5) camera reference signature created from natural 

images and correlation with 100 images. Images 51 to 60 originate from this camera 

and other 90 images from the 9 other cameras. Red line is the acceptance threshold.  
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provided the best results in terms of the separation in values between the true positives 

of identification and true negatives. 

 

 

 

The graph in Figure 7.5 shows the result of comparing the camera reference signature of 

the ZTE Orange San-Francisco B (cam_10) with the same test signatures as the one in 

Figure 7.4. On this plot the overall correlation values can be seen to be lower than the 

cam_9 results above, but the positive identification of images from cam_10 is still above 

the threshold. 
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Figure 7.4. zte_orange_sanfrancisco_A (cam_9) camera reference signature and 

correlation with 100 images. Images 81 to 90 come from this camera, images 91 to 100 

from cam_10 and rest of images from the other 9 cameras. Red line is the acceptance 

threshold. 
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Table C.1 and C.2 (in Appendix C) shows the mean and standard deviation of correlation 

coefficient values, respectively. The ten camera reference signatures, extracted using SVD 

method and wavelet method, are compared with the test images from the same camera 

and rest of the cameras. The same images were used to extract the sets of signatures 

using the wavelet and the SVD extraction method and the images were cropped from the 

same position. The wavelet signatures were enhanced. 

 

7.4 Discussion 

The SVD based signature extraction method tends to work better with natural images 

when generating the camera reference signature. Figure 7.2 illustrates that the majority 

of false negatives were attributed to cam_5, suggesting that the extracted PRNU from 
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Figure 7.5. zte_orange_sanfrancisco_B (cam_10) camera reference signature and 

correlation with 100 images. Images 91 to 100 come from this camera, images 81 to 90  

from cam_9 and rest of images from the other 9 cameras. Red line is the acceptance 

threshold.  
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those ‘blue sky’ images was relatively weak. On the other hand, Figure 7.3 shows no false 

negatives whilst a near false positive has been identified (image 12) having a computed 

correlation value very close to the acceptance threshold. The discussion will be described 

in the following two sections, the estimation of the PRNU ranks and the source 

identification of camera phones. 

 

7.4.1 Estimation of PRNU Ranks 

When the high energy ranks (e.g. rank 4) were used to extract the signature, the classifier 

produced mixed clusters. This indicates that the PRNU was not the only component that 

was extracted, if at all, and the signature was being highly corrupted by other scene 

components. Another source of pollution in the signature at high energy ranks may be 

the NUA (non-unique artefacts) that are not suppressed in these high energy ranks. The 

signatures extracted using ranks from 50 to 150 were found to produce clusters, that 

grouped signatures to their respective source devices, which indicate the PRNU lies in 

that region and can be effectively extracted to form part of the signature.  

The average energy of the majority of the rank combinations was found to be within the 

range of PRNU, around 0.01% to 1.5%. The results are in the range similar to the findings 

(range) in the literature of sensor noise model (Chapter 3, section 3.3.2). However, only 

the rank combinations of around 50 to 150 were found to produce results that grouped 

the images according to their source devices. Therefore it can be concluded that the 

PRNU lies in a narrow range of ranks. 
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7.4.2 Source Identification of Camera Phones 

The experiments for the identification of the camera phones were carried out to see if the 

results produced will show that the PRNU can be reliably extracted by estimating its 

energy and applying the SVD based extraction method.  

 

7.4.2.1 Correlation Coefficient Identification 

It can be seen in Figure 7.4 that the correlation coefficient for the images from cam_9 is 

significantly higher than the acceptance threshold, whereas the correlation coefficient for 

the other cameras is close to zero confirming the expectedly uncorrelated relationship. 

Furthermore, the identification results between images from cam_10 and the reference 

signature of cam_9 is similar to the results of other cameras, clearly demonstrating that 

the SVD based method can differentiate between two cameras of the same model. Figure 

7.5 corroborates the results from cam_9 when using the camera reference signature of 

cam_10, although the correlation values for test signatures from cam_10 are lower as 

shown in the Figure 7.4. The lower correlation values were largely due to the quality of 

the images that were selected arbitrarily to create the reference signature of cam_10; in 

particular, there were more saturated pixels present in these pictures.  

Appendix B shows the plot of the correlation values versus the image numbers for all the 

10 cameras when their camera reference signatures are matched against the 100 image 

sample set. The odd numbered figures (e.g. Figure B.1, Figure B.3, etc) show the results 

for the SVD based method and the even numbered figures (e.g. Figure B.2, Figure B.4, etc) 

show the results for the wavelet based method. An inspection of the graphs for the 
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wavelet method shows that the overall correlation values have increased for the 

matching and non-matching images and there is less separation between them. 

Cam_1 (Figure B.1 and B.2) does not provide proper correlation values for both methods. 

For cam_2 (Figure B.3 and B.4), more images can be identified for the wavelet method, 

the SVD method could not differentiate between cam_1 and cam_2. Again for cam_3 

(Figure B.5 and B.6), only about half the images could be identified by both methods with 

some false positives in both methods. Cam_4 (Figure B.7 and B.8) provides a good 

signature in both extraction methods, but the non-matched cases are close to zero in SVD 

method, indicating a better extraction of the PRNU. Cam_5 (Figure B.9 and B.10) do not 

provide good reference signature and closer inspection of the images from that camera 

revealed a high percentage of saturated ones.  

Cam_6 (Figure B.11 and B.12) provided a better identification for SVD method, but still 

some false positives from the other two Nokia phones in the dataset, the wavelet method 

did not produce any coherent result. The SVD method managed to distinguish between 

the two Nokia N95 (cam_5 and cam_6). Cam_7 (Figure B.13 and B.14) provided better 

identification results for SVD method albeit with lower correlation values. The wavelet 

method could not differentiate between cam_7 and cam_8, which are of the same model.  

The SVD method identified all the images from cam_8 (Figure B.15 and B.16), whereas 

the wavelet method did not manage to identify all the signatures and some false positive 

were obtained from cam_7. For cam_9 (Figure B.17 and B.18) obtained the best camera 

signature with the SVD method with a good separation between matched and unmatched 

case. The wavelet method obtained good identification results with cam_9 too, but with 

narrower separation between matched and unmatched cases. Cam_10 (Figure B.19 and 
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B.20) provided a good identification rate for the SVD method, albeit with lower 

correlation values than those obtained from cam_9. The wavelet method did not manage 

to identify all the 10 images from cam_10 and also some false positives were included. 

The mean values (table C.1) of the correlation coefficient values are about the same level 

for both the wavelet method and SVD method, with the wavelet method with marginally 

higher mean values, when the camera reference signatures are compared with signatures 

from the same cameras. The main difference in the mean values between the two 

methods occurs when the camera reference signatures are matched against images from 

other cameras.  

The table C.1 shows that the mean values for the SVD method is close to zero and there is 

a wide margin of difference (order of 100 times) between the matched case and 

unmatched case means. For the wavelet method, the mean values for unmatched cases 

are between 0.03 and 0.05, which indicate that the overall non match correlation values 

have increased substantially. The difference between the matched and unmatched case is 

small (order less than 10 times). The reason for this rise in values might be due to blurring 

of the SPN when the enhancer model was applied to the signature. The acceptance 

threshold can be altered to reflect this change, but the difference between true positive 

and true negative is still very small. 

The standard deviation from the mean (Table C.2) is lower for the wavelet method for the 

unmatched cases, but the mean values are much closer to the mean for the matched 

case. The deviations for matched images, for both methods, are similar for cameras 2, 4, 6 

and 7. The deviations for cameras 3, 8, 9 and 10 are higher for the wavelet method and 

given the fact that the mean values for matched wavelet cases are close to the 
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unmatched cases, it shows that it will be problematic to identify an appropriate 

acceptance threshold level for the wavelet method. 

 

7.4.2.2 Q-function and p-values 

The Q-function is the tail probability of the standard normal distribution. It is the 

probability that a normal (Gaussian) random variable will obtain a value larger than x 

standard deviations above the mean. Peak to Correlation Energy (PCE) ratio is the 

squared correlation divided by sample variance of the circular cross-correlations and it is 

a suitable detection statistic (Goljan 2009). Using the PCE, the p-value (Q-function) can be 

obtained to show that the result can rejected (i.e. image does not belong to the same 

camera reference signature). The results for the 10 camera phones are displayed in 

Appendix D (Figures D.1 to D.10). The images that originate from the camera that belong 

to the correct camera reference signature produce very low p-values close to zero 

(approximately order of 10-15). Hence the probability that the image does not originate 

from this camera is very close to zero. On the other hand, if the image comes from a 

different camera than the camera reference signature the p-value (probability) will be 

higher which indicates that the image comes from a different camera. 

The Figures (D.1 to D.10) in Appendix D, shows that when the images originates from the 

camera that was used to create the camera reference signature, the p-values (Q-function) 

are close to zero. Cam_1 and cam_2 (Figure D.1 and D.2) show that the p-values are zero 

for their respective images in the sequence, but both graphs cam_8 also provide lower p-

values than the other cameras. The signatures of the images from cam_8 interfere with 
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the reference signature of both Nokia_C2_01 camera phones, but the latter phones can 

be differentiated from cam_8. 

The p-values for cam_3 and cam_4 (Figure D.3 and D.4) are nearly zero each of the 

respective images from these two cameras.  For cam_5 (Figure D.5), there are a couple of 

false negatives (images 41 to 43) due to the quality of the signature of these images. 

Cam_6 (Figure D.6) did not provide any identification of the images that came from the 

same camera (cam_6). The reference signature for that camera does not allow the 

signatures of images 51 to 60 to be identified, which indicates that the reference 

signature is too weak to use Q-function. 

The p-values for cam_7 and cam_8 (Figure D.7 and D.8) are nearly zero for the images 

from the corresponding source camera. Cam_9 (Figure D.9) got the best results for the p-

values, which is consistent with the results obtained when using correlation coefficients 

(Figure B.15). This camera has the cleanest reference signature and the images that were 

used for the creation of its reference signature were similar quality (brightness and scene 

details) to the other cameras. The cam_10 (Figure D.10) has three false negatives. 

The discussion has focused on explaining the results obtained by using the SVD based 

extraction method, which allows the identification of camera phones. The Q-function can 

be used as a statistical feature to accept or reject an image (signature) when correlated 

with a camera reference signature. Some of the phones that were not identified were 

found to contain a high proportion of saturated images and the digital zoom (which 

affects the synchronisation of the PRNU) had been activated for these images sets too.  
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Chapter 8 Summary and Conclusion 

This chapter provides a summary of the research work presented and concludes the 

thesis. Some recommendations for further work are also provided. 

 

8.1 Summary 

This thesis focused on the source identification of digital images for forensic analysis. A 

case study was performed on an existing image analyser platform, used by Forensic 

Pathways Ltd, which consists of an identifier and an image classifier. The identifier is used 

when the source device that created the image is present and the image classifier is used 

when a large number of images are collected but no source device is present. The existing 

platform uses the wavelet signature extraction method together with an enhancer, which 

attenuates high magnitude details in the signatures. The current method does not 

perform well for the identification of camera phones. The performance of the existing 

platform has been assessed in order to find the best cropping position for images before 

signature extraction and to find the optimum training size of the image classifier for 

varying image sample size.  

The wavelet base method extracts the high frequency details from the image, which 

comprises both the PRNU and scene details. Hence the signature contains unwanted 

scene details. The denoising algorithm is empirical and does not consider the 

characteristics of the PRNU when extracting the signature. The choice of the detail levels 

for the wavelet decomposition is performed empirically. The enhancement procedures 
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used to minimise the scene details is heuristic and affects the quality of the weak PRNU 

component. In the case of camera phones the PRNU component is already attenuated by 

the compression process and the enhancement procedure of the digital signature can 

result in damaging the PRNU component further.  

To address these issues two characteristics of the PRNU were investigated, namely the 

multiplicative nature of the PRNU and its energy range. The latter was estimated based 

on previous research performed on eliciting the sensor noise model of CCD and CMOS 

sensors. The concept of signal decomposition, where a spectrum is divided into signal 

subspaces in order that those with more energy content will be given higher priority for 

further processing. Homomorphic filtering is applied to the multiplicative PRNU noise in 

order to facilitate the separation of the image and the PRNU. 

The SVD based signature extraction method was implemented by applying SVD to images 

in the logarithmic domain in order to obtain the separated planes of the images as unit 

ranked images. It is complex to interpret the SVD separated planes in a linear way. This is 

where the property of the image variance being proportional to the singular values 

obtained has been used to estimate the location of the PRNU based on its energy. The 

estimated single ranked planes corresponding to the PRNU energy are extracted to form 

the signature. 
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8.2 Conclusion 

The outcome of the case study allowed the detection of some limitations pertaining to 

the existing platform. The image analyser was improved so that it accepts images with 

varying sizes and resolutions; the cropping process was also automated. Furthermore the 

platform can identify images that have been rotated. 

The cropping position for images, before extracting the SPN, was ascertained in an ad hoc 

method on the existing platform. An experiment was designed to locate several positions 

on the image that are most affected by light levels and scene details. A selection of mixed 

images from different scenes was chosen from 5 cameras. The images were cropped from 

three positions, the top left, the centre and the lower left and the extracted signatures 

were processed in the image classifier of the existing platform. The results obtained 

suggest, when images in a sample set are taken at night and with high illumination levels, 

the best cropping position is the lower section of the image. Both the right and left side of 

the image can be chosen. 

The training size for the image classifier was varied to assess the impact it had on the 

unsupervised classification error rate. Cross validation technique, which is mainly used for 

supervised classification, was used in the context of unsupervised classification. The 

results of the study showed that the use of cross validation can help ascertain the validity 

of the clusters formed. Furthermore the best training size for different sample space was 

found to be more than 50% of that sample space. 

The main limitation of the existing platform was the identification of highly compressed 

images, which occur mainly from mobile phones. The characteristics of the PRNU were 

studied, such as its energy range and its multiplicative nature, and a novel PRNU 
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extraction method using SVD was introduced. The energy range of the PRNU is estimated 

and homomorphic filtering is performed on the image. SVD is then applied to decompose 

the image into unit ranked images of descending energy contents and the PRNU is located 

and extracted. The identification results of the test performed on 10 camera phones 

showed that the method can differentiate between two cameras of the same make and 

model, suggesting that the signature is highly related to the SPN of the camera.  

It was also showed that the PRNU signature could be extracted relatively 

straightforwardly with most real-world/natural images other than the representative 

uniformly lit (e.g. blue sky) pictures, which are difficult, if not impractical, to obtain from 

recovered evidence in most forensic investigations. The performance of the SVD-based 

method was also compared to the wavelet method used by the existing platform and the 

former did produce encouraging results by being able to distinguish between camera 

phones of the same model.  The extraction of the signature in the SVD based method is 

backed by theory and performed in a qualitative way, that is, by finding the energy range 

where the PRNU lies. 

The main contributions that were made in this research project are as follows: 

 Determine the best cropping position of an image for SPN signature extraction 

that will result in better identification rate for images of varying scene details and 

illumination levels. 

 Identify the optimum training size for the unsupervised classifier used by the 

existing platform. 
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 The characteristics of the PRNU have been investigated, where the energy range 

of the PRNU in images can be estimated. 

 Design of a novel SVD based extraction method for PRNU signatures where 

homomorphic filtering is applied to the image and signal decomposition is used to 

separate the image into unit ranked images of descending energy in order to 

facilitate the localisation of the PRNU. Once the ranks where the PRNU is located 

have been identified, they can be combined to form the signature of the image. 

 

8.3 Further Work 

Based on the study in this thesis, there are several improvements that can be performed 

on the proposed method. 

Once the energy of the PRNU is estimated, the ranks of the PRNU noise are selected 

manually at present in the proposed method. Further work can be performed on applying 

algorithms for automating the rank selection process by making use of the image 

characteristics. Broken stick algorithm or scree test can be used to automate the ranks 

selection. Scree test is a graphical technique that can be used to retain the correct 

number of factors in a factor analysis. In the broken stick model the apportioned resource 

is the total variance of the data set (the variance is considered a resource shared among 

the principal components). A component is retained if its associated eigenvalue is larger 

than the value given by the broken stick distribution (Cangelosi, Goriely 2007). 

The scene details have an impact, as shown in the results section, on the energy 

distribution in images. The identification results could be improved by dividing the 
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suspect image into small blocks depending on scene contents within the image and 

applying SVD to the small blocks. The computational complexity might increase but the 

advantage of this method will be the localisation of areas of high or low scene details and 

enhancing the PRNU estimation.  

The proposed method has been applied to identify camera phones, where it was shown 

to enable the identification of some camera phones with a high accuracy. The SVD based 

extraction method could be applied to the identification of videos and online images. The 

signature extraction in videos will follow the same principles as in image extraction since 

the videos consist of frames, which are inherently stationary images. A compressed video 

sequence will contain some frames with the complete stationary image known i-frames 

and other intermediate frames between 2 i-frames known as p-frames. The latter frames 

store only the difference between two consecutive i-frames, which might hinder 

identification rate of the video. A large-scale experimentation from an online image 

database, such as Flickr, can be applied to the SVD method for identification of a large 

number of images. 
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Appendix A 

Classification pipeline in existing platform. 
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Appendix B 

Nokia_C2_01_A (cam_1) 
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Figure B.2. nokia_C2_01_A (cam_1) wavelet camera signature and correlation with 100 images. 

Images 1 to 10 come from this camera, images 11 to 20 from cam_2 and rest of images from the 

other 9 cameras. 

Figure B.1. nokia_C2_01_A (cam_1) SVD camera signature and correlation with 100 images. Images 

1 to 10 come from this camera, images 11 to 20 from cam_2 and rest of images from the other 9 

cameras. 
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Nokia_C2_01_B (cam_2) 
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Figure B.3. nokia_C2_01_B (cam_2) SVD camera signature and correlation with 100 images. Images 

11 to 20 come from this camera, images 1 to 10 from cam_1 and rest of images from the other 9 

cameras. 

Figure B.4. nokia_C2_01_B (cam_2) wavelet camera signature and correlation with 100 images. 

Images 11 to 20 come from this camera, images 1 to 10 from cam_1 and rest of images from the 

other 9 cameras. 
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Nokia_E72_A (cam_3) 
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Figure B.5. nokia_E72_A (cam_3) SVD camera signature and correlation with 100 images. Images 

21 to 30 come from this camera, images 31 to 40 from cam_4 and rest of images from the other 9 

cameras. 

Figure B.6. nokia_E72_A (cam_3) wavelet camera signature and correlation with 100 images. 

Images 21 to 30 come from this camera, images 31 to 40 from cam_4 and rest of images from the 

other 9 cameras. 
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Nokia_E72_B (cam_4) 
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Figure B.7. nokia_E72_B (cam_4) SVD camera signature and correlation with 100 images. Images 31 

to 40 come from this camera, images 21 to 30 from cam_3 and rest of images from the other 9 

cameras. 

Figure B.8. nokia_E72_B (cam_4) wavelet camera signature and correlation with 100 images. 

Images 31 to 40 come from this camera, images 21 to 30 from cam_3 and rest of images from the 

other 9 cameras. 
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Nokia_N95_A (cam_5) 
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Figure B.9. nokia_N95_A (cam_5) SVD camera signature and correlation with 100 images. Images 

41 to 50 come from this camera, images 51 to 60 from cam_6 and rest of images from the other 9 

cameras. 

Figure B.10. nokia_N95_A (cam_5) wavelet camera signature and correlation with 100 images. 

Images 41 to 50 come from this camera, images 51 to 60 from cam_6 and rest of images from the 

other 9 cameras. 

Image number 

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t 

Image number 

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t 



Appendix B 

176 
 

Nokia_N95_B (cam_6) 
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Figure B.11. nokia_N95_B (cam_6) SVD camera signature and correlation with 100 images. Images 

51 to 60 come from this camera, images 41 to 50 from cam_5 and rest of images from the other 9 

cameras. 

Figure B.12. nokia_N95_B (cam_6) wavelet camera signature and correlation with 100 images. 

Images 51 to 60 come from this camera, images 41 to 50 from cam_5 and rest of images from the 

other 9 cameras. 
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Samsung_galaxy_S2_A (cam_7) 
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Figure B.13. samsung_galaxy_S2_A (cam_7) SVD camera signature and correlation with 100 

images. Images 61 to 70 come from this camera, images 71 to 80 from cam_8 and rest of images 

from the other 9 cameras. 

Figure B.14. samsung_galaxy_S2_A (cam_7) wavelet camera signature and correlation with 100 

images. Images 61 to 70 come from this camera, images 71 to 80 from cam_8 and rest of images 

from the other 9 cameras. 
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Samsung_galaxy_S2_B (cam_8) 
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Figure B.15. samsung_galaxy_S2_B (cam_8) SVD camera signature and correlation with 100 images. 

Images 71 to 80 come from this camera, images 61 to 70 from cam_7 and rest of images from the 

other 9 cameras. 

Figure B.16. samsung_galaxy_S2_B (cam_8) wavelet camera signature and correlation with 100 

images. Images 71 to 80 come from this camera, images 61 to 70 from cam_7 and rest of images 

from the other 9 cameras. 
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Zte_orange_sanfrancisco_A (cam_9) 
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Figure B.17. zte_orange_sanfrancisco_A (cam_9) SVD camera signature and correlation with 100 

images. Images 81 to 90 come from this camera, images 91 to 100 from cam_10 and rest of images 

from the other 9 cameras. 

Figure B.18. zte_orange_sanfrancisco_A (cam_9) wavelet camera signature and correlation with 

100 images. Images 81 to 90 come from this camera, images 91 to 100 from cam_10 and rest of 

images from the other 9 cameras. 
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Zte_orange_sanfrancisco_B (cam_10) 
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Figure B.19. zte_orange_sanfrancisco_B (cam_10) SVD camera signature and correlation with 100 

images. Images 91 to 100 come from this camera, images 81 to 90 from cam_9 and rest of images 

from the other 9 cameras. 

Figure B.20. zte_orange_sanfrancisco_B (cam_10) wavelet camera signature and correlation with 

100 images. Images 91 to 100 come from this camera, images 81 to 90 from cam_9 and rest of 

images from the other 9 cameras. 
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Appendix C 

 

Camera  Images from same camera Images from other cameras 

SVD Wavelet SVD wavelet 

cam_1 0.0238 0.0765 0.0006 0.0487 

cam_2 0.0327 0.0652 0.0077 0.0479 

cam_3 0.0268 0.0700 0.0070 0.0450 

cam_4 0.1253 0.1675 0.0020 0.0422 

cam_5 0.0187 0.0589 0.0088 0.0494 

cam_6 0.0355 0.0600 0.0096 0.0507 

cam_7 0.0139 0.0693 0.0010 0.0489 

cam_8 0.0748 0.0829 0.0065 0.0437 

cam_9 0.1394 0.1445 0.0013 0.0367 

cam_10 0.0238 0.0660 0.0006 0.0463 

 

  

Table C.1. Mean of correlation coefficient values when the ten camera reference signatures, 

extracted using SVD method and wavelet method, are compared with the test images from 

the same camera and rest of the cameras. 
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Camera Images from same camera Images from other cameras 

SVD Wavelet SVD wavelet 

cam_1 0.059845 0.008136 0.020353 0.004719 

cam_2 0.010787 0.009912 0.010409 0.005634 

cam_3 0.007956 0.01476 0.009313 0.004241 

cam_4 0.023346 0.025638 0.004408 0.004171 

cam_5 0.011648 0.0046 0.012079 0.004558 

cam_6 0.008728 0.005915 0.014862 0.004327 

cam_7 0.003206 0.004513 0.00298 0.005976 

cam_8 0.008639 0.026104 0.009419 0.005609 

cam_9 0.012744 0.034084 0.002854 0.004444 

cam_10 0.002339 0.011761 0.002339 0.004862 

Table C.2. Standard deviation of correlation coefficient values when the ten camera 

reference signatures, extracted using SVD method and wavelet method, are compared with 

the test images from the same camera and rest of the cameras. 
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Appendix D 

Nokia_C2_01_A (cam_1) 

  

 

Nokia_C2_01_B (cam_2) 
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Figure D.1. nokia_C2_01_A (cam_1) SVD camera signature and p-values with 100 images. 

Images 1 to 10 come from this camera, images 11 to 20 from cam_2 and rest of images from 

the other 9 cameras. 

Figure D.2. nokia_C2_01_B (cam_2) SVD camera signature and p-values with 100 images. 

Images 11 to 20 come from this camera, images 1 to 10 from cam_1 and rest of images from 

the other 9 cameras. 
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Nokia_E72_A (cam_3) 

 

 

 

Nokia_E72_B (cam_4) 
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Figure D.3. nokia_E72_A (cam_3) SVD camera signature and p-values with 100 images. 

Images 21 to 30 come from this camera, images 31 to 40 from cam_4 and rest of images from 

the other 9 cameras. 

Figure D.4. nokia_E72_B (cam_4) SVD camera signature and p-values with 100 images. 

Images 31 to 40 come from this camera, images 21 to 30 from cam_3 and rest of images from 

the other 9 cameras. 
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Nokia_N95_A (cam_5) 

 

 

 

Nokia_N95_B (cam_6) 
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Figure D.5. nokia_N95_A (cam_5) SVD camera signature and p-values with 100 images. 

Images 41 to 50 come from this camera, images 51 to 60 from cam_6 and rest of images from 

the other 9 cameras. 

Figure D.6. nokia_N95_B (cam_6) SVD camera signature and p-values with 100 images. 

Images 51 to 60 come from this camera, images 41 to 50 from cam_5 and rest of images from 

the other 9 cameras. 
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Samsung_galaxy_S2_A (cam_7) 

 

 

 

Samsung_galaxy_S2_B (cam_8) 
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Figure D.7. samsung_galaxy_S2_A (cam_7) SVD camera signature and p-values with 100 

images. Images 61 to 70 come from this camera, images 71 to 80 from cam_8 and rest of 

images from the other 9 camera. 

Figure D.8. samsung_galaxy_S2_B (cam_8) SVD camera signature and p-values with 100 

images. Images 71 to 80 come from this camera, images 61 to 70 from cam_7 and rest of 

images from the other 9 camera. 
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Zte_orange_sanfrancisco_A (cam_9) 

  

 

 

Zte_orange_sanfrancisco_B (cam_10) 
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Figure D.9. zte_orange_sanfrancisco_A (cam_9) SVD camera signature and p-values with 100 

images. Images 81 to 90 come from this camera, images 91 to 100 from cam_10 and rest of 

images from the other 9 cameras. 

Figure D.10. zte_orange_sanfrancisco_B (cam_10) SVD camera signature and p-values with 

100 images. Images 91 to 100 come from this camera, images 81 to 90 from cam_9 and rest 

of images from the other 9 cameras. 
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