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Abstract

This research is inspired by mathematical modelling of railcar dynamics and deals with

developing a methodology for estimating the impact loads acting on freight cars using

measured acceleration data in order to determine their limiting magnitudes for the

alarm generation.

The developed scheme consists of the following steps. First, artificial neural network

technology (ANN) is adapted to predict longitudinal forces in freight cars. Impact

tests data for accelerations and forces were used for training ANN. The issue related

to the lack of experimental results for training the network is addressed. A possibility

of alternative theoretical training using mathematical models is studied. A restricted

scope of conventional mathematical models based on rigid body dynamics is discovered.

In particular, these models ignore the effect of self-equilibrated loads and internal

dissipation.

Next, an advanced perturbation model is derived, taking into account low frequency

internal motion with inhomogeneous stiffness, density, and viscosity incorporated. The

developed advanced model is applied to the evaluation of impact forces arising at

coupled impact.

The aforementioned model follows from a low-frequency analysis of a viscoelastic

inhomogeneous bar, subject to end loads. The longitudinal variation of the problem
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parameters is taken into consideration. Explicit asymptotic corrections to the conven-

tional equations of rigid body motion are derived in an integro-differential form. The

refined equations incorporate the effect of an internal viscoelastic microstructure on

the overall dynamic response. Comparison with the exact time-harmonic solutions for

extension and bending of a bar demonstrates the efficiency of the developed approach.

KEYWORDS: Railcar dynamics, artificial neural network, viscoelastic, microstruc-

ture, perturbation, rigid body, low-frequency, bar, contact forces.
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Chapter 1

Introduction

The cargo and freight damage suffered in the process of railway transportation is an

important economic and safety problem. The development of an advanced methodol-

ogy for estimating, analysing and predicting forces, accelerations and other reactions

occurring upon collisions is of obvious interest from a practical view. Most of the

damage is attributed to the car-to-car end impacts from coupling [1]. The damage

is usually caused by high car and load acceleration, or by the fault or wear of the

coupling system, including couplers, cushioning units, draft stills and gear. Artificial

neural networks, ANNs [2]-[6], seem to be a promising methodology for tackling the

aforementioned problem which may also benefit greatly from making use of theoretical

modelling. Rigid body dynamic models [7, 8] have been widely used for determination

of the reaction forces. However, the power of the traditional formulation appears to

be rather limited. In particular, they do not allow straightforward evaluation of the

longitudinal forces in case of coupled impact for self-equilibrating loads (F2 − F1 = 0)

and usually do not take into consideration inhomogeneity of the car and internal dis-

sipation of energy. On the other hand, general three dimensional continuum models,
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e.g. [9], are too complicated for using with the industrial software and require much

more information on the problem parameters including spatial geometry, as well as

mass and stiffness variation. This motivates refining of the classical models by using

low-frequency perturbations of rigid body motions, see e.g. for viscoelastic inhomo-

geneous rod in differential form [10], for viscoelastic inhomogeneous rod and beam in

integro-differential form [11, 12] and practical implementation of the derived quasi-rigid

body motion model [13]. Such an approach is consistent with modern trends in multi-

scale modelling based on the concept of frequency-dependent mass within the classical

Newton law, e.g. see [14]. The developed approach is applied to the evaluation of the

impact forces in the case of a coupled impact.

As it has been already mentioned, most of the damage appears due to high forces

in the connection and deterioration of the coupler appliance. The original problem is

separated into two independent steps. The first step is to determine the reaction force

and, the second one is to find out whether the coupler is broken. In Chapter 3 we

investigate whether an artificial neural network can be effectively used for the predic-

tion of problem parameters. The development of an optimal network model consisted

of the following stages: collecting and processing experimental data; selection of the

network topology, including the number of hidden layers and the number of neurons

in each layer; choosing activation functions; and finally, training and testing of the

aforementioned network for simulating the required parameters. The series of tests on

the collision of cars are conducted with different impact types, including coupled and

free to roll impacts. The impacts data, supplied by the industrial partner, include ini-

tial velocities, masses, accelerations and forces. Initial data processing involves either

filtering, scaling or smoothing. A special network was designed for each type of the
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collision. The problem of determining collision type is solved using spectral frequency

analysis of accelerations [15]-[17]. In the case of a coupled impact there is no zero

harmonic, otherwise the latter takes non-zero values, see Subsection 3.3.1. The devel-

oped technique is tested and analysed using experimental data and enables to achieve

almost 100% accuracy. The problem of the wearing down of draft gear equipment

is resolved by finding out a closing force and comparing it with the given value for

a serviceable draft gear. The equipment is assumed to be in order, if the calculated

force is equal or greater than the given one. The theoretical model for solving the

formulated problem, see Subsection 3.3.2, is based on calculating an intersection point

of the curve related to a smoothed experimental graph and float associated with a the-

oretical sinusoidal approximation. The second step is oriented to predict the maximum

of the reaction force by using the ANN. Two types of the ANN, including Multilayer

Perceptron (Subsection 3.1.3) and Radial Basic Function Network (Subsection 3.1.5),

are used to determine an unknown relationship between input and output data. The

goal of MLP is to create a model that correctly maps the input (acceleration) to the

unknown output (reaction force) by using measured data so that the model can then

produce a desired output. RBF comprises one of the most widely utilised network

models for function interpolation and gives a greater scope over the range of nonlinear

functions.

Several mathematical models were developed for training and testing the network.

They allow to generate various data with different parameters including mass, stiffness,

initial velocities as well as others. The first model is a two-degree of freedom system

consisting of two masses connected with a linear spring and viscous damper system,

see Subsection 3.2.1. The second developed model is a system of two masses connected
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with 2 linear springs and viscous damper/spring system, see Subsection 3.2.2. Both

of the mentioned ANN demonstrate exceptionally accurate results when applied to

these models. The average error between predicted and experimental maximum forces

is approximately 2%, see Subsection 3.3.3. Conversely, an acceptable agreement with

experimental datasets can be an issue because of a limited number of available ex-

periments and lack of the information about some of problem parameters. However,

the accuracy of the ANN for real experiment data is not high enough for industrial

application. It is around 11% for each type of the impact. To improve the perfor-

mance of the ANN, a number of tests with different parameters, including stiffness,

mass, velocity, dissipation coefficient and others, are required. Compared with impact

tests, numerical simulation is a more economical and faster method for investigating

the analysed phenomena. At the same time, all mathematical models based on rigid

body dynamics do not take into account the viscoelastic material properties and are

not fully adequate for investigations car collision, especially in the case of coupling

cars. The above limitations motivate the development of a new model.

The rigid body dynamic models mostly ignore small deformations of the car as well

as the internal inhomogeneity and dissipation of energy. In the Chapter 4 a pseudo-

rigid body model based on the principles of linear elastodynamics is developed. We

start by analysing low - frequency perturbations of rigid body motion of a viscoelastic

inhomogeneous rod subject to edge loads. Governing integro-differential equations are

studied. We adapt a well established mathematical asymptotic procedure [18]-[20].

The characteristic timescale is assumed to be much greater than the period of free

vibrations of the rod. First, we determine a rigid body acceleration from the Newton’s

second law. Then, we calculate the leading order variation of the stress along the rod.
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At the next stage, we evaluate the sought for correction to the rigid body acceleration.

It is worth noting that the representation of the chosen constitutive relation with the

strain in the left-hand side is essential for perturbing rigid body motion [12]. Also, an

important quantity corresponding the low-frequency variation of the longitudinal force

along the length is crucial for our derivation. The obtained formulae represent asymp-

totic corrections to the classical equations of rigid body dynamics incorporating the

effect of internal inhomogeneity and dissipation on the overall dynamic response. The

equations governing perturbed rigid body motion enable, in particular, the evaluation

of low-frequency behaviour induced by self-equilibrated end loads. The derived equa-

tions take a simpler and easy to use form for the variety of the particular cases with

different variation of the Young’s modules, density, stiffness and viscosity functions, see

Section 4.3. Finally, to demonstrate a high level of accuracy as well as other advantage

of the suggested method, its implementation is compared with the exact solution for a

Voigt homogeneous rod, see Section 4.4.

The Chapter 5 deals with perturbed rigid body motion of an inhomogeneous Euler-

Bernoulli beam loaded by end shear forces and moments. The perturbation scheme for

a rod, proposed in the previous chapter, is now extended to a more sophisticated con-

figuration for an inhomogeneous viscoelastic beams. A typical timescale characterising

viscous behaviour is assumed to be much greater than the period of bending vibrations

of the ends. The consideration is restricted to a symmetry of problem parameters that

enables separation of vertical, see Subsection 5.3, and rotational motions, see Sub-

section 5.3. As before, we determine a rigid body acceleration. Then, we calculate

the leading order variation of the longitudinal force and bending moments along the

beam. Next, we evaluate the sought for corrections to rigid body accelerations ex-
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pressed in terms of the shear forces and bending moments. Again, the representation

of the constitutive relations with the bending strain in the left-hand side is handy for

perturbing rigid body motion. Several examples for an inhomogeneous beam illustrate

the developed methodology. Comparison with the exact solutions for vertical and ro-

tational motion of a Voigt material provides a proof of the asymptotic consistency of

the proposed scheme, see Section 5.5.

The developed methodology is applied to the evaluation of the impact forces in the

most sophisticated case of a coupled impact. Elastic rods with uniform and variable

density are studied in Chapter 6. Analysis of the available experimental data and their

comparison with theoretically predicted forces are discussed. The experimental and

predicted time derivatives of the impact forces show a relatively good agreement.

The advantage of the perturbed rigid body dynamic model incorporating the effect

of the internal car structure is proven by numerical results. There is a considerable

potential for further development and implementation of the designed procedure taking

into account more precise structural models of freight cars, in particular, incorporating

micro-resonance phenomena. There is also a clear possibility to use a similar approach

for evaluating impact forces in tanks, see [21].

The main results of the thesis were presented at 17th Workshop on Advances in Ex-

perimental Mechanics (IWAEM) 2013 [10], 9th International Conference on Structural

Dynamics EURODYN-2014 [11], EUROMECH-Colloquium 574 [13] and also delivered

at applied mathematics seminar at Keele University.
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Chapter 2

Brief literature review

Recently, numerous identification approaches predicting dynamic behaviours of freight

car have been developed. In the case of the considered problem they can be generally

classified into two groups: mathematical model-based approaches and procedures based

on artificial neural network (ANN) prediction.

ANN is a biologically inspired computational model which consists of a network

architecture composed of artificial neurons [22]. The structure contains a set of param-

eters, which can be adjusted to perform certain tasks. Selecting and pre-processing

the datasets is the first and one of the most important steps to develop the appro-

priate network topology [23, 24]. ANN may be separated into two classes depending

on their learning principles - unsupervised networks and supervised networks. Super-

vised learning means the adaptation of network’s behaviour to the given input-output

relationship. Typical tasks for supervised networks are function regression, pattern

recognition and time series prediction. This class includes networks such as Multi

Layer Perceptron (MLP) and ADALINE (Adaptive Linear Neuron or later Adaptive

Linear Element) [25], Radial Basis Function Network (RBF) [26], Support Vector Ma-
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chines (SVM) [27] and Hopfield Network [28]. The unsupervised learning networks

adapt their internal structure to the structural properties of the input. In other words,

such networks have the ability to learn and organize information without generating an

error signal to evaluate a potential scenario [29]. Examples of these networks include

Self-Organizing Map (SOM) or Kohonen Map (SOFM) [30] and Restricted Boltzmann

Machine (RBM) [31]. The mentioned networks are highly competitive for tackling of a

variety of problems, such as noise reduction, compressing and interpolating data. The

Multilayer Perceptron with the Back-Propagation training algorithm (BPNN) [32] net-

work is seen to be highly important and well supported out of the range of the other

neural networks. Traditionally, the learning problem for MLP is to minimize an error

function of free parameters in order to fit the outputs to an input-target dataset [33].

In the framework of the proposed research, the neural network is used to determine an

unknown relation between input (accelerations) and output (forces) data. The BPNN

performs relatively well, but is affected by a slow convergence and strict adherence

to local minima [34]. The above issue may be readdressed by using a better activa-

tion function [35], choosing a dynamic learning rate and momentum term [36],[34] or

modifying the optimization strategy and/or employing adaptation rules other than the

gradient descent [22]. The RBF network is one of the most widely used networks for

function interpolation and gives a broader scope over the range of nonlinear functions

[37]. The output of this network is a linear combination of the radial basis functions

depending on the inputs and neuron parameters. They have a tendency to require

more data than a MLP [38] due to the locally acting nature of RBFs. Both of the

mentioned ANN demonstrate exceptionally accurate results when applied to analytical

models. At the same time an acceptable agreement with experimental datasets can be
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an issue due to a limited number of available experiments and lack of the information

on several problem parameters. A substantial amount of tests with different parame-

ters, including stiffness, mass, velocity, dissipation coefficient and others are required

to improve the performance of the ANN.

Compared with impact tests, numerical simulation is a more economical and faster

method for investigating the analysed phenomena. Computational procedures for pre-

dicting longitudinal forces in railway dynamics, e.g. see recent contributions [1, 40]

and references therein, are based on the traditional equations of rigid body motion.

Basically, it is a multiple degree of freedom vibrating system [41] for which the equa-

tion of motion can be written down using Lagrange-D’Alembert’s principle of dynamics

equilibrium [42]. Analysis within the framework of the multibody dynamic has been

carried out in the papers [43, 44] for rigid bodies system, [45] for system of rigid with

deformable components and adaptation of a multibody dynamical formalism for satel-

lite dynamics [46]-[48]. Various formulations have also been developed to determine

the impact force during the contact period starting from the co-called ”continuous

analysis” [49]-[52]. The continuous contact force models deal with the forces applied

to spring-damper elements, which can be linear, such as the Kevin-Voigt viscoelastic

model [53, 54], Maxwell model [55], Standard-Linear and Burger models, or non-linear,

such as the Hunt and Crossley model [56]. However, the linear models are not always

very accurate since they do not incorporate the overall nonlinear nature of the impact.

The aforementioned nonlinear model in [56] is effective and accurate predominantly

for long time impacts. A more suitable model for the impact force is based on the

modification of a nonlinear Hertz force-displacement law model in conjunction with a

hysteresis damping function representing the energy-dissipation [57, 58]. The math-
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ematical models, derived in [59], show clearly the influence of longitudinal forces on

cargo. The numerical methods, such as Runge-Kutta fourth-order [60], Euler tan-

gent [61] and Newmark-β method [62], are widely applied in implementation of all

of the abovementioned models. The rigid multi-body models ignore the effect of self-

equilibrated loads and internal dissipation. In particular, evaluation of the longitudinal

forces for the case of a coupled impact could be an issue for this type of model.

Mathematical modelling of an internal microstructure, aimed to extend the range

of validity of the traditional equations of rigid body dynamics, is of an obvious interest

for various industrial applications. For example, they may benefit from taking into

account the absorption of vibration energy by transported loads including raw mate-

rials. Amongst the publications on the subject, we mention [63]-[65], which suggest a

general methodology within the framework of linear anisotropic elasticity leading to

a sort of ’macroscale’ Newton’s second law with a frequency-dependent mass. This

methodology was earlier explored by [66] for modified Newtonian dynamics. We also

cite here related publications [67] dealing with homogenisation of viscoelastic periodic

media, such as composite elastic medium [68, 69], heterogeneous thermally conducting

medium [70], two-phase conducting composites, an anisotropic fibres and isotropic ma-

terial [71], composite material constituted of solid fibers and of a solidifying matrix [72]

and random media [73]. This thesis is concerned with a low-frequency analysis of an in-

homogeneous viscoelastic microstructure. A similar methodology was earlier exploited

both for periodic and thin functionally graded structures, e.g. see [75]-[77] and refer-

ences therein. The proposed perturbation scheme is developed for an inhomogeneous

viscoelastic bar governed by the conventional integro-differential constitutive relations

in linear viscoelasticity with strains on the left side. In-plane horizontal, vertical and
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rotational motions induced by prescribed end forces and moments are studied starting

from the classical one-dimensional theories for bar extension and bending. In the case

of bending, only the symmetry of problem parameters is considered, allowing for the

the separation of vertical and rotational motions. A typical timescale characterising

viscous behaviour is assumed to be much greater than the time elastic waves take to

propagate the distance between the ends of the bar [12].

Explicit low-frequency corrections to the equations of rigid body motion are con-

structed in Chapter 4 and Chapter 5. They are given in the form of integro-differential

operators acting on a longitudinal force or bending moment. An example of a ho-

mogeneous bar is presented in Sections 4.3.4 and 5.4.3. Comparison with the exact

solutions of the original time-harmonic problems for the extension and bending of a

bar (see Sections 4.4 and 5.5) demonstrates the advantages of the proposed approach.

Numerical data are calculated for a Voigt rod and beam. The developed methodology

is tested and analysed on the experimental data in the most sophisticated case of a

coupled impact. Second contact force derivatives were predicted. The comparison of

experimental and predicted derivatives of the force shows relatively good agreement

between them.
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Chapter 3

Investigation of maximal forces

using artificial neural networks

(ANN)

3.1 Theoretical background of ANN

Artificial Neural Network (ANN) - is a series of algorithms that attempt to identify the

relationships in a set of data by using a process that imitates the way the human brain

operates. There are many different types of ANN depending on the problem which has

to be solved (recognizing patterns, classification, data mining and predictions) and the

training data, representing the task to be learnt [78, 79] . The most common to all of

those components can be abstracted in the following way:

• a set of input and output units;

• a pattern of connectivity - assign the relations between the units set (weight

value);
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• a set of rules for propagating signals through the network (controlling when units

can be updated), combining input signals (summarizing the weight values of the

units) and calculating an output signal (determine the output units by using the

activation function);

• a weight adaption rule (error-correcting rule to adapt the weight).

Depending on the training algorithms the Neural Networks (NN) are commonly clas-

sified to unsupervised networks and supervised networks. Supervised learning occurs

when each sample in the training sets specifies all inputs as well as the outputs (for

example, regression and classification tasks, time series prediction). In case of the the

unsupervised learning the only collection of the sample inputs presented (for example,

associative memory, grammatical induction and noise filtering tasks).

First step for design the optimal and appropriate network solution is to select

[80] and preprocess the data sets [81]. Initial preprocessing data can be a rather

simple procedure such as scaling, smoothing, normalization, as well as a complicated

one involving advanced statistical methods [82]. The second step is to choose the

appropriate network model, depending on task to be solved, then experimentally specify

a network topology (number of units, connections) and, finally, set up the learning

parameters [83].

3.1.1 Basic neural network components. McCulloch and Pitts’

neuron

The most common neuron model (neuron and a networked interconnection structure)

has been developed by McCulloch and Pitts [38], see Figure 3.1.
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Each neuron consists of a net and an activation functions. The net function de-

termines how the network inputs xi, 1 ≤ i ≤ N are combined inside the neuron. The

most commonly used activation function:

netj =
N∑
i=1

wijxi + θ, (3.1)

where wij, 1 ≤ i ≤ N are weights, and θ is bias (or threshhold). The output of the

neuron, which is denoted by oj in Figure 3.1, is related to the network input netj

through the activation function:

oj = f(netj). (3.2)

The other commonly used activation functions are

• f(net) =
(
1 + e−βnet

)−1
- sigmoid

• f(net) = tanh(βnet) - hyperbolic tangent

• f(net) = anet+ b - linear

• f(net) =
1√
2πσ

e−
(net−µ)2

2σ2 - Gaussian

• f(net) =


−1 if net < 0

1 if net ≥ 0

- step
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Figure 3.1: McCulloch and Pitts’ neuron model1

3.1.2 Training of neural networks

A training algorithm is to set up the network’s weights and thresholds to minimize

the prediction error made by the network. On the first iteration the weight value is

initiated with some small random parameters. The error of a particular configuration

of the network can be determined by running all the training cases through the net-

work, comparing the actual output generated with the desired or target outputs. The

differences are combined together by an error function to give the network error [84].

The most common error functions are the least mean squared error (LMS), proposed

by Widrow and Marcian Hoff in 1960, usually used for regression problems, and the

cross entropy functions [85], usually used for maximum likelihood classification.

1The picture is taken from Wikipedia
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3.1.3 Multilayer perceptron

A multilayer perceptron (MLP) neural network model firstly was proposed by Rosen-

blatt [87]. More resent variation of MLP consists of a feed-forward, layered network of

McCulloch and Pitts’ neurons with a nonlinear, continuously differentiable activation

function. Every node in a layer is connected to every other node in the neighboring

layer [34]. A typical MLP configuration is illustrated in Figure 3.2.

Figure 3.2: Scheme of a multilayer perceptron network2

The MLP is commonly used in regression problems, where the objective is to esti-

mate the value of a continuous output variable, given the known input variables. In

other words MLP is applied for approximating a real valued target functions. More-

over, in view of the Kolmogorov theorem any continuous function can be implemented

by the Multilayer Perceptron with at least one hidden level. Also in [88] were de-

rived the hidden units numbers depending on the estimating function properties and

on the accuracy of its approximation. Common training algorithms for the MLP are

backpropagation [25] and conjugate gradient [89, 94].

2The picture is taken from ecee.colorado.edu website
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3.1.4 Backpropagation learning of multilayer perceptron

The BPNN learning algorithm is based on calculating the output layer errors to find

out the errors in the hidden layers. An appropriate choice of the weight matrices

is a key step in applying the MLP. The weight is feeding into each layer of neurons

from a weight matrix of that layer (the input layer does not have a weight matrix as

it contains no neurons) [25]. The values of these weights are found using the error

back-propagation training method [22]. BPNN learning algorithm defines two sweeps:

forward sweep propagates the input vectors through the network to provide outputs

at the output layer and backward sweep propagates back the error values through the

network to determine how the weight should be changed during the training.

The error Ep for the pattern p can be defined as

Ep =
1

2

N∑
j=1

(tj − oj)
2, (3.3)

where tj denotes desired output and oj the actual output and the overall error

E =
∑

Ep.

The derivative of the error is given by

∂E

∂wij

=
∂E

∂oj

∂oj
∂netj

∂netj
∂wij

(3.4)

We now define δj by

δj = − ∂E

∂netj
(3.5)
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On the other hand we notice that δj = −∂E

∂oj
, therefore

δj = −∂E

∂oj

∂oj
∂netj

(3.6)

By using the definition of the overall error, we have

∂E

∂oj
= −(tj − oj). (3.7)

For activation function the output oj is

oj = f(net) (3.8)

and so the derivative f ′ is given by

∂oj
∂netj

= f ′(netj). (3.9)

Hence, we deduce that

δj = (tj − oj)f
′(netj) (3.10)

After substituting the product of each derivative into (3.4), we obtain

∂E

∂wij

= −(tj − oj)f
′(netj)xi (3.11)

Therefore the weight change for a unit may be written as

∆wij = ηδjxi (3.12)
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where xi is the output unit i and η is the learning rate. For a hidden unit the

error is given by

δj = f ′(netj)
∑
k

δkwkj (3.13)

where index k stands for the sending back error layer.

Therefore, the weight update formula is given by

wj(k + 1) = wj(k) + ηΣN
k=1δkxkj (3.14)

In order to reduce the effect of the weight changes oscillating the momentum term α

is added in the previous formula of the weight change

∆wij(k + 1) = η(δjoi) + α∆wij(k) (3.15)

MLPs have several significant advantages over conventional approximation. First, MLP

hidden unit output change adaptively during training, making it unnecessary for the

user to choose them beforehand. Second, the number of free parameters can be in-

creased by simply increasing the number of hidden units. Third, MLP basic functions

are bounded, making round-off and overflow errors unlikely [38].

Among the disadvantages of the MLP compared to conventional approximations we

note its rather long training time, sensitivity to initial weight values and the problem of

”local minima”. In addition, determination of the optimal amount of training epoch is

difficult and the common solution to stop the training, when the validation error starts

to increase, does not guarantee the optimal performance. Proposed approaches for

addressing network mostly based on modification of the learning rate and momentum,

using adaptive momentum coefficient instead of fixed, e.g., see [90, 91], or adaptive
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learning rate coefficient [92], activation function, using combination of polynomial,

periodic, sigmoidal functions [93], or learning algorithm , e.g. see references in [34].

3.1.5 Radial basis function networks

A radial basis function network (RBF) is another neural network used for classification

and general function fitting. It is a feed forward neural network using the radial basis

activation function.

RBF network in its simplest form is a three-layer network (see Figure 3.3) with the

usual input layer to distribute a pattern to the first layer of weight, a hidden layer and

output layer [38]. For each hidden unit there is a function φ. The typically used radial

basis functions are

• φ(r) = e−(εr)2 - Gaussian

• φ(r) =
√

1 + (εr)2 - multiquadric

• φ(r) =
1

1 + (εr)2
- inverse quadratic

• φ(r) =
1√

1 + (εr)2
- inverse multiquadric

where r =∥ x− xi ∥.

The collective activations of all the hidden units define the vector to which the

input vector has been mapped:

φ(x) = [φ(x1), φ(x2), · · · , φ(xN)] (3.16)

where N is the number of hidden units and x is the input vector.

3The picture is taken from bio.felk.cvut.cz website

30



Figure 3.3: Scheme of a radial basis function network3

The weight connecting to a hidden unit define the center of the radial basis function

for that hidden unit. The input to a unit is in a form:

netj =∥ x− wi ∥=

√√√√ n∑
i=1

(xi − wij)2 (3.17)

where n is the number of input units.

First layer of weights are the chosen centers of the radial basis functions, second

layer simply performs a linear addition of the outputs from the hidden layer. By using

the Widrow-Hoff learning law the adjustment to be made is:

∆w = ηδnet (3.18)

RBF networks can provide a fast and accurate means of approximating a nonlinear

mapping based on observed data. Due to the locally acting nature of RBFs, they have

a tendency to require more sufficient data that represents all aspects of the problem

being solved.
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Thus, the advantages of application of the ANN for the purpose of identification the

reaction between the input and output parameters, are the network learning ability,

solving the problem without finding and describing method, ability for generalization,

easier implementation in any application. The disadvantages are requirement of high

processing time, sufficient number of data, and inability to make changes when the

network is trained.

3.2 Basic analytical models of railcar interaction

Here we present some elementary analytical models for railcar interaction, which were

used for generating data for training of the ANN in the first part of the project.

3.2.1 Viscoelastic Kelvin-Voigt impact model

Consider a two-degree of freedom system of two masses connected together by a coupler

with linear spring and a viscous damper elements, see Figure 3.4.

Figure 3.4: Impact viscoelastic Kelvin-Voigt model

According to Newton’s second law the differential equations of motion for the spring-
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mass system are written as

m1x1tt = c(x2 − x1) + µ(x2t − x1t)

m2x2tt = c(x1 − x2) + µ(x1t − x2t)

(3.19)

where mi, i = 1, 2 are masses, xi are displacements, and µ and c denote viscosity

and stiffness, respectively.

The initial conditions for the (3.19) are as follows

xi(0) = 0, i = 1, 2 and x1t = v, x2t = 0 (3.20)

On introducing x = x2 − x1 and m = (m1 +m2)/m1m2, we get from the equations

(3.19)

xtt + cmx+ µmxt = 0. (3.21)

Exact solution

The solution of the 2nd order differential equation (3.21) is given by

x(t) = eαt (M cos βt+N sin βt) (3.22)

where

α = − µ

2m

β =
1

2

√
µ2m2 − 4cm

(3.23)

Making use of the initial conditions (3.20) we deduce

M = 0 and N = − v

β
(3.24)
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The accelerations for the masses 1 and 2 are expressed in the form

a1(t) = −eαt

m1

[
c

(
v cos βt+

vα

β
sin βt

)
+ µ

(
vα cos βt+

v(α2 − β2)

β
sin βt

)]
(3.25)

a2(t) =
eαt

m2

[
c

(
v cos βt+

vα

β
sin βt

)
+ µ

(
vα cos βt+

v(α2 − β2)

β
sin βt

)]
(3.26)

An illustration of the developed model presented in the Figure 3.5. The curves

related to the initial velocities v = 2, 4, 6 m/s are drown in a different line type.
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Figure 3.5: Impact viscoelastic Kelvin-Voigt model. Typical result (a) Acceleration a1
vs time; (b) Force F2 vs time
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Approximate solution

Let us introduce a dimensionless time

t = τ

√
m

c
(3.27)

along with the small parameter

ε =
µ√
cm

≪ 1 (3.28)

Then the problem (3.19) and (3.20) may be formulated as

xττ + x+ εxτ = 0 (3.29)

with the following initial conditions

x(0) = 0 and xτ = −v∗ (3.30)

where

v∗ = v

√
m

c
(3.31)

The solutions of (3.29) and (3.30) are sought in the form

x∗ = x∗0 + εx∗1 + ε2x∗2 + · · · (3.32)

At leading ε(0) order

x∗0ττ + x∗0 = 0 (3.33)

35



with the initial conditions

x∗0(0) = 0 and x∗0τ = −v∗ (3.34)

Then

x∗0 = A cos τ +B sin τ (3.35)

Satisfying the initial conditions (3.34) we have

x∗0 = −v∗ sin τ (3.36)

At next order ε(1)

x∗1ττ + x∗1 = −x0∗ (3.37)

with the homogeneous initial conditions x∗1(0) = x∗1τ = 0. On solving the equation

(3.36) along with the associated initial conditions we obtain

x∗1 =
v∗

2
sin τ − v∗τ

2
cos τ (3.38)

Similarly at order ε(2)

x∗2 = −3v∗

8
sin τ +

3v∗τ

8
cos τ +

v∗τ 2

8
sin τ (3.39)

The solution at order (ε3) is

x∗3 =
5v∗

16
sin τ − 5v∗τ

16
cos τ +

v∗τ 2

8
sin τ +

v∗τ 3

48
cos τ (3.40)
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Thus, the general solution is in a form

x∗ = v∗
[
− sin τ + ε

(
1

2
sin τ − τ

2
cos τ

)
+ ε2

(
−3

8
sin τ +

3τ

8
cos τ +

τ 2

8
sin τ

)
+

ε3
(
5v∗

16
sin τ − 5v∗τ

16
cos τ +

v∗τ 2

8
sin τ +

v∗τ 3

48
cos τ

)
+ · · ·

] (3.41)

therefore,

x∗ττ = v∗
[
sin τ + ε

(
1

2
sin τ +

1τ

2
cos τ

)
+ ε2

(
−1

8
sin τ +

τ

8
cos τ − τ 2

8
sin τ

)
+

ε3
(

9

16
sin τ +

15τ

16
cos τ − τ 2

4
sin τ − τ 3

48
cos τ

)
+ · · ·

] (3.42)

For simplicity, let us cm =
√
c/m, then the accelerations may be re-cast in

original variables as

a = xtt = vcm

[
sin cmt+

µ√
cm

(
1

2
sin cmt+

1

2
cmt cos cmt

)
+

µ2

cm

(
−1

8
cmt sin cmt+

1

8
cos cmt−

1

8
c3mt

2 sin cmt

)
+

µ3√
(cm)3

(
9

16
sin cmt+

15

16
cmt cos cmt−

1

4

c

m
t2 sin cmt−

1

48
c3mt

3 cos cmt

)
+ · · ·

]
(3.43)

37



and the acceleration for the mass 1 and mass 2:

a1 = x1tt =
1

m1

(cx+ µxt) =
1

m1

{
v
√
mc

[
− sin cmt+

µ√
cm

(
1

2
sin cmt−

1

2
cmt cos cmt

)
+

µ2

cm

(
−3

8
sin cmt+

3

8
cmt cos cmt+

1

8
c2mt

2 sin cmt

)
+

µ3√
(cm)3

(
5

16
sin cmt−

5τ

16
cos cmt+

1

8
c2mt

2 sin cmt+
1

48
c3mt

3 cos cmt

)
+ · · ·

]
+

µcmv

[
− cos cmt+

µ√
cm

1

2
cmt sin cmt+

µ2

cm

(
−1

8
cmt sin

√
c

m
t+

1

8
c2mt cos

√
c

m
t

)
+

µ3√
(cm)3

(
9

16
cmt sin cmt+

3

16
c2mt

2 cos cmt−

1

48
c3mt

3 sin cmt

)
+ . . .

]}
(3.44)

a2 = x2tt = − 1

m2

(cx+ µxt) = − 1

m2

{
v
√
mc

[
− sin cmt+

µ√
cm

(
1

2
sin cmt−

1

2
cmt cos cmt

)
+

µ2

cm

(
−3

8
sin cmt+

3

8
cmt cos cmt+

1

8
c2mt

2 sin cmt

)
+

µ3√
(cm)3

(
5

16
sin cmt−

5τ

16
cos cmt+

1

8
c2mt

2 sin cmt+
1

48
c3mt

3 cos cmt

)
+ . . .

]
+

µcmv

[
− cos cmt+

µ√
cm

1

2
cmt sin cmt+

µ2

cm

(
−1

8
cmt sin cmt+

1

8
c2mt cos cmt

)
+

µ3√
(cm)3

(
9

16
cmt sin cmt+

3

16
c2mt

2 cos cmt−

1

48
c3mt

3 sin cmt

)
+ . . .

]}
(3.45)

3.2.2 Modified standard-linear impact model with a nonlinear

spring

General nonlinearity

Consider a two-degree of freedom system of two masses connected together with the

nonlinear springs and viscous/spring damper.
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Figure 3.6: Modified standard-linear impact model

The equations of motion for spring-mass system (see Figure 3.6) are written as

m1x1tt = N(x) + γ(x)(x2t − x1t)

m2x2tt = −N(x)− γ(x)(x2t − x1t)

(3.46)

where mi, i = 1, 2 is mass, xi, i = 1, 2 is the displacement, γ(x) is gear and damper

characteristic function and N is force in the connection. Usually, the equation of the

power characteristic damper appliance can be written as

N(x) = cxn +N0, n ∈ N (3.47)

where c is stiffness, N0 is the initial tightening force and n is a power depended on

the appliance’s construction.

The initial conditions are

x1t(0) = v, x2t(0) = 0 (3.48)

Let us x = x2 − x1 and xt = x2t − x1t, then from the equations (3.46) we get

xtt = −
(

1

m1

+
1

m2

)
N(x)−

(
1

m1

+
1

m2

)
γ(x)xt (3.49)
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or

mxtt = −N(x)− γ(x)xt
(3.50)

where m is in the form m = m1m2/(m1 +m2).

By multiplying both part of the equation (3.46) by the ẋ and integrating by time t, we

get

mx2
t

2
=

mv2

2
−

xˆ

x0

N(x)dx−
xˆ

x0

γ(x)xtdx (3.51)

or

mx2
t

2
=

mv2

2
− Ep −

xˆ

x0

γ(x)xtdx (3.52)

where Ep =
x́

x0

N(x)dx is elastic potential energy of compression damper appliance.

Let us γ(x) = εγ0(x), where ε is a small parameter. Then, the equation (3.52) will

be in the form

mx2
t

2
=

mv2

2
− Ep − ε

xˆ

x0

γ0(x)xtdx (3.53)

We are looking for the solution of (3.53) in the form

xt = x0t + εx1t + ε2x2t + . . . (3.54)

At the leading order ε(0)

x0t =

√
v2 − 2Ep

m
(3.55)

At next order ε(1)

x1t = −

x́

x0

γ0(x)x0tdx

mx0t

= −

( xˆ

x0

γ0(x)

√
v2 − 2Ep

m
dx

)
/

(
m

√
v2 − 2Ep

m

)
(3.56)
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Similarly at order ε(2) we have

x2t = −

( xˆ

x0

γ0(x)x1tdx+
mx2

1t

2

)
/ mx0t (3.57)

next, at order ε(3)

x3t = −

( xˆ

x0

γ0(x)x2tdx+mx1tx2t

)
/ mx0t (3.58)

and finally, at order ε(4)

x4t = −

( xˆ

x0

γ0(x)x3tdx+mx1tx2t +
mv2

2

)
/ mx0t (3.59)

thus, the obtained formulae for accelerations mass 1 and mass 2 are in the form:

a1 =x1tt =
1

m1

(N(x) + γ(x)xt) =
1

m1

[
N(x) +

√
v2 − 2Ep

m
−

( xˆ

x0

γ0(x)

√
v2 − 2Ep

m
dx

)
/

(
m

√
v2 − 2Ep

m

)
+ . . .

 (3.60)

and

a2 =x2tt = − 1

m2

(N(x) + γ(x)xt) = − 1

m2

[
N(x) +

√
v2 − 2Ep

m
−

( xˆ

x0

γ0(x)

√
v2 − 2Ep

m
dx

)
/

(
m

√
v2 − 2Ep

m

)
+ . . .

 (3.61)
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One nonlinear and two linear springs

Figure 3.7: Modified standard-linear impact model with one nonlinear and two linear
springs

Consider a system of two masses m1 and m2 connected together with the two linear

springs of significant stiffness, a nonlinear spring/damper system. The equations of

motion for spring-mass system (see Figure 3.7) are given by

m1x1tt = −Fg − µxgt

m2x2tt = Fg + µxgt

xgtt =
1

µ

(
x1t −

x2t

D
− xgt

(
Kg +

1

D

)) (3.62)

where xi, i = 1, 2, xg are the displacements, µ is viscosity, ci, i = 1, 2 are stiffness

values, Fg is force, created by damper with spring, and

D =
1

c1
+

1

c2
(3.63)
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If the compression of the spring is greater than the gear stroke, the draft gears closes

and force Fg is of the form

Fg =


cxg if |xg| ≤ Str

c∗xg + (c− c∗)Str otherwise

(3.64)

Kg =


c if |xg| ≤ Str

c∗ otherwise

(3.65)

Let us denote vector of the initial conditions:

y =



x1

x1t

x2

x2t

xg

xgt

(3.66)
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Then the vector of the corresponding derivatives is

D(y) =



x1t

− 1
m1

(Fg(xg + µxgt))

x2t

1
m2

(Fg(xg + µxgt)

xgt

1
µ

(
x1t − x2t

D
− xgt

(
Kg +

1
D

))

(3.67)

Numerical solution of the system (3.67) can be obtained by the Runge-Kutta fourth-

order method [95, 96].

The numerical results of the developed model presented in the Figure 3.8. The

curves related to the initial velocities v = 2, 4, 6 m/s are drown in a different line type.
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Figure 3.8: Modified standard-linear impact model with one nonlinear and two linear
springs. Typical result (a) Acceleration a1 vs time; (b) Force F2 vs time

3.3 Evaluation of maximal contact forces using ANN

3.3.1 Analysis of impact type

At the initial stage of the project the inverse problem of car-to-car interaction was

tackled. Using the spectral frequency analysis (through fast Fourier transform, see,

e.g. [97, 98]) it was first determined whether the specified data of accelerometers

corresponds to free to roll or coupled impacts, see Figures 3.9. A series of impact tests

were carried out to assess the spectral frequency response of the accelerations. The

developed methodology is based on the analysis of the first frequency, there is no zero

harmonic in the case of the coupled impact, otherwise the latter takes non-zero values.
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The approach leads to a sufficiently accurate classification between impact types. Some

typical diagrams, corresponding to these cases are shown on Figures 3.10 (a) and (b).

(a)
(b)

Figure 3.9: Test setup (a) free to roll impact; (b) coupled impact
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Figure 3.10: Typical frequency-amplitude diagrams for (a) free to roll impact; (b)
coupled impact

The developed technique has been tested using some experimental data including

two types of railcars (for details see Table 1)
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Table 1.

Parameter Hammer Car Anvil Car

Car Type Covered Hopper Covered Hopper

Car Info KREX 20 KREX 17

Car Weight 263,000 lbs 220,000 lbs

Cushioning Unit MK 50 MK 50

A series of 19 tests for free to roll and 23 coupled impacts have been performed,

demonstrating 100% success of the developed technique.

3.3.2 Theoretical evaluation of closure forces

The next preparatory step of the project is to determine the wearing condition of draft

gear equipment. Identification the instant force when the friction device grasps and

comparing with benchmark one allows to establish the wearing degree.

Consider a system of two masses coupled together by the linear elastic spring (see

Figure 3.11).

Figure 3.11: Two masses elastic model

The equations of motion for spring-mass system is written as

m1a1 = m1x1tt = c(x2 − x1)

m2a2 = m2x2tt = −c(x2 − x1)

(3.68)
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where mi, i = 1, 2 is mass, xi, i = 1, 2 is the coordinate and c is stiffness.

Let us x = x2 − x1 and m = 1/m1 + 1/m2, then from the equations (3.68) we

obtain

xtt = −cmx (3.69)

The solution of the 2nd order differential equation (3.69) is

x(t) = A sin kt+B cos kt (3.70)

Where k2 = cm.

The contact force and acceleration after closure of the friction clutch draft gear

assembly increasing rapidly and can be represented as a part of the sin function with

some amplitude and phase. To calculate the closure force, the data were smoothed by

using a Gaussian Kernel Method [99], an Adaptive Method [100] and passed through

low pass filter data. We approximate the force/acceleration with sin function near max

Force. Closure force is defined as an intersection point of sin and interpolated/filtered

data. The best result for the data with noises gives Adaptive Method of interpolation

function.

Phases and amplitudes of sinusoidal approximations

The amplitude and phase for the sinusoidal approximation function can be found from

the aforementioned trigonometric equation

y(x) = a sin(bx+ c) (3.71)
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The derivative in the maximum point is equal to zero, so

dy

dx
|x=xmax = ab cos(bxmax + c) = 0 (3.72)

from the equation (3.72) we deduce

a = ymax (3.73)

b =
π
2
− c

xmax

(3.74)

and

yn = a sin(bxn + c) (3.75)

Thus,

c =
−π xn

2
+ xmaxymax sin

(
yn

ymax

)
xmax − xn

(3.76)

b =

π

2
−

−π xn

2
+ xmaxymax sin

(
yn

ymax

)
xmax − xn

 1

xmax

(3.77)

Then

y(x) =ymax sin

π

2
−

−π xn

2
+ xmaxymax sin

(
yn

ymax

)
xmax − xn

 x

xmax

+

−π xn

2
+ xmaxymax sin

(
yn

ymax

)
xmax − xn


(3.78)
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Expressed in the terms of force, acceleration and time the equation (3.78) will be in

the form of

Fsin(t) =Fmax sin

π

2
−

−π tn
2
+ tmaxFmax sin

(
Fn

Fmax

)
tmax − tn

 t

tmax

+

−π tn
2
+ tmaxFmax sin

(
Fn

Fmax

)
tmax − tn


(3.79)

where t - time, n is a random point closed to maximum force, which can be found

experimentally.

(a)

(b)
Figure 3.12: Typical results of finding closing force for (a) analytical modeled data; (b)
experimental data

The suggested method to rate the force closure was tested on the data, generated

by the analytical model, see Figure 3.12 (a), which allowed generation of any amount
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of data with different model characteristics such as stiffness, mass, velocity, and dissi-

pation coefficient and on the real experiment data, see Figure 3.12 (b).

3.3.3 Numerical results

Preliminary training of the ANN was based on the quantities calculated from the ele-

mentary analytical models developed in Section 3.2. For the data, generated by both

models, the Multilayer Preceptron (MLP) neural network was trained using the su-

pervised learning algorithm back propagation with decoupled momentum. The perfor-

mance of the network configuration was estimated by calculating the difference between

the generated output and real test data. The average error for specified range of param-

eters is around 2%. Some typical comparison of the ideal data with computed results

of the ANN are presented in Figures 3.13 (a) and (b) for Kelvin-Voigt and Modified

standard-linear models, respectively. It is showing variation of scaled maximal force

for a set of tests (40 tests performed).

Figure 3.13: Typical results of training of the MLP ANN for Kelvin-Voigt model
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Figure 3.14: Typical results of training of the MLP ANN for Modified standard-linear
model

The illustrations on Figures 3.13, 3.14 are performed for ANN of the configura-

tion ”input-hidden-output”, with activation functions of the hidden and output layers

adopted in ”Sigmoid” form and the numbers of hidden layers as ”200-21-1” and ”200-

18-1”, respectively. The corresponding ANN performance was measured as 1.9%, and

2.5%.

However, when using results of real-life experiments, the precision of the ANN

became lower, especially for higher speeds. Some typical graphs of maximal force are

presented below for a series of 23 tests.

The first illustration is presented in Figure 3.15 for the normalized acceleration

(performance 11.73%). The configuration of the ANN in this Figure is ”300-70-5-1”

with activation functions of ”Tanh/Tanh/Log”. An attempt was performed to filter ac-

celeration from noise, which provided an improvement, see Figure 3.16 , with accuracy

rising to 5.20%. Here the ANN configuration of the ANN is ”256-55-5-1” with activation

functions of ”Sigmoid/Tanh/Log”. One more approach was tried through spectrum of
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Figure 3.15: Comparison of maximal force simulated through ANN with experimental
data for normalized acceleration

acceleration, however the results did not seem promising, see Figure 3.17. Here the

structure of the layers is ”50-17-4-1”, with activation functions of ”Tanh/Sigmoid/Log”.

It may be suggested that the difference of the outcome of ANN for training data

of the simple analytical data and real experimental data is significant due to the fact

that both models do not incorporate the internal structure of the cars, therefore it is

not straightforward to set up proper parameters with the asymptotic coverage of the

real experiment data.

Thus, the project was started from the problem of determination of maximal force

in the draft gear using the test data of accelerations of the railcars. This is a stan-

dard regression problem, therefore application of the ANN is justified. In order to

perform training of the ANN two analytical models involving a simple linear spring

and a slightly less trivial nonlinear spring, have been developed. These models allowed

generation of sufficient data on impact for specified initial data of mass, velocity, stiff-

ness and viscosity for training of the ANN. The results of tests proved to be excellent
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Figure 3.16: Comparison of results of ANN with experimental data for acceleration
subject to low pass filter

for training data, however, comparison of ANN simulations versus experimental test

data stimulated some further research.

On the one hand, performing sufficient number of real experiments for training of

the ANN for a wide variety of parameters is rather expensive, whereas on the other

hand use of simplified analytical models does not allow more precise mathematical

modelling of train dynamics. Therefore, a more advanced mathematical model has

been developed, taking into account viscous behavior of the draft gear. The results

seem to be of both theoretical and practical interest.
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Figure 3.17: Comparison of results of ANN with experimental data for the case of
spectrum acceleration input
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Chapter 4

Low - frequency perturbation of

rigid body motion of a viscoelastic

inhomogeneous rod

In this Chapter we develop a new pseudo rigid body dynamic model based on the

principles of the linear elastodynamic. Mathematical modeling of the effect of an

internal microstructure allow to increase the level of accuracy and to extend the range

of validity of the traditional equations of rigid body dynamics. We start by analysing

low - frequency perturbations of rigid body motion of a viscoelastic inhomogeneous rod

subject to edge loads.

4.1 Statement of the problem

Consider a viscoelastic inhomogeneous rod of length 2l subject to end longitudinal

forces, see Figure 4.1. The 1D equation of motion [111] is written as
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Figure 4.1: Longitudinal vibration of the rod

Fx = m(x)utt (4.1)

where x is the longitudinal coordinate, t is time, u is longitudinal displacement,

F is longitudinal force, and m(x) is mass per unit length.

Linear viscoelastic behavior within the classical theory of extension can be described

by the following integral relation, see, e.g. [101, 102]:

e(x, t) =
1

E(x)A(x)

F (x, t)−
tˆ

0

K
(
γ(x)(t− t1)

)∂F (x, t1)

∂t1
dt1

 (4.2)

where e = ux is the longitudinal strain. We also use the notation: E(x) is the

Young’s modulus, A(x) is cross-sectional area, K
(
γ(x)t

)
is creep kernel depending

on function γ(x). For example, for the Voigt model

K
(
γ(x)t

)
= e−γ(x)t (4.3)

with γ(x) =
E(x)

µ(x)
, where µ(x) denotes viscosity. In this case the equation (4.2) can

be rewritten in a differential form as

F (x, t) = A(x)
[
E(x)e(x, t) + µ(x)et(x, t)

]
(4.4)
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The boundary conditions corresponding to the end forces shown in Figure 4.1 are

F (−l, t) = F1(t), F (l, t) = F2(t) (4.5)

Let us denote typical values of the variable quantities m(x), E(x), A(x) and

γ(x) by m0, E0, A0 and γ0, respectively. In what follows we assume that a typical

time scale of viscous behavior γ−1
0 is much greater than a characteristic time that

elastic waves take to propagate the distance between the ends of the rod, i.e.,

γ−1
0 ≫ l

√
m0

E0A0

(4.6)

We also suppose that K
(
γ(x)t

)
∼ K

(
γ(ξ)τ

)
∼ 1, i.e. viscous phenomena can not be

neglected at leading order.

4.2 Asymptotic analysis

Consider the problem of (4.1) and (4.2) under the asymptotic assumption (4.6). We

introduce dimensionless variables and dimensionless displacement and force by the

formulae

x = ξl and t = τγ−1
0 (4.7)

and

u = lu∗ and F = εA0E0F∗ (4.8)

where

ε =
l2γ2

0m0

E0A0

≪ 1 (4.9)
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is a small parameter related to (4.6).

Then we get

F∗ξ = m∗(ξ)u∗ττ (4.10)

and

u∗ξ =
ε

E∗(ξ)A∗(ξ)

(
F∗ −

ˆ τ

0

K(γ∗(ξ)(τ − τ1))F∗τ1dτ1

)
(4.11)

with

F∗(−1, τ) = F1∗(t) and F∗(1, τ) = F2∗(t) (4.12)

where

A∗(ξ) =
A(ξ)

A0

, E∗(ξ) =
E(ξ)

E0

,m∗(ξ) =
m(ξ)

m0

and γ∗(ξ) =
γ(ξ)

γ0
(4.13)

and

Fi = εA0E0Fi∗, i = 1, 2 (4.14)

Here and below we assume that the integral term in the right hand side of (4.11) is of

order F∗.

We are looking for the solution of (4.10) - (4.12) in the form

u∗ = u0 + εu1 + · · · and F∗ = f0 + εf1 + · · · (4.15)

At leading order

f0ξ = m∗(ξ)u0ττ and u0ξ = 0 (4.16)
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subject to the boundary conditions

f0(−1, τ) = F1∗(τ) and f0(1, τ) = F2∗(τ) (4.17)

Immediately, we get from the second equation (4.16)

u0(ξ, τ) = v0(τ) (4.18)

i.e. at leading order we observe horizontal rigid body motion. Next, we have from the

first equation (4.16) taking into account the imposed boundary conditions (4.17)

v0ττ

1ˆ

−1

m∗(ξ)dξ = F2∗ − F1∗ (4.19)

At the same time

f0 = v0ττ

ξˆ

−1

m∗(ξ1)dξ1 + F1∗ (4.20)

or

f0 =

(F2∗ − F1∗)
ξ́

−1

m∗(ξ1)dξ1

1́

−1

m∗(ξ)dξ

+ F1∗ (4.21)

At next order

f1ξ = m∗(ξ)u1ττ and u1ξ =
1

E∗(ξ)A∗(ξ)

f0 −
τˆ

0

K
(
γ∗(ξ)(τ − τ1)

)
f0τ1dτ1

 (4.22)

with the homogeneous boundary conditions f1(±1, τ) = 0. By integrating the second
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equation (4.22) we have

u1 =

ξˆ

0

1

E∗(ξ1)A∗(ξ1)

(
f0(ξ1, τ)−

τˆ

0

K
(
γ∗(ξ1)(τ − τ1)

)
f0τ1(ξ1, τ1)dτ1

)
dξ1 + v1 (4.23)

where v1(τ) is a low-frequency correction to the center displacement. The first deriva-

tive of (4.23) in the dimensionless time is

u1τ=

ξˆ

0

1

E∗(ξ1)A∗(ξ1)

(
f0τ (ξ1, τ)

(
1−K(0)

)
−

τˆ

0

Kτ

(
γ∗(ξ1)(τ − τ1)

)
f0τ1(ξ1, τ1)dτ1

)
dξ1+v1τ

(4.24)

The second derivative of (4.23) is

u1ττ =

ξˆ

0

1

E∗(ξ1)A∗(ξ1)

(
f0ττ (ξ1, τ)

(
1−K(0)

)
− f0τ (ξ1, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
f0τ1(ξ1, τ1)dτ1

)
dξ1 + v1ττ

(4.25)

We also get from the first equation (4.22) and the homogeneous boundary conditions

above that

v1ττ = − 1
1́

−1

m∗(ξ)dξ

1ˆ

−1

m∗(ξ)

 ξˆ

0

1

E∗(ξ1)A∗(ξ1)

(
f0ττ (ξ1, τ)

(
1−K(0)

)
−

f0τ (ξ1, τ)Kτ (0)−
τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
f0τ1(ξ1, τ1)dτ1

)
dξ1

]
dξ

(4.26)

We obtain the acceleration of the rod u∗ττ = u0ττ + εu1ττ + · · ·
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The acceleration of the left end of the rod

uττ |ξ=−1 =
F2∗ − F1∗
1́

−1

m∗(ξ)dξ

− ε

 0ˆ

−1

1

E∗(ξ)A∗(ξ)

(
f0ττ (ξ, τ)

(
1−K(0)

)
−

f0τ (ξ, τ)Kτ (0)−
τˆ

0

Kττ

(
γ∗(ξ)(τ − τ1)

)
f0τ1(ξ, τ1)dτ1

)
dξ +

1
1́

−1

m∗(ξ)dξ

×

1ˆ

−1

m∗(ξ)

 ξˆ

0

1

E∗(ξ1)A∗(ξ1)

(
f0ττ (ξ1, τ)

(
1−K(0)

)
−f0τ (ξ1, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
f0τ1(ξ1, τ1)dτ1

)
dξ1

dξ


(4.27)

Similarly, the acceleration of the right end of the rod

uττ |ξ=1 =
F2∗ − F1∗
1́

−1

m∗(ξ)dξ

+ ε

 1ˆ

0

1

E∗(ξ)A∗(ξ)

(
f0ττ (ξ, τ)

(
1−K(0)

)
−

f0τ (ξ, τ)Kτ (0)−
τˆ

0

Kττ

(
γ∗(ξ)(τ − τ1)

)
f0τ1(ξ, τ1)dτ1

)
dξ−

1
1́

−1

m∗(ξ)dξ

1ˆ

−1

m∗(ξ)

 ξˆ

0

1

E∗(ξ1)A∗(ξ1)

(
f0ττ (ξ1, τ)

(
1−K(0)

)
−

f0τ (ξ1, τ)Kτ (0)−
τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
f0τ1(ξ1, τ1)dτ1

)
dξ1

 dξ



(4.28)
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Finally, we obtain for the acceleration of the center

uττ |ξ=0 =
F2∗ − F1∗
1́

−1

m∗(ξ)dξ

− ε
1

1́

−1

m∗(ξ)dξ

1ˆ

−1

m∗(ξ)

 ξˆ

0

1

E∗(ξ1)A∗(ξ1)
×

(
f0ττ (ξ1, τ)

(
1−K(0)

)
− f0τ (ξ1, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
f0τ1(ξ1, τ1)dτ1

)
dξ1

 dξ

(4.29)

or in the original variables

Mah|x=−l = F2 − F1 −
(
1−K(0)

)
×M 0ˆ

−l

F0tt(x, t)

E(x)A(x)
dx+

lˆ

−l

m(x)

 xˆ

0

F0tt(x1, t)

E(x1)A(x1)
dx1

 dx

+

Kt(0)

M 0ˆ

−l

F0tt(x, t)

E(x)A(x)
dx+

lˆ

−l

m(x)

 xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1

 dx

+

M

 0ˆ

−l

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

+

lˆ

−l

m(x)

 xˆ

0

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

 dx

(4.30)
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Mah|x=l = F2 − F1 +
(
1−K(0)

)
×M lˆ

0

F0tt(x, t)

E(x)A(x)
dx−

lˆ

−l

m(x)

 xˆ

0

F0tt(x1, t)

E(x1)A(x1)
dx1

 dx

−

Kt(0)

M lˆ

0

F0tt(x, t)

E(x)A(x)
dx−

lˆ

−l

m(x)

 xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1

 dx

−

M

 lˆ

0

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

−

lˆ

−l

m(x)

 xˆ

0

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

 dx

(4.31)

Mah|x=0 = F2 − F1 −
(
1−K(0)

) lˆ

−l

m(x)

 xˆ

0

F0tt(x1, t)

E(x1)A(x1)
dx1

 dx+

Kt(0)

lˆ

−l

m(x)

 xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1

 dx+

lˆ

−l

m(x)

 xˆ

0

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

 dx

(4.32)

where ah(t) = lvtt(t) and M =

lˆ

−l

m(x)dx denote acceleration and mass respec-

tively, and

F0 =
F2 − F1

M

xˆ

−l

m(x1)dx1 + F1 (4.33)

The derived formulae (4.30)-(4.32) contain in the right hand side a low-frequency

correction to the classical equation of rigid body motion Mah = F2 − F1. The above

mentioned correction incorporates the effect of viscoelasticity of an inhomogeneous rod

and makes possible calculating dynamic responds caused by self-equilibrated loads,

i.e., F1 = F2. Obviously, a similar formulae can be established for any point of the

structure (|x| ≪ l) starting from the equations in this section. The quantity (4.33) is

crucial for the obtained correction. It corresponds to the low-frequency variation of
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the longitudinal force along the length.

4.3 Particular cases

4.3.1 An inhomogeneous viscoelastic rod of uniform density

The equations (4.30)- (4.32) take a simpler form for a homogeneous viscoelastic rod

m(x) = m.

Mah|x=−l = F2 − F1 −
(
1−K(0)

)
×l 0ˆ

−l

F0tt(x, t)

E(x)A(x)
dx+

lˆ

−l

 xˆ

0

F0tt(x1, t)

E(x1)A(x1)
dx1

 dx

+

Kt(0)

l 0ˆ

−l

F0t(x, t)

E(x)A(x)
dx+m

lˆ

−l

 xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1

 dx

+

l

 0ˆ

−l

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

+

lˆ

−l

 xˆ

0

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

 dx

(4.34)
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Mah|x=l = F2 − F1 +
(
1−K(0)

)
×l lˆ

0

F0tt(x, t)

E(x)A(x)
dx−

lˆ

−l

 xˆ

0

F0tt(x1, t)

E(x1)A(x1)
dx1

 dx

−

Kt(0)

l lˆ

0

F0t(x, t)

E(x)A(x)
dx−

lˆ

−l

 xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1

 dx

−

l

 lˆ

0

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

−

lˆ

−l

 xˆ

0

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

 dx

(4.35)

and

Mah|x=0 = F2 − F1 −
(
1−K(0)

) lˆ

−l

 xˆ

0

F0tt(x1, t)

E(x1)A(x1)
dx1

 dx+

Kt(0)

lˆ

−l

 xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1

 dx+

lˆ

−l

 xˆ

0

1

E(x1)A(x1)

 tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1

 dx1

 dx

(4.36)

where ah(t) = lvtt(t) denote acceleration and F0 =
1

2l
(x(F2 − F1) + l(F2 + F1)).
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4.3.2 An inhomogeneous viscoelastic rod of uniform stiffness

In the case of an inhomogeneous rod of uniform stiffness the equations (4.30)- (4.32)

take the form:

Mah|x=−l = F2 − F1 −
1

EA

[(
1−K(0)

)
×M

0ˆ

−l

F0tt(x, t)dx+

lˆ

−l

m(x)

xˆ

0

F0tt(x1, t)dx1dx

+

Kt(0)

M

0ˆ

−l

F0tt(x, t)dx+

lˆ

−l

m(x)

xˆ

0

F0t(x1, t)dx1dx

+

M

0ˆ

−l

tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1dx1

+

lˆ

−l

m(x)

xˆ

0

tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1dx1dx



(4.37)

Mah|x=l = F2 − F1 +
1

EA

[(
1−K(0)

)
×M

lˆ

0

F0tt(x, t)dx−
lˆ

−l

m(x)

xˆ

0

F0tt(x1, t)dx1dx

−

Kt(0)

M

lˆ

0

F0tt(x, t)dx−
lˆ

−l

m(x)

xˆ

0

F0t(x1, t)dx1dx

−

M

lˆ

0

tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1dx1

−

lˆ

−l

m(x)

xˆ

0

tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1dx1dx



(4.38)
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and

Mah|x=0 = F2 − F1 −
1

EA

(1−K(0)
) lˆ

−l

m(x)

xˆ

0

F0tt(x1, t)dx1dx+

Kt(0)

lˆ

−l

m(x)

xˆ

0

F0t(x1, t)dx1dx+

lˆ

−l

m(x)

xˆ

0

tˆ

0

Ktt

(
γ(x1)(t− t1)

)
F0t1(x1, t1)dt1dx1dx


(4.39)

where acceleration and mass are ah(t) = lvtt(t) and M =

lˆ

−l

m(x)dx and F0 is

in the form (4.33)

4.3.3 A homogeneous viscoelastic rod

And finally, the derived equations (4.30)- (4.32) take a simpler form for perturbed

rigid body motion of a homogeneous viscoelastic rod of uniform stiffness, density and

viscosity. In this case m(x) = m,E(x) = E,A(x) = A and γ(x) = γ with the

quantity F0 in the form (4.28). For the center of the rod, we get respectively

Mah|x=0=F2−F1−
ml2

6EA

F́0tt

(
1−K(0)

)
+ F́0tKt(0)+

tˆ

0

Ktt

(
γ(t− t1)

)
F́0t1dt1

 (4.40)

and for the left end of the rod

Mah|x=−1=F2−F1−
ml2

6EA

́F (l)
0tt

(
1−K(0)

)
+ F́

(l)
0t Kt(0)+

tˆ

0

Ktt

(
γ(t− t1)

)
F́

(l)
0t1
dt1

 (4.41)
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finally, for the right end of the rod

Mah|x=1=F2−F1+
ml2

6EA

́F (r)
0tt

(
1−K(0)

)
− F́

(r)
0t Kt(0)−

tˆ

0

Ktt

(
γ(t− t1)

)
F́

(r)
0t1

dt1

 (4.42)

where M = 2ml , F́
(l)
0 = 7F2 + 11F1, F́

(r)
0 = 5F2 + F1 and F́0 = F2 − F1.

4.3.4 An inhomogeneous Voigt rod

Consider the problem of (4.1) and (4.2) under the asymptotic assumption (4.6) for an

inhomogeneous viscoelastic Voigt rod. The creep kernel is in the form (4.3)

K
(
γ(x)t

)
= e

−
E(x)

µ(x)
t

(4.43)

The Volterra equation in a differential form is in a form of

F (x, t) = A(x)
[
E(x)ux(x, t) + µ(x)uxt(x, t)

]
(4.44)

The boundary conditions (4.5) are

F (−l, t) = F1(t), F (l, t) = F2(t)

After substituting dimensionless variables and dimensionless displacement (4.7) and

(4.8) with a small parameter ε in the form (4.9), we get

F∗ξ = m∗(ξ)u∗ττ (4.45)
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and

εF∗ = A∗(ξ)
[
E∗(ξ)u∗ξ + βµ∗(ξ)u∗ξτ

]
(4.46)

with boundary conditions in the form (4.12)

F∗(−1, τ) = F1∗(t) and F∗(1, τ) = F2∗(t)

where A∗(ξ), E∗(ξ),m∗(ξ) are represented in (4.13), Fi, i = 1, 2 is in (4.14) and

µ∗(ξ) =
µ(ξ)

µ0

(4.47)

We are looking for the solution of (4.45), (4.46) and (4.12) in the form (4.15)

u∗ = u0 + εu1 + · · · and F∗ = f0 + εf1 + · · ·

At leading order

f0ξ = m∗(ξ)u0ττ and E∗(ξ)u∗ξ + βµ∗(ξ)u∗ξτ = 0 (4.48)

subject to the boundary conditions

f0(−1, τ) = F1∗(τ) and f0(1, τ) = F2∗(τ) (4.49)

We get from the second equation (4.48)

u0(ξ, τ) = v0(τ) (4.50)
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Next, we have from the first equation (4.48) taking into account the imposed boundary

conditions (4.49)

v0ττ

1ˆ

−1

m∗(ξ)dξ = F2∗ − F1∗ (4.51)

At the same time

f0 = v0ττ

ξˆ

−1

m∗(ξ1)dξ1 + F1∗ (4.52)

or

f0 =

(F2∗ − F1∗)
ξ́

−1

m∗(ξ1)dξ1

1́

−1

m∗(ξ)dξ

+ F1∗ (4.53)

At next order

f1ξ = m∗(ξ)u1ττ and f0 = A∗(ξ)
[
E∗(ξ)u1ξ + βµ∗(ξ)u1ξτ

]
(4.54)

with the homogeneous boundary conditions f1(±1, τ) = 0.

We are looking for the solution of the first equation (4.54) in the form:

u1ξ = C(ξ, τ)e
−
τE∗(ξ)

µ∗(ξ)β (4.55)

then

u1ξτ = Cτ (τ, ξ)e

−τE∗(ξ)

µ∗(ξ)β − E∗(ξ)

µ∗(ξ)β
C(τξ)e

−τE∗(ξ)

µ∗(ξ)β (4.56)

after substituting (4.55) and (4.56) into second equation (4.54), we get

f0 = βµ∗(ξ)A∗(ξ)Cτ (τ, ξ)e

−τE∗(ξ)

µ∗(ξ)β (4.57)
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then

Cτ (τ, ξ) =
1

βµ∗(ξ)A∗(ξ)
f0e

τE∗(ξ)

µ∗(ξ)β (4.58)

and

C(τ, ξ) =
1

βµ∗(ξ)A∗(ξ)

τˆ

0

f0e

τ1E∗(ξ)

µ∗(ξ)β dτ1 (4.59)

thus

u1ξ =
1

βµ∗(ξ)A∗(ξ)

τˆ

0

f0e
−
E∗(ξ)

µ∗(ξ)β
(τ−τ1)

dτ1 (4.60)

finally,

u1 =
1

β

ξˆ

0

1

µ∗(ξ1)A∗(ξ1)

τˆ

0

f0(ξ1, τ1)e
−
E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)

dτ1dξ1 + v1 (4.61)

The first derivative of (4.61) in the dimensionless time is

u1τ =
1

β

ξˆ

0

1

µ(ξ1)A∗(ξ1)

f0(ξ1, τ1)− E∗(ξ1)

µ∗(ξ1)β

τˆ

0

f0(ξ1, τ1)e
− E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)dτ1

dξ1+v1τ (4.62)

u1ττ =
1

β

ξˆ

0

1

µ(ξ1)A∗(ξ1)

(
f0τ1(ξ1, τ)−

E∗(ξ1)

µ∗(ξ1)β
f0(ξ1, τ) +

E2
∗(ξ1)

µ2
∗(ξ1)β

2
×

τˆ

0

f0(ξ1, τ1)e
− E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)dτ1

 dξ1 + v1ττ

(4.63)

from the first equation (4.54) we get

f1 =

ξˆ

−1

m∗(ξ1)

β

ξ1ˆ

0

1

µ(ξ2)A∗(ξ2)

(
f0τ1(ξ2, τ)−

E∗(ξ2)

µ∗(ξ2)β
f0(ξ2, τ) +

E2
∗(ξ2)

µ2
∗(ξ2)β

2
×

τˆ

0

f0(ξ2, τ1)e
− E∗(ξ2)

µ∗(ξ2)β
(τ−τ1)dτ1

 dξ2dξ1 +

ξˆ

−1

m∗(ξ1)v1ττdξ1

(4.64)
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we get after using homogeneous boundary conditions

v1ττ = − 1
1́

−1

m∗(ξ1)dξ1

1ˆ

−1

m∗(ξ)

β

ξˆ

0

1

µ(ξ1)A∗(ξ1)
(f0τ1(ξ1, τ)−

E∗(ξ1)

µ∗(ξ1)β
f0(ξ1, τ) +

E2
∗(ξ1)

µ2
∗(ξ1)β

2

τˆ

0

f0(ξ1, τ1)e
− E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)dτ1

 dξ1dξ

(4.65)

We obtain the acceleration of the rod u∗ττ = u0ττ + εu1ττ + . . .

The acceleration of the left end of the rod

uττ |ξ=−1 =
F2∗ − F1∗
1́

−1

m∗(ξ)dξ

− ε

β

 0ˆ

−1

1

µ(ξ1)A∗(ξ1)
(f0τ1(ξ1, τ)−

E∗(ξ1)

µ∗(ξ1)β
f0(ξ1, τ) +

E2
∗(ξ1)

µ2
∗(ξ1)β

2

τˆ

0

f0(ξ1, τ1)e
− E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)dτ1

 dξ1+

1
1́

−1

m∗(ξ1)dξ1

1ˆ

−1

m∗(ξ)

ξˆ

0

1

µ(ξ1)A∗(ξ1)
(f0τ1(ξ1, τ)−

E∗(ξ1)

µ∗(ξ1)β
f0(ξ1, τ) +

E2
∗(ξ1)

µ2
∗(ξ1)β

2

τˆ

0

f0(ξ1, τ1)e
− E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)dτ1

 dξ1dξ



(4.66)
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Similarly, the acceleration of the right end of the rod

uττ |ξ=1 =
F2∗ − F1∗
1́

−1

m∗(ξ)dξ

+
ε

β

 1ˆ

0

1

µ(ξ1)A∗(ξ1)
(f0τ1(ξ1, τ)−

E∗(ξ1)

µ∗(ξ1)β
f0(ξ1, τ) +

E2
∗(ξ1)

µ2
∗(ξ1)β

2

τˆ

0

f0(ξ1, τ1)e
− E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)dτ1

 dξ1−

1
1́

−1

m∗(ξ1)dξ1

1ˆ

−1

m∗(ξ)

ξˆ

0

1

µ(ξ1)A∗(ξ1)
(f0τ1(ξ1, τ)−

E∗(ξ1)

µ∗(ξ1)β
f0(ξ1, τ) +

E2
∗(ξ1)

µ2
∗(ξ1)β

2

τˆ

0

f0(ξ1, τ1)e
− E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)dτ1

 dξ1dξ



(4.67)

Finally, we obtain for the acceleration of the center

uττ |ξ=0 =
F2∗ − F1∗
1́

−1

m∗(ξ)dξ

− ε

β

1
1́

−1

m∗(ξ1)dξ1

1ˆ

−1

m∗(ξ)

ξˆ

0

1

µ(ξ1)A∗(ξ1)

(
f0τ1(ξ1, τ)−

E∗(ξ1)

µ∗(ξ1)β
f0(ξ1, τ) +

E2
∗(ξ1)

µ2
∗(ξ1)β

2

τˆ

0

f0(ξ1, τ1)e
− E∗(ξ1)

µ∗(ξ1)β
(τ−τ1)dτ1

)
dξ1dξ

(4.68)

or in the original variables

Mah|x=−l = F2 − F1 −M

0ˆ

−l

1

µ(x)A(x)

(
F0t(x, t)−

E(x)

µ(x)
F0(x1, t)+

E2(x)

µ2(x)

tˆ

0

f0(x1, t1)e
−E(x1)

µ(x1)
(t−t1)dt1

 dx1−

lˆ

−l

m(x)

xˆ

0

1

µ(x1)A(x1)

(
F0t1(x1, t)−

E(x1)

µ(x1)
F0(x1, t)+

E2(x1)

µ2(x1)

tˆ

0

F0(x1, t1)e
−E(x1)

µ(x1)
(t−t1)dt1

 dx1dx

(4.69)
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Mah|x=l = F2 − F1 +M

0ˆ

−l

1

µ(x)A(x)

(
F0t(x, t)−

E(x)

µ(x)
F0(x1, t)+

E2(x)

µ2(x)

tˆ

0

f0(x1, t1)e
−E(x1)

µ(x1)
(t−t1)dt1

 dx1−

lˆ

−l

m(x)

xˆ

0

1

µ(x1)A(x1)

(
F0t1(x1, t)−

E(x1)

µ(x1)
F0(x1, t)+

E2(x1)

µ2(x1)

tˆ

0

F0(x1, t1)e
−E(x1)

µ(x1)
(t−t1)dt1

 dx1dx

(4.70)

and

Mah|x=0 = F2 − F1 −
lˆ

−l

m(x)

xˆ

0

1

µ(x1)A(x1)
(F0t1(x1, t)−

E(x1)

µ(x1)
F0(x1, t) +

E2(x1)

µ2(x1)

tˆ

0

F0(x1, t1)e
−E(x1)

µ(x1)
(t−t1)dt1

 dx1dx

 (4.71)

The results (4.69)-(4.71) can be get from the equation (4.29)-(4.31) by substituting

the creep kernel in the form (4.3)

Mah|x=−l =F2−F1−
E(x)

µ(x)

M 0ˆ

−l

F0t(x, t)

E(x)A(x)
dx+

lˆ

−l

m(x)

xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1dx

+
M

0ˆ

−l

E(x)

A(x)µ2(x)

tˆ

0

e−
E(x)
µ(x)

(t−t1)Fot1(x, t1)dt1dx+

lˆ

−l

m(x)

xˆ

0

E(x1)

A(x1)µ2(x1)

tˆ

0

e
−E(x1)

µ(x1)
(t−t1)Fot1dt1dx1dx

(4.72)

Mah|x=l =F2−F1+
E(x)

µ(x)

M 0ˆ

−l

F0t(x, t)

E(x)A(x)
dx−

lˆ

−l

m(x)

xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1dx

−

M

0ˆ

−l

E(x)

A(x)µ2(x)

tˆ

0

e−
E(x)
µ(x)

(t−t1)Fot1(x, t1)dt1dx−

lˆ

−l

m(x)

xˆ

0

E(x1)

A(x1)µ2(x1)

tˆ

0

e
−E(x1)

µ(x1)
(t−t1)Fot1dt1dx1dx

(4.73)
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and

Mah|x=0 = F2 − F1 −
E(x)

µ(x)

lˆ

−l

m(x)

xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1dx+

lˆ

−l

m(x)

xˆ

0

E(x1)

A(x1)µ2(x1)

tˆ

0

e
−E(x1)

µ(x1)
(t−t1)Fot1dt1dx1dx

(4.74)

Uniform density

The equation (4.72) - (4.74) in the case of uniform density take the following form

Mah|x=−l =F2−F1 −
E(x)

µ(x)

M 0ˆ

−l

F0t(x, t)

E(x)A(x)
dx+m

lˆ

−l

xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1dx

+

2ml

0ˆ

−l

E(x)

A(x)µ2(x)

tˆ

0

e−
E(x)
µ(x)

(t−t1)Fot1(x, t1)dt1dx+

m

lˆ

−l

xˆ

0

E(x1)

A(x1)µ2(x1)

tˆ

0

e
−E(x1)

µ(x1)
(t−t1)Fot1dt1dx1dx

(4.75)

Mah|x=l =F2−F1 +
E(x)

µ(x)

M 0ˆ

−l

F0t(x, t)

E(x)A(x)
dx−m

lˆ

−l

xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1dx

−

2ml

0ˆ

−l

E(x)

A(x)µ2(x)

tˆ

0

e−
E(x)
µ(x)

(t−t1)Fot1(x, t1)dt1dx−

m

lˆ

−l

xˆ

0

E(x1)

A(x1)µ2(x1)

tˆ

0

e
−E(x1)

µ(x1)
(t−t1)Fot1dt1dx1dx

(4.76)

and

Mah|x=0 = F2 − F1 −
E(x)m

µ(x)

lˆ

−l

xˆ

0

F0t(x1, t)

E(x1)A(x1)
dx1dx+

m

lˆ

−l

xˆ

0

E(x1)

A(x1)µ2(x1)

tˆ

0

e
−E(x1)

µ(x1)
(t−t1)Fot1dt1dx1dx

(4.77)
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Uniform stiffness and viscosity

Mah|x=−l =F2−F1−
1

µA

M 0ˆ

−l

F0t(x, t)dx+
1

EA

lˆ

−l

m(x)

xˆ

0

F0t(x1, t)dx1dx

+

M

EA

0ˆ

−l

tˆ

0

e−
E
µ
(t−t1)Fot1(x, t1)dt1dx+

E

Aµ2

lˆ

−l

m(x)

xˆ

0

tˆ

0

e−
E
µ
(t−t1)Fot1dt1dx1dx

(4.78)

Mah|x=l =F2−F1+
1

µA

M 0ˆ

−l

F0t(x, t)dx− F0t(x1, t)

E(x1)A(x1)

lˆ

−l

m(x)

xˆ

0

1

EA
dx1dx

−

ME

Aµ2

0ˆ

−l

tˆ

0

e−
E
µ
(t−t1)Fot1(x, t1)dt1dx−

E

Aµ2

lˆ

−l

m(x)

xˆ

0

tˆ

0

e−
E
µ
(t−t1)Fot1dt1dx1dx

(4.79)

and

Mah|x=0 = F2 − F1 −
1

µA

lˆ

−l

m(x)

xˆ

0

F0t(x1, t)dx1dx+

E

Aµ2

lˆ

−l

m(x)

xˆ

0

tˆ

0

e−
E
µ
(t−t1)Fot1dt1dx1dx

(4.80)

where F0 is in the form of (4.33).

As an illustration, we specify these formulae for a Voigt rod with linear density

function m(x) = ax+ b, where a, b are given constant. It become

Mah|x=0 = F2 − F1 −
l2(a2l2 + 5abl + 5b2)

15(2b+ al)

1

Aµ

(
F2t − F1t+

E

µ

tˆ

0

e−
E
µ
t1 (F2t1 − F1t1) dt1

− l2(2al + 3b)

6

1

Aµ

F2t +
E

µ

tˆ

0

e−
E
µ
t1F2t1dt1

 (4.81)

Uniform density, stiffness and viscosity

Finally, we write down an easy to use formulae for a homogeneous Voigt rod with

uniform density, stiffness and viscosity m(x) = m,A(x) = A,E(x) = E and µ(x) = µ.
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The acceleration for the center of the rod

Mah|x=0 = F1 − F2 +
ml2

6Aµ
(F2t − F1t)−

ml2E

6Aµ2

tˆ

0

e−
E
µ
(t−t1) (F2t1 − F1t1) dt1 (4.82)

and for the left end of the rod

Mah|x=l =F1 − F2+
ml2

6Aµ
(7F2t + 11F1t)−

ml2E

6Aµ2

tˆ

0

e−
E
µ
(t−t1) (7F2t1+ 11F1t1)dt1 (4.83)

finally, for the right end of the rod

Mah|x=l = F1 − F2 +
ml2

6Aµ
(5F2t + F1t)−

ml2E

6Aµ2

tˆ

0

e−
E
µ
(t−t1) (5F2t1 + F1t1) dt1 (4.84)

4.4 Numerical Results

4.4.1 A homogeneous Voigt rod

As an example, consider time-harmonic motion of a homogeneous viscoelastic rod stud-

ied in the previous section. In this case the constitutive relation (4.2) become

e =
F

EA
(1 + iδ) (4.85)

with

δ =

∞̂

0

K
(γ
ω
z
)
eizdz (4.86)

where ω is circular frequency. Here and below the factor e−iωt is separated.

Let first horizontal motion of the bar be induced by a force applied to its right end,

i.e. F (−l) = 0 and F (l) = F2, see Figure 4.1. Then, we get from the equation
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(4.32)

Mah = F2

[
1 +

λ2
h

6
(1 + iδ)

]
(4.87)

where

λh = ωl

√
m

EA
(4.88)

This formula coincides with a two-term low-frequency expansion of the exact solution

of the associated problem, see (A.10).

It is worth mentioning that in line with the dynamic homogenisation procedure

developed for three-dimensional anisotropic elastic solids [14], this result can be pre-

sented in the form of a generalised Newton’s second law with a frequency dependent

complex mass given by

M∗(λh) =
M

1 +
λ2
h

6
(1 + iδ)

(4.89)

Numerical data are presented in Figures 4.2 and 4.3 , where a∗h = Ma/F2 is

the normalised acceleration of the center of the rod plotted versus the dimensionless

frequency λh. A Voigt material is studied. In this case

δ =
λhβ

1− iλhβ
(4.90)

with

β =
µ

l

√
A

mE

The solid and dashed lines correspond to the exact solution, see A.1, and the asymptotic

formulae (4.43), respectively. The curves related to the values β = 0.1, 1.0, 5.0 are

marked with the numbers 1, 2 and 3. Numerical comparison presented in these figures

demonstrates the advantage of the developed methodology.
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Figure 4.2: horizontal acceleration vs frequency (Real Part)
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Figure 4.3: horizontal acceleration vs frequency (Imaginary Part)

4.4.2 An inhomogeneous Voigt rod of variable density

Consider a viscoelastic inhomogeneous Voigt rod of length 2l with density function

given as m1 +m2 = 2m and M = 2ml, with 0 ≤ m1 ≤ m
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Figure 4.4: Density variation

The acceleration for the center of the rod is in the form

Mah|x=0 = F2 − F1 −
1

µA

lˆ

−l

m(x)

xˆ

0

F0t(x1, t)dx1dx+

E

Aµ2

lˆ

−l

m(x)

xˆ

0

tˆ

0

e−
E
µ
(t−t1)Fot1dt1dx1dx

(4.91)

where

F0 =
F2 − F1

M

xˆ

−l

m(x1)dx1 + F1

Let us rewrite the formulae (4.91) as a sum of integrals for each interval with constant
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viscosity

Mah = F2 − F1 −
1

µA

 − l
2ˆ

−l

m1

xˆ

0

F0t(x1, t)dx1dx+

l
2ˆ

− l
2

m2

xˆ

0

F0t(x1, t)dx1dx+

lˆ
l
2

m1

xˆ

0

F0t(x1, t)dx1dx

+
E

Aµ2

tˆ

0

e−
E
µ
(t−t1)

 − l
2ˆ

−l

m1

xˆ

0

Fot1dx1dx+

l
2ˆ

− l
2

m2

xˆ

0

Fot1dx1dx+

lˆ
l
2

m2

xˆ

0

Fot1dx1dx

 dt1 =

F2 − F1 −
1

µA

 − l
2ˆ

−l

m1

xˆ

0

F2t − F1t

2ml

x1ˆ

−l

m1dx2 + F1t

 dx1dx+

l
2ˆ

− l
2

m2

xˆ

0

F2t − F1t

2ml

x1ˆ

−l

m2dx2 + F1t

 dx1dx+

lˆ
l
2

m1

xˆ

0

F2t − F1t

2ml

x1ˆ

−l

m1dx2 + F1t

 dx1dx

+

E

Aµ2

tˆ

0

e−
E
µ
(t−t1)

 − l
2ˆ

−l

m1

xˆ

0

F2t1 − F1t1

2ml

x1ˆ

−l

m1dx2 + F1t1

 dx1dx+

l
2ˆ

− l
2

m2

xˆ

0

F2t1 − F1t1

2ml

x1ˆ

−l

m2dx2 + F1t1

 dx1dx+

lˆ
l
2

m2

xˆ

0

F2t1 − F1t1

2ml

x1ˆ

−l

m1dx2 + F1t1

 dx1dx

 dt1

(4.92)

thus

Mah| =F2−F1+
l2
(
7m2

1 +m2
2

)
48Aµm

− (F2t − F1t)+
E

µ

tˆ

0

e−
E
µ
(t−t1) (F2t1 − F1t1) dt1

 (4.93)

We study time-harmonic motion separating the factor e−iωt (ω is circular frequency)
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in what follows. In this case (4.93) is in the form

Mah = (F2 − F1)

(
1 +

l2
(
7m2

1 +m2
2

)
ω2

48AEm
(
1− iω µ

E

)) (4.94)

Let us

λh = ωl

√
m

EA
(4.95)

and

β =
µ

l

√
A

Em
(4.96)

then

Mah = (F2 − F1)

(
1 +

l2
(
7m2

1 +m2
2

)
λ2
h

48m2 (1− iλhβ)

)
(4.97)

As a result, the normalised acceleration is

a∗h = 1 +

(
7 +

(
m2

m1

)2)
λ2
h

12
(
1 + m2

m1

)2
(1− iλhβ)

(4.98)
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Figure 4.5: horizontal acceleration vs frequency (Real Part) variable density
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Figure 4.6: horizontal acceleration vs frequency (Imaginary Part) variable density

The solid and dashed lines in Figures 4.5 and 4.6 correspond to the asymptotic

formulae (4.98) related to the values β = 0.1, 1.0, where a∗h = Ma/(F2 − F1) is the

normalised acceleration plotted versus the dimensionless frequency λh. The curves

associated to the values m2/m1 = 0.1, 1.0, 5.0 are marked with the numbers 1, 2 and

3.

4.4.3 An inhomogeneous Voigt rod of variable stiffness

Consider a viscoelastic inhomogeneous Voigt rod of length 2l with stiffness function

given as µ(x) = µ1 for |x| ≥ l
2

and µ(x) = µ2 for |x| ≤ − l
2

(see Figure 4.7 ). Let

first horizontal motion of the rod be inducted by a force applied to its right end, i.e.

F (−l) = 0 and F (l) = F2.
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Figure 4.7: Stiffness variation

The acceleration for the center of the rod is in the form

Mah = F2 − F1 −
m

µ(x)A

lˆ

−l

xˆ

0

F0t(x1, t)dx1dx+

mE

A

lˆ

−l

xˆ

0

1

µ2(x1)

tˆ

0

e
− E

µ(x1)
(t−t1)Fot1dt1dx1dx

(4.99)

where

F0 =
F2(x+ l)

2l
(4.100)

Let us rewrite the formula (4.99) as a sum of integrals for each interval with constant

viscosity

Mah = F2 −
m

µ(x)A

 − l
2ˆ

−l

xˆ

0

F2t(x1 + l)

2ml
dx1dx+

l
2ˆ

− l
2

xˆ

0

F2t(x1 + l)

2ml
dx1dx+

lˆ
l
2

xˆ

0

F2t(x1 + l)

2ml
dx1dx

+
Em

A

tˆ

0

 1

µ2
1

e
− E

µ1
(t−t1)

− l
2ˆ

−l

xˆ

0

F2t(x1 + l)

2ml
dx1dx+

1

µ2
2

e
− E

µ2
(t−t1)

l
2ˆ

− l
2

xˆ

0

F2t(x1 + l)

2ml
dx1dx+

1

µ2
1

e
− E

µ1
(t−t1)

lˆ
l
2

xˆ

0

F2t(x1 + l)

2ml
dx1dx

dt1

(4.101)
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thus

Mah = F2 −
ml2

48A
F2t

(
7

µ1

+
1

µ2

)
+

7l2E

48Aµ2
1

tˆ

0

e
− E

µ1
(t−t1)F2t1dt1+

l2E

48Aµ2
2

tˆ

0

e
− E

µ2
(t−t1)F2t1dt1

(4.102)

We study time-harmonic motion separating the factor e−iωt (ω is circular frequency)

in what follows. In this case (4.102) is in the form

Mah = F2

(
1 +

ω2ml2

48AE

(
7

1− iωµ1

E

+
1

1− iωµ2

E

))
(4.103)

Let us

λ = ωl

√
m

EA
(4.104)

and

β1 =
µ1

l

√
A

Em
, β2 =

µ2

l

√
A

Em
(4.105)

then

Mah = F2

(
1 +

λ2

48

(
7

1− iλβ1

+
1

1− iλβ2

))
(4.106)

As a result, the normalised acceleration is

a∗h = 1 +
λ2

48

(
7

1− iλβ1

+
1

1− iλβ2

)
(4.107)
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Chapter 5

Low - frequency perturbation of

rigid body motion of a viscoelastic

inhomogeneous beam

5.1 Statement of the problem

In this chapter we consider a viscoelastic inhomogeneous beam of length 2l subject

to end transverse forces as well as end bending moments, see Figure 5.1. The 1D

equations of motion are written as

Nx +m(x)wtt = 0 (5.1)

N = Gx (5.2)

where x is the longitudinal coordinate, t is time, w is transverse displacement,
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Figure 5.1: Perturbed rigid body motion of a beam

G is bending moment, N is transverse force and m(x) is mass per unit length.

Linear viscoelastic behavior within the classical theories of extension and bending

can be described by the following relations,

κ(x, t) =
1

E(x)I(x)

G(x, t)−
tˆ

0

K
(
γ(x)(t− t1)

)∂G(x, t1)

∂t1
dt1

 (5.3)

where κ = wxx is curvature. We also use the notation: E(x) is the Young’s modulus,

I(x) is the second moment of inertia, K
(
γ(x)t

)
is creep kernel depending on function

γ(x). For example, for the Voigt model

K
(
γ(x)t

)
= e−γ(x)t (5.4)

with γ(x) =
E(x)

µ(x)
, where µ(x) denotes viscosity. In this case we get from (5.1)

respectively

G(x, t) = I(x)[E(x)κ(x, t) + µ(x)κt(x, t)] (5.5)

The boundary conditions corresponding to the end moments shown in Figure 5.1

are
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N(−l, t) = N1(t), N(l, t) = N2(t) and G(−l, t) = G1(t), G(l, t) = G2(t) (5.6)

Consider the low-frequency motions starting from the governing equations above.

Let us denote typical values of the variable quantities m(x), E(x), I(x) and γ(x) by

m0, E0, I0 and γ0, respectively. In what follows we assume that a typical time scale

of viscous behavior γ−1
0 is much greater than a characteristic time that elastic waves

take to propagate the distance between the ends of the bar, i.e.

γ−1
0 ≫ l2

√
m0

E0I0
(5.7)
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5.2 Vertical Motion and Rotation
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Figure 5.2: Perturbed rigid body motion. a. overall, b. vertical, c. rotational

For the sake of simplicity, we assume a symmetry of the problem parameters specified

by even functions m(x), E(x), I(x) and γ(x). In this case the boundary condition (5.6)
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corresponding to the bending vibration can be separated into two parts

N(∓l, t) = ±N−(t), G(∓l, t) = G+(t) (5.8)

and

N(∓l, t) = N+(t), G(∓l, t) = ±G−(t) (5.9)

where

N+(t) =
N1(t) +N2(t)

2
, N−(t) =

N1(t)−N2(t)

2

G+(t) =
G1(t) +G2(t)

2
, G−(t) =

G1(t)−G2(t)

2

(5.10)

In the low-frequency domain the boundary conditions (5.8) and (5.9) govern per-

turbed rigid body vertical motion and rotation, respectively, see Figure 5.2.

5.3 Asymptotic analysis

We introduce a small parameter

ε = l4γ2
0

m0

E0I0
≪ 1 (5.11)

according to (2.12) and dimensionless quantities by the formulae

w = lw∗, G =
εE0I0

l
G∗ and N =

εE0I0
l2

N∗ (5.12)

Then, we get from (5.1), (5.2), (5.3), (5.8) and (5.9)

N∗ξ +m∗(ξ)w∗ττ = 0 (5.13)
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N∗ = G∗ξ (5.14)

and

w∗ξξ =
ε

E∗(ξ)I∗(ξ)

G∗ −
τˆ

0

K
(
γ∗(ξ)(τ − τ1)

)
G∗τ1dτ1

 (5.15)

with

N∗(∓1, t) = ±N−
∗ and G∗(∓1, t) = G+

∗ (5.16)

or

N∗(∓1, t) = N+
∗ and G∗(∓1, t) = ±G−

∗ (5.17)

In the formulae above

I∗(ξ) =
I(ξ)

I0
, G± =

εE0I0
l

G±
∗ and N± =

εE0I0
l2

N±
∗ (5.18)

We express the sought for solution as

w∗ = w0 + εw1 + . . . , N∗ = n0 + εn1 + . . . and G∗ = g0 + εg1 + . . . (5.19)

At leading order

n0ξ = −m∗(ξ)w0ττ , w0ξξ = 0 and n0 = g0ξ (5.20)

subject to

n0(∓1, τ) = ±N−
∗ and g0(∓1, τ) = G+

∗ (5.21)

or

n0(∓1, τ) = N+
∗ and g0(∓1, τ) = ±G−

∗ (5.22)
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Vertical motion

First, consider vertical motion for which w∗(ξ, τ) and G∗(ξ, τ) are even functions of

ξ, whereas N∗(ξ, τ) is an odd function. In this case we get from the second equation

(5.19)

w0(ξ, τ) = v0(τ) (5.23)

corresponding to vertical rigid body motion. We also get taking into account the

boundary conditions (5.21) imposed on n0

v0ττ

1ˆ

−1

m∗(ξ)dξ = 2N−
∗ (5.24)

and

n0 = −
2N−

∗

ξ́

0

m∗(ξ1)dξ1

1́

−1

m∗(ξ)dξ

(5.25)

Then, we derive from the last equation (5.19) by applying the boundary conditions

(5.21) related to g0

g0 =
2N−

∗
1́

−1

m∗(ξ)dξ

1ˆ

ξ

ξ1ˆ

0

m∗(ξ2)dξ2dξ1 +G+
∗ (5.26)

At next order

n1ξ = −m∗(ξ)w1ττ , n1 = g1ξ (5.27)

and

w1ξξ =
1

E∗(ξ)I∗(ξ)

g0 −
τˆ

0

K
(
γ∗(ξ)(τ − τ1)

)
g0τ1(ξ, τ1)dτ1

 (5.28)
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with the homogeneous boundary conditions n1(∓1, τ) = g1(∓1, τ) = 0, where g0 is

given by (5.26). On integrating twice the last equation (5.27) we have

w1 =

ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)

(
g0(ξ2, τ)−

τˆ

0

K
(
γ∗(ξ1)(τ − τ1)

)
g0τ1(ξ2, τ1)dτ1

)
dξ2dξ1+v1 (5.29)

leading to

w1ττ =

ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)

(
g0ττ (ξ2, τ)

(
1−K(0)

)
−g0τ (ξ2, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ2)(τ − τ1)

)
g0τ1(ξ2, τ1)dτ1

)
dξ2dξ1+v1ττ

(5.30)

Then, from the first equation (5.27) and the homogeneous boundary conditions above

v1ττ = − 1
1́

−1

m∗(ξ)dξ

1ˆ

−1

m∗(ξ)

 ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)

(
g0ττ (ξ2, τ)×

(
1−K(0)

)
− g0τ (ξ1, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ2)(τ − τ1)

)
g0τ1(ξ2, τ1)dτ1

)
dξ2dξ1

]
dξ

(5.31)

Finally, we obtain for the refined acceleration of the beam wττ = w0ττ + εw1ττ + . . .
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The acceleration of the left end of the beam ξ = −1

wττ =
2N−

∗
1́

−1

m∗(ξ)dξ

− ε

 0ˆ

−1

ξˆ

0

1

E∗(ξ1)I∗(ξ1)

(
g0ττ (ξ1, τ)

(
1−K(0)

)
−

g0τ (ξ2, τ)Kτ (0)−
τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
g0τ1(ξ1, τ1)dτ1

)
dξ1dξ+

1
1́

−1

m∗(ξ)dξ

1ˆ

−1

m∗(ξ)

 ξˆ

0

1

E∗(ξ1)I∗(ξ1)

(
g0ττ (ξ1, τ)

(
1−K(0)

)
−g0τ (ξ1, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
g0τ1(ξ1, τ1)dτ1

 dξ1

 dξ



(5.32)

the acceleration of the right end of the beam ξ = 1

wττ =
2N−

∗
1́

−1

m∗(ξ)dξ

− ε

− 1ˆ

0

ξˆ

0

1

E∗(ξ1)I∗(ξ1)

(
g0ττ (ξ1, τ)

(
1−K(0)

)
−

g0τ (ξ2, τ)Kτ (0)−
τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
g0τ1(ξ1, τ1)dτ1

)
dξ1dξ+

1
1́

−1

m∗(ξ)dξ

1ˆ

−1

m∗(ξ)

 ξˆ

0

1

E∗(ξ1)I∗(ξ1)

(
g0ττ (ξ1, τ)

(
1−K(0)

)
−g0τ (ξ1, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
g0τ1(ξ1, τ1)dτ1

 dξ1

 dξ



(5.33)

and the acceleration of the center of the beam ξ = 0

wττ =
2N−

∗
1́

−1

m∗(ξ)dξ

− ε

 1
1́

−1

m∗(ξ)dξ

1ˆ

−1

m∗(ξ)

 ξˆ

0

1

E∗(ξ1)I∗(ξ1)
×

g0ττ (ξ1, τ)(1−K(0)
)
−g0τ (ξ1, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ1)(τ − τ1)

)
g0τ1(ξ1, τ1)dτ1

dξ1
dξ

(5.34)
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or in the original variables

Mav|x=−l = N1 −N2 −
(
1−K(0)

)M

0ˆ

−l

xˆ

0

1

E(x1)I(x1)
G0tt(x1, t)dx1dx+

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0tt(x2, t)dx2dx1dx

+

Kt(0)

M 0ˆ

−l

xˆ

0

1

E(x1)I(x1)
G0tdx1dx+

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0t(x2, t)dx2dx1dx

+

M

0ˆ

−l

xˆ

0

1

E(x1)I(x1)

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x1, t1)dt1dx1dx+

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x2, t1)dt1dx2dx1dx

(5.35)

Mav|x=l = N1 −N2 +
(
1−K(0)

)M

lˆ

0

xˆ

0

1

E(x1)I(x1)
G0tt ∗ (x1, t)dx1dx−

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0tt(x2, t)dx2dx1dx

−

Kt(0)

M lˆ

0

xˆ

0

1

E(x1)I(x1)
G0tdx1dx−

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0t(x2, t)dx2dx1dx

−

M

lˆ

0

xˆ

0

1

E(x1)I(x1)

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x1, t1)dt1dx1dx+

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x2, t1)dt1dx2dx1dx

(5.36)

Mav|x=0 = N1 −N2 −
lˆ

−l

m(x)

 xˆ

0

x1ˆ

0

1

E(x2)I(x2)

((
1−K(0)

)
G0tt(x2, t)−

Kt(0)G0t(x2, t)−
tˆ

0

Ktt

(
γ(t− t1)

)
G0τ1(x2, t1)dt1

 dx2dx1

 dx

(5.37)
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where av(t) = lwtt(t), M =

lˆ

−l

m(x)dx and

G0(x, t) =
N1 −N2

M

lˆ

x

x1ˆ

0

m(x2)dx2dx1 +
G1 +G2

2
(5.38)

Rotation

In case of perturbed rigid body rotation w∗(ξ, τ) and G∗(ξ, τ) are odd functions of ξ,

while N∗(ξ, τ) is an even function. Thus, we get from the second equation (5.20)

w0(ξ, τ) = ξv0τ (τ) (5.39)

Now, multiply the first equation (5.20) by ξ having

ξn0ξ + ξ2m∗(ξ)v0τ = 0 (5.40)

On integrating the latter over the length of the structure and taking into account the

boundary conditions (5.22) along with the third equation (5.20) we have

v0ττ

1ˆ

−1

ξ2m∗(ξ)dξ = −2(G−
∗ +N+

∗ ) (5.41)

We also deduce from (5.20), (5.22) and (5.36)

n0 = −
2 (G−

∗ +N+
∗ )

1́

ξ

ξ1m∗(ξ1)dξ1

1́

−1

ξ2m∗(ξ)dξ

+N+
∗ (5.42)
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and

g0 = −2
(
G−

∗ +N+
∗
) ξ́

0

1́

ξ1

ξ2m∗(ξ2)dξ2dξ1

1́

−1

ξ2m∗(ξ)dξ

+ ξN+
∗ (5.43)

Then, on integrating the third equation (5.27) we obtain

w1 =

ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)

(
g0(ξ2, τ)−

τˆ

0

K
(
γ∗(ξ1)(τ − τ1)

)
g0τ1 (ξ2, τ1)dτ1

)
dξ2dξ1 + ξv1

(5.44)

The second derivative of (5.43) in the dimensionless time is

w1ττ =

ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)

(
g0ττ (ξ2, τ)

(
1−K(0)

)
−g0τ (ξ2, τ)×

Kτ (0)−
τˆ

0

Kττ (γ∗(ξ2)(τ − τ1))g0τ1(ξ2, τ1)dτ1

)
dξ2dξ1+ξv1ττ

(5.45)

Finally,

v1ττ = − 1
1́

−1

ξ2m∗(ξ)dξ

1ˆ

−1

ξm∗(ξ)

 ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)
×

(
g0ττ (ξ2, τ)

(
1−K(0)

)
− g0τ (ξ2, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ2)(τ − τ1)

)
g0τ1(ξ2, τ1)dτ1

)
dξ2dξ1

]
dξ

(5.46)

The obtained angular acceleration of the beam is

wττ = w0ττ + εw1ττ + . . . (5.47)

98



The angular acceleration of the left end of the beam ξ = −1

wττ = − G−
∗ +N+

∗
1́

−1

ξ2m∗(ξ)dξ

− ε

 0ˆ

−1

ξˆ

0

1

E∗(ξ1)I∗(ξ1)

(
g0ττ (ξ1, τ)

(
1−K(0)

)
−

g0τ (ξ1, τ)Kτ (0)−
τˆ

0

Kττ (γ∗(ξ1)(τ − τ1))g0τ1(ξ1, τ1)dτ1

)
dξ1dξ+

1
1́

−1

ξ2m∗(ξ)dξ

1ˆ

−1

ξm∗(ξ)

 ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)

(
g0ττ (ξ2, τ)

(
1−K(0)

)
−

g0τ (ξ2, τ)Kτ (0)−
τˆ

0

Kττ

(
γ∗(ξ2)(τ−τ1)

)
g0t1(ξ2, τ1)dτ1

)
dξ2dξ1

)
dξ



(5.48)

the angular acceleration of the left end of the beam ξ = l

wττ = − G−
∗ +N+

∗
1́

−1

ξ2m∗(ξ)dξ

+ ε

 1ˆ

0

ξˆ

0

1

E∗(ξ1)I∗(ξ1)

(
g0ττ (ξ1, τ)

(
1−K(0)

)
−

g0τ (ξ1, τ)Kτ (0)−
τˆ

0

Kττ (γ∗(ξ1)(τ − τ1))g0τ1(ξ1, τ1)dτ1

)
dξ1dξ−

1
1́

−1

ξ2m∗(ξ)dξ

1ˆ

−1

ξm∗(ξ)

 ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)

(
g0ττ (ξ2, τ)

(
1−K(0)

)
−

g0τ (ξ2, τ)Kτ (0)−
τˆ

0

Kττ

(
γ∗(ξ2)(τ−τ1)

)
g0t1(ξ2, τ1)dτ1

)
dξ2dξ1

)
dξ



(5.49)
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and finally the angular acceleration of the center of the beam ξ = 0

wττ = − G−
∗ +N+

∗
1́

−1

ξ2m∗(ξ)dξ

− 1
1́

−1

ξ2m∗(ξ)dξ

1ˆ

−1

ξm∗(ξ)

 ξˆ

0

ξ1ˆ

0

1

E∗(ξ2)I∗(ξ2)
×

(
g0ττ (ξ2, τ)

(
1−K(0)

)
− g0τ (ξ2, τ)Kτ (0)−

τˆ

0

Kττ

(
γ∗(ξ2)(τ − τ1)

)
g0t1(ξ2, τ1)dτ1

)
dξ2dξ1

]
dξ

(5.50)

In the original variables the equation (5.46)-(5.50) take the form

JΩ|x=−l = G2 −G1 − l(N1 +N2)−
(
1−K(0)

)1
l

lˆ

−l

x2m(x)dx×

0ˆ

−l

xˆ

0

1

E(x1)I(x1)
G0tt(x1, t)dx1dx+

lˆ

−l

xm(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0tt(x2, t)dx2dx1dx

+

Kt(0)

1
l

lˆ

−l

x2m(x)dx

0ˆ

−l

xˆ

0

1

E(x1)I(x1)
G0t(x1, t)dx1dx+

lˆ

−l

xm(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0t(x2, t)dx2dx1dx

+

1

l

lˆ

−l

x2m(x)dx

0ˆ

−l

xˆ

0

1

E(x1)I(x1)

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx1dx+

lˆ

−l

xm(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx2dx1dx

(5.51)
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JΩ|x=l = G2 −G1 − l(N1 +N2) +
(
1−K(0)

)1
l

lˆ

−l

x2m(x)dx×

lˆ

0

xˆ

0

1

E(x1)I(x1)
G0tt(x1, t)dx1dx−

lˆ

−l

xm(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0tt(x2, t)dx2dx1dx

+

Kt(0)

1
l

lˆ

−l

x2m(x)dx

lˆ

0

xˆ

0

1

E(x1)I(x1)
G0t(x1, t)dx1dx−

lˆ

−l

xm(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0t(x2, t)dx2dx1dx

−

1

l

lˆ

−l

x2m(x)dx

lˆ

0

xˆ

0

1

E(x1)I(x1)

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx1dx+

lˆ

−l

xm(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx2dx1dx

(5.52)

and

JΩ|x=0 = G2 −G1 − l(N1 +N2)−
lˆ

−l

xm(x)

 xˆ

0

x1ˆ

0

1

E(x2)I(x2)
×

((
1−K(0)

)
G0tt(x2, t)−Kt(0)G0t(x2, t)−

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1

)
dx2dx1

dx
(5.53)

where angular acceleration Ω and moment of inertia J are given by Ω = vtt and

J =

lˆ

−l

x2m(x)dx, whereas

G0(x, t) =

(G2 −G1 − l(N1 +N2))
x́

0

ĺ

x1

x2m(x2)dx2dx1

ĺ

−l

x2m(x)dx

+
x

2
(N1 +N2) (5.54)

The equations (5.33) and (5.43) contain low-frequency corrections to classical equa-
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tion of rigid body dynamics Mav = N1 − N2 and JΩ = G2 − G1 − l(N1 + N2). The

quantities (5.34) and (5.44) are key for the established approximate formulae. They

express the leading order low-frequency variation of the bending moment along the

length of the structure.

5.4 Particular cases

5.4.1 An inhomogeneous viscoelastic beam of uniform density

The derived equations (5.33) and (5.43) take a simpler form for perturbed rigid body

motion of a homogeneous viscoelastic beam (m(x) = m). For vertical motion they

become

Mav|x=−l = N1 −N2 −
(
1−K(0)

)l

0ˆ

−l

xˆ

0

1

E(x1)I(x1)
G0tt(x1, t)dx1dx+

1

2

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0tt(x2, t)dx2dx1dx

+

Kt(0)

l 0ˆ

−l

xˆ

0

1

E(x1)I(x1)
G0tdx1dx+

1

2

lˆ

−l

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0t(x2, t)dx2dx1dx

+

l

0ˆ

−l

xˆ

0

1

E(x1)I(x1)

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x1, t1)dt1dx1dx+

1

2

lˆ

−l

xˆ

0

x1ˆ

0

1

E(x2)I(x2)

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x2, t1)dt1dx2dx1dx

(5.55)
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Mav|x=l = N1 −N2 +
(
1−K(0)

)l

lˆ

0

xˆ

0

1

E(x1)I(x1)
G0tt ∗ (x1, t)dx1dx−

1

2

lˆ

−l

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0tt(x2, t)dx2dx1dx

−

Kt(0)

l lˆ

0

xˆ

0

1

E(x1)I(x1)
G0tdx1dx−

1

2

lˆ

−l

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0t(x2, t)dx2dx1dx

−

l

lˆ

0

xˆ

0

1

E(x1)I(x1)

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x1, t1)dt1dx1dx+

1

2

lˆ

−l

xˆ

0

x1ˆ

0

1

E(x2)I(x2)

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x2, t1)dt1dx2dx1dx

(5.56)

and

Mav|x=0 = N1 −N2 −
1

2

lˆ

−l

 xˆ

0

x1ˆ

0

1

E(x2)I(x2)

((
1−K(0)

)
G0tt(x2, t)−

Kt(0)G0t(x2, t)−
tˆ

0

Ktt

(
γ(t− t1)

)
G0τ1(x2, t1)dt1

 dx2dx1

 dx

(5.57)

where

G0 = (l2 − x2)m
N1 −N2

2l
+

m (G1 +G2)

2
(5.58)
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and for rotation

JΩ|x=−l = G2 −G1 − l(N1 +N2)−
(
1−K(0)

) [ l2
3
×

0ˆ

−l

xˆ

0

1

E(x1)I(x1)
G0tt(x1, t)dx1dx+

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0tt(x2, t)dx2dx1dx

+
Kt(0)

 l2
3

0ˆ

−l

xˆ

0

1

E(x1)I(x1)
G0t(x1, t)dx1dx+

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0t(x2, t)dx2dx1dx

+

l2

3

0ˆ

−l

xˆ

0

1

E(x1)I(x1)

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx1dx+

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

1

E(x2)I(x2)

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx2dx1dx

(5.59)

JΩ|x=l = G2 −G1 − l(N1 +N2) +
(
1−K(0)

) [ l2
3
×

lˆ

0

xˆ

0

1

E(x1)I(x1)
G0tt(x1, t)dx1dx−

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0tt(x2, t)dx2dx1dx

+
Kt(0)

 l2
3

lˆ

0

xˆ

0

1

E(x1)I(x1)
G0t(x1, t)dx1dx−

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

1

E(x2)I(x2)
G0t(x2, t)dx2dx1dx

−

l2

3

lˆ

0

xˆ

0

1

E(x1)I(x1)

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx1dx+

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

1

E(x2)I(x2)

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx2dx1dx

(5.60)
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and

JΩ|x=0 = G2 −G1 − l(N1 +N2)−
1

2

lˆ

−l

x

 xˆ

0

x1ˆ

0

1

E(x2)I(x2)
×

((
1−K(0)

)
G0tt(x2, t)−Kt(0)G0t(x2, t)−

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1

)
dx2dx1

dx
(5.61)

where

G0 = xm

(
x2

l2
− 1

)
N1 +N2

2
+ xm(3l2 − x2)

G2 −G1

2l3
(5.62)

5.4.2 An inhomogeneous viscoelastic beam of uniform stiff-

ness and viscosity

In the case of inhomogeneous viscoelastic beam with constant stiffness and viscosity

(E(x) = E, I(x) = I, µ(x) = µ and γ(x) = γ) the derived formulae (5.34) and (5.44)

become

Mav|x=−l = N1 −N2 −
(
1−K(0)

)M

0ˆ

−l

xˆ

0

G0tt(x1, t)dx1dx+

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

G0tt(x2, t)dx2dx1dx

+

Kt(0)

M

0ˆ

−l

xˆ

0

G0tdx1dx+

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

G0t(x2, t)dx2dx1dx

+

M

0ˆ

−l

xˆ

0

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x1, t1)dt1dx1dx+

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x2, t1)dt1dx2dx1dx

(5.63)
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Mav|x=l = N1 −N2 +
(
1−K(0)

)M

lˆ

0

xˆ

0

G0tt(x1, t)dx1dx−

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

G0tt(x2, t)dx2dx1dx

−

Kt(0)

M

lˆ

0

xˆ

0

G0tdx1dx−
lˆ

−l

m(x)

xˆ

0

x1ˆ

0

G0t(x2, t)dx2dx1dx

−

M

lˆ

0

xˆ

0

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x1, t1)dt1dx1dx+

lˆ

−l

m(x)

xˆ

0

x1ˆ

0

tˆ

0

Ktt

(
γ(t− t1)

)
G0t1(x2, t1)dt1dx2dx1dx

(5.64)

and

Mav|x=0 = N1 −N2 −
lˆ

−l

m(x)

 xˆ

0

x1ˆ

0

((
1−K(0)

)
G0tt(x2, t)−

Kt(0)G0t(x2, t)−
tˆ

0

Ktt

(
γ(t− t1)

)
G0τ1(x2, t1)dt1

 dx2dx1

 dx

(5.65)

where

G0(x, t) =
N1 −N2

MEI

lˆ

x

x1ˆ

0

m(x2)dx2dx1 +
G1 +G2

2EI
(5.66)
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and for rotation

JΩ|x=−l = G2 −G1 − l(N1 +N2)−
(
1−K(0)

) [ l2
3
×

0ˆ

−l

xˆ

0

G0tt(x1, t)dx1dx+
1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

G0tt(x2, t)dx2dx1dx

+

Kt(0)

 l2
3

0ˆ

−l

xˆ

0

G0t(x1, t)dx1dx+

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

G0t(x2, t)dx2dx1dx

+

l2

3

0ˆ

−l

xˆ

0

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx1dx+

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx2dx1dx

(5.67)

JΩ|x=l = G2 −G1 − l(N1 +N2) +
(
1−K(0)

) [ l2
3
×

lˆ

0

xˆ

0

G0tt(x1, t)dx1dx− 1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

G0tt(x2, t)dx2dx1dx

+

Kt(0)

 l2
3

lˆ

0

xˆ

0

G0t(x1, t)dx1dx−

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

G0t(x2, t)dx2dx1dx

−

l2

3

lˆ

0

xˆ

0

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx1dx+

1

2

lˆ

−l

x

xˆ

0

x1ˆ

0

tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1dx2dx1dx

(5.68)
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and

JΩ|x=0 = G2 −G1 − l(N1 +N2)−
1

2

lˆ

−l

x

 xˆ

0

x1ˆ

0

((
1−K(0)

)
G0tt(x2, t)−

Kt(0)G0t(x2, t)−
tˆ

0

Ktt

(
γ(x2)(t− t1)

)
G0τ1(x2, t1)dt1

)
dx2dx1

dx
(5.69)

where

G0(x, t) =

(G2 −G1 − l(N1 +N2))
x́

0

ĺ

x1

x2m(x2)dx2dx1

EI
ĺ

−l

x2m(x)dx

+
x

2EI
(N1 +N2) (5.70)

5.4.3 A homogeneous viscoelastic beam

The derived equations (5.35)-(5.37) and (5.55)-(5.57) take a simpler form for perturbed

rigid body motion of a homogeneous viscoelastic beam of uniform stiffness, density and

viscosity. In this case m(x) = m,E(x) = E, I(x) = I and γ(x) = γ and the formulae

(5.38) and (5.58) become

G0 = (l2 − x2)
N1 −N2

4l
+

G1 +G2

2
(5.71)

and

G0 = x

(
x2

l2
− 1

)
N1 +N2

4
+ x(3l2 − x2)

G2 −G1

4l3
(5.72)

On inserting the latter into and we get respectively for vertical motion

Mav|x=−l = N1 −N2−

l3

EI

Ǵ
(l)
0tt

(
1−K(0)

)
− Ǵ

(l)
0tKt(0)−

tˆ

0

Ktt

(
γ(t− t1)

)
Ǵ

(l)
0t1
dt1

 (5.73)
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Mav|x=l = N1 −N2−

l3

EI

Ǵ
(r)
0tt

(
1−K(0)

)
− Ǵ

(r)
0t Kt(0)−

tˆ

0

Ktt

(
γ(t− t1)

)
Ǵ

(r)
0t1
dt1

 (5.74)

and

Mav = N1 −N2−

l3

EI

Ǵ0tt

(
1−K(0)

)
− Ǵ0tKt(0)−

tˆ

0

Ktt

(
γ(t− t1)

)
Ǵ0t1dt1

 (5.75)

where M = 2ml , Ǵ
(l)
0 = 17

60
(N1−N2)+

2
3
(G1+G2), Ǵ

(r)
0 = − 2

15
(N1−N2)− 1

3
(G1+G2)

and Ǵ0 =
3
40
(N1 −N2) +

1
6
(G1 +G2) in (5.73), (5.74) and (5.75) respectively.

and for rotation

JΩ|x=−l = G2 −G1 − l(N1 +N2)−

ml4

EI

Ǵ
(l)
0tt

(
−K(0)

)
− Ǵ

(l)
0tKt(0)−

tˆ

0

Ktt

(
γ(x)(t− t1)

)
Ǵ

(l)
0t1
dt1

 (5.76)

JΩ|x=l = G2 −G1 − l(N1 +N2)−

ml4

EI

Ǵ
(r)
0tt

(
1−K(0)

)
− Ǵ

(r)
0t Kt(0)−

tˆ

0

Ktt

(
γ(x)(t− t1)

)
Ǵ

(r)
0t1
dt1

 (5.77)

and

JΩ|x=0 = G2 −G1 − l(N1 +N2)−

ml4

EI

Ǵ0tt

(
1−K(0)

)
− Ǵ0tKt(0)−

tˆ

0

Ktt

(
γ(x)(t− t1)

)
Ǵ0t1dt1

 (5.78)

where Ǵ
(l)
0 = − 41

1260
(N1 +N2)−

17

140
(G2 −G1), Ǵ

(r)
0 =

2

315
(N1 +N2)−

1

35
(G2 −G1)

and Ǵ0 =
11

840
(N1 +N2) +

13

280
(G2 −G1) in (5.76) - (5.78) respectively.

109



For a Voigt beam the formulae (5.76) - (5.78) become

Mav|x=∓ = N1 −N2 +
ml3

µI

Ǵ
(l),(r)
0t − E

µ

tˆ

0

e−
E
µ
(t−t1)Ǵ

(l),(r)
0t1

dt1

 (5.79)

and

JΩ|x=∓=G2−G1− l(N1+N2)−
ml4

40µI

́G(l),(r)
0t −E

µ

tˆ

0

e−
E
µ
(t−t1)Ǵ

(l),(r)
0t1

dt1

 (5.80)

5.5 Numerical results

Consider time-harmonic motion of a homogeneous viscoelastic beam. In this case the

constitutive relations (5.1) become

κ =
G

IA
(1 + iδ) (5.81)

with

δ =

∞̂

0

K
(γ
ω
z
)
eizdz (5.82)

where ω is circular frequency. Here and below the factor e−iωt is separated.

Let vertical motion of the beam caused by equal end forces, i.e. N(l) = −N(−l) =

N2 and G(±l) = 0 (see Figure 5.2). Thus, the equation (5.79) is in the form

Mav = −2N2

[
1 +

3

40
λ2
v(1 + iδ)

]
(5.83)

where

λv = ωl2
√

m

EI
(5.84)

110



The latter formula also corresponds to a two-term asymptotic expansion of the exact

solution, see Appendix A.2.

Numerical results are given in Figures 5.3 and 5.4 for the same values of the pa-

rameter β which is now is expressed by

β =
µ

l2

√
m

EI
(5.85)

In addition, we adapt here the notation a∗v = −Ma/2N2 and define the parameter

δ in 5.87 as

δ =
λvβ

1− iλvβ
(5.86)

As before, the two-term formula 5.87 extends the range of the applicability of

Newton’s second law to vertical motion of a bar. Similarly to the data displaced in

Figures 4.3 and 4.2, we observe a better accuracy of the aforementioned formula at

greater values of the parameter β responsible for the effect of viscosity.
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Figure 5.3: Vertical acceleration vs frequency (Real Part)

Rotation motion of the beam caused by equal end forces, i.e. N(l) = N(−l) = N2
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Figure 5.4: Vertical acceleration vs frequency (Imaginary Part)

and G(±l) = 0 (see Figure 5.2). In this case the equation (??) is written as

Jφtt = −2N2

3

[
1 +

3

40
λ2
v(1 + iδ)

]
(5.87)

where

λv = ωl2
√

m

EI
(5.88)

The latter formula also corresponds to a two-term asymptotic expansion of the exact

solution, see Appendix A.3.

Numerical results are given in Figures 5.5 and 5.6 for the same values of the pa-

rameter β which is now is expressed by

β =
µ

l2

√
m

EI
(5.89)

In addition, we adapt here the notation a∗v = −Ma/2N2 and define the parameter
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δ in 5.87 as

δ =
λvβ

1− iλvβ
(5.90)

The two-term formula 5.87 extends the range of the applicability of Newton’s sec-

ond law to rotation motion of a bar. Here we observe a better accuracy of the afore-

mentioned formula at greater values of the parameter β responsible for the effect of

viscosity.
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Figure 5.5: Rotation acceleration vs frequency (Real Part)
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Figure 5.6: Rotation acceleration vs frequency (Imaginary Part)
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Chapter 6

Application of the low-frequency

model to a coupled impact

6.1 A homogeneous elastic rod

For simplicity consider time-harmonic motion of a homogeneous elastic rod of length

2l ignoring the effect of viscosity (µ = 0). The equation of motion (4.1) becomes

Fx = mutt (6.1)

and the relation between strain and force can be written as

e(x, t) =
1

EA
F (x, t), (6.2)

where e = ux is the longitudinal strain as above.

The boundary conditions corresponding to the end forces arising in a coupled impact
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are given by

F (−l, t) = F1(t), F (l, t) = F2(t) (6.3)

Next by using dimensionless quantities

F∗ξ = uττ (6.4)

and

u∗ξ = εF∗ (6.5)

we seek for the solution of the problem (6.4) - (6.5) in the form (4.15).

At leading order

f0ξ = u0ττ and u0ξ = 0 (6.6)

subject to the boundary conditions

f0(−1, τ) = F1∗(τ) and f0(1, τ) = F2∗(τ) (6.7)

Immediately, we get from the second equation (6.6)

u0(ξ, τ) = v0(τ) (6.8)

Next, we have from the first equation (6.6) taking into account the imposed boundary

conditions (6.7)

v0ττ =
F2∗ − F1∗

2
(6.9)
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At the same time

f0 =
ξ(F2∗ − F1∗)

2
+

F2∗ + F1∗

2
(6.10)

At next order

f1ξ = u1ττ and u1ξ = f0 (6.11)

with the homogeneous boundary conditions f1(±1, τ) = 0. On integrating the second

equation (6.11) we arrive at

u1 =
ξ2(F2∗ − F1∗)

4
+

ξ(F2∗ + F1∗)

2
+ v1 (6.12)

The second derivative of (6.12) with respect to dimensionless time is given by

u1ττ =
ξ2(F2∗ττ − F1∗ττ )

4
+

ξ(F2∗ττ + F1∗ττ )

2
+ v1ττ (6.13)

We also get from the first equation (6.11) and the homogeneous boundary conditions

above

v1ττ = −
(
1

3
F2∗ττ +

1

6
F1∗ττ

)
(6.14)

Then, the acceleration of the right end of the rod is

u1ττ (1) =
5

12
F2∗ττ +

1

12
F1∗ττ (6.15)

Similarly, the acceleration of the left end is

u1ττ (1) =
5

12
F2∗ττ +

1

12
F1∗ττ (6.16)
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or in the original variables

Ma1 = F2 − F1 −
l2m

6EA
(7F2∗tt + 11F1∗tt) (6.17)

and

Ma2 = F2 − F1 +
l2m

6EA
(5F2∗tt + F1∗tt) (6.18)

After subtracting (6.18) from the equation (6.17) we get

M(a2 − a1) =
2l2m

EA
(F2∗tt + F1∗tt) (6.19)

On the other hand

F2tt = F1tt +Ma1tt (6.20)

Then

F1tt =
EA

2l
(a2 − a1)−

M

2
a1tt (6.21)

and

F2tt =
EA

2l
(a2 − a1) +

M

2
a1tt (6.22)

In terms of time harmonic motion the derived formulae (6.21) and (6.22) are given

by

F1 =
EA

2lω2
(a2 − a1)−

M

2
a1 (6.23)

and

F2 =
EA

2lω2
(a2 − a1) +

M

2
a1 (6.24)
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6.2 An inhomogeneous elastic rod of variable den-

sity

Consider time-harmonic motion of an inhomogeneous elastic rod of length 2l ignoring

the effect of viscosity (µ = 0). The equation of motion (4.1) becomes

Fx = m(x)utt (6.25)

and the relation between strain and force is in the form (6.2)

e(x, t) =
1

EA
F (x, t)

The boundary conditions corresponding to the end forces arising in a coupled impact

are given by (6.3). By using dimensionless quantities

F∗ξ = m∗(ξ)uττ (6.26)

and

u∗ξ = εF∗ (6.27)

we are looking for the solution of the problem (6.26) - (6.27) in the form (4.15).

At the leading order

f0ξ = m∗(ξ)u0ττ and u0ξ = 0 (6.28)
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subject to the boundary conditions

f0(−1, τ) = F1∗(τ) and f0(1, τ) = F2∗(τ) (6.29)

Immediately, we get from the second equation (6.28)

u0(ξ, τ) = v0(τ) (6.30)

Next, we have from the first equation (6.28) taking into account the imposed boundary

conditions (6.29)

v0ττ =
F2∗ − F1∗
1́

−1

m∗(ξ)dξ

(6.31)

At the same time

f0 =

F2∗

ξ́

−1

m∗(ξ1)dξ1 + F1∗

1́

ξ

m∗(ξ1)dξ1

2
+

F2∗ + F1∗
1́

−1

m∗(ξ)dξ

(6.32)

At next order

f1ξ = m∗(ξ)u1ττ and u1ξ = f0 (6.33)

with the homogeneous boundary conditions f1(±1, τ) = 0. On integrating the second

equation (6.33) we get

u1 =
1

1́

−1

m∗(ξ)dξ

F2∗

ξˆ

0

ξ1ˆ

−1

m∗(ξ2)dξ2dξ1 + F1∗

ξˆ

0

1ˆ

ξ1

m∗(ξ2)dξ2dξ1

+ v1 (6.34)
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The second derivative of (6.34) with respect to dimensionless time is given by

u1ττ =
1

1́

−1

m∗(ξ)dξ

F2∗ττ

ξˆ

0

ξ1ˆ

−1

m∗(ξ2)dξ2dξ1+F1∗ττ

ξˆ

0

1ˆ

ξ1

m∗(ξ2)dξ2dξ1

+v1ττ (6.35)

From the first equation (6.33) and the homogeneous boundary conditions above we

get

v1ττ = − 1(
1́

−1

m∗(ξ)dξ

)2

F2∗ττ

1ˆ

−1

m∗(ξ)

ξˆ

0

ξ1ˆ

−1

m∗(ξ2)dξ2dξ1dξ+

F1∗ττ

1ˆ

−1

m∗(ξ)

ξˆ

0

1ˆ

ξ1

m∗(ξ2)dξ2dξ1dξ


(6.36)

Then, the acceleration of the right end of the rod is

u1ττ |ξ=1=
1

1́

−1

m∗(ξ)dξ

F2∗ττ

1ˆ

0

ξˆ

−1

m∗(ξ1)dξ1dξ+F1∗ττ

1ˆ

0

1ˆ

ξ

m∗(ξ1)dξ1dξ

−

1(
1́

−1

m∗(ξ)dξ

)2

F2∗ττ

1ˆ

−1

m∗(ξ)

ξˆ

0

ξ1ˆ

−1

m∗(ξ2)dξ2dξ1dξ+

F1∗ττ

1ˆ

−1

m∗(ξ)

ξˆ

0

1ˆ

ξ1

m∗(ξ2)dξ2dξ1dξ



(6.37)
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Similarly, the acceleration of the left end is

u1ττ |ξ=−1=
1

1́

−1

m∗(ξ)dξ

F2∗ττ

−1ˆ

0

ξˆ

−1

m∗(ξ1)dξ1dξ+F1∗ττ

−1ˆ

0

1ˆ

ξ

m∗(ξ1)dξ1dξ

−

1(
1́

−1

m∗(ξ)dξ

)2

F2∗ττ

1ˆ

−1

m∗(ξ)

ξˆ

0

ξ1ˆ

−1

m∗(ξ2)dξ2dξ1dξ+

F1∗ττ

1ˆ

−1

m∗(ξ)

ξˆ

0

1ˆ

ξ1

m∗(ξ2)dξ2dξ1dξ



(6.38)

or in the original variables

Ma1 = F2 − F1 +
1

EA

F2∗tt

−lˆ

0

xˆ

−l

m(x1)dx1dx+ F1∗tt

−lˆ

0

1ˆ

x

m(x1)dx1dx

−

1

EA
1́

−1

m∗(ξ)dξ

F2tt

lˆ

−l

m(x)

xˆ

0

x1ˆ

−1

m(x2)dx2dx1dx+

F1tt

lˆ

−l

m(x)

xˆ

0

lˆ

x1

m(x2)dx2dx1dx


(6.39)

and

Ma2 = F2 − F1 +
1

EA

F2∗tt

lˆ

0

xˆ

−l

m(x1)dx1dx+ F1∗tt

lˆ

0

1ˆ

x

m(x1)dx1dx

−

1

EA
1́

−1

m∗(ξ)dξ

F2tt

lˆ

−l

m(x)

xˆ

0

x1ˆ

−1

m(x2)dx2dx1dx+

F1tt

lˆ

−l

m(x)

xˆ

0

lˆ

x1

m(x2)dx2dx1dx


(6.40)
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After subtracting (6.40) from the equation (6.39) we get

M(a2 − a1) =
1

EA

F2tt

lˆ

−l

xˆ

−l

m(x1)dx1dx+ F1tt

lˆ

−l

lˆ

x

m(x1)dx1dx

 (6.41)

On the other hand

F2tt = F1tt +Ma1tt (6.42)

where M =
ĺ

−l

m(x)dx.

Then

F1tt =

MEA(a2 − a1)−M
ĺ

−l

x́

−l

m(x1)dx1dxa1tt

2Ml
(6.43)

or

F1tt =
EA

2l
(a2 − a1)−

ĺ

−l

x́

−l

m(x1)dx1dx

2l
a1tt (6.44)

and

F2tt =
EA

2l
(a2 − a1)−


ĺ

−l

x́

−l

m(x1)dx1dx

2l
−M

 a1tt (6.45)

6.3 Evaluation of impact forces from experimental

data

In the equation for the impact force (6.21) the coefficients may be estimated through

least squares as

F1tt = k1(a2 − a1) + k2a1tt. (6.46)

Some of the results for the impact force and related spectra are demonstrated below

for k1 = −630100 and k2 = 65780. The results for Test 1 are illustrated in Figure 6.1,
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containing the comparison of experimental and predicted derivatives of the force F1tt,

spectrum of acceleration at the left end of the rod, spectrum of difference between ac-

celerations at both sides, spectrum of the force at the left end, and, finally, comparison

of experimentally measured and theoretically predicted forces.

It is remarkable that as follows from the theoretical consideration in the previ-

ous section the spectrum of a1 ∼ a2 and the spectrum of the difference a2 − a1 (or

Acceleration2−Acceleration1 on Figures 6.1 and 6.2) has to begin at the origin. The

violation of this requirement for available experimental data indicates that some fur-

ther careful analysis of data representation is required. However, even so, the results

for Test 1 show relatively good agreement between theoretical and experimental data.

We note that it is not always the case, see e.g. the results for Test 3, shown on

Figure 6.2.

More data for other tests may be found below.
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Figure 6.1: Numerical illustrations for test 1
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Figure 6.2: Numerical illustrations for test 3
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Let us also present some evidence of necessity of some further investigation of the

presented experimental data. As an example, we consider part of the recorded data for

acceleration at the right end of the freight car, showing with red solid lines the positive

values, and with the blue dotted lines the negative values, reflected into the upper half-

plane, therefore, essentially, the graphs on Figure 6.3 show modulus of acceleration. It

may be observed that the mean value of the data (and of course, the integral) are non-

zero, with negative part overwhelming the positive one. This provides a clear evidence

of further analysis of the recorded data.

Figure 6.3: Evidence of further investigation for test 3

Below we present the results of comparison of the theoretical results for F1tt versus

provided experimental data. Calculations are presented for the rest 17 tests, with solid
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line standing for theoretical calculations and dotted line depicting experimental results.

The values of the coefficients are taken as k1 = −630100 and k2 = 65780.

Figure 6.4: Numerical illustration (test
2)

Figure 6.5: Numerical illustration (test
4)

Figure 6.6: Numerical illustration (test
5)

Figure 6.7: Numerical illustration (test
6)
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Figure 6.8: Numerical illustration (test
7)

Figure 6.9: Numerical illustration (test
8)

Figure 6.10: Numerical illustration (test
9)

Figure 6.11: Numerical illustration (test
10)

Figure 6.12: Numerical illustration (test
11)

Figure 6.13: Numerical illustration (test
12)
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Figure 6.14: Numerical illustration (test
13)

Figure 6.15: Numerical illustration (test
14)

Figure 6.16: Numerical illustration (test
15)

Figure 6.17: Numerical illustration (test
16)

Figure 6.18: Numerical illustration (test
17)

Figure 6.19: Numerical illustration (test
18)
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Figure 6.20: Numerical illustration (test 19)
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Conclusion

In this thesis, an approach for the prediction of contact forces arising at car-to-car

impacts is developed. An ANN routine was designed for this case. Theoretical formu-

lations within rigid body dynamics were adapted for training the ANN. Low-frequency

corrections to rigid body dynamics were derived for extension and bending of an inho-

mogeneous viscoelastic bar. Implementation of the proposed methodology for analysis

of experimental data leads to the following conclusions

• ANN seems to be a beneficial tool for predicting the contact forces in freight

cars. At the same time, there is an issue related to achieving a required accuracy

mainly due to a limited amount of tests.

• Rigid body dynamic models are useful for theoretical training of ANN. However,

the validity of linear multibody models may be restricted because of nonlinearity

of impact phenomena. On the other hand, the efficiency of general 3D contin-

uum models is rather limited due to computational problems as well as lack of

information on problem parameters, e.g. structure topology.

• The derived pseudo-rigid dynamic model incorporating the effect of internal struc-

ture demonstrates a wider range of validity than that started from the rigid body

dynamic framework. The advantage of the aforementioned formulation has been
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proved by comparisons with a real experimental setup in case of a coupled impact,

see Chapter 6.

The developed perturbation procedure enables various extensions and is not re-

stricted to the field of railway dynamics. In particular, a pretty similar analysis can be

initiated for two-dimensional antiplane and plane problems for a viscoelastic rectangle

subject to stresses prescribed along its sides. For an elongated rectangle there is an ob-

vious possibility for applying higher-order asymptotic plate models, e.g. see [103, 104].

In this case not only one-dimensional equations of motion but also related boundary

conditions should be refined using the dynamic version of the Saint-Venant’s principle

[105, 106]. Calculation of low-frequency corrections for more general geometries should

rely on numerical calculations. However, the perturbation algorithm presented in the

thesis should not be subject to major changes.

In addition, the proposed scheme is not restricted to the utilised linear viscoelastic

model. More elaborate theories taking into account non-linearity and time inhomo-

geneity of viscous behaviour can be taken into consideration.
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Appendix A

Exact solutions for homogeneous

rods and beams

Substitute the formulae (4.85) and (5.81) into the equations of motion (4.1) and (5.1),

(5.2) specified for a time-harmonic motion of a homogeneous bar and introduce dimen-

sionless variables. Then, these equations take the form

uξξ + q2hu = 0 (A.1)

and

wξξξξ − q4v,rw = 0 (A.2)

where q2h = λ2
h(1+iδ) and q4v,r = λ2

v(1+iδ). Subject them to the boundary conditions

corresponding to the problems analyzed in the previous section, i.e.

uξ|ξ=−1 = 0, uξ|ξ=1 =
F2l(1 + iδ)

EA
(A.3)
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wξξξ|ξ=±1 = ∓N2l
3(1 + iδ)

EI
, wξξ|ξ=±1 = 0 (A.4)

and

wξξξ|ξ=±1 =
N2l

3(1 + iδ)

EI
, wξξ|ξ=±1 = 0 (A.5)

A.1 Horizontal motion

We are looking the solution of the problem (A.1) subject to the boundary condition

(A.3) in the form of

u(ξ) = C1e
qhξ + C2e

−qhξ (A.6)

First derivative of the (A.6) is given by

uξ(ξ) = C1qhe
qhξ − C2qhe

−qhξ (A.7)

After substituting (A.6) to he boundary condition (A.3) we get

C1 =
Fleqh(1 + iδ)

2EA sinh 2qh

C2 =
Fle−qh(1 + iδ)

2EA sinh 2qh

(A.8)

and finally

u(ξ) = −F2l(1 + iδ) cosh(qh(1 + ξ))

EAqh sinh 2qh
(A.9)

In this case the horizontal acceleration of the center (ξ = 0) is given by

ah =
F2qh

M sinh qh
(A.10)
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Over the low-frequency band λh ≪ 1 we get qh ≪ 1 assuming that δ ∼ 1 (γ ∼ ω)

in (A.1). As a result, we arrive at the expansion

ah =
F2

M

(
1 +

q2h
6

+ . . .

)
(A.11)

A.2 Vertical motion

For the case of the vertical motion the solution of the problem (A.2) subject to the

boundary condition (A.4) in the form of

w(ξ) = C1 cosh qvξ + C2 cos qvξ (A.12)

the third derivative is given by

wξξξ(ξ) = C1q
3
v sinh qvξ + C2q

3
v sin qvξ (A.13)

By substituting (A.13) to he boundary condition (A.4) we get

C1 =
Fl3(1 + iδ) cos qv

EIq3(cos qv sinh qv + sin qv cosh qv)

C2 =
Fl3(1 + iδ) cosh qv

EIq3(cos qv sinh qv + sin qv cosh qv)

(A.14)

and finally

w(ξ) =
N2l

3(1 + iδ)

EI

cos qv cosh ξqv + cosh qv cos ξqv
q3v(cos qv sinh qv + sin qv cosh qv)

(A.15)

The associated acceleration of the center ξ = 0

av = −2N2

M

qv(cos qv + cosh qv)

cos qv sinh qv + sin qv cosh qv
(A.16)
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has the following low-frequency expansion

av = −2N2

M

(
1 +

3

40
q4v + . . .

)
(A.17)

A.3 Rotation

Similarly the rotation motion the solution of the problem (A.2) subject to the boundary

condition (A.5) in the form of

w(ξ) = C1 sinh qrξ + C2 sin qrξ (A.18)

the third derivative is given by

wξξξ(ξ) = C1q
3
v cosh qrξ + C2q

3
r cos qrξ (A.19)

By substituting (A.19) to he boundary condition (A.4) we get

C1 =
Fl3(1 + iδ) sin qr

EIq3(sin qr cosh qr − cos qr sinh qr)

C2 =
Fl3(1 + iδ) sinh qr

EIq3(sin qr cosh qr − cos qr sinh qr)

(A.20)

and finally

φ(ξ) =
N2l

3(1 + iδ)

EI

sin qr cosh ξqr + sinh qr sin ξqr
q2r(sin qr cosh qr − cos qr sinh qr)

(A.21)

The acceleration of the center ξ = 0

ar = −2N2

M

q2r(sin qr + sinh qr)

sin qr cosh qr − cos qr sinh qr
(A.22)
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has the following low-frequency expansion

ar = −2N2

3M

(
1 +

11

840
q4v + . . .

)
(A.23)
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Appendix B

Brief description of the developed

software

The C# programmes with applications for analytical models (Kelvin-Voigt and Mod-

ified standard-linear ), finding force closure, processing and analysing experimental

data, several artificial neural networks ’ANN’ were developed. For implementation

aforementioned applications the study matherials and algorithms from [107]-[110] were

used.

B.1 Application ’Model’

Application ’Model’ was created to facilitate the research and produce the results for

analytical models, train artificial neural networks (ANN) and evaluate the results of

models, ANN and the real life experiment data.

Application consists of the several modules:

• Implementation of analytical model with a linear spring ’Ideal Model’ (see Figure

B.1)

139



• Analytical model with a nonlinear spring and damper ’Damper Model’ (see Figure

B.2)

• Processing and analysis of experimental data ’Experiment Data’ (see Figure B.3)

• Implementation of several artificial neural networks ’ANN’ (see Figures B.4 and

B.5)

Modules ’Ideal Model’ and ’Damper Model’ allow to generate any volume of data

and set different analytical model characteristics such as stiffness, mass, initial velocity,

viscosity and etc. It calculates accelerations, velocities and forces using analytical

models with linear spring and nonlinear spring with viscous damper, generates and

saves data sets to file for ANN training with different input and output parameters.

Module ’Experiment Data’ allows to upload real experiment data, analyse it, gen-

erate and save the file for training of ANN.

Module ’ANN’ has two types of neural networks: Multi Layer Perceptron (MLP)

with Backpropagation ”Backpropagation” and Radial Basis Function network ”RBF”.

It takes the file with training data (which automatically randomly divided in to training

and test data sets) and construct the MLP with different activation functions (e.g.

linear, sigmoid, tanh, step, log) and numbers neurons and hidden layers. During the

ANN training charts demonstrate progress showing the error and the average output

error for the data provided. After training, you can save down the ANN and later

upload it with a new data to continue training or to evaluate analytic model or real

life experiment data.
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Figure B.1: Screenshot for module “Ideal Model”

Figure B.2: Screenshot for module “Damper Model”
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Figure B.3: Screenshot for module “Experimental Data”

Figure B.4: Screenshot for ANN training
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Figure B.5: Screenshot for loading ANN data

B.2 Application ’Time Close Model’

Application ’Time Close Model’ was to facilitate to developed the research and produce

for evaluation the reaction force using smoothing adaptive method and sin approxima-

tion.

Application consists of the several modules:

• Processing and analysis of experimental data

• Implementation of sin approximation method

• Implementation of smoothing adaptive method

• Generating ANN training data file

Application (see Figure B.6) allows to upload any volume of data, either real experi-

ment data or data generated by the analytical models, analyse it, manually sets different
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time intervals, increments and calculates closing forces and times and, finally,generate

and save the file for training of ANN.

Figure B.6: Screenshot for Time Close Model
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