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Abstract

This research is inspired by mathematical modelling of railcar dynamics and deals with
developing a methodology for estimating the impact loads acting on freight cars using
measured acceleration data in order to determine their limiting magnitudes for the
alarm generation.

The developed scheme consists of the following steps. First, artificial neural network
technology (ANN) is adapted to predict longitudinal forces in freight cars. Impact
tests data for accelerations and forces were used for training ANN. The issue related
to the lack of experimental results for training the network is addressed. A possibility
of alternative theoretical training using mathematical models is studied. A restricted
scope of conventional mathematical models based on rigid body dynamics is discovered.
In particular, these models ignore the effect of self-equilibrated loads and internal
dissipation.

Next, an advanced perturbation model is derived, taking into account low frequency
internal motion with inhomogeneous stiffness, density, and viscosity incorporated. The
developed advanced model is applied to the evaluation of impact forces arising at
coupled impact.

The aforementioned model follows from a low-frequency analysis of a viscoelastic

inhomogeneous bar, subject to end loads. The longitudinal variation of the problem



parameters is taken into consideration. Explicit asymptotic corrections to the conven-
tional equations of rigid body motion are derived in an integro-differential form. The
refined equations incorporate the effect of an internal viscoelastic microstructure on
the overall dynamic response. Comparison with the exact time-harmonic solutions for
extension and bending of a bar demonstrates the efficiency of the developed approach.

KEY WORDS: Railcar dynamics, artificial neural network, viscoelastic, microstruc-

ture, perturbation, rigid body, low-frequency, bar, contact forces.
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Chapter 1

Introduction

The cargo and freight damage suffered in the process of railway transportation is an
important economic and safety problem. The development of an advanced methodol-
ogy for estimating, analysing and predicting forces, accelerations and other reactions
occurring upon collisions is of obvious interest from a practical view. Most of the
damage is attributed to the car-to-car end impacts from coupling [1]. The damage
is usually caused by high car and load acceleration, or by the fault or wear of the
coupling system, including couplers, cushioning units, draft stills and gear. Artificial
neural networks, ANNs [2]-[6], seem to be a promising methodology for tackling the
aforementioned problem which may also benefit greatly from making use of theoretical
modelling. Rigid body dynamic models [7, 8] have been widely used for determination
of the reaction forces. However, the power of the traditional formulation appears to
be rather limited. In particular, they do not allow straightforward evaluation of the
longitudinal forces in case of coupled impact for self-equilibrating loads (F» — F; = 0)
and usually do not take into consideration inhomogeneity of the car and internal dis-

sipation of energy. On the other hand, general three dimensional continuum models,
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e.g. [9], are too complicated for using with the industrial software and require much
more information on the problem parameters including spatial geometry, as well as
mass and stiffness variation. This motivates refining of the classical models by using
low-frequency perturbations of rigid body motions, see e.g. for viscoelastic inhomo-
geneous rod in differential form [10], for viscoelastic inhomogeneous rod and beam in
integro-differential form [11, 12] and practical implementation of the derived quasi-rigid
body motion model [13]. Such an approach is consistent with modern trends in multi-
scale modelling based on the concept of frequency-dependent mass within the classical
Newton law, e.g. see [14]. The developed approach is applied to the evaluation of the
impact forces in the case of a coupled impact.

As it has been already mentioned, most of the damage appears due to high forces
in the connection and deterioration of the coupler appliance. The original problem is
separated into two independent steps. The first step is to determine the reaction force
and, the second one is to find out whether the coupler is broken. In Chapter 3 we
investigate whether an artificial neural network can be effectively used for the predic-
tion of problem parameters. The development of an optimal network model consisted
of the following stages: collecting and processing experimental data; selection of the
network topology, including the number of hidden layers and the number of neurons
in each layer; choosing activation functions; and finally, training and testing of the
aforementioned network for simulating the required parameters. The series of tests on
the collision of cars are conducted with different impact types, including coupled and
free to roll impacts. The impacts data, supplied by the industrial partner, include ini-
tial velocities, masses, accelerations and forces. Initial data processing involves either

filtering, scaling or smoothing. A special network was designed for each type of the
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collision. The problem of determining collision type is solved using spectral frequency
analysis of accelerations [15]-[17]. In the case of a coupled impact there is no zero
harmonic, otherwise the latter takes non-zero values, see Subsection 3.3.1. The devel-
oped technique is tested and analysed using experimental data and enables to achieve
almost 100% accuracy. The problem of the wearing down of draft gear equipment
is resolved by finding out a closing force and comparing it with the given value for
a serviceable draft gear. The equipment is assumed to be in order, if the calculated
force is equal or greater than the given one. The theoretical model for solving the
formulated problem, see Subsection 3.3.2, is based on calculating an intersection point
of the curve related to a smoothed experimental graph and float associated with a the-
oretical sinusoidal approximation. The second step is oriented to predict the maximum
of the reaction force by using the ANN. Two types of the ANN, including Multilayer
Perceptron (Subsection 3.1.3) and Radial Basic Function Network (Subsection 3.1.5),
are used to determine an unknown relationship between input and output data. The
goal of MLP is to create a model that correctly maps the input (acceleration) to the
unknown output (reaction force) by using measured data so that the model can then
produce a desired output. RBF comprises one of the most widely utilised network
models for function interpolation and gives a greater scope over the range of nonlinear
functions.

Several mathematical models were developed for training and testing the network.
They allow to generate various data with different parameters including mass, stiffness,
initial velocities as well as others. The first model is a two-degree of freedom system
consisting of two masses connected with a linear spring and viscous damper system,

see Subsection 3.2.1. The second developed model is a system of two masses connected
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with 2 linear springs and viscous damper/spring system, see Subsection 3.2.2. Both
of the mentioned ANN demonstrate exceptionally accurate results when applied to
these models. The average error between predicted and experimental maximum forces
is approximately 2%, see Subsection 3.3.3. Conversely, an acceptable agreement with
experimental datasets can be an issue because of a limited number of available ex-
periments and lack of the information about some of problem parameters. However,
the accuracy of the ANN for real experiment data is not high enough for industrial
application. It is around 11% for each type of the impact. To improve the perfor-
mance of the ANN, a number of tests with different parameters, including stiffness,
mass, velocity, dissipation coefficient and others, are required. Compared with impact
tests, numerical simulation is a more economical and faster method for investigating
the analysed phenomena. At the same time, all mathematical models based on rigid
body dynamics do not take into account the viscoelastic material properties and are
not fully adequate for investigations car collision, especially in the case of coupling
cars. The above limitations motivate the development of a new model.

The rigid body dynamic models mostly ignore small deformations of the car as well
as the internal inhomogeneity and dissipation of energy. In the Chapter 4 a pseudo-
rigid body model based on the principles of linear elastodynamics is developed. We
start by analysing low - frequency perturbations of rigid body motion of a viscoelastic
inhomogeneous rod subject to edge loads. Governing integro-differential equations are
studied. We adapt a well established mathematical asymptotic procedure [18]-[20].
The characteristic timescale is assumed to be much greater than the period of free
vibrations of the rod. First, we determine a rigid body acceleration from the Newton’s

second law. Then, we calculate the leading order variation of the stress along the rod.
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At the next stage, we evaluate the sought for correction to the rigid body acceleration.
It is worth noting that the representation of the chosen constitutive relation with the
strain in the left-hand side is essential for perturbing rigid body motion [12]. Also, an
important quantity corresponding the low-frequency variation of the longitudinal force
along the length is crucial for our derivation. The obtained formulae represent asymp-
totic corrections to the classical equations of rigid body dynamics incorporating the
effect of internal inhomogeneity and dissipation on the overall dynamic response. The
equations governing perturbed rigid body motion enable, in particular, the evaluation
of low-frequency behaviour induced by self-equilibrated end loads. The derived equa-
tions take a simpler and easy to use form for the variety of the particular cases with
different variation of the Young’s modules, density, stiffness and viscosity functions, see
Section 4.3. Finally, to demonstrate a high level of accuracy as well as other advantage
of the suggested method, its implementation is compared with the exact solution for a
Voigt homogeneous rod, see Section 4.4.

The Chapter 5 deals with perturbed rigid body motion of an inhomogeneous Euler-
Bernoulli beam loaded by end shear forces and moments. The perturbation scheme for
a rod, proposed in the previous chapter, is now extended to a more sophisticated con-
figuration for an inhomogeneous viscoelastic beams. A typical timescale characterising
viscous behaviour is assumed to be much greater than the period of bending vibrations
of the ends. The consideration is restricted to a symmetry of problem parameters that
enables separation of vertical, see Subsection 5.3, and rotational motions, see Sub-
section 5.3. As before, we determine a rigid body acceleration. Then, we calculate
the leading order variation of the longitudinal force and bending moments along the

beam. Next, we evaluate the sought for corrections to rigid body accelerations ex-
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pressed in terms of the shear forces and bending moments. Again, the representation
of the constitutive relations with the bending strain in the left-hand side is handy for
perturbing rigid body motion. Several examples for an inhomogeneous beam illustrate
the developed methodology. Comparison with the exact solutions for vertical and ro-
tational motion of a Voigt material provides a proof of the asymptotic consistency of
the proposed scheme, see Section 5.5.

The developed methodology is applied to the evaluation of the impact forces in the
most sophisticated case of a coupled impact. Elastic rods with uniform and variable
density are studied in Chapter 6. Analysis of the available experimental data and their
comparison with theoretically predicted forces are discussed. The experimental and
predicted time derivatives of the impact forces show a relatively good agreement.

The advantage of the perturbed rigid body dynamic model incorporating the effect
of the internal car structure is proven by numerical results. There is a considerable
potential for further development and implementation of the designed procedure taking
into account more precise structural models of freight cars, in particular, incorporating
micro-resonance phenomena. There is also a clear possibility to use a similar approach
for evaluating impact forces in tanks, see [21].

The main results of the thesis were presented at 17th Workshop on Advances in Ex-
perimental Mechanics (IWAEM) 2013 [10], 9th International Conference on Structural
Dynamics EURODYN-2014 [11], EUROMECH-Colloquium 574 [13] and also delivered

at applied mathematics seminar at Keele University.
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Chapter 2

Brief literature review

Recently, numerous identification approaches predicting dynamic behaviours of freight
car have been developed. In the case of the considered problem they can be generally
classified into two groups: mathematical model-based approaches and procedures based
on artificial neural network (ANN) prediction.

ANN is a biologically inspired computational model which consists of a network
architecture composed of artificial neurons [22]. The structure contains a set of param-
eters, which can be adjusted to perform certain tasks. Selecting and pre-processing
the datasets is the first and one of the most important steps to develop the appro-
priate network topology [23, 24]. ANN may be separated into two classes depending
on their learning principles - unsupervised networks and supervised networks. Super-
vised learning means the adaptation of network’s behaviour to the given input-output
relationship. Typical tasks for supervised networks are function regression, pattern
recognition and time series prediction. This class includes networks such as Multi
Layer Perceptron (MLP) and ADALINE (Adaptive Linear Neuron or later Adaptive

Linear Element) [25], Radial Basis Function Network (RBF) [26], Support Vector Ma-
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chines (SVM) [27] and Hopfield Network [28]. The unsupervised learning networks
adapt their internal structure to the structural properties of the input. In other words,
such networks have the ability to learn and organize information without generating an
error signal to evaluate a potential scenario [29]. Examples of these networks include
Self-Organizing Map (SOM) or Kohonen Map (SOFM) [30] and Restricted Boltzmann
Machine (RBM) [31]. The mentioned networks are highly competitive for tackling of a
variety of problems, such as noise reduction, compressing and interpolating data. The
Multilayer Perceptron with the Back-Propagation training algorithm (BPNN) [32] net-
work is seen to be highly important and well supported out of the range of the other
neural networks. Traditionally, the learning problem for MLP is to minimize an error
function of free parameters in order to fit the outputs to an input-target dataset [33].
In the framework of the proposed research, the neural network is used to determine an
unknown relation between input (accelerations) and output (forces) data. The BPNN
performs relatively well, but is affected by a slow convergence and strict adherence
to local minima [34]. The above issue may be readdressed by using a better activa-
tion function [35], choosing a dynamic learning rate and momentum term [36],[34] or
modifying the optimization strategy and/or employing adaptation rules other than the
gradient descent [22]. The RBF network is one of the most widely used networks for
function interpolation and gives a broader scope over the range of nonlinear functions
[37]. The output of this network is a linear combination of the radial basis functions
depending on the inputs and neuron parameters. They have a tendency to require
more data than a MLP [38] due to the locally acting nature of RBFs. Both of the
mentioned ANN demonstrate exceptionally accurate results when applied to analytical

models. At the same time an acceptable agreement with experimental datasets can be
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an issue due to a limited number of available experiments and lack of the information
on several problem parameters. A substantial amount of tests with different parame-
ters, including stiffness, mass, velocity, dissipation coefficient and others are required
to improve the performance of the ANN.

Compared with impact tests, numerical simulation is a more economical and faster
method for investigating the analysed phenomena. Computational procedures for pre-
dicting longitudinal forces in railway dynamics, e.g. see recent contributions [1, 40]
and references therein, are based on the traditional equations of rigid body motion.
Basically, it is a multiple degree of freedom vibrating system [41] for which the equa-
tion of motion can be written down using Lagrange-D’Alembert’s principle of dynamics
equilibrium [42]. Analysis within the framework of the multibody dynamic has been
carried out in the papers [43, 44] for rigid bodies system, [45] for system of rigid with
deformable components and adaptation of a multibody dynamical formalism for satel-
lite dynamics [46]-[48]. Various formulations have also been developed to determine
the impact force during the contact period starting from the co-called ”continuous
analysis” [49]-[52]. The continuous contact force models deal with the forces applied
to spring-damper elements, which can be linear, such as the Kevin-Voigt viscoelastic
model [53, 54], Maxwell model [55], Standard-Linear and Burger models, or non-linear,
such as the Hunt and Crossley model [56]. However, the linear models are not always
very accurate since they do not incorporate the overall nonlinear nature of the impact.
The aforementioned nonlinear model in [56] is effective and accurate predominantly
for long time impacts. A more suitable model for the impact force is based on the
modification of a nonlinear Hertz force-displacement law model in conjunction with a

hysteresis damping function representing the energy-dissipation [57, 58]. The math-
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ematical models, derived in [59], show clearly the influence of longitudinal forces on
cargo. The numerical methods, such as Runge-Kutta fourth-order [60], Euler tan-
gent [61] and Newmark-$ method [62], are widely applied in implementation of all
of the abovementioned models. The rigid multi-body models ignore the effect of self-
equilibrated loads and internal dissipation. In particular, evaluation of the longitudinal
forces for the case of a coupled impact could be an issue for this type of model.
Mathematical modelling of an internal microstructure, aimed to extend the range
of validity of the traditional equations of rigid body dynamics, is of an obvious interest
for various industrial applications. For example, they may benefit from taking into
account the absorption of vibration energy by transported loads including raw mate-
rials. Amongst the publications on the subject, we mention [63]-[65], which suggest a
general methodology within the framework of linear anisotropic elasticity leading to
a sort of 'macroscale’ Newton’s second law with a frequency-dependent mass. This
methodology was earlier explored by [66] for modified Newtonian dynamics. We also
cite here related publications [67] dealing with homogenisation of viscoelastic periodic
media, such as composite elastic medium [68, 69], heterogeneous thermally conducting
medium [70], two-phase conducting composites, an anisotropic fibres and isotropic ma-
terial [71], composite material constituted of solid fibers and of a solidifying matrix [72]
and random media [73]. This thesis is concerned with a low-frequency analysis of an in-
homogeneous viscoelastic microstructure. A similar methodology was earlier exploited
both for periodic and thin functionally graded structures, e.g. see [75]-[77] and refer-
ences therein. The proposed perturbation scheme is developed for an inhomogeneous
viscoelastic bar governed by the conventional integro-differential constitutive relations

in linear viscoelasticity with strains on the left side. In-plane horizontal, vertical and
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rotational motions induced by prescribed end forces and moments are studied starting
from the classical one-dimensional theories for bar extension and bending. In the case
of bending, only the symmetry of problem parameters is considered, allowing for the
the separation of vertical and rotational motions. A typical timescale characterising
viscous behaviour is assumed to be much greater than the time elastic waves take to
propagate the distance between the ends of the bar [12].

Explicit low-frequency corrections to the equations of rigid body motion are con-
structed in Chapter 4 and Chapter 5. They are given in the form of integro-differential
operators acting on a longitudinal force or bending moment. An example of a ho-
mogeneous bar is presented in Sections 4.3.4 and 5.4.3. Comparison with the exact
solutions of the original time-harmonic problems for the extension and bending of a
bar (see Sections 4.4 and 5.5) demonstrates the advantages of the proposed approach.
Numerical data are calculated for a Voigt rod and beam. The developed methodology
is tested and analysed on the experimental data in the most sophisticated case of a
coupled impact. Second contact force derivatives were predicted. The comparison of
experimental and predicted derivatives of the force shows relatively good agreement

between them.
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Chapter 3

Investigation of maximal forces

using artificial neural networks

(ANN)

3.1 Theoretical background of ANN

Artificial Neural Network (ANN) - is a series of algorithms that attempt to identify the
relationships in a set of data by using a process that imitates the way the human brain
operates. There are many different types of ANN depending on the problem which has
to be solved (recognizing patterns, classification, data mining and predictions) and the
training data, representing the task to be learnt [78, 79] . The most common to all of

those components can be abstracted in the following way:
e a set of input and output units;

e a pattern of connectivity - assign the relations between the units set (weight

value);
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e a set of rules for propagating signals through the network (controlling when units
can be updated), combining input signals (summarizing the weight values of the
units) and calculating an output signal (determine the output units by using the

activation function);

e a weight adaption rule (error-correcting rule to adapt the weight).

Depending on the training algorithms the Neural Networks (NN) are commonly clas-
sified to unsupervised networks and supervised networks. Supervised learning occurs
when each sample in the training sets specifies all inputs as well as the outputs (for
example, regression and classification tasks, time series prediction). In case of the the
unsupervised learning the only collection of the sample inputs presented (for example,
associative memory, grammatical induction and noise filtering tasks).

First step for design the optimal and appropriate network solution is to select
[80] and preprocess the data sets [81]. Initial preprocessing data can be a rather
simple procedure such as scaling, smoothing, normalization, as well as a complicated
one involving advanced statistical methods [82]. The second step is to choose the
appropriate network model, depending on task to be solved, then experimentally specify
a network topology (number of units, connections) and, finally, set up the learning

parameters [83].

3.1.1 Basic neural network components. McCulloch and Pitts’
neuron

The most common neuron model (neuron and a networked interconnection structure)

has been developed by McCulloch and Pitts [38], see Figure 3.1.
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Each neuron consists of a net and an activation functions. The net function de-
termines how the network inputs x;, 1 <7 < N are combined inside the neuron. The

most commonly used activation function:

N
TLth = Zw,]x, + 9, (31)

i=1

where w;;, 1 <i < N are weights, and 6 is bias (or threshhold). The output of the
neuron, which is denoted by o; in Figure 3.1, is related to the network input net;

through the activation function:

0; = f(net;). (3.2)

The other commonly used activation functions are

o flnet)=(1+ 6_5"€t)_1 - sigmoid

f(net) = tanh(Bnet) - hyperbolic tangent

f(net) = anet + b - linear

1 (net-w? )
e 202 - Gaussian

* f(net) =

—1 if net<0
o f(net) = - step

s‘
3
Q

1 if net>0
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Figure 3.1: McCulloch and Pitts’ neuron model

3.1.2 Training of neural networks

A training algorithm is to set up the network’s weights and thresholds to minimize
the prediction error made by the network. On the first iteration the weight value is
initiated with some small random parameters. The error of a particular configuration
of the network can be determined by running all the training cases through the net-
work, comparing the actual output generated with the desired or target outputs. The
differences are combined together by an error function to give the network error [84].
The most common error functions are the least mean squared error (LMS), proposed
by Widrow and Marcian Hoff in 1960, usually used for regression problems, and the

cross entropy functions [85], usually used for maximum likelihood classification.

!The picture is taken from Wikipedia
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3.1.3 Multilayer perceptron

A multilayer perceptron (MLP) neural network model firstly was proposed by Rosen-
blatt [87]. More resent variation of MLP consists of a feed-forward, layered network of
McCulloch and Pitts’ neurons with a nonlinear, continuously differentiable activation
function. Every node in a layer is connected to every other node in the neighboring

layer [34]. A typical MLP configuration is illustrated in Figure 3.2.

Input layer Output layer

Hidden layers

Figure 3.2: Scheme of a multilayer perceptron network?

The MLP is commonly used in regression problems, where the objective is to esti-
mate the value of a continuous output variable, given the known input variables. In
other words MLP is applied for approximating a real valued target functions. More-
over, in view of the Kolmogorov theorem any continuous function can be implemented
by the Multilayer Perceptron with at least one hidden level. Also in [88] were de-
rived the hidden units numbers depending on the estimating function properties and
on the accuracy of its approximation. Common training algorithms for the MLP are

backpropagation [25] and conjugate gradient [89, 94].

2The picture is taken from ecee.colorado.edu website
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3.1.4 Backpropagation learning of multilayer perceptron

The BPNN learning algorithm is based on calculating the output layer errors to find
out the errors in the hidden layers. An appropriate choice of the weight matrices
is a key step in applying the MLP. The weight is feeding into each layer of neurons
from a weight matrix of that layer (the input layer does not have a weight matrix as
it contains no neurons) [25]. The values of these weights are found using the error
back-propagation training method [22]. BPNN learning algorithm defines two sweeps:
forward sweep propagates the input vectors through the network to provide outputs
at the output layer and backward sweep propagates back the error values through the
network to determine how the weight should be changed during the training.

The error E, for the pattern p can be defined as

Ey= 5> (tj— o), (3:3)

N
j=1

DO | —

where t; denotes desired output and o; the actual output and the overall error

E=YE,

The derivative of the error is given by

OE  OE 0o; Onet;

- 3.4
0wij 80]' 877,6{?]' 8wij ( )
We now define d; by
oE
S 3.5
J Onet; (3.5)
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oF
On the other hand we notice that ¢; = ——=—, therefore

do;’
% = _g_fj aioeij (3.6)
By using the definition of the overall error, we have
G =t =0 (3.7)
For activation function the output o; is
0; = f(net) (3.8)
and so the derivative [’ is given by
ai(;j — f'(nety). (3.9)
Hence, we deduce that
0 = (t; — 0;) f'(net;) (3.10)
After substituting the product of each derivative into (3.4), we obtain
(;LEM = —(t; — 0j) f'(net;)x; (3.11)
Therefore the weight change for a unit may be written as
Aw;; = ndjz; (3.12)
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where z; is the output unit ¢ and 7 is the learning rate. For a hidden unit the

error is given by

(Sj = f’(netj) Z 5kwkj (313)
k

where index k£ stands for the sending back error layer.

Therefore, the weight update formula is given by

In order to reduce the effect of the weight changes oscillating the momentum term «

is added in the previous formula of the weight change
Awg;(k + 1) = n(d;0;) + alAwy; (k) (3.15)

MLPs have several significant advantages over conventional approximation. First, MLP
hidden unit output change adaptively during training, making it unnecessary for the
user to choose them beforehand. Second, the number of free parameters can be in-
creased by simply increasing the number of hidden units. Third, MLP basic functions
are bounded, making round-off and overflow errors unlikely [38].

Among the disadvantages of the MLP compared to conventional approximations we
note its rather long training time, sensitivity to initial weight values and the problem of
"local minima”. In addition, determination of the optimal amount of training epoch is
difficult and the common solution to stop the training, when the validation error starts
to increase, does not guarantee the optimal performance. Proposed approaches for
addressing network mostly based on modification of the learning rate and momentum,

using adaptive momentum coefficient instead of fixed, e.g., see [90, 91], or adaptive
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learning rate coefficient [92], activation function, using combination of polynomial,

periodic, sigmoidal functions [93], or learning algorithm , e.g. see references in [34].

3.1.5 Radial basis function networks

A radial basis function network (RBF') is another neural network used for classification
and general function fitting. It is a feed forward neural network using the radial basis
activation function.

RBF network in its simplest form is a three-layer network (see Figure 3.3) with the
usual input layer to distribute a pattern to the first layer of weight, a hidden layer and
output layer [38]. For each hidden unit there is a function ¢. The typically used radial

basis functions are
o o(r) = e )* - Gaussian

o ¢(r) = /14 (er)? - multiquadric

1
e ©(r) = ————— - inverse quadratic
1+ (er)?
1 . . .
o o(r)= 1—()2 - inverse multiquadric
+ (er
where r =|| z — z; ||.

The collective activations of all the hidden units define the vector to which the

input vector has been mapped:

p(x) = [p(21), p(22), - -, p(xn)] (3.16)

where N is the number of hidden units and z is the input vector.

3The picture is taken from bio.felk.cvut.cz website
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Figure 3.3: Scheme of a radial basis function network®

The weight connecting to a hidden unit define the center of the radial basis function

for that hidden unit. The input to a unit is in a form:

n

net; =| @ —w; = | D (@ — wy)? (3.17)

i=1

where n is the number of input units.
First layer of weights are the chosen centers of the radial basis functions, second
layer simply performs a linear addition of the outputs from the hidden layer. By using

the Widrow-Hoff learning law the adjustment to be made is:

Aw = nonet (3.18)

RBF networks can provide a fast and accurate means of approximating a nonlinear
mapping based on observed data. Due to the locally acting nature of RBF's, they have
a tendency to require more sufficient data that represents all aspects of the problem

being solved.
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Thus, the advantages of application of the ANN for the purpose of identification the
reaction between the input and output parameters, are the network learning ability,
solving the problem without finding and describing method, ability for generalization,
easier implementation in any application. The disadvantages are requirement of high
processing time, sufficient number of data, and inability to make changes when the

network is trained.

3.2 Basic analytical models of railcar interaction

Here we present some elementary analytical models for railcar interaction, which were

used for generating data for training of the ANN in the first part of the project.

3.2.1 Viscoelastic Kelvin-Voigt impact model

Consider a two-degree of freedom system of two masses connected together by a coupler

with linear spring and a viscous damper elements, see Figure 3.4.

Figure 3.4: Impact viscoelastic Kelvin-Voigt model

According to Newton’s second law the differential equations of motion for the spring-
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mass system are written as

mix1 = c(xe — 1) + p(T2r — T14)

(3.19)

Mooy = c(x1 — x9) + p(T1r — Tor)

where m;, © = 1,2 are masses, x; are displacements, and g and ¢ denote viscosity
and stiffness, respectively.

The initial conditions for the (3.19) are as follows

2;(0)=0, i=1,2 and 1, =v, 29 =0 (3.20)

On introducing x = x9 — x; and m = (my + mgy)/myms, we get from the equations

(3.19)

Ty + cmx + pmay = 0. (3.21)

Exact solution

The solution of the 2nd order differential equation (3.21) is given by

z(t) = e™ (M cos Bt + N sin 5t) (3:22)
where
_ K
o= ——
1 2m (3.23)
8= 5\/u2m2 — 4em

Making use of the initial conditions (3.20) we deduce

M=0 and N=—- (3.24)
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The accelerations for the masses 1 and 2 are expressed in the form

a(t) = —;—Oj {c (v cos Ot + % sin Bt) +u (va cos Ot + M sin ﬁt)] (3.25)
as(t) = mi: [c (v cos Ot + % sin ﬂt) +u <va cos Ot + @ sin Bt)] (3.26)

An illustration of the developed model presented in the Figure 3.5. The curves

related to the initial velocities v = 2,4,6 m/s are drown in a different line type.

40
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0 0.05 0.1 0.15 0.2 0.25 0.3
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0k

—2e+006 |

—4e+006 -

(b) 0 0.05 0.1 O.&SS 0.2 0.25 0.3
Figure 3.5: Impact viscoelastic Kelvin-Voigt model. Typical result (a) Acceleration a,
vs time; (b) Force F, vs time
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Approximate solution

Let us introduce a dimensionless time

along with the small parameter

I
vem

<1

E =

Then the problem (3.19) and (3.20) may be formulated as

Trr +x+ex, =0

with the following initial conditions

z(0)=0 and z, = —0v"

where

The solutions of (3.29) and (3.30) are sought in the form

2
Ty = Tyg + ETx1 + ETyo + -+

At leading £ order

Tworr + Tuo = 0
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(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



with the initial conditions

*

Z40(0) =0 and x4, = —v

Then

Ty = AcosT + BsinTt

Satisfying the initial conditions (3.34) we have

Tyo = —0 sinT

At next order ™

Tilrr + Ti1 = —X0x

(3.34)

(3.35)

(3.36)

(3.37)

with the homogeneous initial conditions z,;(0) = x,, = 0. On solving the equation

(3.36) along with the associated initial conditions we obtain

v* T
Ty = —sinT — COS T
2
Similarly at order £
3v* . 3v*tT vir?
Tyg = — sinT + COST + sin T
8 8
The solution at order (¢?) is
S5v* . Sv*T N v n vrr?
Tyg = sinT — COST sin T COST
716 16 8 48
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Thus, the general solution is in a form

. . 1 . 9 3 . 37 72

Ty =0 |—SINT + €| =sm7— =—cos7|+&°|—=sm7+ —cos7T+ —sin7|+
2 2 8 8 8
(3.41)
3 5v* 5vT N v N v*r3 N
sin T — COST sin T COST cee

16 16 8 48

therefore,
ol . 1 . 17 of 1 . T 72
Terr =0V |SINT +E|=SINT + —cCOST| +&°(—=SsInT+ —COST — —sSInT7|+
2 2 8 8 8
(3.42)
s (9 sinT + Lo cos T si il cosT | +
£ 16 mT 16 T 1 mrT 1R T

then the accelerations may be re-cast in

Cm = y/c/m,

For simplicity, let us

original variables as

1 . 1
—sin¢,t + ¢t cosc,t | +

a = Ty = Ve, [sincmt—i— \/M_ 5 5
cm
2 1 1
Ll ——cptsine,t + — cosc,t — —cfnt2 sinc,,t | +
cm 8 8
(3.43)

w9 15 le, .
—sin ¢t + —cpt cos et — ——t°sin ¢y, t—
16 t+16 t t 1 t t
(cm)3 m

1
ﬁcf’ntg cos cmt> + - ]
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and the acceleration for the mass 1 and mass 2:

1

e (cx + py) =

a1 = Tt =

1
{v\/mc [— sin ¢, t + \/% (5 sin ¢, t—

1 /ﬂ 3 . 3 15 5.
icmtcoscmt + — ——smcmt+§cmtcoscmt+§cmt sinc,,t | +

1
my
cm 8

3
5} 5 1 1
K (— sin ¢, t — o cos et + =2 2 sin ¢t + —c 12 cos cmt) + |+

(em)3 16 16 8™ 48 ™
COS Crpt + pl t si t+ MZ 1 t si Ct+
CmU | — Cm ————cptsine, — | —=¢utsing [ —
a vem 2 cm 8 m
12tcs,/ct + i ) t si t+32t2cs t
—C 0 — ——— | —¢,tsing, —c, 1" coscpt—
8 m m w/(crn)3 16 16

1
chnt‘q’ sin cmt) + .. ] }

1
Ao = Topp = ——— (cx + M«'Et) =

{ { (3.44)
vv/me | —sin et +

1
ma mo

o L si t
—— | =sin¢,,t—
vem \ 2
2

1 % 3 . 3 1 2,2 .
—cptcoscyt | +— | —=siney,t + —eptcose,t + —c t*siney,t | +
2 cm 8 8 8

3 5) 5) 1 1
a <— sin ¢t — o cos ¢t + gc%ltZ sin ¢t + @cf’nt?’ cos cmt) + ...+

J(emy? \16 16

UCm U {— cos Cyt +

1 , 2 1 .
—cptsine,t + — | — gcmt sin ¢, t+

o
vem 2 cm

102tcosc t| + 'LLS gc tsin ¢t + 302t2cosc t
8" " (em)® \16™" ™ 16" "

1
Ec;g’nt?’ sin cmt> + .. 1 }

(3.45)

3.2.2 Modified standard-linear impact model with a nonlinear
spring
General nonlinearity

Consider a two-degree of freedom system of two masses connected together with the

nonlinear springs and viscous/spring damper.
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Figure 3.6: Modified standard-linear impact model

The equations of motion for spring-mass system (see Figure 3.6) are written as

mixy = N(x) +v(x) (22 — T14)
(3.46)

MoXoy = —N(f) - 7($)($2t — Z1)

where m;, i =1,2 ismass, x;, ¢ = 1,2 is the displacement, vy(x) is gear and damper
characteristic function and N is force in the connection. Usually, the equation of the

power characteristic damper appliance can be written as
N(z)=cz"+ Nog, neN (3.47)

where ¢ is stiffness, Vy is the initial tightening force and n is a power depended on
the appliance’s construction.

The initial conditions are

21(0) = v, 2, (0) = 0 (3.48)

Let us x = x9 — 21 and zy = w9 — xy4, then from the equations (3.46) we get

Ty = — (i + i) N(z) - (i + i) (@), (3.49)



or

may = —N(x) — v(x)zy (3.50)

where m is in the form m = myms/(m; + ms).

By multiplying both part of the equation (3.46) by the & and integrating by time ¢, we

get
mx?  muv? f /
= T_/N(x)dx—/y(x)xtdx (3.51)
xo xo
or
ma?  mo? f
—t = —E,— /V(x)xtdx (3.52)
2 2
o

where E, = [ N(z)dx is elastic potential energy of compression damper appliance.
o

Let us y(x) = evo(x), where ¢ is a small parameter. Then, the equation (3.52) will

be in the form

T
2 2

o

We are looking for the solution of (3.53) in the form

Ty = Tot T €Ty + E2x2t + ... (3‘54)
At the leading order £
2F
Tor = ([P = —= (3.55)
m

At next order ™M

f’YO(m)flfotdx z
T = —MT(M = —( /’yo(m) v? — %dm)/(mwiﬂ - %) (3.56)

zo
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Similarly at order £ we have

Y 2
Top = —( /’yo(:ﬂ)azltdw + m;”) / mxo (3.57)

zo

next, at order £

Ty = —( /")/0(33')332,5dl' + m:z:lt:vgt> / mxo; (3.58)

Zo

and finally, at order ¢®

[ muv?
Tyt = — ’yo(x).Tgtdx + Mx 1o + T / mXo (359)

o

thus, the obtained formulae for accelerations mass 1 and mass 2 are in the form:

ay =Tyt = mil (N(z) +7(x)z) = [ + 4/ v?
(/yo(x) vz—%d:p)/<m v? — 2 p)

(3.60)

and

(3.61)

03 =au = === (V@) +1(2)an) = ——— | N [ )y for - e
(/m%(x) v? 25 dx)/( v? — ]

xo
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One nonlinear and two linear springs

Figure 3.7: Modified standard-linear impact model with one nonlinear and two linear

springs

Consider a system of two masses m; and msy connected together with the two linear

springs of significant stiffness, a nonlinear spring/damper system. The equations of

motion for spring-mass system (see Figure 3.7) are given by

M1ZTi = —L'g — gt

MaToy = Fg + pxy

1 Tot 1
= ey - —ay (K, + =
Zgit y (xlt D T gt ( g + D))

(3.62)

where z;,1 = 1,2, x, are the displacements, p is viscosity, ¢;,¢ = 1,2 are stiffness

values, F} is force, created by damper with spring, and

11
D=—+—
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If the compression of the spring is greater than the gear stroke, the draft gears closes

and force Fy is of the form

cxg if |z, < Str
F, = (3.64)

ey + (¢ —¢,)Str  otherwise

c it |z, < Str
K, = (3.65)

¢, otherwise

Let us denote vector of the initial conditions:

T
L1¢
T2

y = (3.66)

Loy
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Then the vector of the corresponding derivatives is

_le (Fy(zg + pzge))

(3.67)

Numerical solution of the system (3.67) can be obtained by the Runge-Kutta fourth-

order method [95, 96].

The numerical results of the developed model presented in the Figure 3.8. The

curves related to the initial velocities v = 2,4,6 m/s are drown in a different line type.

44



L L L
0 0.05 0.1 0.15 0.2 0.25 0.3
(a) ts

— \ \ \ \
6e+006 -/ Vot

4e+006 - | N G

2e+006 [/

—2e+006 |-

-4e+006

b) 0 0.‘05 0‘41 O.‘15 0‘.2 O.‘ZS O‘.3A
t,s
Figure 3.8: Modified standard-linear impact model with one nonlinear and two linear

springs. Typical result (a) Acceleration a; vs time; (b) Force Fy vs time

3.3 Evaluation of maximal contact forces using ANN

3.3.1 Analysis of impact type

At the initial stage of the project the inverse problem of car-to-car interaction was
tackled. Using the spectral frequency analysis (through fast Fourier transform, see,
e.g. [97, 98]) it was first determined whether the specified data of accelerometers
corresponds to free to roll or coupled impacts, see Figures 3.9. A series of impact tests
were carried out to assess the spectral frequency response of the accelerations. The
developed methodology is based on the analysis of the first frequency, there is no zero

harmonic in the case of the coupled impact, otherwise the latter takes non-zero values.

45



The approach leads to a sufficiently accurate classification between impact types. Some

typical diagrams, corresponding to these cases are shown on Figures 3.10 (a) and (b).

(a) (b)

0.035 -

0.03

0.025 -

m

0.015 -

0.01 |-

0.005 -

0 ! ! ! ! ! ! !
0 5 10 15 20 25 30 35

b f, kHz
Figure 3.10: Typical frequency-amplitude diagrams for (a) free to roll impact; (b)

coupled impact

The developed technique has been tested using some experimental data including

two types of railcars (for details see Table 1)
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Table 1.

Parameter Hammer Car Anvil Car

Car Type Covered Hopper | Covered Hopper

Car Info KREX 20 KREX 17
Car Weight 263,000 1bs 220,000 1bs
Cushioning Unit MK 50 MK 50

A series of 19 tests for free to roll and 23 coupled impacts have been performed,

demonstrating 100% success of the developed technique.

3.3.2 Theoretical evaluation of closure forces

The next preparatory step of the project is to determine the wearing condition of draft
gear equipment. Identification the instant force when the friction device grasps and
comparing with benchmark one allows to establish the wearing degree.

Consider a system of two masses coupled together by the linear elastic spring (see

Figure 3.11).

Figure 3.11: Two masses elastic model

The equations of motion for spring-mass system is written as

miay = myTiy = c(xe — x1)

(3.68)

Moty = Mooy = —c(xTg — X1)
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where m;, ¢ = 1,2 is mass, x;, ¢ = 1,2 is the coordinate and ¢ is stiffness.
Let us o =29 — 27 and m = 1/my + 1/mgy, then from the equations (3.68) we

obtain

Ty = —CMT (3.69)

The solution of the 2nd order differential equation (3.69) is

x(t) = Asinkt + Bcoskt (3.70)

Where k? = cm.

The contact force and acceleration after closure of the friction clutch draft gear
assembly increasing rapidly and can be represented as a part of the sin function with
some amplitude and phase. To calculate the closure force, the data were smoothed by
using a Gaussian Kernel Method [99], an Adaptive Method [100] and passed through
low pass filter data. We approximate the force/acceleration with sin function near max
Force. Closure force is defined as an intersection point of sin and interpolated /filtered
data. The best result for the data with noises gives Adaptive Method of interpolation

function.

Phases and amplitudes of sinusoidal approximations

The amplitude and phase for the sinusoidal approximation function can be found from

the aforementioned trigonometric equation

y(x) = asin(bx + ¢) (3.71)
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The derivative in the maximum point is equal to zero, so

dy
dp o=tmaz — @ €08 (b maz + €) o
from the equation (3.72) we deduce
a4 = Ymax (373)
T _ ¢
)3 (3.74)
xma:p
and
Yo = asin(bz, + ) .
Thus,
_77':17?" + xmaa:ymait Sin <yiﬁ)
- (3.76)
Tmaxr — Tn
. —7'("%1 + LmazYmazx sin (yf:;z> 1
(s 3.77
2 Tmaxz — Tn Hmaz ( )
Then
- —W% + TmazYmaz S (yTyer) x
Y(&) =Ymazsin | | 5 = )
2 Tmaz — Tn Emaz

(3.78)
_W% + TmazYmaz Sin (y_n)

Ymax

Tmaz — Tn
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Expressed in the terms of force, acceleration and time the equation (3.78) will be in

the form of

tn 3 Fn
T _777 + tma:meam S11 <Fmaz> t
Fsin (t) :chm Sin E — +

tmaz - tn tmax

(3.79)

t : j2
—T % + tmaz Finaz SIn (F = >
max

tmaac - 2fn

where t - time, n is a random point closed to maximum force, which can be found

experimentally.
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Figure 3.12: Typical results of finding closing force for (a) analytical modeled data; (b)
experimental data

The suggested method to rate the force closure was tested on the data, generated

by the analytical model, see Figure 3.12 (a), which allowed generation of any amount

20



of data with different model characteristics such as stiffness, mass, velocity, and dissi-

pation coefficient and on the real experiment data, see Figure 3.12 (b).

3.3.3 Numerical results

Preliminary training of the ANN was based on the quantities calculated from the ele-
mentary analytical models developed in Section 3.2. For the data, generated by both
models, the Multilayer Preceptron (MLP) neural network was trained using the su-
pervised learning algorithm back propagation with decoupled momentum. The perfor-
mance of the network configuration was estimated by calculating the difference between
the generated output and real test data. The average error for specified range of param-
eters is around 2%. Some typical comparison of the ideal data with computed results
of the ANN are presented in Figures 3.13 (a) and (b) for Kelvin-Voigt and Modified
standard-linear models, respectively. It is showing variation of scaled maximal force

for a set of tests (40 tests performed).
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Figure 3.13: Typical results of training of the MLP ANN for Kelvin-Voigt model
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Figure 3.14: Typical results of training of the MLP ANN for Modified standard-linear
model

The illustrations on Figures 3.13, 3.14 are performed for ANN of the configura-
tion "input-hidden-output”, with activation functions of the hidden and output layers
adopted in ”Sigmoid” form and the numbers of hidden layers as 7200-21-1" and ”200-
18-17, respectively. The corresponding ANN performance was measured as 1.9%, and
2.5%.

However, when using results of real-life experiments, the precision of the ANN
became lower, especially for higher speeds. Some typical graphs of maximal force are
presented below for a series of 23 tests.

The first illustration is presented in Figure 3.15 for the normalized acceleration
(performance 11.73%). The configuration of the ANN in this Figure is ”300-70-5-1"
with activation functions of " Tanh/Tanh/Log”. An attempt was performed to filter ac-
celeration from noise, which provided an improvement, see Figure 3.16 , with accuracy
rising to 5.20%. Here the ANN configuration of the ANN is ”256-55-5-1" with activation

functions of ”Sigmoid/Tanh/Log”. One more approach was tried through spectrum of
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Figure 3.15: Comparison of maximal force simulated through ANN with experimental
data for normalized acceleration

acceleration, however the results did not seem promising, see Figure 3.17. Here the
structure of the layers is ”50-17-4-1”, with activation functions of ” Tanh /Sigmoid /Log”.

It may be suggested that the difference of the outcome of ANN for training data
of the simple analytical data and real experimental data is significant due to the fact
that both models do not incorporate the internal structure of the cars, therefore it is
not straightforward to set up proper parameters with the asymptotic coverage of the
real experiment data.

Thus, the project was started from the problem of determination of maximal force
in the draft gear using the test data of accelerations of the railcars. This is a stan-
dard regression problem, therefore application of the ANN is justified. In order to
perform training of the ANN two analytical models involving a simple linear spring
and a slightly less trivial nonlinear spring, have been developed. These models allowed
generation of sufficient data on impact for specified initial data of mass, velocity, stiff-

ness and viscosity for training of the ANN. The results of tests proved to be excellent
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Figure 3.16: Comparison of results of ANN with experimental data for acceleration
subject to low pass filter

for training data, however, comparison of ANN simulations versus experimental test
data stimulated some further research.

On the one hand, performing sufficient number of real experiments for training of
the ANN for a wide variety of parameters is rather expensive, whereas on the other
hand use of simplified analytical models does not allow more precise mathematical
modelling of train dynamics. Therefore, a more advanced mathematical model has
been developed, taking into account viscous behavior of the draft gear. The results

seem to be of both theoretical and practical interest.
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Chapter 4

Low - frequency perturbation of
rigid body motion of a viscoelastic

inhomogeneous rod

In this Chapter we develop a new pseudo rigid body dynamic model based on the
principles of the linear elastodynamic. Mathematical modeling of the effect of an
internal microstructure allow to increase the level of accuracy and to extend the range
of validity of the traditional equations of rigid body dynamics. We start by analysing
low - frequency perturbations of rigid body motion of a viscoelastic inhomogeneous rod

subject to edge loads.

4.1 Statement of the problem

Consider a viscoelastic inhomogeneous rod of length 2/ subject to end longitudinal

forces, see Figure 4.1. The 1D equation of motion [111] is written as
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Figure 4.1: Longitudinal vibration of the rod

Fy = m(x)uy (4.1)

where x isthe longitudinal coordinate, ¢ istime, wu islongitudinal displacement,
F is longitudinal force, and m(z) is mass per unit length.
Linear viscoelastic behavior within the classical theory of extension can be described

by the following integral relation, see, e.g. [101, 102]:

I g (4.2)

where e = u, is the longitudinal strain. We also use the notation: E(x) is the
Young’s modulus, A(z) is cross-sectional area, K (y(x)t) is creep kernel depending

on function ~(x). For example, for the Voigt model

K (y(z)t) = e 1@t (4.3)

p(z)

be rewritten in a differential form as

with v(x) = , where u(x) denotes viscosity. In this case the equation (4.2) can

F(z,t) = A(z) [E(2)e(z, t) + p(x)e(z, 1)) (4.4)
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The boundary conditions corresponding to the end forces shown in Figure 4.1 are

F(=1,t) = Fy(t), F(I,t) = Fy(t) (4.5)

Let us denote typical values of the variable quantities m(z), E(x), A(z) and
~v(x) by mg, Eg, Ao and -y, respectively. In what follows we assume that a typical
time scale of viscous behavior ~;' is much greater than a characteristic time that

elastic waves take to propagate the distance between the ends of the rod, i.e.,

s q, [0 4.6
’}/0 >> EOA(] ( )

We also suppose that K(’y(x)t) ~ K("}/(f)T) ~ 1, i.e. viscous phenomena can not be

neglected at leading order.

4.2 Asymptotic analysis

Consider the problem of (4.1) and (4.2) under the asymptotic assumption (4.6). We

introduce dimensionless variables and dimensionless displacement and force by the

formulae
r=¢ and t=T17;" (4.7)
and
u=Ilu, and F =cAgEyF, (4.8)
where
l273m0
— 1 49
A < (4.9)
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is a small parameter related to (4.6).

Then we get

Fe = m.(§uirr (4.10)

and

. .

ve= e (B [ KOA©r - m)Fin) (.11

with
F.(=1,7) = Fi,(t) and F.(1,7) = Fy(t) (4.12)

where

19 =52, B0 = 59 =" w922y

and
F, = eAgEyF,, i=1,2 (4.14)

Here and below we assume that the integral term in the right hand side of (4.11) is of
order F,.

We are looking for the solution of (4.10) - (4.12) in the form

Uy =Ug+cu +--- and Fy, = fo+efi +--- (4.15)

At leading order

Joe = mu(&)ug,, and uge =0 (4.16)
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subject to the boundary conditions

fo(—l,T) = Fl*(T) and fo(].,’]') = FQ*(T) (417)

Immediately, we get from the second equation (4.16)

UO(&T) :’UQ(T) (418)

i.e. at leading order we observe horizontal rigid body motion. Next, we have from the

first equation (4.16) taking into account the imposed boundary conditions (4.17)

1

Vorr / m.(€)dE = Fy — Fi. (4.19)
)
At the same time
¢
fO - UOTT/m*(gl)dé-l + Fl* (420)
gl
or .
(Fow — Fr.) [ ma(&1)d&,
fo= — + Fy. (4.21)
J m.(§)dg
el
At next order
1 T

flg = TN (f)ulw and U =

fo—/K(%(ﬁ)(T—ﬁ))foﬁdﬁ (4.22)

0

E.(§)Ax(E)

with the homogeneous boundary conditions fi(41,7) = 0. By integrating the second

60



equation (4.22) we have

T

uy = jm<o(§177)—/K(7*(§1)(7 - Tl))fon(ﬁhﬁ)dﬁ)d& +ou (4.23)

where v1(7) is a low-frequency correction to the center displacement. The first deriva-

tive of (4.23) in the dimensionless time is

é' T
1
Ulrzo/m ( or (&1, 7)(1 - K(O))_O/KT @*(51)(7 - Tl))foﬁ (&1, Tlﬂﬁ) &1 v
(4.24)
The second derivative of (4.23) is
i 1
wee= | EEaE (fo”@l, P (1= K(0)) = for €1,7) K (0)—
0 (4.25)

/KTT (’7*(51)(7_ - Tl))fOTl (517 Tl)dTl> d§1 + Virr

0

We also get from the first equation (4.22) and the homogeneous boundary conditions

above that

1
Virr = /m*
£)dé

Jor (1, 7)K(0) —/KTT(%(&)(T—71))f0n(§1771)d71)d§1] dé

£

| s (e - K)-

0

(4.26)

We obtain the acceleration of the rod Uy, = Ugrr + €U + -+ -
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The acceleration of the left end of the rod

0

Fy, — F; 1
UTT|§:_1 = 12* L 9 ( AN A e fOTT<€77—)(]‘ - K(O))_
_flm*(ﬁ)di [E*(S)A*(f) (

T

Fon(€, 7V (0) — / Ko (12(6)(7 = 7)) fon (. T1)dﬁ) dé 4+ —
0 _flm*(f)df (4.27)

/ E.(¢ (foﬁ &,7)(1 = K(0) = for (&1, 7) K- (0)—

/KTT (1 (&) —70)) fom (61, n)cm) d&] d&)

Similarly, the acceleration of the right end of the rod

FZ*_Fl* / 1
UTT|§:1 = +ée (O/ m<ﬁ)ﬂ—(g’7—)(l - K(O))_

Fon (637 (0) — / Ko (1 () (7 = 71)) fon (&, n)drl)ds—
(4.28)

xS

1
m (foTT(fl, 7) (1 - K(O))—

Jor(§1,7)K-(0) — /Krr(%(fl)(T —71)) fon (flaTl)dﬁ) d§1] df)

0
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Finally, we obtain for the acceleration of the center

F F. 1 3

2% — LI'1x 1 1
uTT|£:O 1 — €7 m*(g) [ -
_flm*(f)df flm*(f)d§[ /E*(ﬁl)A*(&)

(fOTT(glaT)(l — K(O)) — fOT(gl’T)KT(())_ (429)

/ Ko (1(6) (1 = 71)) fom <51,n>dﬁ)d51] ¢

0

or in the original variables

]\46Lh|z l—FQ_Fl 0)
Fou(x, t F(]tt
[ / Blo)A ( Elen)A da:1> dx] +
0 ! x F
t

M Ott / / ot $1 d d

/ (x da;+ m(x B, x| dr| + (4.30)

-1

0

/ 1
M [/m (b/ Ktt(v(l‘l)(t — t1))thl(x1,t1)dt1> dmll +

l 1 t
/m(:p) b/m (0/ Ktt(’y(l‘l)(t—tl))F0t1<l'1,t1)dt1> dIll dx

—l
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Map|sy = Fo — Fy 4 (1 — K(0)) x

! !
Fou 37;75) / / FOtt 33'1,
M | ——~dx — [ m(x da: dr| —
O/ E(z)A(x) J J E(e)A(n) !
l I
FOtt(33;t> / /FOt xl;
Ki(0) | M / Ewa@ ™ ] ™ | Bana) @) @ (4.31)
0 0

8

l
1
v\ [ senacs / Koo (1)t = 1)) B, (. 1)y |
0

l T

Marloo = o= Fi= (1= K(0) [ i) | [ el

/m(:c) /m /Ktt a:l)(t—tl) Fo, (21,11 dtl) dxy | dx
) dx+

F(]t(.l’l,t)

1 t
/m(x) /W O/Ktt('y(:cl)(t—tl))Fotl(xl,tl)dtl dxy | dx

l

where ap(t) = lvg(t) and M = / m(z)dz denote acceleration and mass respec-

—1
tively, and

F—F |
ki / m(z1)dzs + F (4.33)

-l

Fy =

The derived formulae (4.30)-(4.32) contain in the right hand side a low-frequency
correction to the classical equation of rigid body motion Ma, = F; — F}. The above
mentioned correction incorporates the effect of viscoelasticity of an inhomogeneous rod
and makes possible calculating dynamic responds caused by self-equilibrated loads,
ie., Fy; = F,. Obviously, a similar formulae can be established for any point of the
structure (|| < 1) starting from the equations in this section. The quantity (4.33) is

crucial for the obtained correction. It corresponds to the low-frequency variation of
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the longitudinal force along the length.

4.3 Particular cases

4.3.1 An inhomogeneous viscoelastic rod of uniform density
The equations (4.30)- (4.32) take a simpler form for a homogeneous viscoelastic rod

m(z) =m.

Mah|$:_l = F2 — F1 — (1 — K(O))X

[l/%dx—l—/ (/%dm) dx] +

-1 -l

O For(w,t Foe(z1,t
o [l/ E) d$+m/ </ xl)d 1) dx] ' (4.34)
/ 1
) [/m (0/ Ktt(fY(ZUl)(ttl))FOtl(xl,tl)dtl) dxl] +

—1

/l [/xm (O/t Ktt(’y(ml)(ttl))FOtl(wlatl)dh) dx1] dzx

-l 0
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and

Mah|x:l = FQ _Fl + (1 — K(O))X

[/Fs;;f e ([ )

i | )
/ZE A(zy) (/tK“ (z1)(t = t1)) For, (21, tl)dtl) dxl] —
[ E(z1)A(z1) (/ Ky (y(21) (¢ — tl))FOtl(i’flatl)dh) dx1] dx

K4(0) / ( ] Ef;tf;;lf(?l)dml) dr+
/l [] E(xl)lA(xl) (/tht(V(xl)(t—tl))Fotl(xl,tl)dtl) dxll dx

-l 0

(4.35)

(4.36)

1
where ap(t) = lvy(t) denote acceleration and Fy = — (x(Fy — Fy) + [(Fy + FY)).

21
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4.3.2 An inhomogeneous viscoelastic rod of uniform stiffness

In the case of an inhomogeneous rod of uniform stiffness the equations (4.30)- (4.32)

take the form:

1
Ma,h‘x:_l:Fg Fl—ﬂ [(1—K(0))X

0 T

M/FOtt(l’,t)d$+/m(ﬂf)/tht(l’l,t)dl'ldl’ +

-1 -1 0
0 l

K,(0) (M/FOtt(x,t)dx—I—/m(x)

-l

o,

F()t(l’l, t)dl'ldl’) +

0

M _/Z / Ktt(fy(xl)(ttl))FOtl(xl,tl)dtldm) 4

0

/l m(z) /x /t Ktt(fy(:vl)(ttl))FOtl(xl,tl)dtldxldx]

1
Mah’x:l:FQ F1+ﬂ [(1—[((0)))(

(M / Fou(a, )z — / m(z) / tht(xl,t)dxldx) _

0
l

0 (M [ Bty - /m

0 _

o\

F()t l’l, d[L‘ldl’) —

Lt
MO/O/Ktt(’V(x1>(t—t1))F0t1(x1,t1)dt1dml) _

/lm(:v)/x/tht('y(xl)(ttl))FOtl(xl,tl)dtld:vld:E]

-l

67

(4.37)

(4.38)



and

x

!

1

Map|o—o = Fo — Fy — o (1 - K(0)) /m(ﬁ)/Fott(xl,t)dxldx—l—
7 0

l T

Kt(O)/m(m)/FOt(ail,t)dxldx—l— (4.39)

l T

/m(m)//Ktt(v(xl)(t—tl))FOtl(xl,tl)dtldxldx

=l 0

I
where acceleration and mass are ap(t) = lvy(t) and M = / m(z)dr and Fy is

%
in the form (4.33)

4.3.3 A homogeneous viscoelastic rod

And finally, the derived equations (4.30)- (4.32) take a simpler form for perturbed
rigid body motion of a homogeneous viscoelastic rod of uniform stiffness, density and
viscosity. In this case m(x) = m,E(x) = E,A(x) = A and 7(z) = v with the
quantity Fp in the form (4.28). For the center of the rod, we get respectively

mi?

Mayp|p—o = Fo—F1—
ah’ 0 2 16EA

Foue(1 — K (0)) + For J6,(0) + / Ku(y(t — 00)) Fondty | (4.40)

and for the left end of the rod

t
miZ [. , ,
Map|pe—1 = Fy-Fi—or £ (1 — K(0))+ Ey) K(0) + /Ktt (Y(t — 1)) EPdty | (4.41)
0
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finally, for the right end of the rod
2 t
m 2 (r 2 (r 2 (r
May|om = Fo=Fitgr (Ford (1= K(0)) = ) K, (0) —/Ktt (v(t — 1)) Far)dtr | (4.42)
0

where M =2ml, FV =1 +11F, F" =5+ F and Fy=F — F,.

4.3.4 An inhomogeneous Voigt rod

Consider the problem of (4.1) and (4.2) under the asymptotic assumption (4.6) for an

inhomogeneous viscoelastic Voigt rod. The creep kernel is in the form (4.3)

K(y(a)t) =e #(2) (4.43)

The Volterra equation in a differential form is in a form of

F(z,t) = A(z) [E(:L')ux(x, ) + p(x)ug(z, t)] (4.44)

The boundary conditions (4.5) are

F(=1,t) = Fy(t), F(I,t) = Fy(t)

After substituting dimensionless variables and dimensionless displacement (4.7) and

(4.8) with a small parameter ¢ in the form (4.9), we get

Fie = my(§)trr (4.45)
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and

e, = AdO)[E(O)uug + Fun (O] (4.46)

with boundary conditions in the form (4.12)
F.(=1,7) = F1.(t) and F.(1,7) = Fy.(t)
where A.(§), E.(§), m«(§) are represented in (4.13), F;,i = 1,2 is in (4.14) and
(1 (§) = #e) (4.47)
Ho

We are looking for the solution of (4.45), (4.46) and (4.12) in the form (4.15)

Uy = Ug+ Uy + -+ and F, = fo+efr+---

At leading order
foe = mu(§uorr and  Eu (&)t + Bi1(§)ttuer = 0 (4.48)
subject to the boundary conditions
fo(=1,7) = Fi.(7) and fo(1,7) = Fo(7) (4.49)
We get from the second equation (4.48)

wo(€,7) = vo(7) (4.50)
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Next, we have from the first equation (4.48) taking into account the imposed boundary

conditions (4.49)

1
Vorr / m.(€)dE = Fy. — F.
-1

At the same time

or

At next order

fie = mu(&ur,, and fo = AL(§) [E*(f)ulg + 5#*(5)“1&]

with the homogeneous boundary conditions fi(£1,7) = 0.

We are looking for the solution of the first equation (4.54) in the form:

then
—TE.(§) —7E.(§)

e = Co(r 6y 1B _ B8 oy T (€)B
&r 07(75) H M*(ﬁ)BC( 5) K

after substituting (4.55) and (4.56) into second equation (4.54), we get

—TE,(§)
fo = B () A(E)Cr (7, E)e 1(E)F

71
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(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)



then

1 TE,()
C9 = grgae o
and ) B (€)
C(r, ) = m 0/ foe 1B g,
thus
finally,

] 13 T E*(gl) (r—m1)
= BO/ E)A(6) /fo §1,m1)e pe(&1) B drid&; + vy

The first derivative of (4.61) in the dimensionless time is

13
= %Jm(o(flvﬁ s 51 5/f0 §1,m)e ks e dTl)dgl+U17

£
1 E. (&) E2 (&)
Urrr = B! (fOTl 617 ) M*<£ )Bf()(gl’ ) M*(£1>B2 X

Ex(£1)
/fO (617 7_1)67“*@11)[3 (TTl)dTl) dfl + Ulrr

0

from the first equation (4.54) we get

m.(&1) 1 E.(&) E?(&)
= / / 4.(6) (f Cm) = e T gy

/f (&2, m1)e # (22> o dﬁ) d&2d&: +/m* &1)v1déy

0
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(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)



we get after using homogeneous boundary conditions

1 ¢
1 m.(§) 1
Mrr = — 1 (f071(€177'>—
J m*@l)da_[ p / HENALE)

(4.65)
E, _ B (o
ﬁfe(&ﬂ') + (&, m)e TGIEN )dTl) d& d§
We obtain the acceleration of the rod ., = Ugrr + UL+ + . ..
The acceleration of the left end of the rod
F F O 1
2% — L 1x £
Urrle=1 = T — % [/ ——— (for (&1, 7)—
A,
[ ma(€)de 5 J p(€1)As(&1)
21
E E2 T— 7'1
M*ég))ﬁfo(fl, ) + (&) /fo &,T1)e b (51)5( 1) déi+
. (4.66)

(&)
 — / /5 fon §1,7)—

f (£1)d& =1

E.(&)

Jo(&1,7) +

Ex(£1)
(&, Tl)eu*mm“ﬁ)dﬁ) dgldg]
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Similarly, the acceleration of the right end of the rod

1

FQ*_Fl* 5|:

1
’LLTT|£:1 = —+ = —(fOn(fl;T)_
jl;m*(g)dg B O/M(ﬁl)fl*(fl)
2 Baley
izéf;)ﬁfo(&,ﬂ + E (61) (fl,ﬁ)e“*(g)ghn)dﬁ) d&1—
(4.67)
/m* / )(fOTl(glJ )
m.(&1)dér 1
2
;féi)ﬁfo@m oSr / fol6a, m)e dﬁ) d&dgl
Finally, we obtain for the acceleration of the center
" - 1 £
UTT|§:0 = 12>‘< — _% 1 /m* /lu fOTl 517 )
«(&)d (&1)d
Jom(&)de f;m (€1)d&1 =1 (4.68)
2 Fa(ey
S ) + S [ e FE s
or in the original variables
MCLh|x:_l = Fg — F1 — M/ m <F0t<5(3,t) — f((;)) F()(l’l,t)—i—
2 : E(zq
fz((j)) /fo(x1,t1)6“(<x1>)(ttl)dt1> dxy—
0 (4.69)

x

Zm(x) 0/ m (Fotl(xl,t) — fjgll)) Fo(xq,t)+

t
2 T
L | Fo(x1,t1)em(ttl)dt1) drds

0
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e U (g E@
May|,— = Fy F1+M/,u(x)A(x) (FOt( 1) (7) Fo(xy,t)+

¢
E? _B@)
H2(;SB) /fo T1,t1)e ZET tl)dtl) dzi—

l (4.70)
E(z1)
F t) — F t
/m / (331) ( ot (1, 1) () o(z1, 1)+
B | Folay, t)e a0 e | dayd
12 (z1) o(z1,t1)e #a 1 | ar1ax
0
and l
1
Map\|peo = F5 — F} — — (F Jt)—
ahlo=o = Fo = £y /lm(x)/u(ml)/l(ml)( o (@1,%)
(4.71)
E
ﬂFg( /FO Xy, tl (& “(zl (t tl)dtl d$1d$
(1) ,

The results (4.69)-(4.71) can be get from the equation (4.29)-(4.31) by substituting

the creep kernel in the form (4.3)

Mah|x__l—F2 xx (M/ Ot dl’—l—/ wME 0t 51717 d$1d.2§>+

0 t
E(z) =

M [ =2 RS R )t d .

/A(x);ﬂ(x)/e 0 (@, t)dtdr+ (4.72)

l x 5 t

o dx,d
/m(x)/fl(wl)u T / e
- 0
F l x 7 ( )
E(x ot ( ot(T1,t

Mayp,|p—my = F5— F M ——————drdx| —

ap|o=1 = Fo—F1 + e (/ /m(x)/E(ml)A(ml) T ga

% 0
0 E( ) t
T B()

M | ————— (=) (tftl)Fo ty)dt dx— .

[A(x),tﬁ(x)/e o (1)t (4.73)

!
/ m(z) / Ao () / R TR dt iy da
Z 0 0
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and
!

F
Mah|w 0= FQ l’ /m / 0t< dl’1d$+
p(z) E(x;
l - (4.74)
E ) (t—t1)
m(x) A e Wﬂ F, dtidx dz
2 0 0

Uniform density

The equation (4.72) - (4.74) in the case of uniform density take the following form

F
Map|pe—y=F5— E(z) M/ da:+m// o ml’ dxldx +
p(z)
[ E(@)
T E()
2ml/—/eu(1> =g, (x,t1)dt;dx+ (4.75)
Alx)u?(x e
J anaw)
| x E( ) t
1 t 1)
m//—/e W”l) Fo. dtidzdx
Alz) pu?(x !
0 ( 1),“( 1) ,
F F
Map|pmy = Fy— E(z) M/ (2 dx // ot xl’ dxldx —
w(z)
[ E()
x E()
2ml/—/e_u<z) =g, (x,t1)dt dx— (4.76)
Alz)u?(x e
(z)p? () /
I =z E( ) t
1 B@1) (1—ty)
m//—/e wlzy) Fo dtidxdx
Az p?(z !
L ( 1)#( 1)
and l
E(x)m Foi( xl,
May,|p—0 = F: T1d
b= B2 - - / Elan) Aay)
4

(4.77)
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Uniform stiffness and viscosity

0 T

Mah|m__l—F2 Fl——A M F()t(l’ t)dac+—/m F()t(l’l, )dl‘ldl’ +
M

(4.78)
// = (t— t1 ot1 x,t dt1d$+_/m // w (1) Fotldtldl’ldl’
-0
O Fulert) [ 11
1 T1,t
Mah|x:l :FQ—Fl—i—M_A M th(x,t)d:c — m/m(x)/ﬂdxldx -
- oo (4.79)
Bt Fo, (z t1)dt1d$€——/m //6 (=) Fo dtydx dz
7l0
and z
1
Mah|:c 0= F2 Fl - [L_A m /FOt(ZE17t)dl'1dZE+
" (4.80)

/ / R dtdada

where Fj is in the form of (4.33).
As an illustration, we specify these formulae for a Voigt rod with linear density

function m(x) = ax + b, where a,b are given constant. It become

12(a?l? + 5abl + 5b%) 1
) , (4.81)
“(2al + 3b) 1 EF [ _E
—/ F2t1 F1t1) dtl — (GT)A— th —|— —/6 EtlFQtldtl
o %

0

Uniform density, stiffness and viscosity

Finally, we write down an easy to use formulae for a homogeneous Voigt rod with

uniform density, stiffness and viscosity m(z) = m, A(z) = A, E(x) = E and p(x) = p.
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The acceleration for the center of the rod

t

/ef(ttl) (FQtl — Flt1) dtl (482)
0

ml? mi*E
Map|peo = F1 — Fo + —— (Foy — F1) — ———
anlz=0 1 2 + 6 A (Fo 1t) A2

and for the left end of the rod

t

mil? ml’E [ _&(_

Map|p— =F, — Fz+m(7th + 11Fy,)— 6 A2 /e T (TEy, 4+ 11Fy, )dt,  (4.83)
0

finally, for the right end of the rod

t

/ e W) (5, + Fyy,)dt (4.84)
0

ml? mi*E
Map |y = F1 — Fo + — (BE: ) — ——~
ane= 1 2 + 645 (5Fy + Fuy) 6A.2

4.4 Numerical Results

4.4.1 A homogeneous Voigt rod

As an example, consider time-harmonic motion of a homogeneous viscoelastic rod stud-

ied in the previous section. In this case the constitutive relation (4.2) become

F .
e = 2 (1+id) (4.85)

with
5= / K (1z> e*dz (4.86)
w
0
where w is circular frequency. Here and below the factor e ®! is separated.

Let first horizontal motion of the bar be induced by a force applied to its right end,

ie. F(=l)=0 and F(l) = F3, see Figure 4.1. Then, we get from the equation
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(4.32)
A
6

m
=wly | = 4.

This formula coincides with a two-term low-frequency expansion of the exact solution

May, = Fy[1+ —2(1+6)] (4.87)

where

of the associated problem, see (A.10).

It is worth mentioning that in line with the dynamic homogenisation procedure
developed for three-dimensional anisotropic elastic solids [14], this result can be pre-
sented in the form of a generalised Newton’s second law with a frequency dependent
complex mass given by

M) = — (4.89)

1—1—%(14—2'5)

Numerical data are presented in Figures 4.2 and 4.3 |, where a; = Ma/Fy is
the normalised acceleration of the center of the rod plotted versus the dimensionless

frequency A,. A Voigt material is studied. In this case

AnfB
= 4.
) W (4.90)
with
_K 4
b LV mE

The solid and dashed lines correspond to the exact solution, see A.1, and the asymptotic
formulae (4.43), respectively. The curves related to the values = 0.1, 1.0, 5.0 are
marked with the numbers 1, 2 and 3. Numerical comparison presented in these figures

demonstrates the advantage of the developed methodology.
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T
Exact

Approximate

1.05

1.04

1.03

Rea

1.02

1.01

Figure 4.2: horizontal acceleration vs frequency (Real Part)

T
Exact
Approximate

0.06

0.04

0.03

Imay,

0.01

Figure 4.3: horizontal acceleration vs frequency (Imaginary Part)

4.4.2 An inhomogeneous Voigt rod of variable density
Consider a viscoelastic inhomogeneous Voigt rod of length 20 with density function

given as my +mg = 2m and M = 2ml, with 0 < m; < m
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Figure 4.4: Density variation

The acceleration for the center of the rod is in the form

l T

1
Mah|x:0 - F2 - Fl - [L_A /m(l‘) /F()t(xl,t)dxldx—i—
-1 0

L . (4.91)
A_Iug/m('x)//G_E(t_tl)Fotldtlde‘ldl'
—1 0 0

where
Fy—F |
F0: 2M l/m(xl)dzl:l—i—Fl

-1

Let us rewrite the formulae (4.91) as a sum of integrals for each interval with constant
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viscosity

_ 1

L L
M(lh—FQ Fl—— /ml/FOt X1, )dl‘ldﬁi+/m2

/FOt(xla )dl’ld[)’}—f-
_1 0
2
l x t _é x
E
/ml/FOt(xl, )dIld.T +—

e‘%(t_tl) /ml/Fot dridz+
A/,L !
1 0
2

-1 0
/mg/Fot1d$1d$+/mQ/FOtldl’ldI dtl =
_1
2
%
Fy — F;
FQ Fl - — /ml/ M/mlde—i—Flt d&?ldl’—l—

l

2

(4.92)
l T
/ / th — Fu
my
0

—_ mldxg—l—Flt dzidz | +
L —l
2

E: —F
/mg/ 2t lt/mgdl’g—i—Flt d$1d$+

L
2

FE F: F
_/ f%t t1) /ml/ 2t1 1t /m1d$2+F1t1
Au?
0

1
2 T

/ / F2t1 Fltl
Mo EEE—
0
l T
/ / F2t1 F].tl
mo s —
0

d$1d1'+

/mgdl'Q + F1t1 dl’ldl'+
-1

/mldl’g + F1t1 dl’ldl’ dtl

2 2
Map| =Fy— Fit I (7m1 + m2)

E [ By
48 Aum (Fo — Fre)+ ;/e - (t—t1) (Fy, — Fuy,) dty| (4.93)
0

We study time-harmonic motion separating the factor e~™?

(w is circular frequency)
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in what follows. In this case (4.93) is in the form

o= 13- 1) (14 o e
Let us
Ap = wl\/g
and
=ty 2
then

l2 7 2 2 )\2
MCLh:(FQ—Fl) (1+ <m1+m2) h)

48m?2 (1 — i\ )

As a result, the normalised acceleration is

18 |

16 |

Rea’,

14 |

12 |

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

Figure 4.5: horizontal acceleration vs frequency (Real Part) variable density
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04 |

035

03

0.25

Ima’,

02 |

0.15 |

0.1

0.05

Figure 4.6: horizontal acceleration vs frequency (Imaginary Part) variable density

The solid and dashed lines in Figures 4.5 and 4.6 correspond to the asymptotic
formulae (4.98) related to the values § = 0.1, 1.0, where aj = Ma/(Fy — Fy) is the
normalised acceleration plotted versus the dimensionless frequency A,. The curves
associated to the values my/m; = 0.1, 1.0, 5.0 are marked with the numbers 1, 2 and

3.

4.4.3 An inhomogeneous Voigt rod of variable stiffness

Consider a viscoelastic inhomogeneous Voigt rod of length 2/ with stiffness function
given as p(z) =y for |z| > L and p(x) = po for |z| < =% (see Figure 4.7 ). Let

first horizontal motion of the rod be inducted by a force applied to its right end, i.e.

F(—=l) =0 and F(l) = F>.
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\/

Figure 4.7: Stiffness variation

The acceleration for the center of the rod is in the form

l

Mah—Fg m //FOt ZL’1, d171d$+
w(z)A
o ‘ (4.99)
mE 1 ,L(t,tl)
- I (@) F, dtidxd
A//NQ(%&)/6 R
10 0
where
F: l
Fy = % (4.100)

Let us rewrite the formula (4.99) as a sum of integrals for each interval with constant

viscosity
~5 2
Fo( l) l)
May, = // = x1+ d1dx—|—// x1+ — - dwydo+
10
2
t é x
Fo(zy +1) Em L (x —l—l
T Ry LT
0 -1
é T I x
1 _ F. l 1 F. l
—e€ u2(t tl)//Md 1dl’+ —e Ml(t tl)//%(x—l_’_)ddildx dtl
3 2ml w3 /) 2ml

L
2
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thus

t
ml2 7 1 7l2E —L(t—t )
May, =F, — —F | —+ — Yy dt

BT R (m +u2) +48Au%/e v

0 (4.102)

t

l2E ,E(t,t )

w2V, dt

48Au§/6 T
0

—iwt

We study time-harmonic motion separating the factor e (w is circular frequency)

in what follows. In this case (4.102) is in the form

May, = Fy (1 + Z’;Z‘Z (1 _71.% e _1%» (4.103)
Let us
)\ = wl\/% (4.104)
and
b = %\/% P2 = %\/% (4.105)
then

May, = F 1+A—2 [ (4.106)
oo 48 \1—iM3,  1—iA\Bs '

As a result, the normalised acceleration is

AT 1
R 4.1
“W= TR (1 G 1o M&) (4.107)
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Chapter 5

Low - frequency perturbation of
rigid body motion of a viscoelastic

inhomogeneous beam

5.1 Statement of the problem

In this chapter we consider a viscoelastic inhomogeneous beam of length 2/ subject
to end transverse forces as well as end bending moments, see Figure 5.1. The 1D

equations of motion are written as

N, +m(z)wy =0 (5.1)

where x is the longitudinal coordinate, ¢ istime, w is transverse displacement,
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21

Fi F»

N1 N2

Figure 5.1: Perturbed rigid body motion of a beam

G is bending moment, N is transverse force and m(z) is mass per unit length.
Linear viscoelastic behavior within the classical theories of extension and bending

can be described by the following relations,

1 0G(x,t
k(x,t) = —+— | G(z,1) /K )(t—t1)) (z, 1)dt1 (5.3)
oty
where Kk = w,, iscurvature. We also use the notation: F(z) is the Young’s modulus,
I(z) is the second moment of inertia, K (y(z)t) is creep kernel depending on function

v(z). For example, for the Voigt model

K(y(z)t) = e @ (5.4)
. E(x) . .
with v(z) = 2) where u(xz) denotes viscosity. In this case we get from (5.1)
p(z
respectively
G(z,t) = I(x)[E(z)k(x,t) + p(x)r(z, t)] (5.5)

The boundary conditions corresponding to the end moments shown in Figure 5.1

are
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N(=1,t) = Ni(t), N(I,t) = No(t) and G(—1,t) = Gi(t), G(I,t) = Go(t)  (5.6)

Consider the low-frequency motions starting from the governing equations above.
Let us denote typical values of the variable quantities m(x), E(x),I(z) and v(x) by
mo, Eo, Iy and 7, respectively. In what follows we assume that a typical time scale
of viscous behavior ~;' is much greater than a characteristic time that elastic waves
take to propagate the distance between the ends of the bar, i.e.

mo
Eyly

Yol > P (5.7)
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5.2 Vertical Motion and Rotation

Gy Go
N VNZ
\
b.
G+ G*
N N
\/ \
c.
A N+
< G G->
\ )
N+

Figure 5.2: Perturbed rigid body motion. a. overall, b. vertical, c. rotational

For the sake of simplicity, we assume a symmetry of the problem parameters specified

by even functions m(z), E(x), I(z) and vy(z). In this case the boundary condition (5.6)
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corresponding to the bending vibration can be separated into two parts

N(Fl,t) = +N"(t), G(Fl,t) = G*(t) (5.8)
and
N(Fl,t) = N*(t), G(Fl,t) = +G (¢) (5.9)
where
N*t(t) = M(t) ; N2(t), N=(t) = M(t) ; Ny (t) -
G (1) = Gi(t) ‘QF G2(t)’ G(t) = Gi(t) ; Ga(t)

In the low-frequency domain the boundary conditions (5.8) and (5.9) govern per-

turbed rigid body vertical motion and rotation, respectively, see Figure 5.2.

5.3 Asymptotic analysis

We introduce a small parameter

mo
Eyly

e =12 <1 (5.11)

according to (2.12) and dimensionless quantities by the formulae

EyI, Ey I
w=Ilw", G= il %G, and N = c lg ON, (5.12)
Then, we get from (5.1), (5.2), (5.3), (5.8) and (5.9)
Nie + my(§)wsrr =0 (5.13)
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N, =Gy
and
€
Wige = 7o G*—/K (&) (T —1))GardT
133 E*(f)l*(f) J (7 (f)( 1)) 1
with
N.(F1,t) = £N; and G.(F1,t) =G
or

N.(F1,t) = N} and G.(F1,t) = +G;

In the formulae above

We express the sought for solution as

wy=wo+ewr+ ..., Ny=mng+en+... and G.=go+eg +...

At leading order

noe = —Mu(E)Worr, Woge =0 and ng = gog

subject to

no(F1,7) = £N_ and go(F1,7) = G

or

no(F1,7) = NI and go(F1,7) = £G;

*
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(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)



Vertical motion

First, consider vertical motion for which w,(&,7) and G.(¢,T) are even functions of
¢, whereas N, (&, 7) is an odd function. In this case we get from the second equation
(5.19)

wo(&,7) = vo(7) (5.23)

corresponding to vertical rigid body motion. We also get taking into account the

boundary conditions (5.21) imposed on ng

1

Vorr / ma(€)dE = 2N~ (5.24)

-1

and
3

2N, [ ma(&)dé
0

1

J m.(§)dg

-1

(5.25)

Ng = —

Then, we derive from the last equation (5.19) by applying the boundary conditions
(5.21) related to go
1 &
2N

% :1—//m*(52)d§2d§1 +GY (5.26)
Jm.(€)ds e o

-1

At next order

Ny = _m*(g)wlTTa n1 = gie (527)
and
e = a7 |9 / K@ - m)am(Em)dn | (529)
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with the homogeneous boundary conditions ny(F1,7) = ¢1(F1,7) = 0, where gq is

given by (5.26). On integrating twice the last equation (5.27) we have

- / / L <go &,7) /K 7 (&) (7 —n))g(m(ﬁ?’Tl)dn)d@dgﬁul (5.29)

leading to

£&

e :// m(&w (&2, T)(l - K(O)) — Jor (&2, T)E-(0)—
00 (5.30)

/KTT (’Y* (62) (7_ — T )) 907'1 (527 Tl)dTl) d€2d£1 + Virr
0

Then, from the first equation (5.27) and the homogeneous boundary conditions above

¢
Vipr = =/ ! /m* O/!m@on(&ﬁ)x

(1= K(0)) = gor (&1, 7) K, (0)— (5.31)

[ Ker @) = ) o mdn) dfzd&] €

Finally, we obtain for the refined acceleration of the beam w,, = wo,» + cw+ + . ..

94



The acceleration of the left end of the beam ¢ = —1

Wy = [/O/EE 51 51 907751 7')(1_ ())_

—1

T

gor (&2, 7) K+ (0) —/KTT(%(&)(T—Tl))g(m(ﬁhTl)dTl)d§1d§+

) . (5.32)
1 1
T m*(§)< ST e é()w(flﬂ')(l - K(O)) —907(51, T)KT(O)_
flm*(f)dﬁ/l / E (&)1 (61)
/KTT<’Y*(§1)(T - 71))9071(51771)6171) dfl) df]
the acceleration of the right end of the beam ¢ =1
2 P 1
T o [/ / F@hE) (6 (1= K0)-
o607 )E0) = [ Ko (€5 = 7)o 7)) v
o (5.33)

3
1 1
1 m*(g)(v T e NT e N QO’TT(£17 7') (1 — K(O)) _907(51, T)KT(O)—
fm*(g)dg[ /E*(gl)l*(fl)

/KTT )T —T1) 907-1(5177—1)(171) dfl) df]

0

and the acceleration of the center of the beam £ =0

£

1
‘) /W

0

2N
1

e |-
[ m.(€)de im*(g)dg_l

-1

Wrr =

(9077(51,7')@ — K(0)) = gor (&1, 7) /KTT (&) (T = 71)) gor, (&1, 7’1)d79d§1} dg§

(5.34)
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or in the original variables

0 =z
May|p=—y = Ny — Ny — (M//E (21, t)dr de+
10
m(x // mtdmdmdm)—i—
!
(]\4/ Godxdm+/ // (2 tdxdmdx)+
E(xy)
-1
M Ky (y(t —t1))Goy (1, t1)dt dx do+
/ZO/E( I<1)0/ (’Y( 1)) Ot(l 1)1 1

/Zm(x)/x7E(x2)I(x2> /tKtt(’)/<t—t1>)G0tl($2,tl)dtldﬂfgdiﬁldx

(5.35)

) [(:L‘l)GOtt * (.Z'l, t)dﬂ?ldl'—

!
/m(x//E (2o, t)dxodrdr | —
1 00
/E(x—Godq:da: / // (o tdxdxda)
00
t

/Ktt (’)/(t — tl))GOtl (.131, tl)dt1d$1d$+
1
0

=
S
[
|
=
|
&
+
T
=
=
RS
<
o _
o\
g
&

=

=
o=

=

=
O\N
o\&
s
iy
8
—
~—| =
=
8
S~—

j m(z) / / - (@)1] o j Kot (1t — £1)) oy (22, t1)dbr dsderyda

(5.36)

T x1 .
// E(x2)1(xs) ((1 - K<O))G0tt(:€2,t)—
. (5.37)

=
=
D
=]
=
8
N
|
o \
=
—
=
=
Nt
D
=]
S—
QL
~
N—
QU
S
IS8
S
| I |
QU
S
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where a,(t) = lwy(t), M = /m(:v)d:t and

I x1

Go(z,t) = %//m(:@)d:cgdxl + # (5.38)

z 0

Rotation

In case of perturbed rigid body rotation w, (&, 7) and G.(§,7) are odd functions of &,

while NV, (£, 7) is an even function. Thus, we get from the second equation (5.20)
wo(&, ) = Euor(T) (5.39)
Now, multiply the first equation (5.20) by ¢ having
Enge + £ m.(E)vor =0 (5.40)

On integrating the latter over the length of the structure and taking into account the

boundary conditions (5.22) along with the third equation (5.20) we have

1
tore [ €m.(€)d€ = —2(G + NY) (5.41)
“1
We also deduce from (5.20), (5.22) and (5.36)

1
2(G; + NJ) [ &ma(&)dé
¢ + N (5.42)

nNg = —

_f1§2m*(£)d£
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and

€1
I [ Gama(&2)déadé,

0&

ime*(f)dﬁ

90 =—-2(G, +N}) +ENF (5.43)

Then, on integrating the third equation (5.27) we obtain

wy Z/Eim(go(&ﬁ)—/TK(%(&)(T—71))9071(52,Tl)dﬁ)d&d&+§U1

(5.44)
The second derivative of (5.43) in the dimensionless time is
X3! ]
o / W@(s P)(1= K (0)) — gor (€, 7) »
Ko(0) ~[Ker (0167 = 7)o 6o Tl)dﬁ) déxdéy + Evrr,
)
Finally,
Vi = f - [fm* //ﬁ
(s0re (62 )1 = K(0) = g2 7). (0)- (5.46)
] Ko (&) = 7))o (€2, ) ) d@d@] "
)
The obtained angular acceleration of the beam is
Wrr = Wory + EWirr + ... (5.47)
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The angular acceleration of the left end of the beam £ = —1

0 £
wTT:—fC;;—*N—&t [O/m(%w(fb )(1_K<O))_

Gor (1, 7) K- (0) — /Krr(%(fl)(T — 71))9om (§1>71)d71>d§1d§+

1 £ & (548)
1 1
[0 | [ | e e i K0)-
f 2, (¢ df[ 0/0/ E.(&)1(&)
gor (&2, 7) K+(0) —/KTT (7 (&) (T —71)) 9o, (52771)dT1>d§2d§1>d§]
0
the angular acceleration of the left end of the beam & =1
G, + NS [
+
Wrr = = + € [//E* (VL (E) (9077(517 )(1_ K(0 ))_
f{zm* 0 0
907(517 ) - /KTT e él)(T - 7'1))9071(51;71)d7'1)d§1d§—
(5.49)
f £2m,(&)dE 21 2)
907(&, /KTT e 52)(7 Tl))gon(&,71)d71)d52d§1> f]
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and finally the angular acceleration of the center of the beam & = 0

1 &1

) 3
wep =GN /fm* [//m

_f1€2m*(€)d€ ffzm*

(gw@a ) (1= K(0)) = gor (62.7) K (0)— (5.50)

/KTT (7*(52)(7 - Tl))gotl (52771)d71)d§2d51] dg

In the original variables the equation (5.46)-(5.50) take the form

JQ|1:_Z == GQ — G1 - l(Nl + NQ) — (1 — K(O)) [% /me(x)dxx

0 =z l

|
//E G()tt (w1, )dI1d90+/ //T)Gmt(x% t)dzodx dr | +
00

-1 0 —1

a0 [ / STy PR
/Qfm(l')//mGOt(l‘g,t)dﬂfgdl‘ldl’] +
/O/m/l(tt (v(@2)(t — t1)) Gor, (22, t1)dtydzdr+

1
7/ 2 d.’L'

l T T
1
) B(x2)1(x2) / Ky (v(w2)(t = t1)) Gor, (22, t1)dty daady de
2) I (2

—1 0 0
(5.51)
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l

1
JQ|pet = G2 — Gy — I(Ny + No) + (1 — K(0)) 7 /:EQm(x)dxx

T T x1

l
1
//WGOtt<$lat)dl’1dx—/ //E GOtt(x%t)dedwldw .
0 0 J
I =z X

z)dx b G ) drde—

) !/E<x1)j(xl) Ot( 1 ) 1
/E .TQ Q;Q GOt(x27 )dedxld:l}] —
0

l
/ d$//E :El :L‘l /Ktt l’g)(t—tl))GoTl(l’g,tl)dtldxldI—F
0 0

/ - / / Yo / Koo (1(2)(t — £1)) Gon (02, 1) dtr diadacs do

and

(5.52)

l
JQ|35:0 = G2 - G1 - Z(Nl + Ng) - /xm(:v)

=l

((1 — K(0))Gou(w2,) — Ki(0)Goy (2, ) (5.53)

/Ktt (’y(xg)(t — tl))GOT1 (2, tl)dt1> dxgdm] dx

where angular acceleration (2 and moment of inertia J are given by 2=y, and
!

J = /xgm(x)dm, whereas

-l

z 1
(Go — Gy — (N1 + No)) [ [ wom(zs)dzaday N
Go(z,t) = l 0o + 5N+ V) (5.54)

£ 2m(z)dz

The equations (5.33) and (5.43) contain low-frequency corrections to classical equa-
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tion of rigid body dynamics Ma, = Ny — Ny and JQ = Gy — G; — [(N; + N3). The
quantities (5.34) and (5.44) are key for the established approximate formulae. They
express the leading order low-frequency variation of the bending moment along the

length of the structure.

5.4 Particular cases

5.4.1 An inhomogeneous viscoelastic beam of uniform density

The derived equations (5.33) and (5.43) take a simpler form for perturbed rigid body
motion of a homogeneous viscoelastic beam (m(z) = m). For vertical motion they

become

Mav|a::—l =Ny — Ny — 1 - // G()tt($1,t)dl‘1d$—|—
331

-1 0

l x T
1 1
— [ m(x —————Gop (2o, t)drodrdx | +
2/l ( )O//E(x2>j(x2) Utt( 2 ) 2 1

0

0 I zx
)| Bl Gmdmd%—l— /// Got(xQ,t)dxgdxlda: +  (5.55)
Lo —-10 0
0 =z
l//E$1 I(xy) /K“ (t —t1)) Goy, (1, t1)dtyday da+
-1 0

T X1

!

1

5///E{L’2 :L’2 /Ktt t—t1>)G0tl(Z)’J2,tl)dtldl'gdl’ldl’
-1 0
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T

l
Mav\x:l = Nl NQ + 1 - (l// GOtt * (.CEl, )dl’1d.ﬁE—
E 33'1
0 0

I = x1
1 1
5/ / / WGO“WWW) -
0 0
|l =z x
—zo 0
I =z
l// /Ktt t—tl))G0t1($1,t1)dt1dx1dm—|—
E(x1)I(x)
0 0
1 I = =
5///Ex2 I(x2) /Ktt (t — t1)) Goy, (w2, tr)dtrdasday da
210 0

and

Mav|z:0:N1 NQ_/[//EZL’Q [EQ 1—K<O))G0tt($2,t>—
0 0

- (5.57)

t

Kt(O)GOt(xg,t) — /Ktt(")/(t — tl))GDn (l’g,tl)dtl) dﬂ?gdwll dx

where

Go=(I*— x2)mN1 2_z N2 | m <G12+ G2) (5.58)
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and for rotation

l2
JQ ey = Gy — Gy — (N1 + Ny) — (1 - K(O)) {gx

// (xl)l(xl)GO” o1, t)dzido + /// GOtt(fEmt)dedmdw]vL

—10 -1 00
0 =z
K(O)E// L G, ) drdat
-1 0
— | x Goi(a, t)drodrdx | +
2/ //E(x2)](2> Ot(z) 2 11?]
-1 0 0
12 0 =z 1 t
. - | K _
’ /l / E(:m)z(xl)/ «((E)lE = 1)) Gl (22, 1)zt
] l
5/1‘//m/[(tt $2)<t—tl))GoTI([EQ,tl)dtldl’gdfﬁldl’
-1 0 0
12
JQ|yer = Go — G1 — I(N1 + No) + (1 — K(0)) {gx
|l x I xx1
1
// (1’1) ( )GOtt .Tl, dIld.T—§/I//E ] GOtt(.TQ,t>dI2d.T1d$]+
00 -1 00
Il =z
K(O)E// L G, t)dzida—
t 3 / ) E(xl)l(xl) ot\1,1)axr10T
(5.60)

L //Wguddd] :
g//m/tl(tt(v(xg)(t—tl))GOTl(:Eg,tl)dtldxldm+

§/$//m/Ktt 1’2)(15—tl))GQTl(l'z,tl)dtldl‘gdl'ldQT
0 0
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and
!

1 T 1 1
me:o:Gz—Gl—l(NﬁN?)—5/95 [//WX
0 0

-l

((1 - K<O))G0tt($27 t) — Ki(0)Goy(2, 1) (5.61)

t
/Ktt (’Y(I‘Q)(t — t1)>G07'1 (IQ, tl)dt1> dl’gdl‘l dl’
0

where

Gy — Gy
203

+ am (31 — 2?)

2 N+ N
a 1) L (5.62)

ngxm(—— 5

5.4.2 An inhomogeneous viscoelastic beam of uniform stiff-

ness and viscosity

In the case of inhomogeneous viscoelastic beam with constant stiffness and viscosity
(E(x) = E,I(x) = I, u(x) = p and y(z) = ) the derived formulae (5.34) and (5.44)

become

T

0
Mav‘z:fl = Nl - NZ - (1 - K(O)) (M//GOtt($1,t)d$1d$+
-1 0

l T

/m(a:)//Gott(:vg,t)dxzda:ldx +

-1 0 0
0 =z l

K.(0) [ / / Godrrdz + / m(z) / / Gor(2, t)dzadardz | + (5.63)
-1 0 0

0 -1

0 « t
M///Ktt(’y(t—tl))GOtl(ﬂfl,tl)dtldl'ldl‘+
-1 0 0
l x x1 t
/m(x)///Ktt(v(t—tl))G’Otl(:Bg,tl)dtldxzdxld:r
-1 0 0 O
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Il =z
Mav\x:l :Nl —Ng—l— (1—K(0)) (M//G()tt .Tl, d.l?ldﬂf—
0

! T T
/m(:c)//Gott(xg,t)d:vgdxldx) —
2 0

(M/]Gotdxldx/lm(x)/x7Got(a:’2,t)d:c2d:c1d:17> — (5.64)

0 -l 0 0

r t

l
M///Ktt t—tl G()tl(l'l,tl)dtldl’ldx—i—
0 0 O

x x1 t

/m ///Ktt('y(t—tl))GOtl(xg,tl)dtldxgdxldx
I [ [ [0 wonain-
—l

Kt(O)G0t<I2,t) — /Ktt (’)/(t - tl))GOTl (.YJQ,tl)dtl) dIlej] dx

and

where

G1+ Gy
Go(z,t) = ME’I //mxg Ydxodxy + SE]
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and for rotation

2

JQ|x:_l = GQ — Gl — Z(Nl + NQ) — (1 — K(O)) |:l§><

T

//G()tt l’l, d{['ldl'—l— / //GOtt ZEQ, dl‘gdfﬁld{f +
-1 0
] 0 =z
g//GOt .Z’l, d$1d$+
X I - (5.67)
5/ // LEQ, d.illgdxldl’] +
-l 0
0 =z t
l2
g///Ktt(’y(l‘g)(t—tl))GOTI(JZQ,tl)dtldfblde‘—f—
-1 0 O
1 l x x1 t
5 e //Ktt(’)/(lj)(t—t1)>G07—1(l‘2,tl)dt1d$2d$1d1'
-l 0 0 O
l2
Jlezl = GQ — G1 — l(Nl + Ng) + (1 — K(O)) |:§><
| =z ! T X1
1
//Goﬁ(a:l,t)dxlda:§/x//G0tt(x2,t)dx2dx1dx] +
0 0 -1 0 0
Il x
l2
Kt<0 [g//Got $1,t)d$1d$—
0
. ! (5.68)
2/$//G0t To,t dxgdxldx] —
-l 0

g///Ktt<’y($2)(t—tl))GOTl(xg,tl)dtldwldl’-i—

0 0 O

x x1 t

/x///Ktt (x2) t—tl))G’OTl($2,tl)dtldxgd:vld:r

0 0
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and

JQ o = Go — Gy — I(Ny + Ny) — %/lx ]/ ((1 — K(0))Gou(22,t)—

t - (5.69)
Kt(())GOt([EQ, t)—/ Ktt (’}/(.CCQ)(t — tl))GOn (.CEQ, tl)dt1> d$2d$1 dx
0
where
x 1
(GQ — Gl - Z(Nl + NQ)) f f $2m($2)d£€2d1’1 .
Go(z,1) = oo + oM+ N2)  (5.70)

I
EI [ 2*m(x)dx
-

5.4.3 A homogeneous viscoelastic beam

The derived equations (5.35)-(5.37) and (5.55)-(5.57) take a simpler form for perturbed
rigid body motion of a homogeneous viscoelastic beam of uniform stiffness, density and
viscosity. In this case m(z) =m, E(z) = E,I(x) = I and y(z) = and the formulae

(5.38) and (5.58) become

Nl_N2+G1+G2

2 2
— (2 _ 71
Go = (I" —27) 4l 9 (5.71)
and
x? Ny + Ny s 9.G2— Gy
On inserting the latter into and we get respectively for vertical motion
MCLU|$:,[ = Nl - N2_
(5.73)

t

A . . .

a7 | G0 - K) - 6K - [ Kalote = )Gt
0
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Mav|m:l = Nl - NZ_

3 (5.74)
=7 GS (1= K(0)) — G5 K0 /ﬁgt (t — 1)) G dty
and
Mav = N1 - NQ—
5 : (5.75)
E GOtt(l — K(O)) — GOth(O) — /Ktt (")/(t — tl))GOtldtl
0
where M =2ml, GY = (N, = Ny)+2(G1+Gy), G = —2(Ny—Ny)—L(G1+Go)
and Gy = 2(Ny — N2) + 5(G1 + Gs) in (5.73), (5.74) and (5.75) respectively.
and for rotation
JQ’IZ,Z == G2 - G1 - Z(Nl + NQ)—
m ) ,
o7 G (—K(0)) — /}@ )t — 1)) G dty

JQ|w:l — G2 - G1 - l(Nl + NQ)—

il / (5.77)
G- k) - G0 / Ko (1)t — 1))ty

and
JQ‘QU:O - G2 - G1 - Z(Nl + Ng)—
m , ,
E[ GOtt(l — K(O)) — GOth /Ktt t - tl))GOtldtl
where GO = — v N - g -6y, GV = (N4 Ny — —(G2 &)
0 1260 140 ’ 315

, 11 1
and Co = 22 (Ny + Vo) + —>(Gy — Gy) in (5.76)

840 280 - (5.78) respectively.
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For a Voigt beam the formulae (5.76) - (5.78) become

t

B .owm E [ 24y

May|ys = Ny — No + TZ—I GO0 _ Z/e W =) GO0 g, (5.79)
0

and

t

mi* oo E [ B 40,00
JQ’x=¥:G2_Gl_l(N1+ N2>_M GOt —; e ~ GOtl dtl (580)
0

5.5 Numerical results

Consider time-harmonic motion of a homogeneous viscoelastic beam. In this case the

constitutive relations (5.1) become

v =S4 (5.81)

with
)= /K (17;) e*dz (5.82)
w
0
where w is circular frequency. Here and below the factor e~™! is separated.

Let vertical motion of the beam caused by equal end forces, i.e. N(I) =—N(—I) =

Ny and G(=£l) =0 (see Figure 5.2). Thus, the equation (5.79) is in the form

3
Ma, = —2N, {1 g z'a)] (5.83)
where
A, = wi?y 22 5.84
WA ET (5.84)
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The latter formula also corresponds to a two-term asymptotic expansion of the exact
solution, see Appendix A.2.
Numerical results are given in Figures 5.3 and 5.4 for the same values of the pa-

rameter [ which is now is expressed by
iwo/m
B = 2\ BT (5.85)

In addition, we adapt here the notation a = —Ma/2N, and define the parameter

6 in 5.87 as

AvfB

== (5.86)

As before, the two-term formula 5.87 extends the range of the applicability of
Newton’s second law to vertical motion of a bar. Similarly to the data displaced in
Figures 4.3 and 4.2, we observe a better accuracy of the aforementioned formula at

greater values of the parameter f responsible for the effect of viscosity.

1.35

Exact

Approximate -------

13

125

12 |

115

x
Rea,

11 f

1.05

1

0.95 . L L

Rotation motion of the beam caused by equal end forces, i.e. N(I) = N(—I) = N,
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Exact
0.12 | Approximate ----—>4 7|

01 |

0.08

.
Ima,

0.06 |-

0.04

0.02

Figure 5.4: Vertical acceleration vs frequency (Imaginary Part)

and G(+£l) = 0 (see Figure 5.2). In this case the equation (?77?) is written as

=14+ — 1 .

where

_ o2
o= 0l (5.88)

The latter formula also corresponds to a two-term asymptotic expansion of the exact
solution, see Appendix A.3.
Numerical results are given in Figures 5.5 and 5.6 for the same values of the pa-

rameter [ which is now is expressed by
wofm
8= 2\ BT (5.89)

In addition, we adapt here the notation a = —Ma/2N, and define the parameter
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0 1in 5.87 as

AvfB

‘5:1—%&

(5.90)

The two-term formula 5.87 extends the range of the applicability of Newton’s sec-
ond law to rotation motion of a bar. Here we observe a better accuracy of the afore-
mentioned formula at greater values of the parameter § responsible for the effect of

viscosity.

105 1 Exact

Approximate ----, //
/

.
Rea,

Figure 5.5: Rotation acceleration vs frequency (Real Part)

2 ‘ Exact )
002 L Approximate ----- ) pal

0.015

0.01

.
Ima,

0.005

Figure 5.6: Rotation acceleration vs frequency (Imaginary Part)

113



Chapter 6

Application of the low-frequency

model to a coupled impact

6.1 A homogeneous elastic rod

For simplicity consider time-harmonic motion of a homogeneous elastic rod of length

21 ignoring the effect of viscosity (u = 0). The equation of motion (4.1) becomes
F, = muy (6.1)
and the relation between strain and force can be written as
e(0,t) = — F(z,¢), (6.2)

EA

where e = u, is the longitudinal strain as above.

The boundary conditions corresponding to the end forces arising in a coupled impact
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are given by

F(—1,t) = F\(t), F(I,t) = Fy(t) (6.3)

Next by using dimensionless quantities

F*f = u’TT (64)

and

Use = €L (6.5)

we seek for the solution of the problem (6.4) - (6.5) in the form (4.15).
At leading order

foe = uorr and uge =0 (6.6)

subject to the boundary conditions

fo(=1,7) = F1.(7) and fo(1,7) = Fo.(7) (6.7)

Immediately, we get from the second equation (6.6)

up(&, 1) = vo(T) (6.8)

Next, we have from the first equation (6.6) taking into account the imposed boundary

conditions (6.7)

FQ*_FI*

5 (6.9)

Vorr =
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At the same time

Fo—F)  Fo+ Py,
h=€(221)+ 221 (6.10)

At next order

Jie = uirr and uie = fo (6.11)

with the homogeneous boundary conditions f;(£1,7) = 0. On integrating the second

equation (6.11) we arrive at

§2(F2*4— Fi,) n §(F2*;— Fi.) ¥ (6.12)

Uy =

The second derivative of (6.12) with respect to dimensionless time is given by

2F’>x<1'7'_F’>k‘r7' F*TT+F*TT
e = 2 T ) B S ) o (6.13)

We also get from the first equation (6.11) and the homogeneous boundary conditions

above

1 1
T — I *TT —F *TT 6.14
(1 <3 2err T g1 ) ( )

Then, the acceleration of the right end of the rod is

D 1
ulTT(1> = EFQ*TT + EF]_*TT (615)

Similarly, the acceleration of the left end is

5 1
ul‘r‘r(l) = EFQ*TT + EF]_*TT (616)
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or in the original variables

’m

Ma, = Fy — F, —
=Ty

(7TFour + 11 44)

and
2

I“m
Mas = F5 — F
as 2 1+6EA

(5F %t + Fraet)

After subtracting (6.18) from the equation (6.17) we get

20°m
M(CLQ — al) = ﬂ (F2*tt + Fl*tt)

On the other hand

Fou = Fiyy + Magy

Then

Fiy = E2—1l4(a2 —ay) — %altt
and

Foy = EQ—?(@ —ap) + 5 G

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

In terms of time harmonic motion the derived formulae (6.21) and (6.22) are given

by

EA M
1= w(@ - Gl) - 7611

and

FA M
=gt ga
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6.2 An inhomogeneous elastic rod of variable den-
sity

Consider time-harmonic motion of an inhomogeneous elastic rod of length 2/ ignoring

the effect of viscosity (1 = 0). The equation of motion (4.1) becomes
F, = m(x)uy (6.25)
and the relation between strain and force is in the form (6.2)

LF(w,t)

e(z,t) = A

The boundary conditions corresponding to the end forces arising in a coupled impact

are given by (6.3). By using dimensionless quantities
Fie = ma(§urr (6.26)

and

e = eF, (6.27)

we are looking for the solution of the problem (6.26) - (6.27) in the form (4.15).

At the leading order

foe = mu(&)up,, and uge =0 (6.28)
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subject to the boundary conditions

fo(=1,7) = Fi.(7) and fo(1,7) = Fo.(7) (6.29)

Immediately, we get from the second equation (6.28)

uo(&,7) = vo(T) (6.30)

Next, we have from the first equation (6.28) taking into account the imposed boundary

conditions (6.29)

F, — FY,
Vorr = 12—1 (631)
S m.(&)dg
21
At the same time
3 1
Fa, m*ﬁ)df + F. m*(f dg§
2_f1 (&)déy 1{ 1)d&y R+ P
fo= 5 + (6.32)
S m.(§)dg
el
At next order
fie = m(§)ur,, and uie = fo (6.33)

with the homogeneous boundary conditions fi(£1,7) = 0. On integrating the second

equation (6.33) we get

3 &1
u = 1; Fo, / / m.(&2)d&adéy + Fi, / / ma(€2)d€adls | +v1 (6.34)
J m.(§)d¢ 0 1 0 &
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The second derivative of (6.34) with respect to dimensionless time is given by

X3! €1
Urrr = 1;(172*77//7”* (52)d£2d£1 +F1*TT//m* (62)d€2d£1)+vl7'7' (635)
Jm(deN 05 06

-1

From the first equation (6.33) and the homogeneous boundary conditions above we

get
1 § &
Virr = — 1 ! 2 (FQ*TT m*(f)//m*(&)d&d&df—l—
<f m*(f)d§> -1 0 -1
—1 (6.36)
1 €1
Flarr | m.(€) m*(52)dfzd§1d5>
[re]]
Then, the acceleration of the right end of the rod is
. 1¢ 11
ulTTfl1—GQ*TT//m*(gl)dfld§+FI*TT//m*(gl)dgldé> -
im*(f)df 0-1 0¢
] 1 £ &
. 2 (F2m / m. (&) / / m.(&2)d&2d& dé+ (6.37)
(J met6)ac) Aooad
-1

3

Frons / m.(© | / m*(éz)dfzdfldf)
J J

0
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Similarly, the acceleration of the left end is

-1¢ —-11
U17T|§=71 = 1;%2*77//m*(£1)d€1d§+Fl*‘r‘r//m*<€1)d§1dé) -
§)d¢ 0¢

[ mu( 01

! (FQ*TT/lm*(é)/éjlm*(fz)d&d&d@r (6.38)

-1 0 -1

Frors / ma(€) j / m*(&)d&zd&dﬁ)
0 &

or in the original variables

Ma, = F, — F + — (Fg*tt//m 1 dxldxthl*tt//m T dxldx> —

0 -1

l

- (tht/m //m xo)dxodrdr+ (6.39)
EA f m. (&
l z 1
Fltt/m(x)//m(:vg)dzgdasldx>
—1 0 =

and
1 l =z 1
MCLQ = F2 Fl + e (Fg*tt//m<l’1)dlﬁld$+F1*tt//m<l’1)d$1d$) —
0 l 0 =z
l 1
- (tht/m //m(mg)dxgdxldx—l— (6.40)
EA ['m 7 0 1

-1

l z
Fltt/m(a:)//m(@)dmdxuix)
—1 0 x1
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After subtracting (6.40) from the equation (6.39) we get

M(ay —ay) =

1ol
1

I =z
A tht//m(:r:l)dxldx+F1tt//m(:rl)dmlda: (6.41)

-1 =l - x

On the other hand

F2tt = Fltt + Mam (642)

!
where M = [ m(z)dz.
-]

Then l
MEA(as —ar) — M [ [ m(z1)dzidzary
A
p— -4
Fiu - (6.43
or l
m(x)dridx
i _EA( | _fl_J; (w1)da, ou
1t = 9l az —a 9l A1t .
and l
m(x)dridx
Fow = 2400 — a) e M (6.45)
2t = ol Gy —ay) — 9l Q¢ .
6.3 Evaluation of impact forces from experimental

data

In the equation for the impact force (6.21) the coefficients may be estimated through

least squares as

Py = ki(az — a1) + kaayy. (6.46)

Some of the results for the impact force and related spectra are demonstrated below

for k; = —630100 and ky = 65780. The results for Test 1 are illustrated in Figure 6.1,
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containing the comparison of experimental and predicted derivatives of the force Fiy,
spectrum of acceleration at the left end of the rod, spectrum of difference between ac-
celerations at both sides, spectrum of the force at the left end, and, finally, comparison
of experimentally measured and theoretically predicted forces.

It is remarkable that as follows from the theoretical consideration in the previ-
ous section the spectrum of a; ~ ay and the spectrum of the difference ay — a; (or
Acceleration2 — Accelerationl on Figures 6.1 and 6.2) has to begin at the origin. The
violation of this requirement for available experimental data indicates that some fur-
ther careful analysis of data representation is required. However, even so, the results
for Test 1 show relatively good agreement between theoretical and experimental data.

We note that it is not always the case, see e.g. the results for Test 3, shown on
Figure 6.2.

More data for other tests may be found below.
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Figure 6.1: Numerical illustrations for test 1
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Figure 6.2: Numerical illustrations for test 3
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Let us also present some evidence of necessity of some further investigation of the
presented experimental data. As an example, we consider part of the recorded data for
acceleration at the right end of the freight car, showing with red solid lines the positive
values, and with the blue dotted lines the negative values, reflected into the upper half-
plane, therefore, essentially, the graphs on Figure 6.3 show modulus of acceleration. It
may be observed that the mean value of the data (and of course, the integral) are non-
zero, with negative part overwhelming the positive one. This provides a clear evidence

of further analysis of the recorded data.

Accelerotion 1 (Modulus}
26 T

Acceleration, g
w

} - L
IR AT s R T
AR A T BN VAT s F T AR I R

6024 G.6032 G.604 06048 G.6060 BG4 L6072 0.608

Time, sec

Acceleration 1 {(Moduns)
26 -

234

v A
13 A H
! o
3
3

Acceleration, g

L 0V A K Ol A it e s e e

46016 46018 46028 d.6023 G.6026 f.ages G603 £.6033 36635 L0038 604

Time, sec

Figure 6.3: Evidence of further investigation for test 3

Below we present the results of comparison of the theoretical results for Fiy; versus

provided experimental data. Calculations are presented for the rest 17 tests, with solid
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line standing for theoretical calculations and dotted line depicting experimental results.

The values of the coefficients are taken as k; = —630100 and ky = 65780.
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Conclusion

In this thesis, an approach for the prediction of contact forces arising at car-to-car
impacts is developed. An ANN routine was designed for this case. Theoretical formu-
lations within rigid body dynamics were adapted for training the ANN. Low-frequency
corrections to rigid body dynamics were derived for extension and bending of an inho-
mogeneous viscoelastic bar. Implementation of the proposed methodology for analysis

of experimental data leads to the following conclusions

e ANN seems to be a beneficial tool for predicting the contact forces in freight
cars. At the same time, there is an issue related to achieving a required accuracy

mainly due to a limited amount of tests.

e Rigid body dynamic models are useful for theoretical training of ANN. However,
the validity of linear multibody models may be restricted because of nonlinearity
of impact phenomena. On the other hand, the efficiency of general 3D contin-
uum models is rather limited due to computational problems as well as lack of

information on problem parameters, e.g. structure topology.

e The derived pseudo-rigid dynamic model incorporating the effect of internal struc-
ture demonstrates a wider range of validity than that started from the rigid body

dynamic framework. The advantage of the aforementioned formulation has been
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proved by comparisons with a real experimental setup in case of a coupled impact,

see Chapter 6.

The developed perturbation procedure enables various extensions and is not re-
stricted to the field of railway dynamics. In particular, a pretty similar analysis can be
initiated for two-dimensional antiplane and plane problems for a viscoelastic rectangle
subject to stresses prescribed along its sides. For an elongated rectangle there is an ob-
vious possibility for applying higher-order asymptotic plate models; e.g. see [103, 104].
In this case not only one-dimensional equations of motion but also related boundary
conditions should be refined using the dynamic version of the Saint-Venant’s principle
[105, 106]. Calculation of low-frequency corrections for more general geometries should
rely on numerical calculations. However, the perturbation algorithm presented in the
thesis should not be subject to major changes.

In addition, the proposed scheme is not restricted to the utilised linear viscoelastic
model. More elaborate theories taking into account non-linearity and time inhomo-

geneity of viscous behaviour can be taken into consideration.
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Appendix A

Exact solutions for homogeneous

rods and beams

Substitute the formulae (4.85) and (5.81) into the equations of motion (4.1) and (5.1),
(5.2) specified for a time-harmonic motion of a homogeneous bar and introduce dimen-

sionless variables. Then, these equations take the form
Uge + q,%u =0 (Al)

and

Wegee — G0 =0 (A.2)

where qi = A\j(1+i0) and ¢, = A2(144d). Subject them to the boundary conditions

corresponding to the problems analyzed in the previous section, i.e.

F(1 + i)
Ugle=—1 = 0, ugle=1 = QT (A.3)
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Nol3(1 + 19)
w£££‘£=il = :!:Ta w££|£:j:1 =0

and

Nol3(1 +40)
Weee|e=t1 = —7 Wee|e=t1 = 0

A.1 Horizontal motion

We are looking the solution of the problem (A.1) subject to the boundary condition

(A.3) in the form of

u(§) = Crett 4 Coe It

First derivative of the (A.6) is given by

ue(€) = Crgne®t — Cygreh*

After substituting (A.6) to he boundary condition (A.3) we get

 Flew (1 4 i)

Cr= 2F Asinh 2q;,
Fle=(1 4 i0)
Cy = :
2F Asinh 2q;,

and finally

_ BI(1 +146) cosh(ga(1 +€))
E Aqy, sinh 2¢;,

u(§) =

In this case the horizontal acceleration of the center (£ = 0) is given by

Foqy,

= M sinh gy,
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Over the low-frequency band A, < 1 we get ¢, < 1 assuming that § ~ 1 (7 ~ w)

in (A.1). As a result, we arrive at the expansion

Fy qz
= — 1+ =+... 11
ap Wi ( + 6 + (A )

A.2 Vertical motion

For the case of the vertical motion the solution of the problem (A.2) subject to the

boundary condition (A.4) in the form of
w(&) = C cosh q,& + Cs cos q,€ (A.12)
the third derivative is given by
weee(€) = Cig, sinh g,€ + Cag, sin g,€ (A.13)

By substituting (A.13) to he boundary condition (A.4) we get

FI3(1 4 id) cos g,

. —
YT RIg (cos g, sinh ¢, + sin ¢, cosh g,) (A14)
C, — F13(1+1i0) cosh g, .
> E1¢3(cos gy sinh g, + sin g, cosh ¢,)
and finally
Nol3(1 +id) cos g, cosh £q, + cosh g, cos £q,
w(e) = 2LUAD) . L : s (A.15)
ET q3(cos g, sinh g, + sin g, cosh ¢,)
The associated acceleration of the center & = 0
ay = 2N2 QU(COS Qv + cosh QU) (A16)

M cos ¢, sinh g, + sin ¢, cosh g,
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has the following low-frequency expansion

=— (14— Al

A.3 Rotation

Similarly the rotation motion the solution of the problem (A.2) subject to the boundary

condition (A.5) in the form of
w(&) = Cysinh ¢,.€ + Cysin ¢, (A.18)

the third derivative is given by
weee (€) = 15 cosh ¢, + Cag? cos & (A.19)

By substituting (A.19) to he boundary condition (A.4) we get

FP3(1+id)sing,

C =
! EIg¢*(sin g, cosh g, — cos g, sinh g,.) (A.20)
o FI3(1 +46)sinh g, .
2 EIg¢(sin g, cosh g, — cos g, sinh g,.)
and finally
Nol3(1 +46) sin g, cosh &g, + sinh ¢, sin g,
p(§) = ( ) T : (A.21)
El ¢2(sin ¢, cosh ¢, — cos g, sinh g,.)
The acceleration of the center £ =0
2 . .
0 - 2N, q;(sing, + sinh¢q,) (A.22)

M sin ¢, cosh ¢, — cos g, sinh g,
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has the following low-frequency expansion

2N, 1,
P I A A2
T TEM ( T Ra® ) (4.23)
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Appendix B

Brief description of the developed

software

The C# programmes with applications for analytical models (Kelvin-Voigt and Mod-
ified standard-linear ), finding force closure, processing and analysing experimental
data, several artificial neural networks ’ANN’ were developed. For implementation
aforementioned applications the study matherials and algorithms from [107]-[110] were

used.

B.1 Application "Model’

Application '"Model” was created to facilitate the research and produce the results for
analytical models, train artificial neural networks (ANN) and evaluate the results of
models, ANN and the real life experiment data.

Application consists of the several modules:

e Implementation of analytical model with a linear spring 'Ideal Model’ (see Figure

B.1)
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e Analytical model with a nonlinear spring and damper 'Damper Model’ (see Figure

B.2)

e Processing and analysis of experimental data "Experiment Data’ (see Figure B.3)

e Implementation of several artificial neural networks ’ANN’ (see Figures B.4 and

B.5)

Modules 'Ideal Model’ and 'Damper Model” allow to generate any volume of data
and set different analytical model characteristics such as stiffness, mass, initial velocity,
viscosity and etc. It calculates accelerations, velocities and forces using analytical
models with linear spring and nonlinear spring with viscous damper, generates and
saves data sets to file for ANN training with different input and output parameters.

Module ’Experiment Data’ allows to upload real experiment data, analyse it, gen-
erate and save the file for training of ANN.

Module ’ANN’ has two types of neural networks: Multi Layer Perceptron (MLP)
with Backpropagation ”Backpropagation” and Radial Basis Function network "RBF”.
It takes the file with training data (which automatically randomly divided in to training
and test data sets) and construct the MLP with different activation functions (e.g.
linear, sigmoid, tanh, step, log) and numbers neurons and hidden layers. During the
ANN training charts demonstrate progress showing the error and the average output
error for the data provided. After training, you can save down the ANN and later
upload it with a new data to continue training or to evaluate analytic model or real

life experiment data.
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B.2 Application 'Time Close Model’

Application "Time Close Model’ was to facilitate to developed the research and produce

for evaluation the reaction force using smoothing adaptive method and sin approxima-

tion.

Application consists of the several modules:

Generating ANN training data file

Processing and analysis of experimental data

Implementation of sin approximation method

Implementation of smoothing adaptive method

Application (see Figure B.6) allows to upload any volume of data, either real experi-

ment data or data generated by the analytical models, analyse it, manually sets different
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time intervals, increments and calculates closing forces and times and, finally,generate

and save the file for training of ANN.
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Figure B.6: Screenshot for Time Close Model
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