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ABSTRACT
We model the dynamical evolution of star-forming regions with a wide range of initial prop-
erties. We follow the evolution of the regions’ substructure using the Q-parameter, we search
for dynamical mass segregation using the �MSR technique, and we also quantify the evolution
of local density around stars as a function of mass using the �LDR method. The amount of
dynamical mass segregation measured by �MSR is generally only significant for subvirial and
virialized, substructured regions – which usually evolve to form bound clusters. The �LDR

method shows that massive stars attain higher local densities than the median value in all
regions, even those that are supervirial and evolve to form (unbound) associations. We also
introduce the Q − �LDR plot, which describes the evolution of spatial structure as a function
of mass-weighted local density in a star-forming region. Initially dense (>1000 stars pc−2),
bound regions always have Q > 1, �LDR > 2 after 5 Myr, whereas dense unbound regions
always have Q < 1, �LDR > 2 after 5 Myr. Less dense regions (<100 stars pc−2) do not usu-
ally exhibit �LDR > 2 values, and if relatively high local density around massive stars arises
purely from dynamics, then the Q − �LDR plot can be used to estimate the initial density of a
star-forming region.

Key words: methods: numerical – stars: formation – open clusters and associations: general.

1 IN T RO D U C T I O N

Understanding the earliest phases of the dynamical evolution of
stars is important as their birth environments can impact planetary
systems (through interactions with discs, or through encounters with
young planetary systems), as well as stellar properties such as mul-
tiplicity. Star formation occurs most often in regions significantly
denser than the field in which interactions may be common1 (Lada
& Lada 2003; Gieles & Portegies Zwart 2011; Kruijssen 2012).
Only a small fraction (∼10 per cent, Lada & Lada 2003) of stars
remain in bound (open) clusters after 10 Myr, and so the vast ma-
jority of young stars disperse rapidly into the field. It is interesting
and important to know how and why most star-forming regions dis-
solve rapidly, and what encounters stars may have had before this
dissolution. Understanding this may place in context the exoplanet
properties of nearby field stars.

Recent results from the Herschel space telescope have shown
that stars initially form in filamentary structures (e.g. André et al.
2010), which results in hierarchical spatial distributions in star-

� E-mail: rparker@phys.ethz.ch
1 The typical field stellar density is around 0.1 stars pc−3 (Korchagin et al.
2003) which is much lower than the densities of even loose associations, e.g.
Taurus with roughly 5 stars pc−3, and very much lower than clusters, e.g.
the Orion nebula Cluster with around 5000 stars pc−3 (King et al. 2012a).

forming regions (Cartwright & Whitworth 2004; Sánchez & Alfaro
2009). However, observations of some young (∼1 Myr) clusters
show them to be centrally concentrated, with smooth radial profiles
(e.g. the Orion Nebular Cluster (ONC) and IC 348 – Hillenbrand &
Hartmann 1998; Cartwright & Whitworth 2004). Numerical studies
have shown that substructure can be erased on very short time-
scales (Scally & Clarke 2002; Goodwin & Whitworth 2004; Allison
et al. 2010), consistent with the hypothesis that all star-forming
regions form with substructure, and a certain fraction dynamically
evolve to attain smooth, centrally concentrated profiles – i.e. bound
clusters, whereas the remainder form unbound associations that
rapidly dissolve (Kruijssen 2012; Parker & Meyer 2012).

If stars do form in substructured distributions, and this substruc-
ture is erased in some star-forming regions, then in principle it may
be possible to compare observations of star clusters and associations
at different ages and use measures of structure and kinematics to
infer the past, and potentially future, (dynamical) evolution of the
system.

As an example, the competitive accretion scenario of star forma-
tion (Zinnecker 1982; Bonnell et al. 2001; Bonnell, Bate & Vine
2003; Bonnell, Clark & Bate 2008) predicts that the most massive
stars are overconcentrated at the centre of a region (primordial mass
segregation). We would not expect a region to lose any primordial
mass segregation due to dynamical evolution. Whilst mass segre-
gation is observed in several clusters [e.g. the ONC; Hillenbrand &
Hartmann 1998, Allison et al. 2009b; NGC 3603 (Pang et al. 2013)
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and Trumpler 14; Sana et al. 2010], it is not clear whether it is pri-
mordial (i.e. an outcome of the star formation process). Recently,
Allison et al. (2009b, 2010) showed that mass segregation can oc-
cur dynamically on very short time-scales, negating the need for
the most massive stars to form at the centre of the region, as previ-
ously thought (Bonnell & Davies 1998). Furthermore, observations
of both high- and low-mass clusters (Berkeley 96 – Delgado et al.
2013; ρ Oph – Parker, Maschberger & Alves de Oliveira 2012) and
associations (Taurus – Parker et al. 2011; Cyg OB2 – Wright et al.
2014) indicate that mass segregation is not always present.

Assuming mass segregation is not always primordial, a combined
measure of the structure of a star-forming region, and the amount
of mass segregation that can occur dynamically, could be a useful
diagnostic for tracing the dynamical evolution (if any) of the region.

In this paper, we examine the dynamical evolution of N-body
simulations of star-forming regions to ascertain how often, mass
segregation occurs (and quantify the amount) as a function of the
initial bulk motion (virial state) of stars, and the amount of initial
substructure present in the region. We compare the evolution of
spatial structure as measured by the Q-parameter (Cartwright &
Whitworth 2004; Cartwright & Whitworth 2009), the occurrence of
mass segregation as measured by the �MSR minimum spanning tree
(MST) technique (Allison et al. 2009a), and we follow the evolution
of the mass-weighted local density, � − m (Maschberger & Clarke
2011).

We will refer to the young substructured star-forming complexes
as regions, and only use the terminology ‘cluster’ or ‘association’
when describing the regions at later times when they have distin-
guishable morphologies.

The paper is organized as follows. We describe our N-body sim-
ulations in Section 2, in Section 3 we describe the algorithms used
to quantify structure and mass segregation, we present our results
in Section 4, we provide a discussion in Section 5 and we conclude
in Section 6.

2 M E T H O D

The regions we simulate have either 1500 members, which corre-
sponds to a mass of ∼103 M�, or 150 members, corresponding to
a mass of ∼102 M�. For each set of initial conditions, we run an
ensemble of 20 simulations, identical apart from the random num-
ber seed used to initialize the positions, masses and velocities of the
stars.

Our model regions are set up as fractals; observations of young
unevolved star-forming regions indicate a high level of substruc-
ture is present (i.e. they do not have a radially smooth profile, e.g.
Cartwright & Whitworth 2004; Sánchez & Alfaro 2009; Schmeja
2011, and references therein). The fractal distribution provides a
way of creating substructure on all scales. Note that we are not
claiming that young star-forming regions are fractal (although they
may be, e.g. Elmegreen & Elmegreen 2001), but the fractal distri-
bution is a relatively simple method of setting up substructure, as
the level of substructure is described by just one parameter, the frac-
tal dimension, D. In three dimensions, D = 1.6 indicates a highly
substructured region, and D = 3.0 is a roughly uniform sphere.

We set up the fractals according to the method in Goodwin &
Whitworth (2004). This begins by defining a cube of side Ndiv

(we adopt Ndiv = 2.0 throughout), inside of which the fractal is
built. A first-generation parent is placed at the centre of the cube,
which then spawns N3

div subcubes, each containing a first generation
child at its centre. The fractal is then built by determining which

of the children themselves become parents, and spawn their own
offspring. This is determined by the fractal dimension, D, where
the probability that the child becomes a parent is given by N

(D−3)
div .

For a lower fractal dimension fewer children mature and the final
distribution contains more substructure. Any children that do not
become parents in a given step are removed, along with all of their
parents. A small amount of noise is then added to the positions of
the remaining children, preventing the region from having a gridded
appearance and the children become parents of the next generation.
Each new parent then spawns N3

div second-generation children in N3
div

sub-subcubes, with each second-generation child having a N
(D−3)
div

probability of becoming a second generation parent. This process is
repeated until there are substantially more children than required.
The children are pruned to produce a sphere from the cube and are
then randomly removed (so maintaining the fractal dimension) until
the required number of children is left. These children then become
stars in the model.

To determine the velocity structure of the cloud, children inherit
their parent’s velocity plus a random component that decreases with
each generation of the fractal. The children of the first generation
are given random velocities from a Gaussian of mean zero. Each
new generation inherits their parent’s velocity plus an extra random
component that becomes smaller with each generation. This results
in a velocity structure in which nearby stars have similar velocities,
but distant stars can have very different velocities. The velocity of
every star is scaled to obtain the desired virial ratio of the region. In
one set of simulations, we do not correlate the velocities according
to position, and simply choose them randomly from a Gaussian of
mean zero before scaling to the global virial ratio.

We vary the initial global virial ratio, αvir = T/|�|, where T and
|�| are the total kinetic energy and total potential energy of the
stars, respectively. Note that a virial ratio of αvir = 0.5 does not
necessarily mean that the regions are in virial equilibrium. Because
of the spatial and velocity substructure of the regions they are far
from equilibrium and will undergo a violent relaxation phase to
attempt to attain virial equilibrium and a smooth central profile (if
they are bound). Because we have correlated the velocities of the
stars on local scales, a substructured fractal with αvir = 0.5 will
violently relax in a similar way to a subvirial fractal. The main
difference is that a subvirial fractal will collapse more quickly,
and form a denser core, than a virial fractal (Allison et al. 2010).
Similarly, a supervirial fractal will expand on a global scale, but
the pockets of substructure will not be supervirial. For this reason,
we introduce the following terminology: a globally subvirial fractal
(αvir = 0.3) is ‘cool’ because the stars are moving slowly with
respect to their ‘equilibrium’ velocities, a globally virial fractal
(αvir = 0.5) is ‘tepid’ because the stars are still able to interact in
the substructure and it is bound, and a globally supervirial fractal
(αvir = 1.5) is ‘hot’ and unbound.

The regions are set up with fractal dimensions of D = 1.6 (very
clumpy), D = 2.0 and D = 3.0 (a roughly uniform sphere), in order
to investigate the full parameter space. We reiterate that these initial
conditions are based on observations of star-forming regions, which
appear to be filamentary (e.g. André et al. 2010) and form stars with a
hierarchical distribution (Elmegreen & Elmegreen 2001). This sub-
structured distribution of stars is also consistent with the outcome
of hydrodynamical simulations of star formation (e.g. Schmeja &
Klessen 2006; Bate 2012; Dale, Ercolano & Bonnell 2012, 2013;
Girichidis et al. 2012).

The regions contain 1500 or 150 stars each, have initial radii of
1 pc with no primordial binaries or gas potential. We draw stellar
masses from the recent fit to the field initial mass function (IMF)
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by Maschberger (2013) which has a probability density function of
the form:

p(m) ∝
(

m

μ

)−α
(

1 +
(

m

μ

)1−α
)−β

. (1)

Equation (1) essentially combines the log-normal approximation for
the IMF derived by Chabrier (2003, 2005) with the Salpeter (1955)
power-law slope for stars with mass >1 M�. Here, μ = 0.2 M� is
the average stellar mass, α = 2.3 is the Salpeter power-law exponent
for higher mass stars, and β = 1.4 is the power-law exponent to de-
scribe the slope of the IMF for low-mass objects (which also deviates
from the log-normal form; Bastian, Covey & Meyer 2010). Finally,
we sample from this IMF within the mass range mlow = 0.01 M�
to mup = 50 M�.

It is worth noting that the average global surface and volume
densities of all N = 1500 regions are very similar to each other
(1500 stars in a 1 pc radius sphere), and similarly for the N = 150
star regions. However, the average local surface and volume den-
sities vary by several orders of magnitude depending on the fractal
dimension (degree of substructure). Highly substructured regions
have their stars concentrated in local ‘pockets’ and have a filling
factor much less than unity (to some degree this is the definition
of a fractal). Thus, their local densities in these pockets may be
considerable.

We run the simulations for 10 Myr using the KIRA integrator in
the STARLAB package (Portegies Zwart et al. 1999, 2001). We do
not include stellar evolution in the simulations. A summary of the
simulation parameter space is given in Table 1.

Table 1. A summary of the different star-forming region
properties adopted for the simulations. The values in the
columns are: the number of stars in each region (Nstars), the
typical mass of this region (Mregion), the initial global virial
ratio of the region (αvir), the initial fractal dimension (D)
and whether or not the stellar velocities are correlated by
distance.

Nstars Mregion αvir D Correlated velocities?

1500 ∼103 M� 0.3 1.6 yes
1500 ∼103 M� 0.3 2.0 yes
1500 ∼103 M� 0.3 3.0 yes

1500 ∼103 M� 0.5 1.6 yes
1500 ∼103 M� 0.5 2.0 yes
1500 ∼103 M� 0.5 3.0 yes

1500 ∼103 M� 1.5 1.6 yes
1500 ∼103 M� 1.5 2.0 yes
1500 ∼103 M� 1.5 3.0 yes

150 ∼102 M� 0.3 1.6 yes
150 ∼102 M� 0.3 2.0 yes
150 ∼102 M� 0.3 3.0 yes

150 ∼102 M� 0.5 1.6 yes
150 ∼102 M� 0.5 2.0 yes
150 ∼102 M� 0.5 3.0 yes

150 ∼102 M� 1.5 1.6 yes
150 ∼102 M� 1.5 2.0 yes
150 ∼102 M� 1.5 3.0 yes

1500 ∼103 M� 1.5 1.6 no

3 QUANTI FYI NG SPATI AL STRUCTURE
A N D M A S S S E G R E G AT I O N

3.1 Measuring spatial structure

We determine the amount of structure in a star-forming region by
measuring the Q-parameter. The Q-parameter was pioneered by
Cartwright & Whitworth (2004); Cartwright & Whitworth (2009);
Cartwright (2009) and combines the normalized mean edge length
of the minimum spanning tree of all the stars in the region, m̄,
with the normalized correlation length between all stars in the re-
gion, s̄. The level of substructure is determined by the following
equation:

Q = m̄

s̄
. (2)

A substructured association or region has Q < 0.8, whereas
a smooth, centrally concentrated cluster has Q > 0.8. The Q-
parameter has the advantage of being independent of the density of
the star-forming region, and purely measures the level of substruc-
ture present. The original formulation of the Q-parameter assumes
the region is spherical, but can be modified to take into account the
effects of elongation (Bastian et al. 2009; Cartwright & Whitworth
2009).

3.2 Measuring mass segregation

Mass segregation is a rather difficult thing to define. It is usu-
ally considered in the case of bound (spherical) clusters where a
degree of energy equipartition (primordial, dynamical or both) re-
sults in the most massive stars preferentially located in the cluster
centre.

However, here we take a more general definition of mass segrega-
tion applicable to substructured regions and associations, as well as
clusters. One way of viewing ‘mass segregation’ is that the massive
stars are closer to each other than would be expected of random
stars (this is what is measured by the �MSR-parameter, see below).
Another view is that the massive stars are in locally denser regions
than would be expected of a typical star (this is what is measured
by the � − m method, again see below for details).

Note that there are many other ways of defining mass segregation.
For example, one can choose a cluster centre and measure the mass
function as a function of radial distance (Gouliermis et al. 2004;
Sabbi et al. 2008), use the mean square (Spitzer) radius of the
cluster as a diagnostic for comparing stars with different mass ranges
(Gouliermis, de Grijs & Xin 2009) or determine the distance of
the most massive star(s) from the cluster centre compared to the
average distance of low-mass stars to the cluster centre (Kirk &
Myers 2011). It is also possible to quantify differences in luminosity
between the centre and outskirts of a cluster (e.g. Carpenter et al.
1997).

However, it is important to note that the �MSR and the � − m
methods have the significant advantage over other methods in that
they do not require the determination of a ‘centre’ in a region, which
is crucial for analysing highly substructured regions.

3.2.1 The �MSR mass segregation ratio

In order to quantify the amount of mass segregation present in a
region, we first use the �MSR method, introduced by Allison et al.
(2009a). This constructs an MST between a chosen subset of stars
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and then compares this MST to the average MST length of many
random subsets.

The MST of a set of points is the path connecting all the points
via the shortest possible path length but which contains no closed
loops (e.g. Prim 1957; Cartwright & Whitworth 2004).

We use the algorithm of Prim (1957) to construct MSTs in our
data set. We first make an ordered list of the separations between all
possible pairs of stars. Stars are then connected together in ‘nodes’,
starting with the shortest separations and proceeding through the
list in order of increasing separation, forming new nodes if the
formation of the node does not result in a closed loop.

We find the MST of the NMST stars in the chosen subset and
compare this to the MST of sets of NMST random stars in the region.
If the length of the MST of the chosen subset is shorter than the
average length of the MSTs for the random stars then the subset has
a more concentrated distribution and is said to be mass segregated.
Conversely, if the MST length of the chosen subset is longer than
the average MST length, then the subset has a less concentrated
distribution, and is said to be inversely mass segregated (see e.g.
Parker et al. 2011). Alternatively, if the MST length of the chosen
subset is equal to the random MST length, we can conclude that no
mass segregation is present.

By taking the ratio of the average (mean) random MST length
to the subset MST length, a quantitative measure of the degree
of mass segregation (normal or inverse) can be obtained. We first
determine the subset MST length, lsubset. We then determine the
average length of sets of NMST random stars each time, 〈laverage〉.
There is a dispersion associated with the average length of random
MSTs, which is roughly Gaussian and can be quantified as the
standard deviation of the lengths 〈laverage〉 ± σ average. However, we
conservatively estimate the lower (upper) uncertainty as the MST
length which lies 1/6 (5/6) of the way through an ordered list of all
the random lengths (corresponding to a 66 per cent deviation from
the median value, 〈laverage〉). This determination prevents a single
outlying object from heavily influencing the uncertainty. We can
now define the ‘mass segregation ratio’ (�MSR) as the ratio between
the average random MST path length and that of a chosen subset,
or mass range of objects:

�MSR = 〈laverage〉
lsubset

+σ5/6/lsubset

−σ1/6/lsubset

. (3)

A �MSR of ∼1 shows that the stars in the chosen subset are dis-
tributed in the same way as all the other stars, whereas �MSR > 1
indicates mass segregation and �MSR < 1 indicates inverse mass
segregation, i.e. the chosen subset is more sparsely distributed than
the other stars.

There are several subtle variations of �MSR. Olczak, Spurzem &
Henning (2011) propose using the geometric mean to reduce the
spread in uncertainties, and Maschberger & Clarke (2011) propose
using the median MST length to reduce the effects of outliers from
influencing the results. However, in the subsequent analysis we will
adopt the original �MSR from Allison.

3.3 The � − m method and the �LDR local density ratio

Recently, Maschberger & Clarke (2011) proposed a method to anal-
yse mass segregation which measures the distribution of local stellar
surface density, �, as a function of stellar mass. We calculate the
local stellar surface density following the prescription of Caser-
tano & Hut (1985), modified to account for the analysis in pro-
jection. For an individual star, the local stellar surface density is

given by

� = N − 1

πr2
N

, (4)

where rN is the distance to the Nth nearest neighbouring star (we
adopt N = 10 throughout this work).

If there is mass segregation, massive stars are concentrated in
the central, dense regions and thus should have higher values of �.
This can be seen in a plot of � versus mass, showing all stars and
highlighting outliers. Trends in the � − m plot can be shown by
the moving average (or median) of a subset, �̃subset, compared to
the average (median) of the whole sample, �̃all. The signature of
mass segregation is then �̃subset > �̃all, and of inverse mass segre-
gation �̃subset < �̃all. The statistical significance of mass segrega-
tion can be established with a two-sample Kolmogorov–Smirnov
(KS) test of the � values of the subset against the � values of the
rest.

Note that the � − m method shares similarities with the two-
dimensional convex hull method proposed by Moeckel & Bonnell
(2009b), in that as well as measuring the degree of mass segregation,
it also provides information on the density within a region.

Whilst this method has the advantage of not being biased by
outliers (see the discussion in Maschberger & Clarke 2011), it does
lead to the artificial effect of placing each (massive) star in its own
bin (defined by the local density of that star), and does not always
reflect the spatial distribution of a particular subset of stars. What
it does effectively measure is the local density distribution of a
subset, which we will see in Section 4 is not necessarily the spatial
distribution.

In this paper, we will divide �̃subset by �̃all to define a ‘local
density ratio’, �LDR (see also Kupper et al. 2011):

�LDR = �̃subset

�̃all
. (5)

The significance of this measure of the local density of a subset of
stars compared to the cluster will still be defined by the KS test
between the � values of the subset against the � values of the rest.
We will detail the number of stars used to determine �̃subset in the
following sections of the paper.

The differences between �MSR and �LDR might seem subtle, but
(as we shall see) become important. The �MSR method measures the
collective concentration of massive stars (i.e. are they close to each
other?). The �LDR method measures the relative local densities
of massive stars (i.e. are they in dense regions?), but does not
consider how close the massive stars are to each other. Therefore, it
would be quite possible (and we find it so) to have significant ‘mass
segregation’ found by one method but not the other. For this reason,
we do not refer to � − m as measuring ‘mass segregation’ in the
remainder of the paper.

4 R ESULTS

In this section, we first examine the evolution of typical examples
of a substructured, subvirial (cool) star-forming region and a sub-
structured, supervirial (warm) region, before comparing the average
evolution of all of the models in our chosen parameter space. We
use the �MSR measure of mass segregation, the �LDR measure of
local density, as well as a measure of the spatial structure of the
region (Q) described in Section 3, and follow the evolution of these
quantities over time.
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4.1 Evolution of a substructured, subvirial region

In Fig. 1, we show the evolution of a ‘typical’2 N = 1500 stars,
subvirial (αvir = 0.3), substructured (D = 1.6) region. In panels
(a)–(c), we show the morphology at 0, 5 and 10 Myr, respectively.
This region undergoes violent relaxation and collapses to form a
bound, spherical cluster. The most massive stars (shown by the
red triangles) are randomly placed in the fractal initially but after
5 Myr they are all in the cluster centre and have dynamically mass
segregated.

As the cluster relaxes, the most massive stars interact with each
other, often forming unstable hierarchical multiple systems (Allison
& Goodwin 2011) – indeed, the binary fraction of O-type stars in
the simulation rises from zero to ∼70 per cent after 10 Myr. The
formation of massive star binaries can in some cases destroy the
cluster, as e.g. a 30 M�–30 M� binary with 100 au semimajor axis
has a binding energy comparable to that of the whole cluster (1041J),
and this process is apparent after 10 Myr (panel c).

We can examine this behaviour using the �MSR measure of mass
segregation. In panel (d), the mass segregation ratio as a function of
the number of stars in the MST, NMST is shown at 0 Myr (i.e. before
any dynamical evolution has occurred). The region rapidly mass
segregates due to its initial subvirial velocities and high level of
substructure (as demonstrated by Allison et al. 2010), with signif-
icant mass segregation down to the 40th most massive star after
5 Myr (panel e). For example, if we focus on the a subset of stars
more massive than the NMST = 10th most massive star, the cluster has
a mass segregation ratio �MSR = 7.6+5.1

−2.9. However, as the higher
order massive star multiple system in the centre decays (see Allison
& Goodwin 2011) the amount of mass segregation (as measured by
�MSR) decreases to the point at which is not significant at 10 Myr
(panel f).

In panel (g), we show the local surface density of every star in the
region as a function of the star’s mass (the grey points). The median
stellar surface density for the entire region is indicated by the blue
dashed line in Fig. 1(g). Initially, the median surface density for all
stars in the region is �̃all = 7187 stars pc−2, whereas the 10 most
massive stars have a median surface density �̃10 = 5829 stars pc−2

as shown by the solid red line. This difference, however, is not
significant – a two-dimensional KS test returns a p-value of 0.57
that the two subsets share the same parent distribution. However,
after 5 Myr (panel h) the most massive stars have a median surface
density of �̃10 = 708 stars pc−2 compared to the cluster median
value of �̃all = 90 stars pc−2. Now the KS test between these two
subsets returns a p-value of <10−5, indicating that the massive stars
are in areas of significantly higher local density than the average
stars in the region. After 10 Myr, the 10 most massive stars again
have a higher surface density �̃10 = 87 stars pc−2, whereas the
median surface density for the whole cluster is �̃all = 29 stars pc−2.

We show the full evolution of �MSR in Fig. 1(j). The value of
�MSR for the 10 most massive stars is shown by the solid line
(with error bars), and �MSR for the 20 and 50 most massive stars
is shown by the dashed and dot–dashed lines, respectively. We plot
�MSR = 1, i.e. no mass segregation, shown by the horizontal red
line. The region has dynamically mass segregated on a significant
level after 1.5 Myr, and the value of �MSR reaches a maximum of
�MSR = 11.2+6.2

−4.3 after 4.3 Myr.

2 By ‘typical’ we mean that it shows the basic dynamics that occur in such
a system, as we shall describe later different realizations of statistically the
same initial conditions can result in very different behaviour (see Allison
et al. 2010).

In Fig. 1(k), we show the evolution of the surface density of the 10
most massive stars divided by the median surface density (the �LDR

local density ratio, �LDR = �̃10/�̃all) in the region as a function of
time. We plot a filled red circle at times when the difference between
the most massive stars and the whole region is not significant (in this
case only the first few snapshots in the N-body simulation). We plot
�LDR = 1, (i.e. no difference in local density as a function of mass)
shown by the horizontal red line. The �LDR ratio quickly becomes
significantly higher than unity, and is above 5 for the majority of
the cluster’s lifetime.

Finally, we plot the evolution of the spatial structure (as mea-
sured by the Q–parameter) in Fig. 1(l). The boundary between
substructured and centrally concentrated morphologies (Q = 0.8)
is shown by the grey dashed line. The initial substructure is rapidly
erased (as demonstrated in Goodwin & Whitworth 2004; Parker &
Meyer 2012) and the region becomes a smooth, centrally concen-
trated cluster after only 1 Myr (on a similar time-scale to the mass
segregation).

4.2 Evolution of a substructured, supervirial region

In Fig. 2, we show the evolution of a ‘typical’ N = 1500 stars,
supervirial (αvir = 1.5), substructured (D = 1.6) star-forming region.
As in Fig. 1, in panels (a)–(c) we show the morphology at 0, 5 and
10 Myr, respectively. The most massive stars (shown by the red
triangles) are initially randomly placed in the substructured fractal.
The global motion of the region causes it to expand and after 5 Myr
two distinct subclusters have formed, separated by a distance of
∼20 pc. However, there are also stars in between, and the region has
evolved into an association-like complex. The association expands
further until the simulation end-time at 10 Myr.

We measure �MSR for this region; in panel (d) the mass segrega-
tion ratio as a function of the number of stars in the MST, NMST is
shown at 0 Myr (i.e. before any dynamical evolution has occurred).
Unlike the subvirial, collapsing fractal shown in Fig. 1, this super-
virial, expanding fractal does not show any evidence of dynamical
mass segregation at 5 or 10 Myr (panels e and f, respectively). This
is unsurprising as the massive stars have no opportunity to become
concentrated together.

Note that this is not simply due to the inclusion of ‘outliers’ in
the determination of �MSR; varying the number of stars in the MST
does not change the result.

In panel (g), we show the local surface density of every star in
the region as a function of the star’s mass (the grey points). The me-
dian stellar surface density for the entire region is indicated by the
blue dashed line in Fig. 2(g). Initially, the median surface density
is �̃all = 5052 stars pc−2, whereas the 10 most massive stars have
a median surface density of �̃10 = 4356 stars pc−2 as shown by the
solid red line. This difference is not significant – a two-dimensional
KS test returns a p-value of 0.58 that the two subsets share the same
parent distribution. However, the region massive stars in the region
subsequently attain much higher local densities than the average
star in the region. After 5 Myr (panel h), the most massive stars
have a median surface density of �̃10 = 277 stars pc−2 compared to
the region median value of �̃all = 15 stars pc−2. Now the KS test
between these two subsets returns a p-value of <10−3, indicating a
significant difference. After 10 Myr the 10 most massive stars again
have a higher surface density �̃10 = 92 stars pc−2, whereas the me-
dian surface density for the whole association is �̃all = 5 stars pc−2.

The evolution of �MSR for the duration of the simulation is shown
in Fig. 2(j). The value of �MSR for the 10 most massive stars is
shown by the solid line (with error bars), and �MSR for the 20 and
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Dynamical evolution of star-forming regions 625

Figure 1. Evolution of a subvirial (αvir = 0.3), substructured star-forming region (D = 1.6) with N = 1500 stars. We show the morphology at 0, 5 and 10 Myr
(a)–(c), the mass segregation ratio, �MSR of the NMST most massive stars at 0, 5 and 10 Myr (d)–(f), and the surface density as a function of stellar mass,
� − m (g)–(i) at 0, 5 and 10 Myr. We also show the evolution of �MSR in panel (j) – the solid, dashed and dot–dashed lines are the values of �MSR for the 10,
20 and 50 most massive stars, respectively; the ratio of the surface density of the 10 most massive stars to the median surface density of all stars in the region
(�LDR = �̃10/�̃all – panel k) and the evolution of the Q–parameter (panel l), with time.
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626 R. J. Parker et al.

Figure 2. Evolution of a supervirial (αvir = 1.5), substructured star-forming region (D = 1.6) with N = 1500 stars. We show the morphology at 0, 5 and
10 Myr (a–c), the mass segregation ratio, �MSR of the NMST most massive stars at 0, 5 and 10 Myr (d–f), and the surface density as a function of stellar mass,
� − m (g–i) at 0, 5 and 10 Myr. We also show the evolution of �MSR in panel (j) – the solid, dashed and dot–dashed lines are the values of �MSR for the 10,
20 and 50 most massive stars, respectively; the ratio of the surface density of the 10 most massive stars to the median surface density of all stars in the region
(�LDR = �̃10/�̃all – panel k) and the evolution of the Q–parameter (panel l), with time.
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Dynamical evolution of star-forming regions 627

50 most massive stars is shown by the dashed and dot–dashed lines,
respectively. We plot �MSR = 1, i.e. no mass segregation, shown by
the horizontal red line. It is apparent that the region does not show
any mass segregation according to the definition of �MSR.

Conversely, the strong difference in the density distribution of
the massive stars from the � − m measure at 5 Myr (Fig. 2h) and
10 Myr (Fig. 2i) is apparent throughout the lifetime of the region. In
Fig. 2(k), we show the evolution of the surface density of the 10 most
massive stars divided by the surface density for the whole region
(�LDR = �̃10/�̃all) as a function of time. We show �LDR = 1, i.e. no
difference in local density as a function of mass, by the horizontal
red line. We plot a filled red circle at times when the difference
between the most massive stars and every star in the region is not
significant – which occurs at 0, 0.25 and 1.2 Myr. However, after
this time the �LDR ratio rises steadily during the remainder of the
simulation.

The very different behaviours of �MSR and �LDR are because
they trace different physical processes. �MSR is tracing the relative
closeness of the massive stars to each other. As the region expands,
the massive stars approximately keep their initial relative distribu-
tions as there is no way that they can know about each other, hence
�MSR remains low. But �LDR measures the local density of stars
around each individual massive star. The increase in �LDR tells us
that whilst the massive stars know nothing about each other, they
do act as a potential well for nearby low-mass stars to fall into, in-
creasing the local density around them. �LDR continues to increase
as the massive stars build larger and larger ‘retinues’ of low-mass
stars.

We plot the evolution of structure in this model (as measured by
the Q–parameter) in Fig. 2(l). The boundary between substructured
and centrally concentrated morphologies (Q = 0.8) is shown by the
grey dashed line. The Q-parameter rises rapidly from its original
value of Q = 0.4, but then remains at Q � 0.6 for the remainder
of the simulation, indicating that the region is still substructured
(as is evident in the morphology at 5 and 10 Myr (panels b and c,
respectively). In the initial rise in Q is due to the dispersion of some
local substructure, and mergers between some nearby regions of
substructure.

4.3 Evolution of all regions

The models presented in Figs 1 and 2 were chosen as ‘typical’
examples from each suite of 20 initially statistically identical simu-
lations. However, the dynamical evolution of clusters can be highly
stochastic; Allison et al. (2010) showed that statistically identical
initial conditions can result in very different evolution. With this in
mind, it is essential to consider ensembles of simulations in order
to examine the spread in evolution and outcomes.

4.3.1 Evolution of the Q-parameter

We first consider the evolution of spatial structure, as measured by
theQ-parameter, in each of our nine suites of simulations (N = 1500
stars and αvir = 0.3, 0.5, 1.5 paired with D = 1.6, 2.0, 3.0). In
Fig. 3, we show the evolution of the Q-parameter with time – the
boundary between substructured and radially smooth clusters (Q =
0.8) is shown by the dashed grey line. For clarity, we only show the
first 10 simulations (rather than all 20), but later we will include
the Q-parameter from every simulation at specific times in Figs 6
and 7.

If we compare the cool regions (Figs 3a–c) with the tepid regions
(Figs 3d–f), we see that substructure is erased on similar time-scales

(i.e. Q becomes greater than 0.8 within the first 1 Myr). This shows
the erasure of substructure on roughly a crossing time (see e.g.
Goodwin & Whitworth 2004).

On average, the cool regions (top row panels a–c) become more
centrally concentrated (i.e. they reach higher values of Q) than the
tepid regions (middle row, panels d–f). Similarly, regions with more
initial substructure (D = 1.6 in panels a and d in the first column)
become more centrally concentrated than initially fairly smooth
regions (D = 3.0 in panels c and f in the third column). This is
due to the lower energy of the cool regions, and greater potential
energy stored in substructure in the clumpy regions allowing a
deeper collapse (e.g. Allison et al. 2009b, 2010).

However, the spread between the 10 simulations with identical
initial conditions is so large that it becomes difficult to distinguish
between different initial fractal dimensions and virial ratios for any
individual region using the Q-parameter alone. All sets of initial
conditions can produce systems with Q = 1.5 after 10 Myr. But it is
worth noting that values of Q near 2 are only formed from initially
substructured initial conditions.

In contrast, all supervirial regions (αvir = 1.5 on the bottom
row, panels g–i) keep a low (≤0.8) value of the Q-parameter. In
the case of initially substructured regions (panels g and h), this is
because they expand and so are unable to erase their substructure
(see Goodwin & Whitworth 2004).

Interestingly, several of the initially smooth (D = 3.0, panel
i) regions develop substructure as they expand (Q falls). This is
due to the way the initial conditions are implemented. Whilst the
D = 3.0 systems are roughly a uniform density sphere they do
contain velocity substructure inherited from their ‘parents’ (see
Section 2). However, unless one believes that fairly uniform density
regions would form with uncorrelated and well mixed velocities,
this may well not be particularly unphysical.

4.3.2 Evolution of �MSR

In Fig. 4, we show the evolution of the �MSR (always for the tenth
most massive star) mass segregation ratio for all nine ensembles of
initial conditions in our parameter space (again, N = 1500 stars and
αvir = 0.3, 0.5, 1.5 paired with D = 1.6, 2.0, 3.0).

Unlike in Fig. 3 above, the results are far too variable to plot
each individual simulation in an ensemble without producing a
completely unreadable figure. Instead, at each time we plot the
median value of �MSR in each ensemble by the black cross. The
range covered by half of the simulations (i.e. between the 25 and
75 percentiles) are shown by the black bars (these are not error bars
in the conventional sense). The whole range covered at any time is
indicated by the grey bars.

It should be noted that the evolution of any single system is not
a simple passage through this range. Systems with high-�MSR at
1 Myr may have either high- or low-�MSR by 10 Myr and vice-versa
(see Allison et al. 2010 for a fuller investigation of the evolution of
�MSR).

Unsurprisingly, the bottom row of Fig. 4 for hot regions shows no
sign of mass segregation in �MSR no matter what the initial level of
substructure. �MSR starts at roughly unity and remains there as the
regions expand giving the massive stars no chance to concentrate in
any one place (values of about 2 are achievable if by chance two or
three massive stars are initially close to one another).

Cool and tepid regions show a wide variety in the evolution
of �MSR. Because of the initial conditions every region starts at
�MSR = 1. As found by Allison et al. (2010), the evolution of these
regions can be very stochastic. Generally, regions will relax and
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628 R. J. Parker et al.

Figure 3. Evolution of the Q-parameter with time for the simulations with N = 1500 stars. For clarity, we only show the first 10 simulations in each suite (we
consider the Q-parameter from all 20 simulations at several specific times in Figs 6 and 7).

collapse (more violently the lower both D and αvir are). This leads to
an increase in �MSR over the first few Myr as the massive stars come
closer together and are able to dynamically mass segregate (see all
panels a–f). But once dynamical mass segregation has occurred
they can evolve in many ways. Especially in low-D and/or low-αvir

regions hierarchical systems of massive stars can form which may
violently decay (resulting in a rapid decline in �MSR as seen above
in Fig. 1 for our ‘typical’ cool system), or survive (resulting in �MSR

remaining high). Massive binaries can form that completely disrupt
some regions. In some cases, the decay of the massive multiple
system ejects high-mass stars resulting in a �MSR < 1 (inverse mass
segregation).

4.3.3 Evolution of �LDR

In Fig. 5, we show the evolution of the �LDR ratio for all nine sets
of initial conditions (again, N = 1500 stars and αvir = 0.3, 0.5, 1.5
for all of D = 1.6, 2.0, 3.0). As in Fig. 4, we plot the median �LDR

value for 20 simulations by the black cross (all values are for the
10 most massive stars). We show the 25 and 75 percentiles with the
black bars, and indicate the extrema by the grey bars. Again note
that the ‘error bars’ capture the range covered at each time, and
that the evolution of each particular simulation’s �LDR can be very
complicated.

We show �LDR = 1 by the solid red horizontal line. Usually, if
�LDR > 2 the most massive stars have (statistically) significantly
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Dynamical evolution of star-forming regions 629

Figure 4. Evolution of �MSR with time for simulations with N = 1500. Each panel shows the median �MSR value of 20 simulations with identical initial
conditions (the crosses) and the darker error bars indicate 25 and 75 percentile values. The entire range of possible values from the 20 sets of initial conditions
is shown by the lighter error bars.

higher densities than the average stars in the region. Indeed, if we
recall Figs 1(k) and 2(k), we see that the red circles (indicating an
insignificant �LDR ratio) are only present for �LDR < 2.

In contrast to �MSR, in all ensembles �LDR tends to increase
with time. Indeed, the median �LDR by 10 Myr for almost all sets of
initial conditions is very similar, with values of �LDR ∼ 5−10. This
means that the most massive stars almost always find themselves
at significantly higher local surface densities than an average star,
even in a hot, expanding region.

The time taken for �LDR to increase depends on the level of
substructure. In the first column with D = 1.6 (panels a, d and g)

�LDR rises to significant levels almost immediately. But in the third
column with D = 3.0 (panels c, f and i) �LDR takes a few Myr to
reach significant levels.

The reason for this is that the massive stars act as a local potential
well which can trap low-mass stars. �LDR measures the size of the
retinue of low (or high) mass stars collected by a massive star. If
initial substructure is present, the high-mass star is likely to find
itself with a ready-made retinue to attract, hence �LDR rises very
quickly. But when the stellar distribution is smooth it takes some
time for the massive stars to collect a significant retinue of low-mass
stars and so �LDR rises more slowly. Indeed, the most significant
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630 R. J. Parker et al.

Figure 5. Evolution of �LDR with time for simulations with N = 1500 stars. Each panel shows the median �LDR value from 20 simulations with identical
initial conditions (the crosses) and the darker error bars indicate 25 and 75 percentile values. The entire range of possible values from the 20 sets of initial
conditions is shown by the lighter error bars.

rise in �LDR is seen in the hottest and most substructured regions
(panel g) where local substructure is bound and collected by the
massive stars within a globally unbound region.

In a few cases, as seen in the large spread in extremes of �LDR in
panels (b) and (d) especially, the decay of higher order massive star
multiples can eject massive stars without a retinue causing �LDR to
fall below unity (i.e. the massive stars have very low local densities).
Allison & Goodwin (2011) showed that higher order Trapezium-
like massive star systems are more likely to form at moderate D or
αvir which is why panel (a) with the most extreme D and αvir does
not show this decay and consequent �LDR < 1 values as it is much
less likely to contain a relatively long-lived Trapezium-like system.

4.3.4 Structure versus mass segregation and local density

As shown in Fig. 3, the Q-parameter measured at a given time can
indicate the likely initial conditions of a star-forming region; some-
thing that is centrally concentrated after only 1–2 Myr is likely to
have formed stars with either subvirial, or virial velocities. How-
ever, the large spread in possible values of Q means that any further
inference of the initial conditions is not possible using Q alone.
However, as pointed out by Allison et al. (2010) and demonstrated
in Figs 4 and 5, the more subvirial and substructured a star-forming
region is, the more likely mass segregation is to occur within 1 Myr
(with the caveat that any residual gas potential does not strongly
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Dynamical evolution of star-forming regions 631

Figure 6. The evolution of Q-parameter versus �MSR with time for the simulations with N = 1500 stars. For each simulation, we plot the Q-parameter and
�MSR at 0 Myr (the plus signs), 1 Myr (the open circles) and 5 Myr (the crosses). The boundary between substructured associations and radially smooth clusters
(Q = 0.8) is indicated by the horizontal grey dashed line, and �MSR = 1 is shown by the vertical red line.

affect the dynamical interactions – see Section 5). Furthermore, the
level of mass segregation (if it occurs) is also higher for subvirial
and substructured regions.

In Fig. 6, we plot the Q-parameter against mass segregation
ratio, �MSR, for each suite of N = 1500 stars simulations. We show
the values at 0 Myr (i.e. before any dynamical evolution has taken
place) by the plus signs, at 1 Myr (the open circles) and at 5 Myr
(the crosses). The boundary between substructured and centrally
concentrated morphologies (Q = 0.8) is shown by the dashed grey
line, and a mass segregation ratio of unity (i.e. no mass segregation)
is shown by the solid red line.

For certain initial conditions (αvir = 0.3, 0.5 – panels a–f), the
evolution of the regions can be clearly seen in Q − �MSR. However,
it remains difficult to distinguish between subvirial and virial ini-
tial conditions. Furthermore, for the clusters with supervirial initial
conditions (panels g–i) the plot is degenerate, as these regions do
not mass segregate according to the definition of �MSR (because the
massive stars are unable to group together) and so the Q − �MSR

values at different ages are overlaid.
In order to overcome the degeneracy in Q − �MSR space for

regions with supervirial velocities, we also plot the Q-parameter
against the ratio of surface densities �LDR for the simulations with
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632 R. J. Parker et al.

Figure 7. The evolution of Q-parameter versus �LDR with time for the simulations with N = 1500 stars. For each simulation, we plot the Q-parameter and
�LDR at 0 Myr (the plus signs), 1 Myr (the open circles) and 5 Myr (the crosses). The boundary between substructured associations and radially smooth clusters
(Q = 0.8) is indicated by the horizontal grey dashed line, and �LDR = 1 is shown by the vertical red line.

N = 1500 stars in Fig. 7. In Fig. 7, we show the values at 0 Myr
(i.e. before any dynamical evolution has taken place) by the plus
signs, at 1 Myr (the open circles) and at 5 Myr (the crosses). The
boundary between substructured and centrally concentrated mor-
phologies (Q = 0.8) is shown by the dashed grey line, and �LDR = 1
is shown by the solid red line. The Q − �LDR plot shows distinct
differences between unevolved regions (the plus signs) and clusters
with ages of 5 Myr (the crosses) for most initial conditions, and only
becomes degenerate when the initial conditions are supervirial and
not substructured (Fig. 7i).

Finally, we note that the initial densities of our simulations with
N = 1500 stars may be higher than those observed in ∼50 per cent

of nearby star-forming regions (Bressert et al. 2010; Parker &
Meyer 2012). We therefore show the Q − �LDR plot for the low-
density regions (initial median surface densities ∼100 stars pc−2) in
Fig. 8.

The dynamical evolution of these N = 150 regions is not as
dramatic as in the higher N simulations. The reason for this is
three-fold. First, lower-N results in lower number statistics and
so the quantitative measures we are calculating are less signif-
icant. Secondly, lower N results in fewer stars to form retinues
around the higher mass stars (and those higher mass stars are less
likely to be significantly more massive than the average due to ran-
dom sampling from the IMF). Finally, the lower N clusters have
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Dynamical evolution of star-forming regions 633

Figure 8. The evolution of Q-parameter versus �LDR with time for the low-density (N = 150 stars) simulations. For each simulation, we plot the Q-parameter
and �LDR at 0 Myr (the plus signs), 1 Myr (the open circles) and 5 Myr (the crosses). The boundary between substructured associations and radially smooth
clusters (Q = 0.8) is indicated by the horizontal grey dashed line, and �LDR = 1 is shown by the vertical red line.

longer dynamical time-scales (for the same radius systems) than
the larger N clusters, so that for the same physical age they will be
dynamically less evolved (note that two-body relaxation is gener-
ally unimportant except in dynamically mass segregating regions
that become dense, so the N-dependence of two-body relaxation is
unimportant).

For these reasons, we can only readily distinguish between differ-
ent epochs (0 and 5 Myr) in theQ − �LDR plot when the simulations
are substructured and subvirial (αvir = 0.3; D = 1.6, 2.0 – panels a
and b in Fig. 8); i.e. when the evolution has been dramatic.

5 D I SCUSSI ON

In the simulations presented in Section 4, we have seen that there
are some trends (and some lack of trends) in the evolution of the
quantitative structure parameters Q, �MSR and �LDR with time.
How these parameters evolve depends on the initial substructure
present in a region (modelled by the fractal dimension, D, of the
initial conditions), and the global dynamical ‘temperature’ of the
region (modelled by the global virial ratio, αvir).

It is very interesting to uncover the dynamics at work in the
systems we have simulated. In common with past work, we have
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found that substructure is erased in cool and tepid regions, but
retained in hot regions (e.g. Goodwin & Whitworth 2004; Parker
& Meyer 2012). Also following past work, we have found that
the massive stars rapidly dynamically segregate in cool and tepid
regions, but that the clusters so formed can evolve in different ways,
and even destroy themselves (e.g. Allison et al. 2009b, 2010; Allison
& Goodwin 2011).

The parameter space covered by Allison et al. did not include
regions that initially expand (i.e. supervirial velocities). When re-
gions have supervirial velocities, the massive stars usually have
a similar spatial concentration to the average stars, and so the
�MSR technique does not find these associations to be mass
segregated.

When using the � − m method with its corresponding �LDR

local ratio, in nearly all regions the massive stars find themselves
in regions of higher density than the median value in the cluster,
irrespective of the initial amount of substructure, or virial ratio.
Indeed, even in the regions which start as uniform spheres (Figs 5c,
f and i) the 10 most massive stars have significantly higher surface
densities than the average.

We attribute this to gravitational focusing from the massive stars,
which act as potential wells and effectively ‘sweep up’ a retinue
of low-mass stars as the region evolves [note the concentration of
low-mass stars (shown by the black points) around the high-mass
stars (the red triangles) in Figs 2b and c]. This means that the local
surface density around high-mass stars almost always increases with
time.

The evolution of spatial structure, as measured by the Q-
parameter, follows a similar pattern to the measures of mass seg-
regation and local density. As noted by Parker & Meyer (2012),
subvirial, substructured regions lose their structure much faster,
and become more centrally concentrated, than virialized regions
with smooth initial conditions (compare the D = 1.6, αvir = 0.3
region in Fig. 3(a) with the D = 3.0, αvir = 0.5 region in Fig. 3
f). Supervirial regions tend to erase some substructure, but remain
substructured for the duration of the simulation as the stars in these
models never fully mix together. However, a low Q-parameter does
not necessarily imply that the region is dynamically young, or that
it has always been substructured to some degree. In Fig. 3(i), we see
that several models that began as uniform spheres have developed
substructure during their evolution.

Whilst an old (10 Myr) region with substructure may imply that
the initial conditions were supervirial, or that the region is dynam-
ically young, it is more informative to combine the Q-parameter
with the measures of mass segregation and local density to decide
whether a star-forming region has undergone dynamical evolution.
In Figs 6 and 7, we show the evolution of Q against �MSR, and Q
against �LDR, respectively. The Q − �MSR plot (Fig. 6) shows that,
for cool and tepid regions, structure is erased as the level of mass
segregation increases. However, as dynamical evolution leads to
massive stars attaining higher local densities than low-mass stars,
the Q − �LDR plot (Fig. 7) enables us to determine whether dy-
namical evolution has taken place, and if so, to distinguish between
initially cool/tepid and hot regions (i.e. bound clusters versus un-
bound associations).

The most obvious question to ask is to what extent these results
can be applied to real observations of a single snapshot in the
evolution of a real star-forming region?

Before we do this, it is worth quickly discussing the difference
between physical and dynamical ages. Two systems with the same
physical age (say, 1 Myr), can have very different dynamical ages.
The dynamical age is a measure of how much the system can have

relaxed into a rough equilibrium. To first order, the dynamical age is
the number of crossing times old the system is. Gieles & Portegies
Zwart (2011) define a ‘cluster’ as distinct from an ‘association’ from
the number of crossing times old a system is. An unbound system is,
by definition, always less than a crossing time old (they define this
as an association). A bound system can be more than one crossing
time old (a cluster). However, in the very young systems we are
considering, even if a system is bound it may still be dynamically
young in that it is only one or two crossing times old.

The evolution of Q we find above is a proxy of dynamical age.
Relaxation will increase Q as substructure is erased, therefore with
increasing dynamical age we have increasing Q.

5.1 Comparison with observations

What might we say from real observations of Q, �MSR and �LDR?
The key parameter is Q, which provides an upper limit on the initial
Q, and hence the initial degree of substructure in the region. Here,
we discuss three different regimes of Q.

Low Q (Q < 0.8 or 1). If a region has a low Q then it must be
dynamically young. It has not managed to erase its substructure, and
is not well mixed.

In dynamically young regions �MSR provides a measure of how
well separated the massive stars were at birth. In our simulations,
we randomly place the massive stars and so for low Q we always
find �MSR ∼ 1. If we observed a low Q but a �MSR value signifi-
cantly above or below unity this would provide information on the
formation of massive stars relative to low-mass stars.

Even if a region is globally dynamically young, locally (espe-
cially around massive stars) it might be dynamically older. We find
that �LDR increases with time as the massive stars gain a retinue of
low-mass stars. Therefore, the observed value of �LDR is an upper
limit on the initial �LDR.

High values of �LDR with low Q are probably indicative of a
high degree of initial substructure acting as seeds for massive stars
to gain a retinue (see panels g–i of Fig. 7).

Moderate Q (Q ∼ 1). Regions with moderate Q may have
formed with moderate Q and be dynamically young (i.e. not have
changed their structure much since birth). Alternatively, they may
have formed with low Q and have undergone a small degree of
violent relaxation. They cannot be globally dynamically old.

In our simulations with no initial mass segregation we find that
when Q ∼ 1 that �MSR is around 1–2 (i.e. hardly significant). An
observation of a significant �MSR in a moderate Q region would
strongly suggest that the massive stars formed with a significant
�MSR (i.e. they were initially mass segregated).

However, we do find a wide range in �LDR for moderate Q
(see again panels g–i of Fig. 7). Again, high values of �MSR with
moderate Q are probably indicative of a high degree of initial
substructure.

High Q (Q > 1.5). Regions with high Q could be dynamically
very old and have erased their substructure (i.e. the 5 Myr old sys-
tems in panels a–f of Figs 6 and 7). Or they may have formed with a
highQ. After only 1 Myr cool regions have erased their substructure
and are indistinguishable (by Q) from regions that formed centrally
concentrated.

With no initial mass segregation high Q regions rapidly increase
both �MSR and �LDR meaning they are indistinguishable from sys-
tems that started with high �MSR and �LDR. And by 5 Myr the
evolution is such that almost any value of �MSR and �LDR is
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associated with high Q regions. Typically, �LDR is high at late
times in high Q, but there are outliers in which it is not.

5.1.1 ρ Oph, Taurus and Cyg OB2

There are three young regions for which we have information in the
literature on Q, �MSR and �LDR.

Parker et al. (2012) analyse ρ Oph and find for this ∼1 Myr region
that �MSR ∼ 1, and �LDR ∼ 1 (no evidence for any mass segrega-
tion or massive stars residing in overdensities). From Cartwright &
Whitworth (2004) we have Q = 0.85 for ρ Oph.

Examination of Fig. 7 shows that several sets of initial conditions
have �LDR ∼ 1 and Q = 0.85 at 1 Myr. These tend to have tepid or
hot initial conditions, and relatively high fractal dimensions.

The best bet for ρ Oph is that it formed with a Q similar to what
we see now, and is dynamically young. It could be globally bound
or unbound, and without dynamical information it is impossible to
tell. But we are probably seeing something with a global structure
not too dissimilar to that with which it formed.

However, it should be noted that ρ Oph only contains ∼250
members (e.g. Alves de Oliveira et al. 2012) meaning that any
quantitative measure, and especially �MSR, and �LDR will be rather
noisy (see Section 4.3.4).

For Taurus, Cartwright & Whitworth (2004) find Q = 0.47 (ex-
tremely substructured). Parker et al. (2011) find that �MSR ∼ 0.7
(it is inversely mass segregated). Kirk & Myers (2011) perform an
analysis of subgroups of Taurus which is not too dissimilar to �LDR

and find local mass segregation.
The very low global value of Q shows that globally Taurus is

dynamically young (an unsurprising result given the roughly 20 pc
extent of this 1 Myr old region). As discussed by Parker et al. (2011),
the �MSR ∼ 0.7 is therefore probably primordial as dynamics have
had no opportunity to change the global structure. However, the
local mass segregation in groups could suggest that subclusters are
dynamically old (given their sub-pc sizes this is very likely).

In a recent paper, Wright et al. (2014) find that the massive as-
sociation Cyg OB2 has a low Q-parameter (Q ∼ 0.4 − 0.5) and
no evidence for mass segregation or massive stars residing in over-
densities (�MSR = 1.14 and �LDR = 1.44), based on data collated
in Wright et al. (2010). This strongly suggests that Cyg OB2 has
not undergone any significant dynamical evolution, and probably
formed with a similar morphology and density to that currently
observed; i.e. a sparse (�̃ = 19 stars pc−2, Wright et al. 2014), un-
bound association.

5.2 Caveats and assumptions

Our main result is that the Q − �LDR plot (Fig. 7) enables us de-
termine whether dynamical evolution has taken place, and if so, to
distinguish between initially cool/tepid and hot regions (i.e. bound
clusters versus unbound associations).

We find that the massive stars only acquire a retinue of low-
mass stars if the initial density of the region is relatively high.
Our model fractals have initial median local surface densities of
∼5000 stars pc−2 (the blue dashed lines in Figs 1g and 2g). If
we plot the evolution of Q − �LDR for fractals with initial median
surface densities of ∼100 stars pc−2, then little dynamical evolution
occurs and the Q − �LDR plot becomes degenerate in time (Fig. 8).
This (surface) density threshold of 100 stars pc−2 corresponds to a
volume density threshold of 100 stars pc−3 because the depth scale
of the simulations is of the order of 1 pc.

Figure 9. As Fig. 7(g), but for regions where the velocities of stars are not
correlated. All substructure is erased, and fewer models show overdensities
around massive stars according to the �LDR method, than in the case of
correlated velocities.

A recent analysis of simulations of high-mass star formation by
Parker & Dale (2013) did not find any evidence for primordial mass
segregation in regions which form in hydrodynamical simulations,
nor did they find evidence for subsequent accumulation of retinues
according to the � − m method. In those simulations, the initial
median surface density was similar to that of the low-density re-
gions modelled here, and this result is consistent with the lack of
high �LDR ratios in Fig. 8. This returns us to the distinction between
physical and dynamical ages. The relatively higher initial (surface)
densities of our initial conditions reduce the dynamical (crossing)
times of our simulations relative to lower densities – 5 Myr of phys-
ical time in Fig. 8 corresponds to less dynamical time than 5 Myr
of physical time in Fig. 7.

Aside from the initial density, another assumption in our sim-
ulations is that the velocities of stars are correlated by distance.
If we remove any correlation, and simply draw velocities from a
Gaussian distribution and scale to the required virial ratio, we re-
move any initial substructure on very fast (<1 Myr) time-scales
(Fig. 9). Therefore, in order to distinguish between bound clus-
ters and unbound associations using the Q − �LDR plot, we require
the (reasonable) assumption that the velocities of stars are initially
correlated on local scales (Larson 1981).

The competitive accretion theory of star formation predicts that
the most massive stars should be primordially mass segregated (e.g.
Zinnecker 1982; Bonnell et al. 2003), and such behaviour is seen in
some simulations of massive star formation (Maschberger & Clarke
2011), but not in others (Dale et al. 2012, 2013; Girichidis et al.
2012; Parker & Dale 2013). Whilst mass segregation is observed in
some clusters (Hillenbrand & Hartmann 1998; Allison et al. 2009a;
Sana et al. 2010; Pang et al. 2013), it may occur purely due to
dynamical interactions (Allison et al. 2010) as it is not observed
in some clusters and associations which are dynamically young
(Parker et al. 2011, 2012; Delgado et al. 2013; Wright et al. 2014).
Alternatively, the observed levels of mass segregation (when it is
present) in clusters could be a combination of some primordial
segregation, with later dynamical segregation (Moeckel & Bonnell
2009a).

In our simulations, we see that �LDR always increases with time.
We started with no mass segregation or high local densities around

 at U
niversity of H

ertfordshire on January 29, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


636 R. J. Parker et al.

massive stars, but even if we had started with �LDR > 1, then �LDR

should still tend to increase. But if we make the assumption of no
initial mass segregation, then observed values of Q and �LDR can
be used to estimate the initial density of the region.

The dynamical evolution of substructured regions is highly
stochastic. Two regions with (statistically) identical initial condi-
tions can exhibit very different degrees of mass segregation, which
can occur at different times in the regions’ evolution. Similarly,
Parker & Meyer (2012) find a large scatter in the evolution of
Q-parameter and median surface density; and Parker & Goodwin
(2012) find a large scatter in the evolution of binary star orbital
properties, in substructured regions. Using the Q-parameter in iso-
lation is not enough to determine whether or not a star-forming
region has undergone dynamical evolution, and should be coupled
with the �LDR ratio of mass-weighted local density. Recent work by
Delgado et al. (2013) considered both the Q-parameter and �MSR,
but adopted the median MST length. This is in some ways analo-
gous to using the �LDR ratio, and these authors argued for different
initial conditions for the clusters Berkeley 94 and Berkeley 96 (the
former likely to have undergone warm expansion, and the latter cool
collapse).

Our simulations are pure N-body models, and as such do not
include the effects of gas left over from the star formation process.
If star formation is inefficient, then previous studies have suggested
that the rapid removal of this gas from a star-forming region will
dominate its subsequent evolution (e.g. Tutukov 1978; Whitworth
1979; Lada, Margulis & Dearborn 1984; Goodwin 1997; Goodwin
& Bastian 2006; Baumgardt & Kroupa 2007; Parmentier & Pfalzner
2013, and many others).

However, these (and other) studies usually assume that the stars
and gas are well coupled; i.e. that the spatial distribution of the stars
and gas is similar, and that the stars are in equilibrium with the gas.
It is highly unclear if either of these assumptions is true.

Goodwin (2009) showed that the dynamical state of the stars
is crucial to how they react to gas expulsion, slow-moving stars
will ‘feel’ the effects of gas expulsion far less than fast-moving
stars (relative to their equilibrium values). Recent work analysing
hydrodynamical simulations of star formation has shown that when
the stars and gas are decoupled (Offner, Hansen & Krumholz 2009),
then the regions where stars form tend to be gas poor and so the
influence of gas expulsion on the cluster’s evolution is minimal
(Kruijssen et al. 2012). In such a scenario, the subsequent dynamical
evolution of the cluster is then dominated by two-body interactions,
rather than gas removal (e.g. Smith et al. 2011; Gieles, Moeckel
& Clarke 2012; Moeckel et al. 2012). This appears to be the case
in some observed young massive clusters, which are gas free, but
still (sub-)virial, implying that gas expulsion has had little, or no
effect (Rochau et al. 2010; Cottaar et al. 2012). Smith et al. (2011)
also showed that substructure in the stellar distribution during gas
expulsion can be extremely important in the response of a system
to gas expulsion (the albeit simple case of a smooth external gas
potential).

This does not, of course, mean that we should completely neglect
the effects of gas on the evolution of star-forming regions, even if
they are modest. Recent advances in code development have enabled
a better treatment of gas to be included in N-body simulations (e.g.
Moeckel & Clarke 2011; Pelupessy & Portegies Zwart 2012; Fujii
& Portegies Zwart 2013; Hubber et al. 2013), and such codes will
be used in future studies.

Finally, we note that in our simulations we have access to the full,
three-dimensional spatial data. However, even if we use only the
2D data and remove stars that lie outside two half-mass radii, the

results do not change by much and we are still able to distinguish
between bound and unbound star formation using the Q − �LDR

plot.

5.3 Kinematics and the influence of binaries

In this paper, we have deliberately refrained from presenting infor-
mation on the velocities of stars in the simulations, such as the ve-
locity dispersion as a function of stellar mass. Our reasons for doing
this are two-fold; first, although velocity dispersions are available
for some clusters (e.g. Bosch et al. 2001; Gieles, Sana & Porte-
gies Zwart 2010; Rochau et al. 2010; Cottaar et al. 2012; Hénault-
Brunet et al. 2012) and associations (e.g. Steenbrugge et al. 2003;
Kiminki et al. 2007), the data are often restricted to a narrow stellar
mass range (e.g. Cottaar et al. 2012), making detailed comparisons
with simulations difficult. Here it should be noted that ongoing
spectroscopic surveys, such as the European Southern Observa-
tory VLT/FLAMES programme (Randich 2012), and the Apache
Point Observatory Galactic Evolution Experiment (APOGEE) sur-
vey (Zasowski et al. 2013) could soon remedy this issue. Secondly,
the development of other quantitative measures of the dynamical
state of a cluster using radial velocity measurements is currently
in its infancy. Cartwright (2009) adapted the Q-parameter for use
with radial velocity measurements, but found that the use of the
third spatial dimension instead of radial velocities gave better re-
sults. However, in future work we will analyse our simulations in
greater detail to search for observational diagnostics in velocity
space.

We note that the Gaia satellite (and associated spectroscopic
surveys) have the potential to distinguish between field stars and
cluster members on the periphery of embedded and young open
clusters, which could facilitate a direct comparison with runaway
stars in simulations (Allison 2012), and even trace back individual
field stars to their natal regions (Moyano Loyola & Hurley 2013).

For simplicity, the simulations presented here do not contain any
primordial binaries. Whilst the binary populations in star-forming
regions are not as well constrained as in the Galactic field (King
et al. 2012a,b; Duchêne & Kraus 2013), the semimajor axis dis-
tributions are, to zeroth order, similar to the field (King et al.
2012b) and the distributions of mass ratios also are consistent with
the field (Metchev & Hillenbrand 2009; Reggiani & Meyer 2011,
2013).

The presence of primordial binaries is likely to influence the de-
gree to which a system mass segregates, although this needs to be
tested fully as all simulations have so far neglected binaries (e.g.
Allison et al. 2010; Olczak, Spurzem & Henning 2011; Yu, de
Grijs & Chen 2011). Due to their increased system mass, massive
star binaries could in principle facilitate a higher degree of mass
segregation because the mass segregation time-scale is a function
of relative stellar mass (Spitzer 1969), although this may be bal-
anced by an increased frequency of ejections of massive stars from
unstable Trapezium-like systems (Allison & Goodwin 2011). Re-
cently, Geller et al. (2013) showed that the binary fraction as a
function of distance from the cluster centre could be an indicator
of the amount of dynamical mass segregation that has taken place
in the cluster. We plan to make a full assessment of the impact of
primordial binaries on the Q-parameter, �MSR and �LDR in future
studies.

6 C O N C L U S I O N S

In this paper, we have modelled the dynamical evolution of star-
forming regions with N = 1500 or N = 150 stars and varied the
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amount of initial substructure and the initial bulk motion of the
stars. We have searched for mass segregation, and increases in
the local density around massive stars, and compared these to the
evolution of the spatial structure of stars over a 10 Myr timeframe.
Our conclusions are the following.

(i) The level of substructure in a region, as measured by the Q-
parameter generally stays the same or increases with (dynamical)
age. Low values of Q show that a region is dynamically young (see
also Parker & Meyer 2012).

(ii) The surface density around massive stars, as measured by
the � − m technique generally increases with time. This is due to
massive stars collecting a retinue of low-mass stars.

(iii) The relative closeness of massive stars, as measured by the
�MSR method, stays the same or increases at first, but can evolve
in many different ways according to the details of the dynamics in
any situation (see also Allison et al. 2009).

We have introduced the Q − �LDR plot, which traces the dy-
namical evolution of a star forming and removes (some of) the
degeneracies of using the Q-parameter in isolation. Combining Q
and �LDR (and �MSR can certainly help) can provide information
on the initial energy (boundness), dynamical age, initial structure,
initial density and initial degree of mass segregation of star-forming
regions from the instantaneous projected positions and masses of
the stars.

Finally, we note that the upcoming Gaia space telescope, and
associated ground-based spectroscopic surveys, will soon add a
wealth of information on stellar velocities in star-forming regions,
clusters and associations. If used in tandem with the analysis of
spatial distributions such as the Q − �LDR plot, we will be able to
characterize the dynamical state (and hence initial conditions) of
star-forming regions, clusters and associations.
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