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ABSTRACT: Recently, synthetic biologists have developed the Synthetic Biology Open
Language (SBOL), a data exchange standard for descriptions of genetic parts, devices,
modules, and systems. The goals of this standard are to allow scientists to exchange
designs of biological parts and systems, to facilitate the storage of genetic designs in
repositories, and to facilitate the description of genetic designs in publications. In order
to achieve these goals, the development of an infrastructure to store, retrieve, and
exchange SBOL data is necessary. To address this problem, we have developed the
SBOL Stack, a Resource Description Framework (RDF) database specifically designed for
the storage, integration, and publication of SBOL data. This database allows users to
define a library of synthetic parts and designs as a service, to share SBOL data with
collaborators, and to store designs of biological systems locally. The database also
allows external data sources to be integrated by mapping them to the SBOL data model. The SBOL Stack includes two Web
interfaces: the SBOL Stack API and SynBioHub. While the former is designed for developers, the latter allows users to upload
new SBOL biological designs, download SBOL documents, search by keyword, and visualize SBOL data. Since the SBOL Stack is
based on semantic Web technology, the inherent distributed querying functionality of RDF databases can be used to allow
different SBOL stack databases to be queried simultaneously, and therefore, data can be shared between different institutes,
centers, or other users.
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Synthetic biology combines ideas from biology and
engineering and has the goal of designing and building

novel, useful biological systems. However, using the extensive
amount of existing biological data for the purposes of designing
new, synthetic organisms can be a daunting task. This challenge
is magnified by the fact that efforts are usually carried out in
individual laboratories, by teams in different geographic
locations. Moreover, the interests of researchers can vary
greatly, and biological data relevant to the design of genetic
circuits is often not exchanged. In order to enable this exchange
and to facilitate the scaling of designs, computer applications
require standards, repositories, and APIs to enable researchers
to communicate the designs of genetic parts and circuits in a
uniform manner. Systems are also required that allow these
designs to be stored and shared.
The Synthetic Biology Open Language (SBOL)1−3 is an

emerging standard in synthetic biology. The goals of this
standard are to allow researchers to exchange designs of
biological parts and systems, to send and receive genetic
designs, to facilitate the storage of genetic designs in
repositories, and to include genetic designs in publications.
Although the initial version of SBOL focused upon exchanging
genetic descriptions of parts at the DNA level, SBOL version 2
supports other types of genetic circuit components including
proteins, RNAs, and small molecules, in addition to other

elements which help to specify design constraints between
these components. For example, structural constraints can be
used to understand the relative order of components in a final
DNA construct, and molecular interactions between these
components can also be described. SBOL version 2 also allows
for the hierarchical specification of genetic circuit designs via
the definition of inputs and outputs at the structural and
functional level.
SBOL can be used to enable workflows involving different

tools and repositories from multiple organizations. For
instance, SBOL models can be constructed using computer-
aided design (CAD) tools such as SynBad,4 iBioSim,5 and
TinkerCell.6 Sequence alignment can be performed on an
SBOL document using tools such as Vector NTI Express
Designer.7 SBOL designs can be stored and retrieved from
repositories such as the Flowers Virtual Parts Repository8 and
JBEI-ICE9 either during construction or after the design has
been completed. For example, six independent groups recently
collaborated on the design of a set of genetic toggle switches
using several SBOL enabled tools.10
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SBOL documents are serialized using the RDF/XML
format11 and can be stored in standard RDF repositories as a
set of triples. RDF is a labeled, directed, graph-based data
format for representing information in Web environments.
Figure 1 shows a graphical example of the RDF definition of a

TetR repressible promoter using SBOL version 2. In this figure,
each node and edge is labeled with either a Uniform Resource
Identif ier (URI) that can be used to link to more data, or with a
literal data item. The promoter is represented with an SBOL
ComponentDefinition entity and its role is set to the
promoter term from the Sequence Ontology.12 This entity is
then associated with a Sequence entity in order to capture
the nucleotide sequence of the promoter. This graph
representation is ideal to execute complex queries using
languages designed for navigating RDF graphs, such as
SPARQL Protocol and RDF Query Language (SPARQL).13

Using SPARQL with SBOL RDF enables the expression of
complex queries, such as searching for all regulatory
interactions for a given coding site or searching for a particular
feature among multiple parts. Therefore, the use of RDF
enables the application of a range of standard Semantic Web
technology for computational synthetic biology applications.
Given the rich promise of functionality afforded by the
representation of SBOL in RDF form, there is an overarching
need to provide a system that will allow SBOL version 2 to be
stored, shared, and queried.
Previously, Galdzicki and co-workers14 demonstrated the

utility of SBOL version 1 by converting data from the iGEM
Registry of Standard Biological Parts (http://parts.igem.org/
Main_Page)15 into SBOL version 1 and making the data
available through a triplestore, a type of database specifically
developed for storing and querying RDF. However, this system
is currently not under further development.
More generically, several systems for storing and sharing

synthetic biology designs have been described. Most notable
are the Joint BioEnergy Institute’s Inventory of Composable
Elements (JBEI-ICE)9 and the iGEM Registry of Standard
Biological Parts. Many other software tools also exist that offer
the ability to store genetic designs, both commercial and
noncommercial (e.g., Plasmid repository, VectorNTI, and
Addgene to name a few). All of these systems, except JBEI-
ICE, do not provide open-source repositories that promote
data sharing by allowing users to install their own systems that
can be linked. JBEI-ICE is an open source registry that allows

information about biological parts to be managed and shared.
The repository is accessible via both a Web browser and
through a Simple Object Access Protocol (SOAP) based Web
application programming interface. ICE also introduced the
concept of a Web of registries, providing support for ICE
repositories to be connected to allow distributed and
interconnected use. The system also supports the import and
export of SBOL version 1 and SBOL version 2 files that
describe the composition of parts at the genetic level. The JBEI-
ICE system as a whole also provides an open source suite of
tools to allow sequence annotation, manipulation, and analysis.
However, the integration of ICE repositories is carried out
using Universally Unique Indentifiers (UUIDs) which means
that, currently, parts can only be shared between other ICE
repositories. Furthermore, the data format used for represent-
ing the parts for integration is specific to ICE and not based on
SBOL or a standardized format. ICE data is currently confined
to parts metadata and the information about the genetic
features in the parts. SBOL version 2 provides information
about proteins, small molecules, RNA, and parts interactions
which are not currently captured in ICE.
In this work, we describe the SBOL Stack, a platform to allow

synthetic biology designs that have been represented in SBOL
version 1 or SBOL version 2 to be computationally stored,
retrieved, exchanged, and ultimately, published. The SBOL
Stack is based on a Sesame RDF triplestore (http://rdf4j.org)16

specifically designed for publishing a library of synthetic parts
and designs as a service, for storing designs of biological
systems locally, and for facilitating the sharing and integration
of SBOL with collaborators using standardized Semantic Web
technologies.
Unlike many previously developed repositories, the SBOL

Stack is designed to automatically integrate SBOL data from
other SBOL Stack installations as a result of the standardized,
and therefore shared, semantics of SBOL version 2. The use of
standardized, shared semantics also offers the opportunity to
integrate a range of alternative data sources into the same
repository with the potential to enrich SBOL designs and
inform the design process. This integration process is enabled
by the SPARQL query language that can already express
queries across diverse data sources, whether the data is stored
natively as RDF or exposed as RDF using middleware. The
specification for executing queries distributed over different
SPARQL end points has already been standardized by the W3C
consortium (https://www.w3.org/TR/sparql11-federated-
query). The SPARQL language also already includes
functionality for merging the results of queries across multiple
triplestore databases distributed across the Web. This inherent
federated querying can be exploited and used to enable multiple
SBOL Stacks to be integrated at query time, such that queries
executed on one SBOL Stack will be automatically shared
between a set of specified remote SBOL Stack instances (Figure
2).
The SBOL Stack is primarily designed to be part of the

infrastructure available to synthetic biology tool-builders who
need to implement systems that require the storage of SBOL
and would also like to integrate further data sources. In order to
aid developers we have developed a range of Web interfaces
and developer tools, enabling developers to build their own
software to read and write data available in the SBOL Stack.
These tools include the SBOL Stack API, which provides a
RESTful interface enabling programmatic access to SBOL Stack
instances and allows data to be directly read, written, and

Figure 1. A graphical visualization of an SBOL version 2
ComponentDefinition and associated triples. Each edge,
together with the two connected nodes, represents a triple. For
simplicity, URIs are represented in angle brackets using qualifiers, such
as so for the Sequence Ontology.
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queried by other external software tools. Full, external,
programmatic access for reading and writing SBOL version 2
synthetic biology designs is also a unique feature of the system.
We also include Amazon cloud computing images and Docker
container versions of the system to allow developers to install
their own, local, SBOL Stack data stores (see the Methods
section).
We have created a sample instance of the SBOL Stack that

provides access to the complete iGEM Registry of Standard
Biological Parts in SBOL version 2 format. This instance also
includes semantically enriched integrated data from seven data
sources describing Bacillus subtilis,17 coupled with the SyBiOnt
ontology18 dealing with genetic features, gene products and
their annotations, gene regulatory networks, metabolic path-
ways, and other useful information. The SyBiOnt ontology
provides a useful framework for developers to integrate further
biological data sets with SBOL version 2.
The SBOL Stack is primarily aimed at developers. In addition

to the SBOL Stack we have also developed a simple Web-based
tool, SynBioHub, primarily to demonstrate how the SBOL
Stack can be used as a repository for SBOL. However,
SynBioHub also provides a useful database for the everyday
user wishing to store and visualize SBOL files. While
SynBioHub does not facilitate the creation of SBOL files itself,
it provides a useful repository and front end for storing,
searching, and retrieving SBOL version 2 in the SBOL Stack. A
number of tools for the creation of SBOL already exist, and it is
envisaged that these will connect to the SBOL Stack directly
using the tools and API we provide.

1. RESULTS
The system presented here allows the storage and querying of
SBOL version 2. The system currently comprises two open
source software tools. First, the SBOL Stack, which is a
database for storing SBOL version 2 in a decomposed RDF
format, where the individual data components are amenable to
integration with other data sets. Second, SynBioHub, a Web
based tool to allow the retrieval, visualization, and deposition of
designs for engineered biological systems from the SBOL Stack
in SBOL version 2 format. While the SBOL Stack is intended to

be used by a synthetic biology tool builder, SynBioHub is
aimed at an end user wishing to upload designs to the SBOL
Stack database for storage and sharing and to browse and
download existing designs that are already in the SBOL Stack.

1.1. SBOL Stack Design, Architecture and Implemen-
tation. The SBOL Stack platform is composed of a series of
abstractions (Figure 3). At the core, it relies on a Sesame RDF

triplestore. The communication with the triplestore is through
HTTP and SPARQL, where possible, and the use of Sesame
specific APIs is minimal; the Sesame API is used only to create
new triplestores. Therefore, the SBOL Stack can easily be
adapted to work with other triplestores in the future.
The triplestore is completely encapsulated by the SBOL

Stack API, a RESTful Web service built on node.js.19 While the
RESTful interface alone makes the Stack accessible from any
programming language or environment with HTTP client
functionality, the Web service is also encapsulated by client
libraries available for Java and JavaScript, in order to facilitate
integration of the Stack with existing software on the client side.
SynBioHub is an example of software built using the JavaScript
client library, providing a user-friendly Web interface by
combining the SBOL Stack with a MongoDB database for
user accounts and the VisBOL20 visualization library for
producing diagrams of part composition.
The SBOL Stack implements a security model by which

users are identified by a username and password. Each user
then may be assigned individual permissions, such as the ability
to create new stores, upload data, perform SPARQL queries,
and search using Stack API calls. Additionally, a set of
permissions can be allocated for anonymous users, enabling
an instance of the Stack to provide varying degrees of public
access.
This security model makes the SBOL Stack suitable for a

range of use cases. For example, the SBOL Stack can be used to
provide a publicly accessible data set where anyone can query
the data, but only authenticated users can modify it.

1.2. SBOL Stack API and Client Library. The SBOL Stack
API can be integrated with software using either the RESTful
API or the client libraries available for Java and JavaScript. The
API encapsulates a backend triplestore with a “black box”
approach, abstracting away the details of setting up triplestores

Figure 2. Synthetic biology designs can be browsed programmatically
using the SBOL Stack API and client libraries or manually using
SynBioHub. SPARQL queries can be used to facilitate data federation
at the layer of the SBOL Stack. A SynBioHub instance is therefore able
to query a collection of interconnected SBOL Stack instances
simultaneously. Figure 3. Architecture of the SBOL Stack. The Stack API provides an

abstraction over the Sesame RDF triplestore specifically for the
purpose of storing and searching SBOL designs. The API can then be
accessed by external tools directly or through the client libraries
available for Java and JavaScript. SynBioHub is an example of an
external tool built upon the SBOL Stack and provides a further
abstraction of dynamic user account management and the ability to
upload and share designs through a Web interface.
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and generating SPARQL queries. The API is lightweight and
HTTP-based. Standard GET and POST requests are used to
submit queries, and the results are returned to users in the
SBOL version 2 format.
Using the API, structural information such as DNA

sequences or functional information such as protein−protein
interactions about biological system designs can be retrieved.
SBOL version 2 allows detailed information for biological
components, molecular interactions, and different types of
biological constraints to be captured. Several SBOL entities are
used to capture different elements of a design. Some of these
entities are called top-level entities and are used as containers to
embed all the relevant information. At the structural level, a
ComponentDefinition entity can be used to represent the
biological components such as DNA, proteins, and their
composition using sub components. ComponentDefini-
tion entities can be associated with sequence information
such as nucleotides or amino acids. ModuleDefinition
entities, on the other hand, are used to capture functional
information about a particular design which may have sub
designs. Modules can be defined with inputs and outputs in
order to join together with other ModuleDefinition
entities and to scale up target designs. The SBOL Stack API
allows both ComponentDefinition and ModuleDefi-
nition entities to be retrieved as complete SBOL documents
containing both the requested entity and any other referenced
entities.
ComponentDefinition entities, for example, can be

simply searched for using their names. The search functionality
provides different options, such as whether to search for an
exact match or whether to use a wildcard search. URIs uniquely
identifying these entities can also be used to retrieve particular
ComponentDefinition entities. It is also possible to
submit an SBOLDocument containing a ComponentDe-
finition as a template. The SBOL Stack API then generates
a SPARQL query and returns an SBOLDocument containing
every matching ComponentDefinition entity. As the
amount of data in the SBOL Stack increases, it may become
challenging to retrieve large documents. Moreover, users may
wish to gain information about whether particular types of
components exist or not. To overcome these issues, the API
provides methods to return counts of SBOL entities in the
SBOL Stack. Search results can also be retrieved using an offset,
indicating the start index, and number of entities to retrieve, in
order to return a subset of results. This approach allows users
to iterate through data as necessary.
Though SBOL is well-suited as a rich format to describe

components, its verbosity is not always desirable when
describing a very large list of parts. For example, when
searching an entire genome for coding sites, the overhead of
representing each gene as a ComponentDefinition can
quickly produce a very large result. For this reason, the SBOL
Stack also provides an end point to search metadata, returning
only the name, description and URI of matching Compo-
nentDefinition entities as a JavaScript Object Notation
(JSON)21 array. The JSON format is intentionally lightweight
with minimal markup, which makes the metadata end point
useful for returning a large list of parts. As the URI is provided
for each ComponentDefinition in the JSON result, the
API can later be used to retrieve the complete SBOL document.
Table 1 shows some of the SBOL Stack end points. Although

these end points can be accessed directly, we have developed
Java and JavaScript client APIs, which provide methods for each

of these end points for easier programmatic access. For
example, the Java client library uses object representations for
SBOL documents and other related entities by embedding the
libSBOLj library22 (Figure 4). Detailed, specific examples of
querying using the Stack API are given below in Section 1.3.

1.3. SBOL Stack Data Integration, Semantics, and the
Example Data Set. In addition to storing SBOL, the SBOL
Stack can act as a data warehouse for synthetic biology designs
allowing for the integration of multiple resources to aid in the
design process. In this approach, data from external resources
are converted either into SBOL version 2 format or another
compatible semantic model and uploaded into an SBOL Stack
instance. Since SBOL is RDF-based and the data are stored in
triplestores without any further transformation, data can be
aggregated using standard URIs and predicates. For example,
uploading the definition of a promoter component and
subsequently uploading custom annotations about the same
promoter would merge all of the data into the same graph.
As an example, we built an instance of the SBOL Stack (see

the Methods Section) from several data sources. This instance
provides access to multiple data sets: seven integrated data
sources relating to Bacillus subtilis;17 data from the iGEM
Registry of Standard Biological Parts (2016 data set); features
from the complete Escherichia coli K12 substr. MG1655
genome from GenBank;23 and a collection of SBOL version
2 examples from recent publications.22,24,25 Data available in
the provided instance of the SBOL Stack gives an example of
how it is possible to include other custom ontologies in the
SBOL Stack, providing they can be expressed in RDF. For
instance, the SyBiOnt ontology18 was used to mediate the
integration of the Bacillus subtilis data sets and to enable
integration with the SBOL version 2 data model to include
information describing how genetic features, gene products,
and transcription factors interact to form gene regulatory
networks and metabolic pathways.
The SBOL Stack instance providing SBOL version 2 access

to the iGEM Registry of Standard Biological Parts could be
valuable to the synthetic biology community, since exposing

Table 1. A Description of the SBOL Stack API End Points

POST/store/
create

Create a new store in the Stack

POST/ Upload new data to the Stack
GET/sparql Query the Stack using SPARQL
POST/sparql As GET/sparql, but the query is specified as a

POST parameter
GET/component/
count

Returns the total number of
ComponentDefinition entities in the Stack

GET/component/
search/sbol

Search the stack for ComponentDefinition
entities, returning an SBOL document

GET/component/
search/
metadata

Search the stack for ComponentDefinition
entities, returning metadata as JSON

GET/component/
search/
template

Search the stack for ComponentDefinition
entities using an SBOL document as the query

GET/module/
count

Returns the total number of
ModuleDefinition entities in the Stack

GET/module/
search/sbol

Search the stack for ModuleDefinition
entities, returning an SBOL document

GET/module/
search/
metadata

Search the stack for ModuleDefinition
entities, returning metadata as JSON

POST/module/
search/
template

Search the stack for ModuleDefinition entities
using an SBOL document as the query
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this data set allows users to immediately query and download
BioBricks in the SBOL version 2 format. We have taken care to
preserve links back to the iGEM registry including links to the
part characterization data in the experience section of the
registry. These parts can be used in SBOL workflows to design,
build, and exchange new systems which are enriched with
metadata integrated from a range of tools and data sets.
Because the SBOL Stack is built upon an RDF graph, data is
automatically integrated and queried alongside other data
contained within the SBOL Stack. This integration can
potentially provide a more enriched result than which a user
would receive if the part was retrieved directly from the iGEM
Registry of Standard Biological Parts or another repository
without a graph-based store.

The provided SBOL Stack instance can be queried
programmatically using the API or through SPARQL queries.
For example, the list of all promoters from all the different
sources in this SBOL Stack instance can be retrieved using a
single query. The role property of a ComponentDefini-
tion entity indicates the genetic feature represented and is
specified with Sequence Ontology12 (SO) terms. In Figure 5,
this property is used together with the SO promoter term
(SO:0000167) to filter for promoter definitions only.
Any URI can be used as a role, even without an associated

ontology. In the iGEM parts registry, each part is associated
with a set of categories. For example, constitutive promoters are
associated with the //promoter category and the
//regulation/constitutive category. In the SBOL
Stack representation of the parts registry, categories are

Figure 4. SBOL Stack can easily be queried programmatically using the client APIs. This example of the Java client API shows a
ComponentDefinition entity identified by URI being retrieved from the SBOL Stack.

Figure 5. Retrieving all promoters. A template ComponentDefinition is created with the role property set to the promoter term from SO. As
a result, the first 1000 ComponentDefinitions that match the template, in this case promoter definitions, are returned. This snippet of code is
written in Java for use with the Java API.

Figure 6. Retrieving all promoters. A template ComponentDefinition is created with the role property set to the promoter term from SO. As a
result, the first 1000 ComponentDefinitions that match the template, in this case promoter definitions, are returned. This snippet of code is
written in Java for use with the Java API.

Figure 7. Retrieving all promoters. A template ComponentDefinition is created with the role property set to the promoter term from SO. As a
result, the first 1000 ComponentDefinitions that match the template, in this case promoter definitions, are returned.
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represented using the SBOL role property. This enables
iGEM parts to be queried by category using standard SBOL
Stack functionality to search by role (Figure 6).
Different types of SBOL properties can also be used in

searches, including custom annotations. For example, the
Bacillus subtilis data set provided includes annotations about
taxonomy identifiers. This predicate can be used in an SBOL
Stack query to retrieve all ComponentDefinitions for
parts derived from Bacillus subtilis, which has taxonomy
identifier 1423 (Figure 7).
1.4. SBOL Stack Data Federation. Data federation is

another form of data integration that is supported by the SBOL
Stack. The SBOL Stack supports this approach through its
adoption of the existing Semantic Web technology, SPARQL,
and HTTP access to remote triplestores. Using this approach,
data about synthetic biology designs can be retrieved from
multiple SBOL Stack instances without a need to move data
from one instance to another. One of the acknowledged
challenges in data federation is the agreement on shared
semantics, since data repositories often store data using
different semantics. The SBOL Stack uses SBOL and SyBiOnt
to provide common semantics and, therefore, a query
constructed using SBOL and SyBiOnt terms can be executed
over multiple SBOL Stack instances.
The SBOL Stack supports executing federated queries

through SPARQL queries. These queries themselves are graphs
and are used to find matching patterns over large graph
structures. Parts of these SPARQL queries can be constructed
in a way that looks for data from remote repositories, while the
rest of the query can be used to search for data from the local
repository. Therefore, as well as querying data contained within
an SBOL Stack instance, the SBOL Stack API can also be used
to integrate data from external sources through such queries.
These sources can be other instances of the SBOL Stack or any
other SPARQL end point. This support for query federation
allows multiple, disjoint data sets to be joined. Figure 8 shows a

SPARQL query to select all promoters (SO term
SO:0000167) both from the local data set and a remote
data set.
The SBOL Stack can also automatically federate queries

across other SBOL Stack instances without manually writing a
federated SPARQL query. The SBOL Stack configuration file
contains an otherStacks property, which lists the URLs of
other SBOL Stack instances to aggregate data from. When a
request is received by the SBOL Stack API, these other
instances will be queried in parallel and the results collated into
a single SBOL document to deliver back to the client. This
federation also applies to the end points for counting
components or modules, which will query other stacks and
sum the total value of matching entities. We have tested this
approach in a simple three-way querying exercise between
Newcastle University (UK), Boston University (US), and
Macquarie University (Australia). In this test the genetic toggle
switch design from Galdzicki et al.10 was built by retrieving
promoters, CDSs, and cloning vectors from these three
instances of the SBOL Stack. In the future, we envisage more
complex examples will be developed when the number of
SBOL Stack instances increases and there are data available on
a wider variety of parts.

1.5. SynBioHub Functionality and Use Cases. SynBio-
Hub is a Web application to demonstrate the use of the SBOL
Stack as an SBOL version 2 repository and to support the end
user in this respect. It is designed to allow a user to view and
manage SBOL version 2 designs manually. SynBioHub is user-
centric and each group of users (e.g., a lab or institute) can be
assigned a private repository. Users can upload new designs in
the form of GenBank or SBOL documents and track them
privately. Submissions are also associated with metadata, which
is used to add information about the upload process itself.
SynBioHub also demonstrates the suitability of the SBOL Stack
for a more complicated scenario by providing an abstraction
over the security model, implementing a dynamic user

Figure 8. Using SPARQL queries to facilitate data federation. Remote SBOL Stack end points are indicated with the REMOTE keyword. The query
result is the union of ComponentDefinition entities representing promoters from both the local and the remote repositories.
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registration system where each user is associated with their own
unique store.
1.5.1. Uploading and Sharing Synthetic Biology Designs.

Hub users must first register in order to upload new data and
can then access their private repositories with a username and
password. When logged in, a user can upload, download, and
modify designs in their private repository, share designs with
other users, and make designs public. Once public, the designs
can be accessed via the Web by any visitor without the
requirement of a SynBioHub account. Sharing designs is a key
focus of SynBioHub, and the infrastructure provided by the
SBOL Stack enables users to share designs both through the
public repository and privately through their uniquely assigned
URL.
When submitting a new design to SynBioHub, users are

presented with a set of fields with which they can specify
metadata for their design (Figure 9). Among these fields are
name; list of citations; description; purpose; list of keywords;
and intended chassis. The user can then upload an SBOL file or
can upload a GenBank file to be converted into SBOL for
storage in the triplestore. During the submission process, the
metadata is converted into top level annotations that are given
newly minted URIs in the SynBioHub namespace and attached
to the SBOL file. If the design is later downloaded, this
metadata stays associated with the SBOL file and is
downloaded as part of the serialisation. It should be noted
that no new URIs are produced for files uploaded in SBOL
format, since the triplestore is able to use the URIs found in the

SBOL files. New URIs are created for newly converted
GenBank files that are tagged as being created by SynBioHub.
Users can search for designs using information from the

metadata such as title, description, and keywords. When
searching or browsing, designs in SynBioHub can be viewed on
the submission page, where a list of designs owned by a user is
presented along with designs from the public repository (Figure
10). Users can then choose particular designs that are private to
be made public. Currently, each SynBioHub instance is
connected to a single instance of the SBOL Stack. However,
this instance of the SBOL Stack can be connected to other
instances using the data federation paradigm described in
Section 1.4. As a result, queries performed on a SynBioHub
instance will be automatically federated to other connected
instances of the SBOL Stack. The results will then be collated
into a single SBOL document and returned to the user.

1.5.2. Browsing Data from the SBOL Stack. SynBioHub
users can either browse the entire data from a configured SBOL
Stack instance or list their submissions. When viewing a single
design, a user is presented with a page listing all of the metadata
associated with the design, as well as options to download the
SBOL file. Additionally, for DNA components with functional
assignments, a graphical representation of the design that
conforms to the SBOL Visual standard26 is generated using
VisBOL20 and is presented to the user. This graphical
representation can be exported in several different graphical
file formats including SVG and PNG. Designs can then be
included on slides in a presentation or as a figure on a poster or

Figure 9. SynBioHub users can provide more information about the submission such as a name and a description, what the design is about,
associated citations, the intended chassis, and a list of keywords.
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publication. Figure 11 depicts a screen shot of the SynBioHub
page for a design of a genetic toggle switch.
1.5.3. Hosting a SynBioHub Instance. The Hub can be

configured to connect to any SBOL Stack instance, whether
hosted on the same machine or remotely. This configuration is
carried out when the Hub is accessed for the first time by an
administrator. Other users can then start registering and using
the Hub instance (Figure 12).

2. DISCUSSION

SBOL has been developed to facilitate a standard approach to
sharing designs in the field of synthetic biology. The SBOL
Stack fulfills the need for an open-source database that allows
SBOL designs to be stored in their native RDF format that is
amenable to sharing, composition, annotation, and integration.
The development of SBOL as an emerging standard for the
interchange of biological designs also brings new opportunities
for enabling collaborative workflows between scientists and
commercial entities across geographical, institutional, and
political boundaries. This distributed approach to synthetic
biology also requires repositories where designs can be
programmatically stored, retrieved, and shared during the
execution of the workflows. The SBOL Stack has also been
designed to meet this need.
It has been recognized that the methods for the storage and

sharing of parts and designs have not been developed
sufficiently to meet the demands of the growing number of
parts and the need to share and compose these parts.9 Ham and
co-workers produced the ICE system in response to this
challenge and first introduced the concept of a web of registries
that would allow users to maintain their own repository that
could be linked to repositories of other users, applications, and
institutions. In the work presented here, we have built on this

concept to introduce a repository that not only allows parts to
be stored, retrieved, and shared in the emerging standard
format SBOL version 2, but also facilitates an integrated
approach to their use and application.
The SBOL Stack allows data to be stored in a flexible manner

since the data is broken down into the component RDF triples
and stored in a triplestore. At a basic level this approach has the
advantage of leveraging already available standard libraries and
the SPARQL querying language for data retrieval and
federation. As it is based on Sesame, the system is also cross-
platform and easy to deploy on systems running a Java Web
server. The SPARQL end point for the SBOL Stack enables
computational access to the Stack through SPARQL queries for
developers who wish to take this route. However, the API and
the client library also allow computational tools to
programmatically access the SBOL Stack using several search
options. Triplestores have been developed to support the
Semantic Web concept (Web 2.0) which has an integrated Web
of resources at the heart of its concepts.27 As such, the use of
Semantic Web technology allows the use of standardized
approaches to integrating data from multiple databases in the
Web in a dynamic fashiondata federation. Using this
approach, users can query multiple databases simultaneously
and combine the search results. This approach will allow the
collaborative development of systems where parts are not only
retrieved from multiple repositories but are in a form that also
allows their integration and modular combination by software
applications such as CAD tools. In the future, we plan to build
composition functionality into the SBOL Stack API itself.
In addition to operating in a federated mode, each SBOL

Stack instance can also act as a data warehouse capable of
storing and integrating data from other sources with the SBOL
formatted parts data. A large amount of information about

Figure 10. Hub users can track both their private and public designs using the Manage Submissions page. Private submissions belonging to the user
are shown on the left, and public submissions belonging to the user are shown on the right. The user can make a private submission public by
clicking the Make Public button.
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genetic features, their biological role, and their functional
interactions is now freely available in a myriad of databases.
However, these databases often have different file formats and
different semantics, making it difficult to automatically
assimilate the information necessary for biological system
design. The RDF orientation of SBOL makes it extremely
flexible, and facilitates data integration, both with RDF and
non-RDF data. SBOL data can, for example, be integrated with
annotations from ontologies such as the Sequence Ontology
and the Gene Ontology,28 making it possible to add semantic
information to biological part data. Where the SBOL semantics
are not sufficient for data representation, additional ontologies
such as SyBiOnt18 can be used to mediate the integration of
data. This approach offers the potential to enrich the designs
for parts with external information and opens up the possibility
of a more informed approach to parts design. Moreover, it
should be possible in the future to store the characterization
data relating to parts in the SBOL Stack by extension of the
SBOL vocabulary using many existing ontologies and data
standards. The inclusion of information about small molecules,
interactions, RNA, proteins, etc. as supported by SBOL version
2 also opens up the possibility of designing biological systems at
higher levels in the molecular biology hierarchy than the
genetic level at which most current designs are composed. In
the future, we aim to include phenotypic and physiological data
in SBOL Stack databases to further facilitate the high-level
design of biological systems.
In addition to the SBOL Stack, we have also developed a

web-based tool, SynBioHub, that allows the end user to access

the SBOL designs in the SBOL Stack. SynBioHub acts as a
demonstration for other developers on how to programmati-
cally access the SBOL Stack. However, SynBioHub is also a
fully functional system that will allow users to upload their parts
in the SBOL or GenBank format and to retrieve parts from an
SBOL Stack installation. If that SBOL Stack instance is
connected to other SBOL Stack installations using the
federated querying system, then parts from those other SBOL
Stack instances will also be accessible from that SynBioHub
instance. The SynBioHub Web client allows users to upload
entire SBOL documents to a private database and to share
those records with other users or make them public. In the
future, SynBioHub could be a useful tool in the academic
journal submission process so that synthetic biology designs
can be evaluated and made available at the same time as the
papers that refer to them.
The release of the SBOL Stack and SynBioHub described

here offer a useful set of functions that we hope will be of
benefit to the wider scientific community, not just SBOL
software developers. Moreover, there are many more new
functions and features that could be added to these systems. It
is our hope that the open source nature of the tools will
encourage the synthetic biology developer community to adopt
and extend this software.

3. METHODS

The SBOL Stack and SynBioHub were written in JavaScript.
The Web service client API was developed in Java. The Sesame

Figure 11. A screen shot of the SynBioHub page for a genetic toggle switch. This page includes a title, a description, a list of keywords, an intended
chassis, a list of citations, and a visual representation of the design rendered using VisBOL. With the buttons below the description, any user can
download an SBOL file from the submission, and the owning user can edit metadata corresponding to the submission or make the submission public
if currently private.
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triplestore was used as an RDF database. Sesame is an open-
source implementation of an RDF triplestore written in the Java
language.16 In the future, the SBOL Stack will be migrated to
Eclipse rdf4j, a recently released fork of Sesame.
3.1. Software Availability. The SBOL Stack can be

accessed via www.sbolstack.org. This site contains a link to the
source code for the SBOL Stack triplestore, the SynBioHub
Web client, and Docker images to enable deployment of new
Stack instances. It also contains a link to our example instance
of the SBOL Stack with a front-facing SynBioHub Web
interface that can be accessed via www.synbiohub.org. This
instance contains the data from the aforementioned Bacillus
subtilis data set, the iGEM Registry of Standard Biological Parts,
and SBOL version 2 example files from recent publications.
The entire source code for the SBOL Stack and the SynBioHub
are available under the BSD license.
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