

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to

quote extensively from the work, permission must be obtained from the
copyright holder/s.

Investigating the use of native language calls in

a multi-channel business process

Clive Jefferies

Doctor of Philosophy in Computer Science

September 2011

Keele University

iv

Abstract

Background

Making system functionality available via multi-channel access (MCA) can be

achieved through exposing functions and business processes as software services.

When offering MCA to a business process, system performance is an important

consideration due to network limitations and verbose messaging in service-oriented

technologies.

Aims

The first aim of this study is to investigate the potential impact on system

performance and agility that may occur when an underlying business process is

exposed for MCA. The second aim is to investigate if reengineering a system as a

service-oriented architecture (SOA) improves agility. The work also aims to create an

MCA reengineering method to transform systems from single-channel into multi-

channel.

Methods

A case study was used, along with an experiment, to compare the performance and

agility of native language calls (NLC) and protocol based messaging (PBM) for

service messaging in a business process. The case study also investigated if

reengineering a system as an SOA improves agility by comparing system and code

metrics. A multi-channel access reengineering method (McARM) was created and

evaluated.

v

Results

No significant difference was found between the performance of the PBM and NLC

binding technologies. However, NLC bindings were found to be less agile than PBM.

Reengineering a system as an SOA was found to improve the agility of a system. A

method was created which was used to reengineer a system for MCA.

Conclusions

Based on the results, the recommendation is that NLC should not be used instead of

PBM for messaging between the services and business processes in a system

reengineered for MCA. Measures should be taken to ensure that the reengineering of a

system for MCA does not affect performance. Finally, an SOA can be used to

improve system agility.

vi

Glossary

Agility test case – test case derived to measure agility in terms of time and effort.

Binding technology – technology used to bind a business process to a service.

Business function – software functionality that relates directly to a business need.

Business object – an object that represents a business entity.

Business process - related tasks which produce a business outcome according to

business rules.

Business process engine/server – server for executing business processes.

Business process execution language (BPEL) – XML based language for

implementing business processes.

Case study – scientific methodology used to investigate problems of an exploratory

nature, usually having several sets of data.

Channel – device type used to access a system.

Complex type - an XML element containing other elements.

vii

External quality factor – software quality attribute from an external viewpoint, such

as users.

eXtensible mark-up language (XML) - a framework used as a notation for creating

mark-up languages.

Granularity - the level of abstraction at which services and their functionality are

aimed, focusing on the service description and what it represents.

Interoperability – the ease of software interacting with other software.

Java stubs – a Java class that can create instances of a class held on a remote server

and its methods executed as though it were a local object.

Latency - the response time for a request in a system.

Multi-channel access (MCA) - a property of a system which means it has the ability

to be accessed by heterogeneous devices in a consistent manner.

Namespaces - named elements and attributes in an XML document to avoid element

name conflicts.

Native language call (NLC) – a service binding technology that uses the service

implementation language for messaging also.

http://en.wikipedia.org/wiki/XML

viii

Ontology – representation of concepts in a domain and how they relate to each other.

Product quality criteria – software quality attribute from an internal viewpoint, such

as developers.

Protocol based messaging (PBM) – a service binding that uses a messaging format

which conforms to a protocol.

Quality attribute scenarios (QAS) – summary of a non-functional requirement.

Semantic differential scale - assessment by humans involving a rating scale.

Service - a capability that is offered for use to requesters by a provider that is

described by the provider so that it can be discovered and used by requesters.

Service description - document that describes a service contract and use.

Service loose coupling - services and technologies of a service-based system are not

dependent on one another, meaning a change will have little or no impact.

Service-orientation (SO) – a paradigm for creating service based systems.

Service-oriented architecture (SOA) - an architectural style for creating and

managing service-oriented applications.

http://en.wikipedia.org/wiki/Domain_of_discourse

ix

Service reusability – services can be leveraged by other systems.

Simple object access protocol (SOAP) – web service technology for messaging.

Software metric – a measure of an aspect of software.

Software quality model - used to describe desirable, measureable properties in

software.

Systematic Literature Review (SLR) - a structured literature review which aims to

gather literature, extract data and synthesise the data in a systematic way.

Web services – an XML-based platform designed for the description, discovery and

messaging of services.

Web service description language (WSDL) – web service technology used to

implement service descriptions.

Web service invocation framework (WSIF) - a toolkit for invoking any resource

using a WSDL based description.

Web Services Integration Framework (XWIF) – a methodology for integrating

XML and service-oriented architectures into existing systems.

x

Weighted comparison table – used to assess architectural features according to

desired criteria which have been weighted by importance.

XML schema – a schema used in XML languages for expressing shared

vocabularies.

xi

Contents

Abstract ... iv
Glossary .. vi
List of Figures ... xvi
List of Tables ... xvii
Acknowledgements ... xix

Chapter 1: Introduction .. 1
1.1 Background .. 1

1.1.1 Mobile computing ... 1

1.1.2 Multi-channel Access ... 2
1.1.3 Service-orientation .. 6

1.1.3.1 Services .. 6
1.1.3.2 Service-oriented architecture (SOA).. 8
1.1.3.3 Business processes ... 11
1.1.3.4 Service based technologies .. 13

1.2 The IBHIS project .. 15
1.3 Reengineering .. 17

1.3.1 Phases .. 18

1.3.2 Reengineering methods ... 19
1.4 Research methods .. 21

1.5 Research Objectives ... 21
1.5.1 Objective 1 .. 22

1.5.2 Objective 2 .. 23
1.5.3 Objective 3 .. 23

1.6 Contributions.. 24
1.7 Thesis outline ... 24

Chapter 2: Systematic Literature Review .. 26

2.1 Planning ... 26
2.1.1 Background ... 26
2.1.2 Review questions .. 27

2.1.3 Review methods .. 28
2.1.3.1 Search strategy and resources .. 29

2.1.3.2 Study selection ... 30
2.1.3.3 Quality Assessment .. 31

2.1.3.4 Data Extraction Strategy .. 31
2.1.3.5 Data synthesis .. 32

2.2 Results .. 32

2.2.1 SLR-RQ1 .. 33
2.2.2 SLR-RQ2 .. 33

2.2.3 SLR-RQ3 .. 34
2.3 Discussion .. 35

2.3.1 SLR-RQ1 .. 36

2.3.2 SLR-RQ2 .. 36
2.3.3 SLR-RQ3 .. 37

2.4 Conclusions .. 39
Chapter 3: Reengineering for Multi-channel access .. 40

xii

3.1 McARM ... 40
3.1.1 Stages .. 41
3.1.2 Stage order .. 42
3.1.3 Stage details .. 43

3.1.3.1 Requirements gathering/analysis ... 43

3.1.3.2 System understanding .. 44
3.1.3.3 Service identification in legacy system.. 45
3.1.3.4 Business Process Modelling .. 46
3.1.3.5 System redesign ... 47
3.1.3.6 System recoding ... 49

3.1.3.7 Service interface implementation .. 49
3.1.3.8 Business process implementation .. 50

3.2 MCA Architecture ... 50
3.2.1 Summary of architectures ... 51
3.2.2 Suitability of architectures .. 51
3.2.3 Architectural layer types ... 53
3.2.4 Proposed architecture .. 54

Chapter 4: The performance/agility trade-off .. 57
4.1 Performance ... 57

4.1.1 Web services ... 58
4.1.2 Improving web service performance .. 59

4.1.3 Improving business process performance ... 59
4.1.4 Using WSIF to improve business processes performance 61

4.2 Agility .. 65

4.2.1 Information systems agility ... 66

4.2.2 SOA and agility... 67
4.2.3 Agility characteristics ... 69
4.2.4 Agility quality model .. 72

4.2.5 Agility measures ... 75
4.2.6 Agility test cases ... 78

Chapter 5: Methodology and implementation ... 79
5.1 Planning ... 80

5.1.1 Aims .. 80

5.1.2 Case study design .. 82
5.1.3 Case selection ... 84

5.1.4 Case study roles .. 85

5.1.5 Data Collection ... 85

5.1.5.1 Data to be collected .. 85
5.1.5.1.1 CS-RQ1-P1 ... 86
5.1.5.1.2 CS-RQ1-P2 ... 86
5.1.5.1.3 CS-RQ2 ... 89
5.1.5.1.4 CS-RQ3 ... 89

5.1.5.1.5 CS-RQ4 ... 90
5.1.5.2 How the data was collected.. 90

5.1.5.2.1 Response times.. 91
5.1.5.2.2 System metrics .. 91
5.1.5.2.3 Semantic differential measurements ... 91

5.1.5.2.4 Agility test cases data .. 92

5.1.5.2.5 Reengineering method data... 92
5.1.5.3 Data collection plan ... 92

xiii

5.1.5.4 How data was stored .. 93
5.1.6 Analysis .. 94

5.1.6.1 CS-RQ1 .. 94
5.1.6.2 CS-RQ2 .. 96
5.1.6.3 CS-RQ3 .. 97

5.1.6.4 CS-RQ4 .. 97
5.2 Conducting ... 97

5.2.1 CS-RQ1 ... 97
5.2.1.1 Performance testing mock-up .. 97
5.2.1.2 Agility test case mock-up ... 99

5.2.1.3 Unused agility test cases .. 99
5.2.2 CS-RQ2 ... 100

5.2.3 CS-RQ3 ... 100
5.2.4 CS-RQ4 ... 100

5.2.4.1 System understanding .. 100
5.2.4.2 Service identification ... 106
5.2.4.3 Business Process Modelling .. 109

5.2.4.4 System redesign ... 111
5.2.4.5 System recoding ... 117

5.2.4.6 Service interface creation ... 117
5.2.4.7 Creating business processes ... 117

5.2.4.8 Client .. 119
5.2.4.9 Testing.. 121

5.2.5 Architecture .. 122

Chapter 6: Case study results ... 125

6.1 Results by data collected .. 125
6.1.1 Performance testing .. 125
6.1.2 Agility metrics .. 126

6.1.3 Agility test cases ... 127
6.2 Results by research question .. 127

6.2.1 CS-RQ1-P1 ... 127
6.2.2 CS-RQ1-P2 ... 128

6.2.2.1 System metrics ... 128

6.2.2.2 Agility test cases .. 130
6.2.3 CS-RQ2 ... 131

6.2.4 CS-RQ3 ... 132

6.2.5 CS-RQ4 ... 134

6.2.6 Summary ... 135
Chapter 7: Discussion .. 137

7.1 CS-RQ1 .. 137
7.1.1 CS-RQ1-P1 ... 137
7.1.2 CS-RQ1-P2 ... 138

7.1.2.1 Agility quality model ... 138
7.1.2.2 Agility test cases .. 139

7.1.3 Summary ... 141
7.2 CS-RQ2 .. 141
7.3 CS-RQ3 .. 143

7.3.1 Product quality criteria .. 143

7.3.1.1 Granularity ... 144
7.3.1.2 Complexity ... 144

xiv

7.3.1.3 Expandability ... 145
7.3.1.4 Generality ... 145
7.3.1.5 Modularity.. 146
7.3.1.6 Communication commonality .. 146

7.3.2 Summary ... 146

7.4 CS-RQ4 .. 147
7.5 Agility quality model ... 150

Chapter 8: Evaluation .. 155
8.1 Systematic Literature Review .. 155
8.2 Case study .. 157

8.2.1 Checklist ... 157
8.2.1.1 Case study design ... 157

8.2.1.2 Preparation for data collection ... 158
8.2.1.3 Collecting evidence .. 159
8.2.1.4 Analysis of the evidence .. 159
8.2.1.5 Reporting.. 160

8.2.2 Validity ... 161

8.2.2.1 Construct validity ... 161
8.2.2.1.1 Construct measures ... 161

8.2.2.1.2 Mono-method bias .. 162
8.2.2.1.3 Levels of the independent variable ... 162

8.2.2.2 Internal validity .. 162
8.2.2.3 External validity ... 164

8.2.2.3.1 CS1-RQ1 ... 164

8.2.2.3.2 CS1-RQ2 ... 165

8.2.2.3.3 CS1-RQ3 ... 165
8.2.2.3.4 CS1-RQ4 ... 165

8.2.2.4 Reliability ... 165

8.3 Data collection methods ... 166
8.3.1 Response times ... 166

8.3.2 Code metrics ... 167
8.3.3 Semantic differential measurements ... 167
8.3.4 Agility test cases ... 168

8.3.5 McARM evaluation .. 169
Chapter 9: Conclusions and future work ... 170

9.1 Conclusions .. 170

9.1.1 CS-RQ1 ... 170

9.1.2 CS-RQ2 ... 171
9.1.3 CS-RQ3 ... 172
9.1.4 CS-RQ4 ... 172
9.1.5 Multi-channel Architecture ... 173
9.1.6 Agility quality model .. 173

9.1.7 Research methodologies ... 174
9.2 Future work .. 175

9.2.1 CS-RQ1 ... 175
9.2.2 CS-RQ2 ... 175
9.2.3 CS-RQ3 ... 176

9.2.4 CS-RQ4 ... 176

9.2.5 Multi-channel Architecture ... 177
9.2.6 Agility quality model .. 177

xv

References .. 178
Appendix .. 196

Appendix A – Reengineering ordering .. 197
Appendix B – Functional testing ... 198
Appendix C - PBM and NLC response times .. 201

Appendix D – reengineered IBHIS broker (PBM) semantic differential scale –

Primary reviewer .. 202
Appendix E – reengineered IBHIS broker (NLC) semantic differential scale –

Primary reviewer .. 203
Appendix F – response times for CS-RQ2 .. 204

Appendix G – original IBHIS broker semantic differential scale – Primary reviewer

.. 205

Appendix H – original IBHIS broker semantic differential scale - Validation 206
Appendix I – reengineered IBHIS broker (PBM) semantic differential scale –

validation.. 207

xvi

List of Figures

Figure 1 Flight service ... 7
Figure 2 SOA boundaries... 9
Figure 3 Flight service at the enterprise/institutional level .. 10
Figure 4 Flight service at the external level ... 10

Figure 5 Travel booking process.. 12
Figure 6 IBHIS broker overview ... 16
Figure 7 Rosenberg general model for software reengineering 19
Figure 8 Horseshoe reengineering method .. 20
Figure 9 Single to Multi-Channel .. 27

Figure 10 MCA Architecture layer comparison .. 54
Figure 11 Architectural layering for reengineered IBHIS broker 55
Figure 12 Comparison of proposed MCA architecture with existing architectures 55

Figure 13 WSIF binding declarations (IBM Websphere 5.1.1 documentation) 62
Figure 14 SOAP binding declarations (IBM Websphere 5.1.1 documentation) 63
Figure 15 WSIF and SOAP bindings ... 64
Figure 16 SOAP and WSIF dependencies ... 65

Figure 17 Reliability in McCall's quality model .. 73
Figure 18 Agility quality model ... 75

Figure 19 Brokers used in case study .. 82
Figure 20 Overview of original IBHIS system .. 101
Figure 21 IBHIS broker services and data ... 102

Figure 22 Original IBHIS system GUI flowchart .. 105

Figure 23 P2Client (query) .. 106
Figure 24 IBHIS current and future use cases ... 107
Figure 25 Sequence diagram for potential services ... 107

Figure 26 IBHIS business process ... 110
Figure 27 Classes for Activation service .. 112

Figure 28 UserDetails type .. 116
Figure 29 Roles type .. 116

Figure 30 Activation business process ... 118
Figure 31 Activation input ... 120
Figure 32 Activation output ... 120

Figure 33 Original reengineering problem .. 122

Figure 34 Original IBHIS broker architecture ... 123
Figure 35 Reengineered IBHIS broker architecture .. 123
Figure 36 Direct access of reengineered IBHIS services ... 124

Figure 37 Original agility quality model ... 153
Figure 38 Revised agility quality model .. 154

file:///C:/Documents%20and%20Settings/Clive/Desktop/Filezilla/Corrections/20120214%20Thesis%203v01.doc%23_Toc317350648
file:///C:/Documents%20and%20Settings/Clive/Desktop/Filezilla/Corrections/20120214%20Thesis%203v01.doc%23_Toc317350649

xvii

List of Tables

Table 1 Search terms .. 29
Table 2 Service-Oriented Reengineering methods .. 33
Table 3 Proposed architectures for MCA .. 34
Table 4 Service-oriented reengineering issues .. 35

Table 5 Inputs and outputs for system understanding ... 45
Table 6 Inputs and outputs for service identification... 46
Table 7 Inputs and outputs for business process modelling .. 47
Table 8 Inputs and outputs for system redesign... 49
Table 9 Inputs and outputs for service interface creation .. 50

Table 10 Inputs and outputs for business process implementation.............................. 50
Table 11 Architecture summary table .. 51
Table 12 Weighted comparison table for multi-channel architecture 53

Table 13 Agility characteristic comparison ... 71
Table 14 Agility quality factors ... 73
Table 15 Research questions and measures ... 83
Table 16 Message sizes .. 86

Table 17 CS-RQ1-P1 QAS .. 86
Table 18 CS-RQ1-P2 QAS .. 87

Table 19 Agility test case 1 QAS ... 87
Table 20 Agility test case 2 QAS ... 88
Table 21 Agility test case 3 QAS ... 88

Table 22 Agility test case 4 QAS ... 89

Table 23 CS-RQ2 QAS .. 89
Table 24 CS-RQ3 QAS .. 90
Table 25 CS-RQ4 QAS .. 90

Table 26 Summary of outcomes .. 96
Table 27 Component table for original IBHIS system .. 104

Table 28 Service table .. 108
Table 29 Interaction Scenarios ... 115

Table 30 Service messages .. 115
Table 31 Complex types .. 116
Table 32 Results for performance testing .. 126

Table 33 Agility metrics .. 126

Table 34 Time and effort for a new service ... 127
Table 35 Table of means .. 127
Table 36 ANOVA summary table for performance investigation 128

Table 37 Semantic differential measurements for the bindings................................. 129
Table 38 PBM/NLC agility comparison .. 129
Table 39 Time and effort for a new service ... 130
Table 40 Time and effort to change a service .. 131
Table 41 Layer comparison table ... 131

Table 42 ANOVA for CS-RQ2.. 132
Table 43 Code metrics for original/PBM ... 133
Table 44 Semantic differential measurements for original/reengineered IBHIS 133

Table 45 Original/Reengineered IBHIS (PBM) comparison 134
Table 46 Assessment of reengineering method ... 135
Table 47 McARM reengineering phases ... 149

xviii

Table 48 McARM coverage of reengineering lifecycle .. 149
Table 49 Case study design evaluation .. 158
Table 50 Preparation for data collection evaluation .. 158
Table 51 Collecting evidence evaluation ... 159
Table 52 Analysis of the evidence evaluation ... 160

Table 53 Reporting evaluation ... 160
Table 54 Threats and controls for performance measurements 163
Table 55 Threats and controls for agility measurements ... 164

xix

Acknowledgements

First, I would like to thank my family for their support and encouragement. I would

also like to thank my supervisors Pearl Brereton and Mark Turner for their time and

expertise. Pearl for believing in me and Mark for his patience in understanding the

technical aspects of the work. I have to thank all of the friends that I have had the

pleasure of sharing the attic with, and who I have the greatest respect; Phil Woodall,

Ryad Soobhany, Kapila Ponnamperuma, Siffat Ullah Khan, Adam Pountney, James

Rooney, Rob Emery and especially John Butcher. I must also thank all of the

members of the Software Engineering group at Keele; Barbara Kitchenham, Steve

Linkman, Thomas Neligwa, Mahmood Niazi and Zhi Li. Finally, I wish to thank the

technical and secretarial staff in the School Computing and Mathematics at Keele.

Chapter 1: Introduction

1

Chapter 1: Introduction

Enabling software systems to be accessed by heterogeneous devices is known as

multi-channel access (MCA). In this research, the wider implications of MCA are

investigated by exploring potential architectures and reengineering methods. System

performance is also investigated, which can be a problem when accessing large data

sets from devices with low processing power, on networks that may be unreliable or

slow. While there are potential solutions to improve the system performance of

business processes, for example through the use of native language calls (NLC) for

messaging, such solutions may have an adverse affect on the agility of the system.

1.1 Background

This section outlines the main concepts used in the thesis.

1.1.1 Mobile computing

The increase in both processing and network speed on mobile devices has resulted in

an increased demand for more complex, feature rich applications. This can be useful

for companies or institutions who wish to make their systems available outside of

their offices. Examples of systems that companies may wish to expose are; supply

chain management (SCM) e.g. inventory, order entry and purchasing and customer

relationship management (CRM) e.g. sales and marketing.

Chapter 1: Introduction

2

There are institutions which may wish to be able to access their systems from mobile

devices, such as:

 Healthcare e.g. patient healthcare records

 Police e.g. accessing crime details

 Local government e.g. local statistics and information

 Charities e.g. when working in other countries with internet access

Mobile devices allow workers the freedom to access information instantly and

continuously. This would make workers more productive and able to respond quickly

to queries. This has resulted in the need to reengineer existing systems in order to

enable them to be accessed from multiple, heterogeneous devices – or multi-channel

access.

1.1.2 Multi-channel Access

A system that has multi-channel access (MCA) is one that can be accessed by

heterogeneous devices in a consistent manner (Newcomer & Lomow, 2005). More

than one device can access the functionality of the system without having to create

new solutions specifically for that channel. Examples of types of channels are: mobile

devices, web site, a desktop application, ATM, television. A channel can be classified

by the following (Marchetti et al. 2003):

 Device e.g. PDA, PC, smart phone

 Application protocol e.g. HTTP, SMTP, SOAP

 Network e.g. UMTS, GPRS

Chapter 1: Introduction

3

MCA is different from a system that has multi-modal access (MMA). MMA enables

different input types to be used in a single transaction e.g. voice, data, SMS (Bisdikian

et al, 2002).

The business services in a system change less frequently than the delivery channels

that are used to access the services (Newcomer & Lomow, 2005). Therefore, a system

that it is accessible from current and future channels is extracting more value from

these systems. There are other advantages of MCA (Ganesh et al., 2004), such as:

 Ability to integrate with partners (e.g. credit card firms, courier companies)

 Ability to provide a single view of customers and transactions across multiple

channels

 Increased efficiency by leveraging existing legacy assets

The availability of a system over multiple channels creates new business opportunities

(Ganesh et al., 2004), such as:

 Loyalty management over multiple channels e.g. bonus points

 Point of sales technology could be integrated with other systems, giving the

sales person pertinent information about a customer

 Promotions to multiple channels using personalisation based on user data

There are important considerations that need to be made when designing a multi-

channel system. From the user point of view, an important consideration is the cost of

data transmission (Park et al., 2006). Currently, data on mobile devices is expensive

which means that users want the quantity of data being sent to be as small as possible.

Another consideration for multi-channel systems is the characteristics of devices that

Chapter 1: Introduction

4

will potentially be accessing the system. Below are some of these characteristics

(Marchetti et al. 2003):

 Screen and keyboard sizes - Mobile users are less able to spend long periods

of time looking at small screens than desktop users, who generally have more

screen real estate. Mobile devices may also have input mechanisms (e.g.

stylus) which make entering a large quantity of information time consuming

and awkward.

 Input types - These can vary e.g. a mobile phone could have touch screen

input, numbered keys, stylus, speech input or even all of these methods.

 Dynamic spatial position – This introduces interesting opportunities such as

location based services (LBS), which are services or functionality that is

contextual, based on the location of the user e.g. a web page or an application

would display a listing of nearby points of interest.

 Communication technology - Each of the devices may have different

communications technology e.g. HTTP, sockets, RMI.

 Networks - Current mobile networks, such as Global System for Mobile

Communications (GSM), and third generation (3G), have limited bandwidth

(Park et al., 2006). In a multi-channel system it may have to be assumed that

the system is being accessed using any of the mobile networks, as well as

wired networks. The mobile networks can also have less connection stability.

Not all mobile networks have full coverage of the country and there may also

be certain places where the signal is unobtainable such as tunnels or buildings

with thick walls. This means that multi-channel systems should be able to deal

with a connection loss gracefully.

Chapter 1: Introduction

5

 Security - The devices may potentially be accessing systems from unsecure

networks for example GSM or an unsecured wireless local area network.

There is also the risk of users losing devices or the devices being stolen and

then used inappropriately to access sensitive information.

Quality of service (QoS) requirements, need to be considered also, not just from the

user perspective but also the channel itself (Comerio et al., 2004). For example, a user

of a streaming video service who wishes to watch a short video will have a different

tolerance to slow delivery than of an entire film. In terms of the channel itself, the

acceptable levels of quality between a mobile device and a desktop device will be

different e.g. users may be more likely to tolerate interruptions when accessing from a

mobile device. System performance is an important QoS requirement for a system

with MCA, which can be prohibited by the networks used to access the system. In this

thesis the main consideration is the system performance.

One way of implementing MCA is by using a service-oriented architecture (SOA)

(Krafzig et al., 2004). However, an SOA is not the only way of implementing MCA

(Stroulia & Kapoor, 2001; Menkhaus 2002; Bertini & Santucci 2004, Eisenstein et al.

2001). Menkahus, (2002), proposed a multiple user interface, single application

(MUSA) architecture. This is a layered architecture where the service logic is passed

into the core system which then adapts content to different device types. In the work

proposed by Bertini & Santucci, (2004) and Eisenstein et al., (2001), the focus is on

adapting the user interfaces according to the device types, using abstract interaction

objects (AIOs). The AIOs can be used to create user interfaces which are mapped

onto concrete implementations per device. These are then mapped onto the

Chapter 1: Introduction

6

characteristics of the device accessing the system e.g. scrolling ability and Java

enabled. In the work proposed by Stroulia & Kapoor, (2001), a wrapper is used on

legacy-systems with text based user interfaces to enable them to be accessed from the

web using desktop and mobile web technologies.

This work will concentrate on the service-oriented method of achieving MCA, as the

use of an SOA means that data can be accessed by a presentation client without being

tied to the presentation layer.

1.1.3 Service-orientation

An SOA is an aspect of the service-oriented (SO) paradigm. SO, like object-

orientation (OO), is an approach to system analysis, design, implementation and

management. The emphasis in SO is on the services provided by a system rather than

the objects identified. As well as MCA there are also other benefits that come with

SO, e.g. agility (Krafzig et al. 2004; Allen 2006; Erl 2007; Newcomer & Lomow

2005).

1.1.3.1 Services

A software system architecture is made up of components and their interconnections

(Pfleeger, 2001). In SO the primary components are services. A service is a capability

that is offered for use to requesters by a provider (OASIS RM-CS, 2006). The

services are described by the service provider, so that they can be discovered and used

by requesters (Allen, 2006). A service should be self contained and its implementation

Chapter 1: Introduction

7

opaque to the requester (Kreger & Estefan, 2009). Figure 1 is an example of a flight

service that might be offered by an airline.

FlightService

GetAvailability

GetCost

BookFlight

GetBooking

Figure 1 Flight service

The flight service has four operations: GetAvailability, which checks for

available flights; GetCost, which retrieves the cost of a flight; BookFlight,

which allows a flight to be booked and GetBooking, which gets the details of a

booking.

An important concept when designing services is their granularity. Granularity is the

level of abstraction at which the services and their functionality are aimed, focusing

on the service description and what it represents (Erl, 2007). A service should be

aimed at fulfilling business requirements. Therefore the functions and services should

reflect business functions (Newcomer & Lomow, 2005). At the extremes, granularity

can be considered as being coarse grained or fine grained. A coarse grained system

has just a few higher level services that represent business functions. A fine grained

system exposes a large number of low level functions as services. An example of a

coarse grained business service would be one that has a function to add a business

customer address. This service represents a distinct business function and would be

useful as it can be reused by other applications. Ensuring that a business customer

address is valid can be classed as a fine grained function. This is only useful within

the context of adding a business customer address, which means that it would not be

Chapter 1: Introduction

8

called outside of the service in which it resides. Granularity can be measured in the

context of the system that the service is going to be used. For example, in some cases

having a service that validates an address may be useful if there are other systems that

require this functionality. The granularity of the functionality within the service can

also be measured, which is independent of the system. For example, if the business

address validation works on the entire address at once, then this would be coarse

grained, if the validation could be performed on individual lines of the address, then

this would be classed as fine grained.

1.1.3.2 Service-oriented architecture (SOA)

There are many definitions and interpretations of an SOA. According to the OASIS

Reference Model for Service Oriented Architecture 1.0 (OASIS RM-CS, 2006) it is ‘a

paradigm for organizing and utilizing distributed capabilities that may be under the

control of different ownership domains’. The Open Group states ‘An Service-oriented

Architecture (SOA) facilitates the creation of flexible, reusable assets for enabling

end-to-end SOA-based business solutions’ (Open Group, 2009). In a paper that

examines the current standards for SOA, these two definitions are combined and an

SOA is described as ‘architectures that support thinking and organizing in terms of

services with distributed capabilities which may be under the control of different

ownership domains, and is an architectural style as well as a paradigm for business

and IT architecture.’ (Kreger & Estefan, 2009). Although, these definitions describe

the main aspects of an SOA, an SOA does not necessarily have to be in a business

context. Any system that requires a provider/requester style architecture, using

services as components, could be categorised as an SOA.

Chapter 1: Introduction

9

The architectural aspect of an SOA views a system in terms of the services that it

provides to fulfil a requirement and its interactions with potential requesters

(Newcomer & Lomow, 2005). Potential requesters of a service could be:

 Internal systems (project level)

 Systems within the enterprise/institution

 External systems

Figure 2 shows the boundaries of the potential requesters.

Figure 2 SOA boundaries

In figure 2 the enterprise/institutional level the services can be used by other

departments or projects. Figure 3 shows some services that might be used at the

enterprise/institutional level for an airline.

Chapter 1: Introduction

10

Figure 3 Flight service at the enterprise/institutional level

Figure 3 shows that there might be an employee service for managing employees, a

customer service for managing customers and the flight service for booking customer

flights. In this example, the FlightService detailed in section 1.1.3.1, may not

seem like it will be of use to other departments in the company, but the

GetBooking operation could be used by the billing department in order to get the

booking details for customer billing. At the external level the services could be used

by business partners (see Figure 4).

Figure 4 Flight service at the external level

Chapter 1: Introduction

11

Figure 4 shows some of the services for a travel booking company. The travel

booking company uses its own internal Hotel service for booking hotels, an

external Taxi service for booking taxis and the external Flight Service

offered by the airline for booking flights.

These boundaries cause a lot of misunderstanding with the definition of an SOA.

When creating services at the project level, it is recommended that they are also

considered at the enterprise level and ideally, at the external level (Erl, 2004).

However, it should be noted that even if a service is not considered at these levels it

does not mean it is not part of an SOA.

1.1.3.3 Business processes

According to (Newcomer & Lomow, 2005), a business process is ‘a real-world

activity consisting of a set of logically related tasks that, when performed in the

appropriate sequence, and according to the correct business rules produces a business

outcome’. In terms of service orientation, an orchestrated business process is one that

calls a service or number of services, in order to fulfil a business transaction. This

could be a process that calls a single service to carry out a transaction or it could call

multiple services, the responses of which could then be aggregated and returned to the

client. For example, the travel booking company may have a travel booking process

that consumes multiple services, internal as well as external, in order to make travel

arrangements (see Figure 5).

Chapter 1: Introduction

12

Figure 5 Travel booking process

In Figure 5 the customer sends a destination and the travel dates in a travel request to

the travel booking process. The travel booking process may then query the hotel

service, taxi service and the flight booking service. It may be the case that the travel

booking process queries multiple services for each of these aspects and then compares

the responses from each of these and then makes decisions using a set of business

rules. For example the process may compare the prices of a number of flight services

in order to offer the least expensive travel arrangements.

The travel booking process could also compare the hotels in terms of the distance

from the airport. In this case, the process may query all of the services in parallel.

Alternatively, the process may perform the calls to services in a strict order so that it

can use the results from one service to determine the inputs of another service. For

instance, if there are no taxi services available between an airport and a hotel another

hotel may have to be chosen. However, in all cases the business process and calling of

the sub-services (flight, hotel and taxi services) are invisible to the customer.

Chapter 1: Introduction

13

The travel process can also be accessed as a service, for example it may be used in a

business travel process. The business travel process could use other services that are

called before or after the travel process. For example, before the travel process is

called the business travel process may call a service that queries the company’s

database to see if the employee is entitled to business or economy class seating.

1.1.3.4 Service based technologies

One technology that specifically aims to fulfil the needs of SO, is web services. Web

services are used to implement services in an SOA. Web services are a platform

designed for the description, discovery and messaging of services. All of these

technologies are implemented using the eXtensible mark-up language (XML). XML

is a framework that can be used as a notation for creating mark-up languages

(Moller & Schwartzbach, 2006). The advantage of using XML in an SOA is that it is

implemented by a number of programming languages and platforms, thereby

improving interoperability.

The description of services is implemented using the web service description

language (WSDL). A WSDL document describes a service and the functionality it can

perform, as well as a physical resource to access the service. The discovery aspect of

a service is implemented using universal description, discovery and integration

(UDDI). UDDI is a repository for service descriptions, which allows requesters to

search and find the service that meets their needs. Web service messaging is

implemented using the simple object access protocol (SOAP). SOAP messages are

documents which contain data concerning the message (header) and the message itself

(body).

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Anders%20Mller
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Michael%20I.%20Schwartzbach

Chapter 1: Introduction

14

There have been other efforts to improve the interoperability of software systems such

as the common object request broker architecture (CORBA) but these have been

largely unsuccessful (Newcomer & Lomow, 2005). One of the reasons that CORBA

has been considered unsuccessful was its lack of interoperability between the products

(Hohpe & Woolf, 2003). Also, CORBA uses a custom protocol called the internet

inter-orb protocol (IIOP) which means that this new protocol must be used. SOAP

however, uses common web protocols, HTTP and XML. Another reason is that no

port for communication was chosen as part of the standard, so a new port had to be

opened for anyone wishing to communicate using CORBA (Jong, 2002). SOAP on

the other hand, uses the internet port which means that no configuration is required.

CORBA is also a complex standard, which makes it difficult to use (Cohen, 2001).

Business processes can be written in the business process execution language (BPEL),

which is based on web services and XML. This makes BPEL an ideal candidate for

making composite applications that consume web services. Like web services, BPEL

uses WSDL for description and SOAP for messaging. Web services and BPEL both

use XML as their data format making them interoperable. BPEL also uses some of the

advanced XML functionality such as XQuery for querying documents and extensible

stylesheet language transformations (XSLT) for transforming documents. In a BPEL

process document there are typically the following:

 Partnerlinks - the services to be consumed

 Variables - for maintaining persistence throughout the process

 Fault handlers – for handling faults gracefully

 Process logic – the sequence in which partnerlinks are invoked, variables

assigned.

Chapter 1: Introduction

15

Examples of the constructs used in the process logic are:

 flow – for concurrent activities

 receive – receives messages from client

 invoke – calls a service for consumption

 reply – sends response to client

 assign – updates a variable

 if – conditional logic

 throw – for throwing a fault inside the process

One of the main reasons for using an SOA for MCA is the SOAP protocol used for

messaging. As long as a device supports web services or has the ability to parse

SOAP messages, then it should be able to access a service or business process.

1.2 The IBHIS project

An example of a system that could benefit from having MCA is the Integration

Broker for Heterogeneous Information Source (IBHIS) broker (Turner et al, 2004).

The IBHIS broker was part of the IBHIS project that investigated the integration of

data from heterogeneous data sources using service-based systems.

The domain for this project was healthcare and examples of the data sources are

patient records from primary care doctors, hospitals and other health agencies. Figure

6 shows an overview of the IBHIS broker (Kotsiopoulos et al., 2003).

Chapter 1: Introduction

16

Figure 6 IBHIS broker overview

The data sources shown in Figure 6 could be from machines using different operating

systems (e.g. Windows or Linux) and stored using different database technologies e.g.

MySQL or Oracle.

The IBHIS broker receives a query, which could be from a general practitioner or a

hospital doctor. This query is then translated into the local language of each data

source with the help of an ontology (Turner et al, 2004). The ontology is used to

describe domain concepts and their relationships and is used like a dictionary to

ensure that terms in a domain are used consistently. This means that the domain

language used by the different data sources is consistent and that a global query could

be translated into local queries for each data source. The IBHIS broker then makes

calls to each data source using web service technologies. The results returned from the

data source are aggregated and returned to the user.

Chapter 1: Introduction

17

The IBHIS broker would benefit from being accessible from multiple channels so that

patient data can be accessed by mobile workers. These workers, such as on-call

doctors or ambulance drivers, could access patient data from multiple sources on

demand, at the time and place in which it was needed. However, when the IBHIS

broker was created there was only one delivery channel in mind – that of a web

application. For this study the IBHIS broker will be reengineered for MCA using

service-based technologies and the issues of performance and agility associated with

such reengineering will be investigated.

1.3 Reengineering

Reengineering is an aspect of software rejuvenation, which is to ‘increase the overall

quality of an existing system’ (Pfleeger, 2001). Listed below are the three scenarios

for reengineering (Jacobson & Lindstrom, 1991).

1. A complete change of implementation technique and no change in the

functionality.

2. A partial change in implementation technique and no change in functionality.

3. A change in functionality

There are two more scenarios which could be added to this list:

 A complete change in the implementation technique and a partial change in

the functionality.

 A partial change in the implementation technique and a partial change in the

functionality.

Chapter 1: Introduction

18

The second of these new scenarios describes the reengineering of IBHIS towards

MCA using service-based technologies.

1.3.1 Phases

The reengineering process has three main phases. These are: reverse engineering,

transformation and forward engineering (Pfleeger, 2001). The reverse engineering

phase examines the source code and documentation of the original system, in order to

create documentation of the current state of the system e.g. use cases, class diagrams

and flow documents. The transformation phase involves stating how the original

system will need to change in order to reach the target system. The forward

engineering phase involves making changes to the original system to reflect the target

system, based on the transformation phase.

One of the main activities of reverse engineering is re-documenting (Arnold, 1993).

Documentation about the system is constructed from the source code which shows an

accurate picture of the current state of the system. The reason for using system code is

that design documents may be out of date and not representative of the system. Re-

documenting is performed using various tools e.g. static analysers, depending on the

language that the system is written in and the type of documentation that is required

(Pfleeger, 2001).

The main activity of forward engineering is recoding the system (Pfleeger, 2001;

Arnold, 1993). In order to change the system code there are two approaches that can

be used: black box – where no knowledge of the code is needed (e.g. wrapping) and

white box – where the source code is changed. Black box methods are usually seen as

Chapter 1: Introduction

19

an interim solution rather than a permanent one (Anand et al., 2005). Black box

methods can also be difficult to apply in some cases, for example, business logic may

be tied up with presentation logic (Koutsoukos et al., 2006). White box reengineering

is potentially a more permanent solution but does require extra time to understand the

system and make the required changes (Hasselbring, 2004). As with re-documenting,

there are a number of tools that can be used for recoding depending on the languages

used e.g. text editors, integrated development environments (IDE) and program

restructuring systems.

1.3.2 Reengineering methods

Reengineering methods can be grouped into two types, structured methods and formal

methods (Arnold, 1993). Structured methods are those that have a set of steps but do

not have mathematical underpinnings. Formal methods are based on mathematical

underpinnings. Rosenberg, (1996) proposes the following general model for

reengineering (See figure 7):

In figure 7, the model shows each level of abstraction of the system, with the reverse

The reverse engineering direction is on the left, the forward engineering direction on

the right and the transformation steps in the middle. Changes start at the required level

of abstraction and then move downward toward the implementation of the target

Requirements

Implementation

Design

Conceptual

Requirements

Implementation

Design

Conceptual
Re-think

Re-specify

Re-design

Re-code

Reverse Forward

Existing system Target system

Figure 7 Rosenberg general model for software reengineering

Chapter 1: Introduction

20

system (Rosenberg, 1996). This model is an extension to the model proposed by

Arnold (1993), which does not include a conceptual level. This extra level of

abstraction describes the functional characteristic in general terms whereas the

requirements level describes it in detail. Another generic reengineering method is the

Horseshoe method (Bergey et al., 1999) shown in Figure 8:

Figure 8 shows that the Horseshoe method is similar to the Rosenberg model. The

difference being that the Horseshoe method views the system as four levels of

abstraction where as the Rosenberg model only sees as two, but includes requirements

and the conceptual level. Using these generic models the following levels can be

identified:

 Code

 Functional

 Design

 Architectural

 Requirements

 Conceptual

Functional

Source text

Code structure

Architecture

Functional

Source text

Code structure

Architecture
Design patterns

Reverse Forward

Existing source

Target architecture Existing architecture

Target source

Program plans

Code styles

Figure 8 Horseshoe reengineering method

Chapter 1: Introduction

21

Reverse engineering, transformation and forward engineering can happen on all of

these levels. There are reengineering methods that focus on specific levels on the

reengineering process e.g. at an architectural level (Hunold et al. 2008; Lung, 1998.).

There are also methods that look at transforming a system from one paradigm to

another e.g. an existing system to an object-oriented system (Jacobson & Lindstrom,

1991; Berzins et al, 2000) or component based system (Alvaro et al., 2003). There are

also reengineering methods that look at achieving a certain goal such as reusability

(Jarzabe, 1993) and integration (Sneed, 2005; Liem et al., 2006.) or good design

practices (Chu et al., 2000).

1.4 Research methods

Before attempting to reengineer the IBHIS broker for MCA, it was necessary to

investigate the different service-oriented and multi-channel reengineering methods

and architectures that are available, as well as the challenges that are likely to be

encountered. In order to determine this information, the Systematic Literature Review

(SLR) method was used. An SLR enables information to be gathered and synthesised

to make it meaningful. Alongside the SLR, a case study (CS) methodology was used

to investigate the specific research objectives (outlined in section 1.5). A CS was used

due to the exploratory nature of the research questions and the fact that multiple units

of measurement were gathered for the study.

1.5 Research Objectives

The aims of the study were:

Chapter 1: Introduction

22

1. To investigate the potential impact on system performance and agility that

may occur when an underlying business process is exposed as a service to

enable MCA.

2. To investigate if reengineering a system as an SOA improves agility.

3. To create an MCA reengineering method to transform single-channel systems

into multi-channel.

In order to fulfil these aims a set of objectives were needed.

1.5.1 Objective 1

The first objective, which addresses the first aim, was to investigate the challenges of

reengineering a system for MCA. This was investigated in SLR research question

three:

 SLR-RQ3 - What are the issues that need to be addressed when attempting to

reengineer a system as a service?

As a result of the SLR, system performance was identified as an important challenge

for multi-channel systems. This was investigated in case study research question two:

 CS-RQ2 - Does the inclusion of extra layers required for MCA reduce

performance?

A potential trade off with performance and agility was identified when investigating

potential technologies to improve the performance of business processes used for

MCA. This was investigated in case study research question one.

Chapter 1: Introduction

23

 CS-RQ1 – Does the use of native language calls to improve the performance

of a system reengineered for MCA, lead to a reduction in agility?

1.5.2 Objective 2

The second objective is to investigate the claim that an SOA improves the agility of a

system, which is the second aim. This is investigated by case study research question

three:

 CS-RQ3 - Does reengineering a system as an SOA improve agility?

1.5.3 Objective 3

In order to achieve the third aim, the objective was to identify the architectures and

methods to enable the IBHIS broker to be reengineered for MCA. This objective was

addressed by SLR research questions one and two:

 SLR-RQ1 - Have there been any proposed frameworks for reengineering a

system as a service?

 SLR-RQ2 - Are there any service-oriented reengineering methods or

architectures that focus specifically on MCA?

The Multi-channel Access Reengineering Method (McARM) and MCA architecture

(McArc) were proposed based on the results of the SLR. These were investigated in

case study research question four: CS-RQ4 - Is McARM an effective method for

reengineering a system for MCA?

Chapter 1: Introduction

24

1.6 Contributions

The first contribution of this work is the proposal of a method that can be used to

reengineer a software system for access from multiple devices. This method, McARM

was developed as a result of analysing and integrating several aspects of existing

reengineering methods and then applying considerations that are specific to MCA.

The second contribution is a set of multi-channel architectures, which can be used for

creating a multi-channel system. The third contribution is a method for measuring the

agility of a system. Agility was compared through the creation of a quality model,

which was applied using software metrics and system assessment. Agility was also

measured using agility test cases. A method was created for creating the agility test

cases.

For a multi-channel business process, the research found that native language calls

(NLC) should not be used instead of protocol based messaging (PBM) for messaging

between the services and business processes to improve performance. NLC should be

used if minimal performance gains are important and agility is not a strong concern. It

was also found with each additional layer required for MCA there was a decrease in

system performance. It was also found that reengineering a system as an SOA does

improve the agility of a system.

1.7 Thesis outline

This thesis is organised as follows:

 Chapter 2 – This chapter details the planning and results of the SLR carried

out in order to investigate reengineering a system for multi-channel access.

Chapter 1: Introduction

25

 Chapter 3 – This chapter proposes the Multi-channel Access Reengineering

Method (McARM) and an architecture (McArc), for exposing the IBHIS

broker to multiple channels. This chapter also details the performance/agility

trade-off which includes a method for measuring agility.

 Chapter 4 – This chapter details the case study carried out to investigate the

performance/agility trade-off, the impact of the extra layers required for MCA

on performance, the claim that an SOA can improve agility and finally the

McARM method.

 Chapter 5 – This chapter presents the results of the case study.

 Chapter 6 – This chapter discusses the results of the case study

 Chapter 7 – This chapter evaluates the research methodologies used.

 Chapter 8 – This chapter presents the conclusions and suggests future work

and suggests changes to the agility model.

Chapter 2: Systematic Literature Review

26

Chapter 2: Systematic Literature Review

In order to investigate the various methods that could be used to reengineer the IBHIS

broker for MCA, a systematic literature review (SLR) was performed. An SLR is a

structured literature review that aims to gather literature, extract data and synthesise

the data in a systematic way. The benefit of having a clearly defined process means

that the review will be more thorough and less biased than an unstructured literature

review, increasing its scientific value (Kitchenham, 2004). There are three main

phases for an SLR, these are: planning, conducting and reporting. This chapter

reports the planning and conducting phases.

2.1 Planning

A protocol was created for the planning phase, which outlines how the SLR was

conducted (Kitchenham et al., 2007). This section is based on this protocol (Jefferies

et al. 2008) and outlines the following: the background of the study, the review

questions and the review methods.

2.1.1 Background

Many systems are built with one delivery channel in mind (Newcomer & Lomow,

2005). In order to offer their functionality to multiple channels an existing system

could be completely replaced, either by creating a new system or buying a system off-

the-shelf (Koutsoukos et al., 2006). However, this may be expensive and time

Chapter 2: Systematic Literature Review

27

consuming in terms of costs and the potential downtime (Newcomer & Lomow 2005;

Hasselbring 2004; Sneed 2007). Alternatively, it is possible to offer the same

functionality to multiple channels by reengineering the original system (see Figure 9).

Figure 9 Single to Multi-Channel

As covered in chapter one, one way to offer a system to multiple channels – and

therefore enable MCA - is to implement an SOA. Therefore the focus of this review

was to investigate reengineering as an SOA for MCA.

A previous SLR on service-based systems was conducted by Brereton et al. (2006),

which aimed to summarise the evidence concerning service-based systems. Two of

the issues highlighted by Brereton et al., (2006) were ‘migration’ and ‘heterogeneity

of portable access devices’. These were investigated as part of the current study.

2.1.2 Review questions

The four main areas investigated were:

 Service-oriented reengineering

 MCA reengineering methods

 Architectures for achieving MCA

 Issues relating to reengineering a system as a service.

Chapter 2: Systematic Literature Review

28

This information was used to discover a suitable reengineering method and

architecture for reengineering the IBHIS broker for MCA, as well as understanding

any problems that may arise. The research questions for the study were:

 SLR-RQ1 – Are there any proposed frameworks for reengineering a system as

a service?

 SLR-RQ2 - Are there any service-oriented reengineering methods or

architectures that focus specifically on MCA?

 SLR-RQ3 - What are the issues that need to be addressed when attempting to

reengineer a system as a service?

A preliminary search of the literature had determined that few methods existed that

were specific to reengineering for MCA. Therefore the SLR was extended to

investigate service-oriented reengineering methods.

2.1.3 Review methods

The review methods section outlines the following aspects of the SLR:

 The search terms and resources

 Study selection criteria

 Quality assessment

 Data extraction strategy

 How the data will be synthesised

The following sections detail these aspects further.

Chapter 2: Systematic Literature Review

29

2.1.3.1 Search strategy and resources

In order to search electronic sources, such as online journal databases, it is necessary

to construct a search string that is comprised of suitable search terms. In order to

determine the search terms that would be used, a trial search was conducted using the

Google search engine with the following string: ‘white box reengineering for SOA

and multi-channel access’. After reading the papers found, relevant search terms were

listed along with synonyms, abbreviations and alternative spellings (see Table 1).

Term Synonym Abbreviation Alternatives

spellings

Service-oriented

reengineering

service enablement, service oriented re-

design, service oriented migration
- re-engineering

Multi-channel

Access
mobile web services - -

Table 1 Search terms

Combining the synonyms and alternative spellings in Table 1 resulted in the following

search strings:

 String 1: service oriented reengineering OR service oriented re-engineering

OR service enablement OR service oriented re-design OR service oriented

migration

 String 2: multi channel access OR mobile web services

The following sources were used for the SLR:

 IEEExplore

 ACM digital library

 Google search engine

 Keele Library

Chapter 2: Systematic Literature Review

30

The first two sources were chosen as they index well known journals in the computing

field. The Google search engine was used to find more recent papers that may not

have been published in journals. Keele Library was chosen as it contained books with

information relevant to the search.

2.1.3.2 Study selection

Once the searches are conducted the next stage of the review process is to assess the

results from each source to discover which are relevant to this study. To achieve this,

a set of inclusion/exclusion criteria were applied to remove papers that were not

suitable. To be included they had to be full papers including one or more of the

following:

 Methods for service-oriented reengineering

 Reengineering methods and architectures for MCA

 Issues found when reengineering a system as a service and MCA

The criteria for being excluded from the review were any papers that covered:

 Reengineering methods that were theoretical (not tested with a real system)

 Reengineering methods that used a black box approach

Listed below is a summary of the process used to select primary sources:

1. Selection was made according to title, keywords, abstract and perceived

relevance to the problem.

2. The papers found were then filtered further according to the

inclusion/exclusion criteria.

Chapter 2: Systematic Literature Review

31

2.1.3.3 Quality Assessment

In order to maintain the integrity of the SLR the papers should adhere to measures of

quality set out by the reviewer(s). This assessment looks at the methodological

soundness of the experiments reported. For this review, quality assessment was not

carried out as the aim of the literature review was to map out the area rather than

directly compare techniques. Quality was not as critical since no aggregation was

carried out as it was a classification activity.

2.1.3.4 Data Extraction Strategy

The data extraction process involves reading the papers found and documenting

pertinent information using an extraction form. For this SLR, two types of data were

extracted; information about the paper and information that answered one or more of

the research questions. The information gathered about each paper is listed below:

 Date

 Title

 Authors

 Reference

 Database source

 References found

 Author contacted for further information/papers

For the research questions, the following was also extracted from each paper:

1. Proposed methods for service-oriented reengineering of a system.

2. Reengineering methods and architectures for MCA.

Chapter 2: Systematic Literature Review

32

3. Technical issues found when reengineering a system as a service and MCA

The information for the research questions was a summary of that found in the

original paper. The reason for summarising the information was for clarity and to

keep the terminology as consistent as possible. Relevant references found in a paper

were also noted and searched for. If obtained, they were also subject to

inclusion/exclusion and data extraction. Authors were also contacted if it was felt that

further information or papers were required.

2.1.3.5 Data synthesis

Once the data has been gathered the next stage is to analyse and synthesise it in order

to address the research questions of the study. The data was synthesised for each

research question as follows:

 SLR-RQ1 - The service-oriented reengineering methods were listed along

with their steps.

 SLR-RQ2 - The MCA architectures were listed and the MCA reengineering

methods were listed along with their steps.

 SLR-RQ3 - The service-oriented reengineering issues were grouped.

2.2 Results

A total of 92 papers were found, 28 of which were used for data extraction after

inclusion/exclusion criteria had been applied. Each research question will now be

examined separately.

Chapter 2: Systematic Literature Review

33

2.2.1 SLR-RQ1

Sixteen service-oriented reengineering methods were found (see Table 2):

Method Reference

Wrap and service bus Zhang et al. (2006)

Service Oriented Analysis and Design (SOAD) Zimmermann et al. (2004a)

4 stage method Krafzig et al. (2004)

Smooth migration Hasselbring et al. (2004)

XML  legacy gateway Newcomer & Lomow (2005)

XML and Web services Integration Framework (XWIF) Erl (2004)

The Service-Oriented Migration and Reuse Technique (SMART) Lewis et al. (2005)

 Architecture based service-oriented reengineering approach Zhang et al. (2003)

Feature analysis method Chen et al. (2005)

Service-Oriented Reengineering (SOR) Zhang et al. (2006)

 Sensoria reengineering approach Koutsoukos et al. (2006)

Code wrapping for SOA reuse Sneed (2006)

Service-Oriented Software Reengineering (SoSR) Chung et al. (2007)

Incubating legacy systems for service migration Zhang & Yang (2004)

SoftLink Sneed & Sneed (2003)

Migrating to Web services Sneed (2007)

Table 2 Service-Oriented Reengineering methods

2.2.2 SLR-RQ2

The first part of this research question was to discover methods for reengineering a

system for MCA. There were two methods found:

 Reengineering toward a channel agnostic, conversational system

(Zimmermann et al., 2005)

 Multi-Channel Adaptive Information Systems (MAIS) (Comerio et al., 2004).

The second part of the research question was to find architectures for MCA. There

were seven found in total (see Table 3).

Chapter 2: Systematic Literature Review

34

Architecture Reference

Service gateway + service integration bus Ganesh et al. (2004)

Multi Channel adaptive Marchetti et al. (2004)

Fundamental SOA Krafzig et al. (2004)

Service Façade Krafzig et al. (2004)

Process-enabled SOA Krafzig et al. (2004)

Service Bus Newcomer & Lomow (2005)

Reengineering toward a channel

agnostic, conversational system
Zimmermann et al. (2005)

Table 3 Proposed architectures for MCA

Some of the architectures in Table 3 were from the same source. All of these

architectures were for MCA, but some had extra layers for more complex systems.

2.2.3 SLR-RQ3

Four main categories of issue were found:

 Project management

 The existing system

 Architectural

 Web service technologies

Table 4 shows the issues found in each of these categories.

Chapter 2: Systematic Literature Review

35

Category Issue

Project

Management

 Risk

 Staff

Existing system

 Code duplication

 Understanding

 Dependencies

 Validation

 Poor documentation

Architectural

 Granularity

 Relationships between services

 Complexity

 Compensation (transaction rollback)

 Naming conventions

 Non-functional requirements

Web services

 Performance

 State management

 Interoperability

 WSDL

 Security

 Using between layers

 Data translation

 Tool support

 BPEL

 Testing

Table 4 Service-oriented reengineering issues

In Table 4 the project management and the existing system categories are similar to

what would be found in any other reengineering project. The more service-oriented

specific problems were found with the architecture and the technologies used (e.g.

web services). Some of the categories were grouped under a generic title, for example

the category ‘WSDL’ related to any issues regarding the limitations the WSDL

language and documents.

2.3 Discussion

This section examines the findings of the SLR and their implications.

Chapter 2: Systematic Literature Review

36

2.3.1 SLR-RQ1

Sixteen service-oriented reengineering methods were found with differing coverages

of the software lifecycle. Some had almost full coverage of the software lifecycle e.g.

SOR (Zhang et al., 2006), while others focused on specific stages e.g. SMART (Lewis

et al., 2005) which focussed on analysis and design. The ordering of the reengineering

activities also differed between the methods. Ordering can be performed in one of

three ways (Koutsoukos et al., 2006);

1. Top down - starts with the business processes of the target system and works

down to the code of the existing system.

2. Bottom up - starts with the existing system code, creating services from the

code and then composing them as business processes.

3. Meet-in-the-middle - starts at both ends of the system (business processes and

system code) with the aim of using services found in the system code to fulfil

the target business processes.

A bottom-up method can create an architecture that is too fined grained with many

low level functions that may not be required as services, but will include all of the

system functionality. A top-down method may result in business processes that do not

reflect the current system functionality, but will address the business needs. A meet-

in-the-middle method is a compromise between these two as it compares the potential

services in the system code with business processes required.

2.3.2 SLR-RQ2

Two methods for reengineering existing systems for MCA were found. In the

Zimmermann et al. (2005) paper, a meet-in-the-middle MCA reengineering method

Chapter 2: Systematic Literature Review

37

was proposed. The method exposed the system to two channels; a web-browser

channel for small to medium sized companies and a web-services channel for business

integration with larger companies. Although the system was not exposed for

heterogeneous devices it could be argued that the web services channel could be used

outside of the integration context. The second reengineering method found was

created as part of the MAIS project (Comerio et al., 2004). This meet-in-the-middle

reengineering method aimed to adapt existing services so that they can be accessed by

different types of networks and devices.

There were seven different MCA architectures found. Each of these architectures has

different layer types and numbers of layers. These architectures will need to be

examined for any similarities or differences to see if a generic MCA architecture can

be created from them.

2.3.3 SLR-RQ3

The problems found when reengineering a system towards an SOA will be discussed

in the context of reengineering the IBHIS broker for MCA.

The state of the existing system could have an affect on the level of effort required for

the reengineering project e.g. separation of concerns (Koutsoukos et al. 2006). If the

system has layers that are overlapping it will take more effort to create services

required for an SOA. For example, if the business logic is tied up with the

presentation logic, the layers would need to be untangled and service interfaces

created. This was known to be a problem with the IBHIS broker.

Chapter 2: Systematic Literature Review

38

In terms of the architecture, when designing a system that can be accessed by

heterogeneous devices the number of interactions with the system should be

minimised as the devices may be using unreliable networks. Therefore, creating

coarse grained services that promote delegation is important. Another architectural

issue is the non-functional requirements of the system e.g. system performance and

architectural extensibility (Hasselbring, 2004). Performance is an issue when

reengineering a system for MCA (Zimmermann et al. 2004b; Hasselbring et al, 2004;

Krafzig et al, 2004; Zhang et al., 2006; Brown & Reinitz, 2003), as the devices that

are accessing the system are unknown and may have limited system resources.

One of the issues found with using web service technologies such as SOAP and

WSDL was the effect on performance. These technologies use XML messages which

can be verbose due to the additional tags required. The system performance can be

decreased by these large messages especially if there are many messages

(Zimmermann et al., 2004). This issue of the verbose nature of web service

technologies, coupled with the performance concerns of MCA could mean that the

response times are unacceptable for the user. The extensibility of the system is also an

important consideration. The system should be able to accommodate change easily

with minimum effort.

In relation to the previous SLR conducted by Brereton et al. (2006), this review found

that there is now a larger body of evidence that looks at supporting reengineering and

understanding of existing service-based software. In terms of the technical issues

found by the current SLR, there were some similar to the previous SLR. These were

the comprehension/understanding of service-oriented software, quality of service,

Chapter 2: Systematic Literature Review

39

testing and security. The main difference between the issues found in the two reviews

is that when exposing a system for MCA, rather than business reasons, the business

considerations are less likely to apply e.g. contract negotiation.

2.4 Conclusions

For SLR-RQ1 ‘have there been any proposed frameworks for reengineering a system

as a service?’ sixteen reengineering methodologies were found for service-oriented

reengineering. The methods had varying coverage of the software lifecycle and also

different orders in which the stages of the methods are performed. This highlighted

that it would beneficial to perform a comparison of these methods as this has not been

conducted and also none of these methods refer to one another.

For SLR-RQ2 ‘are there any service-oriented reengineering methods or architectures

that focus specifically on MCA’ two reengineering methods and seven architectures

were found. Neither of the reengineering methods is comprehensive in their coverage

of the reengineering lifecycle, which needs to be investigated further. The seven

architectures for MCA found need to be compared and contrasted to see which are

better suited to the original problem of service-enabling the IBHIS broker so that it

can be accessed by heterogeneous devices.

For SLR-RQ3 ‘what are the issues that need to be addressed when attempting to

reengineer a system as a service?’ the problem of verbose messages used by web

services and the potential performance reduction needs to be investigated further.

Chapter 3: Reengineering for Multi-channel access

40

Chapter 3: Reengineering for Multi-channel access

This chapter builds on the findings of the SLR. Firstly, an MCA reengineering

method (McARM) is proposed. This addresses the need for an MCA reengineering

method highlighted by SLR-RQ1 and SLR-RQ2. The second part of the chapter

proposes an MCA architecture for the reengineering of the IBHIS broker, based on a

comparison of the architectures found by SLR-RQ2.

3.1 McARM

After analysing the reengineering methods found by the SLR (see sections 2.3.1 and

2.3.2), it was found that none were fully comprehensive (see Appendix A). There

were two methods specifically for reengineering for multiple channels found, both of

these methods covered most of the reengineering lifecycle, however, neither of the

methods were comprehensive. The MAIS method (Comerio et al., 2004) did not detail

code understanding or the design of web service interfaces. The methodology

proposed Zimmermann et al. (2005) did not detail service identification in the existing

system or recoding the existing system. Also, this method only exposed the system to

two channels; a web-browser channel for small to medium sized companies and a

web-services channel for business integration with larger companies. It did not focus

on creating a system for heterogeneous devices. The majority of the service-oriented

reengineering methods covered around half of the software lifecycle, with the most

comprehensive having two stages that were not detailed. It was also found that these

methods were mainly aimed at commercial software systems where performance was

not an issue.

Chapter 3: Reengineering for Multi-channel access

41

Therefore, it would be difficult to apply any of these reengineering methods when the

entire reengineering lifecycle is required and also, in some cases specialist

tools/knowledge would be required which may not be obtainable or stable enough to

use. Thus, a new method was created by combining the stages of several of the

existing reengineering methods found, using the commonly used approaches to the

stages that were appropriate for reengineering for MCA. To make the method simple

to use, the unified modelling language (UML) was chosen as the analysis and design

notion. The reason for choosing UML is that it has a suitable range of diagrammatical

representations and is also widely used in industry and academia. McARM is created

specifically for reengineering a system for MCA. McARM is different to traditional

reengineering methods as it reengineers towards very coarse granularity and

delegation in order to keep the number of calls over the network as low as possible.

The reengineering methods described in sections 2.3.1 and 2.3.2 do not specifically

have a very coarse grained system as a target. McARM also makes recommendations

specific to MCA during requirements gathering, analysis and design.

The rest of this section outlines the multi-channel access reengineering method

(McARM) in terms of the reengineering stages, the ordering of these stages and how

each stage should be performed.

3.1.1 Stages

The following lists the stages of the McARM method, which were derived from

examining the methods found by SLR-RQ1 and SLR-RQ2 (See Appendix A):

 Requirements gathering/analysis

 Business process modelling

Chapter 3: Reengineering for Multi-channel access

42

 Business process implementation

 Service interface implementation

 System redesign

 System recoding

 Service identification in existing system

 System understanding

Business process implementation and modelling were originally grouped as one task

called business process management. However, these two activities may not happen at

the same time and so were separated. Each of the stages for all of the reengineering

methods found by the SLR were compared and contrasted in order to decide which

stages and approaches to implementing these stages were the most appropriate for

McARM. The use of UML and not requiring specialist tools were important factors in

this decision. In some cases, a stage would combine approaches of more than one

method.

3.1.2 Stage order

McARM is a ‘meet-in-the-middle’ method, which means it will result in a system that

has services that matches the use cases with the functionality that already exists in the

system. The stages in the reengineered method outlined in 3.1.1 need to be reordered

according to the meet-in-the-middle method and are now as follows:

1. Requirements gathering/analysis

2. System understanding

3. Service identification in legacy system

4. Business process modelling

Chapter 3: Reengineering for Multi-channel access

43

5. System redesign

6. System recoding

7. Service interface implementation

8. Business process implementation

This ordering indicates that firstly, the problem domain is understood in stages 1 and

2. Next, the transformation of the system is carried out in stages 3, 4 and 5. The

services and business processes are identified and then the system is redesigned based

on the services. Finally, the implementation stages (6, 7 and 8) are performed. The

system is recoded and the service interfaces are created from the system classes. The

service interfaces are then used by the business processes.

3.1.3 Stage details

The following subsections explain each of the stages for McARM, outlined in section

3.1.3.

3.1.3.1 Requirements gathering/analysis

The choice of a requirements engineering approach depends on the nature of the

project being undertaken. For example, if a project will involve a lot of change, then

an agile method of requirements engineering may be suitable (Beck, 2000). If a

project is less likely to involve change and the system is going to be more complex,

then a more traditional method, such as that proposed by (Sommerville & Sawyer,

1997) may be more appropriate.

Chapter 3: Reengineering for Multi-channel access

44

 However, the limitations of heterogeneous devices must be kept in mind. An example

of a consideration would be the size of any data sets that are used. It is recommended

that if the returned data set of a function is very large, this may not be suitable for

being exposed for a multi-channel system due to the limited processing power of

mobile devices and limited network speed of mobile networks. This limitation is less

likely in a service-oriented reengineering method that does not focus on MCA.

3.1.3.2 System understanding

There are two sources that can be used to help in understanding the existing system.

These are the design documentation and the existing code. Examples of design

documentation are class diagrams and architectural diagrams. The outputs from

examining the design documentation are:

 Architecture - an overview of the system.

 Component table – information concerning the main components of the

system such as: function name, size, level of documentation etc. (Lewis et al.,

2005).

Using the existing code, a model of the system can be created. The outputs suggested

by Zhang & Yang, (2004) are:

 Component class diagrams – with their respective public interfaces (Erl,

2004).

 Sequence diagrams – derived from Graphical User Interfaces (GUIs).

Table 5 is a summary of the inputs and outputs for the system understanding.

Chapter 3: Reengineering for Multi-channel access

45

Inputs Outputs

 Design documentation

 Information from technical

personnel

 Source code

 GUIs

 Architectural diagram

 Class diagram

 Component table

 Sequence diagram

Table 5 Inputs and outputs for system understanding

3.1.3.3 Service identification in legacy system

The objective is to identify the services that are needed for the system, based on the

required business functions (Hasselbring et al., 2004). There are two sources that can

be used to identify services in the legacy system. These are stakeholders and

documentation. Examples of stakeholders that can be used to identify the services in

the system are users, corporate architects and domain groups. The outcome of this

analysis is a service table which identifies services from components and those by the

organisation and information regarding those services. For the documentation,

Comerio et al (2004), suggest either verifying the current service model if one exists

or defining a new service model from the current system based on documentation,

interface descriptions and specifications. Reference models can also be used for

identifying services required for use in a wider context (Lewis et al., 2005). The

deliverable documents are use cases, class diagrams and sequence diagrams.

Once the candidate services have been identified, the services should then be

evaluated. An important consideration is the granularity of the services. The system

needs to be a coarse-grained as possible. The reason for this is that an MCA system

should have as fewer interactions between the client and the system as possible. The

reason for this is due to the fact the unreliable mobile networks are potentially being

used. Reducing the number of service interactions means that the number of points of

Chapter 3: Reengineering for Multi-channel access

46

failure will also be reduced. Where possible, services should be combined into one

service which can then delegate. This consideration is less likely in a service-oriented

reengineering method that does not focus on MCA.

Examples of questions that should be asked in order to evaluate the services are:

 Which services are the better match for the goals and expectations of the

migration effort?

 What are the services with greater potential for use by service consumers?

 What are services with a better match to existing capabilities?

 What are the interfaces for these services in terms of inputs and outputs?

 For each service, what are the specific legacy components that contain the

functionality required by the services?

 What new code will have to be written to fully satisfy service requirements?

These are a subset of those suggested by Lewis et al. (2008). Table 6 provides a

summary of the inputs and outputs for this stage.

Inputs Outputs

 Design documentation

 Information from technical

personnel

 Reference models

 Interface descriptions

 Specifications

 Service table

 Use cases

 Class diagrams

 Sequence diagrams

 Evaluation table

Table 6 Inputs and outputs for service identification

3.1.3.4 Business Process Modelling

When creating business processes, the requirements and the services identified are

used as the inputs. The inputs and outputs of each service identified should be used as

Chapter 3: Reengineering for Multi-channel access

47

a guide for the flow of the system. The business processes are represented using UML

activity diagrams (Chung et al., 2007; Comerio et al., 2004). The activity diagrams

should show:

 Inputs and outputs for the business processes

 Services that will be used by the business processes

 Data flow

 Service calls

The requirements document should be used to check that the business process satisfies

all of the functionality required. Table 7 is a summary of the inputs and outputs for

this stage.

Inputs Outputs

 Requirements

 Documents from Service

Identification

 Activity diagram

Table 7 Inputs and outputs for business process modelling

3.1.3.5 System redesign

The system redesign stage aims to show the change of the system from its original

state to a new state. This is based on the original system and the services identified for

the new system. The redesign of the code and the service interfaces can be performed

separately, but if redesigned at the same time it should ensure that the code and

service interfaces are created in close alignment with each other. Therefore the

McARM method recommends that the redesign of the code and service interfaces is

done at the same time.

Chapter 3: Reengineering for Multi-channel access

48

Classes – for redesigning the classes the stages from the XWIF method (Erl, 2004)

were chosen. The reason XWIF was used is because it defines a comprehensive,

manual, object-oriented design approach that requires no specialist tools. After

determining the classes that will be required for the system, the following XWIF steps

should be followed (Erl, 2004):

1. Create granular, task-oriented service classes by removing any methods that

may need to have their own class

2. Group methods into finer grained classes

3. Identify service candidates from classes (check for reuse)

4. Review non-services classes (can they be put together or left granular?)

5. Identify cross consolidation opportunities (methods with compatible

requirements may be put in generic classes)

Service interface modelling - XWIF can also be used to model the service interfaces.

Based on the services identified, use cases and the activity diagrams the interfaces are

modelled by using the following the steps:

1. Choose service model

2. Establish scope of business function

3. Identify requestors (other potential uses)

4. Identify data (resources should be separated from parameter data)

5. Explore application paths (is it optimal solution?)

6. Encapsulation boundary (what parts of application will service interact with?)

7. Model the interface

8. Map interaction scenarios (to understand dynamic binding situations)

9. Design message payload (model XML documents)

Chapter 3: Reengineering for Multi-channel access

49

10. Refine service model using best practice strategies (Erl, 2004)

It may not be necessary to perform all the stages outlined but these are a useful guide

of tasks that should be performed.

The two main ways in which an MCA reengineering effort differs from a service-

oriented reengineering effort are the granularity of the services and heterogeneity of

clients. Therefore, when modelling the service interfaces, these must be considered at

each step. Table 8 is a summary of the inputs and outputs for system redesign.

Inputs Outputs

 Class diagrams

 Service table

 Activity diagrams

 Documents from Service

Identification

 Class diagrams

 Service option table

 Service interface descriptions

Table 8 Inputs and outputs for system redesign

3.1.3.6 System recoding

The SLR did not find any generic methods for recoding. This is due to the many

different programming languages and the fact that every project is different. However,

the SLR did highlight useful advice related to recoding, for example Krafzig et al.

(2004) recommended decoupling visual code from non visual code if required.

3.1.3.7 Service interface implementation

This stage looks at how the service interfaces are implemented. This is usually done

by wrapping the legacy business logic with a service description document

(Hasselbring et al., 2004; Krafzig et al., 2004; Chen et al., 2005; Zhang & Yang,

Chapter 3: Reengineering for Multi-channel access

50

2004; Sneed, 2007). The service description documents can normally be created

automatically by the development environment. Table 9 is a summary of the inputs

and outputs of the service interface creation stage.

Inputs Outputs

 Service interface

descriptions

 Service interfaces

Table 9 Inputs and outputs for service interface creation

3.1.3.8 Business process implementation

The business processes should be based on the activity diagrams from the modelling

stage. The business processes are created using an integrated development

environment (IDE). Table 10 is a summary of the inputs and outputs of the business

process creation stage.

Inputs Outputs

 Business process activity

diagrams

 Business processes

Table 10 Inputs and outputs for business process implementation

3.2 MCA Architecture

In order to determine the most appropriate architecture for the problem of

reengineering the IBHIS broker, the architectures that were found by the SLR were

evaluated against the following aspects:

 The number of layers in the architecture – if this is high there could be a

negative affect on performance.

 The suitability of the architecture to the problem – does the architecture

reflect the study goals?

Chapter 3: Reengineering for Multi-channel access

51

 The types of layers in the architecture – do the layers in the architecture

reflect those required for reengineering the IBHIS broker?

3.2.1 Summary of architectures

The architectures identified by the SLR and the number of layers for each is shown in

Table 11.

Number Source Name Layers

1
Zimmermann

et al. (2005)

Channel agnostic

architectural pattern
6

2
Ganesh

et al. (2004)

Service gateway +

Service Integration Bus
4

3 Krafzig et al. (2004) Fundamental SOA 2

4 Krafzig et al. (2004) Service Façade 3

5 Krafzig et al. (2004) Process-enabled SOA 4

6
Newcomer &

Lomow (2005)
Service Bus 6

Table 11 Architecture summary table

Table 11 shows that the number of layers used is between two and six. The

fundamental SOA (Krafzig et al., 2004) has the least number of layers but further

analysis is required to find out which layers are suitable to enable successful

reengineering of the IBHIS broker (Section 3.2.2).

3.2.2 Suitability of architectures

The suitability of the architectures was assessed using a weighted comparison table,

proposed by Shaw and Garlan (Pfleeger, 2001). This table allows the architectural

features to be assessed according to a set of desired criteria, which are weighted by

importance and finally, a rating is multiplied by this weighting. When choosing the

comparison criteria for the weighted comparison table, quality factors should be used

Chapter 3: Reengineering for Multi-channel access

52

(Bianco et al. 2007). Based on the objectives of the research, the quality factors for

this study were:

 Portability – the system should be accessible by as many devices (current and

future) as possible.

 Performance – the system may be accessed by devices with limited resources,

which means that performance is a central issue. The fewer layers that the

architecture has, the less impact there will be on the system performance

(Hasselbring et al. 2004, Krafzig et al 2004).

 Agility – the architecture should be flexible so that it can be changed as

needed.

 Correctness (depth of architecture) – although the architecture must have as

few layers as possible it is also important not to have too few layers. For

example, it may be undesirable to make low level functions available for

access by external requesters or the system may be too fine grained, making

the system difficult to understand for requesters.

 Correctness (suitability of layer types) – Do the layer types in the architecture

represent those needed by the system?

The priority of each architectural property was rated between one and five (one being

low) based on their relevance to the study. The architectures were assessed using the

information available in the literature found by the SLR, the results were then entered

into the weighted comparison table (see Table 12).

Chapter 3: Reengineering for Multi-channel access

53

Architectural

 Properties
Priority

Architecture

1

Zimmermann

et al. (2005)

2

Ganesh

et al.

(2004)

3

Krafzig

et al.

(2004)

4

Krafzig

et al.

(2004)

5

Krafzig

et al.

(2004)

6

Newcomer

&

Lomow

(2005)

Portability 5 4 (20) 5 (25) 5 (25) 5 (25) 5 (25) 5 (25)

Performance 4 2 (8) 3 (12) 5 (20) 4 (16) 3 (12) 2 (8)

Agility 4 4 (16) 3 (12) 4 (16) 4 (16) 4 (16) 4 (16)

Depth 3 5 (15) 5 (15) 1 (3) 2 (6) 4 (12) 5 (15)

Suitability 3 4 (12) 3 (9) 1 (3) 2 (6) 3 (9) 4 (12)

Total 71 73 67 69 74 76

Table 12 Weighted comparison table for multi-channel architecture

The architecture with the highest total in Table 12 represents the architecture that

most meets the required criteria. Therefore, architecture 6 (Newcomer & Lomow,

2005) is rated the most suitable for this study. However, it is shown in Table 11 that

this architecture has the most number of layers and may cause performance problems.

3.2.3 Architectural layer types

The potential layer types of the proposed MCA architectures are shown in Figure 8.

This can be used to analyse the existing architectures in order to create an architecture

based on the needs of the target system, in this case the IBHIS broker.

Chapter 3: Reengineering for Multi-channel access

54

 L

a
y
e
r
s

Device Enterprise Enterprise Enterprise
Client/

presentation

Channel

controller

Service

gateway

Process-

centric
Channel access

 Integration -
Communication

infrastructure

Business

process
Integration

Process-

centric

Business service

access

Process

activity

Intermediary Intermediary

Business

services

Business

services
Basic Basic Basic

Business

service

Application

services

Business

services
Basic Basic Basic

Core systems
Business

data

Arc

1
Zimmermann

et al (2005)

2
Ganesh

et al (2004)

3

Krafzig et

al (2004)

4

Krafzig et al.

(2004)

5

Krafzig et al.

(2004)

6

Newcomer &

Lomow (2005)

Figure 10 MCA Architecture layer comparison

Figure 10 shows nine possible layers in a multi-channel architecture. Although some

of the layer names on the same level are different, the description of each of the layers

is the same. The most appropriate architecture from the weighted comparison table

was architecture 6, but this has layers that were not needed for the current project so a

simplified architecture, based on analysis of all of the architectures is proposed in

section 3.2.4.

3.2.4 Proposed architecture

A simplified architectural layering was proposed for the multi-channel architecture

(McArc), used for reengineering the IBHIS broker (see Figure 11).

Chapter 3: Reengineering for Multi-channel access

55

Channel

Business process

Service

Figure 11 Architectural layering for reengineered IBHIS broker

The layers included in this architecture are as follows:

 Service: These are individual services that represent the services in the existing

system.

 Business process: This layer represents the business processes that exist in the

system.

 Channel: This is the layer that accesses the system e.g. program or web page on

mobile or desktop.

Figure 12 compares McArc with those found by the SLR.

L

a

y

e

r

s

9 Device Enterprise Enterprise Enterprise
Client/

presentation
Channel

8
Channel

controller

Service

gateway

Process

centric

Channel

Access

7 Integration -
Communication

infrastructure

6
Business

process
Integration

Process

centric

Business

 service access Business

Process
5

Process

activity

4

Intermediary Intermediary

3
Business

services

Business

services
Basic Basic Basic

Business

Service

Service 2
Application

services

Business

services
Basic Basic Basic

1 Core systems
Business

Data

Arc

Zimmermann

et al. (2005)

Ganesh

et al.

(2004)

Krafzig et

al. (2004)

Krafzig et

al. (2004)

Krafzig et al.

(2004)

Krafzig et al.

(2004)

McArc

Figure 12 Comparison of proposed MCA architecture with existing architectures

Chapter 3: Reengineering for Multi-channel access

56

Figure 12 shows that McArc has one more layer than the architecture with the fewest

layers – the Fundamental SOA (Krafzig et al., 2004), which meant that the

architecture did not have a large number of layers. The service layer encompasses the

bottom three layers, containing the core systems, the application services (utility

services) and the business services. Layer one would be required however if the

relevant code could not be extracted from the system. Layer four is a service facade

and for unifying many services but as the authors themselves (Krafzig et al., 2004)

state, this has limited use for a multi-channel application and is not required for

McArc. The business process layer encompasses layers five and six and potentially

seven. Layer eight is a channel access layer which is responsible for routing the

request based on the channel type. This layer was not required for McArc as it was the

data that was being exposed only. The channel layer is the client that accesses the

system. With these layers, McArc should enable the IBHIS system to be accessed

from multiple channels and improve the agility of the system without having a high

impact on the performance.

Chapter 4: The performance/agility trade-off

57

Chapter 4: The performance/agility trade-off

This chapter looks at the performance challenge when reengineering a system for

MCA, identified by the analysis of the results of SLR-RQ3. A potential way of

improving the performance of systems reengineered for MCA is identified, which

uses native language calls (NLC) instead of the protocol based messaging (PBM) for

calling web services from business processes. However, unlike PBM, NLC are not

usually designed with interoperability in mind and therefore could have an affect on

agility. This leads to the primary research question for this study: does using NLC to

improve the performance of a software system reengineered for multi-channel access,

lead to a reduction in agility?

4.1 Performance

After conducting the SLR it was found that a problem that required further

investigation was the performance of a system reengineered for MCA, with regard to

the verbose nature of web services messages and the limited communication

bandwidth of mobile devices (Zimmermann et al. 2004, Zhang et al. 2006, Brown &

Reinitz 2003). As multi-channel systems can potentially be called from mobile

devices which have low processing power, through limited networks, performance is

important in multi-channel systems. However, the extra layers required for an SOA

can have a negative effect on performance (Hasselbring et al. 2004, Krafzig et al.

2004). In terms of usability an acceptable response time of a desktop application is ten

seconds, after this a user’s attention will shift to other tasks (Neilson, 1993). In a

mobile context the acceptable time is reduced to between 4-8 seconds depending on

Chapter 4: The performance/agility trade-off

58

the task being performed and the location of the task being performed (Roto &

Oulasvirta, 2005). However, users may be willing to accept slower response times for

the convenience of having the data on their mobile devices. The rest of this section

looks at the performance problems that arise from using web service technologies,

such as web services and BPEL, and ways to address these challenges.

4.1.1 Web services

The main areas that web services can cause performance reduction as identified by the

SLR-RQ3 are:

 Additional layers - Adding the SOA layers required for MCA can reduce

performance e.g. the web services and business processes (Hasselbring et al.

2004, Krafzig et al 2004). Each additional layer can be expected to have an

impact on the response times due to the extra messages required to implement

the layer.

 Data conversion - This is the process of converting XML data contained within

the SOAP message to the native language and vice versa, using serialisation/de-

serialisation. This usually requires the addition of XML tags onto the data and

insertion into an XML document structure. Sneed (2007) reported that such data

conversion reduces response times and also consumes system resources.

 Message verbosity of SOAP - Using web services can reduce performance as the

SOAP protocol used for messaging is verbose (Zimmermann et al. 2004, Park et

al. 2006).

 Inappropriate use – Web services are not appropriate for all situations, such as

systems that are tightly coupled and not subjected to frequent change. (Brown &

Reinitz, 2003).

Chapter 4: The performance/agility trade-off

59

4.1.2 Improving web service performance

The following list shows the areas in which web services can affect performance

(Machado & Ferraz, 2005):

1. Message size

2. Calculation of the message size

3. XML parsing

4. Serialisation and de-serialisation

5. Connection establishment (HTTP 1.0 requires three way handshake algorithm)

6. Network level

Previous research has attempted to address some of these areas in a resource restricted

context. Compression and binary XML representation have been used to address the

problem of large web service message size (Kohlhoff and Steele 2003, Tian et al.

2003, Sandoz et al. 2003). In order to address XML parsing, one approach is to use a

wireless portal architecture (Adacal & Bener, 2006). In this solution, XML processing

(SOAP) is performed by a gateway that then returns the data in a form that can be

handled by a mobile device. Another method to reduce serializing and parsing on the

mobile device is to separate message content from the syntax and then stream the

messages (Oh & Fox, 2007). The issue of performance at the network level was

investigated by using alternative transport protocols such as UDP instead of HTTP for

mobile data transfer (Lai et al., 2005).

4.1.3 Improving business process performance

A problem with using BPEL business processes as well as web services is the further

reduction of performance caused by the introduction of another layer which is based

Chapter 4: The performance/agility trade-off

60

on XML. BPEL uses SOAP messages to call the services it consumes as well as for

communicating with clients. A system that has many of these XML messages as the

communication mechanism could suffer in terms of performance as outlined in the

previous section. A BPEL process can be accessed by a mobile device in the same

way as a web service, it is therefore important to examine the ways in which system

performance can be improved. There are four areas that can be addressed to

potentially improve the performance of business processes: hardware, middleware,

business process logic and the service bindings used.

Hardware - a business process can be improved by simply changing the hardware. A

server machine or network that is too slow will create a performance bottle neck

which could be improved with machine/network upgrades.

Middleware - Another way to improve the performance of a business process would

be to improve the business process server. There are many business process servers

available such as Oracle BPEL Process Manager, ActiveBPEL and JBoss. These

servers could be tested to see which is best in terms of performance. If accessing a

business process via a mobile device an alternative would be to install a BPEL server

on the device itself. In the Sliver project (Hackmann et al., 2006) this was made

possible by creating a lightweight BPEL server for mobile devices. In terms of the

performance, the BPEL server on the mobile device took, on average, twice as long as

the desktop server (Hackmann et al., 2006). Despite this performance decrease, the

performance was at an acceptable level (Hackmann et al., 2006). The limitation of this

technology, however, is that the BPEL server can only be installed on devices that

support the language in which it is implemented.

Chapter 4: The performance/agility trade-off

61

Bindings - Alternative bindings to SOAP for the services can be used to improve

performance e.g. REST. REST (Pautasso et al. 2008) uses a HTTP Universal

Resource Identifier (URI) to point to a specific resource which also allows put, get,

post and delete operations from the HTTP protocol to perform create, read,

update and delete (CRUD) operations. REST does not require any of the additional

XML mark-up associated with the SOAP protocol in the messages or any processing

on the server side which means it is an option when performance is an important

factor. However, REST does not support the advanced messaging protocols that

SOAP does (reliable messaging, message level security etc.) which may be needed in

an enterprise integration scenario (Pautasso et al., 2008). Another type of service

binding is the web service invocation framework (WSIF) (see section 4.1.4).

Business process logic – It is also possible to improve performance by examining the

business processes themselves. This can mean either improving the efficiency of the

code or the logic within the code (Chen et al. 2008).

4.1.4 Using WSIF to improve business processes performance

WSIF is a toolkit that provides a simple API to invoke native resources (e.g.

Enterprise Java Bean or Java class) using a WSDL based description. It is possible to

implement a binding to any language by creating a binding for the BPEL server. The

two main requirements are that the service is described by the WSDL document and

that the binding is plugged into the framework (Duftler et al, 2001). WSIF is

implemented in the binding part of the WSDL document and uses the abstract

description to perform NLCs rather than a particular protocol (PBM) such as target

Chapter 4: The performance/agility trade-off

62

URIs and encoding styles in SOAP (Mukhi, 2001). Figures 13 and 14 show the

difference between a WSIF binding and a SOAP binding in the WSDL document.

<binding name="JavaBinding" type="tns:AddressBookPT">

 <java:binding/>

 <format:typeMapping encoding="Java" style="Java">

 <format:typeMap typeName="typens:address"

formatType="wsif.types.WSIFAddress"/>

 <format:typeMap typeName="xsd:string"

formatType="java.lang.String"/>

 </format:typeMapping>

 <operation name="addEntry">

 <java:operation

 methodName="addEntry"

 parameterOrder="firstName lastName address"

 methodType="instance"/>

 <input name="AddEntryFirstAndLastNamesRequest"/>

 </operation>

 <input name="GetAddressFromNameRequest"/>

 <output name="GetAddressFromNameResponse"/>

 </operation>

 </binding>

Figure 13 WSIF binding declarations (IBM Websphere 5.1.1 documentation)

Figure 13, taken from the IBM Websphere 5.1.1 documentation, shows the binding

declarations in a WSDL document for an address book service. The typeMap

elements state how the XML data types map to the Java data types which can either

be a class or a native data type. The operation AddEntry maps to a method of the

same name. The parameter order defines the data that is passed to the method calls. In

this case firstName and lastName which are both strings and address which

is an object of the WSIFAddress class. Figure 14 shows the equivalent binding

declarations for SOAP.

Chapter 4: The performance/agility trade-off

63

<message name="AddEntryFirstAndLastNamesRequestMessage">

 <part name="firstName" type="xsd:string"/>

 <part name="lastName" type="xsd:string"/>

 <part name="address" type="typens:address"/>

 </message>

<binding name="SOAPHttpBinding" type="tns:AddressBookPT">

 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="addEntry">

 <soap:operation soapAction=""/>

 <input name="AddEntryFirstAndLastNamesRequest">

 <soap:body use="encoded"

namespace="http://www.sample.com/namespace/wsif/"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 </binding>

Figure 14 SOAP binding declarations (IBM Websphere 5.1.1 documentation)

The first five lines in Figure 14 show the details of the messages used for the SOAP

binding (the complex type address is not shown). These types and complex types are

used rather than the Java objects and native data types in WSIF.

WSIF has been found to be a more efficient binding than using PBM such as SOAP

with regard to overall performance (Blanvalet et al. 2006, Mukhi and Slominski,

2001). The reason that WSIF is thought to improve performance over SOAP

messaging is that it uses NLC instead of PBM (Mukhi, 2001), allowing the business

process to call the underlying code directly, rather than having to interact through web

services (Figure 15).

Chapter 4: The performance/agility trade-off

64

Figure 15 WSIF and SOAP bindings

Figure 15 shows how a web service binding has an extra layer of processing whereas

a WSIF call is in the native language e.g. Java. This means that no serialisation or de-

serialisation is needed for the services used by a business process. Also, the data is not

surrounded with XML tags, meaning that the message size will be smaller (Mukhi,

2001). The performance saving was shown in work by Migliardi & Podesta, (2004)

where WSIF was used in a grid application scenario and it was found that a Java

binding in WSIF was promising for improving performance. They found that although

WSIF was leaner than SOAP in terms of message size, the required parsing of the

WSDL files at run-time meant that this saving was reduced (Migliardi & Podesta,

2004).

Although the use of WSIF in a system reengineered for MCA is likely to have a

positive impact on performance it may negatively impact upon the agility of the

system (see Figure 16).

Business process

engine

Web

service

Interface

Java

class

WSIF

(Java call)

Java

call

SOAP

Chapter 4: The performance/agility trade-off

65

Figure 16 SOAP and WSIF dependencies

If the calling business process technology does not support WSIF the classes would

not be callable, reducing the agility of the system. However, if a PBM binding is used

such as SOAP, integration with business processes on other servers is possible as they

communicate by using a shared protocol. The dependent nature of NLC may mean

that invocations of the service will not work if the calling technology does not support

the particular NLC technology being used (i.e. WSIF). This leads to the research

question: CS-RQ1 - Does using native language calls to improve the performance of

a software system, reengineered for multi-channel access, lead to a reduction in

agility? For this study, WSIF is used to implement NLCs and SOAP is used to

implement PBM.

4.2 Agility

In order to determine if WSIF does have an affect on the agility of the system there

needs to be a definition of what is meant by the term agility, so that a suitable measure

can be derived. External factors can affect agility, such as consumer demand, are

factors that the organisation has little control over – these are the drivers of change

(Artet & Giachetti, 2004). Internal factors are the things that an organisation does

have control over and are likely to be part of the enterprise (including information

systems, manufacturing and employees), these are the facilitators for change (Artet &

Business process

Dependency

(unable to call)

Platform

Independent

Web service Java code with

WSIF

Chapter 4: The performance/agility trade-off

66

Giachetti, 2004). An internal factor allows an organisation to respond to an external

factor.

For this investigation, the external factors will not be considered and the focus will be

on the internal factors. In manufacturing, the ‘quick movement (change) of the whole

enterprise in a certain direction’ is known as enterprise agility (Tsourveloudis et al.,

1999). One of the enablers of enterprise agility is the information systems.

4.2.1 Information systems agility

There are two forms of information systems agility (Krafzig et al., 2004), these are:

the ability to react to changing business requirements and the ability to create new

business processes. Changing business requirements could mean either business

process extension or process refinement. An example of business process extension is

when a service is added that performs pre or post processing on data. This would be

simply plugging a new or existing service into the business process. An example of

business process refinement would be to change an individual service for economic

reasons. There may be a service in the business process that is provided by an external

source and an alternative service is found that performs the same functionality but is

less expensive or quicker. If the new service provides an interface that is similar to the

previous service used, little change in the business process would be required. Even if

the interfaces were not similar, the fact that a standards based technology (web

services) is being used should mean that the process can be reconfigured to use the

new service relatively simply. Another form of business process refinement is to

streamline it to improve efficiency e.g. performance or stability. An example of this

Chapter 4: The performance/agility trade-off

67

maybe a service in the business process that performs some data validation is no

longer required and therefore removed.

The other form of information systems agility is the capacity to create new

applications/business processes from a set of reusable services. In this case the

enterprise is said to have a ‘good’ level of agility if it can fulfill a set of business

requirements by rapidly creating a system from a set of existing services (Krafzig et

al., 2004). This means that the organization must have a reasonable number of

services readily available in order to rapidly deploy a new system. These services can

range from simple utility services such as currency conversion to business processes

e.g. creating a new customer process. For the rest of the thesis information systems

agility will be referred to as ‘agility’.

4.2.2 SOA and agility

An SOA has properties and technologies that aim to facilitate a high level of agility

(Newcomer & Lomow, 2005). The following is a list of design principles for an SOA

and how these principles can improve the agility of a system (Erl, 2007):

 Standardized service contract – data and functionality are described

consistently, making them easier to use.

 Service loose coupling – service consumers are able to change the services that

they are using with minimal disruption.

 Service abstraction – implementation hiding means that service

implementation can be changed easily without affecting service consumers.

 Service reusability – existing services can be leveraged, reducing the time and

effort to change and create new business processes.

Chapter 4: The performance/agility trade-off

68

 Service autonomy (modularity) – greater reliability and predictability created

by the autonomous nature of services supports changing business

requirements.

 Service statelessness – scalability is improved as no data needs to be stored

making services more efficient for re-use opportunities.

 Service discoverability – services can be located easily for re-use.

 Service composition – services that can be used easily within business

processes means that integration is simpler.

Another reason that an SOA facilitates a high level of agility is that services and

business processes are designed and created in alignment with business requirements.

This means that instead of having disparate software systems within an organization,

a well built SOA is designed so that it reflects the organisation in terms of the services

that are provided and consumed. This makes a system easier to understand and

promotes re-use. The primary web service technology that enables the re-use of

services in this way is the WSDL document. Using standardized service description

documents facilitates business integration as they allow parts of the system to

communicate without having to create custom messaging solutions. Because the

language is based on standards it makes it interoperable with other systems regardless

of the language in which it is written.

Service coupling is an important concept that relates to agility. Service coupling refers

to the extent that the modules of a system are dependent on another and that a change

in the implementation will have little or no impact on the other (Erl, 2007). In an SOA

there are two types of service coupling.

Chapter 4: The performance/agility trade-off

69

The first is between the service description and the technical aspects of the service

itself (service logic, implementation, technology used etc.). Ideally, the service

description should be independent of the technical aspects of the service. If the service

is designed from the service description, in theory it should be possible to completely

replace the implementation of the service without disruption to calling services. If the

implementation of the service is tied to the description, then this will not be possible

and the coupling of the service is said to be tighter. This can be caused by creating the

service descriptions from the solution logic.

The other type of service coupling is between the service consumer and the service

(Erl, 2007). For example, a consumer does not want their system to be over reliant on

the particular service they are using. The main reason for this is that the service may

fail. If this happens, the consumer should be able to replace the particular service with

another.

4.2.3 Agility characteristics

This section looks at defining the system characteristics that constitute agility in

software by comparing two definitions found in the current literature (Krafzig et al.,

2004; Allen, 2006). This definition will then form the basis of a quality model, which

can be measured using system metrics.

According to Krafzig et al. (2004), to improve agility a system must be:

 Granular – the appropriate number of services. It is recommended that the

system should be as coarse-grained as possible (a few simple business

Chapter 4: The performance/agility trade-off

70

functions). However, having fine granularity means that more configurations

of the system are possible.

 Simple (complexity) – an architecture that is simple to follow for people who

will be working on/with the system. This could be internal (integration) or

external service users.

 Flexible and maintainable – having distinct components that can be

rearranged and reconfigured with relative ease and are easy to add/modify.

 Reusable – re-use software assets as much as possible by creating an inventory

of useful building blocks. Functionality and data should be shared across

projects/departments. However, this can be difficult as it involves many

departments, shared ownership etc. and requires effective governance (Erl,

2007).

 Functionally and technologically decoupled (interoperability) – architecture

must tolerate heterogeneity and change to its technical infrastructure. Business

functionality must be decoupled from underlying technology.

 Comprehensibility of SOA – good documentation facilitated by Service Level

Agreements (SLA), which must be simple so that anyone that wishes to use

the SOA will be able to understand how it works.

Allen (2006) proposes the following quality factors for a measure of agility:

 Reusability – the number of different invocations for components.

 Replaceability – the ease of replacing an implementation with another (using

the same interfaces).

 Interoperability – the ease of software interacting with other software.

 Flexibility – the ability of service to perform outside given context.

Chapter 4: The performance/agility trade-off

71

 Adaptability – extensibility to meet new requirements and portability across

implementation environments.

Allen’s factors are similar to the recommendations by Krafzig et al. Table 13

compares the factors proposed by Allen against the recommendations by Krafzig et al.

Krafzig et al (2004) Allen (2006)

Granularity -

Complexity -

Flexibility Adaptability

Maintainability -

Reusability Reusability, Flexibility

Interoperability Interoperability, Replaceability

Comprehensibility -

Table 13 Agility characteristic comparison

The main difference is that the notions of service granularity, complexity,

maintainability and comprehensibility are not included in Allen’s list. An interesting

point is that Allen states that the factors should be measured in terms of cost and time.

Krafzig et al.’s characteristics were chosen as they included all of Allen’s

characteristics. The agility characteristics not included in the quality model, and their

reason for exclusion, are:

 Maintainability – this was excluded as the focus of this study was on extracting

class level code rather than making significant changes.

 Complexity – this is regarded as a lower level attribute in the proposed quality

model for this study.

 Comprehensibility of SOA - There are no Service Level Agreements in the

IBHIS broker.

Chapter 4: The performance/agility trade-off

72

The final list of agility characteristics that will be used for this work is:

 Granularity

 Flexibility

 Reusability

 Interoperability

These characteristics will be used as a basis for an agility quality model. This will be

detailed further in section 3.3.5.4.

4.2.4 Agility quality model

In order to measure the agility of a system an agility quality model was created. There

are a number of existing quality models such as McCall’s quality model (McCall et al.

1997), Boehm’s quality model (Boehm et al. 1978), ISO 9126 (International

Organization for Standardization, 1991), Goal Question Metric (GQM) (Basilli et al.,

1996) and Dromey’s model (Dromey, R. G., 1995). However, these models tend to

describe all of the desirable properties in software over and above agility, so a subset

was required to measure agility only. McCall’s model was used as it most matches the

characteristics determined for agility. In McCall’s quality model, the aspect of quality

that is being assessed is known as an external quality factor. This is the software

quality attribute from an external viewpoint, as seen by the users. There are a number

of external quality factors in McCall’s model e.g. reliability (see Figure 17).

Chapter 4: The performance/agility trade-off

73

Figure 17 Reliability in McCall's quality model

Figure 17 shows the external quality factor (reliability) and the product quality

criteria it is composed of (consistency, accuracy and fault tolerance). The product

quality criteria are the software quality attributes from an internal viewpoint, as seen

by the developer. In a quality model, a product quality criterion can also belong to

more than one external quality factor. Table 14 shows the external quality factors for

agility which are the characteristics identified in section 3.3.5.3. It also shows the

corresponding product quality criteria from McCall’s model for each of the external

quality factors.

External quality factor Product quality criteria

Granularity -

Flexibility

 Complexity

 Expandability

 Generality

 Modularity

Reusability

 Complexity

 Generality

 Modularity

 Software-system independence

Interoperability
 Modularity

 Communication commonality

Table 14 Agility quality factors

Listed below are the definitions for product quality criteria from Table 14 (McCall et

al. 1997).

Reliability

Fault tolerance

Accuracy

Consistency

Chapter 4: The performance/agility trade-off

74

 Granularity – the level of abstraction of the service interfaces that represent

the system.

 Complexity - the complexity of the system.

 Expandability - the degree to which architectural, data or procedural design

can be extended.

 Generality - the breadth of potential applications of program components.

 Modularity - the functional independence of program components.

 Software system independence - the degree to which the program is

independent of non-standard programming language features, operating

system characteristics and other environmental constraints.

 Communication commonality - the degree to which standard interfaces,

protocols and bandwidth are used.

Two product quality criteria were not used in the agility quality model for this thesis.

There were data commonality (from interoperability) and machine independence

(from reusability). These criteria were not included as the integration of data sources

from potentially different sources was one of the main goals of the IBHIS project.

Figure 18 illustrates the proposed quality model for agility.

Chapter 4: The performance/agility trade-off

75

Figure 18 Agility quality model

Figure 18 shows the relationships between the external quality factors and the product

quality criteria for the agility quality model.

4.2.5 Agility measures

Once a quality model has been chosen or created it is important to define how to

measure the product quality criteria. In some cases, objective metrics cannot be used

and a subjective measurement is required. When a subjective rating is required, the

rating was made by a human using a semantic differential scale (Coolican, 1999). In

the semantic differential scale the assessor marked the aspect on a scale of 1-10 (1

being low, 10 being high). The following describes the methods used to measure each

of the agility product quality criteria.

Granularity – this is a subjective assessment of the suitability of the number of

service interfaces in relationship to the number of services offered by the system.

Agility

Granularity

Flexibility

Reusability

Interoperability
Communication

commonality

Software-system

independence

Modularity

Generality

Expandability

Complexity

Chapter 4: The performance/agility trade-off

76

Complexity – This is a measurement of the complexity of the system code. The

complexity metrics identified are based on Lorenz object-oriented metrics and

Chidamber & Kemerer metrics, (Kan, 2003), and are as follows:

 The number of classes (not including interfaces)

 Average method size

 Average number of methods per class

 Average number of instance variables per class

 Number of children (immediate subclasses)

The number of children metric can be viewed as both positive and negative depending

on the system context. For example, if reuse is important, then a larger number of

immediate subclasses could be a positive factor. However, a larger number of children

can increase the complexity as developers would have to understand the implication

of changing higher level classes on their subclasses.

Expandability – this measure this is a subjective assessment that examines how easily

the architecture can be expanded. For example, if there is a poor separation of

concerns the rating would be lower.

Generality – this subjective measure examines the extent to which the services can be

used outside of their normal business applications and how specific are they to a given

context.

Modularity - modularity is a well known property of software that can have both

desirable and undesirable forms (Budgen, 2003). The two most widely used measures

Chapter 4: The performance/agility trade-off

77

of modularity are coupling and cohesion. For this study, coupling between objects and

lack of cohesion on methods will be used. Coupling between object classes (CBO) is

the number of times a class invokes functions/instance variables of another class plus

the number of classes that referenced the class. If a class appears in both the

referenced and the referred classes it is only counted once. If an object invokes a

function of another class it is known as control coupling (Budgen, 2003). If one class

calls a procedure on another class this is said to be ‘necessary’. However, if the

actions of the class being called are determined by a parameter from the calling class

this is said to be ‘undesirable’. If the classes communicate with parameters only and

these do not have any control element this is known as data coupling and is said to be

desirable (Budgen, 2003). Cohesion examines the similarity of the components of a

class with the view of fulfilling a single purpose (Budgen, 2003). A lack of cohesion

on methods (LCOM) means that a class that is not cohesive and would probably

benefit from subdivision. For this metric the aim is to see how closely the local

methods relate to local instance variables in the class. If a high number of methods

use an instance variable, it is thought to be cohesive. The range of LCOM defined in

this way can range between 0-2, anything above one is considered to have poor

design.

Software system independence – this subjective measure examines the level of the use

of anything that is non-standard in the system e.g. programming language, operating

system. An example restriction caused by using non-standard languages and operating

systems may be that the system could not be moved into another environment.

Chapter 4: The performance/agility trade-off

78

Communication commonality – this subjective measurement examines the extent to

which standards and common protocols are used in the system e.g. (SOAP, HTTP).

4.2.6 Agility test cases

Agility test cases are agility-focused use case tests that examine how well the system

can respond to future change by measuring the time and effort required to make the

change. When reengineering a system a lot of time can be spent understanding the

code of the existing system, in some cases this can be around fifty percent

(Mayhauser & Vans, 1995). However, for this study it is assumed that the reverse

engineering has already taken place and the subsequent activities are the recoding

aspect of the forward engineering effort.

Chapter 5: Methodology and implementation

79

Chapter 5: Methodology and implementation

This chapter describes the planning and conduct of a case study (Jefferies et al., 2009)

to explore the following research questions proposed in section 1.4:

 CS-RQ1 - Does using native language calls to improve the performance of a

software system reengineered for multi-channel access, lead to a reduction in

agility?

 CS-RQ2 - Does the inclusion of extra layers required for MCA reduce

performance?

 CS-RQ3 - Does reengineering a system as an SOA improve agility?

 CS-RQ4 - Is McARM an effective method for reengineering a system for

MCA?

A case study can be used to investigate problems that have several sets of data, in

order to understand insights and ideas (Runeson & Höst, 2009). This ability to

understand insights and ideas is the main strength of the case study and the reason it is

used in this instance. However, a weakness of a case study method is that it does not

allow generalisation beyond similar cases. As only one system (IBHIS broker) was

used, this is classed a single case study. The reason for only having one case is due to

the lack of available service-based systems of a reasonable size.

Chapter 5: Methodology and implementation

80

5.1 Planning

This planning of this case study was based on a set of guidelines (Brereton et al. 2008,

Yin, 2003). This section outlines the case study design and preparation for data

collection phases.

5.1.1 Aims

Listed below are the research aims for the case study:

CS-RQ1 - Does using native language calls to improve the performance of a software

system reengineered for multi-channel access, lead to a reduction in agility? This

question addresses the potential performance/agility trade-off of a system

reengineered for MCA, using native language based method calls (NLC) or protocol

based messaging (PBM) binding technologies. This can be broken down into two

propositions:

 CS-RQ1–P1 - NLC used in a system reengineered for MCA will result in

improved performance when compared to PBM for a mobile service-based

system.

 CS-RQ1-P2 - A system reengineered for MCA using NLC will be less agile

than one using PBM.

CS-RQ2 - Does the inclusion of extra layers required for MCA reduce

performance? The aim of this research question is to investigate a further issue that

that may lead to a reduction in performance when reengineering a system for MCA

Chapter 5: Methodology and implementation

81

– that of the additional layers required when using service-based technologies as the

basis for reengineering. The proposition for this research question is: the extra layers

required for MCA will reduce performance.

CS-RQ3 - Does reengineering a system as an SOA improve agility? This question

investigates whether or not a system reengineered as an SOA has improved agility.

The proposition for this research question is that reengineering a system as an SOA

will increase its agility.

CS-RQ4 - Is McARM an effective method for reengineering a system for MCA? This

research question looks at the McARM reengineering method that was created and

assesses it in terms of effectiveness (the quality of the output) and efficiency.

In order to investigate the research questions, the original IBHIS broker was

reengineered toward the proposed MCA architecture (McArc) using McARM. There

are thus two versions of the IBHIS broker used in the case study; the original IBHIS

broker and the reengineered IBHIS broker (see Figure 19).

Chapter 5: Methodology and implementation

82

Figure 19 Brokers used in case study

The original IBHIS broker is called from standard web browser technology. The

reengineered IBHIS broker will be accessed by business processes in the business

process server. The reason for having a business process layer is explained in section

3.2.4. The business processes will bind to the services in the reengineered IBHIS

broker using either NLC or PBM. The business processes can be called from a

number of different channels e.g. browser, mobile device. Both of the bindings (NLC

and PBM) will be evaluated for the reengineered IBHIS broker for this study, as well

as the original IBHIS broker.

5.1.2 Case study design

The objects of the study are the binding technologies (NLC and PBM) and the

McARM reengineering method. As there are multiple units of analysis this is classed

Chapter 5: Methodology and implementation

83

as an embedded case study (Runeson & Höst, 2009). For this investigation the units of

analysis measured were:

 Performance of the systems

 Agility of the systems

 Reengineering method ease of use

The data collected for the units of analysis are:

 Response times

 Code metrics

 Semantic differential scale evaluation of the system

 Agility test case data (time and effort to make changes)

 Reengineering method data

Table 15 shows each research question, units of analysis and data collected.

Research

question
Unit of analysis

Data

CS-RQ1

P1 – Performance
Response times

P2 – Agility

Code metrics

Semantic differential scale evaluation of the system

Agility test case data

CS-RQ2 Performance
Response times

CS-RQ3 Agility

Code metrics

Semantic differential scale evaluation of the system

CS-RQ4 Reengineering method ease of use Efficiency and effectiveness data

Table 15 Research questions and measures

Chapter 5: Methodology and implementation

84

For CS-RQ1-P1, an experiment was conducted to compare the two service bindings.

The services in the reengineered IBHIS broker were bound to business processes

using the two different binding technologies (NLC and PBM). The between-subjects

variable was the binding technology and the within-subjects variable was the message

size.

For CS-RQ1-P2 system metrics and test cases were used to compare the two bindings

(NLC and PBM) in terms of agility. The agility measure uses three data collection

methods - metrics, semantic differential rating and agility test cases. This provides

methodological triangulation (Runeson & Höst, 2009). In order to address CS-RQ2,

the response times of the reengineered IBHIS broker (PBM bindings) were compared

at three points in the architecture; the service, the business processes and the mobile

client. The service represents the basic system functionality, and the business process

and mobile client are the additional layers required for MCA.

For CS-RQ3, a direct comparison was made between the agility metrics for the

original IBHIS broker and the reengineered IBHIS broker (PBM binding).

For CS-RQ4, self-reporting measures were used in the form of semantic differential

and qualitative measures data to evaluate the effectiveness and efficiency of the

McARM reengineering method.

5.1.3 Case selection

The case that was used in this study was the exercise of reengineering the original

IBHIS system towards McArc using McARM. The reason for using this as the case

Chapter 5: Methodology and implementation

85

was that there are few large scale service-based systems available. Getting access to a

medium/large system that could be reengineered for MCA would have been difficult.

5.1.4 Case study roles

This section defines roles of the people conducting and participating in the case study.

The roles of the study were:

 Case study participant and observer: Clive Jefferies

 Evaluation: Clive Jefferies and Mark Turner

 Code assessment: Mark Turner

There was also a divergence table, which was updated during the study if there were

any deviations from the protocol, which was created and followed for this case study

(Jefferies et al., 2009).

5.1.5 Data Collection

The following section outlines the data to be collected, how the data was collected, a

data collection plan and how the data was stored.

5.1.5.1 Data to be collected

The following section describes the data collected for each research question. Where

possible, quality attribute scenarios (QAS) were developed to summarise each non-

functional requirement for the research question (Bianco et al., 2007).

Chapter 5: Methodology and implementation

86

5.1.5.1.1 CS-RQ1-P1

The performance measure was the response time for a service which is the time that it

takes to send and then receive a message (Machado & Ferraz, 2005). There are other

performance measures that could have been used, for example throughput and

scalability (Pfleeger, 2001), but these were not used due to time constraints. In order

to reduce bias due to the size of the query, a range of message sizes was required for

the response time measure. Three sizes were used from the original IBHIS system

(See Table 16)

Message size Fields Request Response Total bytes

Small 1 1155 597 1752

Medium 7 1429 884 2313

Large 15 1763 1212 2975

Table 16 Message sizes

Table 17 illustrates the QAS for CS-RQ1-P1

Stimulus Perform patient query (small, medium, large)

Artefact IBHIS system

Environment Normal operation

Response Patient query data is returned to the user

Response measure Response time (milliseconds).

Table 17 CS-RQ1-P1 QAS

5.1.5.1.2 CS-RQ1-P2

There were two data collection methods, system metrics and agility test cases. The

system metrics for agility are those proposed in chapter 3. There were two types of

system measurements gathered, the code metrics and semantic differential

measurements. The code metrics were derived from direct measurements of the

Chapter 5: Methodology and implementation

87

software, whereas the semantic differential measurements were a human assessment

of system properties. Table 18 presents the QAS for the CS-RQ1-P2.

Stimulus Evaluate system agility

Artefact System code

Environment Normal operation

Response None

Response measure Code metrics, Semantic differential measurements

Table 18 CS-RQ1-P2 QAS

There were four agility test cases used as a basis for measuring agility in terms of the

ease of change. These test cases represent potential changes that can occur in the

system. Each test case measured the time and effort required to implement a change

that can occur within the system.

Agility test case 1: Create a new service for a business process.

The aim of this test case was to show the time and effort required to create a new

service and to add it to a business process in the reengineered IBHIS system. The

agility is evaluated based on the time and effort to make the change. Table 19 shows

the QAS for agility test case 1.

Stimulus Creating a new service for a business process

Artefact Web service, WSIF service, business process

Environment Normal operation

Response Business process is using new service

Response measure Time (mins) and effort (NOS, number of artefacts)

Table 19 Agility test case 1 QAS

Agility test case 2: Amending an existing service in a business process.

This test case involved amending a service that is being used by a business process in

the reengineered IBHIS broker. A service was changed to incorporate a new field and

Chapter 5: Methodology and implementation

88

the business process in the reengineered IBHIS broker was updated to enable it to

work with the updated service. The agility was then evaluated based on the time and

effort required to implement the change. Table 20 shows the QAS for agility test case

2.

Stimulus Amending a service with a new field

Artefact Business process, web service, WSIF service

Environment Normal operation

Response Business process is using amended services

Response measure Time (mins) and effort (NOS and number of artefacts)

Table 20 Agility test case 2 QAS

Agility test case 3: Replacing a service in a business process

The next test case was reconfiguring a business process in the reengineered IBHIS

broker to use an alternative service that performs the same functionality. This is to

discover the level of difficulty involved in replacing a service in the reengineered

IBHIS broker, in both the NLC and PBM binding versions. Table 21 shows the QAS

for agility test case 3.

Stimulus A service is replaced in a business process

Artefact Business process, web service, WSIF service

Environment Normal operation

Response Business process is working with replacement service

Response measure Time (mins) and effort (NOS and number of artefacts)

Table 21 Agility test case 3 QAS

Agility test case 4: Access a WSIF service from another server

The aim of this test case was to determine if a service from the reengineered IBHIS

broker can be accessed by a business process using a different business process

server. Table 22 shows the QAS for agility test case 4.

Chapter 5: Methodology and implementation

89

Stimulus A business process that is run on a server wants to use

a WSIF service

Artefact Business process, WSIF service

Environment Normal operation

Response Business process can access WSIF service

Response measure Time (mins) and effort (NOS and number of artefacts)

Table 22 Agility test case 4 QAS

5.1.5.1.3 CS-RQ2

To investigate the additional response time caused by the additional layers required

for MCA, the reengineered IBHIS broker (PBM binding) was measured at three

points. For CS-RQ2, only the PBM bindings were used as both bindings had the same

number of layers. Table 23 presents the QAS for the CS-RQ2.

Stimulus Perform patient query on the IBHIS system.

Artefact Reengineered IBHIS broker (service, business process

and mobile client)

Environment Normal operation

Response Patient query data is returned to the user

Response measure Response time (milliseconds)

Table 23 CS-RQ2 QAS

5.1.5.1.4 CS-RQ3

The system measurements (code metrics and semantic differential measurements) of

the original IBHIS broker were compared with code metrics of the reengineered

IBHIS broker (PBM binding). This was done to determine the effect that

reengineering a system as an SOA may have on agility. Table 24 presents the QAS for

the CS-RQ3.

Chapter 5: Methodology and implementation

90

Stimulus System is reengineered as an SOA

Artefact Original IBHIS broker/ reengineered IBHIS broker

Environment Normal operation

Response -

Response measure Code metrics, Semantic differential measurements

Table 24 CS-RQ3 QAS

Agility test cases were not used for this part of the investigation as the agility test

cases are contextual. For this research question, the difference between the

architectures was the focus, therefore the time and effort to make future changes was

not examined.

5.1.5.1.5 CS-RQ4

Table 25 defines the measurements for the reengineering process and how they were

measured for CS-RQ4:

Area Definition Measurement

Efficiency Time to perform each stage Hours

Effectiveness Was it easy to follow?

 Were the any problems?
 Ease (Semantic

differential)

 Problems (qualitative)

Table 25 CS-RQ4 QAS

5.1.5.2 How the data was collected

Five sets of data were collected during the case study:

 Response times

 Code metrics

 Semantic differential scale evaluation of the system

 Agility test case data

 Reengineering method data

Chapter 5: Methodology and implementation

91

5.1.5.2.1 Response times

For CS-RQ1-P1, the response times were taken using the BPEL console, which is part

of the BPEL server. Two business processes were created for the reengineered IBHIS

broker (one for each binding technology), and both were called twenty times for each

message size and the time for the response was recorded.

For CS-RQ2, the response times for the service were recorded twenty times for each

message size, using the HTTP analyser in Oracle JDeveloper 10.1.3.3.0. The business

process response time was recorded twenty times for each message size, and the time

for the response was recorded from the Oracle BPEL Process Manager console. The

mobile client response was recorded twenty times for each message size and the time

for the response was taken by the network monitor in the Sun Wireless Toolkit 2.5.2.

5.1.5.2.2 System metrics

In order to address CS-RQ1-P2 and CS-RQ3, the original IBHIS broker and

reengineered IBHIS broker metrics were measured using JHawk metrics software.

5.1.5.2.3 Semantic differential measurements

The semantic differential measurements for CS-RQ1-P2 and CS-RQ3 were recorded

on an agility measurement form. On the agility measurement form, there was also a

comments section to justify why each score was given. The semantic differential

measurements were validated by a member of the supervisory team. This person was

responsible for coding the original system. It was necessary to use a person with

detailed knowledge of the IBHIS systems in order to provide useful measurement.

Chapter 5: Methodology and implementation

92

5.1.5.2.4 Agility test cases data

The time and effort to make the changes was entered into an agility test case data

form for CS-RQ1-P2.

5.1.5.2.5 Reengineering method data

A log was kept to collect the data needed for CS-RQ4. For each stage, the time taken

was noted as well as any problems found.

5.1.5.3 Data collection plan

The procedure for the case study was:

1. The original IBHIS broker was evaluated in one way:

 The agility of the original IBHIS broker was measured in order to compare it

with the reengineered IBHIS broker (PBM) to investigate if reengineering a

system as an SOA improves agility for CS-RQ3.

2. The original IBHIS system was reengineered to reflect the architecture described

in chapter three using McARM to address CS-RQ4.

3. The reengineered IBHIS system was tested for correctness in order to ensure that

the system had been implemented to a standard equal to that of the original IBHIS

broker. This was assessed by a member of the original technical team to ensure

the system fulfils the original functional requirements and was correctly

documented.

4. The reengineered IBHIS broker was assessed to decide if it is functionally the

equivalent to the original IBHIS broker. The implementation of the two bindings

Chapter 5: Methodology and implementation

93

was also assessed to ensure that they were implemented to an equivalent standard

for fairness. This was conducted by a member of the supervisory team.

5. Evaluation of calling the reengineered IBHIS broker services from business

processes using both binding technologies (NLC and PBM) was conducted in the

following ways:

 The performance was measured for CS-RQ1-P1 and CS-RQ2 (PBM only).

 The agility was measured for CSRQ1-P2 and CS-RQ3.

The machine being used for the case study was: Mesh, Microsoft Windows XP

professional 2002 SP3, AMD Athlon 64 processor, 3200+, 2.01GHz 2.00GB RAM

The application server used for the existing IBHIS system and reengineered IBHIS

system was IBM Websphere 5.0.1. The business process server used was Oracle

BPEL process manager version. 10.1.3.1. The mobile client was created and tested

using the Sun Java Wireless Toolkit: J2ME WTK 2.5.2. The system metrics were

gathered using JHawk.

5.1.5.4 How data was stored

Each data type was stored as follows:

 Response times – Spreadsheet document

 Code metrics – Spreadsheet document

 Semantic differential measurements – Word document

 Agility test case data - Word document

 Reengineering process evaluation - Word document

Chapter 5: Methodology and implementation

94

These were stored on the Keele University network drive.

5.1.6 Analysis

Each research question will be examined individually.

5.1.6.1 CS-RQ1

There are three sources of data for CS-RQ1, these are:

 Performance measurements

 Agility metrics

 Agility test cases

The performance measurements for each of the bindings, for each of the message

sizes, were analysed using inferential statistics with an Analysis of Variance

(ANOVA). The ANOVA was used rather than multiple t-tests as these can result in a

Type 1 error (capitalising on chance) (Coolican, 1999). The agility metrics of the two

bindings were compared and the binding with the higher values was considered the

more agile. The agility test cases were analysed in the same way as the metrics; the

binding that had the higher values was considered more agile. The possible outcomes

from the results were:

1 The NLC binding is found to be faster than the PBM binding, the agility metrics

indicate that the NLC is less agile than PBM and the test cases indicate the NLC

is less agile than PBM.

Chapter 5: Methodology and implementation

95

2 The NLC binding is found to be faster than the PBM binding, the agility metrics

indicate that the NLC is less agile than PBM and the test cases indicate the NLC

is more agile than PBM.

3 The NLC binding is found to be faster than the PBM binding, the agility metrics

indicate that the NLC is more agile than PBM and the test cases indicate the

NLC is less agile than PBM.

4 The NLC binding is found to be faster than the PBM binding, the agility metrics

indicate that the NLC is more agile than PBM and the test cases indicate the

NLC is more agile than PBM.

5 The NLC binding is found to be slower than the PBM binding, the agility metrics

indicate that the NLC is less agile than PBM and the test cases indicate the NLC

is less agile than PBM.

6 The NLC binding is found to be slower than the PBM binding, the agility metrics

indicate that the NLC is less agile than PBM and the test cases indicate the NLC

is more agile than PBM.

7 The NLC binding is found to be slower than the PBM binding, the agility metrics

indicate that the NLC is more agile than PBM and the test cases indicate the

NLC is less agile than PBM.

8 The NLC binding is found to be slower than the PBM binding, the agility metrics

indicate that the NLC is more agile than PBM and the test cases indicate the

NLC is more agile than PBM.

Table 26 summarises these outcomes.

Chapter 5: Methodology and implementation

96

Number Performance Metrics
Test

Cases

1 NLC PBM PBM

2 NLC PBM NLC

3 NLC NLC PBM

4 NLC NLC NLC

5 PBM PBM PBM

6 PBM PBM NLC

7 PBM NLC PBM

8 PBM NLC NLC

Table 26 Summary of outcomes

Outcome 1 would suggest that NLC should be used to improve the performance of a

business process if agility is not an essential feature of the system. Outcome 2

suggests that NLC should not be used if code agility is important. Outcome 3 suggests

NLC should not be used if the time and effort involved in changing the system are

important. Outcome 4 suggests that NLC should be used in a business process as it

improves both performance and agility. For outcome 5, NLC should not be used in a

business process as neither performance nor agility is improved. Outcome 6 suggests

that NLC should be used if only the time and effort involved in changing the system

are important. Outcome 7 suggests that NLC should only be used if code agility is

important. For outcome 8, NLC should be used to improve agility but not

performance.

5.1.6.2 CS-RQ2

The performance measurements for each of the layers, for each of the message sizes,

were analysed using an Analysis of Variance (ANOVA).

Chapter 5: Methodology and implementation

97

5.1.6.3 CS-RQ3

The system metrics of the original IBHIS system and the reengineered IBHIS system

were compared in the same way as the agility metrics in CS-RQ1, to determine if

reengineering as an SOA improves agility.

5.1.6.4 CS-RQ4

McARM was analysed based on the feedback and experience of using the method.

This was used to determine if this method is effective and efficient and could be used

for reengineering a system for MCA.

5.2 Conducting

This section details the divergences for CS-RQ1, CS-RQ2 and CS-RQ3. The outputs

for CS-RQ4 and the architecture are also presented.

5.2.1 CS-RQ1

This section highlights the divergences for CS-RQ1.

5.2.1.1 Performance testing mock-up

The performance testing was conducted using a recreated version of the reengineered

IBHIS broker. This was necessary as the original IBHIS broker was running within

the application server included in IBM Websphere Application Developer 5.1.1,

which was found to have limited support of WSIF bindings. The enterprise

application client (EAC) technology for calling WSIF was unable to access drivers for

Chapter 5: Methodology and implementation

98

a database used by one of the services. The EAC is able to access database drivers for

its own classes but not those from another project. An attempt was made to move the

system code into the EAC project but certain libraries could not be used with this type

of project. Even if this had been achieved, the EAC can only be accessed by systems

that support J2EE. Therefore, in order to undertake performance tests, a mock-up of

the reengineered IBHIS broker (reengineered IBHIS performance mock-up) was

made in an environment that would enable a system to call a WSIF service from a

business process. Using a mock-up for the performance testing may have had an

effect on the results. The reason for this is that the difference in performance between

SOAP and WSIF on Oracle BPEL Process Manager may not be the same as in IBM

Websphere Application Developer 5.1.1.

The mock up was a simulation created on Oracle BPEL Process Manager using the

same message sizes as in the reengineered IBHIS broker. A member of the

supervising team was asked to compare the code from the two binding

implementations to assess if they were coded equivalently. This additional

verification was needed because creating WSIF services is different between Oracle

BPEL Process Manager and IBM Websphere. The code was functionally the same,

but the way in which the classes were created in Oracle BPEL Process Manager was

slightly different. The difference was that when using WSIF in Oracle BPEL Process

Manager, system classes are not instantiated directly, instead they are created by a

factory class. Creating the classes from a factory would mean the response time would

be slightly slower due to the extra step needed. In IBM Websphere Application

Developer 5.1.1 the classes are called directly rather than via a factory class.

Chapter 5: Methodology and implementation

99

5.2.1.2 Agility test case mock-up

The agility test cases were performed on a different mock-up of the reengineered

IBHIS broker (reengineered IBHIS agility mock-up) using Oracle BPEL Process

Manager. The reason for using a mock-up for the test cases was the inability to use

the services in an external business process (see section 4.2.1.1). As the WSIF

services in IBM Websphere Application Developer 5.1.1 could not be called

externally, this had to be tested in Oracle BPEL process manager. If it had have been

possible to use a more recent version of IBM Websphere Application Developer,

which had a business process server e.g. IBM Integration Developer, this may not

have been a problem. However, this was not possible due to cost and the effort that

would be required to port the original IBHIS broker to a different version.

5.2.1.3 Unused agility test cases

Agility test case 3: Replacing a service in a business process was not carried out as it

was realised that if a service was to be replaced by another service (WSIF or SOAP)

that performed the same functionality, the new service would be called in the same

way as the old service regardless of the binding. For example, if the queryIBHIS

operation is called, the business process only interacts with this call and is not

concerned with the binding that is used to perform the call.

Agility test case 4: Access a service from another server was not carried out either. An

attempt was made to access the services from a business process server (Oracle BPEL

Process Manager). However, it was found that a WSIF service could not be accessed

from a different virtual machine. This is, however, possible using SOAP.

Chapter 5: Methodology and implementation

100

5.2.2 CS-RQ2

For CS-RQ2 the only divergence was that the response time measurements were

carried out using the reengineered IBHIS performance mock-up for the reasons

highlighted in section 4.2.1.1.

5.2.3 CS-RQ3

There were no divergences however, it should be noted that for the original system

the web pages (.jsp) that contained the business logic of the system were also included

in the metrics as these are considered to be classes. If the page contained presentation

code only, it was not counted.

5.2.4 CS-RQ4

For this research question, the use of the McARM reengineering method for

reengineering the original IBHIS broker was followed. The results of using the

method are outlined in this section. There were no divergences.

5.2.4.1 System understanding

There are two sources that can be used to understand the existing system; the

documentation and the code.

Documentation - The following figures outline the current architecture of the system

based upon the available documentation.

Chapter 5: Methodology and implementation

101

Figure 20 Overview of original IBHIS system

Figure 20 (Kotsiopoulos et al., 2003) gives a high level overview of the IBHIS broker,

showing the broker and the heterogeneous data sources that it queries. The services

and databases that the original IBHIS broker uses are shown in Figure 21 which is

adapted from (Budgen et al. 2007).

Chapter 5: Methodology and implementation

102

Figure 21 IBHIS broker services and data

In figure 21, it should be noted that although this diagram labels certain aspects of the

system as services, these are not all exposed as web services. Rather, they are internal

components that the system uses e.g. the audit service. Once the overview of the

system was gained from reading the documentation, the next task in McARM was to

outline the main components of the system. The main components of the original

IBHIS broker are (Kotsiopoulos et al., 2003):

 Access Control Service (ACS) - for user authentication and authorisation.

 Ontology Service (OS) - defines the terms used in the original IBHIS system

for mapping queries to local data sources. Consulted during the query

decomposition.

Chapter 5: Methodology and implementation

103

 Data Access Service (DAS) - the operational core, constructed using web

services. For each enquiry the QS decomposes the enquiry into a set of sub-

queries and also binds with the data services.

 Query Service (QS) - comprises two sub-modules: the query decomposer and

the query integrator. The query decomposer decomposes the query into a set

of local queries in consultation with the matchmaker and the semantic registry,

which holds the semantic descriptions of the export schemas. The query

integrator receives and integrates the individual results from the DASs.

After determining the components, it was necessary to gather details about these

components using a component table (see Table 27). The information gathered was a

subset of those outlined by Lewis et al. (2005):

 Component name

 Component size (LOC)

 Level of documentation

 Number of base classes

 Programming standards compliance

 Black box v white box suitability

 Scale of change required

Chapter 5: Methodology and implementation

104

Component

Name
Size Doc

Base

classes

Standards
Bb v

wb

Scale

of change

ACS 3678 None 6 None Bb small

OS 318 None 2 None Bb small

QS 1287 None 12 None Wb small

DAS 1423 None 4 WS Wb small

Table 27 Component table for original IBHIS system

The information for the component table should have been based on the system

documentation. However, no documentation was available for the original IBHIS

broker and, therefore, it was necessary to determine the required information from the

system code.

Existing code - The other source used for system understanding is the existing code.

In order to document the flow of the system, a UML sequence diagram was needed

from the graphical user interfaces (GUI). Before the sequence diagram was created, a

flowchart was created, which showed a higher level view of the system, making it

easier to create the sequence diagram (see Figure 22).

Chapter 5: Methodology and implementation

105

Figure 22 Original IBHIS system GUI flowchart

In Figure 22, the earlier stages are for the access control, followed by choosing a

category from the ontology and finally performing the query itself. The flowchart also

shows validation during the query composition that was used for demonstration

purposes. The sequence diagram details the system further, not only looking at the

flow of the web pages but also the components being called. The sequence diagram is

Chapter 5: Methodology and implementation

106

not included in the thesis due to its size. Another output for system understanding is a

reconstruction of the system classes from the code.

Figure 23 P2Client (query)

Figure 21 shows an example of a subset of the classes used for formulating a query in

the original IBHIS broker. These class diagrams were created using the IDE (IBM

Websphere) in which the original IBHIS broker had been created. In total there were

106 classes and managing these classes was found to be difficult, especially if the

class was large or there were many interdependencies.

5.2.4.2 Service identification

The stakeholder that was available for information was a member of the supervisory

team who coded part of the original IBHIS broker who was consulted when trying to

identify the services in the original IBHIS broker. The other source for identifying the

current services in the system is the current documentation. Class diagrams can be

useful for identifying potential services, so those created in the system understanding

stage were examined. The system code was found to be another way of identifying

services. For example the appoint roles/teams function in Figure 24, which had not

Chapter 5: Methodology and implementation

107

been documented, was only found as a result of a detailed analysis of the code. The

starting point was to identify the current and new use cases for the system (Figure 24).

Figure 24 IBHIS current and future use cases

Figure 22 shows that the use cases remain the same but the actors that perform these

cases are different. The ‘mobile user’ and ‘another business process’ are the new

actors that will perform the ‘query IBHIS’ use case. The next task in McARM is to

show how the potential services in the system interact with each other (Figure 25).

Figure 25 Sequence diagram for potential services

The sequence diagram in Figure 25 shows how the core services in the original IBHIS

broker interact with each other and the user. The user logs into the system and is

Chapter 5: Methodology and implementation

108

shown the roles and teams available. They then choose the roles and teams they wish

to use. They are then shown the ontology and they must choose the elements of the

ontology they would like to query. The properties for an element are then returned to

the user who must then choose which elements they wish to query. The query is then

made via the access control service, which sends the query to the data access service,

which performs the local queries. This is then returned to the user via the access

control service, which removes any data that the user is not entitled to see.

The next task was to summarise the potential services in order to evaluate them (see

Table 28).

Service identified Information regarding service

Access control service

Responsible for user authentication and authorisation. This also takes

the roles that a person has and only lets them see what they are

allowed to see.

Ontology service Holds relevant ontologies for queries.

Query service For performing the query.

Data access service Acts as an entry point for the data sources.

Appointment service Allows a user to appoint role and team access rights to another user.

Table 28 Service table

It should be noted that the services are the same as the components identified in the

system understanding. The reason for this is that the original IBHIS broker was based

on service-oriented principles. However, these were not always implemented as

services within the final system.

In order to evaluate the potential services for the new system, a service evaluation

table was compiled. This information identified that the ontology service would not be

required as the users were querying patient data only and therefore the ontology

information could be hardcoded as the user would not need to select the ontology

Chapter 5: Methodology and implementation

109

information. Although the ontology could be re-used in another health care system,

the focus of the study was multi-channel access to the patient data. The data access

service is functionality that is running in the background (utility) and is not something

with which the user is aware of and there is no direct interaction with the user. The

appointment service was discounted as the system was for patient data queries only

and would not focus on administrative aspects. It could be argued that these services

should be used for alternative or new service configurations but a coarse grained

approach was preferred to limit the number of interactions with the system.

For the IBHIS system to be accessed by multiple channels the candidates for services

were the access control service (Activation and Authorisation) and the query service.

The activation part of the access control retrieves the roles and teams available to the

user. The authorisation part of the access control adds authorisation rules to the

chosen roles and teams. The authorisation aspect of the access control was combined

with the query fields available, so that the user only has to call the system once to get

all of the information they need to perform a query. This service was named ‘get

query fields’. Finally, the user can make the actual query using the query service. The

final list of services was:

 Activation service

 Get query fields service

 Query service

5.2.4.3 Business Process Modelling

Figure 26 shows the UML activity diagram for the business processes for the

reengineered IBHIS broker.

Chapter 5: Methodology and implementation

110

Figure 26 IBHIS business process

The activity diagram in Figure 26 outlines how the client will interact with each

business process. Firstly, the client allows the user to enter their login details, which

are sent to the activation process, which in turn calls the activation service. If the

username and password are valid, the roles and teams for that user are made available

to the user. This allows the user to activate those that are relevant to that particular

session, otherwise they have to re-enter their user name and password. Once the user

has chosen the roles and teams, these are submitted to the get query fields process

from the client. The get query fields process calls the query fields service, which

performs authorisation on the roles and teams submitted and also returns the query

fields for querying patient records. The roles and teams are also authorised to ensure

that the user is allowed to activate the particular role(s) and team(s) chosen e.g. based

upon the time of day. Finally, the user submits their username, the authorised roles

and teams, and the query data. The client then calls the query process, which calls the

query service. The query data is the query criteria (e.g. ‘Surname’), the query value

(e.g. ‘King’) and the fields that the user wishes to have returned to them (e.g. first

Chapter 5: Methodology and implementation

111

name, address, marital status, date of birth and health information). The results are

then returned to the client for the user to view.

5.2.4.4 System redesign

The system redesign involved two stages; deriving the system classes and modelling

the service interfaces. The Activation service will be used as an example.

System classes

Originally it was intended to use the XWIF method (Erl, 2004) for redesigning the

classes. However, this method requires redesigning the business logic classes and the

original IBHIS broker had no business logic classes as the logic was in the original

IBHIS broker GUI code. This meant that the relevant code needed to be extracted

from the web pages of the GUI and then moved into business logic classes. In order to

decide on the method signatures for the business logic classes it was necessary to

examine each of the web pages and determine which system classes (Java beans) were

being instantiated and which methods were being called. The instantiations and

method calls, along with any other logic associated with the calls were then added to a

business logic class. The aim was to expose each business logic class as a web

service. If more than one method was called for a service, all of the parameters

needed were passed to a single method signature and the class delegated each

parameter to the correct method.

Chapter 5: Methodology and implementation

112

Figure 27 Classes for Activation service

Figure 27 shows the class diagram for the Activation service. The class labelled

IBHISActivation is the business logic class which contains the code extracted

from the GUI. The class named AuthenicateUserSSD2 was extracted from the

original system and is called from the business logic class (IBHISActivation)

instead of the GUI. The remaining classes (RoleObject, TeamObject and

UserDetails) are the business objects (implemented as Java beans). These were

used as inputs and outputs for the IBHISActivation class and map to complex

types found in the service description file (WSDL). It was necessary to use complex

types as WSIF return types must be complex types rather than simple types.

Service interfaces

In order to create the service interfaces, the XWIF (Erl, 2004) method was used.

Chapter 5: Methodology and implementation

113

Step 1 - Choose a service model

The first step in the XWIF method involves stating the type of service in order to

understand the restrictions and implications of the service. For the Activation service

the details are as follows:

 Service name: Activation service

 Service type: Business service

The service type ‘business service’ (Erl, 2004) means that its functionality is used for

a unique business context.

Step 2 - Establish scope of business function

This step states the ‘applications’ in which the service will be used. For the Activation

service the details are as follows:

 Service name: Activation service

 Scope: This service can only be used for access control

Step 3 - Identify potential requestors

The third step identifies the future usage of the system, not only by other service

requesters but also changes in the current business processes. For the Activation

service the details are as follows:

 Service name: Activation service

 Potential services: N/A

 Other applications: N/A

 Other business processes: The activation service could be used within

another health related business process.

Chapter 5: Methodology and implementation

114

 External organizations: Another healthcare organisation may wish to utilise

role/team access control.

Step 4 - Identify data

This stage of the XWIF method involves separating the resources that are needed by

the service from the parameter data. For the Activation service the details are as

follows:

 Service name: Activation service

 Parameter data: Username, password

 Resource data: None

Step 5 - Explore application paths

The fifth step involves determining if there are any other ways that the functionality

could be performed at the class level. For the Activation service the details are as

follows:

 Service name: Activation service

 Other paths: A system class containing the desired functionality is called

from the business logic class. The only way to make this more efficient would

be to move the code from the class into the business logic class. However, it is

desirable to keep these layers distinct to ensure that the system is loosely

coupled.

Step 6 - Encapsulation boundary

This stage examines the parts of the application with which the service interacts. For

the Activation service, the details are as follows:

Chapter 5: Methodology and implementation

115

 Service name: Activation Service

 Service class: IBHISActivation

 Classes used: AuthenticateUserSSD2, UserDetails, RoleObject, TeamObject

Step 7 - Model interface

This stage defines the service interface and its operations. For the Activation service

the details are as follows:

 Service name: Activation service

 Operations: get roles, get teams

Step 8 - Map interaction scenarios

This stage involves stating the methods in the business logic class that will be called

by the service interface operations. See Table 29 for the interaction details for

Activation service.

Operation Methods

getRoles getRoles()

getTeams getTeams()

Table 29 Interaction Scenarios

Step 9 - Design message payload

This stage involves modeling the XML documents that will be passed to and from the

service. See Table 30 for the operations for the Activation service with their inputs

and outputs.

Operation Input Output

getRoles userDetails Roles

getTeams userDetails Teams

Table 30 Service messages

Chapter 5: Methodology and implementation

116

In Table 30 all of the inputs and outputs are complex types. For example, the input for

the operation getRoles is a complex type called userDetails and it returns the

roles complex type. Table 31 shows how the complex types are structured.

Name Element Type

userDetails
username String

password String

Roles Roles String

Teams teams String

Table 31 Complex types

The elements for userDetails are string values containing the user name and

password submitted by the user. Figure 28 and Figure 29 illustrate the XML types for

userDetails and roles.

<complexType = “userDetails”>

 <sequence>

 <element name =“username” type=”string” />

 <element name =“Password” type=”string”/>

 </sequence>

</complexType>

Figure 28 UserDetails type

<complexType = “roles”>

 <sequence>

 <element name =“role” type=”string”/>

 </sequence>

</complex>

Figure 29 Roles type

Figures 28 and 29 correspond to the business object classes (UserDetails,

RoleObject) that were outlined in the class creation. The data types for the

roles/teams elements are also strings values. These are comma separated strings

containing the roles/teams in the database that are available to the user. The reasons

for using a comma separated string rather than separate elements for each role or team

Chapter 5: Methodology and implementation

117

are that searching through a string would be faster than parsing a complex type with

many elements and also the message size would be smaller than an XML document

with complex types having multiple elements.

5.2.4.5 System recoding

The system recoding consisted of the following steps:

1. Create a project for the service

2. Create the business logic class

3. Create the business object classes

4. Move the classes and required libraries from the original IBHIS broker to the

reengineered IBHIS broker.

5. Move the business logic code from the web pages into the business logic class

6. Expose the business logic class as a web service

5.2.4.6 Service interface creation

The service interfaces were created automatically from the business logic classes.

These were then checked to see if they matched the service interfaces designed in the

modeling stage.

5.2.4.7 Creating business processes

Figure 30 shows the Activation business process which calls the Activation service.

This process represents the Activation process swim lane in Figure 26.

Chapter 5: Methodology and implementation

118

Figure 30 Activation business process

Figure 30 shows the Activation business process for role activation. In the left hand

column labeled ‘services’, there is the client that initiates the services by sending the

userDetails complex type containing the login details. This complex type is then

assigned to the input type for the Activation service call. When the call to the

getRoles operation is made to the Activation service the role complex type is

returned. The Activation service is labeled PartnerLink_1 in the right hand services

column. The returned roles complex type is then assigned to the output variable for

the process which is finally returned back to the client.

Chapter 5: Methodology and implementation

119

Figure 30 can also be used to show the flexibility of using a business process.

Functionality could be added or removed from the business process with relative ease

by either using other services or BPEL language functions before or after the

Activation service is called.

One problem found with generating the web service interfaces automatically from the

business logic code, was that they were not compatible with the business processes.

The result was that the web services had to be manually edited in order to be

consumed by the business processes.

5.2.4.8 Client

In order to test the reengineered IBHIS broker, it was necessary to create a mobile

client for the business process. This was done using the Java Wireless Toolkit with

additional web services (JSR172) support. The method for using web services with

JSR172 is that Java stubs are created from the description document (WSDL). Each

service has a Java class representing the service and also classes representing the

types. This then enables the service to be used programmatically. As BPEL processes

are exposed as web services and have a description document (WSDL) the same

method was used to create stubs to call the business process from the mobile

application code. Figure 31 and Figure 32 show the input and output forms for the

Activation process on a mobile emulator.

Chapter 5: Methodology and implementation

120

Figure 31 Activation input

Figure 31 shows the entry point for the system, which involves the user entering their

login details. When the user clicks ‘Next’, the application makes two calls to the

Activation process. The first call is to retrieve the roles and the second call is to

retrieve the teams. Figure 32 shows the roles and teams that are available to the user,

including overrides.

Figure 32 Activation output

There were some problems when coding the client. The first was related to the

messages that were returned. When a business process calls a service, the types that

Chapter 5: Methodology and implementation

121

are returned use the namespaces (URI) from the service and these do not change when

the business process returns that data. However, when the Java stubs are created they

cannot interpret these namespaces as the Java stubs use the namespaces that are

declared in the business process description document. The result is that when the

data is returned, the Java stub does not recognize the namespace with which it is

associated. This was overcome by manually editing the Java stubs so that they would

recognize the namespaces. Another problem was with deploying this on a device.

When the mobile application creates the stubs they are based on the web services

standard. BPEL processes are also based on the web service standards. However, the

Oracle BPEL Process Manager implementation of the standard returned a response

with empty header values as shown below:

<header/>

Whereas the implementation of web services on the Nokia phones tested however,

was different and required matching tags for empty values as shown below:

<header></header>

This conflict meant that the mobile application would throw an exception due to the

fact that there was no matching tag. This is known as the ‘empty header problem’

(Pellerin, 2007). Unfortunately, this problem could not be worked around, which

meant that the mobile business processes could only be accessed from the emulator

and not the physical device.

5.2.4.9 Testing

Functional testing was performed on the reengineered IBHIS broker (See appendix

B). It was intended that a test specification from the original project be used.

Unfortunately this could not be found in the documentation. There were however,

Chapter 5: Methodology and implementation

122

three examples of usage found in a demonstration document. These test cases were

used to ensure that the items returned were the same and the reengineered IBHIS

system returned the same items as the original IBHIS broker. Also, the services

provided by the reengineered IBHIS broker, were assessed to see how well they

fulfilled the requirements and offered the same functionality of the original IBHIS

broker. This was performed by the researcher and one of the supervising team, who

had worked on coding the original IBHIS broker. The service interfaces of the

reengineered IBHIS broker were rated on a semantic differential scale. Out of a

possible score of ten, the reengineered IBHIS broker was rated nine. In terms of the

channels, only the mobile channel and web channel were tested.

5.2.5 Architecture

The original problem of reengineering a system for MCA is shown in Figure 33.

Figure 33 Original reengineering problem

Figure 33 shows the problem of a single channel system that needs to be accessed

from multiple channels. Figure 34 shows the original IBHIS broker, which represents

the single channel system in Figure 33.

Chapter 5: Methodology and implementation

123

Figure 34 Original IBHIS broker architecture

Although there are a number of web service interfaces in the original IBHIS broker,

they do not represent coarse grained business functions, and instead they expose low

level classes. In order to improve the granularity and make the system accessible from

multiple channels, McArc was proposed, which comprised of the Channel layer,

Business process layer and Web service layer. Figure 35 shows the architectural

layers of the reengineered IBHIS broker.

Figure 35 Reengineered IBHIS broker architecture

Chapter 5: Methodology and implementation

124

Figure 35 shows the architectural layers for the reengineered IBHIS broker. The web

service layer contains code that was extracted from the original IBHIS broker as well

as the business objects (types) used and the service classes. The business process layer

calls the services from the web service layer. The business process layer is called

from the channel layer (mobile device, web app, another business process).

The web service layer could also be called directly from the channel layer, allowing

the business process layer to be bypassed completely, as shown in Figure 36.

Figure 36 Direct access of reengineered IBHIS services

In this case if the business processes were not required the services could be accessed

directly due to the loosely coupled nature of business processes and services.

Chapter 6: Case study results

125

Chapter 6: Case study results

This chapter presents the results of the case study. First the results are presented by

the data collected. These are then grouped by research question. The performance

measurements are explained in relation to research questions CS-RQ1-P1 and CS-

RQ2. The agility metrics are explained in relation to research questions CS-RQ1-P2

and CS-RQ3. The agility test cases are explained in relation to research question CS-

RQ1-P2. Finally the results of the evaluation of McARM are presented for CS-RQ4.

6.1 Results by data collected

The results for the performance testing, agility metrics and agility test cases are

presented in this section.

6.1.1 Performance testing

Table 32 presents the results of the performance testing for each technology, for the

three different message sizes (see chapter 5) in:

 the performance mock-up IBHIS broker

 the original IBHIS broker

 the reengineered IBHIS broker

Chapter 6: Case study results

126

RQ Point of measurement
Message size

Small Medium Large

1a
WSIF BP (reengineered IBHIS performance mock-up) 213.25 196 180.55

SOAP BP (reengineered IBHIS performance mock-up) 196 175.8 213.4

2

Service layer 16.5 17.25 16.5

Business process layer 231.2 228.85 238.15

Channel layer 705.15 713 722.25

Table 32 Results for performance testing

6.1.2 Agility metrics

Table 33 shows the agility metrics for the original IBHIS broker and the reengineered

IBHIS broker with respective bindings.

Product

Quality

 criteria

Metric

Original

IBHIS

broker

Reengineered

IBHIS

broker –

SOAP (PBM)

Reengineered

IBHIS

broker-

WSIF (NLC)

Complexity

No. of service interfaces (total) 22 5 5

Number of classes (total) 106 66 66

Average number of methods per

class
3.041 3.506 3.506

Average method size 17.090 8.292 8.292

Average number of instance

variables
3.242 1.48 1.48

Number of children 0 0 0

Modularity
Coupling between object classes 1.170 1.015 1.015

Lack of cohesion on methods 0.57 0.758 0.758

Granularity - 4 8 8

Expandability - 5 9 4

Generality - 5 5 5

Software system

independence
- 6 6 6

Communication

commonality
- 7 8 3

Table 33 Agility metrics

Table 33 shows that code metrics for the reengineered IBHIS broker (SOAP) and

reengineered IBHIS broker (WSIF) are the same. This is because they use the same

system code, only the WSDL bindings are different.

Chapter 6: Case study results

127

6.1.3 Agility test cases

Table 34 shows the results of the agility test cases using the agility mock-up IBHIS

broker.

Test case Binding Time (min) Number of statements Artefacts

New service
SOAP 10 48 3

WSIF 55 48 2

Amend service
SOAP 10 6 2

WSIF 5 2 2

Table 34 Time and effort for a new service

6.2 Results by research question

In this section the data collected will be presented by research question.

6.2.1 CS-RQ1-P1

A 2x3 mixed factorial ANOVA was used to analyse the differences between the

binding used (NLC or PBM) in the three conditions (message size) using the

reengineered IBHIS performance mock-up. The mixed factorial was used as the

message sizes were not equal for each binding. Due to the structure of the data being

sent a small message size for WSIF may be 10 bytes whereas a small message for the

SOAP binding may be 100 bytes. Table 35 shows the table of means for the response

times (ms) of the two binding technologies and the three different message sizes (See

Appendix C).

Binding
Response time (ms)

Small Medium Large

WSIF (NLC) 213.25 196 180.55

SOAP (PBM) 196 175.8 213.4

Table 35 Table of means

Chapter 6: Case study results

128

Table 35 shows that WSIF (NLC) performs worse than SOAP (PBM) in terms of time

for the small and medium sized messages but not for the larger messages. Table 36

shows the ANOVA summary table:

Source

Type III

Sum of

Squares df Mean Square F Sig value

Binding

Hypothesis 72.075 1 72.075 0.012 Binding

Error 24900.767 4 6225.192

Message

size(Binding)

Hypothesis
24900.767 4 6225.192 0.349

Message

size(Binding)

Error 2035777.150 114 17857.694

Table 36 ANOVA summary table for performance investigation

Table 36 shows the value of F (0.012) for the binding is less than the significant value

(7.71). Therefore there was no significant difference found between the two bindings

(F[1,4]= 0.012, MS error=6225.192, p>0.05). The value of F for the message size

(0.349) was less than the significant value (2.45). This means that there was no

significant difference for the message sizes (F[4,114]= 0.349, MS error=17857.694,

p>0.05).

6.2.2 CS-RQ1-P2

For agility there were two measures: system metrics and agility test cases.

6.2.2.1 System metrics

The system metrics were the code metrics and the semantic differential

measurements. The code metrics for the SOAP (PBM) and WSIF (NLC)

implementations were the same as the same system code was used in the reengineered

Chapter 6: Case study results

129

IBHIS broker. The only difference is the WSIF binding declarations in the service

description (WSDL) to access the system. Table 37 shows the semantic differential

measurements for the PBM (See appendix D) and NLC (See appendix E):

Area SOAP (PBM) WSIF (NLC)

Granularity 8 8

Expandability 9 4

Generality 5 5

Software system independence 6 6

Communication commonality 8 3

Table 37 Semantic differential measurements for the bindings

Table 37 shows that the areas where SOAP (PBM) and WSIF (NLC) differ are

expandability and communication commonality. In both cases the PBM

implementation is rated higher. The code metrics and the semantic differential

measurements from Table 31 are compared in terms of the quality model (see Table

38). These are summarised using a Boolean value (1 or 0) which indicates which

technology scored higher. If they are the same then both score 0.

External quality

Factor

Product quality

Criteria

SOAP

(PBM)

WSIF

(NLC)

Granularity
- 0 0

Total 0 0

Flexibility

Complexity 0 0

Expandability 1 0

Generality 0 0

Modularity 0 0

Total 1 0

Reusability

Complexity 0 0

Generality 0 0

Modularity 0 0

Software-system

Independence
0 0

Total 0 0

Interoperability

Modularity 0 0

Communication commonality 1 0

Total 1 0

Table 38 PBM/NLC agility comparison

Chapter 6: Case study results

130

Table 38 shows that SOAP (PBM) is rated higher than WSIF (NLC) in terms of

flexibility and interoperability. The lower flexibility of NLC is due to the lack of

expandability of the architecture. The lower interoperability of NLC is due to the lack

of communication commonality. As the code metrics were the same for both bindings,

they scored 0 in these cases e.g. complexity (see Table 33).

6.2.2.2 Agility test cases

Along with the system metrics, the agility test cases were used to assess the agility of

the PBM and NLC bindings. These will be examined individually.

Agility test case 1: Create a new service for a business process.

Table 39 shows the time to create a new service, the number of statements and the

number of artefacts created (WSDL documents and classes).

 Time (ms) NOS Artefacts

SOAP (PBM) 10 48 3

WSIF (NLC) 55 48 2

Table 39 Time and effort for a new service

The main difference shown in Table 39 is the extra time needed to implement the

WSIF description document.

Agility test case 2: Amending an existing service in a business process.

The time needed to change the service, the number of statements created and the

number of artefacts changed (WSDL documents and classes), were recorded for this

test case (see Table 40).

Chapter 6: Case study results

131

 Time (ms) NOS Artefacts

SOAP (PBM) 10 6 3

WSIF (NLC) 5 2 3

Table 40 Time and effort to change a service

Table 40 shows that it requires less statements to be created and takes less time to

change a service implemented in WSIF. It should be noted that the number of

statements also includes changes to the business process.

6.2.3 CS-RQ2

To investigate the potential affect of the additional layers required for MCA on

performance, a comparison was made between layers (see figure 11) of the

reengineered IBHIS broker (PBM):

 Service layer

 Business process layer

 Channel layer

The service layer response times were measured in the development environment, the

business process layer response times were measured in the business process server

and the channel layer response times were tested in a mobile emulator. Table 41

shows the average response time (milliseconds) for each technology (See appendix F

for more details).

Calling

technology

Response time (ms)

small medium large

Service 16.5 17.25 16.5 16.75

BP 231.2 228.85 238.15 232.73

BP (Mobile) 705.15 713 722.25 713.47

Table 41 Layer comparison table

Chapter 6: Case study results

132

The results show that adding a business process layer does reduce performance by

around 216ms and that adding the mobile client layer reduces performance by around

480ms. Table 42 shows the ANOVA summary table:

Source

Type III Sum

of Squares df Mean Square F Sig value

POINT Hypothesis 15263349.033 2 7631674.517 11821.159 5.14

Error 3873.567 6 645.594

SIZE(POINT) Hypothesis
3873.567 6 645.594 .018 2.10

Error 6182676.350 171 36156.002

Table 42 ANOVA for CS-RQ2

Table 42 shows the value of F (11821.159) for the point is higher than the significant

value (5.14). Therefore, there is a significant difference found between the three

layers (F[2,6]= 11821.159, MS error=645.594, p>0.05) between the points. The value

of F for the message size (0.18) was lower than the significant value (2.10). This

means that there was not a significant difference for the message sizes

(F[6,171]=0.18, MS error=36156.002, p>0.05).

6.2.4 CS-RQ3

In order to investigate if reengineering a system as an SOA improves agility, the

original IBHIS system and the reengineered IBHIS system (PBM) were compared.

Table 43 shows the code metrics for the two systems.

Chapter 6: Case study results

133

Product

quality

criteria

Metric
Original

IBHIS broker

Reengineered

IBHIS broker

(PBM)

Complexity

No. of service interfaces (total) 22 5

Number of classes (total) 106 66

Average number of methods per class 3.041 3.506

Average method size 17.090 8.292

Average number of instance variables 3.242 1.48

Number of children 0 0

Modularity
Coupling between object classes 1.170 1.015

Lack of cohesion on methods 0.57 0.758

Table 43 Code metrics for original/PBM

The code metrics show that the reengineered IBHIS broker improved on the original

IBHIS broker in all of the metrics except number of methods, lack of cohesion on

methods and number of children (subclasses) which stayed the same. This means that

in terms of the complexity, the reengineered IBHIS broker was found to be less

complex. In terms of modularity (CBO and LCOM), the systems were rated the same

as each system scored higher in one aspect of modularity. Table 44 shows the

semantic differential measurements for the original IBHIS broker (See appendix G)

and the reengineered IBHIS broker (See appendix D).

Area

Original

IBHIS broker

Reengineered

IBHIS broker (PBM)

Researcher Validation Researcher Validation

Granularity 4 5 8 7

Expandability 5 4 9 6

Generality 5 7 5 7

Software system independence 6 3 6 3

Communication commonality 7 7 8 8

Table 44 Semantic differential measurements for original/reengineered IBHIS

For the semantic differential measurements, the reengineered IBHIS broker (PBM)

scored higher than the original IBHIS broker on all aspects, except generality and

software system independence which remained the same. Table 45 compares the

original system against the reengineered IBHIS broker (PBM) in terms of the quality

Chapter 6: Case study results

134

model. These are summarised using a Boolean value (1 or 0) which indicates which

technology scored higher. If they are the same then both score 0.

External quality

factor

Product quality

Criteria

Original

IBHIS

broker

Reengineered

IBHIS

broker

(PBM)

Granularity
- 0 1

Total 0 1

Flexibility

Complexity 0 1

Expandability 0 1

Generality 0 0

Modularity 0 0

Total 0 2

Reusability

Complexity 0 1

Generality 0 0

Modularity 0 0

Software-system

Independence
0 0

Total 0 1

Interoperability

Modularity 0 0

Communication

commonality
0 1

Total 0 1

Table 45 Original/Reengineered IBHIS (PBM) comparison

Table 45 shows that the reengineered IBHIS broker (PBM) improved all aspects of

agility when compared the original IBHIS broker. The key areas were; granularity,

complexity, expandability and communication commonality.

6.2.5 CS-RQ4

The McARM reengineering method was evaluated in terms of efficiency and

effectiveness (Pfleeger, 2001). The efficiency examined the time taken to carry out

each stage of the method. The effectiveness reported the following:

 Any problems encountered

 Rating of perceived level of difficulty (semantic differential scale).

Chapter 6: Case study results

135

Table 46 shows the ratings of the method stages

Stage
Time

(hours)
Problems

Ease

of use

System

understanding
26.25 The size of the system 7

Service

identification
8.5 None 7

Business process

modelling
5 None 8

System Redesign 27 None 7

Recoding 130.5
Problems with technology,

not enough detail
2

Business Process

creation
66

Problems with technology, no

examples/tutorials for WSIF
4

Table 46 Assessment of reengineering method

Table 46 shows that whenever there was a problem with a stage there would be an

increase in the amount of time performing the stage and a perceived increase in

difficulty. In terms of the time taken to perform the stage, business process creation

and recoding were those that took longer than the other stages. These stages also had

the most problems.

6.2.6 Summary

For CS-RQ1-P1, the results show there was no significant difference found between

the two bindings. There was also no significant difference for the message sizes. For

CS-RQ1-P2, the results show that SOAP (PBM) is rated higher than WSIF (NLC) in

terms of flexibility and interoperability. For CS-RQ2, there was a significant

difference found between the three layers but there was not a significant difference

between the message sizes. For CS-RQ3, the results show that reengineering the

IBHIS broker as an SOA improved all aspects of agility. The key areas were;

granularity, complexity, expandability and communication commonality. The stages

Chapter 6: Case study results

136

found with problems were those where new technologies needed to be learnt. These

were also the stages that took the most time to complete.

Chapter 7: Discussion

137

Chapter 7: Discussion

This chapter will discuss the results of the case study by research question. Changes

to the agility quality model are also proposed.

7.1 CS-RQ1

Case study research question 1 (CS-RQ1) is divided into two propositions:

 CS-RQ1–P1 - NLC used in a system reengineered for MCA will result in

improved performance when compared to PBM for a mobile service-based

system.

 CS-RQ1-P2 - A system reengineered for MCA using NLC will be less agile

than one using PBM.

These will be first discussed separately and then together in a summary.

7.1.1 CS-RQ1-P1

This research question investigates the performance of NLC (WSIF) and PBM

(SOAP) in multi-channel business processes. The results in Table 36 in section 5.2.1

show that there is not a decrease in response times when using WSIF instead of SOAP

in the small message medium sized messages, but there was for the large message.

However, neither message size nor binding was found not to be at a significant level

(Table 37 in section 6.2.1). The working hypothesis is not supported and therefore

Chapter 7: Discussion

138

NLC used in a system reengineered for MCA will not result in improved performance

when compared to PBM. This means that NLC should not be used instead of PBM for

improving the performance of a multi-channel business process. This result was not

expected as previous work had found that systems using NLC technologies perform

better than PBM, specifically WSIF has been found to be faster than using SOAP

(Migliardi & Podesta, 2004). One reason that this could be the case is that the

message sizes were not representative of the possible range of message size for SOAP

and the range offered by querying the IBHIS broker were too similar in size.

7.1.2 CS-RQ1-P2

The agility of NLC (WSIF) and PBM (SOAP) bindings were compared using the

agility quality model and the agility test cases.

7.1.2.1 Agility quality model

The results of this study found that NLC bindings were less agile than PBM in

service-based systems. The results in Table 37 in 6.2.2.1 show that WSIF (NLC) was

rated lower than SOAP (PBM) in terms of flexibility and interoperability. WSIF

(NLC) was rated lower than SOAP (PBM) in terms of interoperability due to the

lower rating of communication commonality. The reason WSIF (NLC) did not offer

the same level of communication commonality as SOAP (PBM) is that the SOAP

(PBM) protocol is recognised by a higher number of languages than WSIF (NLC).

This was evident in the reengineered IBHIS broker, as unlike the SOAP (PBM)

bindings, the WSIF (NLC) binding could not be used to access the system from a

business process. The lack of communication commonality is also the cause of the

Chapter 7: Discussion

139

lack of flexibility. The architecture could not be expanded easily due to a tight

coupling caused by the implementation of WSIF (NLC) in IBM Websphere 5.1.1,

which meant that the system could not be called from a business process. In fact,

some parts of the system could not be called at all.

As SOAP (PBM) was found to be better than WSIF (NLC) in these two aspects, the

working hypothesis is supported and it can be said that a system reengineered for

MCA using NLC will be less agile than one using PBM. This means that if agility is

an important aspect when reengineering a system for MCA, the use of NLC will not

be appropriate.

7.1.2.2 Agility test cases

Table 39 in section 5.2.2.2 shows that when creating a new service for use in a

business process, using SOAP was found to be easier than WSIF. Although the

number of code statements was the same for each service, the time taken to create the

WSIF services was longer. The reason for this is that a SOAP web service can be

automatically generated from Java classes; this includes the service description

document. However, in order to create a WSIF service, the service description

document had to be manually created, which is non-trivial and time consuming. Some

tools existed in the development environment for creating WSIF WDSL documents,

but these were not mature and were not even capable of creating the simple service

used in this study. This lack of tool support contributed to the lack of agility as it had

an impact on the time taken to carry out the changes. In this study the researcher had

written the WSIF service description document several times during prototyping. This

Chapter 7: Discussion

140

meant that when conducting the test case, the service interfaces were created more

easily than they would have been if the service was being created for the first time.

Even with this prior experience of using the technology, manually creating the

interfaces was difficult and time consuming. A further issue is that WSIF lacks

detailed documentation and there are very few working examples, making it more

difficult to learn and implement. SOAP however, has a great deal of examples and

tutorials available.

Table 40 in section 6.2.2.2 shows that in terms of amending an existing service, it is

faster to amend a service based on WSIF than it is a service based on SOAP. For the

WSIF service, only a few lines of code needed to be changed. For the SOAP service a

similar number of lines of code needed to be changed, but the process of creating a

web service had to be carried out also. Section 6.2.2.2 shows that when replacing a

service with an alternative identical service (SOAP or WSIF) the time and effort

would be the same. The reason for the time being the same is that the operations

(defined as a port type in a WSDL document) provided by the service would be the

same for both types of binding. Also, section 6.2.2.2 shows that when trying to access

a service from another server (BPEL), it is not possible to access a WSIF service

outside of the virtual machine in which it is running. The SOAP service however,

could be accessed from a BPEL server. Therefore, the time and effort required could

not be measured, but this does mean that if a service needs to be called outside of the

server it is running in then WSIF is not appropriate.

WSIF took more time and effort for agility test case 1, but for the agility test case 2,

WSIF took less time than SOAP, however only marginally. For agility test case 3, the

Chapter 7: Discussion

141

two bindings would take an equal amount of time and effort. Finally, agility test case

4 found that WSIF cannot be called from an external business process unlike SOAP

which meant that time and effort could not be measured. This means that in terms of

the time and effort required, using WSIF results on a system is less agile than SOAP,

as it would take more time to respond to change.

The implications for these findings are that using SOAP will be easier to use than

WSIF, due to the fact that WSIF service interfaces have to be created manually and

that there are very few resources for learning the technology. Therefore, in terms of

the agility test cases PBM is thought to be more agile than NLC.

7.1.3 Summary

In order to address the CS-QQ1, the results of CS-RQ1-P1 and CS-RQ1-P2 are

combined and compared against the decision table from the planning phase of the

case study (see Table 26). If the NLC (WSIF) binding outperformed PBM (SOAP), it

is marked with ‘NLC’ otherwise it is marked with ‘PBM’. As NLC did not improve

performance and scored lower on the agility metrics and the agility test cases,

outcome number five was obtained. Based on these findings the following conclusion

was made: native language calls should not be used in a business process as neither

performance nor agility is improved.

7.2 CS-RQ2

For research question CS-RQ2 – ‘Does the inclusion of extra layers required for MCA

reduce performance?’ the aim was to investigate the affect of each additional

Chapter 7: Discussion

142

architectural layer required for MCA on system performance. The results in section

6.2.3 (Table 42) show that with each layer added there is an increase in the response

time. However, there was not a significant difference between the message sizes.

These results agree with the statements by Hasselbring, et al. (2004) and Krafzig et al.

(2004), that adding extra layers causes a reduction in performance.

The mean response time for the medium message was found to be faster than the

mean response time for the small message of the service. Looking at the data sets, the

mean response times were similar across all three message sizes. The mean response

time for the small message and the large message were equal and the slower mean

response time for the medium size message appears to be caused by an outlier. There

was one outlier in each data set which was outside of the standard deviation. For both

the small and large messages this value was the same (31ms), however this was

higher for the medium sized message (47ms) which would have affected the mean.

One potential cause for the outlier could be the network used in the experiment. A

home Wi-Fi connection was used, which may have had variable network speed

caused by using internet. There were measures taken to reduce this variation (see

Table 54). Another control that could have been used would be to use a private

network instead of a public network, but this would have reduced the ecological

validity as multi-channel systems are unlikely to be used under such controlled

conditions. Also, the statistical analysis of variance used is non-parametric, which are

robust at coping with outliers (Coolican, 1999).

Chapter 7: Discussion

143

For the business processes the mean response time for the medium sized messages

were marginally faster than the mean response time for the small messages. As with

the services, the mean response times are similar across message size, however the

cause does not appear to be caused by outliers. Again, the cause for the mean

response time being faster for the medium message could also be attributed to

variation in the network speed.

A further consideration that may affect the performance is that the client technology

would need to process the response message from the service once it is received. This

would take longer for a mobile device than a desktop PC due to its limited processing

power and would further increase the response time.

7.3 CS-RQ3

In this section the original IBHIS broker and the reengineered IBHIS broker (SOAP

binding) are compared in terms of the agility quality model to investigate if

reengineering a system as an SOA improves the agility of a system for CS-RQ3 -

Does reengineering a system as an SOA improve agility?

7.3.1 Product quality criteria

Each of the product quality criteria will be discussed from the results in section 6.2.4

(Tables 43 and 44).

Chapter 7: Discussion

144

7.3.1.1 Granularity

In terms of the services provided, the original IBHIS system was thought to be too

fine grained (Table 44). Web service interfaces had been created for a number of

system classes. However, these were simply web service interfaces and do not appear

to have been designed as part of an SOA. Having a large number of web service

interfaces may be good for having many reconfigurations of the system, but this does

not represent the system in its simplest form. For reengineering IBHIS for MCA, a

small number of coarse-grained services were required to reduce the number of

messages in the system. This was addressed in the reengineered IBHIS broker, which

offered a set of more reusable coarse grained service interfaces that were aligned with

the ‘business functions’.

7.3.1.2 Complexity

In section 6.2.4 (Table 43) the results show that the reengineered IBHIS broker

improved on all aspects except number of methods. However, the original IBHIS

broker did not have any values that would be considered problematic. The number of

classes was nearly halved from the original IBHIS broker making the reengineered

IBHIS broker easier to understand and manage. However, it should be taken into

account that seven of the classes in the original IBHIS broker were old versions and

test classes. The average number of methods per class increased for the reengineered

IBHIS broker. Although this number was increased in the reengineered IBHIS broker

from 3.041 to 3.506, both were well under 20, a recommended maximum by Lorenz

(Kan, 2003). The reason for this increase is a result of the required ‘business object’

classes. These classes were implemented as Java beans and for each field an

associated ‘getter’ and ‘setter’ method are created. These methods were not all used

Chapter 7: Discussion

145

but were kept in order to maintain the notion of a Java bean. The average method size

was halved in the reengineered IBHIS broker from 17 LOC to eight LOC. The

average number of instance variables was also halved. However, the number of

instance variables in both systems was less than six, the number recommended by

Lorenz (Kan, 2003). Halving this number would be more important if the system was

larger. The number of children (subclasses) remained the same at 0.

7.3.1.3 Expandability

In section 6.2.4 (Table 44), the results show that the reengineered IBHIS broker had a

higher rating for architectural expandability than the original IBHIS broker. The

reason for this was that in the original IBHIS broker there was a tight coupling

between the GUI and system code. This meant that any extension to the architecture

would involve redesigning the user interface code as well as the system code. With

the reengineered IBHIS broker, this tight coupling was removed as the business logic

that was in the GUI was moved into business logic classes.

7.3.1.4 Generality

In section 6.2.4 (Table 44) the results show that the generality of the services in the

reengineered IBHIS broker and the original IBHIS broker were similar. All of the

services could potentially be used outside of the application to a limited extent. For

example, the ontology could be used in another medical system but could not be used

for another domain.

Chapter 7: Discussion

146

7.3.1.5 Modularity

The results in section 6.2.4 (Table 43) show that the modularity of the original and

reengineered IBHIS broker was equal. The coupling between classes was slightly

improved in the reengineered IBHIS broker. However, both systems were below the

acceptable number of 14 suggested by Sahraoui et al. (2000) with the original IBHIS

broker at measuring 1.170 and the reengineered IBHIS broker at 1.015. The lack of

cohesion in methods metric slightly increased in the reengineered IBHIS broker. This

increase is, again - likely due to the ‘business objects’ classes that it was necessary to

create. For each parameter in a Java bean there are two methods (‘getter’ and ‘setter’)

rather than many methods using the same variables. This results in more shared

variables, which would decrease the cohesion.

7.3.1.6 Communication commonality

In section 6.2.4 (Table 44), the results show that the communication commonality was

improved in the reengineered IBHIS broker. This was due to the use of SOAP

between the business logic layer and presentation layer. This was an improvement on

the original IBHIS broker, which used web pages (.jsp) to call Java beans. The

reengineered IBHIS broker was not only accessible via the web channel but also other

channels, thus improving the ability to integrate with other systems.

7.3.2 Summary

In terms of the external quality factors, the reengineered IBHIS broker was rated

higher in flexibility, reusability and interoperability (section 6.2.4, Table 45).

Therefore it was rated as being higher than the original IBHIS broker in terms of

Chapter 7: Discussion

147

overall agility. This would agree with the statement that reengineering a system as an

SOA improves agility (Krafzig et al. 2004; Allen 2006; Erl 2007; Newcomer &

Lomow 2005).

7.4 CS-RQ4

CS-RQ4 – ‘Is McARM an effective method for reengineering a system for MCA?’

investigated the use of McARM to reengineer an existing system toward a multi-

channel architecture. McARM was successfully used to reengineer an existing system

for MCA and was found to be easy to follow. No specialist tools were required for the

reengineering or service identification stages. This may be a disadvantage in terms of

the reduction of time but a manual approach would give developers more control

when reengineering the system. Also, UML was used at all stages which is a well

known notation, recognised in both industry and academia.

A limitation of McARM is the recoding stages due to the huge number of

programming languages that exist. However, an appropriate methodology could be

inserted into the McARM re-coding stages where required. For example, a method for

re-coding a functional language could be used in this stage instead of the object-

oriented XWIF, which was used in the study. The business process creation stage

does not have a large amount of languages, so there is a possibility that language

specific details could be given for this stage. In a real project, these stages may be less

of a problem if developers are familiar with the languages and system technologies

being used.

Chapter 7: Discussion

148

The main problems found with McARM were related to use of the technologies to

reengineer the system rather than the method itself, such as recoding and creating the

business processes (See section 6.2.5.10). For the business process stage, WSIF took a

long time to understand as examples and tutorials were not readily available. For the

recoding stage, there were various problems such as dependencies in the system,

which meant it was necessary to employ work-around techniques or alternatives had

to be found.

Also, for the system understanding stage of McARM, the size of the system

represented a problem. The high number of class diagrams were difficult to manage.

In order to make the diagrams more manageable, the system was classified by Java

project and then by each package within each project. However, this did not show

how the projects and packages interacted with each other. This problem was reduced

by sequence diagrams, as they showed which classes were called and in which order.

Although there was not a high level view of all of the classes in the system, when the

system was recoded the required classes were moved to the new projects without

difficulty.

It was felt that creating the clients to access the system should be included as a stage,

or as a sub-stage of recoding in McARM. The creation of clients is as important as

creating the system itself, yet it is not given importance in this method or any of the

other methods found in the SLR, with the exception of Comerio et al. (2004). Even

though the client types will not always be known in a multi-channel system, the ones

that are known at the time of designing the system should be created formally. This

would help to ensure that the clients were created correctly and also consistently. It is

Chapter 7: Discussion

149

also felt that the requirements elicitation and analysis stage needs more work.

Currently, it consists only of recommendations rather than a structured approach.

When creating the McARM, eight reengineering stages were proposed. In terms of a

reengineering method, these stages can be grouped into the reengineering phases

described in section 1.3.1 (see Table 47):

Phase Stage

Reverse engineering

 Requirements gathering/analysis

 System understanding

 Service identification in the existing system

Transformation
 System redesign

 System recoding

Forward engineering

 Business process modelling

 Business process implementation

 Service interface implementation

Table 47 McARM reengineering phases

In section 1.3.2, there were six levels identified at which a system could be

reengineered. Table 48 shows the reengineering levels, the reengineering phases and

the stage at which these are performed in McARM.

Level of abstraction
Stage number

Reverse Transformation Forward

Code 2 5 6

Functional 2 5 6

Design 2,3 5 6,7

Architectural 2 4 8

Requirements - - 1

Conceptual 2 - -

Table 48 McARM coverage of reengineering lifecycle

Table 48 shows that McARM covers most of the reengineering lifecycle. Only the

requirements and conceptual level of the reengineering process are not adequately

covered. In terms of the conceptual level, reference models are used as part of the

system understanding stage, however, there are no steps for transforming or forward

Chapter 7: Discussion

150

engineering these stages. In terms of the requirements, the original requirements

documents are not examined or transformed. The method assumes that a system

already exists and that it is to be modified to suit the new requirements.

7.5 Agility quality model

After working with and using the agility model, it was found that certain aspects of

the agility model could be improved. These were:

 The lack of comprehensibility

 The lack of maintainability

 The vagueness of granularity

 Missing product quality criteria

 Misinterpretation of ‘decoupling of functionality and technology’

The first aspect is the lack of assessment of documentation for comprehending the

system. Good documentation makes the system easier to understand and therefore

easier to change. This was one of the characteristics suggested by Krafzig et al. (2004)

but was not included in the agility model as there was no direct mapping to McCall’s

quality model. However, it was noticed that some aspects of correctness do measure

the level of documentation in the system. In McCall’s model, correctness is composed

of:

 Completeness - The degree to which required functional requirements have

been successfully achieved.

 Consistency - The use of uniform design and documentation techniques

throughout the software development protocol.

Chapter 7: Discussion

151

 Traceability - The functional independence of program components.

For documentation purposes, completeness is not relevant and so can be ignored.

Consistency is an assessment of system design and documentation, which can be

measured using a semantic differential scale. Example questions used to assess

consistency are:

 Are the same diagrammatical forms used?

 Are the diagrammatical forms used consistently?

The traceability aspect looks at tracing specific component(s), from code to

requirements going through all stages of analysis and design and can be measured

using a semantic differential scale. This means that if completeness is removed from

correctness, which is then renamed comprehensibility, it can then be added to the

model.

The external quality factor maintainability was not included in the final list of

characteristics. Although this was considered at an architectural level, the code level

was not thought to be important at the time of creating the model. However, this is

now thought to be important as making a change to the system could also involve

changes to the system code as shown in the agility test cases that involves changing a

service. It is thought that maintainability should be added as part of the agility quality

model, as this is another indicator of the length of time required to reengineer as

system.

Chapter 7: Discussion

152

It was found that the agility model needed improvement as there were some external

quality factors that needed to be added as well as expanded. The granularity external

quality factor could be expanded as the original definition was too vague. This was

investigated further and four types of granularity were found (Erl, 2007):

 Service granularity – the quantity of potential logic contained in a service

which is broad in functional context.

 Capability granularity – the functional scope of a specific capability e.g.

retrieving a document header is more fine-grained than retrieving the entire

document.

 Data granularity – how big are the messages being sent? For example,

retrieving a delivery address for an invoice is more fine-grained than

retrieving the entire invoice.

 Constraint granularity – what is the level of detail of the constraints

surrounding the data? For example, a document with many validation

constraints is said to be more fine-grained than a document with little or no

constraints.

Constraint granularity would not be included in the model as it was decided that this

was too specific to service-oriented systems and would be hard to measure in systems

that do not use XML schemas. However, it could be included if two service-oriented

systems were being compared. Service granularity and capability granularity could

be measured using a semantic differential scale. Data granularity could also be

measured, using a semantic differential measurement, examining the potential

message sizes that could be retrieved and the potential technologies that could be

used.

Chapter 7: Discussion

153

A potential further issue with the agility quality model was that two product quality

criteria were not used. These were data commonality (from interoperability) and

machine independence (from reusability). These criteria were not included as they had

been addressed by the IBHIS project. However, this does not mean that they should

be excluded from the agility model.

Finally, upon further investigation, it was found that when conducting the study, that

the interoperability external quality factor had been misinterpreted. The description

from Krafzig et al. (2004) is ‘Decoupling of functionality and technology –

architecture must tolerate heterogeneity and change to its technical infrastructure.

Business functionality must be decoupled from underlying technology’. This was

interpreted to mean interoperability. However, interoperability is still an important

factor when measuring agility and therefore should be included in the agility quality

model. Decoupling of functionality and technology has been re-labelled heterogeneity

and added to the model. The product quality criteria for heterogeneity are software

independence and hardware independence. Figure 37 shows the original model.

Figure 37 Original agility quality model

Agility

Granularity

Flexibility

Reusability

Interoperability
Communication

commonality

Software-system
independence

Modularity

Generality

Expandability

Complexity

Chapter 7: Discussion

154

Figure 38 shows the revised agility quality model.

Figure 38 Revised agility quality model

Figure 38 shows the revised agility quality model which includes the additional

aspects of quality that have been identified.

Complexity

Expandability

Generality

Modularity

Software
independence

Communication

commonality

Capability

Data

Consistency

Traceability

Granularity

Service

Flexibility

Comprehensibility

Agility

Machine

independence

Data

commonality Interoperability

Reusability

Heterogeneity

Chapter 8: Evaluation

155

Chapter 8: Evaluation

This chapter presents an evaluation of the research undertaken. The first section

focuses on the SLR methodology. The second section focuses on the case study and

the third section focuses on the data collection methods.

8.1 Systematic Literature Review

A protocol and report were created as part of the SLR. This meant that it could be

reviewed by supervisors and presented at workshops and conferences for peer review.

The main strength of this SLR was that the authors of papers were contacted for

further information on the same topic, if a paper was thought to be highly relevant.

This improved the quality and quantity of evidence found by increasing the number of

relevant papers.

Fifteen different service-oriented reengineering methods were found by the SLR. The

analysis of these papers meant that a thorough understanding of service-oriented

reengineering was acquired and that there was enough detail to help to create the

McARM method. Only two methods specifically for MCA reengineering, were found

by the SLR, which highlighted a gap in the research. Seven architectures for MCA

were found. These were compared and contrasted in order to create McArc for the

study. Finally, a clear set of challenges that could be encountered when reengineering

a system as an SOA emerged from the evidence, which can be used to guide future

practice and research.

Chapter 8: Evaluation

156

A weakness with the SLR was related to the use of search engines. There were papers

found in the pilot search on the Google search engine that did not appear in the main

search. This was due to the dynamic nature of the web and search engines in

particular, and highlights that the literature found by an SLR is a snapshot in time.

The human element of the SLR could also be seen as weakness. Manual activities

such as extracting data and deciding on papers could have error or bias. In this study,

data extraction was validated by the supervising team in order to address this problem.

Another weakness of the review was that the studies were not assessed for quality due

to time constraints. Finally, only four data sources were used, it is possible that

increasing this number may have increased the amount of included papers.

The weaknesses of the evidence from the review can be related to the research

questions. For the first research question it was found that there was not a clear

boundary between reengineering an existing system as an SOA and one that exposes

an existing system using service interfaces. This made it difficult to decide whether or

not a reengineering method should be included in the study. For the second research

question, there were papers found which were not using a service-oriented approach

and, therefore, excluded from the review. However, it is possible that only one of

these approaches may have been a more suitable approach to the problem of

reengineering the IBHIS broker for MCA. For the final research question, which

looked at the types of issue found when reengineering a system as an SOA, the issue

categories were decided upon by a novice researcher. These may have been

misunderstood or could have been grouped more appropriately.

Chapter 8: Evaluation

157

 8.2 Case study

In this section the case study is evaluated against a case study checklist and the

validity of the case study is also evaluated.

8.2.1 Checklist

The case study was evaluated against a checklist for software engineering case study

assessment proposed by Höst & Runeson (2007). The aspects that were assessed

were:

 Case study design

 Preparation for data collection

 Collecting evidence

 Analysis of collected data

 Reporting

8.2.1.1 Case study design

All of the items on the checklist were sufficiently covered except the definition of the

case (see Table 49).

Chapter 8: Evaluation

158

A clearer definition could have been given regarding the case definition. The integrity

of the roles of the individuals was not taken into account as there were no external

individuals or organisations used.

8.2.1.2 Preparation for data collection

All of the items on the checklist were sufficiently covered (see Table 50).

Question Response

Is a protocol for data collection and analysis

derived (what, why, how)?

Yes

Are multiple data sources and collection methods

planned?

Yes

For quantitative data, are the measurements well

defined?

Yes

Are the planned methods and measurements

sufficient to fulfil the objective of the study?

Yes

Is the study design approved by a review board,

and has informed consent obtained from

individuals and organizations?

n/a

Table 50 Preparation for data collection evaluation

Question Response

Is a clear purpose/objective/research

question/hypothesis/proposition defined upfront?

Yes

Is the theoretical basis - relation to existing

literature and other cases - defined?

Yes

Are the authors’ intentions with the research

made clear?

Yes

Is the case adequately defined (size, domain,

process…)?

Yes – not thorough

Is a cause-effect relation under study? If yes, is

the cause distinguished from other factors?

Yes

Will data be collected from multiple sources?

Using multiple methods?

Yes

Is there a rationale behind the selection of roles,

artefacts, viewpoints, etc.?

Yes

Are the case study settings relevant to validly

address for the research question?

Yes

Is the integrity of individuals/organizations taken

into account?

n/a

Table 49 Case study design evaluation

Chapter 8: Evaluation

159

8.2.1.3 Collecting evidence

The only problem found was that the evidence had not been collected entirely as

stated by the protocol (see Table 51).

Question Response

Are data collected according to the protocol?

No a mock-up was

made for RQ1(b) and

RQ3

Is the observed phenomenon correctly

implemented (e.g. to what extent is a design

method under study actually used)?
-

Are data recorded to enable further analysis? Yes

Are sensitive results identified (for individuals,

organization or project)?
n/a

Are the data collection procedures well traceable? Yes

Do the collected data provide ability to address

the research question?
Yes

Table 51 Collecting evidence evaluation

Data was not collected exactly as outlined in the protocol due to problems with the

original IBHIS broker code. This meant that it was necessary to create mock-up

systems in order to undertake the performance testing and the agility test cases.

8.2.1.4 Analysis of the evidence

All of the items on the checklist were covered (see Table 52).

Chapter 8: Evaluation

160

Question Response

Is the analysis methodology defined, including roles

and review procedures?

Yes

Is a chain of evidence shown with traceable inferences

from data to research questions and existing theory?

Yes but

not clear

Are alternative perspectives and explanations used in

the analysis?

Yes

Is a cause-effect relation under study? If yes, is the

cause distinguished from other factors?

Yes

Are there clear conclusions from the analysis,

including recommendations for practice/further

research?

Yes

Are threats to validity addressed in a systematic way?
Yes

Table 52 Analysis of the evidence evaluation

The only problem highlighted was the chain of evidence which could have been

described clearer and in more detail.

8.2.1.5 Reporting

There were no problems found (see Table 53).

Question Response

Are the case and its context adequately reported?
Yes

Are the research questions and corresponding

answers reported?

Yes

Are related theory, hypotheses and propositions

clearly reported?

Yes

Are the data collection procedures presented, with

relevant motivation?

Yes

Are sufficient raw data presented?
Yes

Are the analysis procedures clearly reported?
Yes

Are ethical issues reported openly (personal

intentions, integrity issues)?

n/a

Does the report contain conclusions, implications

for practice and future research?

Yes

Does the report give a realistic and credible

impression?

-

Is the report suitable for its audience, easy to read

and well structured?

-

Table 53 Reporting evaluation

Chapter 8: Evaluation

161

8.2.2 Validity

The following section examines the validity of the case study (Yin, 2003). The types

of validity are (Coolican, 1999):

 Construct validity

 Internal validity

 External validity

 Reliability

These will be explained further in the following sections.

8.2.2.1 Construct validity

Construct validity shows that the correct operational measures were planned for the

concepts being studied. For this study there was a chain of evidence which had been

outlined. This chain of evidence stated the aspects being measured and at which stage

they will be measured. A protocol was created which was peer reviewed at two

workshops (Jefferies et al., 2009).

The rest of this section outlines the potential threats to construct validity and describes

ways in which they were avoided in the study (Coolican, 1999).

8.2.2.1.1 Construct measures

This is the extent to which measures actually relate to the concept. For this study, the

main threat was that the metric models may not have been appropriate measures of

Chapter 8: Evaluation

162

agility. There was a thorough review of literature and this work was also discussed at

workshops and submitted as part of a conference proceeding (Jefferies et al., 2009).

8.2.2.1.2 Mono-method bias

Construct validity was maintained by taking different measures for the same concept.

This is also known as triangulation, Höst & Runeson (2007). For the agility related

research questions there were three different sources; code metrics, semantic

differential measurements and the agility test cases.

8.2.2.1.3 Levels of the independent variable

The levels used for the independent variables may not have been sufficient for the size

of the messages for the performance investigations. If the size of the messages were

not significantly different enough then the likelihood of there being a significant

difference in response time is reduced. For this study, the message sizes were

measured in three sizes - small, medium and large. The small message size represents

a query using a single field from the ontology, the medium size represents a multiple

fields (half) query and the large query field represents a query of all fields. Although

these may be representative of the range of message sizes for the study, they may not

be representative of all possible SOAP messages.

8.2.2.2 Internal validity

The internal validity is threatened by the ways in which the results may have been

caused by other factors. Tables 54 examine the threats to internal validity of the

performance measurements and describes the actions that were taken to control them.

Chapter 8: Evaluation

163

Rival explanation Affect on result Control Measures

Nesting of the XML documents

could have an effect on the

parsing time.

Deeper nesting requires

more parsing which will

reduce the response time.

Nesting of XML documents was

kept to one level.

Using the internet to access web

services could have an affect on

performance.

Different days/times may

have different speeds due to

the number of users online.

Evaluation of the two bindings

was performed on similar

time/day to reduce the affect of

internet speed differences.

The speed of a machine could

affect the performance of a

business process/web service call.

The speed of the machine

will affect XML parsing,

request initialisation etc.

The same machine was used for

both bindings so that there was

no difference between machine

speeds.

Other programs on the machine

could take away resources.
See above

Programs running on the machine

were kept the same during

testing.

The performance measurement

tools are not accurate or reliable.

An inaccurate response time

is recorded

This was not controlled but

assumed to be accurate as they

are part of the development

environments used.

Table 54 Threats and controls for performance measurements

The performance measurements were controlled as much as possible but these could have

been controlled further. For example, an experiment could have been conducted to determine

if the level of nesting of the XML documents used in messaging made a difference in the

response times. Another control that could have been improved was the speed of the network.

This could have been improved by using a private network instead of a public network.

However, this would reduce the ecological validity. Table 55 examine the threats to

internal validity of the agility metrics and evaluation of the reengineered system and

describes the actions that were taken to control them.

Chapter 8: Evaluation

164

Threat to validity Affect on result Control Measures

The metric tool may not calculate

the metrics correctly.

Incorrect metrics The metrics measurement tool

was not validated as this would

have been too time consuming.

However this is a popular open

source project which has an

active community surrounding it.

A novice researcher conducted the

rating of some of the product

quality criteria for the agility

quality model.

The rating could contain

inaccuracy or bias.

The semantic differential

measurements were validated by

a member of the supervising

team. Although this person was

responsible for coding the

original IBHIS broker it was

decided that it would be too

much of a task to ask someone to

understand the systems due to

their size.

Practice effects - During the

learning/prototyping phase of the

study the researcher’s

understanding of the different

technologies would have

improved.

The researcher may have

became more familiar with

one of the technologies

than the other. This would

result in the tasks being

performed quicker than if

they had not worked with

either of the technologies

previously

It was not possible to control

this, but, it was kept in mind

when making conclusions about

the technologies.

Table 55 Threats and controls for agility measurements

8.2.2.3 External validity

This section looks at the external validity of the study and how the effects can be

generalised outside of the study (Coolican, 1999).

8.2.2.3.1 CS1-RQ1

In terms of the generalisation to the population, the performance/agility trade-off is

not atypical, and there are many other cases where the use of NLC and PBM could be

compared, such as in chip design and network design. In terms of ecological validity,

the reengineering scenario is not an atypical case as there are many systems that could

benefit from being reengineered for MCA.

Chapter 8: Evaluation

165

8.2.2.3.2 CS1-RQ2

In terms of the generalisation to the population, the addition of new layers in a system

impacting on the performance is not atypical. In terms of ecological validity, the

reengineering scenario is not a typical case as not all organisations will wish to expose

their systems to multiple channels.

8.2.2.3.3 CS1-RQ3

In terms of generalisation to the population, although the term ‘agility’ is not often

applied to systems that are not SOA based, they are discussed in similar terms such as

flexibility which suggests that the results are generalisable. In terms of ecological

validity, the reengineering scenario is not atypical as reengineering a system as an

SOA is becoming increasingly more common in the IT industry.

8.2.2.3.4 CS1-RQ4

In terms of the generalisation to the population, not all systems are going to need to

be reengineered for MCA. However, the results are applicable to any type of system

that will be reengineered using service-based technologies. In terms of ecological

validity, for systems that do need to be reengineered for MCA, a reengineering

method will be needed.

8.2.2.4 Reliability

The case study had a protocol, which means that it is auditable increasing its

reliability. The case study protocol was also validated in the form of peer review.

Chapter 8: Evaluation

166

8.3 Data collection methods

This section evaluates the data collection methods in terms of their strengths and

weaknesses. The data collection methods are:

 Response times

 Code metrics

 Semantic differential scale

 Agility test case data

 McARM evaluation

8.3.1 Response times

A potential weakness with the response time data collection was the use of different

tools used to measure the response times at different points in the system. The

different tools may differ in how they take measurements which could have an affect

on the results. For example, when measuring a response time, some pre or post-

processing may be included by one of the servers, but not included in the other server.

For the original IBHIS broker measurements were taken from a browser within IBM

Websphere application developer. For the reengineered IBHIS broker, measurements

were taken from the business processes server (Oracle BPEL Process manager) and

the measurements for the mobile client were taken from the Sun Wireless Toolkit

2.5.2. Control measures were put in place to minimise bias where possible (see Table

54).

Chapter 8: Evaluation

167

8.3.2 Code metrics

The code metrics were gathered using the JHawk software. The algorithms in the tool

could be incorrect or the tool could have bugs which would mean that the metrics are

incorrect. However, as JHawk is a popular open source tool with a large community,

the tool itself was not validated. The baselines used for the metrics are rules of thumb

recommended by Lorenz (Kan, 2003) and were used as a guide only, as the two

systems were being compared rather than being examined for values that may cause

concern.

8.3.3 Semantic differential measurements

Using semantic differential measurements allowed the systems to be assessed on

aspects that could not be measured by using code metrics, such as granularity. In

order to reduce error, a member of the supervising team, who was familiar with the

system, validated the results (See appendix H and I). There was mainly agreement,

apart from some cases, where the reviewer had more knowledge of the system. For

example, the reviewer knew that not all of the requirements were satisfied in the

original system. The first reviewer had assumed that they were all satisfied as the

project had been completed.

The main weakness of the semantic differential measurements is the fact that they are

error prone and subject to bias (Coolican, 2003). For example the first reviewer had

created the method and would therefore be biased in its favour. The validation

reviewer may have been biased in that he would want to score the system favourably

as he had worked on the original IBHIS broker. The validation reviewer was also the

supervisor of the researcher which meant that he may have been biased toward

Chapter 8: Evaluation

168

helping the researcher. However, the reviewer is an experienced researcher and there

is no reason to believe that he did not perform a fair, unbiased review. An external

validation reviewer could have been used but the time needed to perform the program

comprehension would have been too long for a system of this size and complexity.

There are both advantages and disadvantages for this decision. An external validation

reviewer would have found it more difficult to interpret the code than the validation

reviewer who had worked on the project previously. Also, an external validation

reviewer would not know why certain decisions were made regarding the

design/coding of the system and the effect that any changes may have.

8.3.4 Agility test cases

The agility test cases made it possible to measure the time and effort to make changes

to the software. The agility test cases were derived from the focus of the investigation

(agility of NLC and PBM). However, in a real system, the agility test cases would

come from anticipated changes in business requirements. There are a large number of

potential agility test cases, which means that there could be bias in the ones that were

chosen. This could mean that the system is agile in the aspects tested but not in

aspects that were untested. Another potential weakness of the agility test case data

was the lack of assessment of the program comprehension. When a system is

reengineered, the person carrying out the reengineering is not always the person that

built the system; therefore there would be an impact on the time taken to make any

changes to the system. For the purpose of this experiment it was assumed that this was

the same person as prototyping of the WSIF technology was carried out in order to

make sure that the technology could be used in the case study. This meant that there

was already an understanding of what the system would do and how the technology

Chapter 8: Evaluation

169

worked. This means that the results are less applicable when the person reengineering

the system was not involved in creating the original system.

8.3.5 McARM evaluation

The main problems are with the participant rating the result and their opinion of the

output of the stage. As the study participant was also the study observer, there was the

potential for bias. The participant was also the creator of the McARM method which

could introduce bias toward the method.

Chapter 9: Conclusions and future work

170

Chapter 9: Conclusions and future work

This chapter concludes the thesis and makes recommendation for future work.

9.1 Conclusions

This section draws some conclusions about each research question, McArc, the agility

quality model and the research methods used.

9.1.1 CS-RQ1

It is concluded in this case, that NLC should not be used instead of PBM for

messaging between the services and business processes to improve the performance

of a system reengineered for MCA. NLC should be used if the message size is large

and interoperability is not important. For example, NLC would be beneficial if the

services are going to be accessed by internal business processes, the data sets are large

and the number of simultaneous invocations is high.

One of the main limitations of this part of the study was the fact that it was necessary

to use mock up versions of the reengineered IBHIS broker instead of the broker itself.

It was necessary to use mock ups of the reengineered IBHIS broker - due to the fact

that the WSIF bindings could not be accessed by business processes outside of the

server in which they are running. The mock up brokers matched the reengineered

IBHIS broker query service functionality exactly, but there were some differences in

Chapter 9: Conclusions and future work

171

how the WSIF and SOAP services were created in Oracle BPEL Process Manager

compared to IBM Websphere Application Developer.

A limitation for CS-RQ1-P1 is that the range of the message sizes used in this part of

the study were only from the possible range from the reengineered IBHIS broker.

However, these may not have been representative of the complete range of possible

sizes when using services. Another limitation is that load was not taken into account.

With a live server, multiple calls to a service will be made from numerous requesters.

However, this work was concerned only with single response times only.

9.1.2 CS-RQ2

It was found that with each additional layer required for MCA there was a decrease in

system performance. This shows that the fewer layers there are for a multi-channel

system, the quicker the response times. When a system is going to be accessed by

devices with limited resources, a good understanding of the technologies used and

user requirements is needed, to ensure that any additional layers employed in the

architecture are justified. It was also found that message size did not decrease the

system performance significantly. This shows that reducing the layers in architecture

is more important than reducing the sizes of the messages sent.

A potential limitation with this part of the study is server load. This was not

considered in this study, as the focus was on individual response times. However, load

would be an important factor in a live system if there is a large volume of traffic. A

further possible limitation is that it was not possible to perform the testing using a

physical (mobile) device due to a problem with the messages returned from the Oracle

Chapter 9: Conclusions and future work

172

BPEL Process Manager. Therefore, it was necessary to use an emulator of a physical

device and it is possible that this may have performed differently to a physical device,

thus giving different results.

9.1.3 CS-RQ3

It was found that reengineering a system as an SOA can help to improve the agility of

a system. However, an SOA is not a silver bullet and there are cases where an SOA

may not be an appropriate solution (Section 4.1).

A potential limitation with this research question was that only the system code was

examined as no agility test cases were used. The reason for not having agility test

cases for this part of the investigation was that only service-based systems were

considered when the case study was planned. This meant none of the test cases could

be applied to a non service oriented system.

9.1.4 CS-RQ4

McARM is a comprehensive UML based reengineering method that can be used to

reengineer a system for MCA. The case study provided an example of its use with a

medium sized system. Compared to the methods found by the SLR for reengineering

a system as a service-oriented architecture (including the two specifically for MCA),

McARM is more comprehensive in terms of coverage. The four most comprehensive

of the methods found only covered five of the stages required for reengineering a

system for MCA (Zhang et al. 2005; Zhang & Yang 2004; Zimmermann et al. 2005;

Chapter 9: Conclusions and future work

173

Comerio et al., 2004). McARM covered eight of the stages required for reengineering

for MCA.

9.1.5 Multi-channel Architecture

For the study, a simple architectural layering was proposed (McArc) in order to

expose the original IBHIS broker for multi-channel access. McArc was created by

evaluating a number of potential multi-channel architectures. The implementation

meant that the system was accessible from any device that supports web services, as

well as business processes. This architecture was also loosely coupled at the service

and business process level, which meant that it was agile as it could be changed

easily.

9.1.6 Agility quality model

This work proposed a method for assessing agility, which comprises an agility quality

model and a set of agility test cases. The agility quality model can be used to assess

the code of a system in order to state its level of agility. The test cases allowed the

time and effort required to make potential changed to be assessed. In the case study,

conducted as part of this work, the agility model was used to compare different

systems and bindings.

One of the problems with the agility quality model was the difficulty in deciding how

to define certain metrics. For example, when measuring lines of code, it was a

difficult decision whether or not to use the statements only or to also include

comments, lines with braces and empty lines. Only the number of statements was used

Chapter 9: Conclusions and future work

174

in agility quality model as it was decided that other aspects, such as empty lines, did

not add to the complexity of the code - only how it looked.

9.1.7 Research methodologies

The SLR method was used for gathering information about service-oriented

reengineering methods and issues as well as multi-channel access. The SLR method

was found to be a useful and effective method from the point of view of a novice

researcher. A useful structure was given to the researcher at the early stages of

research, which was also found to be helpful later on. When creating a protocol for

the SLR, there were many examples, which were found to be very helpful. It was

found however that the SLR was merely a snapshot in time and did not lend itself well

to rapidly changing areas of research.

The case study methodology allowed the research questions to be investigated in the

way best suited to having multiple forms of measurement. The study used multiple

sources to explore the performance and agility and the trade-off for systems

reengineered for MCA. However, some aspects of conducting the case study were

found to be difficult. For example, when planning the case study, there were not many

guidelines and examples of deliverables such as a case study protocol. It was also

found that when using multiple data sources and having multiple research questions,

if a change was made to an aspect of the study or protocol, it is not always clear what

impact the change would have on the rest of the case study.

Chapter 9: Conclusions and future work

175

9.2 Future work

This section proposes future work concerning each research question, the multi-

channel architecture and the agility quality model.

9.2.1 CS-RQ1

For improving the speed between business processes and services, further work could

look at other technologies such as the REST protocol. For the comparison of the

agility of NLC and PBM, future work would involve testing on a different

development environment, for example, a more recent version of IBM Websphere or

Oracle BPEL Process Manager. The complexity metrics used were based on well

known complexity measures. However, it is possible that there are other metrics that

could have been included in the measure e.g. maintainability index and source quality

that may have also been relevant. Future work is needed to investigate this further.

For the agility test cases, future work could investigate a set of guidelines for creating

agility test cases.

9.2.2 CS-RQ2

Further work could be conducted to investigate the response times when accessing the

business processes from a physical device. Due to the ‘empty header’ problem (See

section 5.2.4.8), it was not possible to test the system on a physical device. Therefore,

further investigation is needed into solving this problem so that business processes

can be accessed by mobile devices.

Chapter 9: Conclusions and future work

176

9.2.3 CS-RQ3

Future work could look at deriving a set of test cases for testing the agility of non

service-based systems. Other future work could look at applying the agility testing

methods to other reengineering projects for validation purposes or with a view to

extending the method.

9.2.4 CS-RQ4

Potential future work for McARM may involve investigating a potential generic

method for the recoding stage of reengineering a system toward an SOA. An area that

also requires further work is the requirements stage of the method. This could be

detailed further with an appropriate structured method. Also required is provision for

creating the clients that will access the system. This could be a stage on its own or it

could be included in the recoding stage. The McARM method also needs to be

independently tested in other cases and expert reviewed to ensure that it has been

created in a credible manner.

The system that was used was chosen due to its availability; however it would have

been useful to have a publicly available system that could be used as a benchmark for

SO reengineering methods and experiments. One suggestion would be an open source

system chosen by a number of experts in this area.

Chapter 9: Conclusions and future work

177

9.2.5 Multi-channel Architecture

It was intended that this architecture could be applied to any system that requires

reengineering for MCA. In order to investigate this, the architecture would need to be

applied to other systems to see if it can be applied outside of this study.

9.2.6 Agility quality model

The revised model will need to be tested further by using the model in another case

study or by validating the model, for example by expert review. Also, the extra

aspects added to the quality model need to be investigated further. Future work may

also look at creating baselines for the metrics so that that level of system agility can

be assessed in isolation.

References

178

References

Adacal, M. & Benner, A. B. (2006). Mobile Web Services: A New Agent-Based

Framework. IEEE Internet Computing 10(3) (May. 2006). pp 58-65.

Allen, P. (2006). Service-orientation – Winning Strategies and Best Practices.

Cambridge, UK: Cambridge University Press. ISBN: 978-0-521-84336-2.

Alvaro A., Lucredio D., Garcia V., Prado A., Trevelin L., Almeida E. (2003). Orion-

RE: A Component-Based Software Reengineering Environment. 10th Working

Conference on Reverse Engineering (WCRE 2003). pp.248.

Anand, S., Chatterjee, A. M., Kumar, V., Raut, V. & Singh, V. (2005). Towards

Legacy Enablement Using SOA and Web Services: Leverage legacy systems with

SOA. [Online]

<http://webservices.sys-con.com/read/164558.htm> Accessed on 09.05.2007.

Arnold R. S. (1993). Software reengineering, IEEE Computer Society Press.

Arteta B. M. &. Giachetti R. E. (2004). A measure of agility as the complexity of the

enterprise system. In Robotics and Computer-Integrated Manufacturing, 20, 495-503.

Basilli V.R, Gianlugi. C and Rombach H. D. (1996). The Goal Question Metric

Approach. [Online] <http://wwwagse.informatik.uni-

kl.de/pubs/repository/basili94b/encyclo.gqm.pdf> Accessed on 07.11.2010

http://webservices.sys-con.com/author/sriramanand.htm
http://webservices.sys-con.com/author/achatterjee.htm
http://webservices.sys-con.com/author/vkumar.htm
http://webservices.sys-con.com/author/vraut.htm
http://webservices.sys-con.com/author/vsingh.htm
http://webservices.sys-con.com/read/164558.htm
http://wwwagse.informatik.uni-kl.de/pubs/repository/basili94b/encyclo.gqm.pdf
http://wwwagse.informatik.uni-kl.de/pubs/repository/basili94b/encyclo.gqm.pdf

References

179

Beck K. (2000). eXtreme Programming. AddisonWesley, Boston.

 Berzins V, Shing M, Luqi, Saluto M & Williams J. (2000). Object-Oriented Modular

Architecture for Ground Combat Simulation", Proceedings of the 2000 Command and

Control Research and Technology Symposium, Naval Postgraduate School, Monterey,

CA, June 26-28.

Bergey, J.; Smith, D.; Weiderman, N.; & Woods, S.N. (1999) Options Analysis for

Reengineering (OAR): Issues and Conceptual Approach. Technical Report

(CMU/SEI-99-TN-014). Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University.

Bertini, E. & Santucci, G. (2004). Modelling internet based applications for designing

multi-device adaptive interfaces. In Proceedings of the Working Conference on

Advanced Visual interfaces (May 25 - 28, 2004). Gallipoli, Italy. ACM, New York,

NY. pp 252-256.

Bianco, P., Kotermanski, R. & Merson, P. (2007). Evaluating a Service-Oriented

Architecture. Software Architecture Technology Initiative Technical report.

CMU/SEI-2007-TR-015, ESC-TR-2007-015.

Bisdikian, C., Christensen, J., Davis, J., Ebling, M. R., Hunt, G., Jerome, W., Lei, H.,

Maes, S. & Sow, D. (2001). Enabling location-based applications. In Proceedings of

the 1st international Workshop on Mobile Commerce, Rome, Italy. WMC '01. ACM,

New York, NY. pp 38-42.

References

180

Blanvalet, S., Bolie, J., Cardella, M., Carey, S., Chandran, P., Coene, Y., Gaur, H.,

Geminiuc, K., Juric, M. & Zirn, M. (2006). BPEL Cookbook: Best Practices for SOA-

based integration and composite applications development. Packt Publishing. ISBN:

978-1904811336.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G. & Merritt, M.

(1978). Characteristics of Software Quality. North Holland Publishing, Amsterdam,

The Netherlands.

Brereton, O.P., Gold, N.E., Budgen, D., Bennett, K.H. & Mehandjiev, N.D. (2006).

Service-based systems: a systematic literature review of issues. Computer Science

Technical Report, Keele University (TR/06-01).

Brereton, P., Kitchenham, B., Budgen, D. & Li, Z. (2008). Using a Protocol Template

for Case Study Planning. In Proceedings of Evaluation and Assessment in Software

Engineering (EASE), (2008), Bari, Italy.

Brown, K. & Reinitz, R. (2003). Web Services Architectures and Best Practices.

[Online] IBM. Available at

<http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.ht

ml> Accessed on 27.07.2009.

Budgen, D. (2003) Software Design, 2
nd

 Ed. Pearson Addison Wesley. ISBN 978-

0201722192

http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Stany%20Blanvalet
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Jeremy%20Bolie
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Michael%20Cardella
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Sean%20Carey
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Praveen%20Chandran
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Yves%20Coene
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Harish%20Gaur
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Kevin%20Geminiuc
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Kevin%20Geminiuc
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Matjaz%20Juric
http://www.amazon.com/exec/obidos/search-handle-url?%255Fencoding=UTF8&search-type=ss&index=books&field-author=Markus%20Zirn
http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html
http://www.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html

References

181

Budgen, D., Rigby, M., Brereton, P. & Turner, M. (2007). A Data Integration Broker

for Healthcare Systems. Computer 40, 4 (Apr. 2007). pp 34-41.

Chen, F., Li, S. & Yang, H. (2005) Feature Analysis for Service-Oriented

Reengineering. In the 12th IEEE Asia-Pacific Software Engineering Conference

(APSEC), (Dec. 2005), Taibei.

Chen, S., Bao, L. & Chen, P. (2008). OptBPEL: A Tool for Performance

Optimization of BPEL Process. Software Composition 2008. pp 141-148.

Chu W., Lu C., Shiu C., & He X. (2000). Pattern-based software reengineering: a case

study. Journal of Software Maintenance 12, 2 (March 2000), pp. 121-141.

Chung, S., An, J. & Davalos, S. (2007). Service-Oriented Software Reengineering:

SoSR. In Proceedings of 40th Annual Hawaii International Conference on System

Sciences (HICSS'07). pp.172c.

Cohen, F. (2001). Myths and misunderstandings surrounding SOAP. [Online]

<http://www.ibm.com/developerworks/library/ws-spmyths.html> Accessed on

29.01.2011

Comerio, M., De Paoli, F., Grega, S., Batini, C., Di Francesco, C. & Di Pasquale, A.

(2004). A service re-design methodology for multi-channel adaptation.

In Proceedings of the 2nd international Conference on Service Oriented

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chen:Sheng.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bao:Liang.html
http://www.informatik.uni-trier.de/~ley/db/conf/soco/sc2008.html#ChenBC08
http://www.ibm.com/developerworks/library/ws-spmyths.html

References

182

Computing, (November 15 - 19, 2004), New York, USA. ICSOC '04. ACM, New

York, NY. pp 11-20.

Coolican H. (1999). Research Methods and Statistics in Psychology, 3
rd

 Ed. Hodder

Arnold H&S. ISBN: 978-0340747605.

Dromey, R. G. (1995). A model for software product quality. In IEEE Transactions

on Software Engineering, 21, pp 146-162.

Duftler, M. J., Mukhi, N. K., Slominski, A., Weerewarana S. & Watson T. (2001).

Web services invocation framework (WSIF). [Online] IBM. Available at

 <http://www.research.ibm.com/people/b/bth/OOWS2001/duftler.pdf > Accessed on

31.04.2008.

Eisenstein J., Vanderdonckt J. & Puerta A. (2001). Applying model-based techniques

to the development of UIs for mobile computers. In Proceedings of the 6th

International Conference on Intelligent User Interfaces, (January 14 - 17, 2001),

Santa Fe, New Mexico, United States. IUI '01. ACM, New York, NY. pp 69-76.

Erl, T. (2004). Service-Oriented Architecture – A field guide to integrating XML and

Web Services. Upper Saddle River: Prentice Hall PTR. ISBN 0-13-142898-5.

Erl, T. (2007) SOA Principles of Service Design. Prentice Hall. ISBN-10:

0132344823.

http://www.research.ibm.com/people/b/bth/OOWS2001/duftler.pdf
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0131428985

References

183

Ganesh, J., Padmabhuni S. & Moitra D. (2004). Web Services and Multi-Channel

Integration: A Proposed Framework. In Proceedings of the IEEE International

Conference on Web Services, (June 06 - 09, 2004). ICWS. IEEE Computer Society,

Washington, DC. pp 70.

Hackmann, G., Haitjema, M., Gill, C. & Roman, G.-C. (2006). Sliver: A BPEL

Workflow Process Execution Engine for Mobile Devices. In Proceedings of 4th

International Conference on Service Oriented Computing (ICSOC 2006). Springer

Verlag. pp 503-508.

Hasselbring, W., Reussner, R., Jaekel, H., Schlegelmilch, J., Teschke, T. & Krieghoff,

S. (2004). The Dublo Architecture Pattern for Smooth Migration of Business

Information Systems: An Experience Report. In Proceedings of the 26th international

Conference on Software Engineering, (May 23 - 28, 2004). International Conference

on Software Engineering. IEEE Computer Society, Washington, DC. pp 117-126.

Hohpe G. & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. ISBN: 0321200683

Höst, M. & Runeson, P. (2007) Checklists for Software Engineering Case Study

Research, in Proceedings of 1
st
 International Symposium on Empirical Software

Engineering & Measurement (ESEM). IEEE Computer Society Press. pp 479-482.

Hunold S., Korch M., Krellner B., Rauber T., Reichel T., and Runger G. (2008).

Transformation of Legacy Software into Client/Server Applications through Pattern-

http://conferences.ece.ubc.ca/icsoc2006/
http://conferences.ece.ubc.ca/icsoc2006/

References

184

Based Rearchitecturing. In Proceedings of the 2008 32nd Annual IEEE International

Computer Software and Applications Conference (COMPSAC '08). IEEE Computer

Society, Washington, DC, USA, pp 303-310.

International Organization for Standardization (1991). ISO/IEC 9126: Software

Product Evaluation - Quality Characteristics and Guidelines for their Use. Geneva,

Switzerland. Addison-Wesley Professional.

Jacobson I. & Lindstrom F. (1991). Reengineering of old systems to an object-

oriented architecture. In Conference proceedings on Object-oriented programming

systems, languages, and applications (OOPSLA '91). ACM, New York, NY, USA,

pp. 340-350.

Jalote P. (2008). A Concise Introduction to Software Engineering (1 ed.). Springer

Publishing Company, Incorporated.

Jarzabe S. (1993) . Software reengineering for usability. In Computer Software and

Applications Conference, 1993. COMPSAC 93. Proceedings., Seventeenth Annual

International . Phoenix, AZ , USA pp 100-106.

Jefferies, C., Brereton, P., & Turner, M. (2008). A Systematic Literature Review of

Approaches to Reengineering for Multi-Channel Access. In Proceedings of the 2008

12th European Conference on Software Maintenance and Reengineering, (April 01 -

04, 2008). CSMR. IEEE Computer Society, Washington, DC. pp 258-262.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3192
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3192
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3192

References

185

Jefferies, C., Brereton, O.P. & Turner, M. (2009). A Comparison of Binding

Technologies for Multi-Channel Access. In Proceeding of the 2009 Conference on

Techniques and Applications For Mobile Commerce: Proceedings of Tamoco.

Frontiers in Artificial Intelligence and Applications, vol. 201. IOS Press, Amsterdam,

The Netherlands. pp 149-154.

Jong, I. de (2002). Web Services/SOAP and CORBA. [Online]

<http://www.omg.org/news/whitepapers/CORBA_vs_SOAP1.pdf> Accessed on

29.01.2011

Kan, S. (2003). Metrics and Models in Software Quality Management, 2
nd

 Ed.

Pearson. ISBN 0-201-72915-6.

Kapoor, R.V. & Stroulia, E. (2001). Mathaino: Simultaneous legacy interface

migration to multiple platforms. In Proceedings of the 9th International Conference

on Human-Computer Interaction, New Orleans, LA, USA, vol. 1. pp 51-55.

Kitchenham, B. (2004) Procedures for Performing Systematic Reviews. Joint

Technical Report Software Engineering Group, Keele University (TR/SE-0401),

United Kingdom and Empirical Software Engineering, National ICT Australia Ltd,

Australia (0400011T.1).

Kitchenham, B. & Charters, S. (2007). Guidelines for performing Systematic

Literature Reviews in Software Engineering. Keele University and Durham

University Joint Report. Tech. Rep. EBSE 2007-001.

http://www.omg.org/news/whitepapers/CORBA_vs_SOAP1.pdf

References

186

Kohlhoff, C. & Steele, R. (2003). Evaluating SOAP for High Performance Business

Applications: Real-Time Trading Systems. In Proceedings of WWW'03, (2003),

Budapest, Hungary,

Kotsiopoulos, I., Keane, J., Turner, M., Layzell, P. & Zhu, F. (2003). IBHIS:

Integration Broker for Heterogeneous Information Sources. In Proceedings of the

27th Annual international Conference on Computer Software and

Applications, (November 03 - 06, 2003). COMPSAC. IEEE Computer Society,

Washington, DC. pp 378.

Koutsoukos, G., Andrade, L., Gouveia, J. & El-Ramy, M. (2006). Service Extraction.

[Online] Sensoria. Available at

 <http://www.pst.ifi.lmu.de/projekte/Sensoria/del_12/D6.2.a.pdf> Accessed on

08.05.2007.

Krafzig, D., Banke, K. & Slama, D. (2004). Enterprise SOA Service Oriented

Architecture Best Practices. Upper Saddle River: Prentice Hall PTR. ISBN 0-13-

146575-9.

Kreger, H & Estefan, J. (2009). Navigating the SOA Open Standards Landscape

Around Architecture. [Online] OASIS. Available at: <http://www.oasis-

open.org/committees/download.php/32911/wp_soa_harmonize_d1.pdf>. Accessed on

25.01.2010.

http://www.pst.ifi.lmu.de/projekte/Sensoria/del_12/D6.2.a.pdf
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0131465759
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0131465759
http://www.oasis-open.org/committees/download.php/32911/wp_soa_harmonize_d1.pdf%253e.%20Accessed%20on%2025.01.2010
http://www.oasis-open.org/committees/download.php/32911/wp_soa_harmonize_d1.pdf%253e.%20Accessed%20on%2025.01.2010
http://www.oasis-open.org/committees/download.php/32911/wp_soa_harmonize_d1.pdf%253e.%20Accessed%20on%2025.01.2010

References

187

Lai, K. Y., Phan, T. K., & Tari, Z. (2005). Efficient SOAP Binding for Mobile Web

Services. In Proceedings of the IEEE Conference on Local Computer Networks 30th

Anniversary, (November 15 - 17, 2005). LCN. IEEE Computer Society, Washington,

DC. pp 218-225.

Lewis, G., Morris, E., O’Brien, L., Smith, D. & Wrage, L. (2005) Smart: The service-

oriented migration and reuse technique. Technical Report CMU/SEI-2005-TN-029,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,

Sep 2005.

Liem, I., Wahyudin, D. & Shatten, A. (2006). Data Integration: An Experience of

Information System Migration. Available at:

<http://cocoon.ifs.tuwien.ac.at/pub/iiwas/iiwas2006_2.pdf> Accessed on 19.02.2011

Lewis, G., Morris, E., Smith, D. & Simanta, S. (2008). SMART: Analyzing the Reuse

Potential of Legacy Components in a Service-Oriented Architecture. Technical Report

CMU/SEI-2008-TN-008, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA, June 2008.

Lung C. (1998). Software architecture recovery and restructuring through clustering

techniques. In Proceedings of the third international workshop on Software

architecture (ISAW '98). ACM, New York, NY, USA, pp101-104.

Machado, A. C. & Ferraz, C. A. (2005). Guidelines for performance evaluation of

web services. In Proceedings of the 11th Brazilian Symposium on Multimedia and the

http://cocoon.ifs.tuwien.ac.at/pub/iiwas/iiwas2006_2.pdf

References

188

Web, (December 05 - 07, 2005), Pocos de Caldas - Minas Gerais, Brazil. R. P. Fortes,

Ed. WebMedia '05, vol. 125. ACM, New York, NY. pp 1-10.

Marchetti, C., Pernici, B. & Plebani, P. (2003). A Quality Model for e-Service Based

Multi-Channel Adaptive Information Systems. In Proceedings of Web Information

Systems Engineering Workshops. WISEW'03. pp. 165-172.

Mayhauser, A. V. & Vans A. M. (1995). Program Comprehension During Software

Maintenance and Evolution. IEEE Computer, pp. 44-55, Aug.

McCall, J. A., Richards, P. K. & Walters, G. F. (1977). Factors in Software Quality,

Volumes I, II, and III. US Rome Air Development Center Reports, US Department of

Commerce, USA, 1977.

Menkhaus, G. (2002). An Architecture for Supporting Multi-Device, Client-Adaptive

Services. Ann. Softw. Eng. 13(1-4), (Jun. 2002). pp 309-327.

Migliardi, M. & Podesta, R. (2004). Performance Improvement in Web Services

Invocation Framework. In Proceedings of 18th International Parallel and Distributed

Processing Symposium (2004). IPDPS'04. pp.110b.

Moller, A. & Schwartzbach, M. (2006). An Introduction to Xml and Web

Technologies. Addison Wesley. ISBN: 978-0321269669.

Mukhi, N. (2001). We Service Invocation sans SOAP. [Online] IBM. Available at

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Anders%20Mller
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Michael%20I.%20Schwartzbach

References

189

<http://www.ibm.com/developerworks/library/ws-wsif.html> Accessed on

05.05.2008.

Mukhi, N. & Slominski, A. (2001). Web service invocation sans SOAP, Part 2: The

architecture of Web Service Invocation Framework. [Online] IBM Available at

<http://www.ibm.com/developerworks/webservices/library/ws-wsif2/> Accessed on

21.07.2009.

Neilson, J. (1993). Usability Engineering. Morgan Kaufmann. ISBN: 978-

0125184069.

Newcomer, E. & Lomow, G. (2005). Understanding SOA with Web Services,

Addison Wesley. ISBN 0-321-18086-0.

OASIS RM-CS (2006). Reference Model for Service Oriented Architecture 1.0.

[Online] OASIS. Available at: <http://www.oasis-

open.org/committees/download.php/19679/soa-rm-cs.pdf>. Accessed on 15.02.2010.

Oh, S. & Fox, G. C. (2007). Optimizing Web Service messaging performance in

mobile computing. Future Gener. Comput. Syst. 23(4), (May. 2007). pp 623-632.

Open Group (2009). SOA Reference Architecture. [Online] Open Group. Available

at: https://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-

050609.pdf. Accessed on 24.01.2010.

http://www.ibm.com/developerworks/library/ws-wsif.html
http://www.ibm.com/developerworks/webservices/library/ws-wsif2/#author1#author1
http://www.ibm.com/developerworks/webservices/library/ws-wsif2/#author2#author2
http://www.ibm.com/developerworks/webservices/library/ws-wsif2/
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0321180860
https://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-050609.pdf.%20Accessed%20on%2024.01.2010
https://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-050609.pdf.%20Accessed%20on%2024.01.2010

References

190

Park, G. C., Kim, S. S., Bae, G. T., Kim, Y. S., & Kang, B. H. (2006). An Automated

WSDL Generation and Enhanced SOAP Message Processing System for Mobile Web

Services. In Proceedings of the Third international Conference on information

Technology: New Generations (April 10 - 12, 2006). ITNG. IEEE Computer Society,

Washington, DC. pp 388-387.

Pautasso, C., Zimmermann, O. & Leymann, F. (2008). Restful web services vs. "big''

web services: making the right architectural decision. In WWW '08: Proceeding of the

17th international conference on World Wide Web. New York, NY, USA: ACM. pp

805-814.

Pellerin, R. (2007). The MooDS protocol: a J2ME object-oriented communication

protocol. In Proceedings of the 4th international Conference on Mobile Technology,

Applications, and Systems and the 1st international Symposium on Computer Human

interaction in Mobile Technology (September 10 - 12, 2007). Singapore. Mobility '07.

ACM, New York, NY. pp 8-15.

Pfleeger, S. L. (2001). Software Engineering Theory and Practice, 2
nd

 Ed. Prentice

Hall. ISBN: 978-0130290496.

Portier, B. (2007) SOA terminology overview, Part 3: Analysis and design. [Online]

IBM. Available at

<http://www.ibm.com/developerworks/webservices/library/ws-soa-term3/index.html>

Accessed on 29.08.2007.

http://www.ibm.com/developerworks/webservices/library/ws-soa-term3/index.html

References

191

Riaz Ahamed, S. S., (2010). An Integrated and Comprehensive Approach to Software

Quality. International Journal of Engineering Science and Technology. 2(2). pp 59-

66.

Rosenberg L. H. (1996). Software Re-engineering. Goddard Space Flight Center.

NASA.

Roto, V. & Oulasvirta, A. (2005). Need for non-visual feedback with long response

times in mobile HCI. In Special interest Tracks and Posters of the 14th international

Conference on World Wide Web (May 10 - 14, 2005). Chiba, Japan. WWW '05.

ACM, New York, NY. pp 775-781.

Runeson, P. & Höst, M. (2009). Guidelines for conducting and reporting case study

research in software engineering. Empirical Software Engineering 14(2). pp 131-161.

Sahraoui, H. A., Godin, R., & Miceli, T. (2000). Can Metrics Help to Bridge the Gap

Between the Improvement of OO Design Quality and Its Automation? In Proceedings

of the international Conference on Software Maintenance, (October 11 - 14, 2000).

ICSM. IEEE Computer Society, Washington, DC. pp 154.

Sandoz, P., Percias-Geersten, S., Kawaguchi, K., Hadley, M. & Pelegri-Llopart, E.

(2003). Fast Web Services. [Online] Sun Microsystems.

<http://java.sun.com/developer/technicalArticles/WebServices/fastWS/> Accessed on

26.06.2008.

http://java.sun.com/developer/technicalArticles/WebServices/fastWS/

References

192

Sneed H. (2005). An Incremental Approach to System Replacement and Integration.

In Proceedings of the Ninth European Conference on Software Maintenance and

Reengineering(CSMR '05). IEEE Computer Society, Washington, DC, USA, pp196-

206.

Sneed, H. (2006). Wrapping Legacy Software for Reuse in a SOA. In Proceedings of

Third GI-Workshop XML4BPM XML Integration and Transformation for Business

Process Management, (February 22, 2006), Passau, Germany.

Sneed, H. (2007). Migrating to Web Services A Research Framework. In proceedings

of CSMR 2007 11th European Conference on Software Maintenance and

Reengineering “Software Evolution in Complex Software Intensive Systems”, (March

21-23, 2007).

Sneed, H. & Sneed, S. (2003). Creating Web Services from Legacy Host Programs. In

Proceedings of 5th International Workshop on Web Site Evolution, (2003). pp 59.

Sommerville I. & Sawyer P. (1997). Requirements Engineering: A Good Practice

Guide. Wiley. ISBN 0471974447.

Strohmaier, M. & Lindstaedt, S. (2005). Beyond Flexible Information Systems: Why

Business Agility Matters. In Sixth Workshop on Business Process Modelling,

Development and Support, Porto, Portugal. BPMDS'05 during CAiSE'05.

Strohmaier, M. & Rollett, H. (2005). Future Research Challenges in Business Agility

- Time, Control and Information Systems. In Proceedings of the Seventh IEEE

References

193

international Conference on E-Commerce Technology Workshops (July 19, 2005).

CECW. IEEE Computer Society, Washington, DC. pp 109-1.

Tian M., Voigt T., Naumowicz T., Ritter H. & Schiller J. (2003). Performance

Considerations for Mobile Web Services (2003). Elsevier Computer Comm. J. 27(11),

(2004). pp. 1097–1105.

Tilley, S., Gerdes, J., Hamilton, T., Huang, S., Müller, H. & Wong, K., (2002). Adoption

Challenges in Migrating to Web Services. In Proceedings of the Fourth International

Workshop on Web Site Evolution. WSE’02. pp 21.

Tsourveloudis N., Valavanis K., Gracanin D. & Matijasevic M. (1999). On the

measurement of agility in manufacturing systems. In Proceedings of the European

Symposium on Intelligent Techniques (June 1999) AB-02, Crete, Greece. (ESIT’99).

Turner, M. & Charters, S. (2006). Protocol for a Systematic Literature Review of the

Technology Acceptance Model and its Predictive Capabilities. Technical Report

Keele University TR06/02.

Turner, M., Zhu, F., Kotsiopoulos, I., Russell, M., Budgen, D., Bennett, K., Brereton,

P., Keane, J., Layzell, P. & Rigby, M. (2004). Using Web Services Technologies to

create an Information Broker: An Experience Report, presented at 26th International

Conference on Software Engineering (ICSE 2004), Edinburgh, Scotland.

http://www.cs.vt.edu/biblio/aid/1830
http://www.cs.vt.edu/biblio/aid/1900
http://www.cs.vt.edu/biblio/aid/1817
http://www.cs.vt.edu/biblio/aid/1833

References

194

Yin, R. K. (2003). Case Study Research: Design and Methods, 3rd Edition. Sage

Publications. ISBN: 978-0761925538.

Zhang, J., Chung, J. & Chang, C. (2003) Architecture-based development of web

service based applications. In Proceedings of The First International Conference on

Web Services (ICWS'03), (June 23-26, 2003), Las Vegas NV. pp 265-271.

Zhang, Z., Liu, R. & Yang, H. (2005). Service Identification and Packaging in Service

Oriented Reengineering. In Proceedings of the Seventeenth International Conference

on Software Engineering and Knowledge Engineering (SEKE'05), Knowledge

Systems Institute Graduate School. pp 241-249.

Zhang, Z. & Yang, H. (2004). Incubating Services in Legacy Systems for

Architectural Migration. In Proceedings of the 11th Asia-Pacific Software

Engineering Conference (Apsec'04), (November 30 - December 03, 2004). APSEC.

IEEE Computer Society, Washington, DC, pp 196-203.

Zhang, Z., Yang, H. & Chu, W. C. (2006). Extracting Reusable Object-Oriented

Legacy Code Segments with Combined Formal Concept Analysis and Slicing

Techniques for Service Integration. In Proceedings of the Sixth international

Conference on Quality Software (October 27 - 28, 2006). QSIC. IEEE Computer

Society, Washington, DC. pp 385-392.

Zimmermann, O., Doubrovski, V., Grundler, J. & Hogg, K. (2005). Service-oriented

architecture and business process choreography in an order management scenario:

195

rationale, concepts, lessons learned. In Companion to the 20th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(October 16 - 20, 2005), San Diego, CA, USA. OOPSLA '05. ACM Press, New York,

NY. pp 301-312.

Zimmerman, O., Krogdhal, P. & Gee, C. (2004a) Elements of Service-Oriented

Analysis and Design: An interdisciplinary modelling approach for SOA projects.

[Online] IBM. Available at <http://www.ibm.com/developerworks/library/ws-soad1/>

Accessed on 12.09.2007.

Zimmermann, O., Milinski, S., Craes, M., & Oellermann, F. (2004b). Second

generation web services-oriented architecture in production in the finance industry. In

Companion to the 19th Annual ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and Applications (October 24 - 28, 2004),

Vancouver, BC, CANADA. OOPSLA '04. ACM Press, New York, NY. pp 283-289.

http://www.ibm.com/developerworks/library/ws-soad1/

196

Appendix

Appendix

197

Appendix A – Reengineering ordering

M
e

th
o

d
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

R
e
q
u
ire

m
e
n
ts

3
1

n
o
n
e

n
o
n
e

n
o
n
e

n
o
n
e

1
n
o
n
e

1
n
o
n
e

n
o
n
e

n
o
n
e

1
n
o
n
e

n
o
n
e

n
o
n
e

1
1

B
u
s
in

e
s
s
 p

ro
c
e
s
s
 m

o
d
e
llin

g
4

2
n
o
n
e

1
3

n
o
n
e

4
6

n
o
n
e

n
o
n
e

n
o
n
e

4
5

7
3
,4

n
o
n
e

3
4

W
e
b
 s

e
rvic

e
 in

te
rfa

c
e
s

2
n
o
n
e

5
2

2
4

n
o
n
e

5
4

5
n
o
n
e

3
n
o
n
e

6
n
o
n
e

4
4

n
o
n
e

R
e
c
o
d
in

g
/ re

s
tru

c
tu

rin
g

1
3

2
, 4

3
1

n
o
n
e

n
o
n
e

4
3

4
3

2
5

2
,5

,6
,7

3
5

6

R
e
d
e
s
ig

n
n
o
n
e

n
o
n
e

n
o
n
e

n
o
n
e

n
o
n
e

3
n
o
n
e

n
o
n
e

n
o
n
e

n
o
n
e

2
n
o
n
e

3
,4

n
o
n
e

n
o
n
e

n
o
n
e

n
o
n
e

3
, 5

S
e
rvic

e
 id

e
n
tific

a
tio

n
n
o
n
e

4
3

n
o
n
e

n
o
n
e

2
3

3
2

n
o
n
e

n
o
n
e

1
n
o
n
e

1
,4

1
1
,2

n
o
n
e

2

C
o
d
e
 u

n
d
e
rs

ta
n
d
in

g
n
o
n
e

n
o
n
e

1
n
o
n
e

n
o
n
e

1
2

1
,2

n
o
n
e

1
,2

,3
1

n
o
n
e

2
2
, 3

n
o
n
e

n
o
n
e

2
n
o
n
e

C
la

s
s
ific

a
tio

n
m

t
m

t
b

b
m

t
m

b
b

b
m

b
m

b
m

m

C
o
ve

ra
g
e

4
4

4
3

3
4

4
5

4
3

3
4

4
5

3
3

5
5

m
 =

 m
e
e
t-in

-th
e
-m

id
d
le

b
 =

 b
o
tto

m
 u

p

t =
 to

p
 d

o
w

n

Appendix

198

Appendix B – Functional testing

Functional test plan 1:

Service Input Expected outcome Actual outcome

Activation

Service

Username: mark

Password: we76yth

Roles: Doctor,Override,on_duty,

Teams: MedicalTeam1,

TeamOverride,

Roles: Doctor,Override,on_duty,

Teams: MedicalTeam1,

TeamOverride,

Query

fields

Service

Roles: Doctor, On

Duty

Teams: Medical

Team 1

All roles and teams authorised.

Fields returned:

1. FinancialNotes

2. Date_Of_Birth

3. MaritalStatus

4. referrersRelationship

5. Photograph

6. First_Name

7. Surname

8. Home_Telephone_No

9. ReasonForRequest

10. Occupation

11. CurrentHospital

12. ReferrerName

13. Address

14. RiskAssessment

15. ReferralSource

Only On-Duty is authorised.

Correct fields returned:

1. FinancialNotes

2. Date_Of_Birth

3. MaritalStatus

4. referrersRelationship

5. Photograph

6. First_Name

7. Surname

8. Home_Telephone_No

9. ReasonForRequest

10. Occupation

11. CurrentHospital

12. ReferrerName

13. Address

14. RiskAssessment

15. ReferralSource

Query

Service

Financial Notes,

Date of Birth,

Marital Status,

referrersRelationship,

Photograph,

First Name,

Home Tel No,

Occupation,

Current Hospital,

Address

clientNumber 4572244

dateOfBirth 1998-12-12

maritalStatus child

referrersRelationship

clientImage

familiarForename Philip

telephoneNumber 01782456871

propertyNameNumber 158

street Stockholm Way

district Hanley

town Stoke-on-Trent

postcode ST1-5RG

clientNumber,4572244,

dateOfBirth,1998-1212,

maritalStatus,child,

referrersRelationship,blankvalue,

clientImage,blankvalue,

familiarForename,Philip,

telephoneNumber,01782456871,

propertyNameNumber,158,

street,Stockholm Way,

district,Hanley,

town,Stoke-on-Trent,

postcode,ST1-5RG,

Appendix

199

Functional test plan 2:

Service Input Expected outcome Actual outcome

Activatio

n

Service

User: lin horley

Password: ag32the

Roles: CaseWorker,

Override,on_duty,Doctor,CareManag

er,

Teams: SolihullCareTeam2,

TeamOverride,SolihullCareTeam1,

Roles: CaseWorker,Override,

on_duty,Doctor,CareManager,

Teams:SolihullCareTeam2,

TeamOverride,

SolihullCareTeam1,

Query

fields

service

Roles: Case Worker,

On Duty

Teams: SS Care

Team 2

All roles and teams authorised.

Fields:

1. FinancialNotes

2. Date_Of_Birth

3. MaritalStatus

4. referrersRelationship

5. Photograph

6. First_Name

7. Surname

8. Home_Telephone_No

9. ReasonForRequest

10. Occupation

11. CurrentHospital

12. ReferrerName

13. Address

14. RiskAssessment

15. ReferralSource

All roles and teams authorised.

Fields:

1 FinancialNotes,

1. Date_Of_Birth,

2. MaritalStatus,

3. referrersRelationship,

4. Photograph,

5. First_Name,

6. Surname,

7. Home_Telephone_No

8. ReasonForRequest,

9. Occupation,

10. CurrentHospital,

11. ReferrerName,

12. Address,

13. RiskAssessment,

14. ReferralSource,

Query

Service

Surname: Williams

Client_Number,

carer, Ethnic Origin,

FinancialNotes,

Date_of_Birth,

MaritalStatus,

referrersRelationship.

First_Name,

Home_Telephone_N

o, RiskAssessment

Nothing returned due to no

Manchester data source.

Nothing returned.

Appendix

200

Functional test plan 3:

Part of

system
Input Expected outcome Actual outcome

Activation

service

User: lin horley

Password: ag32the

Roles: CaseWorker,

Override,on_duty,Doctor,CareManager,

Teams: SolihullCareTeam2,

TeamOverride,SolihullCareTeam1,

Roles: CaseWorker,Override,

on_duty,Doctor,CareManager,

Teams:SolihullCareTeam2,

TeamOverride,

SolihullCareTeam1,

Query fields

service

Override: Global

Roles: role override

Teams: team override

Roles: IBHISOverride

Teams: IBHISTeamOverride,

Query

service

Surname: King

FinancialNotes,

Financial notes will be visible Financial notes visible

Appendix

201

Appendix C - PBM and NLC response times

NLC PBM

small

(ms)

medium

(ms)

large

(ms)

small

(ms)

medium

(ms)

large

(ms)

172 375 203 172 172 125

203 172 140 235 157 219

156 156 94 390 156 203

187 125 141 172 235 156

219 156 156 156 172 157

172 140 140 125 266 141

188 156 203 250 140 157

187 156 172 328 156 172

141 156 187 140 156 828

203 156 266 172 156 438

156 141 672 188 157 172

937 156 141 219 140 188

188 906 110 219 140 141

188 140 125 140 156 172

172 172 141 172 187 203

140 125 157 125 172 187

188 141 219 156 172 156

172 109 125 156 172 157

141 141 94 187 141 140

156 141 125 218 313 156

213.3 196 180.55 196 175.8 213.4

Appendix

202

Appendix D – reengineered IBHIS broker (PBM) semantic differential

scale – Primary reviewer

Area being evaluated
Response

Poor Acceptable Excellent

Completeness 1 2 3 4 5 6 7 8 9 10

Comments: All functional requirements met.

Consistency of design/documentation 1 2 3 4 5 6 7 8 9 10

Comments: UML is used at all stages

Traceability of components 1 2 3 4 5 6 7 8 9 10

Comments: Was able to follow the activation service through all aspects right down to

the code, but naming could have been more consistent

Granularity: 1 2 3 4 5 6 7 8 9 10

Comments: The granularity was just right for the project. It was coarse grained enough

to realise the requirements. It could have been more fine grained though (2 potential

services were left out) but for good reason (see service identification).

Expandability 1 2 3 4 5 6 7 8 9 10

Comments: In terms of the services, more services could be created easily. The

architecture had now separated visual from business logic which means changes are

easier to make.

Generality 1 2 3 4 5 6 7 8 9 10

Comments: Two of the services were not very general and were very specific to the task

(getQueryFields and query) but the activation could have been used in other scenarios.

Software system independence 1 2 3 4 5 6 7 8 9 10

Comments: Unchanged

Communication commonality 1 2 3 4 5 6 7 8 9 10

Comments: This was improved slightly as web services were used instead of .jsp for

communication between business logic and presentation.

Appendix

203

Appendix E – reengineered IBHIS broker (NLC) semantic differential

scale – Primary reviewer

Area being evaluated
Response

Poor Acceptable Excellent

Completeness 1 2 3 4 5 6 7 8 9 10

Comments: System was not accessible from business processes.

Consistency of design/documentation 1 2 3 4 5 6 7 8 9 10

Comments: UML is used at all stages

Traceability of components 1 2 3 4 5 6 7 8 9 10

Comments: Was able to follow the activation service through all aspects right down to

the code, but naming could have been more consistent

Granularity: 1 2 3 4 5 6 7 8 9 10

Comments: The granularity was just right for the project. It was coarse grained enough

to realise the requirements. It could have been more fine grained though (2 potential

services were left out) but for good reason (see service identification).

Expandability 1 2 3 4 5 6 7 8 9 10

Comments: The architecture could not be expanded as well as the SOAP version due to

the dependency created by using WSIF. The system was not accessible from business

processes which mean you do not have the building blocks for a flexible architecture.

The design of the architecture does easily allow for more blocks to be added and

removed however.

Generality 1 2 3 4 5 6 7 8 9 10

Comments: Two of the services were not very general and were very specific to the task

(getQueryFields and query) but the activation could have been used in other scenarios.

Software system independence 1 2 3 4 5 6 7 8 9 10

Comments: Unchanged

Communication commonality 1 2 3 4 5 6 7 8 9 10

Comments: WSIF does not have the flexibility that is given by SOAP which means it

cannot be used outside of Websphere. To make matters worse the implementation of

WSIF in the version of Websphere used meant that the system could not even be called

as the ‘client’ technology for calling WSIF would not allow it to access the drivers used

in a mysql database. It has access to database drivers for its own class but I was unable

to get it to use a database driver that is used by the system code. Even if this can be

accessed the ‘enterprise application client’ can only be accessed by systems that support

J2EE.

Appendix

204

Appendix F – response times for CS-RQ2

Web service Business process Mobile client

small

(ms)

medium

(ms)

large

(ms)

small

(ms)

medium

(ms)

 large

(ms)

small

(ms)

medium

(ms)

large

(ms)
16 15 16 265 203 281 593 578 579

16 16 15 250 219 203 937 763 609

15 15 16 219 250 219 1000 640 578

16 16 16 235 203 250 609 703 563

15 15 16 219 218 265 937 625 703

15 47 16 219 250 328 609 625 578

16 16 31 219 266 203 578 593 672

31 16 16 234 218 250 578 610 578

16 15 16 218 250 297 578 578 578

16 16 16 250 250 328 594 609 625

16 16 15 187 234 219 609 953 578

16 16 15 250 203 234 593 1406 976

16 15 15 203 219 187 1046 593 593

15 16 16 218 265 234 641 531 578

16 16 16 218 203 203 593 609 547

16 16 16 281 235 234 578 625 609

15 16 16 235 219 219 688 1297 563

16 15 15 266 234 203 578 750 610

16 16 16 219 219 203 764 594 578

16 16 16 219 219 203 1000 578 2750

16.5 17.25 16.5 231.2 228.85 238.15 705.15 713 722.25

Appendix

205

Appendix G – original IBHIS broker semantic differential scale – Primary

reviewer

Area being evaluated
Response

Poor Acceptable Excellent

Completeness 1 2 3 4 5 6 7 8 9 10

Comments: Not having any original design documentation meant it was not known if

they were therefore as the project was completed it was assumed to be correct to a

certain extent

Consistency of design/documentation 1 2 3 4 5 6 7 8 9 10

Comments: No documentation

Traceability of components 1 2 3 4 5 6 7 8 9 10

Comments: No documentation

Granularity: 1 2 3 4 5 6 7 8 9 10

Comments: 22 interfaces is too many (but better than none). There should only be a

handful.

Expandability 1 2 3 4 5 6 7 8 9 10

Comments: The expandability is ok. The system is based on service principles which are

used for expandability. The only problem is there are some workarounds that were used

which reduce this as well as the fairly tight coupling with the user interface and the

business functionality.

Generality 1 2 3 4 5 6 7 8 9 10

Comments: Most of the ‘services’ can be used outside the given context but not to a

great extent.

Software system independence 1 2 3 4 5 6 7 8 9 10

Comments: IBHIS has been ported to other operating systems and is written in the

portable Java language. IBHIS is bound to the Websphere development server and uses

the OWL languge.

Communication commonality 1 2 3 4 5 6 7 8 9 10

Comments: SOAP communication used for messaging. HTTP and XML used for

servlets.

Appendix

206

Appendix H – original IBHIS broker semantic differential scale -

Validation

Area being evaluated
Response

Poor Acceptable Excellent

Completeness 1 2 3 4 5 6 7 8 9 10

Comments: The original IBHIS prototype meets all of the functional requirements for

the system, but some areas are not developed to the level that they were intended. For

example, the Data Access Services are integrated into the broker itself, rather than being

stand-alone independent services. The interface is also tied to the broker implementation

somewhat.

Consistency of

design/documentation

1 2 3 4 5 6 7 8 9 10

Comments: On the whole the design is consistent, but there are some differences due to

the use of three distributed programmers, each working on different PhDs (and therefore

each with a different focus). The documentation is also incomplete.

Traceability of components 1 2 3 4 5 6 7 8 9 10

Comments: Everything included in the system can be traced back to requirements.

Granularity: 1 2 3 4 5 6 7 8 9 10

Comments: The system uses Web services to communicate internally, but an

improvement would be to expose the whole broker as a service itself. Access to the

system is also only via a single Web interface.

Internally, a number of aspects of the system are grouped into a single service (i.e. the

Data Access Services) and so in an ideal implementation the system would be made up

of finer grained services.

Expandability 1 2 3 4 5 6 7 8 9 10

Comments: The system has been extended subsequently, but due to inconsistencies in

the coding this is not straightforward. It is also tied to a particular version of the server

platform/database due to the use of particular class libraries.

Generality 1 2 3 4 5 6 7 8 9 10

Comments: The services could be used within other systems, with amendments. Their

functionality could be generalised.

Software system independence 1 2 3 4 5 6 7 8 9 10

Comments: The system uses Web services and so should be independent, but in reality

due to the particular versions of class libraries/servers used (see above), this is not the

case.

Communication commonality 1 2 3 4 5 6 7 8 9 10

Comments: The system uses standard protocols and technologies for the majority of

communication.

Appendix

207

Appendix I – reengineered IBHIS broker (PBM) semantic differential scale

– validation

SOAP:

Area being evaluated
Response

Poor Acceptable Excellent

Completeness 1 2 3 4 5 6 7 8 9 10

Comments: Assessed against live system and current requirements (not original

requirements). Does not take into account agility

Consistency of

design/documentation

1 2 3 4 5 6 7 8 9 10

Comments: Everything in implementation seems consistent apart from small update of

section

Traceability of components 1 2 3 4 5 6 7 8 9 10

Comments:

Granularity: 1 2 3 4 5 6 7 8 9 10

Comments: dependent on if coarse desirable

Expandability 1 2 3 4 5 6 7 8 9 10

Comments: improved from original particularly at the interface but still used back end

Generality 1 2 3 4 5 6 7 8 9 10

Comments: The same

Software system independence 1 2 3 4 5 6 7 8 9 10

Comments: The same

Communication commonality 1 2 3 4 5 6 7 8 9 10

Comments: SOAP interface improves communication commonality.

	etheses coversheet.pdf
	Jefferies PhD 2011

