
This work is protected by copyright and other intellectual property rights and 
duplication or sale of all or part is not permitted, except that material may be 
duplicated by you for research, private study, criticism/review or educational 

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation 
may be published without proper acknowledgement. For any other use, or to 

quote extensively from the work, permission must be obtained from the 
copyright holder/s. 



The emergence and utility of social
behaviour and social learning in
arti�cial evolutionary systems

James Martin Borg

Submitted for the degree of

Doctor of Philosophy

March 2018

Keele University



Abstract

The questions to be addressed here are all aimed at beginning to assess the emergence

and utility of social behaviour and social learning in arti�cial evolutionary systems.

Like any biological adaptation, the adaptation to process and use social information

must lead to an overall increase in the long term reproductive capability of any popu-

lation utilising such an adaptation - this increase in fecundity also being accompanied

by increased survivability and therefore adaptability. In nature, social behaviours such

as co-operation, teaching and agent aggregation, all seem to provide improved levels

of �tness, resulting in an improved and more robust set of general behaviours - in

the human case these social behaviours have led to cumulative culture and the ability

to rapidly adapt to, and thrive in, an astonishing number of environments. In this

thesis we begin to look at why the evolutionary adaptation to process and use social

information, leading to social learning and social behaviour, proves to be such a useful

adaptation, and under which circumstances we would expect to see this adaptation,

and its resulting mechanisms and strategies, emerge.

We begin by asking these questions in two contexts; �rstly what does social learning

enable that incremental genetic evolution alone does not, and secondly what bene�t

does social learning provide in temporally variable environments. We go on to assess

how di�ering social learning strategies a�ect the utility of social learning, and whether

social information can be utilised by an evolutionary process without any accompanying

within-lifetime learning processes (and whether the accommodation of social informa-

tion results in any notable behavioural changes). By addressing the questions posed

here in this way, we can begin to shed some light on the circumstances under which

the adaptations for the accommodation and use of social information begin to emerge,

and ultimately lead to the emergence of robust socially intelligent arti�cial agents.
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Chapter 1

Introduction

This thesis is primarily concerned with the emergence and utility of social behaviour

and social learning in arti�cial evolutionary system, including the evolutionary adap-

tation to the use of social information. The objective of this thesis is not just to

contribute to our understanding of the emergence and utility and social behaviour and

social learning in real biological systems, but also to provide a better understanding

of the dynamics of emergent social behaviour and social learning, from which we may

more e�ectively engineer social arti�cial systems.

In �On The Origin of Species� Charles Darwin [48] mused over the many adapta-

tions and variations found in nature. Darwin concluded that for any adaptation to be

maintained, greater �tness must be conferred by its existence resulting in an adaptive

advantage to any individual exhibiting it. While it is true that some startling physio-

logical variation �rst inspired Darwin, behavioural adaptations are just as apparent and

varied in nature. Like physiological adaptation, the adaptation for social and cultural

behaviour must confer some survival and reproductive advantage. It is the adaptive

advantage of social behaviour via social learning and social information use that is to

be investigated in this thesis.
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Social learning can be de�ned as learning that is in�uenced by the interactions

with, or observation of, other agents or the products of agent interactions with the

environment [24, 60, 80]. Social learning primarily involves learning from conspeci�cs,

though inter species social interactions are also being recognised as an increasingly im-

portant aspect of animal social learning [68]. Social learning is in contrast to individual

or asocial learning which instead concerns itself with plasticity in agent private infor-

mation as result of non-social interactions with an environment, and population level

evolutionary change which is a process of long term adaptive change on a population

level driven primarily by environmental change.

Social learning therefore relies on social information, which can be broadly de�ned

as information derived from the behaviours, actions, cues or signals of other agents

[91]. As social information necessarily involves the direct or indirect broadcasting of

information in to the public domain, it is sometimes known as (or con�ated with) public

information [20]; public information generally being de�ned as inadvertently expressed

social information about the performance or state of the information producer, or the

quality of the environment [46].

From these de�nitions of social learning and social information, social behaviour

may therefore be de�ned as any behaviour exhibited by an agent which results in an

interaction with another agent, an interaction with the product of agent activity, or

the expression or communication of private information.

In 1963 the Ethologist Nikko Tinbergen famously derived four questions one must

ask when engaging in the �biological study of behaviour� [146]:

1. What causes a behaviour to be exhibited? (Causation)

2. What advantage, if any, does a behaviour confer on the exhibiting individual?

(Survival Value)
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3. What `cognitive machinery' is necessary for a behaviour to be demonstrated?

(Ontogeny)

4. How may a behaviour have evolved over time and over related species? (Evolu-

tion)

Tinbergen's rationale for formalising these questions was �rstly to unify the behavioural

sciences (a goal that is still to be realised [108, 65]) and more importantly, to provide

a framework for the behavioural sciences to work under.

Here Tinbergen's four questions are reduced to two; the �rst primarily concerning

the survival value of the adaptation for social behaviour and social learning. The sec-

ond combining aspects of causation, ontogeny and evolution to investigate when social

behaviour becomes adaptive and is therefore maintained as an evolutionary adaptation

in arti�cial evolutionary systems. To investigate these two broad areas this work uses

a number of Arti�cial Life [94] and simulated Evolutionary Robotics [156, 51] models

of evolutionary systems. The arti�cial evolutionary systems used here are primarily

grounded; that is to say simulated autonomous agents (Agents, Animats or Simulated

Autonomous Robots) will be physically situated in a virtual environment. Agents in

these grounded models will also be situated socially [96] and be controlled by arti�cial

neural networks which will be subject to both evolution (by means of evolutionary algo-

rithms [83]), and in some cases extra-genetic, within-lifetime learning (both individual

and social). A non-grounded approach, making use of populations of binary strings

evolved by means of evolutionary algorithms [83], but never being physically situated

in a virtual environment, will also be applied here but less frequently than grounded

models.
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1.1 Aims and Organisation of Thesis

The purpose of this work is to use a variety of arti�cial evolutionary systems to address a

series of fundamental questions regarding the emergence and utility of social behaviour

and social learning. These aims, and the research questions they address (discussed in

Chapter 3), are all motivated by observations from natural social systems. Speci�cally

the work presented in this thesis aims to:

• Investigate whether the utilisation of social learning enables the access to be-

haviours that are inaccessible to incremental genetic evolution alone.

• Investigate the emergence of social learning in temporally variable environments.

• Explore the role di�erent social learning strategies play in the adaptive value of

social learning.

• Investigate whether social information is of an adaptive bene�t when decoupled

from within-lifetime learning.

• Explore the behavioural consequences of social information when decoupled from

within-lifetime learning.

These aims have been achieved by:

• The extension of a simulation model known as the Rivercrossing (or RC) task

(introduced by Robinson et al. [128] and expanded here in Chapter 4) which

utilises an arti�cial evolutionary system comprised of grounded populations of

neuroevolutionary arti�cial agents. This model will be extended to explore the

utilisation of social learning when accessing behaviours which are inaccessible

to incremental genetic evolution alone, and to explore the role di�erent social

learning strategies play in the adaptive value of social learning.
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• The application of a non-grounded binary string evolutionary algorithm to in-

vestigate the emergence of social learning in temporally variable environments,

whereby individual instantiations of binary strings with access to both individual

and/or social learning are evaluated against their ability to match a temporally

changing binary search string. The nature of temporal variability is adjusted to

enable the testing of both consistently and increasingly variable environments.

• The creation of a simulation model utilising an arti�cial evolutionary system

comprised of grounded populations of neuroevolutionary arti�cial agents. This

simulation model will incorporate a simple food foraging task whereby popula-

tions of agents are tasked with maintaining above zero energy levels. Agents in

this model will have no access to within-lifetime learning processes, and will there-

fore rely on the evolutionary process alone; populations of agents in this model

will have access to a variety of di�erent types of social information inadvertently

expressed by conspeci�cs. The aims of this simulation model are to investigate

whether social information alone is of an adaptive bene�t when decoupled from

within-lifetime learning and to explore the behavioural consequences of social

information when decoupled from within-lifetime learning.

• All models utilised here will simulate non social populations alongside social pop-

ulations in order to provide a baseline from which the utility of social behaviours

may be gauged. A variety of statistical techniques included T-tests, Chi-squared

tests, and Mann-Whitney U tests will be employed to ascertain the signi�cance

of the resulting di�erences between social and non social populations.

This thesis is organised into nine Chapters. The organisation of these nine Chapters

is as follows. Chapters 4 to 7 report on previously published work - details of these

published works, and their attributions may be found in Chapter 1.2.
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• Chapter 1 (this Chapter) provides an introduction to this thesis by way of pro-

viding a brief overview of aims and objectives, along with the organisation of this

thesis and details of the published work which contributes to this thesis.

• Chapter 2 provides an introductory overview to the topics of social behaviour and

social learning, which provide the basis for the research questions explored in this

thesis. This Chapter looks at social behaviour and social learning in nature and

goes on to discuss how social behaviour and social learning has been explored in

other arti�cial evolutionary systems.

• Chapter 3 provides a more detailed discussion of the research questions to be

addressed by this thesis.

• Chapter 4 is the �rst Chapter that is directly concerned with the research ques-

tions and aims of this thesis. This Chapter discusses a task, known as the RC+

task, which is shown to be impossible to solve by incremental genetic evolution

alone. The question of whether the inclusion of social learning enables access to

the behaviours required is addressed, as per the research question addressed in

Chapter 3.0.1.

• Chapter 5 discusses the role environmental variability plays in the adoption and

utility of social learning, both when accompanied by individual learning and when

utilised as the lone form of learning, as per the research question addressed in

Chapter 3.0.2.

• Chapter 6 takes the task used in Chapter 4 and explores the utility of a variety of

di�erent social learning strategies, with the aim of exploring whether the ability

of social learning to overcome the shortcomings of incremental genetic evolu-
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tion alone extends to a variety of social learning strategies, as per the research

questions addressed in Chapter 3.0.3.

• Chapter 7 looks at the evolutionary adaptation to social information use when

not accompanied by within-lifetime learning. This Chapter explores the founda-

tional bene�ts of social and public information use as per the research question

addressed in Chapter 3.0.4.

• Chapter 8 explores the behavioural di�erences between the non social and so-

cial populations evaluated in Chapter 7. This Chapter addresses the question

of emergent social behaviours as a result of social information use, as per the

research question addressed in Chapter 3.0.5.

• Chapter 9 concludes this work by addressing the contributions made in this thesis.

This Chapter goes on to re�ect on the conclusions to each of the research questions

addressed in this thesis, and proposes a number of possible avenues for future

research.

1.2 Published Work and Attributions

A signi�cant portion of the work presented in this thesis has already been published or

is to be published in the near future. All published work has been through a thorough

peer-review process. Each piece of published work is presented here as a Chapter,

with Chapters being organised by date of publication. In order to accommodate for

crossover between published works in regard to introductory materials and research

methods, some of the content found in the published works has been re-organised.

As some of the published works underpinning this thesis were published a number

of years ago, a small amount of updating regarding the referenced literature has also

7



been undertaken. Despite these minor changes, the Chapters representing previously

published work are still largely unchanged from the original peer reviewed publications.

These previously published works, and the division of labour between co-authors, are

brie�y discussed below.

• Borg et al. [22]: �Discovering and maintaining behaviours inaccessible to incre-

mental genetic evolution through transcription errors and cultural transmission�.

Proceedings of the European Conference on Arti�cial Life 2011, MIT Press, 2011,

102-109

The work presented in Borg et al. [22] was presented as a poster at, and

published as part of the proceedings for, the 2011 European Conference on

Arti�cial Life, held in Paris, France. The work presented in Borg et al. [22]

appears here in Chapter 4.

In Borg et al. [22] the question of whether the introduction of both tran-

scription errors and cultural transmission, in the form of learning by imi-

tation, can enable the evolution of behaviours inaccessible to incremental

genetic evolution alone is assessed. To answer this question a neural net-

work model using a hybrid of two di�erent networks was implemented: one

capable of demonstrating reactive qualities, the other controlling delibera-

tive goal selecting behaviours. Animats using this model were evolved in an

adaptation of the environment proposed by Robinson et al. [128] to solve

increasingly di�cult tasks. Simulations were run on populations with and

without learning by imitation to assess the relative success of each strategy,

leading to the conclusion that populations with learning by imitation can

successfully demonstrate the most complex behaviour available to them,

which was empirically found to be inaccessible to non-learning populations.
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The work presented in Borg et al. [22] was co-authored by the author of this

thesis along with Dr. Alastair Channon in his role as PhD supervisor, and

Dr. Charles Day in his role as part of the original PhD supervisory team.

The work was �rst authored by the author of this thesis. As a co-author of

Robinson et al. [128], Dr. Alastair Channon provided the original C++ code

for the simulation model used in Robinson et al. [128]. Coding to update

this model for use in Borg et al. [22], including changes made to the struc-

ture of the simulation model (resulting in the RC+ task - discussed further

in Chapter 4) plus the addition of transcription errors, cultural transmis-

sion and learning, was undertaken by the author of this thesis. The author

of this thesis was also responsible for producing both the published work

and resulting conference poster; both Dr. Channon and Dr. Day provided

advice throughout, including proof-reading and commenting on a series of

paper drafts, and contributing to the analysis of results.

• Borg and Channon [23]: �Testing the variability selection hypothesis - The adop-

tion of social learning in increasingly variable environments�. ALIFE XIII: The

Thirteenth International Conference on the Synthesis and Simulation of Living

Systems, MIT Press, 2012, 317-324

The work presented in Borg and Channon [23] was selected for an oral

presentation at, and published as part of the proceedings for, Arti�cial

Life XIII: The Thirteenth International Conference on the Synthesis and

Simulation of Living Systems, held in Michigan, USA. The work presented

in Borg and Channon [23] appears here in Chapter 5.

The work published in Borg and Channon [23] primarily concerns itself

with the variability selection hypothesis [119, 120, 121] which predicts the
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adoption of versatile behaviours and survival strategies in response to in-

creasingly variable environments. In hominin evolution the most apparent

adaptation for versatility is the adoption of social learning. The hypothesis

that social learning will be adopted over other learning strategies, such as

individual learning, when individuals are faced with increasingly variable

environments is tested here using a genetic algorithm with steady state

selection and constant population size. Individuals, constituted of binary

string genotypes and phenotypes, are evaluated on their ability to match

a target binary string, nominally known as the environment, with success

being measured by the Hamming distance between the phenotype and envi-

ronment. The state of any given locus in the environment is determined by a

sine wave, the frequency of which increases as the simulation progresses thus

providing increasing environmental variability. Populations exhibiting com-

binations of genetic evolution, individual learning and social learning are

tested, with the learning rates of both individual and social learning allowed

to evolve. We show that increasingly variable environments are su�cient

but not necessary to provide an evolutionary advantage to those popula-

tions exhibiting the extra-genetic learning strategies, with social learning

being favoured over individual learning when populations are allowed to

explore both strategies simultaneously. We also introduce a more biologi-

cally realistic model that allows for population collapse, and show that here

the prior adoption of individual learning is a prerequisite for the successful

adoption of social learning in increasingly variable environments.

The work presented in Borg and Channon [23] was co-authored by the

author of this thesis and Dr. Alastair Channon in his role as PhD supervisor.
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The author of this thesis wrote the simulation model used in Borg and

Channon [23], analysed the results, and wrote the paper. Dr. Channon's

involvement in this work was primarily advisory, including the proof reading

of paper drafts and advising on data analysis and simulation model design.

• Jolley et al. [87]: �Analysis of social learning strategies when discovering and

maintaining behaviours inaccessible to incremental genetic evolution�: Interna-

tional Conference on Simulation of Adaptive behaviour, 2016, 293-304 (also pre-

sented at SLaCE at ALIFE XV)

The work presented in Jolley et al. [87] was selected for an oral presenta-

tion at, and published as part of the proceedings for, the 2016 International

Conference on Simulation of Adaptive behaviour, held in Aberystwyth, UK.

Aspects of this work were also accepted for presentation at the Social Learn-

ing and Cultural Evolution workshop at the Arti�cial Life XV conference in

Cancun, Mexico. The author of this thesis was a co-organiser of the Social

Learning and Cultural Evolution workshop at Arti�cial Life XV. The work

presented in Jolley et al. [87] appears here in Chapter 6.

It had been previously demonstrated in Borg et al. [22] that social learning

can enable agents to discover and maintain behaviours that are inaccessible

to incremental genetic evolution alone. However, previous models investi-

gating the ability of social learning to provide access to these inaccessible

behaviours are often limited. Here we investigate teacher-learner social

learning strategies. It is often the case that teachers in teacher-learner so-

cial learning models are restricted to one type of agent, be it a parent or

some �t individual; here we broaden this exploration to include a variety

of teachers to investigate whether these social learning strategies are also
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able to demonstrate access to, and maintenance of, behaviours inaccessible

to incremental genetic evolution. In this work new agents learn from either

a parent, the �ttest individual, the oldest individual, a random individual

or another young agent. Agents are tasked with solving a river crossing

task, with new agents learning from a teacher in mock evaluations. The

behaviour necessary to successfully complete the most di�cult version of

the task has been shown to be inaccessible to incremental genetic evolution

alone, but achievable using a combination of social learning and noise in

the Genotype-Phenotype map. Here we show that this result is robust in

all of the teacher-learner social learning strategies explored.

The work presented in Jolley et al. [87] was co-author by Ben Jolley and

Dr. Alastair Channon along with the author of this thesis, with Mr. Jolley

being recognised as �rst author. As this work extended the work published

by Borg et al. [22], the author of this thesis's role was initially to advise Mr.

Jolley on the adaptation of the model used in Borg et al. [22] to include a

larger variety of social learning strategies, with the initial research idea (to

extend the Borg et al. [22] to incorporate some of the social learning strate-

gies presented in Laland [93]) being that of the author of this thesis. As

the work in Jolley et al. [87] progressed, the role of the author of this thesis

increased, with a signi�cant portion of the data analysis being conducted

by the author of this thesis. The author of this thesis also undertook the

vast majority of the work in writing and editing the publication associated

with this work. Mr. Jolley's role as �rst author primarily comprised of cod-

ing the amended simulation model and producing and presenting data. Dr.

Channon's involvement in this work was primarily advisory, including the
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proof reading of paper drafts and advising on data analysis and simulation

model design. The author of this thesis provided the basis for this research

to be conducted, coded the original model which was amended here, led on

the analysis of data, and wrote the majority of the publication associated

with this work.

• Borg and Channon [21]: �Evolutionary adaptation to social information use with-

out learning� European Conference on the Applications of Evolutionary Compu-

tation, Springer, 2017, 837-852

The work presented in Borg and Channon [21] was selected for presenta-

tion at, and publication as part of the proceedings for, the 2017 European

Conference on the Applications of Evolutionary Computation, held in Am-

sterdam, Netherlands. This work was part of the conference's Evolutionary

Robots track. The work presented in Borg and Channon [21] appears here

in Chapter 7

Social information can provide information about the presence, state and

intentions of other agents; therefore it follows that the use of social infor-

mation may be of some adaptive bene�t. As with all information, social in-

formation must be interpretable and relatively accurate given the situation

in which it is derived. In both nature and robotics, agents learn which so-

cial information is relevant and under which circumstances it may be relied

upon to provide useful information about the current environmental state.

However, it is not clear to what extent social information alone is bene�cial

when decoupled from a within-lifetime learning process, leaving evolution

to determine whether social information provides any long term adaptive

bene�ts. In this work we assess this question of the adaptive value of social
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information when it is not accompanied by a within-lifetime learning pro-

cess. The aim here is to begin to understand when social information, here

expressed as a form of public information, is adaptive; the rationale being

that any social information that is adaptive without learning will be a good

base to allow the learning processes associated with social information to

evolve and develop later. Here we show, using grounded neuroevolution-

ary arti�cial life simulations incorporating simulated agents, that social

information can in certain circumstances provide an adaptive advantage to

agents, and that social information that more accurately indicates success

confers more reliable information to agents leading to improved success over

less reliable sources of social information.

The work presented in Borg and Channon [21] was co-authored by the

author of this thesis and Dr. Alastair Channon in his role as PhD supervisor.

The author of this thesis wrote the simulation model used in Borg and

Channon [21], analysed the results, and wrote the paper. Dr. Channon's

involvement in this work was primarily advisory, including the proof reading

of paper drafts and advising on data analysis and simulation model design.

• The E�ect of Social Information Use without Learning on the Evolution of Be-

haviour - to be submitted to either the MIT Press Arti�cial Life journal, or a

special issue on Social Learning and Cultural Evolution in the Cognitive Systems

Research journal, alongside the work published in Borg and Channon [21]. As

with Borg and Channon [21], the anticipated publication will be co-authored by

the author of this thesis and Dr. Alastair Channon in his role as PhD supervisor.

Dr. Channon's involvement in this work was advisory, including the proof reading

of drafts and advising on data analysis and simulation model design.
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Chapter 2

Social Behaviour and Social Learning

2.1 Social Behaviour and Social Learning in Nature

Social and cultural behaviours1 have long fascinated scholars from �elds ranging from

Biology and Ethology to Anthropology, Sociology, Economics and Arti�cial Intelli-

gence. Unlike non-social behaviour which may often be understood from a purely

ecological and ontological view (that is to say that non-social behaviour is often cou-

pled strongly with both environmental and biological factors and limitations) social and

cultural behaviours are far less easy to study. In pursuit of the theoretical grounding

of social and cultural evolution many theories of cultural evolution have arisen, many

de�nitions of culture have been proposed, and social transmission and its bene�ts have

been modelled mathematically and computationally.

1The terms social and cultural are often, but incorrectly, con�ated to mean the same thing. Social

behaviour simply requires a social interaction between two organisms. Cultural behaviour instead

requires the social interaction to involve two organisms capable of exhibiting culture, with culture

being de�ned by Whiten and Van Schaik as "the existence in the same species of multiple traditions

forming unique local complexes"[164].
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2.1.1 Theories of Cultural Evolution and a Working De�nition

of Social Behaviour

One of the �rst major theories to address the evolutionary basis for social and cultural

behaviour was Sociobiology [165, 99]. Sociobiology o�ers what Boyd and Richerson [26]

have termed the �argument from natural design�, placing the core driving force behind

the evolution of social behaviour and culture on biological natural selection. In Rogers'

opinion [129] the argument from natural design implies that there are strong biological

constraints on cultural evolution and limited scope for cultural transmission, that is

to say that all aspects of culture may be explained as an extension of biological evolu-

tion thus precluding the possibility of two competing yet complimentary evolutionary

systems (biological evolution and cultural evolution). The acultural nature of Sociobi-

ology has led it to be widely rejected as a feasible theory of cultural evolution, with

its scope instead limited to those non-social and social behavioural adaptations which

can be seen to be primarily driven by ecological requirements. Sociobiology's inability

to fully accommodate cultural evolution in species such a humans led to a number of

related theories of cultural evolution, the most prominent of these being Evolutionary

Psychology [15]. Like Sociobiology, Evolutionary Psychology argues for strong bio-

logical constraints on the evolution of culture. Evolutionary Psychology argues that

human psychological adaptations have evolved to solve recurrent problems faced by

humans during our evolutionary history, the mind being broken down into functional

modules akin to functional physiological adaptations. Evolutionary Psychology has

been highly criticised for lacking the scope to incorporate other social animals due its

focus on the evolutionary basis cultural behaviour in human, and making oversimpli�ed

assumptions about the nature of human behaviour (often described as `just so stories')

[44].
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As opposed to Sociobiology and Evolutionary Psychology, which argue for strong

biological constraints, there are a number of theories endorsing a stance of weaker bi-

ological constraints; the most notable of these theories being Memetics [48, 50, 58, 59,

17, 18, 81] and Dual Inheritance Theory (aka Gene/Culture co-evolution)[25, 26, 27,

78, 79, 75, 106]. Memetics as a theory came about through Richard Dawkins' mus-

ings on the universal nature of Darwinian evolution [47, 48]. Dawkins postulated that

human culture could be viewed as an evolutionary system separate yet analogous to

biological evolution. He suggested that culture contained all the necessary elements

expected of an evolutionary system; discrete units of replication (dubbed memes),

variation/mutation, competition between units, and methods or replication (cultural

transmission mechanisms). As a theory of cultural evolution, Memetics has come under

a huge amount of criticism (see Rose [130] for an early, but thorough overview of many

of these criticisms). The weakness of the biological constraints in the Memetic view on

culture, where the biological carrier of memes is perceived to be largely held hostage by

the adaptive needs of the memes, is seen by many to entirely over-estimate the strength

culture has to a�ect the biological vehicle, however the primary criticism is in regard

to discrete replication. Though some simulation work has been done to demonstrate

the feasibility of discrete cultural replication [58, 81], convincing empirical evidence

is lacking [75]. The emergent social phenomenon often seen in arti�cial evolutionary

systems making use of social agents controlled by neural networks or similar connec-

tionist architectures [49, 42, 39, 5, 4, 3, 45, 2, 104, 154], also calls into question the need

for discrete representation when considering social and cultural behaviour; behaviours

emerging as a result of the evolution of a neural controller cannot be reduced down

to a set of discrete units within the neural substrate. However, the use of discrete

representations of culture or behaviour can be of use from a modelling perspective and
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are therefore still widely used in arti�cial life models [81, 36, 37, 101, 103, 102].

As an alternative to the weak biological constraints and discrete replication endorsed

by Memetics, the over-bearing biological constraints endorsed by Sociobiology and

the limited scope for social and cultural learning, which results from Evolutionary

Psychology, a theory of Gene/Culture co-evolution theory; more commonly known as

Dual Inheritance Theory, was proposed by Robert Boyd and Peter J Richerson [26].

Dual Inheritance Theory endorses the view that two evolutionary systems; cultural and

genetic, co-evolve resulting in both cultural (extra-genetic) and genetic inheritance.

Replication of culture in Dual Inheritance Theory is proposed to be continuous; that is

to say there is no necessity for discrete replication [75]. The Dual Inheritance Theory

can be easily modelled by allowing genotypic and social information to evolve side

by side, with both sources of information being expressed as part of an individual's

phenotype and therefore having some a�ect on reproductive selection and long term

survivability [103, 102].

In this thesis no single theory is binding, though Dual Inheritance Theory provides

the most useful framework from a modelling perspective as it does not limit represen-

tation to discrete units and it does not limit the causation and survival value of social

learning to purely genetic or environmental factors (whilst not excluding the impor-

tance of either). It is able to incorporate cumulative cultural evolution as well as the

many potential evolutionary biases for the evolution of social adaptation.

To move forward with a robust theoretical grounding of cultural evolution and the

adaptation for social behaviour, a working de�nition of culture must be formalised.

Social behaviour has been observed in a large variety of wild animals [164, 123, 163],

from mammals [92, 161, 124, 105, 100, 143, 144, 166] to birds [56, 115, 142] or even �sh
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[52, 151, 90, 12, 97, 13, 159]2. The problem with building a de�nition of culture is where

to draw the line on what species may be deemed as cultural rather than merely social;

on this problem there are two prevailing views. The �rst view is that culture should

be reserved for traditions, taken in this case to be consistent behaviours maintained

over a number of generations, transmitted via some mechanism of social information

transfer; e.g., imitation or teaching [61]. The second view limits culture to behaviours

that accumulate in complexity over time, thus restricting culture to behaviours subject

to cumulative cultural evolution [95]. Given this later view culture may be limited to

humans, though a growing body of work is attesting to the presence of (potentially

cumulative) cultural evolution in chimpanzees [161, 105, 166]. To resolve the debate

while taking into account the ever growing number of species demonstrating highly

complex social behaviours, Andrew Whiten and Carel van Schaik devised a cultural

pyramid (see Figure 2.1). The cultural pyramid accommodates low level social transfer

of the kind exhibited by �sh [12, 13] and high level cumulative culture as demonstrated

by humans and some apes [161, 105, 166]. According to Whiten and van Schaik, for a

species to be considered cultural they must exhibit and maintain multiple traditions;

it is this de�nition of culture as the maintenance of multiple traditions that is used in

this work. As the agents modelled in this work are by comparison to even the least

complex animal very simple, we do not expect to �nd anything close to culture or

cultural evolution in this work, with this de�nition of culture instead being used to

provide a sense of scale to the social behaviours exhibited here.

2Reader and Biro [123] provides a thorough and detailed overview of social learning in wild animals
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Figure 2.1: A reproduction of Whiten and van Schaik's cultural pyramid [164], showing

the variety and dependence of the emergent properties of social interaction and social

behaviours. Social information transfer is considered to be the most common result

of social interaction, with cumulative culture emerging only as a result of the most

complex social and cultural interactions.
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2.1.2 Social Information and Social Learning: Mechanisms and

Strategies

A social learning or social information strategy is a preference exhibited by an agent

or a population in regard to sources of social information. These are sometimes known

as social biases, as they can manifest themselves as a bias towards a certain type of

agent, an agent expressing a certain type of information, or an agent undertaking a

certain action. Laland [93] groups social learning strategies into two broad categories:

when strategies and who strategies. When strategies (also known as context depen-

dent, state based, strategies [126]) may be simply described as rules de�ning when a

social interaction may be undertaken, examples of such strategies being "copy when

uncertain" [62] or �copy if current behaviour has a low pay-o�� [131]. Who strategies

(also known as context dependent, model based, strategies [126]) on the other hand are

more concerned with the state or identity of conspeci�cs, examples of such strategies

being "age-based copying" [52], "prestige-based copying" [76] or "kin-based copying"

[77]. Rendell et al. [126] extends Laland's work [93] by considering a wider set of

possible social learning strategies, including unbiased/random social learning, and also

frequency dependent strategies such as "copy the majority" [26], which is also known

as conformist bias, and copy based on "number of demonstrators" [19]. Importantly

all of the social learning strategies discussed in Laland [93], Galef [62], and Rendell

et al. [126] are apparent in nature, meaning they must all confer some adaptive bene�t

to the animals utilising them.

Alongside social learning strategies, a number of social learning mechanisms have

been observed in nature. A social learning or social information mechanism is the

method via which social information is transmitted and transferred - this does not

necessarily mean how social information is physically communicated, but more how
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social information is passed from one agent to another. A number of works have

attempted to provide a set of useful categories of, or a taxonomy for, social learning

mechanisms [162, 80, 169, 126, 84, 63]. In the taxonomy used by Galef [63] (based

on the work of Whiten and Ham [162]) social learning mechanisms are split into two

broad groups: social in�uence and social learning. Social in�uence mechanism are those

which do not require any learning, instead allowing for social or public information to

intentionally or unintentionally in�uence the behaviour of social agents. Examples

of social in�uence include contagion, whereby the behaviour of one agent stimulates

a similar behaviour to be expressed by others agents (e.g. yawning), and exposure,

whereby one agent unintentionally exposes another to a new or novel environment or

resource. Social learning mechanisms are those in which one agent learns something

directly from the actions or state of another agent. Examples of social learning include

imitation, goal emulation, observational conditioning, and even stimulus enhancement

whereby one agent actively seeks to orient the attention of another agent towards

a stimulus. Missing from the taxonomy used by Galef [63] is a discussion on local

enhancement, which is often con�ated with stimulus enhancement. Both Heyes [80]

and Rendell et al. [126] discuss local enhancement as a social mechanism apart from, yet

associated with, stimulus enhancement, with Heyes [80] considering both to be a form

of social enhancement whereby social activity increases the likelihood of engagement

with either a particular stimuli or a location or habitat. To further clarify this division

Rendell et al. [126] (using the work of Hoppitt and Laland [84] as its basis) de�nes

stimulus enhancement and local enhancement as follows:

• Stimulus Enhancement: "A demonstrator exposes an observer to a single stimu-

lus, which leads to a change in the probability that the observer will respond to

stimuli of that type"
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• Local Enhancement: "A demonstrator attracts an observer to a speci�c location,

which can lead to the observer learning about objects at that location"

Stimulus and local enhancement can be intentional or unintentional on the part of

the demonstrator, and can both we be used e�ectively alongside a variety of social

learning strategies which may guide the circumstances under which these, and other,

social mechanisms are applied.

It has been noted in recent work that cumulative culture, which is often seen as the

ultimate expression of social behaviour, and has only been observed in humans and

some apes [105, 166], may be achievable without the use of imitation [38] or teaching

[170] - this opens up exciting possibilities regarding cultural behaviours in simple arti-

�cial life and evolutionary robotics models where both true imitation (which according

to Thorpe [145] requires both self-consciousness and goal-directedness) and detailed

teaching are extremely di�cult to model. This echoes the work of Noble and Todd

[113] where complex adaptive behaviours that seemed to be the result of imitative social

learning where instead shown to be possible using simpler social learning mechanism

such as local enhancement.

Mechanisms of social information transfer and social learning strategies are cen-

tral to this work. To properly simulate social behaviour and thus investigate the

bene�ts and evolutionary necessities of social learning and social information use,

social learning mechanisms must be simulated in a justi�able manner. In compu-

tational and mathematical simulation, imitation (or at least a mechanism described

as being imitation) is by the far by most explored mechanism of social transmission

[49, 81, 28, 39, 45, 104, 22], however there is a burgeoning set of simulation models

exploring learning by emulation (learning to copy the results of a set of actions as

opposed to imitating the precise set actions themselves) [98, 7].
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In regard to social learning strategies in this thesis, we focus primarily on the

utility of social learning and social information strategies in Chapters 6, 7 and 8.

In Chapter 6 we consider a number of the who strategies alongside unbiased social

learning to see whether the results presented in Chapter 4 are robust across a number

of social learning strategies, we also consider this wider consideration of social learning

strategies to be important in evolutionary robotics and arti�cial life research where

a broader consideration of the adaptive implications of social learning strategies is

often ignored. In Chapters 7 and 8 various social information strategies are considered

regarding public and social information use in a simple food foraging task to investigate

if social information without an accompanying within-lifetime learning process is of

any adaptive bene�t, and whether this adaptive bene�t is dependent on the type of

social information available to agents. Chapter 5 is less concerned with social learning

strategies (or mechanisms), but can be said to incorporate unbiased social learning,

as no information about the state of other agents (other than their existence in the

population) is used to select social learning models.

Regarding social learning mechanisms, here we primarily concern ourselves with a

form of teacher-learner imitation (in a simpler sense than intended by Thorpe [145]),

stimulus enhancement, and local enhancement. In Chapters 4 and 6 social agents

engage in rounds of teacher-learner imitation whereby a learner agent is guided around

an environment in a manner akin to stimulus enhancement. Agents in these tests

are supposed to imitate the reactive and deliberative behaviours exhibited by their

teachers, before themselves being evaluated on the task. In Chapters 7 and 8 only social

information use is considered whereby agents may decide to use the social information

inadvertently expressed by others to a�ect their own behaviour in a food foraging task;

this could be framed as a sort of social in�uence such as exposure or a form of non-learnt
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local enhancement.

2.2 Social Behaviour and Social Learning in Arti�cial

Evolutionary Systems

The arti�cial evolutionary systems employed here are all sub-sets of what may be de-

scribed as Arti�cial Life systems. As a discipline Arti�cial Life is relatively young, es-

pecially in regard to simulating social systems where mathematical modelling is already

well established and widely used [41], but it has vast amount of potential. According

to one of the founders of Arti�cial Life, Chris Langton:

�Arti�cial Life [AL] is the study of man-made systems that exhibit be-

haviours characteristic of natural living systems. It complements the tra-

ditional biological sciences concerned with the analysis of living organisms

by attempting to synthesize life-like behaviours within computers and other

arti�cial media. By extending the empirical foundation upon which biology

is based beyond the carbon-chain life that have evolved on Earth, Arti�-

cial Life can contribute to theoretical biology by locating life-as-we-know-it

within the larger picture of life-as-it-could-be.� [94]

As a method of biological simulation, Arti�cial Life allows us to explore many aspects

of biological systems from the bottom-up. By starting at the bottom many of the

confounding factors that often stand in the way of the kind of clear synthesis of social

behaviour sought by Tinbergen [146] may be avoided, thus allowing us to investigate

which factors actually drive the evolutionary adaptation to social information use and

social learning, resulting in adaptive social behaviour.

25



Building grounded (and non-grounded) Arti�cial Life models is often described as

bottom-up due to behaviours and adaptations emerging as results of the simulation

model rather than being built in or implicitly parametrised for from the outset. One

of the many factors that a�ects the study of social behaviour in nature is that one

must start from the middle; millions of years of evolution both physiologically and be-

haviourally had already occurred by the time human scientists decided to start studying

cultural adaptation. When starting in the middle one must postulate, aided by fossil

and geological evidence, on the potential evolutionary causation of any given cultural

adaptation. For instance, why did the split between the chimpanzee and human evo-

lutionary lines more than 2 million years ago cause one species to develop a highly

complex culture and the other to remain relatively culturally naive? We cannot go

back 2 million years and witness evolution in action despite the many fossils we now

have at our disposal. Simulating from the bottom-up avoids this complication by in-

stead simulating abstract animals (agents or animats) in abstract environments, we

can then view the evolutionary histories and trajectories of our agents as well as in-

vestigating the many evolutionary permutations that may occur. While it is true that

these agents and their virtual environments are not in fact close abstractions of real

animals and ecosystems, the general purpose nature of such modelling techniques can

provide an invaluable insight into the basic rules and necessities of grounded evolution-

ary systems. Generalising from the bottom-up also removes other confounding factors

that those studying behaviour in nature cannot. In an abstract simulation we do not

have to consider the issues surrounding sexual selection, or include species competing

in the same niche or even subtle environmental factors such as rainy seasons, instead

only factors we are interested in or those that seem to be immediately important need

be included in bottom-up models. Added complications and complexity can always
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be added later, once the basic factors and their e�ects have been su�ciently explored

and understood. The work of Joanna Bryson is a prime example of the �exibility and

importance of bottom-up grounded simulation to the many �elds of natural science

[30, 32, 122, 31].

One of the favoured methods of Arti�cial Life simulation is the use of grounded

arti�cial agents situated in some simulated environment. Grounded agents of this sort

are often referred to as animats [158] or agents, though this is not universal [104].

Animats are general purpose abstractions of biological organisms often composed of

simple sensors, a means of locomotion, some decision making organ (arti�cial neural

networks as a default) and a genotype coding for those aspects of the agent subject to

evolution. Inspired by the Braitenberg Vehicle Architecture [29], animats take the core

aspects of autonomous biological organisms as a starting point from which behaviour

or physiology may be empirically explored. In this work populations of neural networks

embodied in animats will be employed. There are a number of competing paradigms in

arti�cial neural network (ANN) research from standard feed forward neural networks

where weighted connections feed forward through layers of neural synapses to an even-

tual output, to echo state networks and reservoir computing. In many of the grounded

simulations of social and cultural evolution to date, a simple feed forward approach has

been taken [5, 4, 3, 45], though some subtle variations have also been employed [104].

In order for social behaviour to be simulated in a way that is not totally at odds

with the natural world, a separation between the genetic encoding of an animat, and

the phenotype of the animat is necessary [103, 102]. By separating the genotype and

the phenotype, extra-genetic inheritance via social and non-social learning can take

place with none of these within-lifetime changes a�ecting the underlying genotype. In

simulations using ANNs, which are often described as neuroevolutionary models when
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coupled with an evolutionary algorithm, genotypes are often direct encodings of neural

network weights (sometimes with additional genetic information on network parameters

and topology), with phenotypes initially being direct copies of the genotype which then

diverge during an agent's lifetime. This direct encoding approach is primarily used here,

but other approaches to encoding neural networks where a direct mapping of genotype

to weights is not employed are also widely used [138, 53]. Neuroevolution applies

evolutionary principles to neural networks by coding the structure [45] and weighted

connections [49, 39, 45, 4, 3, 128] that constitute the network into some genotype, these

genotypes being subject to evolutionary pressures.

Evolutionary selection pressures in arti�cial evolutionary systems determine the

�tness of an individual. In evolutionary computing, �tness has generally been judged

by some absolute �tness measure in a mathematically predictable �tness landscape,

often for the optimisation of some mathematical function. This however is not a bi-

ologically viable method of �tness assessment. In nature, the �tness of an individual

is simply determined by the individual's ability to survive in its environment to the

point of successful reproduction, with �tter individuals having more o�spring than

less �t individuals. By judging an individual's �tness by their ability to survive in

their current environment, we are considering an individual to be environmentally and

evolutionarily situated [132]. This measure of �tness, though biologically viable, does

provide some challenges for social learning [117] especially when social learning re-

enforces sub-optimal behaviours that population level genetic adaptation is capable of

escaping.

Alongside environmental situatedness, social or cultural situatedness [96] is also

a pre-requisite for the emergence of adaptive social intelligences. If environmental

situatedness implies that agent behaviour is ecologically embedded, social situatedness
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is the idea that social intelligence also requires a level of social or cultural embedding

[96]. To situate an agent socially in simulation, an agent must be able to obtain

successful behaviours through social interaction, this is most e�ectively done when the

adaptation for social learning is allowed to evolve rather than being simulated as an

assumption. It may be the case that only a weak coupling of the agent and social

factors is necessary, with overly conformist social learning potentially undermining the

agent's ability to produce successful behaviours [129, 117, 14].

Here, Chapters 4, 6, 7 and 8 all report on work which involves grounded neuroevo-

lutionary agents, which are environmentally, evolutionarily and socially situated to

some extent. Though by the de�nition of evolutionary situatedness o�ered by Schut

et al. [132], none of the models employed in this work are fully situated in an evolu-

tionary sense as all of them involve some level of central authority when decided on

reproduction, �tness evaluation, and death.

This work also includes, in Chapter 5, a non-grounded arti�cial evolutionary system.

This system is neither environmentally situated in the traditionally sense, nor does

it incorporate animats or neuroevolutionary agents. Instead, a simple evolutionary

algorithm is used whereby populations of individuals comprising only of binary strings

are evaluated on their ability to match a search string, which changes periodically based

some mathematical formulation of environmental variability. Non-grounded models

such as these, whilst simple, have been demonstrated to be well suited to testing

some aspects of learning (both social and non-social) and the evolution of plasticity

[82, 81, 67, 71], though they do lack some of the behavioural richness seen in grounded

neuroevolutionary and evolutionary robotics models.
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Chapter 3

Research Questions

All models used here to address the following research questions employ what Mar-

riott and Chebib [103] would describe as Evolutionary and Developmental Models, in

which individual agents have a genotype and some phenotype, with any within-lifetime

learning events altering the agent phenotype but leaving the genotype unchanged (as

opposed to a Lamarkian model whereby within-lifetime changes to the phenotype are

encoded in the genotype). In these models selection operates on phenotypic behaviour

while reproduction operates on the genotype, thus creating a potential disconnect be-

tween the genotype and phenotype. Both grounded neuroevolutionary models and

non-grounded models making use of binary string evolutionary algorithms, are em-

ployed to explore the research questions posed below.

3.0.1 Incremental Genetic Evolution and Social Learning

In order to be maintained by evolution, social learning should confer an evolutionary

advantage over population level adaptation (via incremental genetic evolution alone)

and individual learning for obvious reasons; it provides access to behaviours learned by
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conspeci�cs without the need to engage in dangerous individual trial and error learning

or to rely on the slow and incremental process of genetic adaptation, which is largely

incapable of escaping sub-optimal peaks in the �tness landscape. These advantages,

however, need to tested empirically; grounded arti�cial life models provide the perfect

environment for doing this.

• Q1: In grounded Arti�cial Life simulation, can extra-genetic inheritance lead to

the emergence and maintenance of behaviours that are inaccessible to genetic and

individual learning? (When is social learning useful?) (addressed in Chapter 4)

3.0.2 Robustness in (Increasingly) Variable Environments

Humans (homo sapians) acquired their adaptations for complex social learning before

the Out Of Africa Exodus [141], whereby increasing numbers of humans left Africa

to settle in the Middle East, Asia and Europe, before going on to colonise a signif-

icant portion of planet's surface. This exodus would have provided changes to the

human environmental situation that would have given ample advantage to those with

a predisposition to cultural adaptation, however complex social learning was before

the migration out of Africa occurred. Given the potential costs and drawbacks of cul-

tural adaptation, such as the increased energy requirements of larger brains [85, 86]

and the altricial state of children at birth [34, 35] stemming from increased risks in

child birth owing to larger neonatal brain size, and the seemingly stable environmental

situation pre-exodus humans found themselves in, why did the adaptation for cultural

evolve? Assuming social learning is advantageous (see Research Question 1) under

which temporal environmental circumstances will it evolve? Are there any environ-

mental necessities for cultural adaptation that we may model using grounded Arti�cial

Life simulation?
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• Q2: In non-grounded Arti�cial Life simulation, under which temporally variable

environmental conditions will a social learning mechanism evolve? (When will

culture evolve?) (addressed in Chapter 5)

3.0.3 Social Learning Strategies

As discussed in Chapter 2.1.2, social learning and social behaviour in nature is as-

sociated with a large variety of social learning strategies. However, despite the large

variety of social learning strategies seen in nature, it is not entirely clear whether all

social learning strategies can be relied upon to provide an adaptive advantage over in-

cremental genetic evolutionary processes alone. It is also not clear how di�erent social

learning strategies enable access to behaviours that are inaccessible to incremental ge-

netic evolution alone. By exploring the adaptive advantages of di�erent social learning

strategies we may begin to better understand the role di�erent social learning strate-

gies play in natural social systems, and ultimately engineer arti�cial agents with more

e�ective and robust social learning capabilities.

• Q3: In grounded Arti�cial Life simulation, can we demonstrate that behaviours

inaccessible to incremental genetic evolution alone are still discovered, and main-

tained, when agents are permitted to learn via di�ering social learning strategies,

access these incrementally inaccessible behaviours in di�ering ways? (Are di�er-

ent social learning strategies adaptive, and how?) (addressed in Chapter 6)

3.0.4 Social Information Use without Learning

Social information can provide information about the presence, state and intentions

of other agents; therefore it follows that the use of social information may be of some

adaptive bene�t. As with all information, social information must be interpretable
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and relatively accurate given the situation in which it is derived. In both nature and

robotics, agents are required to learn which social information is relevant and under

which circumstances it may be relied upon to provide useful information about the

current environmental state. However, it is not clear to what extent social informa-

tion alone is bene�cial when decoupled from a within-lifetime learning process, leaving

evolution to determine whether social information provides any long term adaptive

bene�ts. By decoupling social information and learning, we may begin to understand

the role social information alone plays in natural social systems, and in the future engi-

neer arti�cial social agents with an improved understanding of the relative importance

of di�erence sources of social information.

• Q4: In grounded Arti�cial Life simulation, can the use of social information

in populations comprised of simulated neuroevolutionary agents be shown to

be adaptive when decoupled from within-lifetime learning processes? (Is social

information adaptive when decoupled from within-lifetime learning processes?)

(addressed in Chapter 7)

3.0.5 Social Information Use and Behavioural Change

Agents incorporating social information into their decision making processes should

exhibit notable behavioural di�erences compared to non-social agents. However, it is

not clear to what extent these social behaviours resulting from social information use

are exhibited, and whether they persist when social information use is not necessarily

adaptive. By exploring the behavioural di�erences observed in social populations,

we may begin to better understand how many of the behaviours seen in nature are

driven by the need to access social information, and ultimately engineer arti�cial social

systems with a better understanding of the kinds of behaviours we would expect to
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emerge in such systems.

• Q5: In grounded Arti�cial Life simulation, how e�ectively is social information

used to increase agent adaptability, and do any behaviours resulting from social

information use persist even when task performance does not outperform the

performance seen when no social information is available? (To what extent does

social information a�ect agent behaviour; are any behavioural di�erences distinct

from those exhibited by non-social populations; and do these behaviours persist

when social information use is no longer adaptive?) (addressed in Chapter 8)
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Chapter 4

Discovering and Maintaining

Behaviours Inaccessible to

Incremental Genetic Evolution

4.1 Introduction

Here we present work showing animats in a virtual environment learning behaviours

through imitation that are inaccessible to incremental genetic evolution alone. Learning

by imitation is often considered to be a mechanism of social information transfer [41,

164], leading to what may be described as social or cultural learning. By combining

social learning, which allows the transfer of information between di�erent individuals in

the population, and individual learning in the same evolutionary system it is possible

to make use of both global and local search: global search through the underlying

(multi-generational) genetic algorithm and local search through individual (lifetime)

learning [82]. It has been demonstrated by Best [16] that by using social learning in
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place of individual learning on a more challenging version of the Hinton and Nowlan [82]

problem, it is possible to improve the speed at which a population of agents discover an

adaptive goal. Social learning has also been shown to be e�ective when �nding optima

in narrow peaked and �at peaked search landscapes, as opposed to individual learning

which struggles with narrow peaked search landscapes [6]. Social learning has the added

advantage of allowing individuals to pass on learnt information to other members of

the population, and so preserving extra-genetic information for the next generation.

Beyond its uses in evolutionary optimisation and search, cultural and social learning

is also a well known natural phenomenon with various species using social learning

mechanisms such as imitation, emulation, teaching and the use of public information

to produce adaptive behaviours in dynamic and challenging real world environments

[46, 164, 123, 150, 159? ].

A number of studies have investigated the e�ect learning by imitation has on pop-

ulations of evolving neural networks [16, 39, 5, 4, 45, 104]. In much of the literature

these imitating neural networks are referred to as agents, with some, as is the case in

this work, even taking on the role of animats or autonomous agents in virtual environ-

ments [104]. It is the aim of this work to investigate whether learning by imitation in

a population of neural networks enables behaviours that are deemed to be inaccessible

to incremental genetic evolution, to be learned and maintained. Here an increasingly

complex virtual environment is used in which animats' behaviours are evaluated.

4.1.1 Incremental Genetic Evolution

Long-term incremental genetic evolution [43, 66] necessarily uses converged popula-

tions, which may be referred to as species (or quasi species [33]), as an initial starting

point for evolution search or population genetic learning. In genetic algorithms (GAs)
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this is referred to as the Species Adaptation Genetic Algorithm (SAGA) approach [73].

The SAGA approach impacts on the way populations evolve: recombination will have

a far smaller e�ect on the motion of the population than in a standard GA, as each

species is already genetically similar, leaving mutation as the primary driving force

behind evolution. Mutation can be substantially e�ective in spaces percolated by neu-

tral networks: pathways of level �tness through the �tness landscape. In this case

genotypes can vary while still producing similar phenotypes and behaviours. When

phenotypes of higher �tness are found the population converges onto them. This in-

cremental approach enables species of animats to discover and converge upon an easily

accessible solution. However, if there is no neutral or incremental path between the

corresponding basic behaviour and �tter ones, the population will struggle to move

away from these sub-optimal behaviours. Figure 4.1 depicts a mock example - in this

mock example there is an incremental pathway via standard evolutionary operators

(crossover and mutation) to a sub-optimal solution, but no incremental or neutral

pathway to the optimal solution. Once the population has achieved the incrementally

accessible, but sub-optimal, solution, mutation and crossover are unable to drive the

population towards new behaviours as �tness based selection will bias reproduction in

favour of those agents still on the sub-optimal peak. In order to bridge the gap be-

tween the sub-optimal and optimal peaks, the population must be allowed to explore

new solutions.

One approach to solving the problem of sub-optimal convergence is to increase the

rate at which mutation is applied, potentially allowing the population to explore more

of the solution space and so discover new �tness peaks. However, there are problems

with this approach: as mutation rates increase, the evolutionary search strategy begins

to resemble random search, with larger mutation rates making it increasingly di�cult
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Figure 4.1: Mock �tness landscape with an inaccessible �tness peak. A species starting

from point X on the above mock �tness landscape would achieve peak A by way of

the hill climbing strategy adopted by incremental genetic evolution (driven primarily

by mutation and selection). Gradient-based learning amongst such a species would

ordinarily also be restricted to peak A. The inclusion of both noise in the genotype to

phenotype map and learning by imitation can enable the species to jump across areas

of lower �tness to higher peaks (inaccessible to hill climbing alone), where incremental

genetic evolution and learning can resume hill climbing.

for the population to maintain solutions. The point at which mutation becomes so large

that favourable structures discovered by evolution are lost more frequently than they

are found is known as the error threshold. Ochoa et al. [118] and others have demon-

strated a link between error thresholds and optimal mutation rates in evolutionary

algorithms.
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4.1.2 Discovering andMaintaining Inaccessible Solutions: Tran-

scription Errors and Imitation

To solve the issue of sub-optimal population convergence without crossing the error

threshold, noise is often added to the �tness landscape via the genotype to �tness map,

either by using non-elitist selection or some noisy determination of agent performance.

However, where such noise is in the phenotype to �tness section of that map with a

phenotype instead of the genotype being used to determine agent behaviour, its ability

to aid in the transition between peaks (or more accurately between neutral networks)

is limited. By instead incorporating noise into the genotype to phenotype map, as

with transcription errors, behaviours inaccessible to incremental genetic evolution may

be exhibited reliably by individuals while leaving the genotype untouched. It can be

useful to view such noise as a type of unguided individual learning.

In order to maintain successful behaviours in the population, some form of extra-

genetic learning needs to take place. The model employed in this work makes use of

imitation through interactions between teachers and pupils to facilitate the transmis-

sion of learnt behaviours [39, 5, 3, 45]. As in Curran and O'Riordan [45] pupils follow

teachers in a mock evaluation on a set of environments. As both teacher and pupil

receive the same environmental input the teacher's output may be used as a target

pattern for error back-propagation, reducing the pupil's output error compared to that

of the teacher. By learning in this way pupils are able to imitate the behaviours exhib-

ited by teachers, thus maintaining behaviours in the population that would have been

lost in incremental genetic evolution.
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4.1.3 Neuroevolution of Deliberative Behaviours

This work uses populations of neural networks embodied in animats. The neural net-

work architecture used here is a hybrid of two di�erent networks: the �rst controlling

the high level deliberative behaviours of the animat, and the second controlling the

animat's reactive capabilities [128]. By making use of both reactive and deliberative

mechanisms, neural architectures of this sort are able to seek long term goals while

also reacting to unforeseen events ultimately enabling the evolution of complex prob-

lem solving abilities. To demonstrate these problem solving abilities Robinson et al.

[128] developed a complex problem called the `river crossing' or RC task. The RC

task required animats to �nd a single reward-giving Resource in a 2D grid-world envi-

ronment containing a number of obstacles. Alongside Resource objects animats could

encounter Water, Grass, Traps and Stones. Grass objects made up the majority of

the environment and were seen as neutral space for the animats to move across; Trap

objects were immediately lethal, as were Water objects, which were placed in such

a way to resemble an unbroken river cutting the animat's path to the Resource. In

order to cross the river animats were required to pick up Stone objects, which could

be carried at no cost to the animat, and place them in the same cells as Water thus

negating their lethality. Once a continuous bridge of Stones over the river had been

built animats could access the Resource. To succeed at the RC task animats were

required to evolve with no a priori knowledge of the world; each new environment was

unique and animats had no concept of co-ordinates, making solutions such as `move

�ve steps to the right' impossible, instead animats evolved goals and sub-goals such as

`go to resource',`avoid traps' or `head to nearest stone' which then allowed the network

to navigate the animat towards these goals. Despite the RC task being reasonably

complex, [128] demonstrated that it could be solved by initially converged populations
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of animats using only incremental genetic evolution. To test our hypothesis a more

complex version of the RC task has been developed: the RC+ task.

4.1.4 The RC+ Task

An important aspect of the RC task was that individuals were evaluated on increasingly

di�cult environments. In Robinson et al. [128], animats were �rst shown a map with

no river blocking their path; then a river with a width of one cell was introduced,

followed by a �nal environment containing a river with a width of two cells. Stone and

Trap objects were of a consistent number throughout all tests giving animats equal

exposure in each environment. The RC+ task makes the task harder in regard to both

river width and exposure to Stone objects. The number of environments an animat is

evaluated on is increased from three to �ve, with environments becoming increasingly

di�cult to solve due to river width increasing from zero cells to four cells. To add

to the di�culty further, the number of Stone objects gradually decreases from twenty

in the �rst environment to zero in the �nal environment, making each environment

more challenging to the point where the �nal environment cannot be completed by

building a bridge. In order to make the �nal environment solvable two extra objects,

Object A and Object B, are introduced into the environment. Object A and Object B

are rare objects, with only one instance of each found in each environment. Like Stones,

Object A and Object B may be carried at no cost to the animat and placed upon any

square or object. If an animat happens to place both Object A and Object B on a

square containing Water (notionally forming a �oating raft that carries the animat

to the resource), a reward equal to that of the Resource is received and the animat is

considered to have successfully solved the environment. In short, an alternate Resource

may be constructed out of the three other objects (Object A, Object B and Water),
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removing the need to build bridges but still requiring agents to be driven towards

the Resource when Water is not present. The RC+ task is impossible to solve with

incremental genetic evolution alone. To solve it, animats are required to engage with

Water, Object A and Object B while still avoiding Traps and uncovered Water, and to

also be able to reach the Resource in the absence of Water (the simplest sub-solution

to evolve). The rarity of both Object A and Object B adds to the di�culty of the

RC+ task as animats must now evolve to be driven to towards Object A and Object B

despite potentially very little exposure during their time in the environment.

4.2 The Model

Animat movement is controlled by a hybrid neural network embodying both reactive

and deliberative qualities. This hybrid network may be broken down into two network

models: a shunting network and a decision network, with the decision network passing

information on to the shunting network which in turn controls the animat's movement.

The shunting network is not directly exposed to any evolution or learning. The delib-

erative network on the other hand is exposed to both evolution and learning, enabling

the evolution and inheritance of animat behaviour.

4.2.1 The Shunting Network

Shunting networks are a specialised form of neural network making use of what is

known as the shunting model [167, 168]. The inspiration for the shunting model came

from Yang and Meng's [167, 168] desire to develop motion planning systems capable

of reacting quickly in real-time environments, thus allowing robotic agents to exhibit

robust and collision-free motion planning behaviours. Instead of directly specifying
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behaviours, the shunting model maps network outputs onto environmental outputs

(within an internal map of the environment) which are propagated across the envi-

ronment to form an activity landscape. This activity landscape is used by the agent

to control movement through the environment, by dynamic gradient ascent of the

landscape. In their model, Yang and Meng [167, 168] demonstrated a neural network

composed of an n-dimensional lattice of neurons, with each neuron representing a pos-

sible state in the system. By using neurons to represent states in this way it is possible

to represent any system which is capable of being fully described by a set of discrete

states.

The environment used for the RC and RC+ tasks is a simple 2D grid-world consist-

ing of 20 × 20 cells, with each cell representing a position in co-ordinate space. Each

position in the grid-world may be occupied by any number of objects found in the

RC+ environment (Resource, Water, Trap, Grass, Object A and Object B), allowing

the system to be fully described by a set of discrete states, thus enabling the use of the

shunting model to direct animat movement across the RC+ environment and ensuring

a simple one-to-one relationship between neurons and geographical locations.

In Yang and Meng [167, 168], two versions of a transition function for specifying

inter-neuron dynamics were developed: one which controlled activity saturation in the

network and one which did not. Consistent with the �ndings of Robinson et al. [128],

we found activity saturation not to be a problem exhibited by networks in the RC+

task, enabling the use of the simpler transition function in equation 4.1.

dxi
dt

= −Axi + Ii +
k∑
j=1

wij [xj]
+ (4.1)

Alpha (A) represents the passive decay rate, which determines the degree to which

each neuron's activity diminishes towards an idle state. The functions [x]+ ismax(0, x).
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The connection weight (or synapse strength) wi,j between neurons i and j is the Eu-

clidean distance between cells i and j within the receptive �eld. k is the receptive �eld

size and here is set to 4, corresponding to the four cells orthogonally surrounding cell

i. Iota (I) is equal to E in the case of the target, and −E for an obstacle, where E is

a large integer.

In the case of the RC and RC+ tasks Iota values are limited to 15, -15 and 0,

representing the target resource, an obstacle and neutral space respectively. The result

of using a transition function with these values are 2D environments with large peaks at

the sites of target states, large troughs in cells occupied by obstacles, and large amounts

of neutral space through which neuron activity from targets may spread. Using the

shunting model to control animat movement allows for goals such as `head for resource

while avoiding traps' or `place carried stones on water' to be easily achieved.

4.2.2 The Decision Network

The role of the decision network is to set the Iota values for object states found in the

RC and RC+ task. Using the decision network animats can set the desirability of object

states in relation to their current environmental inputs, allowing them to manipulate

the shunting network's activity landscape and so combine multiple actions such as `pick

up the closest stone' and `place stone on water' to create complex behaviours.

As in Robinson et al. [128], the decision network is simply a feed-forward multi-

layer perceptron with one hidden layer comprising of four hidden units. The input

layer is capable of representing the animat's current state in the environment including

whether or not the animat is currently carrying a movable object (Stone, Object A,

Object B), with each movable object having a dedicated carrying input. Inputs taken

by the input layer are single values of 1 or 0, representing the presence of the object
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in the same cell as the animat. These input values are fed through to the hidden

layer neurons via weighted connections in the range [−1, 1]. At each hidden unit the

weighted sum of inputs is passed through a hyperbolic tangent activation function to

produce hidden layer outputs. In the RC+ task the output layer is made up of sixty-

seven neurons representing the Iota values of all sixty-four possible environmental states

(excluding Grass objects whose Iota values are always set to 0 and therefore do not

need be represented in the decision network) and a pick-up/put-down output for each

non-static object (Stone, Object A, Object B). At each output neuron the sum of all

weighted connections is passed through a hyperbolic tangent activation function with

�xed thresholds: neurons outputting within the range [−0.3 : 0.3] are set to output 0,

while all outputs over 0.3 resolve to 1 and all outputs below -0.3 resolve to -1. These

�xed threshold values are consistent with those used in Robinson et al. [128].

For outputs representing the pick-up/put-down actions output values of -1 cause

the animat to put down the speci�ed object they are carrying, values of +1 causing

animats to pick up the movable objects they are currently sharing a cell with providing

the animat is not already carrying an object of that type. For all other outputs, resolved

output values set the Iota values to be used in the shunting network. So if an output

neuron has a negative output, all objects of that class found in the environment at

that point in time will have their activations set to -15; for positive outputs to +15.

Any object resulting in an Iota value of 0 will remain neutral, causing their activation

values in the shunting network to be solely based on the propagated activations of other

objects. The resulting environment will contain a number of peaks of high activity and

troughs of low activity, gradually propagating activity through neighbouring neutral

cells.

Figure 4.2 shows two of the �ve potential environments an animat may observe in
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the RC+ task, and the corresponding activity landscapes given certain outputs from

the decision network. The �rst environment represents the initial challenge an animat

must complete, where only traps stand in the way of a resource. As can be seen by this

environment's activity landscape, the Iota value associated with the resource has been

set to be positive resulting activity propagating from the resource over the surrounding

neutral space. The second environment represents the second challenge, to cross a river

before having access to the resource. In this environment, activation propagation from

the resource has been impeded by the decision network outputting negative Iota value

for Water objects. Negative activity repels animats from objects with negative Iota

values; however positive activation can been seen coming from the Object B object,

providing a hill-climbing route for the animat to take in activity space.

4.2.3 Evolution of the Decision Network

To evolve the decision network a steady-state genetic algorithm was used. At each

iteration two animats were selected from the surviving population to be evaluated in

tournament selection, with the worst performing animat being replaced by the progeny

of the better performer. The competing animats are evaluated in �ve increasingly di�-

cult environments. If during evaluation an animat fails to complete an environment, the

evaluation is terminated. Fitness is set to be the number of environments successfully

completed by an animat during evaluation.

An animat's genotype consists of a set of �oating point values each in the range

[−1, 1], which are transcribed into the connection weights in the animat's decision net-

work. The genotype and the decision network are stored separately, so any learning

that may take place during an animat's lifetime will only a�ect the decision network:

no changes are made to its genotype after an animat is initially created. New animats
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Figure 4.2: RC+ task and activity landscapes. Two environments with their activity

landscapes (given certain outputs from the decision network - see main text). An-

imat=yellow, Stones=brown square, Resource=green circle, Object A=black circle,

Object B=red circle, Traps=crosses, Water=blue square.
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are the o�spring of two other animats from the current population: one tournament

winning animat and one randomly selected animat. The child's genotype is created

�rst through recombination of the parents' genotypes; for this operation single-point

crossover is used with the point of crossover being a randomly selected point in either

parent's genotype. Each loci in an animat's genotype represents exactly the same con-

nection weight as in any other animat's genotype, with all genotypes being of length

L = 308. Mutation follows recombination; each point has a probability Pmut = 1/L

of having a random value from N(0, 0.4) added to it, with the resulting values being

bounded within the range [−1, 1]. Once the genotype has been constructed it is writ-

ten to the new animat's decision network; this process is referred to as transcription.

During transcription two randomly selected connection weights are overwritten with a

new random value selected from a discrete uniform distribution U(−1, 1). The weights

now present in the decision network dictate the animat's future behaviours within each

environment.

4.2.4 Learning in the Decision Network

Following reproduction new animats are a�orded the opportunity to learn from a

teacher via error-backpropagation. This method of teacher-pupil back-propagation has

been previously employed by Curran and O'Riordan [45]. However, the teacher-pupil

scenario used in this work di�ers in a number of ways. In the learning model used

by Curran and O'Riordan [45], teachers were selected from the population based upon

their �tness and then assigned n pupils to teach. We contend that in nature absolute

�tness is very di�cult to assess. To resolve this issue, the current tournament-winning

parent is assigned the role of teacher, with the parent's most recent progeny assigned

the role of pupil.
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There are also di�erences in the way error-backpropagation is used to teach pupils

in this model compared to that of Curran and O'Riordan [45]. As with our model,

Curran and O'Riordan [45] allowed pupils to hitch-hike on the back of the teacher

during a mock evaluation, with inputs shared between teacher and pupil and using the

teacher's output pattern as a target pattern for the pupil to learn. The learning method

employed by Curran and O'Riordan [45] permitted pupils to learn from the target pat-

tern until the error between child and parent outputs were minimised to a satisfactory

level. In our model pupils are only presented with the current teacher's output once

every simulation time step (immediately after the teacher's decision network's inputs,

activations and outputs are updated). If a teacher happens to move through the envi-

ronment in such a way that both inputs and outputs remain the same, the child will

be presented with many opportunities to learn a given target input-output pattern.

However, if the teacher moves around the environment via many di�erent input combi-

nations, the student will have the opportunity of potentially witnessing many di�erent

target outputs but at the cost of having very little time to minimise error. Imitating

in this manner enables the population to retain favourable behaviours not coded for

genetically, whilst not undermining the incremental genetic evolutionary process.

4.3 Experimentation

At each iteration of the model two individuals are taken from the population to be

evaluated on a series of �ve environments/maps. All maps have seven Trap objects

placed randomly on the map, one reward-giving Resource, one Object A, one Object B,

and 20 − (5 × riverwidth) Stone objects. River width varies from an initial width of

zero, increasing by one cell per map. During evaluation individuals must successfully

reach the Resource or place Object A and Object B onto a cell containing Water; any
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animat failing to do so within 100 steps or dying by means of a Trap or uncovered

Water is not permitted to attempt the next environment.

Fitness in the model is determined to be the number of maps successfully completed

in the current tournament iteration, with individual �tness being set to zero before each

evaluation. The individual achieving the highest �tness is allowed to reproduce, with

the weaker individual being replaced by the progeny of the tournament winner and a

randomly selected animat. This steady-state approach maintains the population at a

size of 100 individuals.

After reproduction the child is allowed to learn via error-backpropagation from its

tournament winning parent. The child follows its parent in a mock evaluation, with the

child's inputs being set to those of the parent. Learning takes place for as along as the

parent is being evaluated. Once the parent either fails to complete a map or completes

all �ve environments, learning is terminated. At each step through the evaluation the

child attempts, via error-backpropagation with a learning rate of δ = 1, to learn to

imitate the parent's output for the current inputs.

Three strategies are used in this model: two without learning and one with learning.

Populations of animats with no access to learning fall into two categories. The �rst,

known as Non-Learners(1), having a mutation rate and transcription error equal to

that use by learning populations. As populations of Non-Learners(1) have no way

of assimilating transcription errors back into the genotype it may be seen as giving

learning populations, known as Learners, an unfair advantage. With this in mind a

second of category of non learners, known as Non-Learners(2), are also evaluated. Non-

Learners(2) do not have transcription errors, and instead have a mutation rate equal

to that of the original mutation rate plus two transcription errors: Pmut2 = 3/L.

To test the ability of each strategy to exhibit the behaviour necessary to complete
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the most di�cult map, �fteen populations of each learning strategy were simulated.

Each simulation lasted a maximum of 5,000,000 tournaments. In each simulation the

best individual's �tness and the mean population �tness were recorded at intervals of

500 tournaments. The maximum �tness an individual could achieve was �ve, which

directly relates to the successful completion of all �ve evaluation environments, the

�fth environment being impossible to complete by bridge building and so requiring the

combination of Object A and Object B on Water. For a population to be considered as

adequately completing the �fth map, a �tness of �ve must have been recorded by the

�ttest individual at ten recorded tournaments with at least �ve of these tournaments

being unbroken by a sub-optimal result. This ensures that the complex behaviour

tested for is not only found but also maintained by the population.

4.4 Results

Table 4.1 shows results from the �fteen populations of animats using the Non-Learners(1)

strategy: the mean, best and worst number of tournaments required to solve each map,

across the �fteen populations (runs), and the proportion of populations that were suc-

cessful in solving each map. Of the Non-Learners(1) populations over 90% were able to

complete maps 1 to 4 but no population was able to demonstrate a successful solution to

map 5. Populations of animats using the Non-Learners(2) strategy also demonstrated

a high level of pro�ciency when completing maps where the bridge building solution is

e�ective, though with a lower proportion of populations able to complete map 4 (see

table 4.2). This may be due to the higher mutations rate used in the Non-Learners(2)

strategy causing the destruction of potentially bene�cial behaviours before they can

proliferate through the population. To complete map 4 animats had to be stricter

(more consistent) in their use of Stone objects. Despite this behaviour being reachable
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using incremental genetic evolution it is within a small area of weight-space, causing

it to be potentially lost with higher mutation rates. Neither non-learning strategy was

able to discover the precise behaviour necessary to complete map 5, so failures recorded

in tables 4.1 and 4.2 were not due to a su�cient behaviour being discovered but not

maintained: the map 5 solution was simply never found, empirically demonstrating the

inaccessibility of map 5 to incremental genetic evolution alone. Observations of runs

demonstrated that non-learning agents either ignored, or were actively avoiding Ob-

ject A and/or Object B, whereas agents in social learning populations who did manage

to �nd a solution to map 5 would �nd and pick up Object A and Object B before

determining that Water tiles were to be approached.

Table 4.3 shows results from animats using the Learners' strategy. Unlike non-

learning strategies, Learners are able to complete map 5 and thus exhibit the complex

behaviour tested for in this work a third of the time, proving the hypothesis that learn-

ing by imitation is capable of enabling populations of animats to discover behaviours

found to be inaccessible to incremental genetic evolution alone. However, Learners

are less likely to discover and maintain solutions to maps 3 and 4 than non-learning

animats.

Figure 4.3 charts the mean �tness of the best performing population from each

learning strategy. From this graph it can be observed that Learners bypassed the

sub-optimal bridge building solution once the population had (for some time) been

evaluated on maps with rivers. The incremental nature of the evolution in this model

causes the majority of the population to rapidly converge on the optimal solution once

it has been discovered. Without learning, this optimal behaviour cannot be found. In

this model incremental genetic evolution leads to convergence on sub-optimal solutions

in non-learning populations, making it impossible for the discovery of the optimal be-
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Map Mean Best Worst Stdev Success

1 1200 500 3500 996 100%

2 502571 11000 2152500 738090 100%

3 1568000 34000 4429500 1501336 93%

4 1613786 58000 4432500 1506065 93%

5 N/A N/A N/A N/A 0%

Table 4.1: Non-Learners(1) strategy RC+ performance. Mean, best, worst number of

tournaments required to solve each map for the Non-Learners (1) strategy.

Map Mean Best Worst Stdev Success

1 1400 500 3000 784 100%

2 81692 4500 252500 96805 100%

3 1801286 12500 4987000 1502754 93%

4 2193385 41500 4466500 1497156 87%

5 N/A N/A N/A N/A 0%

Table 4.2: Non-Learners(2) strategy RC+ performance. Mean, best, worst number of

tournaments required to solve each map for the Non-Learners (2) strategy.

Map Mean Best Worst Stdev Success

1 1533 500 5000 1302 100%

2 512333 9500 2026000 616376 100%

3 2484455 5600 4340500 1395760 73%

4 2458800 88500 4211500 1861794 33%

5 1843200 83500 3851000 1631808 33%

Table 4.3: Learners strategy RC+ performance. Mean, best, worst number of tourna-

ments required to solve each map for Learners strategy.
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haviour. By combining learning by imitation and incremental genetic evolution in a

model such as the one presented here, it is possible to not only discover complex be-

haviours inaccessible to incremental evolution alone, but also to have rapid convergence

to a population exhibiting and maintaining that behaviour, thus creating a behavioural

tradition or culture [164]. The results found here are broadly consistent with those of

Acerbi et al. [3], who found that the combination of individual and social learning in

arti�cial embodied agents not only allowed for the development of di�cult and costly

behaviours, but also provided an adaptive advantage over individual learning alone and

lead to cumulative cultural evolution.
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Figure 4.3: RC+ task mean �tness in the best performing populations. Graph showing

the mean �tness in the best performing populations for each learning strategy. Pop-

ulations learning by imitation demonstrated the ability to converge on more complex

behaviours, thus achieving a higher �tness. Neither non-learning strategy is capable of

producing the more complex behaviour.

4.5 Conclusions and Future Work

If a learnt behaviour is exhibited and maintained throughout a population for a number

of generations it may tentatively be called a tradition or even a culture. According to
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Whiten and Van Schaik [164] traditions are �consistent habits� that make use of social

information transfer. In the model demonstrated here, learning by imitation enables

social information transfer with behaviours being maintained by converged populations

or species giving rise to traditions. The limited set of behaviours observed in this

population do not however constitute the category of culture, which is reserved for

the maintenance of multiple behaviours by a species. The incremental nature of the

model causes sub-optimal behaviours to be phased out of the population. Were greater

environmental diversity to be used, it may be possible to evolve a culture rather than

a tradition.

The hypothesis presented here was that the introduction of both transcription errors

and cultural transmission in the form of learning by imitation are su�cient to discover

and maintain the most complex behaviour possible in the model, while incremental

genetic evolution alone is not. The results support our hypothesis by demonstrating

that without learning by imitation the solution to the �nal environment is never found

but with imitative learning all behaviours can be discovered, exhibited and maintained.

While the RC+ task required considerably complex behaviours to be exhibited,

there are a number of issues for the evolution of complex social behaviours. In nature,

individuals are not taken away to be tested for �tness, individuals instead live and die

in one environment which they constantly interact with. In allowing many individuals

to interact with, and potentially terraform, an environment a certain level of dynamism

becomes apparent. It is dynamism that forces individuals to evolve increasingly com-

plex survival and strategies, potentially leading to the evolution of cultural adaptation

and neural complexity [134, 40, 74]. Another minor drawback to the model used in this

work is the limited set of behaviours available to animats. By using a larger environ-

ment with a greater variety of potential states available to the animats and evolving
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the size and structure of the decision network, it may be possible to demonstrate the

evolution of multiple behaviours leading to the emergence of a culture. To investigate

more complex behavioural development and the role of imitative learning in the evo-

lution of traditions and cultures, it would be bene�cial to implement larger and more

dynamic environments and allow for greater evolution in the decision network. A �nal

drawback was the simple vertical social transmission mechanism used. The inclusion of

intra-generational or oblique cultural transmission has been shown to be both su�cient

[41] and bene�cial [5] for the evolution of complex and robust cultural behaviours. Fur-

ther investigation and application of oblique transmission within models such as that

presented here would further bene�t our understanding of and ability to achieve the

evolution and maintenance of complex cultural traits.

Many of these limitations are considered and improved upon in Chapters 7 and 8 by

allowing for agents to interact with one another whilst interacting with, and a�ecting,

their environment. Chapter 6 also builds on the work presented in this Chapter by

exploring whether the results presented here are robust across and variety of di�ering

social learning strategies.
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Chapter 5

The Adoption of Social Learning in

Increasingly Variable Environments

5.1 Introduction

It is now widely accepted that the species Homo sapiens, to which all modern hu-

mans belong, evolved in Africa before leaving to populate the rest of world [141]. To

successfully populate new and challenging environments hominins must have devel-

oped versatile and robust behaviours and survival strategies, with the most apparent

adaptation for versatility being the adoption of extra-genetic learning strategies such

as social learning [147]. This leads us to ask what was it about the environments in

which hominins evolved that enabled them to adapt to be so versatile and ultimately

so successful when moving into new and unfamiliar environments. In response to this

question numerous authors have suggested a variety of theories and hypotheses regard-

ing the relationship between hominin evolution and the environment [120]. In this work

we instead test one of the most prominent theories of hominin evolution and versatility,

the Variability Selection Hypothesis [119, 120, 121], using an arti�cial life simulation.
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5.1.1 The Variability Selection Hypothesis

The variability selection hypothesis, as proposed by Richard Potts [119, 120, 121],

predicts the adoption of versatile behaviours and survival strategies, in response to

increasingly variable environments. Over the past seven million years there have been

a number of what Potts describes as �large disparities� in environmental conditions,

such as �uctuations in temperature and precipitation, and a trend toward increasing

climatic variation in and around known early hominin locations in eastern and southern

Africa, such as the Turkana and Olduvai basins [120]. Evidence for inter-generational

and intra-generational changes, such as changes in forest coverage and the availability

of water sources such as lakes and streams, have been found in a variety of geological

and climatic indicators including marine oxygen isotope levels [120, 121], providing

insight into temperature changes, and ocean dust records [120], providing evidence for

dust plumes arising from strong seasonal rainfalls and prevailing wind patterns. Both

of these indicators demonstrate an upward trend in environmental variability during

the last seven million years in Africa, and around the world in general. Evidence from

these, and other climatic indicators, shows that major shifts in the African climate

correlate well with important early technological milestones and speciation events in

hominin evolutionary history [70]. Key hominin and hominid adaptations such as

early bipedality and complex social behaviour emerged during these periods of more

pronounced environmental variability [121]. Though the climatic evidence for the vari-

ability selection hypothesis is impressive, the hypothesis has had very little theoretical

work applied to it. Following the call from Potts [121] for a mathematical framework

to explore the variability selection hypothesis, and the work of Grove [70] to that end,

we here test the claim that increasing environmental variability is a su�cient selection

pressure to elicit the adoption of social learning, in an arti�cial life simulation.
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5.1.2 Social Learning

Social learning is not restricted to humans and their ancestors: it is a widely observed

natural phenomenon, with many species using a variety of social learning mechanisms

such as imitation, emulation, teaching and the use of public information to produce

adaptive behaviours in dynamic and challenging environments [93, 123, 164]. It has

been suggested that social learning enables animals to better track their environment by

assimilating extra-genetic information from others during their lifetimes while avoiding

potentially costly individual learning [27].

The e�ects and bene�ts of learning have been studied widely in simulation. Ac-

cording to Nol� and Floreano [116] learning may be seen as having several adaptive

functions from an evolutionary perspective. These include allowing individuals to adapt

to environmental change, enabling evolution to use information extracted from the en-

vironment, and guiding evolution. Hinton and Nowlan [82] demonstrated that by using

individual learning, populations are able to solve �needle in a haystack� problems due

to learning guiding evolutionary search. Best [16] extended the work of Hinton and

Nowlan [82] by demonstrating that, given the same �needle in a haystack� problem,

social learning outperforms individual learning. Further work using simulated robots

[4], animats [22], autonomous robots [3], ungrounded neural networks [45], and bi-

nary strings [89, 88] has contributed further to our understanding of the evolutionary

advantages provided by social learning.

5.1.3 Social Learning in Increasingly Variable Environments

Numerous models and simulations have demonstrated the adaptive advantages, and

highlighted potential failings, of learning strategies in environments exhibiting some

level of adversity [10, 11] or variation [22, 25, 27, 70, 89, 160, 88]. In this work we test
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the hypothesis that increasing, rather than simply consistent, environmental variability

is su�cient to elicit the adoption of social learning. To test this hypothesis populations

of individuals, constituted of binary string genotypes and phenotypes, are evaluated on

their ability to match a target binary string, nominally known as the environment, with

success measured by the Hamming distance between the phenotype and environment.

Three classes of environment are used.

1. Static environments in which an environment's target string remains unchanged.

2. Consistently variable environments in which each locus of an environment's

target string switches on or o� at regular, frequent, intervals.

3. Increasingly variable environments in which the frequency of change increases

over the period of evolution.

For each class of environment, populations exhibiting combinations of genetic evo-

lution, individual learning and social learning are evaluated, with the learning rates

of both individual and social learning allowed to evolve. Mean population �tness is

recorded for each combination of environment and learning strategy, with data also

collected on the evolved rates of social and individual learning and the reproductive

�tness of individuals exhibiting di�erent learning rates when both extra-genetic learn-

ing strategies are combined.

Our expectations were as follows.

1. Social and individual learning strategies, both separately and in combination,

will outperform genetic evolution on all environments.

2. When evolved simultaneously social learning will be favoured over individual

learning, with individuals exhibiting higher levels of social learning having a higher re-

productive �tness, thus showing that social learning is adopted over individual learning

in increasing and consistently variable environments.
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5.2 The Model

The model used is a genetic algorithm with steady state selection, in which individ-

uals, constituted of binary string genotypes and phenotypes of length L, are assessed

on their ability to match a binary target string or, as we shall refer to it here, an en-

vironment denoted as E (also of length L). A phenotype is assessed by measuring the

Hamming distance between it and the environment. A phenotype is initially a copy of

the genotype but can acquire information through learning, which is discussed in more

detail later. This may be achieved by one of four strategies.

1. Genetic Evolution - at reproduction random mutations occur with probability

pmut at each locus.

2. Individual Learning - at each epoch (iteration of the steady state genetic algo-

rithm) every individual �ips each of the bits in its phenotype with probability

pind. If a change due to individual learning doesn't lead to a improved �tness

then it is reversed.

3. Social Learning - at each epoch every individual copies each locus from a random

other individual's phenotype with probability psoc.

4. Individual and Social Learning (Combined) - at each epoch every individual en-

gages in either individual learning or social learning, with equal probability, at

each locus in the phenotype.

The learning rate (per locus probability of �ipping or copying) is allowed to evolve

independently for each individual. That is to say that a population wide learning rate

is not set. Both pind and psoc are �oating point values bounded within the range [0, 1].
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5.2.1 Variable Environments

Populations are tested on one of the three environmental set-ups introduced earlier,

two of which exhibit some level of variability. Variability is dictated by a sine wave,

resulting in cyclic changes. At initialization each locus l in the environment is assigned

a random value f, which is used to determine the binary value of the environmental

locus at each epoch (5.1).

El = sin((f l × epoch)× (π/180))

{
<0→0
>0→1

(5.1)

The range of values f may be initially set to is determined by which environment

the population is being tested on:

1. No Variability (static): f = 0

2. Consistent Variability: fεN(1.8, 1.8
2

2
)

3. Increasing Variability: fεN(0.018, 0.018
2

2
)

f epoch = f 0 + (fmax − f 0)× (
epoch

epochmax
) (5.2)

Values of f ≈ 1.8 equate to approximately one change per 100 epochs, with 100

epochs being considered to be one generation of the algorithm (where L = 100). A value

of f ≈ 0.018 equates to approximately one change per 10000 epochs, or one hundred

generations. One change per generation is referred to as high frequency variability,

one change per ten generations as medium frequency, and one change per one hundred

generations as low frequency. As each environmental locus has a unique initial value

of f, the sine wave dictating the value at each locus will be di�erent, thus avoiding

uniform environmental change and resulting in changes one each locus that are out of

phase and at slightly di�erent rates.
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For increasing variability tests the f values increase over time. The f value for any

environmental locus (El) during increasing tests is determined by the initial f value at

that locus (f 0), the maximum f value (fmax = 1.8), the current epoch and the number

of epochs the evaluation is permitted to run for (5.2).

5.2.2 Evolution and Learning

Each test is populated by N individuals, each constituted of the following:

• gε{0, 1}L- genotype, an L-bit string

• hε{0, 1}L- phenotype, an L-bit string initially equal to g but subject to learning.

The individual's �tness is L minus the Hamming distance between h and E.

• pindε[0, 1] - individual learning rate, set initially to 0. In populations allowed to

learn in this manner pind may evolve via mutation.

• psocε[0, 1] - social learning rate, set initially to 0. In populations allowed to learn

in this manner psoc may evolve via mutation.

These properties are broadly consistent with the properties used by Jones and Blackwell

[89]. However, unlike Jones and Blackwell [89] the learning rates are not normalized

to sum to unity, instead each rate may evolve to a maximum value of 1.

At each epoch two individuals are selected at random from the population for tour-

nament selection. Reproduction then takes place between the tournament winning

individual (the one with the higher �tness) and a random individual from the popula-

tion, the progeny of this reproduction replacing the tournament loser. Reproduction

consists of both recombination and mutation. Recombination is by way of single point

crossover, where a random position lε[0, L − 1] is selected. Bits 0 to l being taken
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from one of the parents and bits l + 1 to L − 1 from the other, with the order of the

parents determined at random at each reproduction. Mutation occurs at each locus in

the child's genotype, with probability pmut = 1/L of the bit at that locus being �ipped.

Following reproduction g is copied without error to h which from this point in the child

individual's lifetime is used for �tness evaluation and learning. In learning populations

parental values of pind and psoc are also inherited (depending on the learning strategy

implemented for the population). The child inherits one of its parents' learning rates

at random, with the learning rate then being mutated by the addition of Gaussian

random noise (mean 0, standard deviation 0.01).

Learning comes in two distinct strategies: individual and social. At each epoch

all individuals from a learning population are a�orded the opportunity to learn. In-

dividual learning takes the same form as mutation at reproduction, with each locus

in h bit-�ipping with probability pind. Social learning on the other hand is a little

more involved: for each locus in h there is a probability psoc of copying the tournament

winning individual's equivalent locus. Copying the tournament winning individual in

social learning strategies may be seen as akin to the �copy-successful-individuals� strat-

egy outlined by Laland [93] and implemented (though in a slightly di�erent manner)

by Jones and Blackwell [89]. Social learning is not subject to any noise, with socially

learnt information being copied exactly in to an individual's phenotype. In those pop-

ulations exhibiting both individual and social learning in combination, which of the

two learning strategies to use is chosen at random (50:50) for each locus of each indi-

vidual, and applied with the appropriate learning rate. Individuals are also a�orded

the opportunity to unlearn any learned information. Each individual maintains a copy

of their phenotype from before learning; if after learning their �tness is less than it was

during the previous epoch, their previous phenotype is restored. However, the indi-
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vidual's previous phenotype is not assessed in the current epoch, so whilst unlearning

information stops individuals obtaining new maladaptive information, an individual's

�tness may still fall due to their previous phenotype performing worse in the current

epoch than the previous epoch (should the environment have changed).

5.3 Experimentation and Results

Experimentation was initially conducted on the static, consistently variable and in-

creasingly variable environments. Forty initially random populations of size N = 100

were tested for each environmental set-up: ten populations per learning strategy. Each

environment, of size L = 100, was initially identical in its binary composition, as was

the random number seed from which the initial f values were derived. Each popula-

tion was run for 100000 epochs (1000 generations), with the population being sampled

every 100th epoch (once per generation). The data presented here takes the mean

performance of each of the ten populations per learning strategy at every generation.

A set of further tests were also conducted to assess in which conditions of envi-

ronmental variability populations were likely to collapse. These tests were conducted

in two di�ering set-ups. In both set-ups N was maintained at 100 but before stan-

dard tournament selection took place all individuals with a �tness less than L/2 were

killed, these individuals being deemed to be un�t. If at this point the new population

size N ′ ≤ N × 0.1 the population is considered to have collapsed and evolution is

terminated. If the population does not collapse, tournament selection takes place to

replace one surviving individual, and the population is then re-populated to N = 100

by the progeny of randomly selected other surviving individuals. The �rst test set-up

was conducted for a maximum of 100000 epochs, with populations reaching this epoch

being considered as surviving populations.
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The second population collapse test set-up di�ers from the �rst in three distinct

ways: tests were simulated for 200000 epochs; only populations exhibiting the indi-

vidual and social learning strategies combined were tested; and social learning was

prohibited from being used or evolving for the �rst half of each experiment.

5.3.1 Static Environments

As can be seen from Figure 5.1(a), under static conditions both social learning and

individual and social learning combined to perform much better than genetic evolution

and individual learning. These results are broadly consistent with those of Jones and

Blackwell [89] who also found social explorations to be advantageous and individual

learning to be sub-optimal in static environments. However, unlike Jones and Blackwell

[89], in these tests individual learning does not outperform no-learning (genetic evo-

lution alone) over the entire simulation. This result is a little surprising given Hinton

and Nowlan [82], which demonstrates that individual learning should be able to better

guide evolution than random mutation alone. Individual learning is not highly ex-

pressed when used in isolation. Figure 5.4 shows that under unchanging environmental

conditions individual learning does not achieve a maximum pind of above 0.2, this value

being lower than in all other environmental conditions and signi�cantly lower than psoc,

which in static environments achieves a value in excess of 0.7. Individual learning is

also marginalized when expressed in combination with social learning. Figure 5.1(b)

shows that when evolved together social learning outstrips individual learning by some

distance, with individual learning becoming almost unused after an initial spike before

1000 epochs. The fact that mean individual learning is maintained at a value above

0 is likely an artefact of the evolutionary model rather than individual learning being

maintained at a low, but signi�cant value; as learning rates cannot evolve to be below
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Figure 5.1: Fitness and reproduction rates in static environments. (a) Mean �tness

of each learning strategy, (b) Mean �tness of individual and social learning with the

evolved learning rates, (c) Reproductive �tness of combined learning rates.
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0, any mutation to a learning rate of 0 will have a 50% chance creating a new learning

rate of above 0, ultimately resulting in an individual learning rate which bounces o� 0

rather than being maintained at 0. Interestingly, for static environments the maximum

value of psoc achieved is larger when individual and social learning are found together,

than when social learning is evolved in isolation, implying that social learning requires

individual learning to be fully expressed. As hypothesized social learning is adopted

over individual learning, this adoption also being re�ected by the reproductive �tness

of individuals exhibiting the combined learning strategy as shown in Figure 5.1(c). In-

dividuals exhibiting intermediate values for psoc and low values (below 0.1) of pind are

shown to be more reproductively �t by contributing to a larger number of reproductions

over the evaluation period.

5.3.2 Consistently Variable Environments

As shown in Figure 5.2(a), under consistently variable conditions, where f is main-

tained at 1.8, the extra-genetic learning strategies all outperform no-learning (genetic

evolution alone). In high variability environments non-learners �nd it di�cult to track

changes in the environment using mutation and recombination alone, causing popula-

tions of non-learners to average out at a �tness of L/2: no better than random. Of the

extra-genetic learning strategies the combined strategy far outperforms individual and

social learning alone. Individual learning when exhibited in isolation tends to �nd a

stable value very quickly, but is unable to improve upon it. Social learning on the other

hand rapidly (though also rather noisily) �nds highly optimal solutions. However, the

ever increasing reliance on social learning, as demonstrated by a maximum learning rate

of above 0.9 (see Figure 5.4), causes social learners' �tness to decrease to a value equal

to that of individual learners, demonstrating that overly conformist learning strategies
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Figure 5.2: Fitness and reproduction rates in consistently variable environments. (a)

Mean �tness of each learning strategy, (b) Mean �tness of individual and social learning

with the evolved learning rates, (c) Reproductive �tness of combined learning rates.
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are no better than trial-and-error personal innovations at tracking high levels of envi-

ronmental change. By combining individual and social learning the negative aspects

of both strategies in isolation vanish: �tness does not stabilize at a sub-optimal value

early on and �tness does not decrease over time. This demonstrates that the conformist

bias imposed by social learning is tempered by non-social innovation. However, as we

can see in Figure 5.2(b and c) social learning is largely adopted over individual learning,

with pind being sidelined to values well below 0.1 and highly reproductive individuals

exhibiting high levels of social learning and low levels of individual learning. The initial

spike in individual learning seen early in the combined strategy, while psoc is also low,

may indicate that the vast majority of innovation is introduced into the population

before it becomes overly conformist. It is also interesting to note that the spike in pind

correlates well with the noisiest �tness period. Once enough innovation is introduced

into the population innovation appears to be sidelined, although maintained at a low

level, and individuals become increasingly reliant on social learning.

5.3.3 Environments of Increasing Variability

Unlike in consistently noisy environments, all populations exhibiting extra-genetic

learning strategies �nd it di�cult to maintain high levels of �tness when confronted

with increasing levels of variability (see Figure 5.3(a)). As the environment becomes

more noisy individual learning rates begin to increase, possibly to reintroduce an ele-

ment of personal innovation to the population, which has become stagnant due to the

high levels of conformist learning imposed by large quantities of social learning during

times of minimal variability. The reproductive �tness of individuals, as seen in Fig-

ure 5.3(c), is also interesting, as reproductively successful individuals tend to exhibited

high levels of social learning and increased levels of individual learning, when compared
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Figure 5.3: Fitness and reproduction rates in increasingly variable environments. (a)

Mean �tness of each learning strategy, (b) Mean �tness of individual and social learning

with the evolved learning rates, (c) Reproductive �tness of combined learning rates.
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to the reproductive �tnesses of individuals in consistently variable or static environ-

ments. The comparisons between maximum learning rates for social and individual

learning on increasingly variable environments (see Figure5.4) is worthy of some note:

despite individual learning being a necessary component of the combined strategy, it

is not exhibited to as high a degree as when found alone; conversely social learning

is always exhibited at higher levels when accompanied by individual learning. This

again provides evidence that, while social learning is adopted over individual learning,

individual learning is necessary for social learning to be used to greatest e�ect [4, 3].

Evidence from all stages of environmental variability tell a similar story, though to dif-

ferent degrees: social learning is widely adopted over individual learning when found

together, with all extra-genetic learning strategies performing better than random on

all tests. Extra-genetic learning strategies are also exhibited at higher levels in noisy

environments than in static environments. The evidence presented does suggest that

increasing variability is su�cient to cause the adoption of versatile survival strategies

such as learning, with social learning being the learning strategy of choice.

5.3.4 Population Collapse in Variable Environments (Consis-

tent and Increasing)

One of the pitfalls of the kind of genetic algorithm used so far is that even when

populations are poor at the task, they still survive; of course this is not the case

in nature. To explore whether or not the learning strategies implemented in this

model are really robust we have also implemented a set of tests where populations

may become extinct. The �rst tests follow the test set-ups above, with populations

exhibiting di�erent learning strategies being tested on environments with consistent

and increasing variability. Populations falling below N ×0.1 individuals are considered
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Figure 5.4: Maximum learning rates exhibited over all environmental test cases for all

learning strategies.

as being collapsed.

Consistently variable environments were produced with four levels of variability;

1. No variability (static): f = 0

2. Low variability: fεN(0.018, 0.018
2

2
)

3. Medium variability: fεN(0.18, 0.18
2

2
)

4. High variability: fεN(1.8, 1.8
2

2
)

The percentages of populations surviving until the end of evaluation are reported

in table 5.1. As may be expected, populations are unable to survive highly variable en-

vironments as the increased chance of death makes it all but impossible to re-adapt to

new environments. However, individual learning is more robust than all other strate-

gies, achieving a 50% survival rate on high frequency environments; higher rates of
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Learning Strategy Static Low Medium High

Genetic 100% 100% 100% 0%

Individual 100% 100% 100% 50%

Social 100% 100% 90% 0%

Individual & Social 100% 100% 100% 0%

Table 5.1: Population survival in consistently variable environments. % of populations

surviving until the end of the simulation for each learning strategy in consistently

variable environments.

individual learning, though risky, are better able to deal with sudden environmental

shifts. Social learning on the other hand begins to struggle in environments exhibiting

medium amounts of variability. As with our earlier tests conformism spreads through

the population, increasing the likelihood of population collapse. Combining individual

and social learning alleviates the problem to some extent.

Increasingly variable environments were produced at three initial levels of variabil-

ity: static, low and medium. In these environments variability increase throughout

evolution, to a level of high variability.

Learning Strategy Static Low Medium

Genetic 0% 0% 0%

Individual 100% 100% 100%

Social 0% 0% 0%

Individual & Social 0% 0% 0%

Table 5.2: Population survival in increasingly variable environments. % of populations

surviving until the end of the simulation for each learning strategy in increasingly

variable environments.
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Unlike in consistently variable environments all learning strategies, excluding in-

dividual learning alone, result in populations that are unable to survive in any in-

creasingly variable environment (see table 5.2); social learning completely undermines

individual learning when combined, owing to over-conformism in times of lower vari-

ability stagnating the population's pool of knowledge to the point that the increase in

individual learning, usually seen later in increasingly variable environments (see Figure

5.3(b)) is insu�cient to redeem the population's fortunes.

As indicated by tables 5.1 and 5.2, individual learning is the only learning strategy

robust enough deal with increasing and high levels of environmental variability. How-

ever, in early tests the combined strategy of both individual and social learning was

seen to be adaptive in all environmental settings. To investigate whether individual

learning is necessary for the successful introduction of social learning we implemented

a �nal set of tests. In these, individual learning was allowed to evolve in isolation

for 100000 epochs before the introduction of social learning alongside it for a further

100000 epochs. These tests provide a greater challenge for populations as they are

required to survive for twice the evaluation period previously tested. However, this

increase in evaluation time does reduce the rate at which environmental variability

increases during increasing-variability tests.

As table 5.3 shows, the evolution of individual learning prior to social learning does

provide some bene�ts in increasingly variable environments, but only when beginning

from medium levels of variability (f = N(0.18, 0.18
2

2
). Noisier environments provide

a greater selection pressure for high levels of innovation, which in turn introduces a

larger pool of knowledge for social learning to access; or that the lower rate of increase

in variability is signi�cant. A sensitivity analysis will need to be conducted to analyse

the precise learning rates, reproductive �tnesses and death rates exhibited in these
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�goldilocks� conditions.

Variability Static Low Medium High

Consistent 100% 100% 100% 0%

Increasing 0% 0% 100% N/A

Table 5.3: Population survival in variable environments when individual learning is

pre-evolved. % of populations utilising the combined Individual and Social strategy

surviving until the end of the simulation when individual learning is allowed to evolve

before the introduction of social learning.

5.4 Conclusions and Future Work

Reader and Laland [124] have demonstrated that personal innovations (individual

learning) and social learning co-vary across species. The above results go some way to

explaining why social learning was adopted most strongly when combined with individ-

ual learning; individual learning is necessary for e�ective social learning and provides an

e�ective mechanism for avoiding population collapse. Whilst social learning alone can

maintain adaptive knowledge in the population, over-reliance on it can just as easily re-

inforce sub-optimal or incorrect knowledge when the environment is highly stochastic,

potentially causing the population to collapse [160]. By maintaining a level of per-

sonal innovation alongside social learning, populations can maintain non-conformist

local search whilst ensuring that useful innovations are transmitted over generations

[4]. However, in environments of lower variability conformist social learning ensures a

high level of individual �tness. Individual learning on the other hand may impose un-

necessary local search which could cause individuals to lose useful adaptations if high

levels of individual learning are maintained. The data presented here demonstrates
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that when environments are in minimally variable states individual learning plays a

smaller role than it does in more variable environments. It is also found to be the case

that mortality is greatly increased in environments of high or increasing variability

when social learning is exhibited unless individual innovation is allowed to develop in

isolation [3].

Our initial hypothesis (developed in order to test Potts's variability selection hy-

pothesis), that when individual and social learning rates are evolved simultaneously,

both increasing and consistently variable environments are su�cient for the adoption of

social learning over individual learning, holds true here, though with two main caveats:

individual learning is required for successful social learning, and population collapse

may only be avoided when individual learning is allowed to pre-evolve in already noisy

environments before the introduction of social learning. Both of these caveats re-

quire further investigation in steady state genetic algorithms, neural networks [45] and

grounded animat simulations [22].

The way noise is implemented also requires further investigation. Sine waves,

though used elsewhere to model environmental variation [70], are not the only pattern

of environmental variability found in nature. Further tests could include empirically

derived data sets [70] or red noise, otherwise known as random walk noise (a kind of

signal noise produced by Brownian Motion)[160].
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Chapter 6

Social Learning Strategies

6.1 Introduction

Previous research has shown that with the use of social learning, individuals are able to

discover more complex behaviours that are not accessible via incremental genetic evo-

lution alone [22]. In this work, and many other simulation models that explore social

learning and culture, social learning itself is often limited. These limitations are often

centred around who individuals learn from. Here we expand on this previous work (dis-

cussed in Chapter 4) to explore whether behaviours inaccessible to incremental genetic

evolution alone are still discovered, and maintained, when individuals are permitted to

learn from a variety of di�erent individuals. We go on to discuss why these di�ering

teacher-learner social learning strategies solve the task used here in di�ering ways.

79



6.1.1 Discovering and Maintaining Behaviours Inaccessible to

Incremental Genetic Evolution Alone

To solve the issue of sub-optimal population convergence without crossing the error

threshold [118], noise can be added to the �tness landscape via the genotype to �tness

map. However, depending on where such noise is in the phenotype to �tness section

of that map, its ability to aid in the transition between peaks is limited. By instead

incorporating noise into the genotype to phenotype map, behaviours inaccessible to

incremental genetic evolution may be exhibited reliably by individuals while leaving

the genotype untouched. One method for introducing noise in this way is to introduce

transcription errors when writing from the genotype to the phenotype in systems with

equivalent genotype and phenotype encodings, such as direct arti�cial neural network

weight encodings [22]. By introducing potentially new behaviours to the phenotype

we deny the initial possibility of these behaviours being inherited by new individuals

through standard Darwinian evolutionary mechanisms. Therefore in order to maintain

successful behaviours in the population, some form of extra-genetic learning needs to

take place. The extra-genetic learning employed in this model is a combination of the

aforementioned genotype to phenotype noise and social learning through interaction

between teachers and learners to facilitate the transmission of learned behaviours [5,

45]. As in Borg et al. [22], learners or pupils follow teachers in a mock evaluation on a

set of environments or maps. As both teacher and pupil receive the same environmental

input the teacher's output may be used as a target pattern for error back-propagation,

reducing the pupil's output error compared to that of the teacher. By learning in

this way pupils are able to partially imitate the behaviours exhibited by teachers, thus

maintaining aspects of new behaviours in the population that would have been lost by

a stand alone evolutionary process.
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The use of teacher-learner social learning has been shown to be su�cient for discov-

ering and maintaining behaviours inaccessible to incremental genetic evolution alone

in a grounded simulation [22]. However, these simulations only allowed one form of

social learning, in which o�spring would learn from their �ttest parent. Though a valid

approach that has been used in previous work [45], there are other theoretical and

empirical models that can be adapted to this work to evaluate whether or not other

social learning strategies are still capable of achieving these complex behaviours.

Social learning is seen widely in nature [123] and in a range of species as diverse

as humans and nine-spined stickleback �sh [90]. The mechanisms and processes that

underpin social learning are themselves broad, ranging from teaching, imitation and

emulation to stimulus enhancement and exposure [63], with any of these mechanisms

potentially being adaptive [112] thus leading to the formation of traditions and cultures

[164, 170]. However, within each social learning category there is some dependence on

who information is obtained from, be it a teacher or which agent is unintentionally (or

intentionally) exposing an individual to something new. As social learning is necessar-

ily conformist, a poor learning model may result in the discovery and propagation of

sub-optimal behaviours. In this work we assess whether who you are learning from,

otherwise known as `who' social learning strategies [93] (also discussed in Hoppitt and

Laland [84] and Rendell et al. [126]), can hinder social learning's ability to discover

and maintain behaviours inaccessible to incremental genetic evolution alone, thus un-

dermining social learning's adaptive advantage over incremental genetic evolution in

complex environments.

Laland [93] assess both `who' and `when' social learning strategies, alongside the

complexity of social learning in animals, providing evidence to show its adaptive ad-

vantages. Laland [93] has a particular focus on conformity: a population's ability to
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share popular behaviours amongst each other while minimising exploration for new

behaviours; the use of conformist social learning can be bene�cial or detrimental de-

pending on the environment or task [93, 23, 110]. It has also been suggested that con-

formist social learning that is not supplemented with non-social exploration can lead

to population collapse in temporally varying environments [23], though recent work

suggest that conformist learning may be of bene�t in spatially varying environments

[110]. The `who' social learning strategies (concerned with who an agent should learn

from rather than when learning should take place) inspired by Laland [93] are modelled

here as three core social learning strategies: `Best Parent', `Oldest' and `Fittest'. The

`Fittest' strategy selects the �ttest individual from the population to be the teacher.

The theoretical basis behind this strategy falls partially into the `Learning from major-

ity' category discussed by Laland [93], but also has a wider basis in nature with many

animals being shown to learn from more successful individuals. Learning from older

individuals derives from the rationale that older individuals must have exhibited suc-

cessful behaviours to survive, however this does not have to mean the older individual

in question is in fact the �ttest individual, due to this the `Oldest' strategy is likely to

provide a broader range of behaviours than the `Fittest' strategy. The `Best Parent'

strategy (as seen in Borg et al. [22]) sets the teacher to be the parent who has won

the right to reproduce in a tournament. This is the least conformist strategy of the

three as it allows un�t individuals, relative to the rest of the population, to be parents

as tournaments only involve a small number of individuals. Additional to these three

core strategies we also introduce social learning strategies for learning from random

and young individuals. Though not widely evident in nature, the theoretical bene�ts

of learning from a random individual (sometimes described as unbiased social learning)

have been have been discussed in numerous works [123, 110]. The theorised bene�ts of
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unbiased social learning arise in temporally varying environments, where learning from

a broader set of individuals enables increased access to new behaviours that may be

relevant in the speci�c environmental state being experienced. A `Youngest' strategy,

despite no theoretical basis and younger individuals being shown to be poor social

models [1], is being evaluated as a contrast to the `Oldest' strategy.

6.2 Experimentation

The model used here is fundamentally the same as introduced by Borg et al. [22]. Each

iteration/generation has a tournament event in which two individuals from the popula-

tion of 100 undertake the RC+ task, with each individual's �tness being determined by

the number of maps successfully completed. Each map gets increasingly more complex,

so, if an individual is not able to complete a map, they are prevented from continu-

ing on to further maps. Each map has seven Trap objects and 20 − (5× riverwidth)

Stone objects, both of which are randomly placed, though never on the same space,

one reward-giving Resource on the opposite side of the map to the agent starting po-

sition, and one instance each of Object A and Object B. The river width varies from

an initial width of zero, increasing by one cell per map. Each individual is evaluated

on their ability to reach the resource or place Object A and Object B on to a cell

containing Water. Agents fail when they come into contact with an uncovered Water

or Trap element. Failing to complete a map within 100 steps is also evaluated as a

failed attempt. The two tournament individuals are compared, with the �tter agent

reproducing with a randomly selected agent from the population, with the child re-

placing the weaker of the tournament agents. Each loci in an agent's genotype directly

writes to a locus in the agent's phenotype, which itself directly encodes a weight in

the decision network, with all genotypes and phenotypes being of length L = 308. To
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ensure network structures from parents are maintained during reproduction, a single

point recombination mechanism is applied. Mutation follows recombination; each loci

has a probability Pmut = 1/L of having a random value from N(0, 0.4) added to it, with

the resulting values being bounded within the range [-1,1]. Once the child genotype has

been constructed it is written to the child agent's phenotype; this process is referred

to as transcription. During transcription two randomly selected connection weights

are overwritten with a new random value selected from a discrete uniform distribution

U(−1, 1). Directly following reproduction the learning strategy is enforced via back-

propagation. A mock evaluation of the RC+ task takes place between the teacher and

child (now thought of as the learner), with the learner's inputs being set to those of the

teacher. Learning takes place until the teacher either fails or completes all �ve maps.

At each step through the evaluation the learner attempts, via error-back propagation

with a learning rate of δ = 1, to imitate the teacher's output for the current inputs.

A learning rate of δ = 1 was deemed necessary in order to enable any learning to take

place as at each mock evaluation time step only one iteration of back-propagation is

applied. Running multiple iterations of back-propagation per mock evaluation time

step was decided against in order to avoid the learning individual becoming essentially

a copy of the teacher.

The model in this work utilises �ve learning strategies, each with a di�erent way

of determining teacher selection. The winner of the reproduction tournament being

set as the teacher in the `Best Parent' strategy, the �ttest individual in the population

for the `Fittest' strategy, the individual who has registered the most tournament wins

for the `Oldest' strategy, the last animat to be created before the current reproduction

event in the `Youngest' strategy, and a random individual for the `Random' strategy.

In any case where more than one individual met the criteria to be assigned the role of
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teacher, an individual from the valid sub-set was chosen at random, this situation only

every arose when using the `Fittest' or `Oldest' strategies. One hundred populations for

each learning strategy were evaluated so the results can be aggregated for an overview

of each strategy's performance. Simulations were run for 2,000,000 tournaments, with

each simulation recording the �tness of the �ttest individual and the mean �tness of

the population at every 500th tournament. The highest �tness is �ve, which indicates

an agent completed map �ve. To indicate the behaviour has not only been achieved

but also maintained the �tness of �ve has to have been recorded a further ten times,

without a suboptimal result. Each learning strategy is comprised of 100 populations

of agents.

6.3 Results

Table 6.1 (top) shows the proportion of populations that were successful in solving each

map. The most notable result was that all strategies were able to complete map �ve,

the map which required exhibiting and maintaining a behaviour that in previous work

was not obtainable by incremental genetic evolution alone [22], thus demonstrating that

discovering and maintaining behaviours inaccessible to genetic evolution alone is pos-

sible using various teacher-learner social learning strategies, even those strategies that

are either non-conformist (the `Random' strategy) or contrary to strategies observed

in nature (the `Youngest' strategy). It should be noted that to complete one map, all

preceding maps must have also been completed, therefore the ability to solve map �ve

indicates that a population also managed to successfully complete maps 1-4. In Table

6.1 (top) we do see many instances of learning strategies failing to complete simpler

maps; we also see this in Table 6.1 (bottom), which shows how many populations were

successful at completing each map as their maximum achievement, that is to say com-
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Map BP Fittest Oldest Random Youngest

1 99% 99% 99% 99% 99%

2 71% 68% 54% 74% 63%

3 47% 47% 37% 54% 47%

4 39% 46% 34% 49% 38%

5 8% 15% 5% 10% 7%

Map BP Fittest Oldest Random Youngest

None 1% 1% 1% 1% 1%

1 28% 31% 45% 25% 36%

2 24% 21% 17% 20% 16%

3 8% 1% 3% 5% 9%

4 31% 31% 29% 39% 31%

5 8% 15% 5% 10% 7%

Table 6.1: RC+ map completion for each social learning strategy. (top) % of popula-

tions completing each map for each social learning strategy. (bottom) % of populations

achieving each map as their maximum achievement for each social learning strategy.

(BP = Best Parent)
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pleted map one or two, ... without going on to complete any later maps. Maps 2-4

were all solvable using either a `bridge building' strategy or the more advanced Object

A + Object B strategy; therefore some learning strategies sometimes failed to �nd the

sub-optimal, but more incrementally accessible, `bridge building' strategy. We would

also expect to see populations that were able to complete map two also completing

map four as the behaviour required is the same, the only di�erence being a wider river,

however Table 6.1 (bottom) shows that all strategies had populations that exhibited

�awed behaviours which were not as generally applicable as they should have been. In

comparable tests by Borg et al. [22], non-learning populations were shown to achieve

above 90% success on maps three and four, with 100% success for maps one and two,

the failure of the social learning strategies explored here to achieve this rate of success

for maps three and four (as indicated by Table 6.1 (top)) indicates that whilst social

learning can enable access to, and maintenance of, behaviours inaccessible to incremen-

tal genetic evolution, they are less e�ective at solving simpler, incrementally accessible,

tasks. One explanation for this result is that social learning is necessarily conformist,

even when unbiased or random, thus running the risk of sub-optimal behaviours being

maintained and dispersed within the population.

The results also o�er no de�nitive best strategy for the solving the RC+ task, as all are

able to achieve the �nal map. However both Table 6.1 (bottom) and Fig 6.1 do allow

us to begin seeing the di�erences between strategies. Performance may be viewed from

three di�ering perspectives: (1) the number of populations achieving map �ve, (2) the

distribution of maps achieved by populations, (3) the speed at which populations were

capable of completing maps. Both measure (1) and (2) may be considered using the

data from Table 6.1 (bottom): from this data we can see that `Fittest' strategy achieves

the highest proportion of populations completing map �ve, however if we conduct a
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Chi squared test to �nd whether the proportion of populations achieving map �ve is

dependent on the social learning strategy applied or not we come our with a p-value of

0.1316, thus indicating that the proportion of populations achieving map �ve is in fact

independent of the strategy applied, therefore we cannot say with any certainty that the

ability of the `Fittest' strategy to achieve map �ve is signi�cantly better than any other

strategy (we do �nd that a Chi squared test that only considers the `Fittest' and `Oldest'

strategies does provide a p-value below a signi�cance level of 0.05, but no other pairings

do). If we take Table 6.1 (bottom) to be a contingency table on which a Chi Squared test

may be conducted we may be able to derive whether the distribution of maps achieved

by populations (measure (2)) is dependent or independent of the social learning strategy

used. When such a test is conducted a p-value of 0.04739 is produced, demonstrating

that the distribution of maps achieved by populations is dependent on the strategy

used. This result requires further investigation of the data for each population, for each

strategy, in order provide a robust overview of the dynamics each strategy employs to

solve the task. Measure (3) may be considered using the graphs seen in Fig 6.1. From

Fig 6.1 it we see that populations employing the `Best Parent' strategy are able to

achieve map �ve quicker than other strategies, with the `Youngest' strategy struggling

to achieve map �ve in any haste. However if we only consider the average number of

generations to complete each map both `Best Parent' and `Youngest' give an average

performance, with `Random' and `Oldest' giving the best general performance. It is

interesting to note that those populations employing the `Oldest' strategy who are

able to complete map �ve, do so quicker on average than `Oldest' strategy populations

that complete map two, three or four this result indicates that when individuals in

`Oldest' strategy populations do discover the behaviour required to solve map �ve,

it spreads rapidly through the population. As the `Oldest' strategy acts somewhat
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like a `Dominance' strategy, with only the dominant tournament winning agent acting

as the teacher, it is unsurprising that behaviours can spread rapidly, however the

random nature of tournament selection can somewhat undermine this strategy's ability

to guarantee �t behaviours or a consistent teacher. The best performing populations

for the 'Best Parent', `Oldest' and `Fittest' strategies (as seen on the left of Fig 6.1)

also indicates that once a favourable behaviour is discovered using these strategies it

is able to spread reasonably quickly. This is unsurprising as each of these strategies

can be highly conformist, with successful individuals potentially having a monopoly on

being the teacher for new agents. With the `Youngest' strategy, the high turnover of

teachers provides little opportunity for bene�cial behaviours to take hold, though these

teaching agents are the progeny of tournament winning parents, so can be expected to

be reasonably �t. The most surprising result is the general performance of the `Random'

strategy, given that unlike the other strategies there is no guarantee of the teacher

being either consistent nor particularly �t. One reason for the `Random' strategy

performing at least as well as the other strategies is the nature of the RC+ task itself.

If a population only discovers the `bridge-building' behaviour needed for maps 2-4,

whilst forming a dislike for Object A and/or Object B, any conformist strategy will

struggle to discover the behaviour required for map �ve, as the population will tend

to conform to the sub-optimal behaviour. However, the very nature of the `Random'

strategy allows for a variety of individuals to ful�l the role of teacher, regardless of

�tness, thus enabling newer ideas to potentially establish themselves and sub-optimal

behaviours to be lost. However, maintaining these newly found optimal behaviours

may be di�cult in such a strategy. This does suggest that a hybrid approach may be

bene�cially, whereby numerous conformist and non-conformists strategies may exists

within a population thus enabling both innovation and rapid behavioural convergence
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Figure 6.1: Time taken for RC+ map completion for each social learning strategy.

(left) Graph showing the �rst time any population achieved each map. (right) Graph

showing the average generation populations achieved each map.

to occur.

6.4 Conclusions and Further Work

The aim here was to demonstrate that multiple, varied, social learning strategies would

be capable of discovering and maintaining behaviours that are inaccessible to hill-

climbing strategies such as incremental genetic evolution. The results presented here

echo previous work [22], while extending the research to show that various social learn-

ing strategies are capable of both discovering and maintaining inaccessible behaviours.

Due to each strategy applied being highly abstracted from behaviours seen in nature,

along with the task being highly arti�cial, this work is unable to draw strong parallels
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to observed social behaviours in nature. Achieving a comparable status will require a

more complex use of social learning, a sensible progression would be the inclusion of

synchronous, distinct learning styles into a single population. A model that allows for

multiple social learning strategies to be employed along side genetic evolution has com-

pelling implications for agents, i.e. choosing optimal learning styles for the appropriate

task.
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Chapter 7

Evolutionary Adaptation to Social

Information Use without Learning

As discussed earlier in this thesis, social information can broadly be thought of as

information derived from the behaviours, actions, cues or signals of other agents [91].

As social information necessarily involves the direct or indirect broadcasting of infor-

mation in to the public domain, it is sometimes known as (or con�ated with) public

information [20]. Here we assess whether the use of social information in populations

of simulated neuroevolutionary agents is adaptive when decoupled from within-lifetime

learning processes. Within-lifetime learning processes confer signi�cant adaptive ad-

vantages to agents employing them, be it through the development of a set of robust

and �exible behaviours, the rapid adaptation to new environments or circumstances,

the quick incorporation of new information, or the guiding of the evolutionary process

itself [116]. The adaptive advantages of learning are particularly potent when social in-

formation is incorporated alongside innovation and individual learning [22], resulting in

social learning and potentially even cultural evolution [164]. However, as bene�cial as

within-lifetime social learning processes are, it is unclear to what extent social or public
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information has an adaptive bene�t when decoupled from these learning processes and

evolution is left to determine the value of social information. Is the incorporation of

social information alone enough to gain an adaptive advantage over non-social agents?

Or are learning processes necessary to allow social information to confer any bene�ts?

These individual are the questions that we address in this chapter.

Social learning is seen widely in nature [123] in a range of species as diverse as

humans and nine-spined stickleback �sh [90]. The mechanisms and processes that

underpin social learning are themselves broad, ranging from teaching, imitation and

emulation to stimulus enhancement and exposure [63], with any of these mechanisms

potentially leading to the formation of traditions and cultures [164, 170]. However,

within each social learning category there is some dependence on who information

is obtained from, be it a teacher or which agent is unintentionally (or intentionally)

exposing an individual to new information. As social learning is necessarily conformist,

a poor social information model may result in the discovery and propagation of sub-

optimal behaviours [87]. Despite the potential pitfalls of over-conformist social learning,

including sub-optimal behaviour development [87] and even population collapse [160,

23], social learning, and therefore social information transfer, can be of great bene�t to

agents, thus explaining why even simple forms of social information transfer are seen so

widely in nature [126, 63, 153] and have been shown to produce complex behaviours that

are easily attributed to more complex social learning mechanisms like imitation [111,

113]. At the heart of the problem being addressed here are three core arguments. (1)

Information is a �tness enhancing resource [107], even when information suppression is

seen to be adaptive [109] or when information is encoded or interpreted incorrectly [107]

- any new information about the world enables populations of agents to better adapt

to the world they are in, even if this means disregarding or suppressing information.
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(2) Incremental evolution is not a process of unguided random variations, but a process

that itself can adapt in a way that is analogous to the kind of learning seen in cognitive

organisms [157], leading to complex and robust adaptive traits in nature, autonomous

robots [57] and simulated agents [42] in the same way that learning can lead to complex

and adaptive behaviours (though on a di�erent time scale). (3) Inadvertently expressed

public information and simple mechanisms of social information transfer can lead to

behaviours that are su�ciently complex to enable cultural evolutionary processes [46,

164]. These three core arguments give us good reason to believe that social information

without within-lifetime learning processes should still be adaptive, and therefore lead

to evolution adopting the use of social information to the bene�t of social agents

over non-social agents. Though we must still be mindful that social information may

be at odds with personal beliefs [46] or lead to population-level conformism to sub-

optimal behaviours [87], thus leading to a trade-o� between the accommodation of

social information and the evolution of robust evolved behaviours.

This leads us to the hypothesis that agents making use of social information should

outperform non-social agents: any additional information, that is not just noise, that

provides more information about the environment should lead agents to an improved

�performance� in the environment over agents without access to such information.

However, social information may only be useful when it is obtained from a trusted

or reputable source [127], thus accurately indicating success or indirectly leading to

success, and therefore may provide little or no concrete bene�t in complicated or less

predictable environments - in these more challenging environments learning may be

necessary to allow temporarily useful social information to be quickly adopted and

then rejected when it is no longer relevant. This hypothesis will be tested by modelling

populations of agents who have no social information available to them and popula-

94



tions of agents with various forms of social information available to them. Each social

information strategy will be tested against the non-social strategy, starting initially

with the most basic social strategy available: presence, with the null hypothesis in

each case being that the social population does not show an improved ability to solve

the task at hand compared to non-social agents. The social information strategies used

here are: presence, action, health and age. Presence social information simply enables

agents to detect the presence of other agents (non-social agents are essentially blind

to other agents); action enables agents to see what other agents are currently doing;

health enables agents to see the current energy or battery state of others; and age

information enables agents to see how long others have lived for.

7.1 Environmental Set-up

The task world used here is known as EnVar. EnVar is a bounded (non-toroidal) 2D

environment containing a variety of consumable resources known as plants. Plants are

recognised by agents simply as an RGB value. Plants are divided into a number of

species, each with a base RGB value and a radius in RGB space. Plants are generated

within these RGB regions and identi�ed as belonging to the nearest species according to

euclidean distance in RGB space. Each plant species is assigned an energy value, which

is transferred to agents if the plant of that species is consumed; energy values may be

positive or negative. Notionally the EnVar world is broken up in to cells, though here

each cell represents a pixel and therefore the world can be considered to be continuous.

Plants in the world take up a number of cells, forming a block, with each block only

being able to be eaten a certain number of times before being exhausted (here set to be

200 eating events). Once a plant block has been exhausted it is no longer consumable

and therefore removed from the world to be replaced by a new block from a random
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plant species somewhere else in the world - this maintains a constant number of food

blocks in the world at any time. Agents are permitted to share space with a plant

resource but cannot overlap with each other, thus removing the possibility of agents

piling up on top of one another on valuable food resources. In this work EnVar is

set up to create a 700 × 700 pixel sized cell world, containing �ve hundred 10 × 10

pixel blocks of plants. In order to test our hypothesis we test populations of social

and non-social agents in a set of increasingly di�cult environments. Environmental

di�culty is dictated by the ratio of positive food resources to negative food resources.

The simplest world used here has an equal (1 : 1) ratio of positive food species to

negative food species. Tests get progressively harder by increasing the number of

negative food species, whilst maintaining only one positive food species, resulting in

the most di�cult world used here having a 1 : 9 ratio of positive food species to

negative food species. As each plant species has an equal chance of appearing in the

world, and covers approximately the same portion of RGB space, agents in the most

di�cult environment are nine times more likely to experience a negative plant resources

than a positive plant resource. In the results section below, environment 1 relates to

a 1 : 1 ratio environment, with environment 9 relating to a 1 : 9 ratio environment.

For all tests here negative food species come with an energy value Eneg = −10.0, with

positive food species contributing an energy value of Epos = 1.0 when consumed. This

provides a strong evolutionary pressure to avoid eating negative food species.

7.2 Neuroevolutionary Model

Agents in the EnVar simulation world are grounded 2D simulated agents, controlled

by a hybrid neural network architecture known as the Shunting Model. The shunting

model uses two interacting neural networks to determine agent behaviours, here rep-
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resented as a discrete set of agent actions. The two interacting networks are known

as the Decision Network and the Shunting Network. The decision network is simply a

feed-forward neural network comprised of an input layer, one hidden layer and an out-

put layer. Outputs from the decision network are used to produce a locally-connected,

topologically-organised network of neurons known as the shunting network, which sim-

ply places and organises agent preferences for environmental features and states in

such a way to allow the agent to hill climb in a shunting space (known as the activity

landscape) that directly maps on to their immediate neighbourhood. The shunting

network weights are �xed for all agents, whereas the decision network is genetically

encoded and is subject to change via evolution.

7.2.1 The Shunting Network

The shunting network is a locally-connected, topologically-organised network of neu-

rons that was originally used for collision free motion planning in robots [168, 167]

and has been subsequently applied in a number of 2D and 3D arti�cial life models

[128, 22, 139, 87]. Here the shunting network's topology is simply superimposed on

to the environment, with each cell in the network topology directly relating to a pixel

within an agent's visual �eld. Using the shunting equation (see equation 7.1) values for

each cell (which can be interpreted as representing an environmental feature or state,

and are initially set by the Iota output I obtained from the decision network) are prop-

agated across the cells of the network, producing an activity landscape with peaks and

valleys representing desirable and undesirable features in the environment. The result

is a landscape which allows the agent to follow a route determined by the higher Iota

values while avoiding undesirable valleys. A mock-up example of an activity landscape

with a snapshot of the visual �eld it represents can been seen in Figure 7.1.
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Environment Activity Landscape

AgentPlants Foreign Agent on Plant

Positive 
Activation

Negative 
Activation

Figure 7.1: Mock-up transition from agent visual �eld to shunting network activity

landscape. The left-hand grid shows the agent's visual �eld with two plant objects and

one other agent occupying the same space as a plant. The right-hand grid shows an

example activity landscape for the visual �eld. The agent determines that an agent on

a plant is an interesting feature and therefore assigns it a strong positive Iota value (I),

whereas the purple plant is seen negatively and is therefore assigned a strong negative

Iota value. These Iota values propagate over the activity landscape using equations

7.1 and 7.2. The central agent then chooses to move within its immediate Moore

neighbourhood to the cell with highest activity value.
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dxi
dt

= −Axi +
∑
jεNi

wij [xj]
+ + Ii (7.1)

In equation 7.1 each node in the shunting network corresponds to one pixel within

an agent's visual �eld; xi is the activation of neuron i; A is the passive decay rate; Ni

in the receptive �eld of i; wij is the connection strength from neuron j to i, speci�ed to

be set by a monotonically decreasing function of the Euclidean distance between cells

i and j; the function [x]+ is max(0, x); and Ii is the external input to neuron i (known

as the Iota value). The shunting network is advantageous as it exhibits computational

e�ciency by not explicitly searching over all possible paths. In line with the work of

Stanton and Channon [139], we use a simpli�ed, stable solution for equation 7.1 as

seen in equation 7.2. Here constant xnewi = xi for all i. The maximum Iota value is

maxI = 15, with the resulting value for xnewi also being capped at a minimum Iota

value minI = −15. This stops Iota values growing out of control, whilst providing a

large enough maximum value (and a small enough minimum value) to ensure activity

propagation across the network. In order to allow propagation to occur within a time-

step, the shunting equation must be run a number of times, we take this number of

iterations to be equal to the diameter of the visual �eld.

xnewi = min

(
1

8

∑
jεNi

[xj]
+ + Ii,maxI

)
(7.2)

The shunting model implemented here di�ers in a number of signi�cant ways from

previous Arti�cial Life implementations [128, 22, 139, 87]. In these previous implemen-

tations agents see their entire environment, have a set number of discrete environmental

features and states to set Iota values for, and are in the environment alone to complete

a predetermined task. Here agents have a limited view of the world, have the possibility

of needing to a set an Iota value for a plant of any given RGB value, and exist as a
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population within the environment (leading to possible input states where an agent can

be seen on a particular plant). In order to accommodate these di�erences the shunting

model here is run independently for each pixel in an agent's visual �eld, which is set

here to have a radius of 30 pixels from the centre of the agent, with information about

that pixel being included as part of the agent's decision network input layer. In this

way an Iota value is calculated for each unique environmental state within an agent's

visual �eld (in previous models, each discrete environmental state was included as an

output, with only an agent's internal state or current cell's state being accommodated

in the input layer of the decision network). This change does not change the resulting

behaviour of the shunting model or activity landscape, just the way in which informa-

tion is passed to the shunting network from the decision network. In order to minimise

the amount of processing time required to populate and create the activity landscape,

Iota values are only collected for unique states experienced by an agent - for a state

to be unique it must be a newly experienced set of decision network inputs (discussed

below). To further optimise processing time, an agent will only produce an activity

landscape if its outputs determine that it should move in the current time step; agents

that are not moving do not need an activity landscape.

7.2.2 The Decision Network, Neuroevolution and Reproduc-

tion

Evolution in the model is applied only to the decision network. The decision network

here is a feed-forward neural network comprised of seven standard input nodes, and

an additional social input node in social information tests, eight hidden units, and two

output nodes, resulting in 112 - 128 weights. Each network layer is fully connected,

with �oating point weights in the range [−1 : 1] being directly encoded from an agent's
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genotype. A standard sigmoid activation function is used at each hidden and output

node, though outputs processed for deriving agent actions are then scaled to be within

the range [0 : 1] and the Iota output is scaled linearly to be within the range [minI :

maxI]. As the agent is expected to produce an Iota value to feed in to the shunting

network for each unique environmental feature or state within its visual �eld, inputs

into the decision network must accommodate both the internal state of the agent,

the state of their current environment, and the state of the environmental feature

they are assessing; this leads to there being two sets of input nodes. The �rst set

of input nodes are simply plant RGB inputs - if the agent is viewing empty space

these inputs are set to -1, else they are set to be the normalised RGB of the plant

being viewed, with RGB values being normalised be within the range [0 : 1] by way of

linear normalisation. Following these inputs are a series of generic inputs, which are

dependent on the agent's internal state and the current environmental state. These

inputs are the agent's current battery level in the normalised range [0 : 1], a moving

average of the agent's battery level over the previous 100 time steps, the agent's current

external environmental state and a moving average environmental state, which are

both set to be +1 and do not change in the tests presented here (the model is set-

up to accommodate external environmental change which is not used here). In social

information tests agents have an additional input based on the agent they are viewing.

The genotype, which is essentially an array of weights, is subjected to both muta-

tion and crossover should a reproduction event take place. The crossover mechanism

used here is single point crossover, with per locus mutation occurring with probability

pmut = 1/L, where L is the length of the genotype. Mutation is achieved by way of

Gaussian random noise, with a value taken from a normal distribution with µ = 0,

σ = 0.01 being either subtracted or added to the �oating point value at the loci to be
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mutated. All weight values are bounded in the range [−1 : 1]. Reproduction events

take place only in response to a death event. Agents can die if they run out of energy,

or if they are in the lowest 10% of agents ranked by energy at the end of an epoch.

The �rst method for removing agents from the population ensures that agents cannot

remain in the population with no energy, the second method ensures space is made for

new agents to be created even if the population as a whole is successful at maintaining

above zero energy levels, thus maintaining a selection pressure for task improvement.

Both methods of death are not directly related to task ability as it is possible for a good

agent to be unlucky and never, or rarely, experience a positive food resource, whereas

less able agents may have the fortune to be born near an abundance of food resources

or relatively close to the end of an epoch. This method of reproduction maintains a

constant population size of 200 agents. The new agent, or child, created to replace

the removed agent is the progeny of two agents, one of whom is selected in a tour-

nament, the other of which is selected randomly from the remaining population. The

tournament selection mechanism applied here takes two agents from the population,

compares their current energy levels, and selects the agent with the higher energy level

as a parent. Like in nature, this isn't a perfect measure of �tness as it is possible the

agent is young and therefore has not yet had time to lose signi�cant amounts of en-

ergy, or the agent could have simply been lucky or unlucky with available food sources.

However, in general, agents with more e�ective behaviours will on average �nd them-

selves with better energy levels than agents with less e�ective behaviours, thus driving

evolution toward behaviours that are more suited to the task or environment at hand.

The second parent is selected randomly to ensure the population doesn't become dom-

inated by the progeny of a small sub-set of the population, thus maintaining a level of

exploration in the genotypic search space. New agents are placed in the world within
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the visual �eld of one of their parents.

7.2.3 Agent Actions and Action Energy Costs

The agents in the model have a set of simple, discrete, actions available to them,

through the output layer of their decision networks: wait, eat or move. The decision

network has two outputs, an Iota output to be fed into the shunting network and an

eat/wait output. The agent �rst considers its current input state at its current position

- if the agent produces an Iota value above the threshold θa = 0.5 it indicates the agent

is happy with its current state and position and therefore does not move (an activity

landscape is therefore not calculated as it not needed). The agent's eat/wait output is

then considered; if the output produces a value above the threshold θb = 0.5 the agent

attempts to eat whatever may be at its current position; agents are welcome to try and

eat at locations where no plant is present, but no bene�t for this action is conferred,

and the eat action is considered to be an unsuccessful eating attempt rather than a

wait action. If an agent decided to eat at a location containing a plant, the plant's

energy is transferred to the agent, this does not necessarily lead to the exhaustion of

the plant resource, as plants are considered as a mass. The Iota output is in the range

[−1 : 1], which is then scaled to be within the range [minI : maxI] for use in the

shunting network, whereas the eat/wait output is limited to the range [0 : 1]. If the

eat/wait output gives an output below the expected threshold the agent simply waits

at its current location. Waiting and eating both reduce an agents energy by 0.1 energy

units (though eating may result in a net energy gain), with moving using up 0.2 energy

units per time step. Agents will only move if their Iota output for their current location

is below threshold θa. In this case an activity landscape is created based on the Iota

outputs for all visible environmental features. Agents are born with, and are able to
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achieve, a maximum energy level of 100 units. As epochs here constitute 1000 time

steps, an agent would be able to survive for a maximum of one epoch, or one thousand

time steps, by remaining inactive. In order to avoid moving agents moving around in

circles, or moving backwards and forwards, in neutral space (where there is no activity

gradient from the activity landscape) consecutive neutral move actions maintain the

same direction of travel with probability pdir = 0.9.

Measurements are taken to determine whether an eat event was successful or un-

successful. Any eat action that does not result in a non-negative energy providing food

source being consumed is considered to be unsuccessful, so only eating non-energy re-

ducing plants is a successful eating action. In order to measure a population of agents'

success in a given environment, the di�erence between successful and unsuccessful eat-

ing actions is measured. This di�erence measure is useful as it is possible for agents

to spend an equal amount of time eating successfully and unsuccessfully, which would

demonstrate a strong performance on a measure of successful eating, but a weak per-

formance on a measure of unsuccessful eating - the di�erence instead demonstrates a

neutral performance, so a population that spends very little time eating, but all of

that time eating successfully (so a picky eating strategy) would be a better performing

population than a locust-like population that eats everything in sight.

7.2.4 Social Information Strategies

Populations of agents using social information di�er only very slightly from non-social

populations; social information populations have an additional input unit for social

information, thus non-social agents are rendered blind to other agents in the world.

The social information strategies explored here, including the no social strategy are

discussed below:
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No Social: No input node is available to the agent to enable social information

to be used by the agent's decision network. Agents proceed with no information about

other agents.

Presence: The social information input node receives an input of +1 if another

agent is present within the visual �eld. No other information about the agent being

viewed is used. This strategy is not dissimilar to the Inadvertent Information strategy

used by agents in the work by Mitri et al. [109], though the agents explored in the work

presented here do not have a choice about whether they express social information or

not (this is the case for all social information strategies presented here).

Action: An input representing the current action state of the agent being viewed.

The wait action is input as a value of 0, eat is input as 0.5 and move is represented as 1.

Amalgamating these action inputs into one input rather then two or three categorical

inputs, whilst not ideal, was implemented in order to ensure the input layer size for all

social strategies was equal.

Health: The current energy levels of the agent being viewed are normalised to be

within the range [0 : 1] and input to the viewing agent's decision network.

Age: The age (in time steps) of agent being viewed is normalised using a hyperbolic

tangent function of the logarithm of the age, which is then normalised to be within the

range [0:1] (with 1 being an asymptote). Normalising age in this way is necessary as

agent's may live for the entire duration of the simulation, and are not selected against

based upon their age. See formula (7.3) where a represents agent age in time steps.

inputa = (tanh (log (a)) + 1) /2 (7.3)
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7.3 Results and Discussion

Forty populations of each social information strategy (including no social) were tested

on each environment (1→ 9). Each population was permitted to evolve in the environ-

ment for 100 epochs of 1000 time steps. Reproduction and death events occurred both

within and at epoch, meaning all populations were a mix of young and older agents at

all stages of evaluation, with agents having no maximum age limit. Population data

was accumulated for each epoch, and collected at the end of each epoch. As we are

primarily interested here in the �nal test performance achieved by a population, not

the pathway toward this achievement, average metrics were taken for each population,

for each environment, for the last 25 epochs of a test, by which point performance

had stabilised across measures. The results presented here are the median values of

the 40 populations' average last 25 epochs of data - as this data was rarely normally

distributed the medians were considered to be of more use than means. In order to

derive the statistical signi�cance between population data for each social information

strategy a Mann-Whitney U test was used, with p values being derived from the re-

sulting Z-scores. Figure 7.2 presents Z-score values on an inverted secondary y-axis,

with p-value being represented by highlighting over Z-score data points. In order to

test our hypothesis, that populations of agents making use of social information should

outperform non-social agents, we measure the di�erence between how often agents

successfully and unsuccessfully apply their eat actions, thus allowing us to measure

the e�ectiveness of the eating behaviour within populations. Only comparisons for

each social information strategy against the no social strategy are undertaken to see

if any statistically signi�cant di�erences arise. We go on to further analyse a wider

array of metrics, including successful and unsuccessful eating actions in isolation, agent

turnover, and average agent age.
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Figure 7.2: The di�erence in % of actions that quali�ed as successful eating actions and

% of actions that quali�ed as unsuccessful eating actions in each environment, for each

social information strategy compared against no social information. All graphs show

the Z-score from an Mann-Whitney U test on the secondary y axis, with highlighting

included to indicate statistical signi�cance. Each data point represents the median of

the average results for forty populations.

7.3.1 Eat Action Performance

In Figure 7.2 we can see the di�erence between successful and unsuccessful eating

actions for each social information strategy compared to results for non-social popula-
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tions. Looking �rst at populations with no social information (black line on all graphs

in Figure 7.2) we see that the median di�erence crosses zero, and therefore indicates the

eat action is being applied unsuccessfully more often than successfully, at environment

3 (a 1:3 positive to negative food ratio). All social information strategies manage to

maintain the eat action in favour of successful eating until a more di�cult environment

- this is most notable for both the Health and Age social information strategies where

eat actions do not begin to favour unsuccessful eating until environment 5, with the

Health strategy re-crossing zero brie�y, and the Age strategy maintaining an almost

neutral pro�le for all environments after environment 5. This suggests there is a bene-

�t to social information, in that social information may allow populations to maintain

successful behaviours in more challenging and di�cult environments. However, if we

look more closely at the resulting Z-scores and p-values we see that both the Presence

and Action strategies rarely demonstrate a signi�cantly better di�erence in eat actions

over populations of non social agents, and even when signi�cant di�erences are seen

they are with relatively weak and therefore lead us to the conclusion that we cannot

say with any certainty that either the Presence or Action social information strategy

provides a signi�cant improvement over having no social information at all. Despite

the poor performance seen for all strategies in later environments, all strategies were

capable of enabling at least one population to achieve a positive eat pro�le in all en-

vironments. It is also worth noting the inconsistent results observed with regard to

the No Social strategy in environments 7 and 8. Despite the median result �uctuating

in a way that suggest environment 8 was less challenging than environment 7, there

was no statistically signi�cant di�erence between the distribution of results for these

environments.

Despite Presence and Action social information being of dubious value, both Health
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and Age social information provide a more convincing bene�t. We can see in Fig-

ure 7.2(c) that populations using social information about the health of other agents

demonstrate a signi�cantly better di�erence in eating actions until environment 7, this

performance di�erence is most noticeable in less di�cult environments (environments

and 1 and 2) where we see a p value <0.01. Populations using social information about

age (as seen in Figure 7.2(d)) also demonstrate a signi�cantly better di�erence in eating

action in less di�cult environments, though the statistical signi�cance over environ-

ments is less consistent. However, the two most signi�cant Z-scores seen relate to no

social information vs. age social information on environments 1 and 2, which demon-

strate that social information about age is particularly useful in these less di�cult,

but still challenging environments. From this data we can begin to see the potential

advantages of certain types of social information.

7.3.2 Social Information Performance in Less Di�cult Environ-

ments

In Figure 7.2 we see that environment 1, where there is a 1:1 ratio of positive to

negative plant resources, gives rise to a signi�cant di�erence in eating performance when

social information populations are compared to populations with no access to social

information, with this result being extended to environment 2 (a 1:2 ratio) for both

Health and Age social information populations. This shows a particular bene�t to using

social information in less di�cult environments. It is worth noting here that whilst

environment 1 and 2 are less di�cult than later environments used here, they are still

themselves reasonably challenging given that we could have tested in environments with

positive plant resources in abundance. Having a 1:1 or 1:2 ratio of positive to negative

plant resources provides a reasonable challenge, so much so that in environment 3
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we see that non-social populations, relying on evolution alone and having no access

to social information, now begin to struggle at the task. Figure 7.3 shows a wider

range of performance metrics for environment 1, including the breakdown of successful

and unsuccessful eating actions in isolation. Here we see that the success of social

information populations is as a result of both higher eat success rates and lower eat

failure rates, though it is interesting to note that Age, Presence and Action social

information populations are capable of demonstrating very low levels of eat success,

even when compared to No Social populations, when the full data range is considered.

The main driving force behind the success of social populations, especially Health and

Age, appears to be consistently low eat fail rates across populations - the upper quartile

ranges for both of these strategies not exceeding 0.02 (2% of actions). This suggests

that social information is often being used to help agents avoid or not consume negative

plant resources. Age and Health information may be particularly useful for this purpose

as it would allow agents to avoid or ignore young or unhealthy agents whilst developing

a preference for healthy and older agents. Whilst Presence or Action information

may also be useful for the purposes of discrimination (move towards areas of high

agent presence, or follow moving agents for example), they are both potentially riskier

sources of information compared to Health or Age which both provide information

about agent success. Figure 7.4, which shows performance metrics for environment 2,

also shows that for Age social information this ability to maintain consistently low rates

of unsuccessful eating alongside a strong eating success performance is maintained in

slightly harder environments. We can also see that for unsuccessful eating actions, the

upper quartile range for social information strategies is comparable to the median for

non social populations.
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Figure 7.3: Box plots for the eat action and other population metrics, including a

breakdown of successful and unsuccessful eating actions, average agent age, and agent

turnover, in environment 1.
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Figure 7.4: Box plots for the eat action and other population metrics, including a

breakdown of successful and unsuccessful eating actions, average agent age, and agent

turnover, in environment 2.

Alongside information about eating, both Figures 7.3 and 7.4 also give information

on average agent age and agent turnover. For both environments 1 and 2 we see both

Age and Health social information enabling populations to accomplish a high aver-

age agent age with an accompanying reduction in agent turnover (fewer agents dying

within an epoch due to running out of energy), though the median agent turnover for

Health social information is comparable to the non social tests. Both Presence and Ac-
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tion populations fail to distinguish themselves from No Social populations, suggesting

the improvements in eating performance seen most notably in environment 1 do not

necessarily translate directly to improved survival, this suggests there must be other

underlying behaviours that are causing these populations to use more energy, thus re-

sulting in lower average ages and a higher agent turnover when compared to the Age

and Health social information populations. The indeterminate quality of both Pres-

ence and Action information causes agents using this information to be less discerning

about which agents and plant resources they move towards, resulting in less informed

movement and therefore less e�cient energy expenditure - though further analysis will

have to be done to con�rm these suspicions. Environment 1 here is not dissimilar to

the food foraging task used by Acerbi and Marocco [2] where a reduced mortality rate

was also observed in social populations when compared with the mortality rates of non

social populations.

7.4 Conclusions and Further Work

The work presented here, alongside results from Mitri et al. [109], contribute to the

discussion on the adaptive value of social information for evolved simulated agents by

demonstrating that social information can provide an adaptive bene�t to a neuroevo-

lutionary process when decoupled from a within-lifetime learning process. However,

we do see that social information is only of consistent adaptive bene�t in less di�cult

environments, and when the social information itself is informative. This work also

demonstrates the potential adaptive bene�ts of simple social and public information

strategies such as social in�uence, social facilitation, stimulus enhancement, and local

enhancement [3, 126, 63, 153], adding further weight to the work by Noble, Todd and

Franks [111, 113] in which it was argued that simple social learning mechanisms are
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capable of producing complex adaptive behaviours that may easily be confused for the

resulting behaviours of more complex social learning mechanisms. The social informa-

tion strategies implemented here could be argued to be mechanisms of stimulus and

local enhancement as the social information inadvertently expressed here by agents

could be used by others as an attractor to unfamiliar plant resources or a promoter

of eating (or other) behaviours. However, we also see evidence of social information

potentially being used to ignore locations or being used to suppress eating (or other)

behaviours, which indicates some level of information suppression [109]. In Chapter 8

we undertake a greater analysis of the behaviours being expressed by agents here.
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Chapter 8

The E�ect of Social Information Use

without Learning on the Evolution of

Behaviour

In Borg and Channon [21] (reported here in Chapter 7) it was shown that social or pub-

lic information alone, decoupled from any within-lifetime learning process, can result

in improved performance on a food foraging task compared to when social informa-

tion is not available. Here we assess whether access to social information leads to any

signi�cant behavioural di�erences both when this access to social information leads to

improved task performance, and when it does not. In short, how strongly is social

information used to increase task performance, and do any behaviours resulting from

social information use persist even when task performance does not outperform the

performance seen when no social information is available?
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8.1 Social Information and Social Behaviour

The idea that agents may be socially attracted to each other by way of actively seeking

each other out in order to bene�t from the proximity of others, be it to avoid predators,

breed or co-operatively raise their young, or to discover new resources or habitats is

a well established one [8, 9]. However, there is still some debate as to why and when

social and public information leads to agent aggregation. In reviewing public and

social information use, Valone [150] outlines three general hypotheses to explain why

individuals might prefer to settle near conspeci�cs (leading to what may be described

as habitat copying via local enhancement):

1. Individual �tness is enhanced via the Allee e�ect [8, 9, 137]; which is de�ned

by Stephens et al. [140] as �a positive relationship between any component of

individual �tness and either numbers or density of conspeci�cs�. Allee observed

that individuals were better able to survive and reproduce when found in groups,

concluding that there is a positive correlation between population density or

group size and individual �tness (known as the Allee e�ect). If this e�ect holds

true we would expect there to be selection pressure in favour of aggregation;

increased use of public information may therefore be as a result of increased

social interaction due to aggregation.

2. Public information based resource discovery results in a reduction in search costs,

enabling a more e�cient use of energy [137, 69]. As public information may

be used to reduce search costs, and increase the chance of experiencing new

resources which may have been otherwise overlooked, aggregation may result

from a selective pressure to obtain social information rather than increased public

information use being a secondary consequence of aggregation itself. The Allee
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e�ect (a positive correlation between individual �tness and aggregation), resulting

as a consequence of this selective pressure to access public information.

3. Individuals use the presence of other (established) individuals as an indicator of

the high-quality of a habitat without necessarily requiring them to rely on their

own (possibly incomplete or poor) evaluation of the habitat [149, 155]. Here pub-

lic information not only reduces the search costs when discovering resources, but

also enables individuals to derive the quality of a unfamiliar resource based on the

public information derived about the action, state or presence of others. Again,

aggregation and the Allee e�ect result as a consequence of selective pressures in

favour of public information use, rather than public information use resulting as

a consequence of a selective pressure in favour of aggregation.

Here we assess three questions regarding agent behaviour in the presence of social infor-

mation. Firstly, we assess whether the well established notion that social information

leads to behaviours that promote agent aggregation is true in simple arti�cial evolu-

tionary systems such as the one used in Borg and Channon [21]. Secondly, we assess

whether agent private information reliability (or environmental predictability) impacts

on the agent aggregation and social information use. Finally, we assess whether any

observed social behaviours can be seen to persist even when social information use does

not lead to an improved task performance.

The question of the persistence of what may be described as non-adaptive social

information use, or social learning, was addressed by Higgs [81] in his meme-based sim-

ulation study of learning by imitation. One of the many things Higgs [81] concluded

was that memes (discrete, replicating, units of �culture� [48, 50, 17, 18]) even when

learned blindly (without concern for their adaptive value) provide a selective advan-

tage to imitation. This suggests that behaviour which increases social interactions may
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still be adaptive even when task performance is poor. Higgs' result is not necessarily

that surprising, as it is more than reasonable to expect to see agents with access to

social information of any kind seeking this information out regardless of the contri-

bution this information makes to �tness. Bullinaria [37] rationalises this expectation

by stating that �If there exists a set of memes with a range of positive and negative

contributions to the overall performance, then not imitating them will leave perfor-

mance at some baseline, while imitating them will result in a range of performance

levels above and below that baseline. Any selection on the basis of performance will

then favour those individuals that have imitated the good memes, and hence favour

higher imitation rates� - therefore we can see why agents may wish to collect around

sources of information; sometimes that information will be useful, so gaining access to

it is important. We would therefore expect to see agents attempting to �nd sources

of information even when obtaining that information does not necessarily lead to an

improved performance. Agent aggregation and social interaction for the purpose of

habitat copying is also found to be adaptive in highly variable environments [152],

though with the potential pitfall of population collapse during overly conformist social

interaction [160, 23]. It has also been noted by Rendell et al. [125] that strategies that

rely heavily on social learning seem to be remarkably successful, even when information

obtained from non social sources is no more costly than social information. We would

therefore expect behaviours that maximize access to social information to emerge.

In the model set-up used in Borg and Channon [21] which forms the basis for this

work there are a large number of possible food resources available to agents, resulting

in agents often being uncertain about whether any given food resource will provide

a positive or negative amount of energy. As environments in the Borg and Channon

[21] model become more di�cult, a strategy whereby all food is ignored may evolve,
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but this strategy would always be outperformed by a strategy that sought to minimise

uncertainty about available food resources in order to discover a positive energy pro-

viding resources. Social information, especially about the performance or �tness of an

agent, may therefore be sought in order to allow for decisions on whether to consume

any given food resource to be in�uenced by others, thus reducing uncertainty about

the safety of a new food resource. This kind of social information seeking behaviour

in order to seek out information about new or novel food resources in often seen in

Norway rats [64, 114], though it is interesting to note that this social behaviour is only

used to develop food preferences and not food aversions; this property of rat social

behaviour has been suggested to be as a result of the high levels of lethality associated

with poor food choices in rat populations [114], thus resulting in very little social in-

formation about negative food resources being available to the population. We may

see a similar scenario in the more di�cult environments presented here, providing a

continued pressure for social behaviour under extreme environmental di�culty.

Turner et al. [148] demonstrates that when models are unreliable children spend

more time learning socially, this could also be re-phrased as social learning is more

likely to take place when a task is di�cult to individually learn. Therefore, it is not

unreasonable here to expect agents in populations who have access to social information

to seek this information out in order to reduce the unreliability of their own internal

models of the world, it is far easier to evolve a rule which states �trust older individuals�

than evolve a rule about each possible food resource one may experience, especially

when it is likely that any given food resource is new to an agent and therefore is yet

to be evaluated. van Bergen et al. [151] also reports that when private information is

less reliable, stickleback �sh tend to use public rather than private information.
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The large amount of evidence to suggest the persistence of social information pro-

moting behaviours in unreliable and challenging environments, and evidence from simu-

lations that social learning mechanisms such as imitation provide a selective advantage

even when the information being obtained is not necessarily �tness increasing, along

with the well established principle that the desire to obtain social information leads

to social aggregation, leads us to postulate the following hypotheses to be assessed to

here.

1. Social Information should lead to behaviours that result in increased agent aggre-

gation (i.e. movement to seek to social interactions): We will test this hypothesis

by comparing the amount of movement undertaken by agents from social informa-

tion using populations with non social agents. If we see a signi�cant di�erence

in the amount of movement, we will then assess how often agents from social

populations spend around other agents. We require a signi�cantly larger num-

ber of movement actions combined with agent aggregation to demonstrate not

only socially in�uenced aggregation, but also behaviours that promote social ag-

gregation. Sergio and Newton [133] provides evidence that in some cases even

simple information such as the presence of other individuals (or occupancy) can

be a suitable indicator of resource quality and therefore enough to lead to agent

aggregation around a food source, therefore we would expect this hypothesis to

hold true in all social information strategies presented here (see Chapter 7.2.4);

though when the presence of another agent is used as a source of social or public

information, some measure of resource quality may still be required, as no infor-

mation about the success or state of the agent present on the resource is available

to act as a proxy for resource quality [150].

2. This aggregation will be somewhat dependent on the reliability of agent private
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information: In the model environment used here it could be argued that private

information reliability is maximised in the more di�cult environments. The most

complicated environment tested here has a ratio of one positive food resource

to every nine negative food resources, therefore agents have a 90% chance of

correctly guessing that a food resource will be dangerous. We may therefore

expect agent aggregation (should it be seen) to be at its highest in lower di�culty

environments, despite the possibility of non social agents performing well in these

environments.

3. Behaviours resulting in increased agent aggregation will persist (though at re-

duced levels) even when task performance is poor: The adaptive value of social

information, even when potentially unreliable, should still be high enough to mo-

tivate agents to aggregate. In the more di�cult environments tested here we

would expect social information to be relatively poor, due to the large quantities

of negative food resources populating the environment. However, it would still

be bene�cial for agents to aggregate in order to provide potential access to any

positive behaviour that may emerge in the population. Therefore we would ex-

pect behaviours that encourage social aggregation, i.e. movement, to still appear

more often in social populations than in non-social ones, in all environments.

We will also go on to to assess whether social information leads to any signi�cant di�er-

ence in the application of the other behaviours available to agents here when compared

to non-social populations, and whether task performance has any implications for the

application of behaviour - we are especially interested to assess whether a change in

task performance from the predominantly successful application of eat actions to the

predominately unsuccessful application of eat actions can result in any notable transi-

tions in behaviour.
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8.2 Experimentation and Results

The experimental set-up matches that used in Borg and Channon [21] (see Chapter

7). Populations of neuroevolutionary agents (making use of the hybrid neural net-

work model known as the shunting model [168, 167, 128, 22, 139, 87]), each population

employing a di�erent social information strategy, are tasked with surviving in envi-

ronments of di�ering di�culties. The social information strategies used are No Social,

Presence, Action, Health and Age (detailed in Chapter 7.2.4), with forty populations

of each social information strategy being evaluated. Environmental di�culty is de-

termined by the ratio of positive energy providing food resources to negative energy

providing food resources, therefore environment 1 has a 1 : 1 ratio and environment

9 has a 1 : 9 ratio. All data presented here, as in Chapter 7, relates to the �nal 25

epochs of evolution (of a total of 100 epochs) where population behaviour and �tness

had broadly stabilised.

8.2.1 Action Pro�les

As in Borg and Channon [21] (see Chapter 7) the agents simulated here are capable,

via the outputs of their neural networks, of three di�erent actions: eating, waiting

and moving, with eating actions being evaluated as either successful (eating a positive

energy food resource) or unsuccessful (eating a negative energy food resource or trying

to eat when no food resource is present). As outlined in Chapter 7.2.3, each action

is accompanied by a small amount of energy loss, in order to ensure agent inactivity

is minimised - the move action having a higher residual energy loss than waiting or

eating.

122



1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
%

 A
ct

io
n

s

Environment

Agent Action Key

Move

Wait

Eat

(a) No Social

(b) Presence (c) Action

(d) Health (e) Age

Figure 8.1: Median agent action pro�les for each social information strategy over all

environments. Data points represent the median % of actions of each particular action

type over 40 populations. Data for each population is an average for all agents over

the last 25 epochs of the simulation.

Figure 8.1 shows the median action pro�les for each social information strategy ap-

plied here in each environment, an action pro�le being the percentage of total actions

each individual action contributed. These action pro�les can be considered alongside

Figure 7.2 from Chapter 7.3.1 to add the context of task performance to the action

pro�les. The most immediate di�erence between the social information using popula-
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tions and non social populations from Figure 8.1 is the application of the move action.

Whilst all populations show a reduction in movement, with an accompanied increase

in waiting, non social populations have extremely low levels of movement even in en-

vironments of lower di�culty when compared to social information populations. In

social populations movement is applied more frequently than waiting in lower di�culty

environments. This suggests that the increased performance associated with popu-

lations that use social information in simpler environments seen previously [21] (see

Chapter 7) is as a consequence of this greater willingness to move, either to �nd new

food resources or to �nd new sources of social information. As the only di�erence be-

tween social and non social populations is the addition of social inputs to agent neural

networks, movement to seek new sources of information is probably closer to the truth;

as agents in all populations spend the majority of their time in simpler environments

eating, any movement motivated by the desire to be around other agents would lead

to a secondary consequence of being around more food resources, enabling agents who

are less able to distinguish between positive and negative food resources to defer some

of their judgements on the likely pay-o� of a food resource, and instead rely on the

social information being provided by the agents they now �nd themselves around to

make more informed decisions. However it is not clear from Figure 8.1 whether or not

this di�erence in movement between non social and social populations is signi�cant,

and whether this additional movement does lead to more social interactions.

The immediate di�erence in movement behaviour between non social and social pop-

ulations seen in Figure 8.1 is demonstrated to be signi�cant by way of Mann-Whitney U

tests between the resulting application of move actions for social populations compared

to non social populations, this can be seen in Figure 8.3. The continued signi�cance

in the di�erence between social and non social populations regarding movement over
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all environments is in contrast to the general lack of signi�cance in task performance

di�erence between social and non social populations in environments past environment

2 (as seen in Figure 7.2, outlined in Chapter 7.3.1); these results indicate that the in-

troduction of social information or public information leads to behavioural di�erences

that persist even when these behaviours do not result in improved task performance.

Regarding the other actions available to agents; eating (see Figure 8.2) and waiting

(see Figure 8.4), neither show any particular signi�cant di�erences (where p < 0.01)

between social and non social population other than in environment 1 where wait-

ing actions for all social populations are applied signi�cantly less than in non social

populations (p < 0.01), and eating actions are applied signi�cantly less for social

populations using the Presence and Action strategies than in non social populations

(p < 0.01). This broad lack of any signi�cant di�erences beyond environment 1, be-

tween non social and social populations for eating and waiting, further demonstrates

that movement is the primary driving force in the improved task performance seen in

earlier environments, especially in environment 2 where only movement is signi�cantly

di�erent despite previous work showing a signi�cant di�erence in task performance

(as seen in Figure 7.2, outlined in Chapter 7.3.1); though it should be noted that in

environment 1 social information availability also leads to signi�cantly di�erent eating

and waiting behaviours, indicating that some adaptive action pro�le across actions is

available to drive improved task performance, rather than just a reliance on movement

behaviour. The fact that in environment 1 di�erences in eat and wait actions result in

less eating and waiting taking place in social populations in favour of more movement,

also indicates that social agents are willing to risk higher energy expenditure, and are

willing to spend less time potentially obtaining energy via eating. This demonstrates

that the accommodation of social information leads to a more re�ned, and ultimately
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Figure 8.2: Median eat actions for each social information strategy over all environ-

ments. Data points on the primary axis represent the median % of the eat action over

40 populations. Data for each population is an average for all agents over the last 25

epochs of the simulation. Data points on the secondary axis represent the Z-score value

from a Mann-Whitney U test comparing, for each environment, the median actions for

the two social information strategies presented. Z-scores which indicate statistically

signi�cant p values are highlighted.

126



1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3 -5

-4

-3

-2

-1

0
1 2 3 4 5 6 7 8 9

0

0.05

0.1

0.15

0.2

0.25

0.3 -5

-4

-3

-2

-1

0

Key
No Social

Presence

Action

Health

Age

Z-Score
p<0.01

(a) No Social vs Presence (b) No Social vs Action

Z
-S

co
re

Environment

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3 -5

-4

-3

-2

-1

0

(c) No Social vs Health

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3 -5

-4

-3

-2

-1

0

(d) No Social vs Age

%
 A

ct
io

n
s

Figure 8.3: Median move actions for each social information strategy over all environ-

ments. Data points on the primary axis represent the median % of the move action over

40 populations. Data for each population is an average for all agents over the last 25

epochs of the simulation. Data points on the secondary axis represent the Z-score value
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more e�ective, eating strategy as a result of an increased willingness to move. However,

as we can see from the action pro�le box-plots in Figure 8.5, the application of eating

and waiting actions is drawn from quite a large range in all populations, though the

inter-quartile ranges for all actions do imply some level of consistency in the application

of actions in environment 1.

The suggestion here is that the signi�cant improvement in task performance seen

in social populations over non social populations in less di�cult environments (as dis-

cussed in Chapter 7) is as a direct result of the behaviour di�erences enabled by the

accommodation of social information. However, this does lead us to something of a

�Chicken and Egg� situation; did social information use follow as a result of good

foraging (with good foragers acting as useful sources of social information), or did

social information use result in the development of good foraging strategies? As no

information about plant resources are communicated by social agents, with only infor-

mation about the agents themselves being expressed, it would be sensible to assume

that the improved task performance seen by social populations in simpler environments

is caused by agents developing behaviours that cause greater exposure to other agents

(and therefore more sources of social information), which then leads to an improve task

performance as a secondary outcome. The fact movement behaviour remains signi�-

cantly di�erent throughout all tests indicates that some behavioural di�erences persist

despite them providing no improvement in task performance (as seen in Figure 7.2,

outlined in Chapter 7.3.1).

128



Key
No Social

Presence

Action

Health

Age

Z-Score
p<0.01

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8 -3.5

-3

-2.5

-2
-1.5

-1

-0.5

0

(a) No Social vs Presence

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8 -3.5

-3

-2.5

-2

-1.5
-1

-0.5

0

(b) No Social vs Action

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8 -3.5

-3

-2.5

-2

-1.5
-1

-0.5

0
1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8 -3.5

-3

-2.5

-2
-1.5

-1

-0.5

0

(c) No Social vs Health (d) No Social vs Age

%
 A

ct
io

n
s

Z
-S

co
re

Environment

Figure 8.4: Median wait actions for each social information strategy over all environ-

ments. Data points on the primary axis represent the median % of the wait action over

40 populations. Data for each population is an average for all agents over the last 25

epochs of the simulation. Data points on the secondary axis represent the Z-score value

from a Mann-Whitney U test comparing, for each environment, the median actions for

the two social information strategies presented. Z-scores which indicate statistically

signi�cant p values are highlighted.
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8.2.2 Reasons for Moving

It is apparent from Figure 8.3 that movement behaviour for populations permitted

to use social information di�ers signi�cantly from non social populations - this is in

contrast to both eating actions (see Figure 8.2) and waiting actions (see Figure 8.4)

which only show signi�cant di�erences between social and non social populations in

selected environments. Therefore some analysis on why social agents move is necessary.

Alongside action data, data on the number of other agents an agent views over their

lifetime is collected. An agent view is counted when an agent registers that another

agent is within its visual �eld. The rationale for collecting this data is that if an agent

can register the presence of another agent within its visual �eld and feed any social

information about the agent through its decision network, it is possible for the agent

to use this information to either move toward, move away from, or ignore this other

agent. Should we see a correlation between the amount of movement undertaken by a

population, and the number of agent views over each environment, we may reasonably

conclude that this movement serves a purpose of enabling agents to collect together

(like a herd, or social group) thus allowing agents greater access to social information.

Figure 8.6 plots movement actions (primary y-axis) against agent views (secondary

y-axis), showing a high level of similarity between the trajectory of move actions and

agent views as environments become more di�cult. All social information populations

have a Spearman's Product Moment Correlation r > 0.982 when correlating move

actions and agent views, this very high level of correlation thus demonstrates that

agents in social populations are primarily using movement to bring them closer to other

agents, thus enabling greater access to social information; access to social information

is the primary motivation for movement, which in simpler environments also results in

improved task performance over non social populations (as seen in Figure 7.2, outlined
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in Chapter 7.3.1, and reported in [21] ). These may go some way to explaining why

social information use is so common in nature [164, 123].

Figure 8.6 shows the number of agent views accumulated between populations using

di�ering social information strategies. We see that the percentage of agent views ac-

cumulated by populations using Age information initially exceeds that of populations

using Health information, who in turn exceed the agent views accumulated by popu-

lations using Action information, with populations using Presence social information

accumulating the fewest agent views. This ordering of strategies closely matches the

ordering based on task performance seen in Chapter 7. Figure 8.7 shows comparisons

of each social information strategy's agent views pro�le over environments, from these

Figures we can see Age populations accumulate statistically more agent views than

Presence and Action populations over all environments, with the largest and most sta-

tistically signi�cant di�erences being seen in simpler environments. This coincides with

the environments that Age populations also show the highest, and most statistically

signi�cant, di�erence in task performance when compared to non social populations.

This indicates that information about age not only leads to improved task perfor-

mance, but also provides a greater motivation for agents to aggregate. Populations

using Health social information also show a signi�cantly larger accumulation of agent

views compared to populations simply using information about the Presence of other

agents. The results presented in Figure 8.8 are also interesting, in that there are almost

no signi�cant di�erences on any environment when comparing the movement behaviour

between social information using populations. Therefore the signi�cant di�erences seen

in the accumulation of agent views for populations using Age information suggests that

agents in these populations are using their move actions in response to, and to move

toward, other agents more often than in any other social information population.
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Figure 8.6: Median move actions plotted against median agent views. Median move

actions are presented on the primary axis, with the median number agent views per

agent presented on the secondary axis. All social information populations have a

Spearman's Product Moment Correlation r ≥ 0.982 when correlating median move

actions against median agent views.
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Figure 8.7: Median agent views for each social information strategy over all environ-

ments. Data points on the primary axis represent the median of the average number

of agent's viewed by each agent over 40 populations. Data for each population is an

average for all agents over the last 25 epochs of the simulation. Data points on the

secondary axis represent the Z-score value from a Mann-Whitney U test comparing,

for each environment, the median agent views for the two social information strategies

presented. Z-scores which indicate statistically signi�cant p values are highlighted.
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Figure 8.8: Median move actions for each social information strategy (barring non

social) over all environments. Data points on the primary axis represent the median

% of the move action over 40 populations. Data for each population is an average for

all agents over the last 25 epochs of the simulation. Data points on the secondary

axis represent the Z-score value from a Mann-Whitney U test comparing, for each

environment, the median actions for the two social information strategies presented.

Z-scores which indicate statistically signi�cant p values are highlighted.
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8.2.3 Behavioural Transitions

From Figure 8.1, and Figures 8.3, 8.2 and 8.4 we can say that agent behaviour changes

as environments become more di�cult. These behavioural changes lead to a reduction

in movement and eating, and an increase in waiting. The primary driving force behind

the motivation to eat less, move less and wait more, independent of social information

strategy, is that food resources are increasingly likely to be negative in their energy

provision, and therefore it makes sense for agents to spend more time conserving their

energy waiting for a positive food source to appear near to them or (in the case of

social populations) for an agent who's information suggests they can be trusted to move

into their visual �eld. However, in most cases the increase or decrease in actions as

environments become more di�cult is not necessarily smooth, this being most apparent

with move actions (Figure 8.3) which for many social information strategies shows a

sudden reduction in action rather than a steady degradation. It is not clear from earlier

Figures whether these changes between environments are statistically signi�cant nor

what is driving these sudden changes when they occur.

In Chapter 7.3.1 (detailed in Figure 7.2) we showed that task performance (the

ability to eat positive food resources more frequently than negative food resources) de-

teriorates as environments get more di�cult - this di�culty being de�ned by the ratio

of positive food resources to negative food resources available in the environment. The

point at which task performance changes from successful to unsuccessful (the point at

which eating actions result in more negative food resources being consumed than pos-

itive food resources) varies depending on the social information strategy being tested,

but occurs in all scenarios. For No Social and Presence populations this transition (or

zero crossing) occurs between environments 2 and 3, Action populations experience

this transition between environments 3 and 4, and both Health and Age populations
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experience this transition to primarily negative food resource consumption between en-

vironments 4 and 5 (though Health populations do not permanently cross into negative

task performance until after environment 6). Here we assess whether any statistically

signi�cant changes to behaviour, or behaviour transitions, could be associated with

these zero crossing events for food type consumption.

From Figure 8.9 we can see that that non social populations do not exhibit any

statistically signi�cant transitions (p < 0.01) between environments in regard to move-

ment behaviour. However, statistically signi�cant transitions in movement behaviour

between environments can be seen in all social populations. For populations using Pres-

ence information (Figure 8.9(b)) we see this statistically signi�cant transition happen

between environments 2 and 3; the transition from primarily eating positive food re-

sources to primarily eating negative food resources also occurs between environments

2 and 3. The association between a statistically signi�cant transition in movement

behaviour and the transition to primarily consuming negative food resources is also

apparent for populations using Action information and populations using Health infor-

mation (Figures 8.9(c) and (d) respectively) - for Health populations it is also interest-

ing to note that statically signi�cant movement behavioural transitions occur on both

occasions when positive food consumption drops below zero. These results demon-

strate that movement behaviour in social populations is strongly driven by agent task

performance; when agents can no longer successfully solve the task, social populations

are less inclined to explore their environment in order to seek out new food resources or

new sources of social information. In the case of populations using Age social informa-

tion, the only signi�cant transition associated with movement behaviour occurs before

the transition to non-positive food consumption. The point at which this transition

in movement behaviour occurs does correspond with a large drop in task performance
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between environments 2 and 3, demonstrating that movement behaviour is still highly

sensitive to task performance in Age social information populations.

When considering the total proportion of actions agents dedicate to eating, as seen

in Figure 8.10, we do not see any signi�cant changes in eating behaviour that corre-

spond to the point at which task performance transition from predominantly successful

application of the eat action to predominantly unsuccessful application of the eat ac-

tion. Instead, as seen in Figure 8.2, the median total eat action degrades gradually

with task performance. It is also worth noting the extremely large data ranges seen

with the total application of each action in the box plot data in Figure 8.10. The

large inter-quartile ranges especially show that all populations, social and non social,

are capable of exhibiting very high and very low levels of eating activity. This is in

stark contrast to movement, which we can see from Figure 8.9 has reasonably small

inter-quartile ranges for all population types across all environments, and if anything

becomes more consistent as environmental di�culty increases, this being in contrast

to the general increase in the range of eat action data which generally increases as the

environment becomes more di�cult. Increasingly large data ranges are also seen when

we consider the wait action (as seen in Figure 8.11). Any signi�cant transitions seen in

waiting behaviour, in all populations barring Health, do not seem to occur in relation

to the transition from positive to negative task performance. These results further

indicate that social agents are driven to seek out new sources of social information, but

with the caveat that social interactions are likely to result in better task performance;

though the fact that social populations move more often than non social populations

even when task performance is poor suggests that social populations still persist in a

residual amount of socially motivated movement.
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Figure 8.9: The median di�erences between successful and unsuccessful eat actions

(eat di�erence) is presented on the primary axis along with the box plots for the move

action. The Z-score from Mann-Whitney U tests, which compare the action data for the

environment on which a data point falls with the previous environment, is presented on

the secondary axis. These Z-scores are intended to indicated which transitions in action

behaviour between previous environments are signi�cant, thus indicating a signi�cant

behavioural transition. Z-scores which indicate statistically signi�cant p values are

highlighted.
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Figure 8.10: The median di�erences between successful and unsuccessful eat actions

(eat di�erence) is presented on the primary axis along with the box plots for the eat

action. The Z-score from Mann-Whitney U tests, which compare the action data for the

environment on which a data point falls with the previous environment, is presented on

the secondary axis. These Z-scores are intended to indicated which transitions in action

behaviour between previous environments are signi�cant, thus indicating a signi�cant

behavioural transition. Z-scores which indicate statistically signi�cant p values are

highlighted.
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Figure 8.11: The median di�erences between successful and unsuccessful eat actions

(eat di�erence) is presented on the primary axis along with the box plots for the wait

action. The Z-score from Mann-Whitney U tests, which compare the action data for the

environment on which a data point falls with the previous environment, is presented on

the secondary axis. These Z-scores are intended to indicated which transitions in action

behaviour between previous environments are signi�cant, thus indicating a signi�cant

behavioural transition. Z-scores which indicate statistically signi�cant p values are

highlighted.
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8.3 Discussion and Conclusion

In this work we attempted to address three questions. (1) Does social information

lead to increased aggregation, as observed in nature [133, 149, 150]? (2) Is agent

aggregation, and by extension public information use, dependant on the reliability on

agent private information [151, 148]? (3) Do social behaviours persist even when task

performance is poor [81]?

Social information transfer is highly prevalent in nature [164], and even the simple

presence of other agents have been demonstrated to encourage interesting and novel

behaviours in other agents [42], so it not entirely surprising that the results presented

in this work provide strong evidence that social information does lead to aggregation

promoting behaviours, namely movement for the purpose of increasing the probabil-

ity of agent interaction, with these increased agent interactions potentially leading to

favourable conditions for individual decision making [91]. We also see social behaviours

being favoured in the simpler environments tested here. These simpler environments

did provide agents with a large variety of food resources that could be either negative

or positive with an equal probability, resulting in a task which was reasonably easy to

solve (due to an abundance of positive food resources) but also very di�cult for indi-

viduals to develop a complete set of categorisations for each food resource's edibility.

Social behaviours being favoured here are likely to be as a result of public information

being reliable but private information being reasonably unreliable. As environments

progressed in di�culty, private information about the edibility of any given food re-

source became more reliable, as it was increasingly likely that any given food resource

was energy reducing and therefore not worth consuming - these results are in line with

the work of van Bergen et al. [151] and Turner et al. [148] where private and public

information reliability was seen as major factors in the expression of social behaviours.
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Any social aggregation in later, more di�cult, environments would still have yielded

some bene�ts though. In the presence of a food resource in any environment the pres-

ence, actions, health or age of other local agents could potentially result in a novel

or new food resource being evaluated correctly. Despite private information based on

the likelihood of edibility encouraging a conservative policy on eating, this new public

information could sometimes yield positive results leading to an adaptive advantage

over agents who eschew social aggregation. Here we see a continued preference for

movement in social information populations compared to non social populations, even

in more di�cult environments where task performance between social and non social

populations was similar. This continued desire to move for the purpose of aggregation

was less apparent in later environments, with waiting actions being preferred due to

the risk of unnecessary or un-rewarding energy expenditure in more di�cult environ-

ments, but still noticeably di�erent from non social cases. These results add additional

evidence to the idea that a pressure for evolution to adapt to accommodate social in-

formation, be it via social information transfer or imitation, is maintained even when

social information is either unreliable or risky [81].However, it should be noted that all

�gures presented here show some noisy data trends, therefore more test runs need to

be conducted in order to clarify whether this noise is a signi�cant feature worthy or

additional exploration, or whether this noise was just a result of needing more tests.
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Chapter 9

Conclusions

9.1 Summary of Conclusions

This thesis sought to investigate the emergence and utility of social behaviour and

social learning in arti�cial evolutionary systems. These investigations were undertaken

in reference to a �ve research questions, which were addressed using a number of

grounded and non-grounded Arti�cial Life simulation models all incorporating arti�cial

evolutionary systems with populations of social agents.

Chapter 4 addressed the question of the utility of social learning over a stand alone

incremental genetic evolutionary process. The hypothesis presented in this Chapter

was that the introduction of noise in the genotype to phenotype map accompanied

by social transmission in the form of parent-child learning by imitation, would be

su�cient to discover and maintain complex behaviours which were not accessible to

incremental genetic evolution alone, thus demonstrating the adaptive bene�ts of social

learning in the discovery of novel and incrementally inaccessible behaviours. The results

support the hypothesis by demonstrating that without social learning the most adaptive

behaviours available to agents are never found but with social learning all behaviours
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available to agents can be discovered, exhibited and maintained. Chapter 4 therefore

demonstrates the adaptability of social learning over incremental genetic evolution

alone, thus providing an empirically supported rationale for employing the evolution

of social learning in arti�cial evolutionary systems.

Chapter 5 addresses the question of when social learning will evolve and prove to

be adaptive under temporally variable environmental conditions, and goes on to in-

vestigate the importance of individual learning to the long term adaptability of social

learning. The data presented to address this question suggest that when environments

are in minimally variable states, individual learning is required to play a smaller role

than it does in more variable environments, leaving social learning to drive popula-

tion level adaptability. It is also found that the likelihood of population collapse is

greatly increased in environments of high or increasing variability when social learn-

ing is exhibited unless individual innovation is allowed to �rst develop in isolation.

This is a result of the tendency for social learning to become the dominant form of

learning very quickly should both individual and social learning evolve side by side,

whereas allowing individual learning to evolve as the sole learning strategy for a time

ensures a level of personal innovation remains in the population, thus providing a

level of robustness to environmental variability. Individual learning is found to be the

key method of information discovery, with social learning acting as a mechanism of

rapid information transfer within the population once new and robust solutions have

been discovered. The initial hypothesis (developed in order to test Potts's variability

selection hypothesis [119, 120, 121]), that when individual and social learning rates

are evolved simultaneously, both increasing and consistently variable environments are

su�cient for the adoption of social learning over individual learning, is found to hold

true, though with two main caveats: individual learning is required for successful so-
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cial learning, and population collapse may only be avoided when individual learning is

allowed to pre-evolve in already noisy environments before the introduction of social

learning, thus providing a su�cient selection pressure for innovation before the bene�ts

of social learning can be realised.

Chapter 6 extends the work presented in Chapter 4 by introducing a number of new

social learning strategies. The question to be addressed here was whether behaviours

inaccessible to incremental genetic evolution alone are still discovered, and maintained,

when agents are permitted to learn from a variety of di�erent individuals, and whether

these di�ering social learning strategies access incrementally inaccessible behaviours

in di�ering ways. The results presented here demonstrated that the results presented

in Chapter 4 are robust for a number of di�erent social learning strategies including

unbiased social learning and learning from inexperienced individuals. These results

demonstrate the general adaptability of social learning when applied in a variety of

strategies. It is also noted that the likelihood of social learning discovering and main-

taining behaviours inaccessible to incremental genetic evolution alone is dependant on

the social learning strategy used, and that social learning populations discover a se-

ries of incremental behaviours in a less reliable way than incremental genetic evolution

alone, suggesting that the necessarily conformist nature of social learning can lead to

social pressures that maintain sub-optimal behaviours within a population in a way

that is not seen when incremental genetic evolution alone is utilised.

Chapter 7 addresses the question of whether social information is adaptive in the

absence of a within-lifetime learning process. The results presented to address this

question demonstrated that social information can provide an adaptive bene�t to a

neuroevolutionary process in the absence of a within-lifetime learning process. How-

ever, social information is only observed to be of any consistently adaptive bene�t in

146



the less di�cult environments tested in the Chapter, and when the social informa-

tion itself is informative. Results also demonstrated the potential adaptive bene�ts of

less complex social information mechanisms such as social in�uence, social facilitation,

stimulus enhancement, and local enhancement, adding further weight to the work of

Noble, Todd and Franks [111, 113] in which it was argued that simple social learn-

ing mechanisms are capable of producing complex adaptive behaviours equivalent to

those exhibited by more complex social learning mechanisms such as imitation and

emulation.

Chapter 8 provides further analysis of the arti�cial evolutionary system tested in

Chapter 7 to address the question of to what extent social information a�ects agent

behaviour, especially in regard to agent aggregation for the purposes of increased social

interaction. The Chapter goes on to ask whether there are any behaviours exhibited

by social populations that may be considered distinct from those exhibited by non-

social populations; and whether these behaviours persist when social information use

is no longer adaptive? Results presented to address these questions provide strong ev-

idence that social information does lead to aggregation promoting behaviours, namely

movement for the purpose of increasing the probability of agent interaction. The be-

haviours exhibited by social populations were seen to be distinct across populations

from non-social populations in regard to aggregation promoting behaviours, with these

behaviours being shown to be consistent across environments, even when social infor-

mation was shown to produce performance results comparable to those of non-social

populations.

9.2 Contribution of this work

Using arti�cial evolutionary systems this work:
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• Provides the �rst demonstration of a behaviour inaccessible to incremental genetic

evolution alone being evolved through the addition of social learning accompanied

by noise in the genotype to phenotype mapping, thus demonstrating the su�-

ciency of social learning to enable behavioural transitions between sub-optimal

and optimal behavioural peaks in the genotypic search space.

• Demonstrates that the su�ciency of social learning to enable behavioural transi-

tions between sub-optimal and optimal behavioural peaks in the genotypic search

space may extend to a variety of social learning strategies.

• Provides one of the �rst de�nitive answers to the question of whether or not the

variability selection hypothesis [119, 120, 121] is su�cient to explain the adoption

of social learning in increasingly variable environments. The question was tested

empirically using an arti�cial evolutionary system utilising agents with access

to individual learning and social learning and demonstrated the importance of

innovation via individual learning to the long term adaptability of social learning

under environmental uncertainty.

• Provides a demonstration of the adaptive value of social information when de-

coupled from a within-lifetime learning process, thus demonstrating that social

information alone is su�cient to provide an adaptive advantage over non-social

agents.

• Demonstrates the evolution and persistence of social behaviours when social in-

formation is decoupled from a within-lifetime learning process, even when social

information use is no longer of an adaptive bene�t.
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9.3 Future Work

The work conducted here provides a number of interesting avenues for future work.

The work on social learning strategies presented in Chapter 6 could easily be extended

to incorporate a wider variety of social learning mechanisms, and to include a variety

of social learning mechanisms within the same population, to investigate during which

stages of behavioural evolution certain strategies become adaptive. This work could be

of some importance to future research in evolutionary robotics, whereby populations of

robots could be allowed to evolve social biases and strategies that re�ect their current

task or circumstance - this work may be of increasing usefulness as automated robotic

and arti�cially intelligent systems become more visible in day to day life, requiring

them to not only be environmentally robust but also socially robust, especially should

they need to autonomously interact with one another and with humans.

The EnVar model introduced and Chapter 7 and subsequently used in Chapter

8 could easily be extended to answer a number of other questions regarding social

behaviour in grounded arti�cial evolutionary systems. Work to assess the role of dis-

crimination and similarity [55] in adaptive social aggregation is already under way,

along with work to combine discrimination and similarity with the social information

strategies used in Chapter 7. Investigations into population size, mobility and popula-

tion density [72], and the e�ects of mobility costs [2] on the use of social information

could also be undertaken. As the EnVar model has only been used thus far to in-

vestigate social information without learning it would also be prudent to extend the

model to accommodate learning, allowing for investigations into the e�ect of learning

to be undertaken; neuromodulated plasticity [54, 135, 136] is the learning mechanism

which seems best placed to be implemented here. Once learning is fully implemented,

the EnVar models already implemented functionality for environmental variability can

149



utilised, the intention being that the work presented in Chapter 5 on temporal envi-

ronmental variability can be extended to a grounded model to see if the results are

robust when populations of agents experience temporal variability collectively.
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