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ABSTRACT of the thesis, "Commutators and Conjugacy in Groups", by 

David Rodney, University of Keele, 1974. 

It is well known that the commutator subgroup G', of a group G need not 

coincide with the set of commutators of G, )(G). 

We are primarily concerned with investigating the class of groups C , 
defined by, G E. e if and only if G' = ,{ (G). Firstly we consider groups 

with a finite cyclic commutator subgroup. I. D. Macdonald showed that such a 

group need not be generated by a commutator. We show that, even if the 

commutator subgroup is generated by a commutator, the group need not belong 

to the class G 

Next we consider a nilpotent of class two group G such that G' is finite 

and can be generated by three elements. We show that G t ~. '~e extend 

these results to G being a finite metabelian group and we show that if G' 

is elementary abelian of rank 3 t then G e C;. We also show that if S is an 

elementary abelian of rank 2 Sylow subgroup of a finite group G, such that 

S ~ G', then S .£-}(CG), the set of commutators of elements of G. For all 

the results mentioned in the last two paragraphs we give examples to show that 

the results are not readily extendable. 

Next we show that the unipotent groups of matrices belong to the 

class C . 

The remainder of the thesis is concerned with finite groups and we make 

extensive use of character theory. W. Burnside gives a necessary and sufficient 

condition, in terms of group characters, for an element of a finite group to 

be a commutator. We make a generalisation of this result and prove that if 

G is a finite group with irreducible characters Xl, •••• , Xh and conjugacy 

classes Cl •••••• ~, then there exist 8i E CA(i) for 1 ~ i 'n such that 

gl~ •••• ~ €){ (G) if and only if 

I Xj(gl) xj(~) •••• xj(1Z )/(Xj(l»n + o. 
j=l -n 
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As a corollary we show that gl~ •••• ~ €. )[(G> if and only if for all r i 

such that (ri , Igil> = 1 there exist xi~ G for 1 , i ,n such that 

xl xi - l r l xi r i +l xn ~ 
gl •••• gi-l (gi) gi+l ~ e Il.(G). This is a generalisation 

of a result of K. Honda. 

It is unknown whether or not every element of a non-abelian finite simple 

group is a commutator. We show that three of the sporadic simple groups have 

this property and we give a list of references, where the truth of this 

conjecture can be shown, for other simple groups. 

One of the difficulties in tackling the above conjecture concerning simple 

groups is the lack of knowledge concerning the number of conjugacy classes in 

a simple group. Non-abelian finite simple groups seems to have few conjugacy 

classes with respect to their order and we finish by investigating a related 

situation that occurs frequently in simple groups. 

an abelian 
Let G be a finite group with ~ subgroup M such that any two non-identity 

elements of M are conjugate within G. This situation was first investigated 

by A. Fomyn and we extend his results. Let G have irreducible characters 

1 2 h X , X , •••• , X and let e be a non-principal character of M. It is easily seen 

that (il w e)M = fi is independent of e. Our main result is the following~ 

Suppose that fi = 1 for 2 , i , h, then M is a Sylow 2-subgroup of G and, 

either G/02 ,(G) ~ PSL(2, 2n) 

or IHI = 2, G = G' ~ H, G' is abelain and gm -1 = g for every g ~ G \ 

where 1 + meMo 

We also investigate the situation when M -4 G. Here there is a close relationship 

between I( e) and CG(m), where 1 + m ~ M. Indeed, if M is a normal Sylow 

subgroup of G, then we show that to each e there exists an m such that 

I( 9) = CG(m) and vica-versa. Whilst we are, proving this we obtain information 

concerning the fi's. Finally we consider the rather restricted case that 

M is a normal Sylow subgroup of G such that G/H is abe lain • We obtain a 

classification of such groups. 
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NOTATION AND TERMINOLOGY 

If G is any group then, 

G1 is the commutator subgroup of G, [a, bJ = a-1 b -1 ah, 

Z(G) is the centre of G and 

J{(G) is the set of commutators of elements of G. 

G is the class of groups G such that G I = K( G). 

d(G) is the minimal cardinality of any generating set of G. 

Suppose H is a subgroup of G. Then, 

H <JG means H is a normal subgroup of G, 

NG(H) denotes the normalizer of H in G and 

CG(H) denotes the centralizer of H in G. 

Suppose {gi liE A} is a set of elements of G, where A is any index set. Then, 

<gi I i € A> denotes the subgroup of G generated by the {gi}. 

g. '" G g. means that g. is conjugate in G to g.. If the group, G, tmder 
1 J 1 J 

discussion cannot be mistaken then the G may be omitted. 

<gi'i E. A> G denotes the normal closure of the {gi} in G. 

If G is a finite group, and w is a set of primes, then 0 (G) is the largest 
1r 

normal subgroup of G whose order is divisible only by primes in w. 

Let Wi denote the complementary set of primes to w. Then, 0 I(G) is the 
w 

largest normal subgroup of G whose order is coprime to the primes in w. 

If H and K are any two groups, then, 

H x K is the direct product of H and K. 

H AI< is a split extension of H by I< and 

H '\.K is the ordinary wreath product of H with K. 

Hom(H, 1<) is the set of homomorphisms from H to K. 

Let G be a finite group. 

When we refer to an irreducible character of G we mean an irreducible 

character over the complex numbers. 
1 2 . h 

X • X , •••• , X denote the irreducible characters of G, 
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C
l

, •••• , ~ denote the conjugacy classes of G and Xji is the value of xi 

taken on C •• 
J 

xl is the principal character of G and Cl = 1. Ker (X) = {g(Glx(g) = X(l)}, 

the kernel of the character X. 

Irr (G) is the set of irreducible characters of G. 
.. 

reG) is the group algebra of G over the field F and Ci is the class sum of 

C. in reG). 
l. 

If H is a subgroup of G and e~ Irr(H), then e* is the character of G obtained 

by inducing a up to G. 

If H <1G and g(CG, then eg is the irreducible character of H defined by, 

eg(h) = e(ghg-l ), where h~ H. 

I(a) = {~Gleg = e}, the inertial group of 8. 

GL(n, F), SL(n, F) and PSL(N, F), are respectively, the general linear, special 

linear and projective special linear groups of degree n over the field F. 

Sp(n, r) is the Sympletic group of degree n over the field F and STL(n, F) 

is the group of upper unipotent matrices of degree n over the field F. 

C is the cyclic group of order n. 
n 

If K is a field containing the field F, then G(K, F) is the Galois group of 

Kover r. 

1:, lR, ~ and IL. are, respectively, the complex, real and rational and integral 

numbers. 

If a, B €. a.. , then (a, B) is the highest common factor of a and B and 

alB means that a divides B. 

a = a a , where a is a power of the prime number p and (ap ' apl ) = 1. 
P P P 

Our notation is, hopefully, standard and has been drawn from the books of 

J. Dixon [6], W. Feit [9J and D. Gorenstein [16J. 
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Chapter 1. Introduction and Review 

It is well known that the commutator subgroup of an arbitary group need 

not consist entirely of commutators. The majority of this thesis is taken 

up with proofs that certain classes of groups are contained in the class ~ 

the class of groups whose commutator subgroups consist entirely of commutators. 

Conversely t we also investigate conditions necessary to a group that 

belongs to G . 

It has been conjectured that all finite simple groups belong to ~ and 

we demonstrate the truth of this for various simple groups. A direct proof 

of the above conjecture is beyond our means at the present. In the final 

chapter we obtain results concerning finite groups with a small number of 

conjugacy classes. These are the sort of results that will be useful in 

trying to prove the conjecture. 

We are primarily concerned with finite groups, though we do show that 

certain classes of infinite groups are contained in G 

Tri vi ally , is G is an abelian group, then G € a. If not abelian, the 

least complicated structure a group G can have is that of the commutator 

subgrouP Gf being cyclic. In [321, 1. D. Macdonald considered such groups and 

be showed that such a group need not be generated by a commutator. Indeed, 

Macdonald shows, by example, that given a natural number n there exists a 

group G such that G' is cyclic of finite order and G' cannot be generated by 

less that n commutators. 

In Chapter 2 we continue the study of groups with a cyclic commutator 

subgroup. We show that if G is a group with a finite cyclic commutator 

subgroup then, even if G' is generated by a commutator, it is not 

necessarily true that G ES~. We give examples that demonstrate this. 

(It is from Chapter 2 that the author's paper [39] is derived.) 
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There are several ways we may increase the complexity of the groups 

under consideration. 

In [31], I. D. Macdonald considered the following subgroup of the 

commutator subgroup. Let G be a group. Then we define the subgroup H(g), 

where g E. G by, 

H(g) = <($, x1IXE:G>. 
Macdonald proves the following result. 

Theorem. Let each subgroup H( g) of the group G consist of commutators of the 

form [g, x], and let G be such that the minimal condition holds for the 

subgroups H(g). 
G Then a non-trivial element of each subgroup <g> lies in the 

centre of G, provided that g f 1. 

Corollary. Under the hypotheses of the theorem G is a ZA group. (By a ZA 

group is meant a group with an ascending central series which eventually 

exhausts the group.). Macdonald also shows that neither of the following two 

conditions implies the other: 

(1) G' consists of commutators. 

(ii) For each g~ G, H(g) consists of the commutators [g, x] as x varies in G. 

Whereas many finite non-nilpotent groups satisfy (1). by the above corollary 

no finite non-nilpotent group satisfies (ii). (e.g. The Alternating groups 
... 

A , where n ~ 5 (c.f. N. Ito 
n 

(27) .) Macdonald gives an example of a 

finite nilpotent of class two group G such that G does not satisfy (i). 

Such a group necessarily satisfies (ii). 

The example given by Macdonald, of a finite class two nilpotent group 

G such that G ¢ G is a generalisation of an example in R. D. Carmichael's 

book [40. p.39]. If H denotes the example in [40], then d(H') = 4. In 

Chapter 3 we show that this example is in some sense minimal and we prove the 

following result. 
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Theorem 3.1. Let G be nilpotent of class two such that G' is finite and 

d(G') ~ 3. Then G €C From here we try to generalise to G being metabelian. 

We are able to prove the following~ 

Theorem 3.2. Let G be a finite group such that G' is elementary abelian of 

3 order p • Then G E. G It may be true that Theorem 3.2 extends to G' 

being a rank 3 abelian p-group but we have been unable to verify or disprove 

this. Another possible line of approach is to consider a Sylow subgroup S 

of a finite group G and to investigate S n~G). We discuss this in Chapter 3. 

Various people have considered particular classes of groups and have shown 

them to belong to the class G. We list several of them. 

In r43J, [4tU and [45] R. C. Thompson shows that GL(n, F) E. G and 

PSL(n, F) EG , where n is any natural number and F is an arbitrary field. 

In [34), O. Ore considers the symmetric groups. If S is the symmetric 
n 

group on n 
'\, 

symbols, then S'n = An' the alternating group on n symbols. Ore 

shows that S € G . Let S be the infinite synunetric group. Ore shows that 
n 

SEe , by showing that any one-to-one correspondence of an infinite set to 

itself is a commutator. 

N. Ito in [27J, shows that An E. (J , if n ~ 5. 
'\, 

(Since A , = A for n ~ 5, n n 

this is a strengthening of Ore's work and, indeed, Ore claims that this result 

is true though he does not prove it.) 

Following the path of permutation groups we come to the work of 

c. v. Holmes [21]. He considers the related idea of monomial substitutions. 

Let H be a group and S a set. A monomial substitution over H is a linear 

transformation mapping each element x of S in a one-to-one manner onto some 

element of S multiplied by an element of H, the multiplication being formal. 

If substitution u maps x. into h,xj while substitution v maps x. into h ~ , 1 J J --k K 

then the substitution uv maps Xi into hj~~' 
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Suppose that S is an infinite set. Then the set of all such monomial 

substitutions is the infinite complete monomial group generated by the given 

group H and the given set S. The commutator subgroup of the infinite complete 

monomial group is itself and Holmes shows that every element is expressible 

as the product of at most two commutators. 

Qin Jian-Min, in [361, considers the orthogonal groups over the complex 

numbers, denoted by O(n, E). The matrices of determinant one in O(n, E), 

form the subgroup SO(n, t). Qin Jian-Min proves the following: 

Theorem. Every element of SO(2, t) is a commutator of 0(2, f), and every 

element of SO(n, t) is a commutator of SO(n, E), when n ~ 3. 

Similar results are obtained by H. Toyama in [47J. Let SU(n, E) denote 

the lDlimodular lDlitary group of degree n over t and USp (n, t) denote the 

unitary symplectic group of degree n over t. Toyama proves the fOllowing: 

Theorem. Every element of SU(n, t), USp(n, t) and SO(n,lR) except for 

SO(2, lR) can be expressed as a commutator of two suitably chosen elements 

belonging to that group. 

Xu Ch'eng-Hao (53] continues this work and he shows that Sp(2n, E) E (J . 

Information concerning the above linear groups may be obtained from [6]. 

Ts'eng K'en-Ch'eng and Hsu Ch'eng-Hao, in [48], show that the Suzuki groups, 

discovered by M. Suzuki in [42], belong to the class (] • 

Finally, Ts'eng K'en Cheng and Liu ChilDlg Sheng, in [49], show that the 
() 

two Mathieu groups MIl and Ml2 belong tothe classu.(We have been unable to 

track this paper down and we have obtained this information from Maths. 

Review Vol. 36 ==#: 270J 

Along these lines we Show, in Chapter 4, that the unipotent groups 

over any field belong to the class G . 
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We now describe a result known to \-1. Burnside and developments from it. 

Suppose G is a finite group, with irreducible characters Xl.X2, •••• ,Xh 

over E. Let gE:.G. Then, g E.j«G) if and only if' ~ iCg)/iCl) t o. 
i=l 

C c. f. [3. p. 31~1· ) 

As a corollary of this K. Honda proves, in [22J, that in a finite group 

G, g E. j{CG) if and only if every generator of <g> is a commutator. 

In (14] P. X. Gallagher generalises the character inequality. He also 

extends the class of groups under consideration to compact groups. 

So let G be a compact group. We let {Xi} be the irreducible characters 

over E and let fi = xiCl). Gallagher proves the following results. 

Theorem. 

If L 
fi~2 

Suppose IG : G'I is finite. 

f. C2- 2n ) < IG : G'" then each element of G' may be written as a 
1. 

product of n commutators. 

Theorem. Suppose I G : Gf I is finite and assume there is a finite or infinite 

sequence of elements {Tn} such that for each character xi with 

f. ~ 2,Xi"(Tn ) = 0 for some n. 
1. . 

Then each element of G' may be approximated 

arbitrarily closely by products [Tl' llJ[T2 , Z21 •••• [ Tn' ln1, 11 , • • •• 1 ~ G. n 

and 

C Information concerning the above Haar integrals may be found in (33].) 
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Gallagher shows, as an easy consequence of the lemma, that a € G is a 

product of m commutators if and only if 

Applying this work to finite groups Gallagher proves the following 

results. 

Theorem. Let G be a finite group such that 4n ~ IG'I. Then each element of 

G I may be written as a product of n commutators 

Theorem. In a finite group G each element of G I may be written as a product 

. . . . , T are zeros of irreducible characters • n 

Gallagher continued this work in [151. He proves the following re~ul ts. 

Theorem. Let G be a finite group. If (n + 2)! n! > 21G'I - 2 then each 

element of G' is a product of n commutators. 

Theorem. If G is a finite p-group, with IG'I = pa, and if n(n + 1) > a, 

then each element of G I . is a product of n commutators. 

We investigate the result of Burnside and the work of Honda in Chapter 5 

and we make some small generalisations of their results. 

As we have already mentioned it is an open question whether or not every 

element of a non-abelian finite simple group is a commutator. Three reasons 

for believing the truth of this conjecture are: 

(1) Many finite simple group~ are known to have this property. (See the list 

earlier in this chapter as well as Chapter 6.) 

(ii) The value taken by a non-identity element g of a non-abelian finite 

simple group on a non-principal character tends to be very small in absolute 

size when compared to the degree of the character. Consequently, the 

character inequality Ixi(g)/Xi(l) t 0 is likely to hold. 
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(iii) An element of g of a group G is a commutator if and only if there 

exists an heG such that gh is conjugate to h. Intuitively, the smaller the 

number of conjugacy classes G has, the more likely this is to happen. We 

observe that the number of conjugacy classes in a non-abelian finite simple 

group tends to be in some sense "small" in comparison with the order of the 

group.and thus leads us to expect that every element is a commutator. 

The latter two reasons show the way progress may be made on this problem. 

We have been unable to make any progress with regards to (ii). 

However, in Chapter 7, we consider finite groups with "few" conjugacy 

classes and we obtain several results. We consider the following situation. 
an abelian 

Let G be a finite group with / subgroup M such that any two non-identity 

elements of M are conjugate within G. This work was initiated by A. Fomyn 

in (12] and we generalise his results. A considerable amount of work has 

been done in this area, the most significant contribution probably being 

that of G. Higman in [20]. 

To end this review we mention a few properties of the clasS(? • 

Suppose G
l

, G
2 

E:,C . Then it is readily seen that Gl )( G
2 
~(6 . It is 

also apparent that if Hl <J Gl t then Gl/Hl E. e. However, if H2 is a subgroup 

of G
2 

this does not imply that H2 Err;. e.g. N. It~, in [27], shows that 

the Alternating groups An' for n ~ 5, belong to G. Given a finite group 

G ~(] we can embed G in An for n sufficiently large. 

Finally, we observe that if Gl €. (] and Gl is isoclinic to G
3

, then 

G
3 
~(;. This is a direct consequence of the definition of isoclinism 

which is: 

Groups A and B are isoclinic if, 

(i) A/Z(A) ~ B/Z(B) 

(ii) A' 
~ 

B' and 
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(iii) If alZ(A) and a2Z(A) correspond to blZ(B) and b2Z(B) respectively 

under the isomorphism given in (i), then [al , a;l corresponds to [b1 , b 21 
under the isomorphism given in (ii). 

Throughout this work we make extensive use of the commutator identities, 

(ab, c] = [a, c]b [b, eJ and 

[a, be] = [a, cJ [a, bJc, 

wi thout any reference to them. 
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CHAPTER 2 GROUPS WITH A CYCLIC COMMUTATOR SUBGROUP 

In this chapter we investigate groups with a cyclic commutator subgroup. 

In E~ I. D. Macdonald shows that a finite cyclic derived subgroup G' of an 

arbitary group G need not be generated by a commutator. This leads one to 

ask whether a finite cyclic derived subgroup that is generated by a commutator 

consists entirely of commutators. ,We show that this is not necessarily true 

and give examples that demonstrate the fact. However, we prove the following 

theorem. 

Theorem 2.1 Let G' be cyclic of finite order and assume I.j..r I G' I. Suppose 

G' = <c>, where c = [a, b]. Let ~ and v be integers such that ca = cP and 

cb = cV
• If one of the following four conditions fails to hold for every prime 

divisor p of IGII, then G' consists of commutators. 

I p - 1 = O(p), v - 1 = O(p); 

III ~ - 1 ~ O(p), v - 1 = O(p); 

II p - 1 = O(p), v - 1 + O(p); 

IV ~ - 1 + O(p), v - 1 t O(p). 

As a corollary we obtain the following generalisation of a result in hil. 

Corollary 2.2. If G' is cyclic and either G is nilpotent or G' is infinite, 

then G' consists of commutators. 

Before we can give the proof of "the theorem we need to prove the following 

two ~mmaa. 
Lemma 2.3 Let m = ml m2 ••• mn , where mi":.lfor 1 ~ i ~ n and (mp mj ) = 1 if 

i f j. Given integers tit ti for 1 ~ i , n such that ati + Bti + Y = O(mi ), 

then there exists integers t and t such that at + Bt + Y = Oem). 

proof Let ~ = (a, S) = ka + tB for integers k and t. Then (~t mil divides y. 

Since the mi are coprime, it follows that (6. m) divides y. Consequently, 

there exist integers r and s such that r6 + sm = y. Letting t = -rk and t = -rZ 

we have that at + Bt + Y = Oem). 
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Lemma 2.4 Let c = [a, b], ca = c\.l and cb = cV
, where \.I, v E !!..and neither p 

nor v equals 1. If o. B. y, 6, £ and + are non-negative integers, then 

[a~BcY, acSb£c~ = c)., where 

o e 6 8 
). = Y (\.I6v£-1) - • (\.10,,8_1) + (\.I \.I:il ~ ":i),,B - (lJ p:i) ~ ,,:i)v£ • 

Proof: 

Now, 

r.a~8cY, acSb£c~ = [a~BcY, c~ [a<;,BcY, a&b~c' 
;-JcY r ~cYc'r c' 

= [a~B, e+J [cY• e~lJ1~B, acSb~ ~Y, acSb~ 
B 

= [a~B. e~ [~o. a~~b ~B. acSb~ [c,., acSb~ 
B e+~ E: 

= [a~B. c~ [aa. bE:]b l~a, a~b [bB• b~ [~B. a~b [cY• al5b~ 
. bB bE: 

= ~~B. c!l G.a, b~ ~B. a~ [cY• acSb~ • 

(+-1) 

= [a~B. c(+-l~G~B. JC 
= [a~B, c('-l~ ~~B, c] 

= Gc;,B, J+ . 
Secondly 

[ 
(cS-1)1{r '}a(cS-1) [e. a~ = e, a _I Lc, aj 

r il (cS-l) = LC, a(cS-l~{c(\.I-l)}\.I, 

= c(P-1)(1+P+ ••• +p(cS-l); 

Similarly 

[c I be] = 

(2.4.1) 

(2.4.2) 

(2.4.3) 
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= [ao, bE:-~ c{(p"-l)/(P-l)} )£-1) 

{(po-1)/(p-1)}(l+v+ ••• +v(t-l» = c 

by 

by (2.4.3) 

bB bB 
~a, bE] = (c{(pa-1)/Cll-1)}{(V£-1)/(V-l)}} , 

= ~{(pa_l)/(ll-l)}{(VE:-l)/(V-l)}vB. 

In a similar fashion. 

(2.4.5) 

(2.4.2) 

and (2.4.4) 

(2.4.7) 

by (2.4.5) 

(2.4.8) 
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Substituting (2.4.6), (2.4.7), (2.4.8) and (2.4.9) into (2.4.1) we see that 

q.e.d. 

Proof of Theorem 2.1. It suffices to show that the group <a, b> belongs to ~ • 
So we assume G = <a, b>. Now c).( '.l{(G) if and only if there exist non-negative 

integers a, B. Y, ~. £ and ~ such that 

). 
c • 

/'J 
If 1.I = 1, then [aCl

, 1>.1 = cCl for all integers el, which implies G E. G • 

Similarly, if " = 1 then G €. G. Thus we need only consider the case 1.I + 1 

and " + 1. By Lemma 2.4. the proof is reduced to the following: gi ven 

).e, 7L, 1 ~ ). ~ IG'I, we must find non-negative integers el. S, y, 6. £ and , 

such that 

(2.1.1) 

The proof continues on the follouing lines: given A. we find suitable 

values of a. B. 6 and £. depending on which of the conditions I to IV is 

assumed not to hold for all prime divisors p of IG'I. and for each p we find 

integers yep) and ,(p) such that 

) a £ 6 B 
y(p){1.I6,,£-1) - .(p (l.I

a
"B_l ) + (1.I1.1:i)~,,:i),,6 - (l.Il.1:i)~,,:i)"£ _ ).<!G'lp ).· 

Then.by Lemma 2.3, we claim the existence of y and , such that the congruence 

(2.1.1) holds. 

There are four cases to consider. For brevity of notation let us denote 

the left hand side of (2.1.1) by fey, ~) after a, a. 6 and £ have been chosen. 
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case 1 For each p, condition I does not hold. Let a = t = 0, S = 6 = 1. 

Then, fey, ,) = y(~ - 1) - ,(v - 1) - 1. Now for each prime .divisor p of 

!G'!either ~ - 1 * O(p) or v - 1 * O(p) by assumption. Consequently, there 

exist yep) and ~(p) such that f(Y(P), ~(p» = A(!G'lp ) for each prime divisor 

p o~ IG'I. By Lemma 2.3, there exist y and , such that fey, ,) ; A(IG'I) as 

required. 

Case 2 For each p, condition II does not hold. By a result of K. Honda ~~, 

c is a commutator if and only if every generator of <c> is a commutator. Thus 

by induction on !G'I, it suffices to show that for each prime divisor q of 

! G ' I, c q = [~ , b] for some a , b E. G, and for each prime divisor of -q q q q 

I<a , b >'\ condition II does not hold. (Clearly the induction starts when 
q q 

IG'I is prime.) 

Let a = 1, B = 6 = 0 and t = q. Then, 

For each p such that III or IV holds, let yep) = 0 and choose ~(p) 

such that 

(2.1.2) 

For each p such that I holds let ~(p) = O. Then we have 

where k = v - 1 

where h(k) is a polynomial in k 

= q ~ y(P)k(q~iq(q-l)k ~ k2h(k» + iq(q-l)k + k2h(k). 
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We can do this· if and only if 

Because p satisfies condition I and k = v - 1 we have that plk. 

If q + p then d = (k, IG'lp ) and 

·(k, IG'lp ) I (iq(q-l)k +k2h(k». 

If q = p t 2 then d = (kp ~ I G' Ip) and 

(kp, IG'lp ) I (ip(p-l)k + k2
h(k». 

Finally, if q = p = 2, then, since we assume that 4 fiG' I. we have that d = 2 

and 21(k + k2
h(k». 

Therefore we can find yep) and .(p) such that 

(2.1.3) 

By applying Lemma 2.3 to the congruences (2.1.2) and (2.1.3) we deduce that 

there exist y and t such that fey, .> = q(IG'I) and so cq is a commutator. 

Since a = 1 t B = 6 = 0 and £ = q we have that c q = [ac y. b qc ~. Now c ac Y = c II 

and cbqC+= c
vq

• so for each prime divisor of l<acY, bqc+>'1 condition II does 

not hold, completing the induction. 

Case 3 For each p, condition III does not hold. Let a = q, B = 6 = 0 and 

£ = 1 giving 

The proof follows by an argument analogous to the one used in Case 2. 

Case 4 For each p condition IV does not hold. The proof is, once again, on the 

same lines to the ones used in Case 2. Let a = B = 1, IS = 0 and £ = q, where 

q is a prime divisior of IG'I. Then, 

fey, .) = y(vq-l) - .(~v-l) + (V
q
-l

1
)v O v-
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For each p such that II or III holds let yep) = 0 and choose ~(p) such that 

f(y(P), ~Cp» = -~CP)CpV-l) + cV~:i)V = qCIG'lp). 

For each p such that I holds let ~(p) = O. Then we have 

f(YCP) t(p» = y(P)(vq-l) + (Vq-l)v 
, v-l 

q-l) (p) = (l+v+ ••• +V (y (v-l) + v) 

where k = v - 1 

= (q+,q(q-l)k + k2h(k»(y(P)k + k + 1). 

where h(k) is a polynomial in k 

= q + y(P)k(q+,q(q-l)k + k2h(k» 

+ k(q+,q(q-l)k + k2h(k» + ,q(q-l)k + k2h(k). 

So f(y(P), ~(p» = q(IG'1 ) if we can find yep) such that 
p 

/p\(q+,!q(q-l)k + k2h(k» + k(q+!q(q-l)k + k2h(k» + ,q(q-l>tt + k
2h(k) :: O( I G' Ip). 

Similarly to Case 2 we can do this if an only if 

d = (k(q+,q(q-l)k + k2h(k», IG'lp ) , (k(q+,q(q-l)k + k2h(k» + !q(q-l)k + k2h(k». 

Now d certainly divides k(q+lq(q-l)k + k2h(k» and so we have to show that d 

divides (,q(q-l}k + k2h(k)}. This was established in Case 2. As in Case 2 this 

implies that cq is a commutator. Moreover cq = GmcY• bqc~ and it is easily 

seen that for each prime divisor of l<abcl • bqc~>'I. condition II does not hold. 

q.e.d. 

Proof of Corollary 2.2 By a result of ~~. G' is generated by a commutator. 

Suppose first that G' is finite and G is nilpotent. By an argument in ~~:l we 

may assume that G is finite. 

Now G being finite nilpotent implies that G is the direct product of its 

Sylow p-subgroup and consequently G ~ G is and only if 1: E. G. where ~ is 

any Sylow p-subgrouP of G. 
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If P + 2 then, by Theorem 2.1, ~ €: C. 
If P = 2 let (52)' = <c>, c = [a, bJ and ca = clJ. 

It suffices to show that c2e :K(52). 

'If lJ :: 3(4) we consider [c, a] = clJ-l. By the aforementioned result of Honda, 

clJ-lt. "K(S2) implies that c2
f '}((S2). 

If, lJ :: 1(4) we consider \jl2, bJ = clJ+l and similarly conclude that c2~1«S2). 

This completes the proof of the case that G' is finite and G is nilpotent. 

Next we suppose that G' is infinite. Let G' = <c> and c = I~t bJ. Now 

a a-l 
c = c or c = c • 

a r: a ':"1 a If c = c then I~ , bJ = c for all integers a and 

consequently GtC: G. Similarly of cb = c then GE. C. If ca = cb = c -1 we 

consider ~. ab •••• ab] where there are a occurences of ab in the commutator 

\1>, ab ••• ab] • 

Now 11>, ab ••• abJ = ~, yJ [!" abJ Y, 

where Y = (ab)a-l 

= ~, yJ [!), ~by 

= I}, yJ (c-l)by 

= [!>,Yjc 

= c a, by an obvious induction. 

Consequently GE, (!, which completes the proof of the corollary. 

We give examples to show that the theorem cannot be greatly extended. 

First we exhibit a class of groups G in which all of the conditions I to IV 

arise and G is disjoint from the class C-
o 

Let P be a prime. From &0, pp 249-251) we know that there exist p + 1 

distinct primes{qi : 1 , i , p + l} such that qi :: l(p) for each i. The 

multiplicative group of non-zero elements of GF(qj>' the Galois field with 

qj elements, is isomorphic to the cyclic group C
qj

_l , of order qj-l [}, pp 49-51J. 

By our choice of qj' the mapping that sends every element of C 
qj-l to its 

P th power is a homomorphism with a non-triVial kernel. Consequently for each 

prime q. there exists an Wj such that Wj • l(q.) and w.p = l(q.). We define G 
J ] J J 

to be the group generated by a and b subject to the following relations: 
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[a, bJ = c, I <c>1 = pq1 q2 ••••• ~-t1' 

ca = cr and cb = CS where r, s e 7L.are determined by 

r = l(p) s = l(p), r = 1Cql) s = w1(Q1)' 
_ (j-2) 

r = w2{Q2) s = 1(Q2) and r = wj{Qj) S = Wj (qj) for 3 ~ j , p + 1. 

We show that cp41({G). By Lemma 2.2 c P€ K(G) if and only if there exist 

non-negative integers a, 8, y, 6, £ and 

a £ 

y(r6s E-l) .CrasS-l) -t(r~i)(ss:i)s6 

• such that 

<5 B 
(~)(~)s£ 

1'-1 s-l :: p( I G' I ) 

We denote the left hand side of (2.1.4) by f and the four terms of f by 

Xl' x
2

' x3 and xij respectively~ Now f = p(IG'I) implies that 

f = O{p), f = P(Ql)' f = P(Q2)' ••••• f = p(~) and f = P(~+1) simultaneously. 

Now Xl = x2 = O(p) for every choice of a, S, y, 6, t and,. Furthermore, 

x3 - x~ = O(p) if and only if at - 68 = O(p). Since f = Xl - x2 + x3 - x4 ' 

we require this congruence. If a = 0 = O(p), then f = O(q2). So we may suppose 

that a t O(p). If S = O(p), we must have t = O(p) to ensure that a£ - 68 = O(p), 

but this implies f = O(Ql)' so S t O(p). By our choice of primes 

{qj : 1 , j , p + II, there exist qk such that rasS = l(qk). We show f = O(~), 
which gives the desired contradiction. If ° = O{p), we must have £ = O(p), to 

ensure that at - oS = O{p), but this implies f : O{qk). So we may assume that 

° t O(p) t t~ Consequently there exists ). ~ 7l.. such that 0 = ).a(p). 

So at - oS = O{p) implies that a£ - ).aB = O{p) and t = ).B(p). 

~'£ ).a ).6 _ ( a 6) ). _ ( ) 
Thus I' S = r s = r s = 1 ~ , which implies Xl = x2 = O( Clk ). 

r a_l 8
E_1 6 r -1 8

6-1 £ 
Now x3 - x4 = {r=r)(-s=r)s - (r=r)(S-I)s = O(qk) if and only if 

(r~-l)(s£-l)sS - (ro-l)(sS-l)S£ = O(qk) 

a E) B (0 )( a ) t Now, (r -l)(S -1 s - r -1 s -1 s 

= rast+B_rasS _ st+S + sS _ rOst +S + rose + s£+6 - st 

= sE _ 1 + sS - sS + 1 - s£ (~) 

= 0 (~). 

So, f = O(~) which implies cP,'KlG). 
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na constramt 4.( IG t I.If condition I .is assumed not to arise 1n G ,then the 

constramt 4..fIG'1 may be dropped.Th.fs is easily seen by referring to the proof 

of Theorem 2 .1.However ,the constraint is needed for each of too other three cases. 

as we now demonstrate. 

S inee we aN demonstrat ing the fact that tm prime 2 acts differently from other 

primes ~ obta In explicit examples of groups rather than a whole class.j!s in the 

previous example. 

[
:1 60 a 29 b II 

1st G = <a pi a,1>J II C,C II l,c II C ;:. = c >. 

Because 60 = 4.3.5 ~9- 1 • 0(2) ,1.1-1;: 0(2) ~9-1 \0(5),11-1. 0(5) it 

29-1'* 0(3) and 11-1 ~ 0(3) it G is such that condition IIdoes not hold for each 

priDe divisor of IG t I. A simUar argument to that of the pxevious example shows 

that c2t\-1{<G). 

By symmetry, 4 ~IG'I is essential when condition III is assuned not to arise 

for sa ell pr!DB d iv isor of I G ' I . 
In a s 1m Uar fash ian one can show that if 

G II <a,1>1 [a,b1 II c,c
60 = 1,ca 

II c19,cb = c~, 

then c2~:(G). This shows that If..f-IG'I is an essential constraint when condition IV 

55 assumed not to hold for each prilE divisor of I G 'I . 
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Chapter 3 METABELIAN GROUPS 

If not cyclic the least complicated structure the commutator subgroup 

can have is abelian and it is to such groups that we now turn our attention. 

There is a relatively well known example of a nilpotent of class two group 

G of order 256 such that G' is elementary abelian of order 16 and G ~ e 
(c.f. R. Carmichael B-p.39]>. We will show that this group is in many ways, 

minimal with respect to not belonging to the class(;. Indeed we obtain the 

following result: 

Theorem 3.1 Let G be nilpotent of class 2 such that G' is finite and d(G'> ~ 3. 

Then G' consists of commutators. 

Proof: By an argument in ~~ it suffices to assume that G is finite. Now G 

is finite nilpotent if and only if G is the direct product of its sylow-p-subgroups. 

Thus it suffices to consider Gap-group. 

Let G = <ai 11 ~ i ~ n). If cij = (ai' a~, then, because G' is an abelian 

p-group, we may select a minimal generating set from the Cij's. We consider 

the various possibilities that may arise in turn: 

Case 1 G' = <c > .12 

Here we have that c12 a = Cal' a2"J for all integers a. 

Case 2 G' = <c12 ' c13>. 

Then, = [al , a2 a a 3 Bj, for ail integers a and B. 

Case 3 G' = 
_ a

ij 
a
ij 

Thus cij - c12 c34 • 

Let (i, j) ~ . {( 1 , 3), (1, 4), ( 2, 3). (2. 4)} • 

If aij + O(p), then there exists I&) € l. such that 

II) _ aijl&) Bijl&) 
cij - c12 c34 and aijll) = 1(l cJ2 1>. 
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Consequently G' = <cij ' c3q,>' which is a presentation of the form discussed in 

Case 2. 

Similarly, if Bij t O(p) we are reduced to Case 2. 

Consequently, we ma~ assume that for 

(i, j) e {(1, 3), (1, ~), (2, 3), (2, q,)},(lij - 8ij = O(p). 
r: (I s-. (I S -(I 6 

We consider l~la3' a2 aq,~ = c12 clq, c23 c3~ 

(I(l-a23) + aal~ -aS23 + S(1+61q,) 
= c12 c3q, 

Let pm = max {l c12 1, IC3~1}. 

Then, for any integers r and s, c12 r caq, S € rt.< G) if there exist solutions to 

the equations 

(1 - ( 23 )a + alq,S :: r(pm) 

-S2acx + (1 + al~)6 :: s{pm) 

) 
) 
) 

Because a23 - 623 - al~ - Bl~ = O(p) we have that 

t O(p). 

(a.l.l) 

Therefore there exist solutions to the equations (3.1.1), completing the proof 

for Case 3. 

Case q, G' = <c12 , c13 ' clq,>. 

Then c12
a c13

S c14
y = [a1 , a2(1a3

6aq,:J. for all integers a, B and y. 

Case 5 G' = <c12 ' c13 ' c23>. 

r s t \/1 We have to show that c12 c13 c23 e. JI.l G) for r t s, t, €-'2 . 

Let r = r p~, s = spP and t = t pt, where (r, p) = (s, p) = (t, p) = 1. 

We may assume without loss of generality that p = min{~, p, t}. We consider 

r: a r S1 
Lal a2 ' a2 aa.J 

Ci s :: t'( I c2al ). 

required. 

case £> 

Since (s, p) = 1, there exists a such that 

Th r: a rSJ r s t en La1a2 ' a2 a2 : c12 c13 c23 ' as 

G' = 
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Similarly to Case 3 we need only consider the case where the following 

restrictions hold: 

(1) a14 :: O(p). (Otherwise a reduction to Case 5.) 

(ii) a23 ; O(p). 

(iii) 614 ; O(p). 

(Otherwise a reduction to Case 4.) 

(Otherwise a reduction to Case 4.) 

(iv) 623 ; O(p). (Otherwise a reduction to Case 5.) 

Let pm = max{lc121, Ic341, Ic131}. 

So, we need to show the existence of solutions to the equation 

(1- a2S )a + a
l4

y :: r(pm) ) 
) 

- 823
a + (1+Bl4)y :: s(pm) ) 

) 
- y23a + 8 + Y14 Y == t(pm) ) 

Because Ql4 :: Q23 :: B14 - 823 :: O(p) we have that 

o 

t O(p), and, consequently~ 

1 

we may solve the equations (2.1.2) completing the proof for Case 6. 

Case 7 G' = <cl2 , c34 ' cl5>. 
Qij 8ij Yij 

Let cij = cl2 c34 clS 

Similarly to Cases 3 and 6 we need only consider the case where 

(2.1.2) 

(Otherwise a reduction to Case 6), BlS ; 814 = O(p) (Otherwise a reduction to 

Case 4) and 825 :: O(p) (otherwise a reduction to Case 5). 
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Let pm = max{lc121, Ic341, IC1s l} "'SnaJ consider 

r,aBy ]_ a a B 6 y y La1 a2 a 3 ,a4a5 - c14 c15 c24 c25 c34 c35 

o.
14

a'+( 0.24 +0.25 )6
0 +0.35'( 81I+a +( 1324+1325 )8'+(1+635 )Y 

= c12 c34 

So, given r, s, t ~ LL, there exist a, 6, y € II such that 

r. a a Y J - r s t i Lal a
2 

a
3 

' a4a5 - c12 c34 c1S f we can solve the following equations: 

0.
14 

a + (0.24 + 0.25 ) B + o.35y = r(pm) 

1314 a + (824 + 825 ) 8 + (l+B 35 )y = s(pm) 

(1+Y14)o. + (Y24 + Y25) 13 + 

If 0.24 + c25 t O(p) then 

) 
) 
) 
) 
) 

(2.1.3) 

814 824 + 825 

1+Y14 Y24 + Y25 

1+B35 t O(p), and solutions exist to the 

Y35 equations (2.1.3) 

~ = 0.
14

0. + (0.24 + 0.25 -1)13 - (0.13 - a35 )y - 0.45 , 

£ = 6
14

0. + (824 + 625 )6 + (1 - 613 + 835 )y - 0645 and 

• = (1 + Y14)a + (Y24 + Y25 )8 - (Y13 - Y35 )Y - 1 - Y4S • 

So given r, s. t W- there exist a, 8, Y ~ I.L such that 

.. al3y ]_ r s t 
Cil a2 a3 as' a1a4a~ - c12 c34 c1S if we can solve the 

following equations: 

(0.24+0.25-1)8 (a.13-a.35 )Y m ) 0.140. + - - r+a.4S (p ) 
) 

8140. + (824 +1325 )8 + U-813+635 )Y - s+f345 (pm) ~ 
) (2.1.4) 

(ltr14)a (y
24

+v25 )B (Y13-Y 35)Y 
m ) 

+ - t+1+v45(P ) ) 

Because 0.24 + 0.25 = O(p), 

0.14 
0.24 + 0.25 - 1 -0.13 + 0.35 

814 B24 + 825 1 - 1313 + 13 35 t O(p), 

(1 + Y14) Y24 + Y25 -Y13 + Y35 
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and, consequently,there exist solutions to the equations (2.1.4), completing 

the proof for Case 7. 

Case 8 

Let = 

For (i, j ) € {( 1, 3), (1,4), (1,5), (1,6), (2,3). (2,4), (2,5), (2,6) (3,5), (3,6), 

(4,5), (4,S)} 

we need only consider aij - 6ij = Yij = O(p), otherwise we have a reduction 

to Case 7. 

Let pm = max{l c12 1, Ic341, ICS61}. Similarly to before, given r, s, t ~ ~ 

we show that there exist a, a, Y E?L- such that 

a6y] r s t [a
1

a
3
a

5
, a

2 
a4 a6 . = c12 c34 cS6 ' As before this reduces to showing that 

there exist solutions to the equations 

) 
) 
) 
) 
) 
) 
) 

(2.1.5 ) 

Once again the corresponding determinant takes a non-zero value modulo p and, 

therefore, solutions to (2.1.5) exist. q.e.d. 

We nOW give two examples of groups that demonstrate the fact that no 

generalisation of Theorem 3.1. is easily obtainable. 

Now G
1 

is the aformentioned example from [4-] and it is quite easy to show 

(c.f. I. D. Macdonald ~J) that [al,aJ Ls2,a;J i J{(Gl ). However, one can 

easily demonstrate that G2 E G · 
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Theorem 3.1 is essentially a statement related to finite p-groups. By 

assuming the groups concerned to be nilpotent of class two we were able to 

deal with groups of arbitrary exponent. If, however, we only assume the groups 

to be metabelian such that the derived subgroup is a p-group, then we are only 

able to handle some cases where the derived subgroup is elementary abelian. 

Theorem 3.2 Let G be a finite group such that G' is elementary abelian of 

order p 
3

• Then G ~ C · 
proof. Let S be a Sylow p-subgroup of G. Because G'~S, we have that s<3G. 

So, by the Schur-Zassenhaus Theorem lib, pp 220-22~1. G = S~K, where K is a 

complement to S in G. Again because G' £ S, we have that 1< is abelian •. 

By Theorem 5.2.3 of ~bJ we make the following crucial observation: 

G' = [G'. KJ )( C G' (K) ( 3. 2 .1 ) 

We ~ontinue by ,considering, in turn, the various possibilities arising from 

(3.2.1). 

Case 1 

a. = 
1. 

G' = [GI, KJ (3.2.2) 

We may 

Suppose CG' (<k1 • k2» = <1>. Then once again by Theorem 5.2.3. of ~~, 

G' = [G', <kl , k2>]. Because K is abelian (G' .<kl'k2>] = «G' ,<k1>]. [G' .<k2>J >. 

Let g£G'. Then g = glg2' for some gtE[G'. <ki>]' 1, i, 2. Let hEG'. Then 

- kl n-l rKl J - kl
n

-
1 

] - kl kl
n

-
l J 

Lh,k
1
nJ=[h,kl

l[h ,k1 ]= ••• =[h,k1] ~ ,k1 ••• Lh ,k1 =L~h ••• h ,k. Thus 

gl = ITtl , kJ, for some h1 E. G' • Similarly, g2 = 1~2' k21 for some h2 E. G' • 

So, g = gl~ = [hI' k1] [h2' k;l = [kl h2 , k2hl -:J, which implies that G E(6 • 
We now consider the case CG,(<kl' k2» + <1>. By symmetry we may assume that 

CG,«le1 , le3» + <1> + CG,«le2 , le3». 

If CG,«kr , le.»n<CG,(<lcr , Jet»' CG,(<Jca • kt»> + <1>, for r, s, te,{l, 2, 3} 

and1r, a, t pairwi •• different, then CQ·(<kr • ~. let» = CG,CK) + <1>. 
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But, from (3.2.1) and (3.2.2) we reach the conclusion CG,(K} = <1>, a 

contradiction. Consequently, G' = CG,«Kl , K2» x CG,«kl , k3» x CG,«k2 , k3»· 

Let CG,«K
l

, k
2

» = <gl>' CG,«kl , k3» = <g2> and CG,«k2 , k3» = <Sa> where, 

<Sl> ~ <~> ~ <g3> ~ Cpt 

k3 r l 
Now K~ NG(CG, <kl , k2», so gl = gl ,for some r l ~2Z. · 
If r

l 
= 1, thenk3~ CG(CG,(<kl , k2>)) and consequently, 

CG,(<k
l

, K
2

, k
a

» = CG,(K) f <1>, contradicting (3.2.2). So, 

Ka r l gl = gl ,where r l f 1. In a similar fashion t 

r3 
g3 ,where r

2 
and ra are positive integers 

not equal to one. 

Now there exist Ai such that (ri - l)Ai = l(p) for 1 , i , 3. 

Consequently, 
"1 - A2 Aa -

gl = r~l t kJ, ~ = [g2 ,k21 and ga = [ga ,~]. 

Let g eG' • Then g = gl a~Bg3 Y, where a, (3, Y E: 71... 
So, 

..).1 - a A2 B AS Y Ala A2B Aa Y . 
g = rJl ' k 3] ~ ,k~ Ig3 ' kil = [~l ~ g3 ,klk2ksl· 

This completes the proof for Case 1. 

Case 2 G' = S' ~ C x C xc. p p p 

S induces a group of automorphisms on S', by conjugation. So there exists 

a homomorphism , of S into GL( s, p). Since S is a p-group we may consider 

~(S) S STL( 3, p} which is t by Theorem 1.4A of [tJ, a Sylow p-subgroup of GL( 3 J p). 

Because S' is abelian, +( S > is an abelian group. By Theorem 1. 2 of [_], 

I STL( 3, p) I = P 3• By Lemma 1. 3 of ftJ. STL( 3, p) is nilpotent of class 2 and 

consequently1either 1 + (S)I = p or 1 +(S>I = p2. 



- 30 -

Let S I = <g1' g2' S3>' where we may assume that' gi E j{ (G) for 1 , i , 3. 

By considering ~il we see that it suffices to show that glg20gSB € ')( (S) and 

g2g3B E )(S), where a, B E ~. We consider the various possibilities for 

the structure of +(S) in turn. 

(1) 1 ~ (S) 1 
_ 2 
- P • 

So ,(5) = /(1 y 

~l (~ 
0 

1'" ,,~ 
1 , 1 ~ / where y, IS € a.. · 
0 0 

Various situations arise, depending on the values of y, IS and p. 

Because jf.(S) is a characterlstiCsubset of S it suffices to show that the 

element under consideration is conjugate to a commutator. 

(a) y :: O(p). 

If & :: O(p), then I~ (S)I = p. So IS t O(p). 

By considering how ,<S) acts upon S' we see that 

IS 
gl '" gl g3' ~ '" ~83 and S3 ~~ 1...<S). Because S' ; <gl ,g2 ,g3>' 

S is nilpotent of class 3 and S/<83> is nilpotent of class 2. By 

('i 0 X Theorem 3.1, S/<g3> E. ~ • So g182 <g3> f. L (S/<g3» and consequently, 

glg2 Oga). (~X(S) for some ). E 7J.. 
0). 0). . a). +r -

Now glg2 g3 '" glg2 ga ·ga '" ••• '" glS2 g3 ' where r ~ Lr_· So 

. a B ){<) E-glg2 g3 E. S, where a, f3 /1 • 
IS 2& . rlS 

Now g2 '" g2g 3 '" g2g3 • • • '" g2g3 ' where r E If · Since & • O(p) we 

have g2 '" 82g/, where B (!. 7Z and consequently, g2gSf3 E XeS). 

(b) y t O(p) and p • 2. 

Now 

(~ 
Y 

1 

o (~ 
o 
1 

o 
= 

By selecting suitable r l and r 2 we have gl '" glg2 ag/, where a, B E "-

and consequently, gl~ Og3
B 

C;){(S). To show that ~g3f3 E.. Xes) we observe 

that '3 s E. S such that s -181
S = gl g2g/~ and consequently, 1$1' sJ = g2g3B• 
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( c) p = 2 and .,. :: 1( 2 ) " 

Let 8
1 

~ S2 E;; S be such that 8 1 and s2 induce the automorphisms given by the 

matrices [~ i ~l and [~ ~ ~l respectively. 
00100 1 
sl s2 s2s1 

Then gl = gl~' gl = glgS' gl = glg2g3 and [g1'82S 1] = g2g3" 

Consequently, S E. C . 

(U) 1+ (5)1 = p. 

There are two possibilities to consider. 

(a) +(5) =~~ ~ ~l) 
5/<g3> is nilpotent of class 2 and by a similar argument to that used in (i)(a) 

aB rut' -
we may conclude that g1~ g3 € A. (S) ~ where a, B e· tL. It remains to show 

that g2g/' E.)C (S), where B c7L " Let g2 = ~1' s;J and g3 = f.s1' e;J - ). . 
where sl' s2' s3 E. S. Nowl$l' sJ E. Z(S), so (81 , sJ = 83 ' where A (~ • 

If ). , O(p)~ then [;1' S2g1~ = g2g3->'P and for suitable choice of p we have 

[91 ~ s281 ~ = ~g/" where a e 7L.., Thus it remains to consider the case 

).:: O(p), i.e. 1$1' sJ = 1. Similarly we may assume that [Sp 821 = 1. 

g1 81 ~ 
We note that [!;3' s;l = ~3 ,s;J = ~3g3' s;J = L.8 3 , s;I and Similarly, 

gl 
f!13' 8;t = [s 3' s ~ · 

W1 w2 w3 
Let [s3' s~ = 81 g2 83 and (s3' s;J = 
1 , i , 6. 

Because [$1' s1] = (g1' s2] = 1 and Z(s) = <g2' g3> we have that 

<sl' s2> £ C
S
(S1). Using this fact it is easily seen that 

g = ts 3
, s11Y[sa' 9;16[s3' gJ£~P S;1A6 ts 2 , siJPY 

wl w2 w3 w~ w5 w6 <5 -& '~6-
= ('1 ~ g3 ) (gl ~ g3 ) g3 g2 PY 
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, s 
Similarly, gl 2 : glg2A where A $ O(p) implies S ~C; , so it only remains for 

8 1 s2 
US to consider the case gl = gl = glo 

Now there exists s E. S such that gl S = gl ~ and g2 s = g2g3' 

Then, 
-~l+l A ~ ~2-A ~3+~ 

[ssl ' s2gi ~ ~ = gl~ gs 

and 

-00
1 

A _ W2-A w3+P 

[SSl ' s2gl ~ lIJ , - ~ g3 • 

By suitable choices of ). and lJ we have that glg/J.g3B E '){(S> and 

~g/ €){(S) where a, B e.""l. · 
This concludes the proof of Case 2. 

Case 3 (Gt, 1<J + G' + s' 

By Theorem S. 3. S of fi" we have. 

I S = [s, 1<J Cs(1<) (.3.2.3) 

s2 -1 
NoW 1< ~ NG( [5, 1<J) and [Sl' kJ = ~l 8 2 t k] {s2 t JU • where sl t s2 E. S and 

k ~ K. Therefore 

[5, iJ <J G (S.2.4). 
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By considering (3.2.3) and (3.2.4), remembering that G' is abe1ign, we see 

that 

S' = <[[S, 1<J, CS(1<j], CS(1<)'> 

Because of (3.2.4) we have that 

[[5, KJ, CS(KU £ [5, 19. 
By Theorem 5. 3.6 of n ~ , 

[s, KJ = [[5, K1, K]. 

So, 

[0;, KJ, Cs(1<)] C [G', ©. 
By Theorem 5.2.3 of G ~ , 

G' = [GI, ~ )( CG,(K) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.9) 

Noting that Cs(K)' £. CG' (K) we have, by considering (3.2.5), (3.2.7) and 

(3.2.9), 

5' = [[S, KJ, CS(Kt] )( CS(K)'. 

Again by Theorem 5.2.3 of ~" we have, 

S' = [SI, K] )( CS,(K). 

Now CS(K)' s: CS,(K) S CG,(K), \}', K] r::: [G', 19 
and by (3. 2 .7) l[s, KJ, Cs (K lJ s. [G', tS]. 

So by (3.2.8) we have, 

(3.2.9) 

(3.2.10) 

CS(1<)' = CS,(1<) (3.2.11) 

If 1[5, KJ, CS(KU + ~" KJ, then there exist xE. ([5, 1<J, CS(1<j] and 

y €. [S', ~ such that 1 + XYE CS,(K). But <[[S, KJ, Cs(K)], [S', ~I> ~ [G', it 
and, by (3.2.8), ~', ~ n CG,(K) = <1>, a contradiction. 

Therefore, 

We consider the various possibilities for the structure of 5' in turn. 

(i) 

By (3.2.10), 

Because G = 5 ).. 1<, 

S' '; C • 
P 

G' = <(};, 19, 5'>. 

(3.2.12 ) 

(3.2.13) 
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Recalling that, by Theorem 5.3.6 of [t], [5, K] = [[5, KJ. K], we see that 

[s, KJ : (G', KJ ~ C )( C • 
P . P 

'" So, by (3.2.8), CG,(K) = Cpo (3.2.14) 

Let g E. G'. Then g = glg2' where gl€ [G', l{) and g2ECG,(K). 

Again by Theorem S.3.6 of [Q we have tG I
, KJ = [[G', KJ, KJ. 

SO gl = [sl' k~J {s2' k;l = [k2S 1 , k1 s2 -:I • where kp k2€. K and s1' s2 ~ (G', ~. 
By (3.2.11), (3.2A13) and (3.2.14) we have, 

CG,(K) = CS,(K) = CS(K)'. 

So 82 = [S3' sJ, where s3' s4E.CS(K). 

Consequently g = glg2 = Uc2s 1s 3 , kl s 2 -lsJ. 

(ii) CS,(K) ~ G" KJ ~ Cpo 

Because Cs (K) f NSC [ S', KJ) and 5 is a p-group, we have that 

rCs CK), [51, KJ] t [5', K]. 

Since [s', t{I = Cpt 

[Cl:, (K), [S', Kj] = <1>. (3.2.15) 

Now G' = <[S, KJ, 5'>. So, by (3.2.10), G' = <[5, KJ, CS,(K». By Theorem 

5.3.6 of [~, [S, KJ =r[ s, KJ, I{J. So GI = <~" KJ, CS,CK». 

Because CS,(K) ~ C , @', KJ = <gl> )( [5', 1(1 ~ C xC. Let g r G'. p_ ~ p p r: 

Then g = 81 ag2g3 , where 82 E [S I, 19, g3~ Cst (K) and a E 7l. . 
Suppose a + o. 

NOW, as in (i). glag2 = ~lsl' k2s 2], where kl' k2€:.K and sl' s2f:.. [G', KJ. 

By (3.2.11), 83 = [S3' sJ. where s3' s4~CS(K). 

NoW, [£ls l s 3' k2s 2sJ = [kl Sl s 3 , sJ ~lS1s3' k2S2-
184 

s~3 s~4 8 
= [klt 8;1 [Sls 3' s41[klsl, k2s 2] [S3' k2s;J 4 

\ 

= [S1' s~rs3' 54.l [k1s P k2s 2:1 [8 3 , siJ, by (3.2.15),(3.2.12) 

and because ss' s4eCS(K). 

By (3.2.12), l~l' sJ[s3,s;J = ~11, where 11 €'IL- • 
So, 0<1sls3' k2s 2sJ = 81a~83~11. 
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By (3.2.12) there exists SE.CS(K) such that glS = gl~\ where hE /L 

and ). t O(p). Consequently s there exists t E LL such that 
- st 

11 + t).a :: O(p). Then, I1<l s l s3' k2s 2s,+1 = glag2g3 , as required. 

If a = 0 it suffices to show that S ~C;. This was shown to be true in Case 2. 

(iii ) Cst (K) = C x C 
p P 

I 
Let Hl = CS(K) x H2 , where H2 is a finite p-group such that H2 

By Case 2, Hl~C s which implies that Cs(K)Er; . 

By (3.2.8), E;', K] ~ Cp ' so r~t, K] E-G 
Let gE.G'. Then g = glg2' where gl ~CS,(K) and g2 E.[G'. ~. 

'" = C • 
P 

Now gl = ts l , s;J, where sl' S 2E:..CS(K) and g2 = [s3' kJ, where S3E..[G',~ and k~K. 

Consequently,g = ~l ,8;1 [S3 ,k) • fiJ 1 s3 ,kS21' ,because <1> I: [cs (1<), [G' ,K11 ~ 
[G' ,1<J • 
(iv) .Cs,(K) I: 1. Then S' II: Oi,K].Therefore G' • [Gt,~,a cont~adi~tion. q.e.d. 

Instead of assuming that G' is a p-group we now assume that S~GI. 
"-Theorem 3.3 Let G be a finite group with a Sylow p-subgroup S = Cp x Cp 

such that S .£ G'. 

Then, 

proof By Theorem 7.4.4 of [(I we see that SS-NG<S)'. So it suffices to 

assume that S <\ G. We assume G to be a minimal cotmter-example and we obtain 

a contradiction. 

Let 5 ::: <c
l

> )( <c2>, where we assume c1 i '}{ < G). Now G induces a p' -group 

of automorphisms upon S and, consequently by Theorem 2.3 of f~, S =[?, GJ )( CS(G). 

By the Focal Subgroup Theorem (c. f. Theorem 7. 3.4 of fi 6] ) • 

[S, GJ = S" G ' = 5. 50 Cs ( G) = <1> • 

g1 J. 
Thus, there exists gl E. G such that c1 T cl • 

If gl induces a fixed point free automorphism upon S, then it immediately 

follows that S ;. ){ (G). 50 we only need to consider the case where 
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gl 
CS(gl) * 1. Without loss of generality we may assume that c2 = c2 • 

gl r W 7i 
Let cl = cl c2 ' for r.w E. L. 
Suppose that [cl , iI E <[Cl , gJ> \;/ gf. G. Now. ~l ". gJ = ~l' glJ). 

and consequently, <[21' gJ.> ~·){(G). Therefore cl f «Cl' gl]>· 

By proposition 12.2 of ~~, G has a proper normal subgroup K such that 

I G/~I II S/<[Cl , g11 >1· Therefore I G/KI = p. So G/K is abelian and, 

therefore, G'~K. But S-;G' and, consequently, IG/KI is a p'-number, a 

contradiction. So we may assume that there exists g2E G such that. 

S = <~l' gil, [cp g~>. 

Because S is abelian normal subgroup of G the mapping ~(g2) rlefined by 

+( g2) : s ~ [s, g;l. where S E; S, is an endomorphism of S. 

Moreover +(g2)(S) ~-){(G). So, if Cc2 , ~1~ <[Cl' g2]>' 

then +(g2)(S) = S ~(G). 

By the minimality of G we may assume that G = <S, gl' g2>· If ~2' gJ = 1. 

then c 2 i; Z(G) and CS(G) ~ <1>, a contradiction. So [c2 , g;J + 1. 

Therefore, 122 , ~l = [cl ' g;J a for some a € ~ , where (a, p) = 1. 

So, there exists a €.1l.. such that [C2 , ~1 B = [Cl ' ~]. 

But iS
2

' g21 f3 = [C2 a, g;J 

that Gl , g;J = (C2 , g21· 
where t, u e. 7L· 

substitute c2
B for c

2 
t u ~ = cl c2 ; then c2 = 

above we may assume 

If gl ~ induces a fixed point free automorphism upon S, then S £: )( (G). 

So we may assume that Cs (gl ~) t <1>. 

Now, 

and 
~gl ( t-l u+l)gl _ ( r w)t-l u+l r(t-l) w (t-l)+u+l 

c
2 

= cl c2 - cl c2 c2 = c l c2 • 

Since CS(gl~) t <1>, there exist >., 11 e:2 such that (C
1

>'c2
11 )g2

g
l = 



Thus, 

and 

i.e. 
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rt A + r(t-1)p _ A(p) 

(wt+U)A + (w(t-1) + u+1}JJ - \J(p) 

(rt-1)A + r(t-1)p :: O(p) 

(~t+u)A+(w(t-1)+u)p :: O(p) 

) 
) 
) 

(3.3.1) 

The simultaneous equations (3.3.1) have a non-trivial solution if and only if, 

rt - 1 r(t-1) 
:: O(p). 

wt + u w(t-l) + u 

Le. (rt - 1) (w(t-1) + u) - Wt + u)(r(t-l» :: O(p). 

This reduces to, 

u(r-l) - w(t-1) :: O(p) 

t-l 
If u :: O(p), then r~l' g21 = cl • 

Because S = <[cl , gIl, rSl' g;J>. t - 1 t O(p). 

Consequently, by considering ~1. cl t.'K (G), a contradiction. 

So we may assume that u t O(p). 
.1. , 

If r :: l(p), then gl 1nduces a p-automorph1sm upon S. So r T l(p). 

So there exists t E lL such that t(r-1) ~ (t-l) (p). 

We consider Z;«r-l) + w). 

By (3.3.2), 

t«r-l) + w) :: Z;(w(t-l)/u + w) (p). 

But z;«r-l) + w) :: t - 1 + tw(p), by construction. 

Therefore, t - 1 :: tw(t-l)/u (p). 

Thus, either t :: l(p) or tw/u:: l(p). 

If t :: l(p), then, by (3.3.2), u(r-l) :: O(p). 

But neither u :: O(p) nor (r-l):: O(p) so we have a contradiction. 

Finally, if z;w/u :: l(p). then t w :: u(p). 

But this implies [cl , gl] t = [cl , ~1, our final contradiction. 

This completes the proof of Theorem 3.3. 

(3.3.2) 

We now consider possible generalisations of the preceding three theorems. We 

give a list of conjectures and possible lines of investigation together with 
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any relevant comments. 

conjecture 3.4. 

of rank three. 

Let G be a finite group such that G' is 'an abelian p-group 

Then G eG . 

conjecture 3.5. Let G bl:! a finite group with an abelian Sylow subgroup S of 

rank three such that S ~ G' • Then S S: X(G). 

As can be seen from the proofs of Theorem 3.2 and Theorem 3.3, the fact 

that the relevant subgroups have exponent p is most extensively used and it is 

not at all clear whether the methods used in these proofs can be adapted to 

handle the case where the subgroups have exponent pa, where a is a positive 

integer. It ought to be possible to, either extend Theorem 3.3 to the case 

where S is elementary abelian of rank three, or find a counter-example. 

Another possible approach is to increase the rank of the relevant 

subgroup, whilst maintaining the exponent equals p condition. From the 

example following the proof of Theorem 3.1 we see that there exists a group 

G such that G t is elementary abelian of rank four and G ~ G. However, the 

group exhibited is a p-group and if we make the restriction that the Sylow 

p-subgroup is abelian, then matters are not so clear. So a natural question 

to ask is: 

Let G be a finite group with an abelian Sylow p-subgroup such that G' is an 

elementary abelian p-group of rank r. What is the largest value that I' can 

take that guarantees that G E. e ? 

We give the following example as a first approximation to this bound. 

Example 3.6. Let G = Cp\CCq x Cq x Cq>, where p and q are different primes. 

We show that Gte . 
Now G' is an elementary abelian p-group of rank (q3_l ). So, if p + 2 we 

can put q = 2 and r < 7. Howevel', if p = 2, then putting q = 3 gives r < 26 

and whilst the first bound appears reasonable, the second one does not. 
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So let G be generated by the q3 elements {aijkll , i. j, k , q} and the three 

elements {bi 11 a; i , 3}, '~here the{b i }act upon the{aijk} by the bt permuting 

the t th subscript of aijk cyclically in a canonical fashion. Let g ~ JH[ (G). 

Then, 

(t.:,n ( -1 
atn • .t-m](i,;,k 1 «, 'k] - 1) 

= a1.'m'n' eijk ai' j 'k' J ' 

where Z' = 1.. + r l , m' = m + r 2 , n' = n + r a, 

i' = i + sl' j' = j + s2' k' = k + s3 and all add ition is done modulo q. 

Consequently t 

g = 

where YZmn = BZrnn - a1.'m'n' 

Finally we have, 

g = 
It is easily seen 

E. Ok 
11' a 1) 

ijJ< ijk' 
that 

where E. Ok = Y, 'k + ~,ok 
1.) 1) 1) 

where w = i + rlu + slv, x = j + r 2u + s2v and y = k + r 3u + s3v. 

We now demonstrate that g = [aijk' bi][aijk , b 21(aijk , b3J ~ ')( (G). 

Now g = 
EZrnn 

11' aZrnn • 
1. ,m,n 

(3.6.1) 

where Eijk = -3, Ei +1jk = £ij+lk = Eijk+l = 1 and all other Eijk equal zero. 



- 40 -

If g E;..1{(G), then by (3.6.1) there exist {ui } and {vi}where 1 , i , 3, 

such that, 

r1ul + 81 Vl = 0, r 2u1 + s2Vl = 0, r 3ul + s3vl = 1, 

r l u2 + slv2 = 0, r 2u2 + s2v2 = 1, r 3u2 + s3v2 = 0, 

r 1u3 + s l v3 = 1, r 2u3 + s2v3 = 0 and r 3u3 + s3v3 = o. 

From (3.6.2) we may assume, without loss of generality, that r3 tot 
If v

l 
t 0 then, considering the first two equations of (3.6.2) gives 

This has a non trivial solution if and only if 

= o. 

This contradicts the first two equations of (3.6.4). 

So we may assume that vl = O. 

By (3.6.2), r 1 = r 2 = O. 

(3.6.2) 

(3.6.3) 

(3.6.4) 

ui • 

The first two equations of (3.6.3) now imply that sl = O. But r l = sl = 0 

implies r1ua + s l v3 = 0 contradicting (3.6.4). Consequently g f~(G). 

l'inally, on a slightly different tack, we consider another line of 

possible advancement. 

In Theorem 3.3 we assumed that in a finite group G, a Sylow subgroup S was 

contained in Gt • If we drop this restriction we can still ask questions of 

the' form: 

Let G be a finite group with Sylow subgroup S. What conditions must we impose 

on either G or S or S nGt to ensure that S nGI ~J{(G)? 
As an example of possible results of this nature we prove the following 

theorem. 

Theorem 3.7 Let G be a finite group with a cyclic Sylow p-subgroup S. Then, 

either S S 1{ (G) or So G' = <1>. 
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Proof. Let S = <s>. Then, by applying the Focal Subgroup Theorem 

[16 Theorem 7. 3. ~I we see that, 

Sr,G' = <[s, n] I n~NG(S» • 
rn 

sn = s ,where rn E.71 • 

(r
n 
-1) (rn -1». ).). 

Then s = [s, n] and moreover, s = [s, n] = ~ , nJ, where ). €7L. 
If there exists an nE.NG(S) such that (rn -1, p) = 1 we may conclude that 

S ~'){ (G). Suppose rn-l = O(p) for every n€.NG(S). So. either neCG(S) or 

n induces automorphism whose order 5s divisible by p. The latter possibility 

is ruled out because S is a Sylow subgroup of G. Therefore NG(S) = CG<S). 

By the well known theorem of Burnside [i6Theorem 7.4.:D, S has a normal 

complement H. Because G/H is abelian G' = H and S" G' = <1>. 

We show that this result does not extend to S being a Hall subgroup. 

Let G = <a, 4 a >. 

Then <a> is a Hall subgroup, but G' = <a 3>. 

It would be very useful for such an investigation to have some results 

analogouS to the Focal Subgroup Theorem and other related results 

(c.f. [16 Chapter 7J). Such results appear difficult to obtain because there 

is no obvious way of tackling such questions. The proof of the Focal Subgroup 

Theorem and most results related to it rely on the TRANSFER BOWMJRPHISM. 

This is of very little use in the questions we are considering. As a 

final comment we give the following conjecture. 

Conjecture 3.8 Let G be a finite group with an abelian Sylow subgroup S. 

Then S (\ '){(G) = S,,){' (NG(S». 
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Chapter 4. UNIPOTENT GROUPS 

R.C. Thompson in 1iJ,3], [44] and [45] considered the linear groups 

GL{n, F) and SL(n, F) over an arbitrary commutative field F. He shows that 

GL{n, F) and PSL{n, F) belong to the class G . 
We prove an analogous result for the unipotent group of matrices 

STL(n ,F). 

Theorem 4.1 STL( n, F) E: C ' where n is un integer greater than one and F is 

an arbitrary commutative field. 

proof. Let AE.){ (STL(n, F». Then A = I}, cII, where B, e ~ STL(n, F). 

Let B = (bij ) and e = (cij ), If B-1 = (dij ) and e-l = (eij ), then because 

B and C are ele~nts of S1L(n, F), 

r d'k bk • = 6,. 
k=i 1 ) 1J 

where 6 .. is the Kronecker delta ~ymbol. 
1J 

-1 -1 
Suppose B e = (fij ) and Be = (gij) 

-1 -1 
Again because both B C and Be are both elements of STL{n, F) we have, 

;-1 
f •. =d,.+eij + ~L d·kek · ifi<j, 
1J 1) k=l+l 1 ) 

j-l 
g .. = bi , + Cia + r bik ~. if i < j, 
1) ) J k=i+l KJ 

= 1 for 1 , i 'n and f ij = g .• 
1) 

So if A = (a .. ), we have, 
1) 

if i < j, 

= 1 if i = j, 

o if i > j. 

(4.1.2) 

(4,1.3) 

= 0 if i > j. 

(4.1.4) 
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From (14.1.4), 

aii+l = fii+l + gii+l + 0 

= d
ii

+
l 

+ eii+l + 0 + bii+l + cii+l + 0, by (14.1.2) and (4.1.3). 

But, from (14.1.1), 

Therefore, 

a. . = 0 for 1 ~ i , n - l. 11.+1 

Let A' €,YL (STL(n, F». Then it is easily seen, that if AA' = (hij ), that 

h = 0 for 1 ~ i , n - 1. 
ii+1 

Consequently, if T = (tij ) STL(n, F)', then tii+l = 0 for 1 , i ~ n - 1. 

We show that every element (uij ) of STL(n, F) which has the property uii+1 = 0 

for 1 , i , n - 1 is a commutator in STL(n, F). The proof proceeds by 

induction upon n. 

The exact form of our induction hypothesis. is: 

given A = (aij ), where AG STL(n, F) and aii+1 :: 0 for 1 , i , n-1, 

there ~xist matrices B and C belonging to STL(n, F) such that A = [B, CJ. 

Furthermore, if B = (bij ) and C = (cij ), we can select B and C such that 

b to. c .. 1 for 1 , i ,n-l. 
ii+1 11.+ 

The latter part of the inductive hypothesis is there to enable the inductive 

argument to be completed. 

The induction clearly starts because 

We assume that the hypothesis is true for unipotent groups of matrices of rank 

less than r, and that n = r. Let A = (aij ) be an element of STL(r, F) such 

that aii+l = 0 for 1 ~ i , r-1. 
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Then, A = (aij ) = 1 0 a13 . . . . a. lr 

0 
• 

A 

0 

where A = (aij ) is an element of STL(r-l, F) such that aii+l = 0 for 1 ~ i , r-2 

and 

aij = ai +lj +1 for 1, i, j , r-l. (4.1.5) 

By induction there exist B~(bij) and C = (cij ), elements of STL(r-l, F) such 

that A = [B, iJ and bU +l + 0 + cU +l for 1 , i , r-2. 

Consequently the remainder of the proof is reduced to finding suitable 

b . and c . for 2 , j , r with bl2 f 0 + cl2 such that 
1j 1J 

1 b12 blr 
-1 

1 0 al3 •••• alr .... 1 c12 . ... clr 
0 0 0 

= 

• 
o o o 

o 

We let B = (bij ) = 1 b12 •••• b1r and C = (cij ) = 
o 

8 

o 

C 

-1 1 b12 •••• blr 
0 

o 

C 

o 
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So bi +l j+1 = bij and ci+1 j+1 = cij for 1 ~ i ~ j ~ r-l. 

Suppose A' = (a'ij) = ~, ~I. 

Let j ~ 3. Then, by (4.1.4), 

-1 ) If B = (d., 
1) 

-1 and C = (e,.), then, by (4.1.2) and (4.1.3), 
1J 

j-l 
+ c lj + r b lk ~. k=2 J 

j-1 
a' , = dl , + e l · + r dlk ekj + b l )· 

lJ J J k=2 

By (4.1.4), 

j-1 j-1 
bl )· + dlJ• = - I blk ~j and clJ' + ell' = - I Clk ekj • 

k=2 k=2 

Therefore t 

(4.1.6) 

(4.1.7) 

We need to show that a'lj can be constructed equal to a1j , for 3 ~ j ~ r, 

in such a way that b12 + 0 + c12 • 

"le show this by induction upon j. 

By (4.1. 7) t 

a'13 = d12 e 23 + b12 c23 - b12 d23 - c12 e 23 + f12 g23 

= d12 e23 + b12 c23 - b12 d23 - c12 e 23 + (d12 + e12 )(b23 + c23)' 

by (4.1.2) and (4.1.3). 

Consequent;Ly, 

a ' 13 
= b12 c23 + b12 c23 + b12 b23 + c12 c23 - (b12 + cl2 )(b23 + c23 ) 

= b12 c23 - c12 b23 • 
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Therefore there exist b12 , c12 ~ F such that b12 + 0 t c12 

and 8
13 

= b12 c23 - c12 b23 • So the induction starts. By considering 

(4.1.7) we see that a'lj is independent of blk and clk (and consequently 

d
lk 

and elk) for k ~ j. We assume that blk and clk have been chosen for 

2 , k , j - 2 such that a'lk = alk for 3 , k , j - 1. We show that there 

exist blj - l and clj - l such that a'ij = alj and in doing so we complete 

the proof of the theorem. 

By (4.1.7), 

a'lj = dlj - l ej_lj + blj - l Cj _lj - blj - l dj _lj - clj - l ejij 

(4.1.8) 

where Xl is a constant expression only involving terms whose values have 

already been fixed. 

By (4.1.2) and (4.1.3), 

f lj- l gj-lj = (dlj - l + elj-l)(bj_lj + Cj _1j ) + X2 ' 

where X
2 

is similarly a constant term. 

By (4.1.1), 

d. 1· = -b. 1·' e. 1· = -c. 1·' J- J J- J J- J ]- J 

dlj - l = -b1j -1 + Xa and elj - 1 = -clj - l + X4, 

where X3 and X4 are also constant terms. 

Substituting (4.1.9), (4.1.10) and (4.1.11) into (4.1.8) we have, 

a'ij = bij - l Cj_lj + b1j- 1 Cj _1j + blj - l bj _lj + c1j - l Cj _lj 

(4.1.9) 

(4.1.10) 

(4.1.11) 

- (blj - l + Clj-l)(bj-lj + Cj _1j ' + XS ' where Xs is a constant. 

= b1j- l Cj _1j - c1j - l b j _lj + XS· 

Because Cj_lj = Cj - 2j -1 t 0 and bj _1j = b j - 2j - l + 0, there exist 

bij - 1 and c1j- 1 such that a'lj = a1j • 
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Chapter 5 CHARACTER THEORY 

In previous chapters have have considered particular classes of groups 

and in doing so we have found various sufficient conditions for an element 

of a group under consideration to be a commutator. We now turn our attention 

to the problem of finding necessary and sufficient conditions for a group 

element to be a commutator. The character theory of finite groups plays a 

major role in this discussion and, consequently, all groups considered in 

this chapter will be finite. 

Throughout this chapter we adopt the following notation. 

G is a finite group. 

t(G) is the group algebra of G over the complex number £. Cl , C2 , •••• ,~ 

are the conjugancy classes of G and Cl = <1>. c. = 
1 

I g is the class 
g f:: C

l 

sum of C
i 

in E(G). 

denoted by Irr(G). 

1 2 h X , X , •••• X are the irreducible characters of Gover t, 

i i X j is the value X takes on Cj for 1 , i, j , h. 

The original result of this nature was given by Burnside in [S t P 319] 

when he states that a necessary and sufficient condition for an element of 

C
j 

to be a commutator is that, 

~ i i 
L X./ X + O. 

i=l J 1 

This work was generalised by P. X. Gallagher in l1.~]. Gallagher considers 

compact groups and obtains results by the use of the Haar Integral. tor 

comparison with our result we will consider only the realisation of his 

results in terms of finite groups. Gallagher shows that a necessary and 

sufficient condition for an element of Cj to be a product of n commutators 

is that, 
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K. Honda, in ~.~, obtained Burnside's result independently and, as a 

consequence, showed that g E.·){( g) if and only if gr ~ X( G), where r E:."'-
_ r 

and <g> - <g >. 

We obtain the following generalisation of Burnside's result. 

Theorem 5.1. Let Cl(j) for 1 , j , n be a collection of conjugacy classes 

of G, repetition of classes being allowed. Then, there exist 
n 

Xj ~Cl(j) for 1 ~ i ~ n such that j:1Xj ~~(G) if and only if 

~ n i i n l. 
L W X l(JO)/ex 1) t O. 

i=l j=l 

A 

Proof From [9.R2S] we know that {Ci 1, i , h} is a basis of Z(IC(G». 

Consequently, 
... h ... 

Cl (l) Cl (2) •••• Cl(n) Cj = Cl(n-l) k(~):l °jk(n) ~(n) 

h 

= l 
k(n):l 

.... 

err (n) (n-1) ~ 
l(n-2) k(n)=l k(n-l)=l °jk(n) ~(n)k(n-1) -k(n-1) 

h 
~ (n) (n-1) (1)'" 

k(f):l ajk(n) ~(n)k(n-1) •••• ~(2)k(1) ~(1)' 

(5.1.1) 

where a~t~i) €. E, for 1 , i , n and 1 ~ j , h. 

We define w. on Z(IC(G» for 1 ~ i , h by, 
1. 

A • i 
w. ( C .) = I Coil. / X 1 and extending 

l. J J J 

linearly over Z(IC(G». By I~. p28] we have that Wi is a homomorphism of 

Z( «:( G» into E. 

Consequently, 

,. '" ,. '" '" '" " 
Wi (CM1) Cl (2) Cl(n) Cj ) = wi(Cl(l» wi (Cl (2» .... wi(Cl(n» wi(Cj ) 

But, by (5.1.1) 

. . . . • ••• 
h l (n) (n-l) 

k(l)=l °jk(n) ~(n)k(n-l) •••• 
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Therefore ~ 

---
Applying the definition of Wi we obtain, 

h h 
= ~ ~ a~n) a.(n-l) •••• a.(1) I~ I(xi / xi ) 

k(;)=l •••• k(b=l) Jk(n) K(n)k(n-1)· K(2)k(l) -]«1) k(l) 1 • 

(5.1.2) 

. ( ) - i We multiply both s1des of 5.1.2 byX j and then sum over j, obtaining, 

n • h 1 i i 
(w ICA(r)lx1A(r»)(.~ ICjlx j X j) / (X l)n 
r=l J-1 

~ ~ I (n) (n-1) (1) I 1 -i 
= j~l k(~)=l •••• k(l)=l ajk(n) ~(n)k(n-1) ····~(2)k(1) ~(l)lx k(l) X j. 

h 
From L9.Pl~ we see that r Ic.lx

i
. ii j = IGI 

j=l J J 

Therefore, if we sum (5.1.3) over i, we obtain, 

(5.1. 3) 

= ~ ~ ~ a(n) a.(n-1) a.(1) I~ I (~ i -1 ) 
j~l kd;)=l •••• k(r,=l jk(n) K(n)k(n-l)···· K(2)k(1) -]«1) i~l X kCl)X j • 

(5.1.4) 
h i -i 

Now, by [9.plS], .r X k(l) X; = M t... 
1=1 ~ I ~(l) I l«l)j' where t5k(l)j is the 

Kronecker delta symbol. 

Consequently, we can reduce (5.1.4) to, 

h nih h .I (w IC).{r)lx ).(r») / (xil)n = r .... r (n) (n-l) 
1=1 r=l k(n)=l k(l)=l ~(l)k(n) '\(n)k(n-l) 

(1) 
~(2)k(l)· (5.1.5) 
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Now C{~~ j) + 0 if and only if there exist xi ECi and Xj E.. C).( j) such that 

Xj~i€-'i«j)' where 1 ~ i ~ h~ 1 ~ j ~ nand 1 ~ k(j) ~ h. 

(n) (n-l) 
So ~(l)k(n) ~(n)k(n-l) ~~~)k(l) + 0 if and only if there exist .... 

We may select y = x Yl by taking suitable conjugate values of y and x l' n n n n-

Similarly 'tIe may select Yj = XjXj+l •••• xnYl by taking suitable conjugate 

values of Yj and xj _l for 2 ~ j ~ n. 

Therefore, 

(n) (n-l) (1) 1 0 of d 1 • , 
~(l)k(n) ~(n)k(n-l) •••• ~(2)k(1) f 1 an on y 1f xl X2 •••• xnYl~ ~(l)' 

(n) (n-l) (1) 1 0 

But Yl €.'i<(l) , so ~(l)k(n) '\:(n)k(n-l) •••• ~(2)}«1) t 0 if and only 1f 

x x •••• x = '&1' gl for some gEG. Consequently by considering (5.1.5) 
1 :2 n !.l 

we have that x
l

x
2 

•••• xn E;,. ){ (G) if and only if 

hi· i i n 
0.... r (X (xl) •••• X (xn ) I (X 1)' This completes the proof of the Theorem. 

i=l 

We obtain the following corollary which corresponds to the corollary 

Honda obtained from Burnside's result. 

Corollary 502. Let G be a fini te group and Xi .i,". G for 1 ~ i ~ n. 

Suppose that xl x2 •••• xn ~ )(G) and that there exists an Xj such that 

<I~I, IXj I) = 1 if k + j. Then for every r € iL such that (r, !Xj I) = 1 

there exist go E G for 1 ~ i ~ n such that 
1 

gl g2 r gj 8n tV 
Xl x

2 
•••• (X j ) ••.• xn E ",,(G). 

Proof D Y Theorem 5.1 Xl •••• xn ~)( (G) implies that 

h. i i 0 r X1
(xl ) X (x2) •••• X (x ) I (x1

l
)n + o. 

i=l n 
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Let IG\ = m ··.-and consider the Galois group, a<~(mll), ~). Let rt::7L 

such that <\Xjl, r) = 1. Let ~ be a primitive 1~lth roof of unity, 

for 1 ~ k ~ n. Then because (Ixjl, I~I) = 1 if k + j, there exists 

O'e.G<lHm,ll), Il) such that O'(Wj ) = Wjr and a(~) = ~ if k • j. 

i a . 0' i 0' 
If we define (X) by (l) (g) = (X (g» for every g fa then it is easily 

seen that <xi)O' is an irreducible character of G and 0' induces a permutation 

upon the {lll ~ i ~ h}. 

Consequently, 

~ ia iO' i O'nl. 
L «X) (Xi) •••• (X ) (xn» / «X 1» t o. 

i=l 

i f ( i)O' ( ) = xi(Xjr), (Xi)O' (x.) = i( ) i ... .J. But, by our cho ce 0 0' , X Xj 'k X ~ f J 1" k 

i 0' i 
and (X 1) = X 1. 

Therefore , 

.... 

By Theorem 5.1 there exist gi for 1 ~ i ~ n such that 

g g. ~ 'K~ xl •••• (x. r ) J •••• x €. (a). 
1 . J n 

As a rather elementary example we examine how this work applies to 

finite nilpotent of class 2 groups. We first of all prove the following 

result. 

Lemma 5.2. Let a be a finite nilpot:ent of class 2 p-group such that a ~ C 
Then the number of conjugacy classes G possesses is a multiple of p. 

We consider H = G/<g>. This is well defined because gC:Z(G). Suppose H has k 

conjugacy classes and let {hi I 1 , i , k} be representatives from each class. 

"fe consider {hi gj , 1 , i ~ k, 1 ~ j ~ I g I }. It is easily seen that every 

conjugacy class of G is represented in this set. 
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Then hi ~ H hi' and consequently, i = . , 1. • 

. . , 
Now g E Z( G) ~ so hi gJ ~ G hi gJ implies that 

a(j-j') 
G 

h. g , 
:l 1. 

where a e "- . 

h (j_jt) i Ii th t (j-~'>'~{(G).So.by.Corollary 5.2.(or.originally 
Now hi '\I Gig mp es a g , 
from [22]>,. j-j' = o(p).Therefore,{h1g

l I l~I~lgll give representatives of 

j_,' conjugacy classes and the proof is complete. 

e.g. Suppose G is a finite nilpotent of class 2 group such that G 1. (; . 

Let gt:-G"'){ (G) and suppose Igl = p, for some prime p. 

Let H = G/<g> and suppose H possesses k conjugacy classes. By referring to 

the proof of Lemma 5.2 it is easily seen that G possesses pk conjugacy classes. 

Let{xi I 1 , i , pk} = Irr(G). Now g~ Z(G) implies that xi(g) = /.\Ia(i) xil' 

where /.\I is a primi ti ve p th root of unity and a( i) IC '2 . 
pk i i I X (g) / X 1 = o. 
i=l 

By Theorem 5.1, 

p~ ,.,a(1) 
i. e. L \AI = o. 

i=l 

Because /.\I is a primitive p th root of unity, we may number the {xi} such that 

Thus, in the nilpotent of class 2 case we obtain detailed information 

concerning the values taken by a non-commutator inside the commutator 

subgroUP· 
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Chapter 6. Simple Gl"'OUpS 

In [34J, o. Ore conjectured that every element of a .non-abelian finite 

simple group is a commutator. As he commented, the techniques required to 

prove such a result do not appear to be readily available. One likely avenue 

of progress seems to lie with the character relationships discussed in 

Chapter 5. Although we cannot prove the necessary result for an arbitrary 

non-abelian finite simple group, we show, by examining character tables, that 

several such groups do indeed consist of commutators. 

We consider the various character tables in turn and we make the 

necessary calculations. Since the calculations are routine we content ourselves 

with only presenting the character tables of three of the so called "sporadic" 

simple groups. We give references to other character tables and we claim 

that in all of them the conjecture can be verified after a short calculation. 

1 2 h '-Ie recall that if G is a finite group, g E. G and X , X , •••• X are the 
h 

irreducible characters of G, then g ~ ~~(G) if and only if r xi(g)/xiCl) + o. 
i=l 

Let Xl be the principal character of G, then g f. '){ (G) if and only if 

h 
I + r Xi(g)/XiCl) + o. 

i=2 

When we investigate the character table of the group under consideration it 

will usually be observed that on a non-principal character X a non-identity 

element g of G takes 
h 

with X(l). Thus r 
i=2 

a value insignificant in absolute value when compared 

xi(g)/xiCI) will be far less than 1 in absolute value 

h 
and consequently, I + r xi(g)/Xi(l) will not equal zero, as required. 

i=2 

Therefore, whenever the desired conclusion is apparent by inspection, we will 

omit any calculations. 

Our presentation of character tables is standard and follows [~, si). 

When necessary we will make the pertinent calculations at the end of the 

character tables. 
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Io Janko's group of order 175,560 

~-le present the character table obtained by J 0 McKay in [30, pp.89-100J 

of the group discovered by Zo Janko in [28] 0 

Class 1 2 3 4 5 6 7 

Character 

l 1 1 1 1 1 1 1 

2 56 0 2 2+4c2 2+4cl -1 -1 X 

X3 56 0 2 2+4c1 2+4c2 -1 -1 

4 76 4 1 1 1 0 0 X 

5 76 -4 1 1 1 0 0 X 

6 77 5 -1 2 2 1 1 X 

7 77 -3 2 2c1 2c2 1 1 X 

8 77 -3 2 2c2 2cl 1 1 X 

9 120 0 0 0 0 2c2+2c3+2c5 2c4+2c6+2c9 X 

10 120 0 0 0 0 2c1+2c7+2c8 2c2+2c3+2c5 X-

11 120 0 0 0 0 2c4+2c6+2c9 2c1+2c7+2c8 X 

12 133 5 1 -2 -2 0 0 X 

13 133 -3 -2 1+2c2 1+2c1 0 0 X 

14 133 -3 -2 1+2c1 1+2c2 0 0 X 

15 209 1 -1 -1 -1 0 0 X 



Class 

Character 

Xl 

i 
3 

X 

X4 

5 
X 

X6 

7 
X 

X8 

9 
X 

10 
X 

11 
X 

12 
X 

13 
X 

14 
X 

15 
X 
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8 9 10 11 12 13 14 15 

11111 1 1 1 

-1 2c3 2c6 1 0 0 0 0 

-1 2c6 2c3 1 0 0 0 0 

o 1 1 -1 -1 -1 -1 1 

o 1 1 -1 1 1 -1 -1 

1 -1 -1 0 0 0 0-1 

1 2c3 2c6 0 2c2 2c4 0 0 

1 2c6 2c3 0 2c4 2c2 0 0 

2c1+2c7+2c9 0 0 -1 0 0 1 0 

2c4+2c6+2c9 0 0 -1 0 0 1 0 

2c2+2c3+2c5 0 0 -1 0 0 1 0 

o 1 1 1 0 0 0-1 

o 1+2c6 1+2c3 1 2c2 2c4 0 0 

o 1+2c3 1+2c6 1 2c4 2c2 0 0 

o -1 -1 0 1 1 -1 1 

In the above table acS denotes a cos (2'11'13/5), where a, 13 E!L.. 
Let G denote the group under consideration. It is easily seen that 

15. i 
~ X1( g) Ix (1) + 0 for every g €. G and, consequently G consists of commutators. 

i=1 

However,as an example, we do the necessary calculations for the second 

conjugacy class. If g is an element of the second conjugacy class, then, 

15 i i 0 0 4 4 5 3 3 r X (g)/x (1) = 1 + 56 + 56 + 76 - 76 + 77 - n - n 
i=l 

o 0 0 5 3 3 1 
+ I20 + TIO + 120 + 133 - m - I3'3 + 209 

= 1 - 2311463 f o. 

Therefore, g E.)f (G) • . .. 
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II. The Mathieu Group, M24 • 

We exhibit the character table obtained by J. Todd in [461 of the 

quintup1y transitive Mathieu group M24 , of degree 24 and order 244,823,040. 

Class 

Character 

1 
X 

2 
X 

3 
X 

4 
X 

5 
X 

6 
X 

7 
X 

8 
X 

9 
X 

10 
X 

11 
X 

12 
X 

13 
X 

14 
X 

15 
X 

16 
X 

17 
X 

18 
X 

19 
X 

20 
X 

21 
X 

x22 

23 
X 

1 

1 

23 

45 

45 

231 

231 

252 

253 

483 

770 

770 

990 

990 

1035 

1035 

1035 

1265 

1771 

2024 

2277 

3312 

3520 

5313 

5544 

5796 

10395 

2 3 

1 1 

7 5 

-3 o 

-3 o 

7 -3 

7 -3 

2B 9 

13 10 

35 6 

-14 5 

··14 5 

-18 o 

-18 o 

-21 o 

-21 o 

27 0 

49 5 

-21 16 

8 -1 

21 0 

48 0 

64 10 

49 -15 

-56 9 

-28 -9 

-21 0 

5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 111 

3 3 2 211 1 000 

-o 1 a -1 0 1 o 0 -a 

-o 1 a a -1 0 1 o 0 -a 

1 -1 o o -1 1 0 B B 0 

1 -1 o o -1 1 0 B 6 0 

2 4 o o 0 1 -1 -1 -1 0 

3 1 1 1 -1 -2 0 o 0 -1 

-2 3 o o -1 2 -1 110 

o -2 o o 0 1 a 000 

o -2 o o 0 1 0 000 

-o 2 a a 0 0 0 o 0 a 

o 2 -o 0 a -a a 0 0 0 

o 3 o 1 o o o 

o 3 o 1 o o o 

o -1 -1 -1 1 0 1 0 0 -1 

o 1 -2 -2 1 1 0 0 0 0 

1 -5 0 0 -1 0 0 1 1 0 

-1 0 1 1 0 -1 0 -1 -1 1 

-3 1 2 2 -1 0 0 0 0 0 

-3 0 1 1 0 O' 1 0 0 -1 

o 0 -1 -1 0 -2 0 0 0 1 

3 -3 0 0 -1 1 0 0 0 0 

-1 0 0 0 0 1 0 -1 -1 0 

1 4 0 0 0 -1 -1 1 1 0 

o -1 0 0 1 0 0 0 0 0 



Class 

Character 

7 
X 

8 
X 

9 
X 

10 
X 

l1 
12 

X 

13 
X 

l~ 
X 

15 
X 

16 
X 

17 
X 

18 
X 

19 
X 

20 
X 

21 
X 

22 
X 

23 
X 

2~ 
X 

25 
X 

26 
X 
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1~ 15 16 17 18 19 20 21 22 23 2~ 25 26 

1 1 1 1 1 1 1 III 111 

o 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1-1 

--a -1 -1 1 -1 1 3 5 0 a a -3 0 

-a -1 -1 1 -1 1 3 -5 0 a a -3 0 

o 1 100 3 0 -9 1 0 0 -1 -1 

0110030 -9 1 0 0 -1 -1 

o -1 -1 o o o o 12 2 o 041 

-1 0 0 1 1 1 1 -11 -1 1 1 -3 0 

000 o o 3 o 3-2 o 030 

o 

o 

-ex 

a 

o 

o 

-1 

o 

o 

1 

o 

-1 

1 

o 

o 

o 

y 

y 

1 

1 

o 

o 

o 

o 

o 

o 

o 

o 

1 

o 

1 

o 

y 1 1 -2 -7 10 o o o 2-1 

y 1 1 -2 -7 10 o o o 2-1 

1 1 -1 -2 3 -10 o -a a 6 0 

1 1 -1 -2 3 -10 o -a a 6 0 

o -1 1 -1 -3 -5 o -a -a 3 0 

o -1 1 -1·-3 -5 o -a -a 3 0 

o o 2 3 6 35 o -1 -1 3 0 

o 0 0 -3 8 -15 0 1 1 -7 -1 

o -1 -1 -1 7 11 1 0 0 3 0 

o 0 0 0 8 2~ -1 1 1 8-1 

o 0 2 -3 6 -19 1 -1 -1 -3 0 

o 0 -2 0 -6 16 1 1 1 0 0 

1 o o 0 -8 o 0 -1 -1 0 0 

o o o -3 0 9 -1 0 0 1 1 

1 o 000 2~ -1 0 0 -8 1 

o o o o o 36 1 o o -4 -1 

o -1 -1 o o 3 o -45 o o o 3 0 

In the above table. a = ;(-1 + i/7). e = 1(-1 + illS) and y = 1<-1 + i/23). 
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216 XiCg)/XiCl) = 1 + 5377/11385 if g is an element of the second conjugacy 
i=l 

class. 

26.. 38 I x1 (g)/X1 Cl) = 1 + 11449 if g is an element of the twentyfirst conjugacy 
i=l 

class. 
The required inequality obviously holds for all other conjugacy classes and, 

consequently, the Mathieu group M24 consists of commutators. 
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III. The Higman-Sims group of order 1100.a! = 44,352,000. 

We present the character table obtained by J. S. Frame in [13J of the 

simple group discovered by D. G. Higman and C. C. Sims in (19]. 

Class 

Character 

9 
X 

10 
X 

11 
X 

12 
X 

13 
X 

14 
X 

15 
X 

16 
X 

17 
X 

18 
X 

19 
X 

20 
X 

21 
X 

22 
X 

23 
X 

24 
X 

1 

1 

22 

77 

175 

231 

1056 

825 

770 

1925 

1925 

3200 

1408 

2750 

1750 

693 

154 

1386 

2520 

151+ 

154 

770 

770 

896 

896 

2 3 4 5 6 7 8 

1 1 1 1 1 1 1 

o 0 1 2 1+ 0 6 

o 0 0 2 5 I 13 

-1 -1 0 0 1+ 0 15 

o 0 0 1 6 -2 7 

o 0 -1 1 -6 2 32 

o 0 -1 0 6 -2 25 

o 0 0 0 5 1 34 

o 0 0 0 -1 -1 5 

o 0 0 0 -1 -1 S 

-1 -1 1 0 -4 0 0 

o 0 1 -2 4 0 0 

o o -1 0 5 1 -50 

1 1 0 . 0 - 5 -1 -10 

o o o -2 o o 21 

o o o -1 1 1 10 

o o o 1 o o -6 

1 1 o 0 o o 24 

o o o -1 1 1 10 

o o o -1 1 1 10 

o o o o 5 1 -14 

o o o o 5 1 -14 

-Cl o 1 -4 o o 
-Cl o 1 -4 o o 

9 10 11 12 

111 1 

2 200 

5 I 1 -1 

-1 3 -1 1 

-1 -1 -1 -1 

000 0 

111 1 

2 -2 -2 0 

5 -3 1 1 

-3 1 1 -1 

o 0 0 0 

o 0 0 0 

2 2 0 o 

6 2 -2 o 

5 1 1 -1 

6 -2 o 0 

-2 -2 o 0 

-8 0 o 0 

-2 2 o 2 

-2 2 o -2 

-2 -2 o o 

-2 -2 o o 

o o o o 

o o o o 
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Class 13 14 15 16 17 18 19 20 21 22 23 24 

Character 

XlII 1 1 1 1 1 1 1 1 1 1 

X2 0 -1 2 -2 -2 -2 0 -6 -1 -1 1 -3 

X3 -1 0 -3 1 1 1 -1 5 0 0 -2 2 

~ 1 -1 5 1 11 2 0 15 0 0 0 0 

X5 -1 1 1 1 -9 0 0 15 0 0 2 6 

X6 0 -1 -4 0 0 0 0 0 0 0 2 6 

X' 1 1 -5 -1 9 0 0 -15 0 0 0 0 

X8 0 0 0 0 -10 -1 1 -14 1 1 -1 -5 

X9 1 -1 5 1 -19 -1 -1 5 0 0 0 0 

X10 -1 -1 5 1 1 1 1 -35 0 0 0 0 

Xl1 0 1 -5 -1 -16 2 0 0 0 0 0 0 

X12 0 -1 -7 1 16 -2 0 0 0 0 0 8 

X13 0 0 0 0 -10 -1 1 10 0 0 0 0 

X14 0 0 0 0 10 1 -1 -10 0 0 0 0 

XIS -1 0 3 -1 9 0 0 21 1 1 1 -7 

XIS 0 1 4 0 10 1 1 -2 -2 -2 0 4 

X17 0 0 6 -2 18 0 0 6 1 1 -1 11 

X18 0 0 0 0 0 0 0 24 -1 -1 -1 -5 

X19 -2 1 4 0 .. 10 -1 -1 -10 0 0 0 4 

X20 2 1 4 0 -10 -1 -1 -10 0 0 0 4 

X21 0 0 0 0 10 1 -1 -10 B i 1 -5 

X22 0 0 0 0 10 1 -1 -10 B a 1 -5 

x23 0 1 1 1 16 -2 0 0 0 0 0 -4 

x24 0 1 1 1 16 -2 0 0 0 0 0 -4 

24. . 
If g is an element of the eight conjugacy class, then L X1 {g)/X1 {1) 

i=l 

= 1 + 5381/6325 • 



If g is an element of the 

6 = 1 - 1175. 

17th 
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24-
conjugacy class, then l 

i=l 

If g is an element of the twentieth conjugacy class, then 

= 1 - 6 /25 • 

i i X )g)/x (1) 

It is apparent that the required inequality holds for the other conjugacy 

classes and, consequently, the Higman-Sims group consists of commutators. 

We conclude this chapter by giving references to character tables of 

various simple groups. From these tables it can be verified that all the 

groups consist of commutators. We only give references to groups where, as 

far as we know, no verification of the conjecture under consideration has 

been explicitly stated. We firstly consider various "sporadic ll simple groups. 

The character tables of the other four Mathieu groups M23 , M22 , M12 and Mll 

can be obtained from [46.1· (In [49] it is shown that both M22 and Mll consist 

of commutators. However, we have been unable to obtain this paper so we 

include the above reference for the sake of completeness.) 

The character tables of the finite simple groups of Ree (c.f. [37] and[~8J) 

are presented by H. N. ward in [si]. 

The character table of the simple group of order 448. 345, 497, 600, 

presented by H. Suzuki inL2 p.113] was obtained by D. Wright in [52]. 

The character table of the simple group M(22) of order 217.39 .52.7.11.23, 

discovered by B. Fischer in [111. is presented by D. C. Hunt in [231. 

• 10 7 3 The character table of the slmple group-3 of order 2 .3.5 .7.11.23, 

discovered by J. Conway in [5], is presented by D. Fendel in (lOJ. 

The character table of the Hall-Janko group of order 604, 800. is presented 

by M. Hall, Jr. and D. Wales in [lSJ. 

Finally, the charcter table of the Higman-Janko-McKay group of order 

27.35.5.17.19 can be found in D. 7] • 

With regards to infinite families of simple groups, in [41J. B. Srin! vas an 

gives the character tables for the finite symplectic groups Sp(4,q), where 

q is odd. In [~ H. Enomoto handles the characteristic two case and he 

gi ves the character tables for Sp( 4 ,2n ), where n E. 72.. 
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Chapter 7 CONJUGACY IN GROUPS 

The proof of the conjecture that every non-abelian finite simple group 

consists of commutators appears to be very difficult to obtain. The kind 

of knowledge required for such a proof does not appear to be readily accessible. 

It would be a great help if information concerning the number of conjugacy 

classes in a non-abelian finite simple group could be obtained. From an 

empirical point of view, such groups appear to have "f~'-l" conjugacy classes. 

Consequently, in this final chapter we turn our attention to finite groups 

in which we make assumptions concerning the eonjugacy classes. Although the 

results we obtain are not themselves statements concerning commutators, they 

are the sort of results that will come in very useful in trying to prove the 

above conjecture. 

Throughout this chapter we assume that G is a finite group which contains 

n a subgroup M of order p such that any two non-identity elements of Mare 

conjugate within G. We make extensive use of the character theory of finite 

groups and we adopt the notation of Chapter 5. 

This work was initiated by A. Fornyn in ~2]. His work was written in 

Russian and, in extending his results, we have used different techniques which 

simplifY his proofs. Consequently, we will prove everything fro~ scratch 

without referring to his work. We will however state which results originated 

from Fomyn. 

We assume, with Fomyn, that M is abelian. This is certainly the case 

when M~ G. 

Let 1 f mE M and e~ I rr( M), where e + 1M' the principal characteX' of M.";' 
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Theorem 7.1. Xil = (pn_l ) f. + k., where 
J. J. 

il 1 ~ i -Proof (X M' elM = TMT L X (g) 8(g) 
g€M 

1 i i - ' = TMT (X 1 + r X (g) 6(g», because eel) = 1. 
P"I l+g~ M 

Now xi(g) is constant for all non-identity elements of M. 

Therefore, 

il 1 i i r-
Cx H' e)M = TMT (X 1 + X (m) l+gc;M 8(g» 

Because e t 111' ~, e)M = l e(g) = O. 
gt: H 

Consequently, 

Therefore, 

Similarly, 

I e(g) = -l. 
l+g~M 

i ( i 1 n (X 1M, e)M = X 1 - X (m» / p = fi' say. 

11 1 ~ i -(X M' lM)M = TMr L X (g) IM(g) 
g€G 

= (Xi
l + (pn_l ) xi(m» / pn = kit say. 

Now IIrr(M)1 = IHom (M, £)1 = pn. 

Because f. is independent of e we have the desired result that 
J. 

i _ n 
X 1 - (p -1) f. + k .• 

l. 1. 

Fomyn obtained the result that xil = (pn_l ) fi + k i though he did not 

observe eHher (ilM, elM = fi or (Xi 1M, lH)M = k i • He also assumed that 

<M>G = G and we do not 

We now give a simplified verification of some formulae obtained by 

Fomyn. 



- 64 -

Theorem 7. 2 • 

. (ii) 

(iii) 

(iv) 

(v) 

(vi) 

Proof. By Theorem 7.1, 

i (n i n i i n 1 
k

i 
- fi = (X 1 + p -1) X (m» / p - (X 1 - X (m» I p = X (m). 

hi' \' 1-
LXI X em) = O. 

i=1 
(7.2.1) 

So, by Theorem 7.1, 

NOli 

So, 

By Theorem 7.2 (1), xi(m) = ki - fie 

h 1 . r X 1 (k1 - f i ) = 0, 
i=l 

So, by (7.2.1). 

h 1 
Now pn r fi X 1 = IGI, by Theorem 7.2 (ii), 

i=1 

So 
n ~ i _ n ~ i 

p L k i X 1 - P t. fi X 1 = IGI· 
1=1 i=1 
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Now m '" Gm-1, so, by [9.p.1S], (7.2.2) 

So, by Theorem 7. 1 , 

h. 2 
= I (x1

1 
- pn f.) 

i=l 1 

h i 2 n h i 2n h 2 
= r (X 1) - 2p I X 1 fi + p I fi 

i=l i=l i=l 

2 h 2 
= IGI - 21GI + P n J

1
fi ' by [9.p.1S]and Theorem 7.2 (ii). 

1-

Thus, 

By Theorem 7.1, 

So, by (7.2.2), 

i n i n 
. X (m) = (p k i - Xl) / (p -1).' 

~ n i n 2 = L «p ki - X 1) / (p -1» 
i=l 

Theorem 7.2.(iii). 

2 h 2 2 
Therefore, P n r k. = IGI + (pn_1) leG(m)\. 

i=l 1 

Finally, by Theorem 7.2 (i), xi(m) = ki - fie 

So, by (7.2.2), 

h 2 h 2 h h 2 
leG(m)1 = .l_l(ki - f.) = L k. - 2 I kif. + I f i • 

1- 1 i=l 1 i=l 1 i=l 

So, 2n ~ 2n ~ 2 2n h 2 2 
2p L k.f. = P L ki + p r fi - P n leG(m)l 

i=l 1 1 i=l i=l 

By Theorem 7.2 (iv) and Theorem 7.2 (v). 
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2n h 
Thus, p r k.f. = 

1=1 ~ ~ 

Fomyn obtained the following corollaries to Theorem 7.2. 

Corollary 7.3. If the order of a Sylow p-subgroup of CG(m) is not greater 

than p(2n-l), then it is a Sylow p-subgroup of G. 

Proof. The proof follows immediately from Theorem 7.2 (iv). 

Let xl be the principal character of G. 

Corollary 7.4. If fi is an odd number for 2 , 1 , h, then p = 2 and M is 

a Sylow 2-subgroup of G. 

(Note that fi = 0 if and only if H CKer(x
i

). So fi being non-zero for 
G 

2 , i , h implies that <M> = G.) 

Proof. By Theorem 7.2 (v) and Theorem 7.2 (vi) we obtain, 

NoWxl ~eing the principal character implies that kl = 1 and fl = O. So, 

h 
p2n ... p2n r k. (k

i 
- f.) = (p2n - pn) I C

G
( m) \. 

i=2 1. 1. 
(7.2.3) 

Since p2n - pn is always even and kiCki - f i ) is even because fi is odd we have 

that p = 2. The highest power of 2 to divide the left hand side of (7.2.3) 

is Z2n. Consequently, the highest power of 2 to divide ICG(m)1 is 2n. By 

Corollary 7.3 a Sylow 2-subgroup of CG(m) is a Sylow 2-subgroup of G. 

Since I MI = 2n and M ~·CG(m) t the proof is complete. 
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As a further corollary of Theorem 7.2 Fomyn obtained the following result. 

Corollary 7.5. Suppose fi = 1 for 2 ~ i ~ h and that G does not possess 

three pairwise non-equivalent irreducible representations of degree pn_l • 

If G is a simple group, then G ~ AS' the alternating group on 5 symbols. 

We will extend the result, but before doing so we give a final corollary to 

Theorem 7.2. 

Corollary 7.6. M is a normal subgroup of G if and only if 

fiki = ° for 1 ~ i ~ h 

Proof. We observe that M ~ G is and only if I Cl(m) I = pn_l, where Cl(m) is 

the conjugacy class of G containing m. Noting that fi and ki are non-negative 

for 1 ~ i ~ h and ICl(m)1 leG(m)1 = IGI, the result follows from Theorem 7.2(vi).' 

Theorem 7.7. Suppose fi = 1, for 2 ~ i ~ h. 

Then p = 2, M is a Sylow 2-subgroup of G and 

either (a) G/0
2

, (G) ~ PSL(2, 2n) 

or (b) IMI = 2, G = G').' M, G' is abelian and gm = g-l for every gEG'. 

Proof. As we noted above <MP = G. Let N <lG. Since any two non-identity 

elements of H are conjugate within G, 

either N~M = <1> or M.~ N. But <M>G = G, so, either NnM = <1> or N = G. 

Suppose N!\M = <1> and we consider t .Irr(G/N). 

Now NM/N ~ HIM N = M. Suppose ~ is a non-principal character of NM/N• 
t\ 

Because t is also an irreducible character of G, we see that 

(tINMI ,J,I)NM/ = 1. 
M M 

(In other words our assumption that fi = 

non-principal characters is quotient clo,ed~ 
O"C\o~ 

Two cases arise, depending on whether~ is solvable. 

1 for 

Suppose G is not solvable. By Corollary 7.4, M is a Sylow 2-~ubgroup of G. 

Because <M>G = G, G/02 r (G) is a simple group. J. H. Walter in l§oJ 

classified non-abelian finite simple groups with an abelian Sylow 

2-subgroup. From rsoJ we see that G/02,(G) is isomorphic to one of the 
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following: 

(i) PSL(2, 2m), m > 1. 

(ii) PSL(2, q), q = 3 or 5 (modulo 8), q > 3. 

(iii) A simple group H such that for each involution t of H, 

CH(t) = <t> x A, where A is isomorphic to PSL(2, q), 

with q = 3 or 5 (modulo 8). 

We give an argument of Fomyn to show that G possesses an irreducible 

f d 2n - 1. character 0 egree From Theorem 7.2 (it), 

h i i I X lex 1 - 2n) = -1. 
i=2 

So, 

Consequently there exists a X
j where 2 , j ~ h such that xj 

1 < 2n. But 

fi = 1 for 2 ~ i ~ h implies that xiI ~ 2n - 1, by Theorem 7.1. So G possesses 

a xj where 2 ~ j ~ h such that xj
l = 2n 

- 1. Of the three possibilities for 

the structure of G/02,(G), in Case (ii), G has a Sylow 2-subgroup of order 4 

( c. f. ( 6 .p. 9J ). So, by the above argument G possesses an irreducible 

character of degree 3. From I7. p.228] we see that this implies q is equal 

to 5. But PSL(2, 5) ~ PSL(2, 4), from U&p.493]. So this exceptional 

occurence is contained in Case (i). (Note that PSL(2, 5) ~ PSL(2, 4) ~ AS 

and this is the case covered by Fomyn in Corollary 7.5.) Z. Janko and 

J. G. Thompson, in ~9 J, show that for the groups in Case (iii), either 

2r+l ~ J q = 5, or q = 3 , where r ~ 1. Janko, in ~8 ,considered the case q = 5 

and showed that the group arising is the group named after him, Janko's 

group of order 175,560. AS ylow 2-subgroup of this gN)up has order 8, but from 

the character table obtained by J. McKay in ~O J we see that Janko's group 

does not possess an irreducible character of degree 7, contradicting the 

above argument. 
2r+l 

If q = 3 , where r ~ 1, then, from g9. Lemma 2.1J I a 
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Sylow 2-subgroup of G has order 8. '" Now G has a subgroup K = PSL(2. q), 

with q ~ 27. From [7.p.22~ ,we see that PSL(2, q) possesses no non-principal 

character of degree less than (q - 1)1 '2 ~ 13. Therefore, if G possesses an 

irreducible character X of degree 7, then K £ Ker( X) • But G is a simple group, 

so this is impossible. So we are reduced to considering Case (i). From 

[7. p.235U we see that PSL(2, 2m) obeys the conditions of the theorem, where 

m ~ 1. Moreover, the order of a Sylow 2-subgroup of PSL(2, 2m) equals 2m 

from [s.p.g1. So we do indeed have that G/02 ,(G) ~ PSL(2, 2n ). 

If G is solvable, then because GIN satisfies the hypotheses of the theorem, 

where N <l G, we have that H has a normal 2-complement °2 , ( G) • If ml , m2 are 

non-identity elements of H, then ml '" GID2· Consequently mlN '" GIN m2N, 

'" '" where N -<AG. Because G/02,(G) = M, we must have M = C2• 

Now G = <M> G = <M, Gt, °2, ( G)] > • 

So, 02,(G) = ~, 02,(Gil = G'. 

Suppose there exists xj such that x
j
l > 2. 

h i \ i 
Now I X 1 X (m) = 0, from [9. p.16]. 

i=l 

Since IG G'I = 2, G has two linear characters 1l and X
2 

say. 

Moreover, xl(m) = 1 and x2(m) = -1. 

Consequently, 

hi· L X 1 x1(m) = 0. 
i=3 

(7.7.1) 

By Theorem 7.1, xj(m) = Xj
l -2 which is greater than zero by assumption. In 

order that (7.7.1) holds there must exist Xr such that xr(m) < 0, where 

3 ~ r ~ h. 

But, again by Theorem ( r r(» r 7.1, fr = X 1 - X m 12 and, if X (m) < 0, then 

fr + 1 contradicting our initial assumption. i 
So X 1 = 2 for 3 , i , h. 

By a result of I. M. Isaacs and D. S. Passman [25. Theorem II], G has a normal 

abelian subgrouP .of index 2. Le. G' is abelian. Now H induces a group of 
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automorphisms upon G' and (IMI, IG'I) = 1. It is easily seen that Theorem 

5.2.3 of fi~ can be extended to cover this case and we have 

G' = [G't M] x CG, (M). 

But G' = [G', MJ, from above. So CG,(M) = CG,«m» = <1>. Thus m induces a 

fixed point free automorphism upon G'. Let g e. G' and suppose gm = h. 

Because m2 = 1, hm = g. Thus (gh)m = hg = gh, because G' is abelian. Since 
-1 

m induces a fixed point free automorphism, h = g • 

It would be nice if we were able to extend the previous theorem by 

letting the fi's take a different set of values. In the solvable case 

progress may be possible, for it is easily seen that the assumption that 

fi > 0 for 2 ~ i ~ h forces G to be a split extension of a group of odd 

order by an involution. However, in the non-solvable case matters are more 

difficult. If one examines the character tables of non-abelian finite simple 

groups one does not readily see any straightforward pattern for the fi's 

that arise. 

e.g. In Janko's group of order 175,560, by considering M to be a Sylow 

2-subgroup, we obtain the following set of values for the fi '8:-

{O, 7, 7, 9, 10, 9, 10, 10, 15 , 15 , 15 t 16, 17, 17, 26 }. 

By assuming that fi > 0 for 2 ~ i ~ h we came to the conclusion that 

<M>G = G. We now consider the opposite case, that of M being a normal 

subgrouP of G. 

We recall that if M <t G, 0 (;.! rr(M) and g E G, we may define ag EI rr(M) 

by eg(h) = O(ghg-l ), h € M. Further we recall that the Inertial Group of 

a, denoted by 1(0) is {glg~G, ag = a}. Finally if H is a subgroup of G,X~I~G) 

and ~Elrr(H) such that ~ is a constituent of X restricted to H, then we 

write that A€xI M• 

We show that there is a very close relationship between I(e) and CG(m). where 

we still assume that e is a non-principal character of M and 1 + me: M. 
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We first prove an introductory result of independent interest. 

Theorem 7.8. Let M <3 G. Suppose that {fi 12 ~ i ~ r} are th~ only non-zero f1 IS. 

i i so,,~ t. 
Then there exists t E!rr{I(e» such that fi = I; (1) for}2 ~ i ~ r. 

Conversely, given t
i E- !rr( I (e » such that e e 1;i 1M, then there exists an f i 

such that f. = I;i(l). 
1. 

. ~ i 
Proof. Let x

1
E,Irr(G) be such that M r l<er(x ). 

By Corollary 7.6 we see that fi + 0 = ki • 

So xilM = fi ~ J , where {e
j

} = Irr(M)'UM}o 
J 

By restricting xi to I (e) we may select an tit I rr(I ( e» such that r,;ie: xi 1 IC e) 

and e&tilMo Then, from [90 p.SS] we see that r,;i* = xi. where t* is the 

character of G obtained by inducing r,;1 up to G. Because tiEl rr(I(e» we see 

that tilM = tiCl). ConsequentlY,by [9. p.S3] t tiCl) = fr 

The proof of the converse follows by reversing the above argument. 

Theorem 7.9. If M<lG, then leG(m)1 = Irc&)I. 

proof. Select tE::. Irr( I (e» such that 8E 1; I M. 

Then, by Theorem 7. 8 and from [9. p. S3J it is 

c* = xj 
and tCl) = 

easily seen that, 

f .• 
J 

By [9.p.4S], 

1 '" -1 c*Cm) = 11(8)1 L tCgmg ). 
g~G 

(7.9.1) 

Because any two non-identity elements of M are conjugate within G we have, 

where {~}are the non-identity elements of M. 

So, r eC~) = -6(1) = -1. 
k 

C7.9.2) 
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Therefore, I t(~) = r tel) e(~) = -eel). 
k k 

By Theorem 7.2.(i) and (7.9.1) we have, 

t*(m) = xj(m) = -f. = -tel). 
J 

Comparing with (7.9.2) we see that ICG(m)1 = II(e)l. 

Suppose we assume that M is a Sylow p-suhgroup of G. By a result of Burnside 

n ~ Theorem 7.1.11, two elements of H are conjugate within G if and only if 

they are conjugate within NG(M). So, in assuming that M is a Sylow p-suhgroup 

it is reasonable to assume that H<lG. 

Under these assumptions we prove the following theorem. 

Tbeorem 7.10. Suppose M is a normal Sylow p-subgroup of G. Then, to each 

non-principal character e~ Irr(M) there exists 1 + m. ~ M such that 
l. 

i I(e) = CG(mi ), and conversely. 

Proof. Suppose Oi is a non-principal character of M. Let M = <8i> x Ker( ai ) , 

where 9(gi) = III, III a primitive p th root of unity. 

It is easily seen that I(ei ) ~NG(Ker(ei» and that gig = gik , where 

i r. i) i gE-.I(9) and kEKer(e). Consequently, LH, I(e) ~Ker(e). By Uf>Theorem 

i 
5.2.3], 8i may be chosen such that I(e )~ CG(gt). This particular value of 

gi is our desired mi· By applying Theorem 7.9, we see that I(e i ) = CG(m
i
). 

Conversely, given 1 + mi .. M, we consider the following equation, which follows 

frOm I! "Theorem 5.2. 3J • 

Let CM(CG(mi » = <mi > x Kl 

and also let K2 = [M, CG(mi )] )( IS.. 
If we define ai by ai(m!) = (Q and SiCk) = 1 for each k EK

2
, then it is 

easily seen that CG(mi ) ~ I(e1
). By Theorem 7.9, we reach the desired 

_ i 
conclusion that cG(mi ) - 1(& ). 
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We now obtain information concerning the relationship between I(8)/M and 

Theorem 7.11. Suppose M is a normal Sylow p-subgroup of G and that 

{fil2 , i , r} are the only non-zero fi's. Then {fil2 , i , r} are the 

degrees of the irreducible characters of I(e)/M. 

Proof. We consider e*, the character of I(e) obtained by inducing e up to 

I( a). 

If CE Irr(I(9)} is such that a ecl M, then tIM = t(l)S. 

By the Frobenius Reciprocity Theorem [9. p.47], 

(e, e*)I(6) = (elM' e)M = tel). 

By Theorem 7.8 we see that there are (r-l) such t's denoted by {c
i l2 , i , r} 

i and that t (1) = fi' where 2 , i , r. 

Let {~i} = Irr(I(e)/M). These are the characters of I(e) that contain M 

in their respective kernels. By Theorem 7.10, there exists an mE.·M such that 

I(e) = cG(m). Moreover, by considering the proof of Theorem 7.10 we see that 

m may be chosen such that e(m) = w, a primitive p th root of unity. 

Now the {til2 , i , r} are precisely the irreducible characters of I(e) such 

that Ker(e) ~Ker(ei) and ei(m) = ei(l)~, for 2 , i , r. 

Now M is a normal Sylow p-subgroup of I(e). So, by the Schur-Zassenhaus 

Theorem Ub Theorem 6.2.1], M has a complement K in I(e). Noting this and 

also that mE;.Z(I(e» we see that there is a well defined bijection. between 

the {~.} and then {ei }, given by, 
J 

• : "j + ej , where 'He define ej by 

ej(kgmQ) = "j(kgmQ)W
Q

, where kr:.K, gc::Ker(e) and Qed.... 

i Recalling that fi = e for 2 , i , r we see that the proof is complete. 

We finish by applying this work to a rather restricted case. 

Theorem 7.12. Suppose M is a normal Sylow p-subgroup of G and that G/M is 

abelian. 
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Suppose Y = {set of prime divisors of pn_l }. 

Then, 

l£92f. 

(1) G has a normal abelian Hall!- w'-subgroup. 

(ii) CG(m) -'1 G and G/CG(m) Js cyclic of order (pn_l ). 

(iii) CG(m) = Z(G) x H. 

By Corollary 7.6, k.f. = 0 for I ~ i ~ h. 
l. l. 

Now the non-zero k. are the degrees of the irreducible characters of 
l. 

G/M. Because G/M is abelian these ki equal 1. By considering Theorem 7.8, 

again noting that G/M is abelain we see that the non-zero fi also equal one. 

By Theorem 7.1 we see that either xi(l) = 1 or xi(l) = pn_l , for 1 , i , h. 

By a theorem of I. M. Isaacs and D. S. Passman ~6.Theorem s.l], we see that 

G has a normal abelian Hall wI-subgroup H, CG(H) <)G with G/CG(H) cyclic of 

order (pn_l ) and that CG(H) = Z(G) x B, where B <J G, and G/CG(H) acts fixed 

point freely on B. 

Now mCiH, so CG(m) 2 CG(H). 

But IG : cG(m)/ = IG : CG(H)/ = (pn_l ). 

Therefore, cG(m) = CG(H). 

Because M is a normal Sylow p-subgroup of G, M has a complement 1< in G. 

Now K ~ G/M which is abelian. Therefore B = M and the proof is complete. 

The author would like to point out that since he obtained these results 

he has become aware of some results of I. M. Isaacs 9-J and unpublished 

results of E. C. Dade and G. Glauberman that describe the relationships 

between the inertial groups and centralizers of elements in far greater 

generality. 
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