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ABSTRACT of the thesis, "Commutators and Conjugacy in Groups", by

David Rodney, University of Keele, 1974.

It is well known that the commutator subgroup G', of a group G need not

coincide with the set of commutators of G, ){(G).

We are primarily concerned with investigating the class of groups (: ,
defined by, G € @ if and only if G' = 7{(8). Firstly we consider groups
with a finite cyclic commutator subgroup. I. D. Macdonald showed that such a
group need not be generated by a commutator. We show that, even if the
commutator subgroup is generated by a commutator, the group need not belong

to the class G .

Next we consider a nilpotent of class two group G such that G' is finite
and can be generated by three elements. We show that G E;(g . We extend
these results to G being a finite metabelian group and we show that if G'
ijs elementary abelian of rank 3, then G € (3 . We also show that if S is an
elementary abelian of rank 2 Sylow subgroup of a finite group G, such that
S £G', then § £§:}€kG), the set of commutators of elements of G. For all
the results mentioned in the last two paragraphs we give examples to show that

the results are not readily extendable.

Next we show that the unipotent groups of matrices belong to the

class (3 .

The remainder of the thesis is concerned with finite groups and we make
extensive use of character theory. W. Burnside gives a necessary and sufficient
condition, in terms of group characters, for an element of a finite group to
be a commutator. We make a generalisation of this result and prove that if
G is a finite group with irreducible characters xl, seeey xh and conijugacy
classes Cl, ceeny Ch’ then there exist 83 ggcl(i) for 1 € 1 & n such that
g18y e gne){' (G) if and only if

h . . :
R e iy ooen g 63N § o



As a corollary we show that £18y oo gne ){(G) if and only if for all ry
such that (ri, Igil) = 1 there exist xiezG for 1 £ i ¢ n such that
X, r, X r X
g, ... gi-ll 1 (g:.L L i giﬂiﬂ' cees B n 6){(G). This is a generalisation

of a result of K. Honda.

It is unknown whether or not every element of a non-abelian finite simple
group is a commutator. We show that three of the sporadic simple groups have
this property and we give a list of references, where the truth of this

conjecture can be shown, for other simple groups.

One of the difficulties in tackling the above conjecture concerning simple
groups is the lack of knowledge concerning the number of conjugacy classes in
a simple group. Non-abelian finite simple groups seems to have few conjugacy
classes with respect to their order and we finish by investigating a related

situation that occurs frequently in simple groups.

an abelian
Let G be a finite group with / subgroup M such that any two non-identity
elements of M are conjugate within G. This situation was first investigated
by A. Fomyn and we extend his results. Let G have irreducible characters
h

xl, x2, «sses X and let 8 be a non-principal character of M. It is easily seen

that (inM, e)M = fi is independent of 6. Our main result is the following;

Suppose that fi l.for 2 £1i gh, then M is a Sylow 2-subgroup of G and,
either  6/0,,(6) ¥ PsL(2, 2")
or || =2, 6=6" )\ ¥, G' is abelain and g" = g-1 for every g¢G',
where 1  meM.
We also investigate the situation when M @ G. Here there is a close relationship
between I(8) and CG(m), where 1  mgM. Indeed, if M is a normal Sylow
subgroup of G, then we show that to each 6 there exists an m such that
1(8) = CG(m) and vica-versa. Whilst we are. proving this we obtain information

concerning the fi's. Finally we consider the rather restricted case that

M is a normal Sylow subgroup of G such that G/M is abelain. We obtain a

classification of such groups.




NOTATION AND TERMINOLOGY

If G is any group then,

G' is the commutator shbgroup of G, [é, ﬁ] = a-l b-l ab,

Z(G) is the centre of G and

){(G) is the set of commutators of elements of G.

(3 is the class of groups G such that G' = }(RG).

d(G) is the minimal cardinality of any generating set of G.

Suppose H is a subgroup of G. Then,

H4G means H is a normal subgroup of G,

NG(H) denotes the normalizer of H in G and

CG(H) denotes the centralizer of H in G.

Suppose {gi|iE:A} is a set of elements of G, where A is any index set. Then,
<gi|i€;A> denotes the subgroup of G generated by the {gi}.

g; ~ ¢ 85 means that g; is conjugate in G to gj. If the group, G, under
discussion cannot be mistaken then the G may be omitted.

<gi‘ieA>G denotes the normal closure of the {g;} in G.

If G is a finite group, and m is a set of primes, then ou(G) is the largest
normal subgroup of G whose order is divisible only by primes in w.

Let ®' denote the complementary set of primes to w. Then, 0",(6) is the
largest normal subgroup of G whose order is coprime to the primes in w.
If H and K are any two groups, then,

H x K is the direct product of H and K,

H AKX is a split extension of H by K and

H K is the ordinary wreath product of H with K.

Hom(H, K) is the set of homomorphisms from H to K.

Let G be a finite group.

When we refer to an irreducible character of G we mean an irreducible

character over the complex numbers.

2 ~
xl, X s evessy xh denote the irreducible characters of G,



Cl, cacey Ch denote the conjugacy classes of G and xji is the value of xi
taken on Cj'

xl is the principal character of G and C, = 1. Ker ) = {geclx(g) = x(1I,
the kernel of the character X.

Irr (G) is the set of irreducible characters cf G.

F(G) is the group algebra of G over the field F and Ei is the class sum of

c; in F(G).

1f H is a subgroup of G and 6& Irr(H), then 6% is the character of G obtained
by inducing 6 up to G.

If H <G and g&G, then 6% is the irreducible character of H defined by,
88(h) = G(ghg-l), where he H.

1(9) = {ge Gleg = 6}, the inertial group of 6.

GL(n, F), SL(n, F) and PSL(N, F), are respectively, the general linear, special
linear and projective special linear groups of degree n over the field F.
sp(n, F) is the Sympletic group of degree n over the field F and STL(n, F)

is the group of upper unipotent matrices of degree n over the field F.

Cn is the cyclic group of order n.

If X is a field containing the field F, then G(K, F) is the Galois group of
K over F.

T, R, Qand Z afe, respectively, the complex, real and rational and integral
numbers.

I1f a, 8 € Z_, then (a, B) is the highest common factor of a and B and

a|8 means that a divides 8.

o = a0 where % is a power of the prime number p and (ap, ap.) = 1.

Our notation is, hopefully, standard and has been drawn from the boocks of

J. Dixon [6], W. Feit [9] and D. Gorenstein [16].



Chapter 1. Introduction and Review

It is well known that the commutator subgroup of an arbitary group need
not consist entirely of commutators. The majority of this thesis is taken
up with proofs that certain classes of groups are contained in the class (2 v

the class of groups whose commutator subgroups consist entirely of commutators.

Conversely, we also investigate conditions necessary to a group that

belongs to(?-

It has been conjectured that all finite simple groups belong to (3 and
we demonstrate the truth of this for various simple groups. A direct proof
of the above conjecture is beyond our means at the present. In the final
chapter we obtain results concerning finite groups with a small number of
conjugacy classes. These are the sort of results that will be useful in

trying to prove the conjecture.

We are primarily concerned with finite groups, though we do show that

certain classes of infinite groups are contained in (; .

Trivially, is G is an abelian group, then G € C? « If not abelian, the
least complicated structure a group G can have is that of the commutator
subgroup G' being cyclic. 1In [92], I. D. Macdonald considered such groups and
he showed that such a group need not be generated by a commutator. Indeed,
Macdonald shows, by example, that given a natural number n there exists a

group G such that G' is cyclic of finite order and G' cannot be generated by

less that n commutators.

In Chapter 2 we continue the study of groups with a cyclic commutator
subgroup. We show that if G is a group with a finite cyclic commutator
subgroup then, even if G' is generated by a commutator, it is not
necessarily true that G EE(; . We give examples that demonstrate this.

(It is from Chapter 2 that the author's paper [39] is derived.)



There are several ways we may increase the complexity of the groups

Al

wnder consideration.

In [31), I. D. Macdonald considered the following subgroup of the
commutator subgroup. Let G be a group. Then we define the subgroup H(g),
where g€ G by,

H(g) = <Eg, x]

Macdonald proves the following result.

X g G>,

Theorem. Let each subgroup H(g) of the group G consist of commutators of the
form Eg, x] , and let G be such that the minimal condition holds for the
subgroups H(g). Then a non-trivial element of each subgroup <g>G lies in the
centre of G, provided that g i:'l.

Corollary. Under the hypotheses of the theorem G is a ZA group. (By a ZA
group is meant a group with an ascending central series which eventually
exhausts the group.). Macdonald also shows that neither of the following two.
conditions implies the other:

(i) G' consists of commutators.

(ii) For each g€ G, H(g) consists of the commutators [g, x] as x varies in G.
Whereas many finite non-nilpotent groups satisfy (i), by the above corollary
no finite non-nilpotent group satisfies (ii). (e.g. The Alternating groups
An’ where n 2 5 (c.f. N. Ito [27].) Macdonald gives an example of a
finite nilpotent of class two group G such that G does not satisfy (i).
Such a group necessarily satisfies (ii).

The example given by Macdonald, of a finite class two nilpotent group

G such that G ¢ G is a generalisation of an example in R. D. Carmichael's

book [u. p.39]. If H denotes the example in [u] , then d(H') = 4. In

Chapter 3 we show that this example is in some sense minimal and we prove the

following result.



Theorem 3.1. Let G be nilpotent of class two such that G' is finite and

d(G') € 3. Then G 68 . From here we try to generalise to G being metabelian.

We are able to prove the following.

Theorem 3.2. Let G be a finite group such that G' is elementary abelian of
order p3. Then G € C . It may be true that Theorem 3.2 extends to G'
being a rank 3 abelian p-group but we have been unable to verify or disprove
this. Another possible line of approach is to consider a Sylow subgroup S

of a finite group G and to investigate S dx}G). We discuss this in Chapter 3.
Various people have considered particular classes of groups and have shown
them to belong to the class(g. We list several of them.

In [43], [#4] and [45] R. C. Thompson shows that GL(n, F) € G and

PSL(n, F) €5, where n is any natural number and F is an arbitrary field.

In [3u] , 0. Ore considers the.symmetric groups. If Sn is the symmetric

group on n symbols, then S'n £ A, the altermating group on n symbols. Ore
shows that Sne G . Let S be the infinite symmetric group. Ore shows that
se@ , by showing that any one-to-one correspondence of an infinite set to
itself is a commutator.

N. Ito in [27], shows that A € (0, ifn 2 5. (Since A, ¥ A forn 35,
this is a strengthening of Ore's work and, indeed, Ore claims that this result

is true though he does not prove it.)

Following the path of permutation groups we come to the work of
C. V. Holmes [21] . He considers the related idea of monomial substitutions.
Let H be a group and S a set. A monomial substitution over H is a linear
transformation mapping each element x of S in a one-to-one manner onto some
element of S multiplied by an element of H, the multiplication being formal.
If substitution u maps x, into hjxj while substitution v maps X3 into hx s

ituti
then the substitution uv maps X into hjh.kxk.



Suppose that S is an infinite set. Then the set of all such monomial
substitutions is the infinite complete monomial group generated by the given
group H and the given set S. The commutator subgroup of the infinite complete
monomial group is itself and Holmes shows that every element is express.{bIe

as the product of at most two commutators.

Qin Jian-Min, in [36], considers the orthogonal groups over the complex
numbers, denoted by O(n, T). The matrices of determinant one in O(n, ),
form the subgroup SO(n, L). Qin Jian-Min proves the following:

Theorem. Every element of SO(2, L) is a commutator of 0(2, L), and every

element of SO(n, T) is a commutator of SO(n, T), when n 3 3.

Similar results are obtained by H. Toyama in [47]. Let SU(n, T) denote
the unimodular unitary group of degree n over L and USp(n, L) denote the
unitary symplectic group of degree n over L. Toyama proves the following:
Theorem. Every element of SU(n, L), USp(n, L) and SO(n,R) except for
s0(2, IR) can be expressed as a commutator of two suitably chosen elements

belonging to that group.
Xu Ch'eng-Hao [53] continues this work and he shows that Sp(2n, ) € C) .

Information concerning the above linear groups may be obtained from [6] .
Ts'eng K'en-Ch'eng and Hsu Ch'eng-Hao, in [ue] » show that the Suzuki groups,

discovered by M. Suzuki in [#2], belong to the class @

Finally, Ts'eng K'en Cheng and Liu Chiung Sheng, in [49] » show that the
two Mathieu groups M;, and M,, belong tothe class 3 (We have been unable to
track this paper down and we have obtained this information from Maths.

Review Vol.36 :#: 270J

Along these lines we show, in Chapter 4, that the unipotent groups

over any field belong to the class G .



We now describe a result known to W. Burnside and developments from it.

Suppose G is a finite group, with irreducible characters )(l,)(z,....,xh
- h
over L. Let g€G. Then, g Q’){(G) if and only if Z xi(g)/xi(l) # 0.
i=l

(c.f. E3.p.319] .)

As a corollary of this K. Honda proves, in [22] » that in a finite group

G, g E_'){(G) if and only if every generator of <g> is a commutator.

In [14:[ P. X. Gallagher generalises the character inequality. He also

extends the class of groups under consideration to compact groups.

So let G be a compact group. We let (xi} be the irreducible characters

over [ and let f, = xi(l). Gallagher proves the following results.

Theorem. Suppose IG : G'l is finite.

1f Z fi(2-2n) <]6: G'l, then each element of G' may be written as a
£,22
i/

product of n commutators.

Theorem. Suppose |G : G'| is finite and assume there is a finite or infinite
sequence of elements {'rn} such that for each character xi with
fi 3 2,xi'(rn) = 0 for some n. Then each element of G' may be approximated

arbitrarily closely by products ["rl, ll] [1'2, Z,;J....l:tn, ln], ‘ll, coue lnE; G.
Lemma. Let G, Tyy eove Ty Zl tene ‘ZnQ,G. Then,

i - —-— —
[ eeee Ix (o[rl, Zl] ....[Tn, zn])dzn ceee Al = £ n Xi(‘r"-Tn")X(Tl)u--x(‘l’n)
and
[oeee Il 2] woi[r, LAt ar oL atjar = fi-zn (o).

(Information concerning the above Haar integrals may be found in [33] )
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Gallagher shows, as an easy consequence of the lemma, that ¢ £C is a

product of m commutators if and only if } fil—Qm x(o) % o.

i
X

Applying this work to finite groups Gallagher proves the following

results.

Theorem. Let G be a finite group such that TN ]G'I. Then each element of

G' may be written as a product of n commutators

Theorem. In a finite group G each element of G' may be written as a product
[-;1, ll] ....['rn, Zn], where Tl’ caeny Tn are zeros of irreducible characters.

Gallagher continued this work in [;5]. He proves the following results.

Theorem. Let G be a finite group. If (n + 2)! n! > 2|{G'| - 2 then each

element of G' is a product of n commutators.

Theorem. If G is a finite p-group, with |G'| = p%, and if n(n + 1) > a, .

then each element of G' 'is a product of n commutators.

We investigate the result of Burnside and the work of Honda in Chapter 5

and we make some small generalisations of their results.

As we have already mentioned it is an open question whether or not every
element of a non-abelian finite simple group is a commutator. Three reasons
for believing the truth of this conjecture are:

(i) Many finite simple groups are known to have this property. (See the list

earlier in this chapter as well as Chapter 6.)

(ii) The value taken by a non-identity element g of a non-abelian finite
simple group on a non-principal character tends to be very small in absolute
size when compared to the degree of the character. Consequently, the

character inequality in(g)/xi(l) $ 0 is likely to hold.
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(iii) An element of g of a group G is a commutator if and only if there
exists an h €6 such that gh is conjugate to h. Intuitively, the smaller the
number of conjugacy classes G has, the more likely this is to happen. We
observe that the number of conjugacy classes in a non-abelian finite simple
group tends to be in some sense "small" in comparison with the order of the

group.and thus leads us to expect that every element is a commutator.

The latter two reasons show the way progress may be made on this problem.

We have been unable to make any progress with regards to (ii).

However, in Chapter 7, we consider finite groups with "few" conjugacy
classes and we obtain several results. We consider the following situation.
an abelian
Let G be a finite group with / subgroup M such that any two non-identity
elements of M are conjugate within G. This work was initiated by A. Fomyn
in [12] and ve generalise his results. A considerable amount of work has

been done in this area, the most significant contribution probably being

that of G. Higman in [20] .

To end this review we mention a few properties of the classe .
J
Suppose Gl’ G2 G,C . Then it is readily seen that Gl x (;2 Q@ . It is
also apparent that if Hl<l G, then G, /Hy QG - However, if H, is a subgroup
of G, this does not imply that H, QG . e.g. N. Ito, in [27] » shows that
the Alternating groups An’ for n 3 5, belong to G . Given a finite group

G é@ we can embed G in An for n sufficiently large.

P
Finally, we observe that if Gl €5 and Gl is isoclinic to G3, then
G, 68 . This is a direct consequence of the definition of isoclinism
which is:

Groups A and B are isoclinic if,

"ne

(1) A/z(A) B/Z(B)

(1) A' * B' and
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(iii) 1If alZ(A) and azz(A) correspond to blZ(B) and b2Z(B) respectively
under the isomorphism given in (i), then [al, 32] corresponds to [bl, b2'_]

under the isomorphism given in (ii).

Throughout this work we make extensive use of the commutator identities,
[ab, ] [a, c]b [by ¢l ana
[a’ bc] [a’ VC] [a’ b]c’

without any reference to them.
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CHAPTER 2 GROUPS WITH A CYCLIC COMMUTATOR SUBGROUP

In this chapter we investigate groups with a cyclic commutator subgroup.
In 2] I. D. Macdonald shows that a finite cyclic derived subgroup G' of an
arbitary group G need not be generated by a commutator. This leads one to
ask whether a finite cyclic derived subgroup that is generated by a commutator
consists entirely of commutators. .We show that this is not necessarily true
and give examples thaf demonstrate the fact. However, we prove the following

theorem,

Theorem 2.1 Let G' be cyclic of finite order and assume 4 f |G’|. Suppose
G’ = <c>, where ¢ = [a, b]. Let u and v be integers such that ¢ = ¢ and
cb = ¢Y. 1If one of the following four conditions fails to hold for every prime

divisor p of |G!], then G’ consists of commutators.

I u-1:=0(p),v=-1zs0(p); II w=-1:0(p),v~-1%o0(p);

11T u=-1%f0(P),v=-1=0(p); IV u-1%o0(p),v-1%o0(p).
As a corollary we obtain the following generalisation of a result in kﬁ].

Corollary 2.2. If G’ is cyclic and either G is nilpotent or G’ is infinite,

then G'! consists of commutators.

Before we can give the proof of ‘the theorem we need to prove the following
two leumas.

Lemma 2,3 Let m = mm, ... m , where mi(:ﬁlfor lgig<nand (mi, m,) =1 if

3
i § 3. Given integers £;, L; for 1 € 1 £ n such that af; + 65, + vy = 0(my),

then there exists integers £ and [ such that af + B8 + y £ O(m).

Proof Llet & = (a, B) = ka + I8 for integers k and 1. Then (8, mi) divides v.
Since the m; are coprime, it follows that (6§, m) divides y. Consequently,
there exist integers r and s such that r§ + sm = y. Letting £ = -rk and ¢ = ~-rl

we have that af + 8 + v = O(m),
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- a_ '
Lemma 2.4 Let c = [a, b], ¢® = c* and P = ¢’, where u, v ¢ 7/ and neither u

nor v equals 1. If a, B, v, §, € and ¢ are non-negative integers, then

[aabBcY, ab cﬂ s c , where

b= (8] - ot ¢ S Sy - iy,
Proos: |a%8cY, a%tct] = [a®BeY, of] [amBeY, a%f]°

T G R | I M R

e, oAl asbj"eﬁ, Al

a8, e, o L.aﬂ e he, Tl

I;abss Cﬂ (3", bJ E’ > a] [Y E] (2.4.1)

Now, ~ ' (¢-1)
[aubsy Cﬂ ..aaan c(¢-l)][aab8o Q]C

= [a%®, V] [a%8, o

"
-
0

"

o B
_aab ’ C ¢ . (2.""02)

Secondly
[c, aﬂ = [co 3(6-1).]{[5: a]}a(é-l)

- [ KOS PRTSIRY (8-

- c(u'l)(l+u+...+u(6'1);

8
. (u=1)
=c . (2.4.3)

Similarly
€ '
el . (v -1)
[c. b] =C . (2."".“)
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Finally,

[a®, 5]

'aa’ be-g ['au ﬂb(s'l)

- [0, v [, b]a(q-l)[aa-l’ b]}b“'l’

B - (a-2 -
.aa’ be l]{[a, bJa [s) ) b(e l)

1)
la, 817 ... [a, B])

- - (a-1) (a=2) (e-1
= _aa’ be ]J{cu cu * cee C}v ¢ )

[, pe-i] L0076y D)
- LD/ e L w5

- 1)/ (=1 H(vE-1) /(v-1))

= (2.4.5)
Consequently,
[_aabs, cﬂ = [ao'be, CJO, by (2.4.2)
- B R
= {[_au'c b ’ [be' J}¢
. {cu-u“‘)\»B c(l-vﬁ)}qs’ by (2.4.3)  and (2.4.4)
o Sy (2.4.6)
Similarly,
S ¢
[..cY’ aﬁbej = cY(u v 1) L] (2.”‘.7)
Finally,
a e’]bs %=1 /Cu=-1)1{(vE-1) /¢ b
[a Wb = {c A atits TR (2,4.5)
= =171 H(vE-1) /(v-1) 0P
. (2.4.8)

In a similar fashion,
3

b
8, o8] = (P D/e DM -1 1 (2.4.9)
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Substituting (2.4.6), (2.4,7), (2.4,8) and (2.4,9) into (2.4.1) we see that
E‘;t“bBcY, a becﬂ s c s Where

§ B
_ §.e_qy _ a 8_ u'e1, vEe1 u -1 v =1
= y(uv=1) = $(uv-1) + (/% = =) l) - (=F) S l)v

q.e.d.

Proof of Theorem 2.1. It suffices to show that the group <a, b> belongs to(g .
So we assume G = <a, b>, Now cACZKKG) if and only if there exist non-negative

integers a, B, Y, §, € and ¢ such that
[;athY, asbec§] = cx

If u =1, then [a“, b] = ¢® for all integers a, which implies Géi(g .
Similarly, if v = 1 then G E.(g . Thus we need only consider the case # 1
and v § 1. By Lemma 2,4, the proof is reduced to the following: given
re 7., 1 € A & |6'], we must find non-negative integers a, 8, v, 6, € and ¢

such that
Y(uG\’e-l) - ¢(uu\)8-1) ( u-l)( v-l) u:l)(\. )\)e H A(IG I)o (2.1.1)

The proof continues on the following lines: given A, we find suitable
values of a, B, 8§ and €, depending on which of the conditions I to IV is

assumed not to hold for all prime divisors p of |G’|, and for each p we find

(p)

integers Y(p) and ¢ such that

Y(p){“ e.) - ¢(p)(uavB 1) + [uu-l)(vv-l] W - 0 u-l)(vv-l)v A(lerlp).

Then,by Lemma 2.3, we claim the existence of y and ¢ such that the congruence

(2.1.1) holds.

There are four cases to consider. For brevity of notation let us denote

the left hand side of (2.1.1) by f(y, ¢) after a, B, § and € have been chosen.
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Case 1 For each p, condition I does not hold, let a=¢ =0, 8= 6 =1,
Then, £f(y, ¢) = y(u = 1) = ¢(v = 1) = 1, Now for each prime divisor p of
|G| either u -1 $£ 0(p) or v - 1 # O(p) by assumption. Consequently, there
exist Y(p) and ¢(p) such that f(Y(P), ¢(P)) = A(IG'IP) for each prime divisor
p of |G'|. By Lemma 2.3, there exist y and ¢ such that f(y, ¢) = A(lG'I) as

required.

case 2 For each p, condition II does not hold. By a result of K. Honda P4,
c is a commutator if and only if every generator of <c> is a commutator. Thus
by induction on IG'I, it suffices to show that for each prime divisor q of
le?], P [éq‘ bq? for some as qu,G, and for each prime divisor of

|<aq, bq>'| condition II does not hold. (Clearly the induction starts when

|6!| is prime.)
let a =1, B=6=0and € = q. Then,

, .
£y, 8) = yO3-1) - $u-1) + (D).

For each p such that III or IV‘holds, let Y(p) = 0 and choose ¢(p)
such that
Q.
£y P, oY) = <p®lue1y + (D) = acler)). (2.1.2)
For each p such that I holds let ¢(p) = 0. Then we have
a
f(Y(p), ¢(p)) - y(p)(vq-l) P

v=1

(1+v+v2+ ceeo +vq-l)(y(p)(vvl) +1)

(1+(14k) + .00 + (1+k)q'l)(y(p)k +1),
where k = v = 1

(q+%q(q-l)k+k2h(k))(Y(p)k+l),

where h(k) is a polynomial in k

a + YP(arala-1k + K2n(K)) + 3ala-1k + k*n(k).
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(p) ,(p)

Thus we have f(y $F7) = q(IG'lp) if we can find Y(P) such that

y(p)k(q + 3q(q-1)k + k?h(k)) + 3a(q=1)k + K°h(k) = O('G'Ib)
We can do this if and only if
d = (k(q + 3ala=D)k + k°n(k)), le*];) | Gale-1)k + k%h(k)).

Because p satisfies condition I and k = v = 1 we have that plk.
If q $ p then 4 = (k, lG'Ip) and

“(k, |G'|p) | (%q(q-1)k +k2h(k)).
If q = p § 2 then d = (kp, IG'IP) and

(3p(p-1)k + x2h(k)).

(kp, 'G"p)
Finally, if @ = p = 2, then, since we assume that 4 * |c?|, we have that d = 2
and 2|(k + k2h(x)),

Therefore we can find Y(p) and ¢(p) such that

. q_ |

By applying Lemma 2.3 to the congruences (2.1.2) and (2.1.3) we deduce that
there exist y and ¢ such that f(y, ¢) = a(]6']) and so c? is a commutator.
Since a = 1,

q ¢
and cb €z

Y

B =8 =0and € = q we have that el = [acY, chﬂ. Now ¢2¢ = M
q

c“-, so for each prime divisor of |<acY, ch¢>'| condition II does

not hold, completing the induction.

Case 3 For each p, condition III does not hold. Let a = q, 8 =48= 0 and
¢ = 1 giving

Cf(y, ¢) = y(v-1) - $(ui-1) + (Egz%).

The proof follows by an argument analogous to the one used in Case 2.

Case 4 For each p condition IV does not hold. The proof is, once again, on the
same lines to the ones used in Case 2. Let a =B =1, 6§ =0 and ¢ = q, where

q is a prime divisior of le*f. Then,

a.
£0y, #) = y(vi-1) ~ ¢(uv-1) + (3;:%)v.
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For each p such that II or III holds let y(p) = 0 and choose ¢(p) such that

a_
£(yP), 6@y = 4Py 4 oo

a(|e’lp).

For each p such that I holds let #®) = 0. Then we have
f(Y(P)’ ¢(p))

q_
P i1y + by

(1+V4+ oo +vq-l)(v(p)(v-l) + V)

(1+(14k) + o00 ¢ (1+k)q'1)(y(p)k +k +1),

where k = v - 1

(q+3a(g=1)k + k2 (k) (P

k +k +1),
where h(k) is a polynomial in k
q + y(p)k(qﬂ,q(q-l)k + K2n(k))

+ k(g+3a(g=1)k + k°h(k)) + 3alq=1)k + k2h(k).

), +(P)

So f(Y(p q(lG'Ip) if we can find y(p) such that

y(p)k(qf}q(q-l)k + K2n(k)) + k(q+3q(q-1)k + K2h(k)) + 3q(q-1) + k2h(k) = O(lG'|p)-

Similarly to Case 2 we can do this if an only if

d = (k(q+lqla~1)k + k2h(K)), le],) | (k(a+ia(a-D)k + k2h(k)) + 3q(q-1)k + k2h(k)).

Now 4 certainly divides k(q+3q(q-1)k + k2h(k)) and so we have to show that d
divides (3a(g-1)k + k?h(k)). This was established in Case 2. As in Case 2 this
implies that % is a commutator, Moreover c? = [abcy, chﬂ and it is easily
seen that for each prime divisor of |<ach’ ch¢>'| » condition II does not hold.

q.e.d.

Proof of Corollary 2.2 By a result of pi], G’ is generated by a commutator.

Suppose first that G' is finite and G is nilpotent. By an argument in [.] we
may assume that G is finite,

Now G being finite nilpotent implies that G is the direct product of its
Sylow p-subgroup and consequently G &G is and only if SF ¢ G s Where Sp is

any Sylow p-subgroup of G.



If p } 2 then, by Theorem 2.1, §, € Q.

I£p = 2 let (5,)' = <>, ¢ = [a, b] and & = &M

It suffices to show that e ‘K(sz).

If y = 3(4) we consider [c, a~_| = cu-l. By the aforementioned result of Honda,

cu'lg'K(S2) implies that c2G'K132).

H and similarly conclude that c2E'sz2).

If u = 1(4) we consider [22, b] = ¥
This completes the proof of the case that G’ is finite and G is nilpotent.
Next we suppose that G' is infinite. Let G’ = <c> and ¢ = |:a, b:I-. Now
Fzcorcd=ct 1fc®=c then [a%, 5] = ¢® for all integers a and

consequently GEQ. Similarly of cb = ¢ then G&C. If 2 = cb s c-l we

consider E>, ab ceee ab] vhere there are a occurences of ab in the commutator
b, &b ... ab]. ,
Now [b, ab ... ab] = b, y] [b, ab]Y,

where y = (ab)*™1
by 3] By 8
B, v (H™
[bs i.lc

cu, by an obvious induction.

Consequently Ge‘c, which completes the proof of the corollary.

We give examples to show that the theorem cannot be greatly extended.
First we exhibit a class of groups G in which all of the conditions I to IV
arise and G is disjoint from thel class ’:.

Let p be a prime, From Bo, PP 249-251] we know that there exist p + 1
distinct pz*:i.mes{qi t1si€p+ 1) such that q; = 1(p) for each i, The
multiplicative group of non-zero elements of GF(qj), the Galois field with

ay elements, is isomorphic to the cyclic grouwp Cq -1» of order qj-l ['j, PP u9-51:|.
3

th i
By our choice of qj’ e mapping that sends every element of qu-l to its

p th power is a homomorphism with a non-trivial kernel. Consequently for each
prime 9 there exists an "j such that w:l ¢ l(qj) and wjp g l(qj), We define G

to be the group generated by a and b subject to the following relations:



- 21 -

I:a’ b] = Cy |<C>| H pqlq2 s0cee qp+1,

¢? = ¢” and ® = ¢ where r, s € {/ are determined by
r = 1(p) s = 1(p), r = l(ql) s = wl(ql),
rz wy(gq,) s =1(g) and r = wj(qj) s = wj(J-z)(qj) for 3 £J ¢p + 1.

We show that cpé'K(G). By Lemma 2.2 ¢ P€ K(G) if and only if there exist
non-neéative integers a, B, v, §, € and ¢ such that

s B
L Ehs s pller) (2.1)

Q €
y(e8st-1) - o(e%P-1) +E=hEhst - (&3

We denote the left hand side of (2.1.4) by f and the four terms of f by

Xys Xps X3 and X, respectively., Now f = p(|G'|) implies that

(1L}

£ z0(p), £ P(ql). P(q2)o ceees £ 2 P(qp) and f = p(qpﬂ) simultaneously.

1 2%

- %, = O(p) if and only if ce - &8

Now % o(p) for every choice of a, B, Y, §, € and ¢, Furthermore,

% O(p). Since f = X) = %X, + X

3 37 Fyo
we require this congruence. If a = 4§ = o(p), then f = O(qz). So we may suppose

that o ¥ O(p). If B = O(p), we must have € = O(p) to ensure that ae - 68 z o(p),

but this implies f = O(ql), so 8 $ 0(p). By our choice of primes

{qj :1¢3j €p + 1}, there exist q, such that %P = 1(qk). We show f = 0(qk),
which gives the desired contradiction. If é = O(p), we must have ¢ = O(p), to
ensure that ac = 88 = O(p), but this implies f = o(qk). So we may assume that
& § 0(p) ¥ €. Consequently there exists A& Z such that & = Xa(p).

So ae - 68 = O(p) implies that ae - XaB = O(p) and € = A8(p).

Thus 2 5° = 0°%*8 = (2%P) *=z1(q.), which implies X, E x, = 0(q)).

a € B
-1 -1 -1 -
Now X.. = X, = (E——-—)(E——-)sa - (L—i-)(__ss-i)se

3 4 r-1"" s-1 O(Qk) if and only if

| (zs"'-].)(s‘:--l)sB - (r8-1)(sPe1)s® = 0(q, )

Now, (ra-l)(se'l)sB - (rs-l)(sﬁ-l)se

rusue_rasa - s5tB 4 B p0getB | Se

1]
™

[{1]
(]

(qk).

So, f O(qk) which implies cp¢)((G).

1]



- 22 -

The constraint 4} |G'|.If condition I is assumed not to arise in G ,then the

constraint 4 4|G'| may be dropped.This is easily seen by referring to the proof
of Theorem 2 .1.However ,the constraint is needed for each of the other three cases,
as we now demonstrate.
Since we are demonstrating the fact that the prime 2 acts differently from other
primes ye obtain explicit examples of groups rather than a whole class as in the
previous example.
Iet G = <a p|[ab] = c,cP =1, czg,cb = oM,
Because 60 = 4.3.529~- 1 £ 0(2) 11-1 = 0(2) 2¢6-1 ¥ o(5), 111 = o(®)
0o-1% 0(3) and 11-1% 0(3) , G is such that condition IIdoes not hold for each
prime divisor of |G'|. A similar argument to that of the previous example shows
that C2§,7{(G).
By symmetry, 4 4|G'| is essential when condition III is assumed not to arise
for ed ch prim divisor of IG'I .
In a similar fashion one can show that if

G = <ab|[ab] = ce® = 1,6% = 0P = M,
then c2¢){(é)- This shows that 4}|G'| is an essential constraint when condition IV

is assumed not to hold for each prime divisor of |G']|.
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Chapter 3 METABELIAN GROUPS

If not cyclic the least complicated structure the commutator subgroup
can have is abelian and it is to such groups that we now turn our attention.
There is a relatively well known example of a nilpotent of class two group
G of order 256 such that G’ is elementary abelian of order 16 and Gé G
(c.f. R. Carmichael EF-p.SQ:I). We will show that this group is in many ways,
minimal with respect to not belonging to the class G. Indeed we obtain the

following vresult:

Theorem 3.1 Let G be nilpotent of class 2 such that G' is finite and d(G') g 3.

Then G' consists of commutators.

Proof: By an argument in {51] it suffices to assume that G is finite. Now G
is finite nilpotent if and only if G is the direct product of its sylow-p-subgroups.

Thus it suffices to consider G a p-group.

Let G = <ai|1 €1ign). If cij =E1i, ag, then, because G' is an abelian
p-group, we may select a minimal generating set from the cij's. We consider

the various possibilities that may arise in turn:

1 =
Case 1 G <912>

a
Here we have that ¢,,” = [al. azaJ for all integers a.

! -
Case 2 G = <c12, ?13>.

a B . o
Then, ¢,, €5 * [al, a, asﬁ_], for all integers a and 8.

Case 3 : G' = <¢

. B, .
- ij ij
Th\-xs cij s 012 Cay .

12° Say>°

let (i, e {(1, 3), (1, W), (2, 3), (2, W),
If %3 $ O(p), then there exists w ¢ Z such that

. w _ ijw Bijw
cij = ¢y, Cay and oy 40 = 1(|c12|),
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Consequently G' = <cij’ Cqy>s which is a presentation of the form discussed in
Case 2.
Similarly, if Bij # 0(p) we are reduced to Case 2.

Consequently, we may assume that for

We consider [alaa, a SJ 12 1y 23-%3“B

. a(l-a23) + Bay, . ~oB,, + B(l+314)
T 12 3y *
m :
Let p" = max {|c12|, |C3q|}-
. s
Then, for any integers r and s, °l2r Cqy € W(G) if there exist solutions to

the equations

(1 - a23)a + uluB = r(pm) )
Com ) (3.1.1)
~Byqe + (l-+81u)8 zs(p) )

Because @, = B,9 % 0, = Biy = 0(p) we have that
l-a o
. 23 1 £ o(p).
- 823 1+ Qlu

Therefore there exist solutions to the equations (3.1.1), completing the proof

for Case 3.

' =
Case 4 G <Cyps €33 c14>'

o B Y . a B .
Then °12 013 cl'-l» - £al’ 32 33 a‘n] » for all integers a, B and y.

! =
Case 5 G' = <C1pr C1g0 O3>
We have to show that cl2r °13s c23t e_RZG) for ry, 5, t, €4

- A -
letr=rp, 8=8 p"l

and t = ?pc, where (T, p) = (s, p) = (%, p) =

We may assume without loss of generality that u = min{), u, r}. We consider

[a,a,% a Ta®] = ¢,.7 ¢, ¢,."%. since (3, p) = 1,

135 ¢ 35 3 12 13 (23 . p) = there exists a such that

= (Z-u)
= Let o = - r 8 t

TS t(|c23|) ap . Then [ala2 » 8, a =)y C13° Cpg s 88
required.
Case b ' =
= G = <cigr cqyr o5
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a, B, Yoo
- ij i3 ij
Let cij = c12 Cay 13 .

Similarly to Case 3 we need only consider the case where the following

restrictions hold:

(1) oy, = o(p). (Otherwise a reduction to Case 5.)
(ii) Gyq z o(p). (Otherwise a reduction to Case 4.)
(iii) 814.5 o(p). (Otherwise a reduction to Case 4.)
(iv) 823 =z o(p). (Otherwise a reduction to Case 5.)

Let p = max{|c12|, |c3u|, |cl3|}.

Given r, s, tﬁ..ZZ , we show that we can find a, B, Y EZ such that

[a,a,, @ @ 8 8 ...%,
2,345 35 85 u u 13
8 Y -0 Y
Now [a)a;, az 3 u?] 13 Sy 3 Cay
i (1-a,, Jo + aluy . (l+Blu)Y - B0 B+ ¥3,Y = Yyq
= %2 34 €13 .

So, we need to show the existence of solutions to the equation

(1 - a2s)a + o,y E r(p™) ;
- 8,50 + (148,,)y = s(p™) ; (2.1.2)
= Yyqt + B *Y,Y 2 t(p™ )
Because &, = O,q = By ¥ Byg = 0(p) we have that
1- @, 0 1y
-8By O (l+31u) £ o(p), and, consequently,
Yy 1 1y
we may solve the equations (2.1.2) completing the proof for Case 6.
)
Case 7 G' = <cips Cgy» 5>
(] 8 (e
let c;, = ¢ 13 c 1 c 13
1§ © 12 34 15
Similarly to Cases 3 and 6 we need only consider the case where
o13 = %y = %35  Oys  Bpg ¥ Bpy = Bgg T Byg T Yy5 T vy, T ¥y 2wy, =0(R)

(Otherwise a reduction to Case 6), 813 = Blu = 0(p) (Otherwise a reduction to

Case 4) and B, % 0(p) (otherwise a reduction to Case 5).
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Let p" = max{|c12|, Icaul, |c15|} . ..and - consider

a_B.v - a a g 8 Y Y
[a,%a, 25" s a,35) = e e15 S S5 gy g5

ooy tags)tagey By t(By ¥Byg H(1eBagdy (g, Jolygytvps Mtvggy
12 3 15 :
So, given r, s, t €7/, there exist a, B, Y € /[ such that

=cC

- r s t
[élfazBaéY’ aac] = € S3y ©5 if we can solve the following equations:

@, ot (azu’+ Gyg) B+ 4yeY = r(p™) ;
Byy @ + (By, + Byc) B+ (L4B 0Dy = s(p™) ) (2.1.3)
(Ltyy,)e + (Yo + Yps) B+ ey 2@ ) .

If o, * Cyg £ o(p) then

Gy %y T % %35
By Boy * 825 1+B35 £ 0(p), and solutions exist to the
Y, Yoy t Yos Y35 equations (2.1.3)

So we are left to consider the case Gy + Apg = 0(p). We consider

o B_ Y = § € ¢
[al a, ag 35, alal\‘as C19 S3y S35 » where

§ = a,0¢ ((112,+ t oy -1)8 - (013 - ass)y - o,

€= 8,0 % (8,, + Byg)B + (1- Big t Bgg)Y - B,g and

¢ = (1 4y )a+ (Yyy * Yp5)8 = (¥y5 - Y35)Y = 1 = Yyge
So given r, s, t €Z.. there exist a, B, ¥ G.l such that

a B Y .. r_ s _t
[)"2; 23850 313,35] = ey gy o5

following equations:

if we can solve the

a0+ (ay,tay5-1)8 - (a)3=ag5)y = N“us(pm) ;
Bpyd +  (By*Bpg)B  + (1-B 448,00y = s48,.(p") } (2.1.4)
(1+ylu)a + (72u+725)3 - (Yl3-735)y z t+l+yus(pm) ;
Because a,, + Oyg z 0(p),
o . Sttt Tugtag
By Bay + Bys 1- 8,5 +8y £ o(p),

(1 + 7)) You ¥ Va5 Y13t Y35
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and, consequently,there exist solutions to the equations (2.1.4), completing

the proof for Case 7.

] -
Case 8 G' = <c12, Cay» c56>.

o, ., B, . Yoo
= ij ij i3
Let 13 C12 " %3y %5

For (i,j)¢€{(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6) (3,5), (3,6),

(4,5), (4,6)}

we need only consider “ij Bij = Yij z 0(p), otherwise we have a reduction

to Case 7.
m -
Let p" = max(lclgl, |c3u|, lcssl}. Similarly to before, given r, s, t ¢ 77
we show that there exist a, 8, ¥ 67,:/_. such that
a_ B - r ] t
[glasas, a, a, aGY] = ¢, ©3; Cs ¢ As before this reduces to showing that

there exist solutions to the equations

- - m
(1 - ayg = opgla + (o, = o, )8+ (ayg + aze)y = r(p)

s(p™) (2.1.5)

- (323 + 825)0 + (1 + 814 - 845)8 + (316 + 636)7

(W R A" A A A i 4

- = m
- (vp5 * Ypgda (v = Yug)B + (1 +7)g + 7yedy = t(p)

Once again the corresponding determinant takes a non-zero value modulo p and,

therefore, solutions to (2.1.5) exist. q.e.d.

We now give two examples of groups that demonstrate the fact that no

generalisation of Theorem 3.1. is easily obtainable.

Let G

1 1>

. 2 -
<ai|1s1s4, a;“=1, G, is class 2 nilpotent, [a2,au] [a3,a4]

[b,.b,]

Now G1 is the aformentioned example from E{] and it is quite easy to show

(c.f. I. D. Macdonald ?]) that [31’8,:] tazsa;l é){(Gl). However, one can

easily demonstrate that G2 g@ .

- 2- [ ] by
and 62 <bi|l‘isu, bi =1, G2 is class 2 nilpotent, lpl’bé] 1>,
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Theorem 3.1 is essentially a statement related to finite p-groups. By
assuming the groups concerned to be nilpotent of class two we were sable to
deal with groups of arbitraryexponent. If, however, we only assume the groups
to be metabelian such that the derived subgroup is a p-group, then we are only

able to handle some cases where the derived subgroup is elementary abelian.

Theorem 3.2 Let G be a finite group such that G' is elementary abelian of

order pao Then G Qe-

Proof. Let S be a Sylow p-subgroup of G. Because G'%S, we have that S4G.
So, by the Schur-Zassenhaus Theorem ﬁé, pp 220-22'4] » G = SMK, where K is a

complement to S in G. Again because G'<SS, we have that K is abelian..

By Theorem 5.2.3 of [!(:J we make the following crucial observation:
= e, xc0 (3.2.1)
We continue by considering, in turn, the various possibilities arising from

(3.2.1).
Case 1 G' = [G', K] (3.2.2)

Let G' =<a;,3,,37,whero a; = Db, k], b€ 6", k@K for 1 s 1 € 3. Ve may

assume that K = <kl, k2, k3>.

Suppose CG' (<kl, k2>) = 1>, Then once again by Theorem 5.2.3, of B6],

= |a', <k, >] Because K is abelian [G',<kl,k >] = <[G' <k >] [c* '<k2>]>.
Let ge G'. Then g s 3132’ for some g e[G' <k >] l£€i1<2. Let heG'. Then
l_h k"= [hs k][h Yeizfk ) h Ykl hkl l,kl]: TS

E’l’ kT for some h, &G'. Similarly, g, = .‘z ] for some h, €a',
So, g = g8, * [bys X,] 512. k] = [k;h 20 kohy 11, which implies that G EG_.

We now consider the case Car( <k, ky>) # <1>. By symmetry we may assume that

k]:la Thus

Car(kys kg?) § <1> § Cgy(<ky, Kkp2).
If CG'(<kr’ ks>)n<cst(<kr. kt>), CG'(«B’ kt>)> # <l>. for r, 8, te{l' 2. 3}
and r, 8, t pairwise different, then Cp'(<k,, kg, k.>) = €.\ (K) § <l>,
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But, from (3.2.1) and (3.2.2) we reach the conclusion Cqr(K) = <1>, a
contradiction. Consequently, G' = CG'(<k1, k2>) x cG,(<kl, k3>) x CG'(<k2' k3>).
Let Cq(<kys kp>) = <g1>y Coal<ky, kg>) = <gy> and Cgy(<ky, ky>) = <gg> where,
<g,> v

k r
Now KENG(Cgv«ls k2>)s So gy 3 g, l, for some rle_!z. .

Ifr, =1, thenk G Co(Chy(<ky s k,>)) and consequently,

cG,(<kl, k2, k3>) = CG,(K) # <1>, contradicting (3.2.2). So,

ky 1 | -
g, =8 where r, $ 1. In a similar fashion,
k, r, k T
g - and By =8 > where r, and r, are positive integers

not equal to one.

Thus,

rl-l - r2 I‘s‘l
g = g, kol » 8 = [g,5 k,] and g, = (g5 X4l
Now there exist A, such that (ri -1\ = 1(p) for L € i ¢ 3.

Consequently,

A A, A,
g = (8 s Kgle gy = [y o Kol and gy = g

BN
Let g€G'. Then g = glagQBng, where o, 8, YEZ.

So,
A _a A S § Y Aa A8 Ay
- 71 2 3 1l 2
g = [.31 ’ k3] [&2 ’ k2-] .[33 ’ k]j = [51 8y 83 3

This completes the proof for Case 1.

> klkzk;] .

G' =s'¥¢c_xC xC_,
Case 2 p D o

S induces a group of automorphisms on S', by conjugatidn. So there exists
a homomorphism ¢ of S into GL(3, p). Since S is a p-group we may consider
o(S)ESTL(3, p) which is, by Theorem 1.4A of [£], a Sylow p-subgroup of GL(3, p).
Because S' is abelian, ¢(S) is an sbelian group. By Theorem 1.2 of [¢],
STL(3, p)| = p°. By Lemma 1.3 of [£], STL(3, p) is nilpotent of class 2 and

consequently, either | ¢ (S)| = p or | ¢(S)| = p2,
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Let S' = <g1» 855 £3%5 where we may assume that'giﬁ-){(s) for 1 ¢ 1 ¢ 3.
By considering [‘ﬂ we see that it suffices to show that glgza'gsB € '){ (S) and
82838 € X(S), where ¢, B € ¢/ . We consider the various possibilities for

the structure of ¢(8) in turm.

1) e )] =

So #(S) = / 1 y O 1 0 1 \
{ o 1 6, [0 1 o “wherey,éez,.
\\\\ o o 1 o 0o 1 ///

Various situations arise, depending on the values of y, 6 and p.

Because HK(S) is a characteristicsubset of S it suffices to show that the

element under consideration is conjugate to a commutator.

(a) vy = 0(p).

If 5 = O(p), then |¢ (S)| =p. So & & O(p).

By considering how ¢(S) acts upon S' we see that
_ _ 5
g, N 8183, g, 4" 8,85 and gy € 2(8). Because S' = <gl’g2’83>‘
S is nilpotent of class 3 and S/<g,> is nilpotent of class 2. By

3
Theorem 3.1, S/<g3>€(v . So glg2(Jl <gg> € 3{ (S/<ga>) and consequently,

g1g2°‘g3A < )((S) for some A E /L .

A a_ A ‘ a_ A+r —_
Now glg2°‘.g3 v g8, By 1By N eee n €,8) 83 . Wherer € // . So

.glgz ga e MH(s), where a, B8 € // .

28 rs -
Now g, gzgs6 v 8283 cee 8,8, » vwhere r € 77 . Since § § 0(p) we
have g, v 82838, where B8 C'ZZ and consequently, g2g38 E){:(S)-

(b) v £0(p) and p * 2.

r
1l 2
Now {1 Y O 1 0 1 1 r,Y rl(rl-l)76/2 t T,
o 1 ¢ 0O 1 o = |0 1 r'lG
O 0 1 0O 0 1 0 O 1l

By selecting suitable r, and r, we have g, ~ glgzagss, where a, B € 7/

and consequently, 3132°838 e){(s). To show that 32336 eX(S) we observe

, -1 - R -
that =} s & S such that s 8,5 = £,8,8, and consequently, [_gl, s] = g2g38.
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(c) p = 2 and ¥ =212).

Let Sy 82€S be such that s, and s, induce the automorphisms given by the
110 1 01 '

matrices [0 1 6| and |0 1 O] respectively.
0 01 0 0 1
] s S,8

1 _ 2 _ 1 _ '
Then g, ~ = 8;8y» 8) ~ = 8183 &) = g,8,8, and [31,8231_ = 2,8,
Consequently, S € C .

(1) ¢ (s)] =p.

There are two possibilities to consider.

1 0 1l
(a) $(s) = 0O 1 o
0 0 1l

$/<g,> is nilpotent of class 2 and by a similar argument to that used in (1)(a)
“ i
we may conclude that glgzagSB e?t(S), vhere a, B € //_ . It remains to show
B a7 - . -
that g,84 E)C(S), where B £/ . Let g, = [sl, s;] and gy = [gl, ss_]
- A !
where 5,, S;» S3€ S- Now[_gl, si] €. 2(S), so [gl, 81] = gy s Where A 2/
I£ A ¥ 0(p), then I:sl, szgl]fl = gzg;’m and for suitable choice of u we have

[sl, 52811—‘] = gzgaa, vhere 8 € /. . Thus it remains to consider the case

A = 0(p), i.e. [gl, si] = 1. Similarly we may assume that &1, s{] = 1,

g - .
ES l, 82] = Lsaga, sé] z [33' s;] and similarly,

g
We note ';hat [-93. S;I 1
1
[54 s, = [s,5 54)-

(Dl w2 ws wu ms ws
Let [83’ s]] = gl 82 83 and [83, 82'] = gl g2 83 s where wi E—Z— for

1¢1¢6.

A § —
We consider g = [Sasl S2u, les2 g;] » where A, u, v, 6, € €77 .
Because [—El’ 81] = [81. 82] = 1 and Z(s) = <85> 84> We have that
<s,, 85> < Cs(s'). Using this fact it is easily seen that

(=5 SJ.]Y[sa' s;“[sa. g1 [e;s sg“ Is,s 5™

W W W (1] [} W -
1 Y2 Y3 by Ys Y. 5 -¢ 36 -
(g, "8y "85 ) (8 8 "853 ) 'gg gzx ¥

g
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We choose y and & such that, either y § 0(p) or & } O(p) and WY + 0,8 = o(p).

We then choose y, u and € such that g = 5253 » where 8 €7 .

(») ¢(8) = <[ D

Let gl = [sl, s;l where sl, s2€ S.

S S
1
Suppose g, = = glgzx. where A § O(p). Consequently, g, L g2g3x-

a - a_ B
Then, [5,. 5,8, g7 = afe,"s,")
and Eil’ glg2ﬁ = (gzgse)); where &, 8 E?Z .
- 2 A -
similarly, g, = g;8, where ) § O(p) implies S & {» , so it only remains for
s s
2

us to consider the case g, = = g, = g;-

Now there exists s € S such that gls = g8 and g2s = 2,8,

wl w2 &)3
Let [, sz]=gl g, ‘8 » where w; cZforlgi g3,

-w,+1 wz-x m3+u

1l A u
Then, [ssl ’ 8231 82_] = glg2 gs

-A Wa+H

and [ssl ’ s2gl gQuJ 8 £y .
By suitable choices of A and u we have that glgzmgaB 67{\ (8) and

GX(S) where o, B € 7 .

This concludes the proof of Case 2.

Case 3 [G', K] $cts

By Theorem 5.3.5 of [i¢] we have,
= [s, ¥ (1) (.3.2.3)
S
Now K £ Ng([5, K1) and [5,, K] ° = [5,5,, KlTs,, K1 7%, where s

k € K. Therefore

1° 8258 and

] 6 , (3.2.4).



By considering (3.2.3) and (3.2.4), remembering that G' is abelian, we see

that
st = <[[8, K], ()], cg(K)'> (3.2.5)
Because of (3.2.4) we have that
[[s, x], cg(ki] & [s, K. (3.2.6)

By Theorem 5.3.6 of ﬁ(] s
[s, x| = [[5, ¥, &].
S0,
(s, &, cx)] < [e', K. (3.2.7)
By Theorem £.2.3 of [H,],
' = [, K] x cgy(K) (3.2.8)
Noting that Cg(K)' €.Cy (K) we have, by considering (3.2.5), (3.2.7) and
(3.2.8),
st = [[s, K], ¢ (kf] x c 00, (3.2.9)
Again by Theorem 5.2.3 of [l_&] we have,
st = [s', K] x Cgy(K). (3.2.10)
Now Co(K)' & Cg,(K) & Cg, (K, [s', x] € [, K]
and by (3.2.7) [[s, K], e(x)]= [e', .
So by (3.2.8) we have,
C ()" = g,y (K) (3.2.11)
1¢ [[s, K], cg(x)) # [5', K], then there exist x& [[s, ], c4(x]] and
y e [s', K] such that 1 § xyg Cg,(K). But <[[s, K], ¢ (x1], [s', |> < [e', ]

and, by (3.2.8), [c', ¥ n CG‘(K) = <1>, a contradiction.

Therefore,
s, &, c(xy] = s, . (3.2.12)
We consider the various possibilities for the structure of S' in turn.
(i) CS'(K) 4 Cp’ [s*, K] = <1>.
By (3.2.10), st 2 Cyr (3.2.13)

Because G = S A K, G' = <|_-_S, K], s'>.
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Recalling that, by Theorem 5.3.6 of ], [s, kK] = [[s, K], K], we see that
o
B,k = [, K] 2 ¢, x Ce
So, by (3.2.8), Cq(K) ¥ c,- (3.2.14)
Let g € G'. Then g = g18y» where g€ [G', K:I and g2eCG,(K).
Again by Theorem 5.3.6 of EQ we have [:G', K:] = [[G', KJ ’ K].
so g, = [sy5 k;J[s,0 Xl = Teysys kg8, ™), where k, ke K and s, s, e, §.

By (3.2.11), (3.2.13) and (3.2.14) we have,

CG,(K) = cs,(x) = cs(x)'.

"

|s3’ sJ, where s., s, € C(K).

So g2
- - -1
Consequently g = g8, = &25183’ k.S, Su] .

n

(11) e 0 ¥ [57, 1 c,.

Because Cg (K)E Ng([s', K]) and S is a p-group, we have that

[eg 0, [s'2 €1 ¢ [s, K]

since [8, K] = Cyo
e, ), [B', ] = <. (3.2.15)

Now G' = <[S, K], S'>. So, by (3.2.10), G

<|:S, KJ, CS,(K)>. By Theorem
5.3.6 of E.‘J, [S, K] =_[[s, K], K]. So G' = <E;V, K], CS,(K)>.

Because Cg,(K) ¥ G, [6', K] = <gp> x [8', K] ¥ ¢, xc. Letggar.
Then g = glmgzg39 where gzc‘l:.s" IS-." g3&CS,(K) and o EZ .

Suppose a % 0.

Now, as in (i), 81“82 = E-(lsl’ k232], where kl, k2€-_K and 81 szﬁ [G', K].
By (3.2.11), g, = [84, 8,], where 84> 5,&C5(K). .

Now, [k 8855 Kp8,8,] = [klslss’ 5] E‘lslss' kgs,] )

8,8 8,8 8
- 5153
NI CCRE NI R N O

\
['Sl’ SLJ]'.SS, sq] [klsl| k282] [_.83’ szj’ by (302015x(302012)
and because s,, s“eCS(K).
By (3.2.12), [s,, s,1[s5:5,] = g,", where w €ZZ .

. o
So, E(lslsa, k2325J =& g2’333’2“'
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s A -
By (3.2.12) there exists sE:CS(K) such that 8 818 » where A€ 7/
and A £ 0(p). Consequently, there exists { €77 such that

- 4
- s” _ o

u + zia = O(p). Then, Lklslsa, k,S,8, = g, By8y» as required.
If o = 0 it suffices to show that S eC « This was shown to be true in Case 2.
(iii) CS.(K) = cp x cp

Let H, = CS(K) x Hy, where K, is a finite p-group such that H; 2 Cp

By Case 2, Hlec » which implies that CS(K)EC.:> .

By (3.2.8), B?', K] z Cp’ so [‘g', K] GQ .

let g€G'. Then g = g,8,, where g €Cg,(K) and g, e[G', K].

Now g = [33, 8], where s, 5,€C(K) and g, = [5, k], where 8,€ [G*,) and kek.
Consequently,g = [51,32] [s5x] = [:slsa,ksJ,because <> = [CS(K),[G',K]] %
[e*.x].

(iv) 'cs,(l() z 1. Then S' = [S,K]. Therefore G' = [G',!ﬂ »a contfadiqtion. q.e.d.

-

Instead of assuming that G' is a p-group we now assume that SCG!.

Theorem 3.3 Let G be a finite group with a Sylow p-subgroup S ¥ c, * €,
such that S € G'.

Then, S ¢ '){(G).

Proof By Theorem 7.4.4 of [6] we see that SS-NG(S)'. So it suffices to
assume that S ¢}G. We assume G to be a minimal counter-example and we obtain
a contradiction.
Let S = <cy> X <cy>, where we assume cllt. '){(G). Now G induces a p'-group
of automorphisms upon S and, consequently by Theorem 2.3 of fg}, s =[s, ¢} x Cg(6).
By the Focal Subgroup Theorem (c.f. Theorem 7.3.4 of [i§]).
- _ . )
s, G] S“G S.g So cS(G) = <l>.
Thus, there exists glgG such that c, 1 4 &)
1f g induces a fixed point free automorphism upon S, then it immediately

follows that S & '){(G). So we only need to consider the case where
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g
Cs(gl) $ 1. Without loss of generality we may assume that c, 1.,
g
Let ¢y 1. clrczw s for rw €77 .

Suppose that l:cl’ é] = <[cl, g1]> Vgec. Now, E:lx, g]] = [:cl, gi]x ’AETL

and consequently, <l:cl’ gIl> E){(G)- Therefore c]_%- ‘[01: 81] >.

2-

By Proposition 12.2 of [35] s G has a proper normal subgroup K such that
le/]

therefore, G'SK. But S€6' and, consequently, |G/K| is a p'-number, a

IS/<[c1, gl'_|>|. Therefore |G/K| = p. So G/K is abelian and,

contradiction. So we may assume that there exists g2€ G such that,
S = <[cl’ gﬂa l:clb 82-]’-
Because S is abelian normal subgroup of G the mapping ¢(g2) defined by
¢(g2) : 8 [s, g; » where s €S, is an endomorphism of S.

Moreover $(g,)(S) 5—‘){(8). So, if [02, 82]4-‘[01, 82]>,
then #(g,)(s) = 5 SN(O).
By the minimality of G we may assume that G = <S, g,, g,>. If l.°2= 32'_] =1,
thenc2éZ(G) and C.(C) } <1>, a contradiction. So [c2, g2] $ 1.
Therefore, [92, g2]= [cl, g2]° for some a GZ » where (a, Ip) = 1.

] B -
So, there exists 8 €7/ such that [°2’ 32] = [_cl, g2]

B . B . 8
But E::Z’ 82-1 = [c2 s g2] and if we substitute c, for c, above we may assume

L%} t u %) t-1 u+l
that [¢, g,] [cz, 82]- Let ¢ - = ¢, c, s thenc, - = ¢, e, "™,
where t, u € //.

If g8, induces a fixed point free automorphism upon S, then SC K(G),
So we may assume that C.(g,g,) § <>,

Now,

8283 t ugl_ T wsat_ u rt wttu
c, = (cl cy ) T o= (cl c, ) c,m T e e,

and

8281 _ t-1_ ul, Bl _ r wyt-1l u#l _  »r(t-1) w(t-1l)+u+l
c, = (e, ¢ ) U= (e;7c, ) c, = ¢y c, .

g,8
Since Cs(glgz) $ <1>, there exist A, u e“Z/_ such that (clkczu) 251 °1A°2u'
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Thus, rt A + r(t-1)p = A(p)
and wt+udX + W(t-1) + u+ld)u = u(p)
i.e. (rt=-1)x + r(t-1)u = 0(p) )
) (3.3.1)
wt+u) Ae(w (t=1)+udu = 0(p) )

The simultaneous equations (3.3.1) have a non-trivial solution if and only if,

rt -1 r(t-1)
= o(p).
wt + u w(t-1l) + u
j.e. (rt - 1) (w(t-1) + u) - wt + u)(r(t-1)) = 0(p).
This reduces to,
u(r-1) - w(t-1) = 0(p) (3.3.2)

) . _ o tel
If u = 0(p), then fc;, 85} = ¢ ™

Because S = <[°1’ g]], I—-Ql’ g2]>, t-1 # o(p).
Consequently, by considering R, , E’){ (G), a contradiction.
So we may assume that u § O(p).
If r = 1(p), then g, induces a p-ahtomorphism upon S. So r # 1(p).
So there exists § €7/ such that g(r-1) I (t-1) (p).
We consider z((r-1) + w).
By (3.3.2),
z((r-1) + w) = z(u(t-1)/u + w) (p).

But £((r-1) +w) = t - 1 + tw(p), by construction.

t

gw(t-1)/u (p)

Therefore, t - 1

1(p).

1(p) or gw/u

Thus, either t

If t = 1(p), then, by (3.3.2), u(r-1) = o(p).

But neither u = 0(p) nor (r-1)=0(p) so we have a contradiction.
Finally, if zw/u = 1(p), then Zw = u(p).
But this implies [;1a gilc = [91, gé], our final contradiction.

This completes the proof of Theorem 3.3.

We now consider possible generalisations of the preceding three theorems. We

give a list of conjectures and possible lines of investigation together with
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any relevant comments.

Conjecture 3.4. Let G be a finite group such that G' is an abelian p-group

of rank three. Then G E:-G .

Conjecture 3.5. Let G be afinite group with an abelian Sylow subgroup S of

rank three such that SSG'. Then S S,'—){(G).

As can be seen from the proofs of Theorem 3.2 and Theorem 3.3, the fact
that the relevant subgroups have exponent p is most extensively used and it is
not at all clear whether the methods used in these proofs can be adapted to
handle the case where the subgroups have exponent pa, where a is a positive
integer. It ought to be possible to, either extend Theorem 3.3 to the case
where S is elementary ebelian of rank three, or find a counter-example.

Another possible approach is to increase the rank of the relevant
subgroup, whilst maintaining the exponent equals p condition. From the
example following the proof of Theorem 3.1 we see that there exists a group
G such that G' is elementary abelian of rank four and G ¢LC; + However, the
group exhibited is a p-group and if we make the restriction that the Sylow
p-subgroup is abelian, then matters are not so clear. 5o a natural question
to ask is:

Let G be a finite group with an abelian Sylow p-subgroup such that G' is an
elementary abelian p-group of rank r. What is the largest value that r can

take that guarantees that G (5(3 ?
We give the following example as a first approximation to this bound.

Example 3.6. Let G = Cé1(Cq.qu x Cq), where p and q are different primes.
We show that G¢ G .

Now G' is an elementary abelian p-group of rank (q3-l). So, if p $ 2 we
can put ¢ = 2 and r < 7. However, if p = 2, then putting q = 3 gives r < 26

and whilst the first bound appears reasonable, the second one does not.
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3
So let G Db $ 3
e generated by the q  elements {aijk|l €1i, j, k € q} and the three
elements {b;|1 i €3
il € i £ 3}, where the{bi}act upon the{aijk} by the b permuting

the t th subscript of aijk cyclically in a canonical fashion. Let g GEi}{ (G).

Then,
r, r, r s. s. s -
1.72.°3 %3k 1.2 .73 By
g < I}l b, b, T ooa b.” b b " mn
k ’ a
1,50 HkTTE 7208 g, T
Fry, r, T Blmn O
- 1.72.73 s, 8, sm 1jk
- T |y by By wabmJ m [%-- ,b1bp2p 8
l,m,n - 1,§,xL 3k L "2 3
-1 B7m O, .
= b az' Yt aZ l]k
1,0 m'n m i j y (ijk ik’ s
where 1' = L +r;, m' =m+71,, n' =n +r,
i'* =i +s), 3" =] +sy, k' =k +s, and all addition is done modulo q.
Consequently,

Yim 814

- Jk

g = 5 a ¥ a,.
(Zomsn L ][i’j’k llk] |
where Ylmn s Bzm - Bl'm'n'

and sijk = ai'jlkl - aijk .

Finally we have,

= ijk
g = T a,. where €,., = v,.
136 13k 13k - Yige * Sig
It is easily seen that
pil p-l
L €y =05 (3.6.1)

u=0 v=0 "

where w = 1 + ru + 8,V, X ¥ j + o0+ s2v and y =k + r,u + s_v.

3 3
We now demonstrate that g = [215x b]][aijk’ ﬂcaijk’ bsj &"){(G).
y _ €im
ow g = T &,

1,m,n

where €,., = =3 fa14L S = =
13k s 51+13k eij+1k eijk+l = 1 and all other eijk equal zero.
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If g g:){(G), then by (3.6.1) there exist {ui} and {vi}where l£i¢g3,

such that,

rju; +8;V) 30, rpup +8,vy) 20, rauy 485V =, (3.6.2)
riuy + 53V, =0, Touy +8,Vy T 1, Tauy + 55V, =0, (3.6.3)
ryug + 5,5 = 1, ryug +8,vy = 0 and ryu,y + 85V, = 0. (3.6.4)

From (3.6.2) we may assume, without loss of generality, that r # 0 # u
3 i*
If vy # 0 then, considering the first two equations of (3.6.2) gives

r, S u 0

171 1

rz2 %2} V1 ol .

This has a non trivial ;solution if and only if

r, s
1
l=O.

T2 82

This contradicts tha first two equations of (3.6.4).

So we may assume that vy T 0.

By (30602), rl s r2 = 0.

The first two equations of (3.6.3) now imply that s, = 0. Butr =s_ =0
1 1°

implies ryu, + S,V, = O contradicting (3.6.4). Consequently g ¢?{(G).

Finally, on a slightly different tack, we consider another line of
possible advancement.
In Theorem 3.3 we assumed that in a finite group G, a Sylow subgroup S was
contained in G'. If we drop this restriction we can still ask questions of
the’ form:
Let G be a finite group with Sylow subgroup S. What conditions must we impose
on either G or S or SnG‘ to ensure that S ﬂG| g'){(g)?

As an example of possible results of this nature we prove the following
theorem.
Theorem 3.7 Let G be a finite group with a cyclic Sylow p-subgroup S. Then,
either 8 € Y (6) or SpG' = <1>.
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Proof. Let S = <s>. Then, by applying the Focal Subgroup Theorem

[16 Theorem 7.3.l£| we see that,

S(‘:G' = <[Ss n]
r
For n€N,(8), let s® = s ®, where r e -

ng NG(S)> .

(r_~1) (r_-1)x
Then 8 © = [s, n:[ and moreover, s =z [s, n:]A = [sl, n], where \EZ..

If there exists an neNy(S) such that (r -1, p) = 1 we may conclude that

s ¢X (6). Suppose r, -1 = 0(p) for every n€N.(S). So. either n€C,(S) or
n induces automorphism whose order is divisible by p. The latter possibility
{s ruled out because S is a Sylow subgroup of G. Therefore NG(s) = CG(S)'

By the well known theorem of Burnside ElGTheorem 7.4.?3] » S has a normal

complement H. Because G/H is abelian G'&H and SpG' = <1>.

We show that this result does not extend to S being a Hall subgroup.

LetG=<a,b|als=b2=l, ab=au>.

Then <a> is a Hall subgroup, but G' = <a3>.

It would be very useful for such an investigation to have some results
analogous to the Focal Subgroup Theorem and other related results

(c.f. [15 Chapter 7]). Such results appear difficult to abtain because there
is no obvious way of tackling such questions. The proof of the Focal Subgroup
Theorem and most results related to it rely on the TRANSFER HOMOMORPHISM.

This is of very little use in the questions we are considering. As a

final comment we give the following conjecture.

Conjecture 3.8 Let G be a finite group with an abelian Sylow subgroup S.
Then sn'}{(c) = sy (s,




Chapter 4. UNIPOTENT GROUPS

R.C. Thompson in 11;3] s [lmj and [us] considered the linear groups
GL(n, F) and SL(n, F) over an arbitrary commutative field F. He shows that
GL(n, F) and PSL(n, F) belong to the class(: .

We prove an analogous result for the unipotent group of matrices

STL(m LF).

Theorem 4.1 STL(n, F) eC , where n is an integer greater than one and F is

an arbitrary commutative field.

Proof. Let Ae){ (STL(n, F)). Then A = EB, (ﬂ, where ﬁ, C € STL(n, F).

} -1 -1
Let B = (bij) and C = (cij)‘ If B (dij) and C ~ = (eij)’ then because

B and C are elements of STL(n, F),

o
"
"

i. cik ekj . (Q‘ol-l)

k=1

where Gij is the Kronecker delta symbol.
-1.-1 _ -

Again because both B-lC-l and BC are both elements of STL(n, F) we have,

j-1
f,.5d,. te. + ] do,e. ifi <] (4.1.2)
ij ij ij K=isl ik “kj ?
: jil
g€:3 b, +cCo. + b . ifi <3 (4.1.3)
ij ij ij K=i+l ik ck] ?

So if A = (aij)’ we have,

j-1
( . . .
fij + gij + k=§+l flk gk] if i < J’
aij = 1 _ ifi=j, (4.1.4)
\ O if i > 3.
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From (4.1.4),

3541 ° Fige YBiga tO
= dygag teiae1 O FDigey tCigep * 05 BY (8.1.2) and (4.1.3).
But, from (u4.1.1),
d.. 0

si41 T Pig41 T 0 7 %111 * Ciinne

Therefore,

a54 - 0 forlg ign-1.

Let A' ej{—(STL(n: F)). Then it is easily seen, that if AA' = (h'j)’ that
i

hijy = 0O for 1 £1i€n-1.

Consequently, if T = (tij) STL(n, F)', then'tii*l =0 forlgign-1.

We show that every element (uij) of STL(n, F) which has the property u 0

i1+l ©
for 1 €1 €£n - 1 is a commutator in STL(n, F). The proof proceeds by

induction upon n.

The exact form of our induction hypothesis. is:

given A = (ai].), vhere A€ STL(n, F) and a,, ., =0 forl ¢1i ¢n-1,
there exist matrices B and C belonging to STL(n, F) such that A = (s, CJ.
Furthermore, if B = (bij) and C = (cij)’ we can select B and C such that
biis1 }o4cyy,, forlsedsnl
The latter part of the inductive hypothesis is there to enable the inductive

argument to be completed.

The induction clearly starts because

1 o (1 -offr -B]{1 «<|fr 8
- f .
0 1 o 1lo 1lle 1fle 1)’ or every a, BEF.

We assume that the hypothesis is true for unipotent groups of matrices of rank
less than r, and that n = r. let A = (aij) be an element of STL(r, F) such

that a;;. =0 forl g1 ¢ r-l.
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= = « e e )
Then, A (aij) 10a, a;
0
. A
\0 )
where A = (Egj) is an element of STL(r-1, F) such that E&i+1 =0 forlgigr-2
and

-

i

3 = ai+lj+l for 1 <i, 3 ¢ r-1. (4.1.5)

By induction there exist Eﬁ(Bij) and C = (Z&j)’ elements of STL(r-1, F) such

£

~

that A = Ug,fﬂ and Ski+l ot E&i+l for 1 g i

r-2.

Consequently the remainder of the proof is reduced to finding suitable

bli and c1J
rl 0 a

0

13

>|

We let B = (b

i

LI R alr

Je

)

-

(1 b
0

12

|

w|

b

1r

-1/

and C = (c

A0

ol

)

. for 2 ¢ j s xwith b, $0 ¢ c;, such that

-1

ol

0

12

r
1l bl

2

w|

esee C

ol

LI b

1r

3
1r
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S0 bjyp 541 Z Pij @A cyyy g4 TGy forleied el (4.1.6)
Suppose A' = (a';;) = B, ¢l.
Let j 2 3. Then, by (4.1.4),

j-1

' =
a 13 flj + glj + k§2 flk gkj'

1

- -1 - -

S (d55) and cl= (e;5), then, by (4.1.2) and (4.1.3),

izl iz d §
alyy = dpgtent k§2 S T k§2 i ey * kEQ £k Biye
By (4.1.4),
i1 it

by + dys * -kzz by dkj and Cj5 * ey = -k§2 1% K3
Therefore,

j-1
a'lj = k§2 (dlk 3 + blk ckj - blk dkj - S ekj + flk gkj)' (4.1.7)

We need to show that a'1j can be constructed equal to a,., for 3 ¢ § g r,

13
in such a way that by, § 0 % ¢;,.

Wle show this by induction upon j.

By (u4.1.7),

a'yq = dyp €3 * D1y Cr3 T Pyp dp3 7 0y €3 + £y, o5
= djp ey3 *Dyg Co3 " Dyg dyg " gy eng + (dyy +e,)(byy + cy),s
by (4.1.2) and (%.1.3).
By (4.1.1), dyy = “bygs dpg = "hpgs €15 = "cpp and epy = -cys.
Consequently,
a'yq = byy o3 ¥ Dyp Co3 ¥ Dyp Bag ¥ 0yp Cog 7 (Byy + €)M (byy + cyy)
=byy 3 T C12 o3
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Now ¢,y = ©, $0 and b,y = B, $ o.

Therefore there exist b,,, ¢,,€F such that b,, ot 19

and 8,5 = by, cyg = €y b,s- So the induction starts. By considering

(4.1.7) we see that a'1j is independent of b,, and ¢, (and consequently

dyy and elk) for k 2 j. We assume that blk and c;, have been chosen for

25k$j’2suchthata'lk:an<for3‘k‘j - 1. We show that there
! - : s

exist blj-l and 15-1 such that a 13 alj and in doing so we complete

the proof of the theorem.

By (4.1.7),
= . o o-b - . .
a'yy = d15-1 %5-15 Y P13-1 C5-13 T Pag-1 d3-15 T C1d-1 O4a
£15-1 B5-15 * Xp» (4.1.8)
where Xl is a constant expression only involving terms whose values have

already been fixed.

By (4.1.2) and (u4.1.3),
£151 85-13 © (15-1 t C15-0)Pyayy * cyarg) * Xe (4.1.9)

where X2 is similarly a constant term,

By (4.1.1),

'
)
o

.
®
n
!
0

di-li I B & (4.1.10)

d, . = ~b,. + X, and e = -c

15-1 1j-1 7 73 1j-1 13-1 T X (4.1.11)

where X3 and xI+ are also constant terms.

Substituting (4.1.9), (4.1.10) and (4.1.11) into (4.1.8) we have,

+b

a'ss = Pygoy S5-13 * P1j-1 5-13 * Prg-1 Byaag ¥ C1yo1 051

- (b1j~1 +tCp5. l)(bj .14t lj) + X5, where X is a constant,

®P1y-1 ©4-19 7 C13-1 Py-13 * ¥se

Because ¢3-13 y j=-2j-1 $ 0 and bj-lj = bj-zj-l $ 0, there exist

' s
b and 15-1 such that a

13-1 1y - %15°
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Chapter 5 CHARACTER THEORY

In previous chapters have have considered particular classes of groups
and in doing so we have found various sufficilent c?nditions for an element
of a group under consideration to be a commutator. We now turn our attention
to the problem of finding necessary and sufficient conditions for a group
element to be a commutator. The character theory of finite groups plays a
major role in this discussion and, consequently, all groups considered in
this chapter will be finite.
Throughout this chapter we adopt the following notation.
G is a finitegroup.
r(G) is the group algebra of G over the complex number L. Cio Cos eeees G

are the conjugancy classes of G and C, = <1>. C, = ] g is the class
geC
1

sum of Ci in £(6). X', X2, ... xh are the irreducible characters of G over C,

denoted by Irr(G). le is the value xi takes on Cj for 1 €1, 3 ¢ h.

The original result of this nature was given by Burnside in [é s D 319]
when he states that a necessary and sufficient condition for an element of

Cj to be a commutator is that,
h
i i
'/ 0.
121 X3/ X $

This work was generalisadby P. X. Gallagher in Eh]- Gallagher considers
compact groups and obtains results by the use of the Haar Integral. Ffor
comparison with our result we will consider only the realisation of his
pesults in terms of finite groups. Gallagher shows that a necessary and
sufficient condition for an element of Cj to be a product of n commutators

is that,

h ’ 2n-1
1,4
izl X5/ ¢ o,
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K. Honda, in E’)], obtained Burnside's result independently and, as a
consequence, showed that ge')((g) if and only if gré.'){(G), where r ¢ 72
and <g> = <gr>,

We obtain the following generalisation of Burmnside's result.

Theorem 5.1. Let CA(j’) for 1 £ j € n be a collection of conjugacy classes

of G, repetition of classes being allowed. Then, there exist

n
xj ec)‘(j) for 1 € 1 € n such that flxj e}{(c) if and only if
h n s
i i
/(x) %o.
i1 j-l XA 1

Proof From Eg.g28] we know that {Ci | 1 €1 ¢ h} is a basis of Z(E(G)).

Consequently,
~ ~ ~ -~ -~ h

Cy1) Ca2) S G5 T Gy ot Can-1) k(z)zl %kn) %(n)

~ . b (n) (n-1)
cA(l) A(n-2) k(g) =1 k(nzl) -1 *k(m)  %(n)k(n-1) Ck(n-l)

h h (n) (n-1) (1) ~

k(g) L k(§) .y Yk %@dk(a-1) k(2K Ge1)?

(5.1.1)

where a§;zi)ec, for 1 i ¢gnandlgjsgh

We define wy on Z(E(G)) for 1 ¢ i ¢ h by,

- i i
() C. Cl 1]
wy ( ]) | JIXJ / Xy and extending

linearly over Z(E(G)). By I_Q. p28:| we have that wg is a homomorphism of

Z(T(G)) into L.

Consequently,

~

wi (CX(l) CA(2) IR x(n) C ) = mi(cl(l)) Ni(cx(2)) vese W, (Cl(n)) W, (C )

But, by (5.1.1)

~ h
- _ J0)  (n-1)
wi (Cx(l) CA(2) cse o Ck(n) c ) k(§)=l [N k(l) l ]k(n) ak(n)k(n“l)

(1) -
%21y “i(G1y)
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Therefore,

0, (Cy1)) 45CChiay) weer 0300y 0y wy(C))

_ B B @ (D)

. ... (1) -
k(z)=1 k(§)=1 %k(n) B(n)kln-1) " %(2)k(1) “1¢G 1y’

Applying the definition of w, we obtain,

T 1 i i \n+l
(P:l lcx(r)lxl(r))('cjlx j) / (x 1)

h (@)  _(n-1) (1)

i i
%k(n) H(ndk(n-1) """ %(2)k(1) 1Syl (X k(1) / X1

k)=l k(I)=1)
(5.1.2)

We multiply both sides of (5.1.2) by')-(ij and then sum over j, obtaining,

n i h i —i i.n
( Il |C1(r)|x A(r))(jzl Ilex j X j) / (x 1)

h h h
- (n) (n-1) (1) 3 .
b xmra T b 3K Ckmknn1) -S| X ey Xy,
- h . s
From | 9.p14] we see that ) |c.|x*. Xs = |6 (5.1.3)
- j:l J ] j

Therefore, if we sum (5.1.3) over i, we obtain,

ol 3 (% Ternl ) 7 G
121 ‘pel Alr) A(r) 1

(n)  (n-1) (1) o,
 chyer @) KadkiaD) (@K eyl (1) XX )

j=1 k(n)=1

(5.1.4)

R
Xy X3 = 16l

h
Now, by [ 9.p16], 1}
: 1Cecry] CI3® ¥Rere gy )y Is the

i=l

Kronecker delta symbol.

Consequently, we can reduce (5.1.4) to,

h
.2 (2 |cx( )lxi,\(r)) 7 o = lf 121 (n) (n-1)
is1 pm3 MP Y k= k(5yz1 k(L) *k(n)k(n-1)

(1)
Gk(?)k(l)' (5.1.5)
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(3
Now alk( )

xjxieck(j). where 1 £ 1 £h, 1 £ j snandl g k(j) £h

$ 0 if and only if there exist Xg €Cy and xjg cl(j) such that

(n-1) .
So G t1)(n) eak(a-1) *** (2w } O iF and only 1f there exist

yle Ck(l)’ xne ck(n) such that xnyle Ck(n) and yj @_Ck(j) and xj_l!;'; c)\(j-l)

such that xj-lyjeck(j-l) for 2 £ J £n.
We may select Y, = %Y, by taking suitable conjugate values of Yq and Xp-1*

Similarly we may select y:i T XKs oy eees XY by taking suitable conjugate

o Lde
J

values of yj and xj—l for 2 £ j ¢ n.

N

Therefore,

(n-1) (1) . . _
“k(l)k(n) "k(n)k(n-n seer O(a)(y) O Lf and only IF %) weee % y1€ Q)

(n-1) (1) )
But ¥ €% (1)* *° k() “Kmh(aeL) **** “x(ayk(yy } O 1f and only ie

X Ky oo X = E’l’ g_[ for some g G. Consequently by considering (5.1.5)

we have that X;X, «... xn€; (G) if and only if

. _ . '
0% ) (xi(xl) xl(xn) / (Xll)n. This completes the proof of the Theorem.
i=1

We obtain the following corollary which corresponds to the corollary

Honda obtained from Burnside's result.

Corollary 5.2. Let Gbe a finite group and x;..G for 1 < i ¢ n,

Suppose that X X, <o X, }L(G) and that there exists an x 3 such that

qul’ lle) z1if k $ j. Then for every r € “/Z_such that (r, |xj|) =1

there exist gieG for 1 £ i £ n such that

g: i
T T I xng“ c K.

Proof By Theorem 5.1 Xy seee R e){(G) implies that

b X wix) Ly 7 G
j_:],x ®1) XT(xy) weel X xnlxl $ 0.
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Let |G] = m ...ana consider the Galois group, 6(R(™1), Q). Letre 7
such that (|xj| »T) = 1. Let w bea primitive kalth roof of unity,

for 1 £ k £ n. Then because (|le’ kal) =1 if k # js there exists

o€ G(Q(mv/l), ) such that c(wj) wjr and a(mk) = if k # e

(xi(g))o for every g €G then it is easily

If we define (xi)o by (x9° (g)
seen that ()(i')o is an irreducible character of G and o induces a permutation
upon the {x*]1<1ignh
Consequently,
h io io i, om
I xg) ve (Xx))) 7 (X)) § 0.
i=1
But, by our choice of o, (x1)° (x) = X (x. )y (% (g = ¥ x) 4F 3k

and (x5)%= X'y,

E x‘(x]) as s X (x ]) x (x ) x (x ) LI x (x ) (x ) * 00

By Theorem 5.1 there exist g; for 1 £ 1 ¢ n such that

gl rg
xy ©oeees (xj) I e}{'ce)

As a rather elementary example we examine how this work applies to
finite nilpotent of class 2 groups. We first of all prove the following

result.

Lemma 5.2. Let G be a finite nilpotent of class 2 p-group such that G éc

Then the number of conjugacy classes G possesses is a multiple of p.

Proof. let gGG'\r){ (G).

We consider H = G/<g>. This is well defined because g€ Z(G). Suppose H has k
conjugacy classes and let {h. | 1 £ 1 ¢ k} be representatives from each class.
We consider {h, g | 1 €1ick,1g73 ¢ |g|} It is easily seen that every

conjugacy class of G is represented in this set.
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j'

Suppose hi g3 v g hi' g” . Then hi ~ hi' and consequently, i = 1i'.

s
Now g €2(G), so hy gl e By gl implies that

a(i-3")

2(0_-')
17377 4, g ,

where o € 72 .

-
(3-3" h (3-3") ¢ 2(6) .So.by.Corollary 5.2.(or,originally
Now hi v hig jimplies that g

from [22]), j-3' = O(p).'k‘l'zex’efore,{higz | 1<1 &|g|} give representatives of

-

i-3' conjugacy classes and the proof is complete.

e.g. Suppose G is a finite nilpotent of class 2 group such that G Cf C .

Let geG'\'){ (G) and suppose |g| = p, for some prime p.

Let H = G/<g> and suppose H possesses k conjugacy classes. By referring to
the proof of Lemma 5.2 it is easily seen that G possesses pk conjugacy classes.

Let{xi | 1 ¢4 < pk} = Irr(G). Now g& 2Z(G) implies that xi(g) = wm(i) xil,

where w is a primitive p th root of unity and a(i) & Z .

PYX 1 1
By Theorem 5.1, I x(8) 7 x 1 =0
i=1

pk .
io e, z wa(l) - 0.
=1

Because w is a primitive p th root of unitv, we may number the {xl} such that

w“(i) = w°, where rk+l £ i g (r+ldk.

Thus, in the nilpotent of class 2 case we obtain detailed information

concerning the values taken by a non-commutator inside the commutator

subgroup.
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Chapter 6. Simple Groups

In [34], 0. Ore conjectured that every element of a non-abelian finite
simple group is a commutator. As he commented, the techniques required to
prove such a result do not appear to be readily available. One likely avenue
of progress seems to lie with the character relationships discussed in
Chapter 5. Although we cannot prove the necessary result for an arbitrary
non-abelian finite simple group, we show, by examining character tables, that

several such groups do indeed consist of commutators.

We consider the various character tables in turn and we make the
necessary calculations. Since the calculations are routine we content ourselves
with only presenting the character tables of three of the so called "sporadic"
simple groups. We give references to other character tables and we claim

that in all of them the conjecture can be verified after a short calculation.

We recall that if G is a finite group, g€ G and Xl, X2, e xh are the

. h
irreducible characters of G, then g e;}C(G) if and only if Z xi(g)/xi(l) * 0.
i=1

-~
Let xl be the principal character of G, then ge¢. )‘L(G) if and only if

h . .
1+ ) X(g)/x Q) §o.
i=2

When we investigate the character table of the group under consideration it
will usually be observed that on a non-principal character x a non-identity
element g of G takes a value insignificant in absolute value when compared

h

i i .
with x(1). Thus 122 ¥ (g)/x (1) will be far less than 1 in absolute value

h . .
i .
and consequently, 1 + 122 X (g)/x (1) will not equal zero, as required.
Therefore, whenever the desired conclusion is apparent by inspection, we will

omit any calculations.

Our presentation of character tables is standard and follows [9, 573.
When necessary we will make the pertinent calculations at the end of the

character tables.
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I. Janko's group of order 175,560
We present the character table obtained by J. McKay in [30, pp.89-100:]
of the group discovered by Z. Janko in [28].

Class 1 2 3 y 5 6 7

Character

e 1 1 1 1 1 1 1

v 56 0 2 2+#4c2  2+4cl -1 -1

X 56 0 2 2+4cl  2#4c2 -1 -1

x“ 76 y 1 1 1 0 0

¥ 7% -4 1 1 1 0 0

P 77 5 -1 2 2 1 1

X 77 -3 2 21 22 1 1

x° 77 -3 2 2c2 %21 1 1

x9 120 0O O 0 0 2c242c342c5  2c4+2c6+2¢9
50 120 o 0 o 0 2c142cT+2c8  2c2+42c3+2¢5
'xll 120 0 0 O 0 2cH42c6+42¢9 2014207428
xl2 133 5 1 =2 -2 0 0

3 133 =3 -2 142¢2  1l42cl O 0

xl'-l 133 -3 -2 142¢l  1+42¢2 O 0

o> 209 1 -1 -1 -1 0 0
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Class 8 9 10 11 12 13 14 15
Character

* 1 1 1 11 1 101
x2 -1 2¢3 2¢c6 1 0 o 0 0
¥ -1 2¢6 2c3 1 0 0 0O ©
& 0 1 1 -1 -1 -1 -1 1
& 0 1 1 -1 1 1 -1 -1
8 1 -1 -1 0 0 0 o -1
x7 1 2¢c3 2¢6 0 2¢2 24 O 0
& 1 2¢6  2c3 0 24 22 0 O
X2 2¢cl+2c7+2¢c8 O 0 -1 0 o 1 o
10 2ch+2c642c9 O 0 -1 0 0 1 0
it 2c2+2c3+2¢5 O 0 -1 0 ) 1 0
A2 0 1 1 1 0 o 0o -1
X13 0 142c6 142¢3 1 2c2 2c4 O 0
L 0 1+2c3 1#2¢6 1 2k 2c2 O O
25 0 -1 -1 0 1 1 -1 1

In the above table acB denotes a cos (278/5), where a, B G’EZL'
Let G denote the group under consideration. It is easily seen that
5 ., i
I X @) $ 0 for every g€G and, consequently G consists of commutators.
i=1
However,as an example, we do the necessary calculations for the second

conjugacy class. If g is an element of the second conjugacy class, then,

15
i i - o .,0 4% 4 _ 5 _3_3
.21 X (/X1 =1+ tggtag =g tg7 "7 "W
1:
0 0 0 5 _ 3 _ 3 1
tiot10 Y10 Y133 T 133 T 133 Y 309

1 - 23/1463 # O.

-
Therefore, g G_)‘L (6).



II. The Mathieu Group, M2u‘
We exhibit the character table obtained by J. Todd in {hé} of the

quintuply transitive Mathieu group M2u, of degree 24 and order 244,823,040,

Class 1 2 3 ¥ 5 6 7 8 9 10 11 12
Character
. 1 1 1 1 1 1 1 1 1 1 1 1
- 23 7 5 3 3 2 2 1 1 1 o0 O
x> 45 -3 0 ©o 1 & & -1 0 1 0 ©
o 45 -3 o 6 1 @« a -1 0 1 o0 O
> 231 7 -3 1 -1 0o o0 -1 1 o g B
X 231 7 -3 1 -1 0 o0 -1 1 o0 B B8
X! 252 28 9 2 4% 0 0 0 1 -1 =1 -1
x° 253 13 10 3 1 1 1 -1 -2 0 0 o
x 483 35 &6 -2 3 0 ©O0 -1 2 -1 1 1
10 770 -14 5 o -2 0 0 0 1 Q@ 0 o0
L 770 14 5 6o -2 0 0 0 1 ©0 o0 O
o2 990 -18 0 06 2 a« a« O O O 0 O
2 990 -18 0 0 2 a@ a« O O O ©o O
1t -
X 1035 -21 0 0 3 2 22 -1 0 1 ©0 O
3 1035 ~21 o 0 3 22 2 =1 0 1 0 O
0 1035 27 0 o -1 -1 -1 1 0 1 0 O
x17 1265 49 5 0o 1 =2 -2 1 1 o0 o o
L8 1771 -21 16 1 -5 0 o0 -1 0 0 1 1
2 2024 8 -1 -1 0 1 1 0 =1 0 -1 -1
x2° 2277 21 o -3 1 2 2 ~L 0 0 0 ©
2L 3312 48 ©O0 -3 0 1 1 0 o0 1 o0 ©
x22 3520 6l 10 0 0o -1 -1 o -2 0 0 0
x23 5313 49 =15 3 -3 0 0 -1 1 0 0 0
=2 5544 -56 9 -1 0 0 0 0 1 0 -1 -1
2> 5796 -28 -9 1 4% 0 o0 0 =1 =1 1 1
x2° 105 =22 O 0 -1 0 ©O0 1 ©0 06 0 O



Class

Character

12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24
X
25

X
26
X

14

15

16

- §7 -

17

18

19

20

21

22

23

0

24

0

0

25

3

In the above table, a = 3(-1 + iv/7), B = }(-1 + i/15) and y = 3(-1 + iv23).

26
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26 [ ] .
i i 5377 . .
.Zl x(g)/x (1) =1+ /11385 if g is an element of the sacond conjugacy
i=
class,

26 (] s

i i 38 . .
.2 x (g)/x (1) = 1 + "7/1449 if g is an element of the twentyfirst conjugacy
i=

1l
class.

The required inequality obviously holds for all other conjugacy classes and,

consequently, the Mathieu group Moy consists of commutators.
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I71I. The Higman-Sims group of order 1100.8! = u4,352,000.
We preseni the character table obtained by J. S. Frame in [13] of the

simple group discovered by D. G. Higman and C. C. Sims in [19].

Class 1 2 3 4 5 6 7 8 9 10 1 12
Character |
X 1 1 1 1 1 1 1 1 1 1 1 1
2 22 o o 1 2 4 o0 & 2 2 0 0
X 77 o 0o o 2 5 1 13 5 1 1 -1
x' 175 -1 -1 0 0 % 0 1 -1 3 -1 1
< 231 6o 0 0 1 6 =2 7T =1 -1 -1 -1
° 1056 ©o 0 -1 1 -6 2 3 0 0 0 0
x’ 825 o o0 -1 0 6 -2 25 1 1 1 1
X8 770 ©o 0 0 ©0 5 1 3 2 =2 -2 0
xg 1925 o 0 0 0 -1 -1 5 5 -3 1 1
0 1925 ©o 0o o o -1 -1 5 -3 1 1 -1
N 3200 -1 -1 1 O -4 0 O O O O o
2 1408 ©o 0 1 -2 4% 0 O© 0o 0 0 o
2 2750 ©o 0 -1 0 5 1-5 2 2 0 o0
o 1750 1 1 0 0 =5 -1 -0 6 2 -2 0
> 693 0o 0 O -2 0 0 21 5 1 1 =1
ot 154 © 0 0 -1 1 1 1 6 -2 0 0
i 1386 06 0 0 1 0 0 -6 =2 -2 0 o
8 2520 1 1 0 o0 0 0 24 -8 0 0 O
el 154 ©o 0 0 -1 1 1 1 -2 2 0 2
20 154 © 0 0 -1 1 1 10 =2 2 0 =2
2L 770 0 0 0 0 5 1 - -2 -2 0 0
K22 770 © 0 0 0 5 1 -1 -2 -2 0 0
23 896 @ &« 0 1 -4 0 0 0 0 o0 o

el
Q
o
[
£
(o)
o
o
o
o
fe)

X 896



Class 13
Character
X 1
' 0
X’ -1
X' 1
X -1
X 0
X’ 1
x° 0
X 1
10 -1
xll 0
x12 0
X13 0
xlu o}
X15 / -1
le 0
Xl7 0
x18 0
xlg -2
x20 2
x21 0
x22 0
x23 0
x24 0

If g is an element of the eight conjugacy class, then

= 1 + 93816325,

14

15

16
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17

10

18

10

10

16

16

18

19

20

15

15

21 22 23 24
1l 1l 1l 1
-1 -1 1 -3
(0] 0 -2 2
0 0 0 0
o 0 2 6
o 0 2 6
0] 0 0 0
1 1 -1 -5
0 0 0 o0
o 0 0 0
0 0 0 0
0 0 o0 8
o 0 0 0]
0O 0 o0 o0
1 1 1 -7
-2 -2 0 y
1 1 -1 1
-1 -1 -1 -5
0 0 0 4
0 0 0 4
B B 1 -5
B B8 1 -5
0 0 0 -4
0 0. 0 -4
2u .
I @t
1=l
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24
If g is an element of the 17th conjugacy class, then z xi)g)/xi(l)
i=l
=1 - 8175,
24 1 {
If g is an element of the twentieth conjugacy class, then E x (g)/x (1)
' i=1
=1 - %25,

It is apparent that the required inequality holds for the other conjugacy

classes and, consequently, the Higman-Sims group consists of commutators.

We conclude this chapter by giving references to character tables of
various simple groups. ﬁ“om these tables it can be verified that all the
groups consist of commutators. We only give references to groups where, as
far as we know, no verification of the conjecture under consideration has
been explicitly stated. We firstly consider various "sporadic" simple groups.

L} and M

23* Ya20 ¥p 11
can be obtained from [46] . (In [u9] it is shown that both M,, and M,, consist

The character tables of the other four Mathieu groups M

of commutators. However, we have been unable to obtain this paper so we
ijnclude the above reference for the sake of completeness.)

The character tables of the finite simple groups of Ree (c.f. [37] and[38])
are presented by H. N. Ward in [51].

The character table of the simple group of order 448, 345, 437, 600,
presented by M. Suzuki in|2 p.113] was obtained by D. Wright in [_52] .

The character table of the simple group M(22) of order 217_39_52.7.11‘23’
discovered by B. Fischer in [ll_] » is presented by D. C. Hunt in [23].

The character table of the simple group:3 of order 210.37.53.7,11,23,
discovered by J. Conway in LS] s 1s presented by D. Fendel in [10] .

The character table of the Hall-Janko group of order 664, 800, is presented
by M. Hall, Jr. and D. Wales in [18].

Finally, the charcter table of the Higman-Janko-McKay group of order

27.3%.5.17.19 can be found in [17].

With regards to infinite families of simple groups, in [41_‘] , B.Srinivasan
gives the character tables for the finite symplectic groups Sp(u,q), where
q is odd. In [8] H. Enomoto handles the characteristic two case and he

gives the character tables for Sp(h ,2™), where n e
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Chapter 7 CONJUGACY IN GROUPS

The proof of the conjecture that every non-abelian finite simple group
consists of commutators appears to be very difficult to obtain. The kind
of knowledge required for such a proof does not appear to be readily accessible.
It would be a great help if information concerning the number of conjugacy
classes in a non-abelian finite simple group could be ohtained. From an
empirical point of view, such groups appear to have 'few" conjugacy classes.
Consequently, in this final chapter we turn our attention to finite groups
in which we make assumptions concerning the eonjugacy classes. Although the
results we obtain are not themselves statements concerning commutators, they
are the sort of results that will come in very useful in trying to prove the

above conjecture.

Throughout this chapter we assume that G is a finite group which contains
a subgroup M of order pn such that any two non-identity elements of M are
conjugate within G. We make extensive use of the character theory of finite

groups and we adopt the notation of Chapter S.

This work was initiated by A. Fomyn in [12]. His work was written in
Russian and, in extending his results, we have used different techniques which
simplify his proofs. Consequently, we will prove everything from scratch

without referring to his work. We will however state which results originated

from Yomym.

We assume, with Fomyn, that M is abelian. This is certainly the case
:"' G .
when M“

fet 1 # mecM and 6 Irr(M), where 6 # lM’ the principal character of M.:
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Theorem 7.1. xil = (p"-1) fi + ki’ where
f, = (xil ), = (xi - ¥ m)) /" d
i MM p - xwme /e an
o i _ g 1 n i
kg = (C Ty Ly = G, + 071 xT(m)) / p7

3 l i —
Proof (xll , 8), = 2 x (g) 6(g)
M M lMl geM

1 i i - \
= (", + Z x (g) 6(g)), because 6(1) = 1.
IMI 1 l#gGM ‘

Now xi(g) is constant for all non-identity elements of M.

Therefore,
O]y Oy = TrliT oy + X EGM B(g)
Because 0 } 1, OM’ G)M = 2_' 8(g) = 0.
geM
Consequently, z B(g) = -1.
1$geM
Therefore,
Ol 0y = ) - X)) /8% = £, say.
Similarly,
oy Wy = ir L X T
gEG
= (Xil + (Pn‘l) Xi(m)) / pn s ki’ say.
Now Jrre(M)| = |Hom (M, D)| = p". |

Because fi is independent of 6 we have the desired result that

i n_

' Fomyn obtained the result that xll = (pn_l) fi + ki though he did not
. i - i

observe either (X 'M’ 0)M = fi or (x IM’ 1M)M = ki' He also assumed that

<M>G = @ and we do not

We now give a simplified verification of some formulae obtained by

Fomyn .
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Theorem 7.2.

(i) xi(m) = ki -;f

o
e

“(ii) = |ef

o
o
>
[
'

o
[

126

e

(iii)

e
>

s
"

1 10" 1 DD

o

[ ad

T N-1D T
b
1]

N
S
Y

(iv) lol + [egtm]

[
o

N
o]
Lt
e
N
1]

(v) lc| + (pn-l)2|CG(m)|

o

e
[

(vi) p* I k;f, = gl
i1

(p"-1) [ce(e)]

Proof. By Theorem 7.1,

k; - £, = (xll + (p"-1) Y¥'(m)) 7 p" - (xi1 - x(m)) /p° = xi(m).

(1]
o

By [[9-p.16], X Xty xtm) (7.2.1)

i=l

So, by Theorem 7.1,

Zx (i~pf)
gz1 L

Now Z (x* ) = |¢|, by [o,p-16].
iz1

So,

Zlf xl le].

k) i
By Theorem 7.2 (i), x'(m) = kg - £,

h .
SO, X xil (ki - fi) = o, by (70201).

h
Now p" iZl 5 Xil |6], by Theorem 7.2 (ii),

(9
]

h
n
So pt ) ki X, = Z £ X = |¢f.
i1 i 1 1°
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‘ h
Now m ™ Gm’l, so, by [ 9.p.16], .2 O m)? = lce(m)l. (7.2.2)

i=1

So, by Theorem 7.1,

L[]
~1
~

>
He
(W
]
]
=]
h
~

¢ (m)]
Ieg i=1

h . h h
2 (xl )2 - 2pn iz xi £ 4 P2n Z fi2
i=1 H

N _
la] - 2la| + o0 ) f12, by [9.p.16]and Theorem 7.2 (ii).
i=1

h .
2
Thus, p2n ) £° = le| + |CG(m)|.
izl
By Theorem 7.1, ~x-(m) = (" kg = x')) / (#"-1).
SO, by (7'2'2)’
legml = 3 (@ K, = %)) /7 P
CG m R- P k; - X, p
z1
—1 " 2 | opn 1 1.2
) 7 Lokt -2 Lok ¢ b0
(pn-l)2 151 1 T R -
1 2n h 2
= (" 1x;° - l6h), by (9.p.26] and
(p-1) i=1

Therefore,

Theorem 7.2.(iii).

h
2 2 _ n 2
p P izl k;,© = le] + (p-1) ICG(m)l.

. i
Finally, by Theorem 7.2 (i), x(m) = ki - fi.

So’ by (7.2.2)’
h- h h h
2 2 2
cm| = ¥ Gy - £ = ] k-2 k£, + ¥ £.°.
l c l = i i j=p 1 121 iti 171 i
s 2 2n lﬁ k.f. = 2n Z k 2 + P2n z £ 2 - p2n lc (M)l

2
lol + (2™-1)% [egtm] + fg| + Jegm| - &#* |eym],

By Theorem 7.2 (iv) and Theorem 7.2 (v).
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Thus, p°" I ki =6l - (p"-1) |CG(m)|, as required,

Fomyn obtained the following corollaries to Theorem 7.2.

Corollary 7.3. If the order of a Sylow p-subgroup of CG(m) is not greater

than P(2n-1)’ then it is a Sylow p-subgroup of G.

Proof. The proof follows immediately from Theorem 7.2 (iv).

Let xl be the principal character of G.

Corollary 7.4%. If f, is an odd number for 2 § 1 ¢ h, then p = 2 and M is

a Sylow 2-subgroup of G.

{Note that fi = 0 if and only if M g_Ker(xl). So fi being non-zero for

2 £ 1 < h implies that <M>G = G.)

Proof. By Theorem 7.2 (v) and Theorem 7.2 (vi) we obtain,
2“}fk(k-f)-(2“-“)lc(m)|
LA T A T ™I

Nowxl being the principal character implies that kl = 1 and fl z 0. So,

h
2n
p2n + p2n izz ki(ki - fi) = (p° - pn) ICG(m)l. (7.2.3)

Since P2n - p"” is always even and ki(ki - fi) is even because £, is odd we have
that p = 2. The highest power of 2 to divide the left hand side of (7.2.3)

is 2P, Consequently, the highest power of 2 to divide |CG(m)| is 2%, By
Corollary 7.3 a Sylow 2-subgroup of C.(m) is a Sylow 2-subgroup of G.

Since |M| = 2" and M =Cq(m), the proof is complete.
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As a further corollary of Theorem 7.2 Fomyn obtained the following result.

Corollary 7.5. Suppose fi =1 for 2 £ i € h and that G does not possess

three pairwise non-equivalent irreducible representations of degree pn_l‘
1f G is a simple group, then G ¥ Ag, the alternating group on 5 symbols.
We will extend the result, but before doing so we give a final corollary to

Theorem 7.2.

Corollary 7.6. M is a normal subgroup of G if and only if

£k, =0 forlgigh

Proof. Ve observe‘ that M4 G is and only if ICZ(m)I = pn-l, where Cl(m) is
the conjugacy class of G containing m. Noting that fi and k g are non-negative
for 1 £ i £ h and |CZ(m)| ICG(m)I = |G|, the result follows from Theorem 7.2(vi). ‘
Theorem 7.7. Suppose fi =1, for 2 €1 g h.
Then p = 2, M is a Sylow 2-subgroup of G and
either (a) G/0,, (§) ¥ PSL(2, 2%)

or (b) |M] =2, 6=¢6 PN M, G' is abelian and g" = g-l for every g£G'.
Proof. As we noted above <f = 6. Let N<1G. Since any two non-identity
elements of M are conjugate within G,
either NaM = <1> or M& N. But <M>G = G, so, either NﬂM =<1> or N = G.
Suppose NQM = <1> and we consider T&Irr(G/N).
Now NWN ¥ M/M,N = M. Suppose ¥ is a non-principal character of NM/N.
Because [ is aiso an irreducible character of G, we see that
1. (In other words our assumption that fi = 1 for

z) W =

NM/, TINM/
non-principal characters is quotient clog.ed)

Qf no

Two cases arise, depending on whether)@ is solvable.
Suppose G is not solvable. By Corollary 7.4, M is a Sylow 2-subgroup of G.
Because <M>G =G, G/02,(G) is a simple group. J. H. Walter in Eo]
classified non-abelian finite simple groups with an abelian Sylow

2-subgroup. From E»o] we see that G/O2,(G) is isomorphic to one of the
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following:
(i) PsL(2, 2™, m > 1.
(ii) PSL(2, q), @ £ 3 or 5 (modulo 8), q > 3.
(iii) A simple group H such that for each involution t of H,
CH(t) = <t> x A, where A is isomorphic to PSL(2, q),
with q = 3 or 5 (modulo 8).
We give an argument of Fomyn to show that G possesses an irreducible
character of degree 2" - 1. From Theorem 7.2 (ii),
2 3 o= .
i=2

h ) .
But ) (x11)2 = |G| from [9.p.16].
i=1

h
i 1 n
so, § X ,(x;-2)=-L
i=2
Consequently there exists a xJ where 2 € j € h such that le < 2%, But
f,=lfor2sish implies that Xll 2 2" - 1, by Theorem 7.1. So G possesses

a xj where 2 £ j € h such that le = 28

- 1. Of the three possibilities for
the structure of G/02,(G), in Case (ii), G has a Sylow 2-subgroup of order 4
(c.f. [Siné]). So, by the above argument G possesses an irreducible
character of degree 3. TFrom [7. p.22§] we see that this implies q is equal
to 5. But PSL(2, 5) ¥ PSL(2, 4), from [16p.u93]. So this exceptional
occurence is contained in Case (i). (Note that PSL(2, 5) 2 PSL(2, 4) ¥ A
and this is the case covered by Fomyn in Corollary 7.5.) 2. Janko and

J. G. Thompson, in &9], show that for the groups in Case (iii), either
q=5,0rgq-= 32r*l, where r 3 1. Janko, in EB], considered the case q = 5
and showed that the group arising is the group named after him, Janko's

group of order 175,560. ASylow 2-subgroup of this group has order 8, but from
the character table obtained by J. McKay in 50] we see that Janko's group

does not possess an irreducible character of degree 7, contradicting the

above argument. If q = 32r+1’ where r 3 1, then, from B9. Lemma 2.1}, a
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Sylow 2-subgroup of G has order 8. Now G has a subgroup K Z PSL(2, q),
with q > 27. From E?.p.22£ﬂ we see that PSL(2, q) possesses no non-principal
character of degree less than (q - 1)/2 2 13. Therefore, if G possesses an
irreducible charactér X of degree 7, then K SKer(x). But G is a simple group,
so this is impossible. So we are reduced to considering Case (i). From
[}. p.23€] we see that PSL(2, 2") obeys the conditions of the theorem, where
m 3 1. Moreover, the order of a Sylow 2-subgroup of PSL(2, 2™) equals 2™
from [6.p.9]. So we do indeed have that 6/0,,(G) ¥ PSL(2, 27).
If G is solvable, then because G/N satisfies the hypotheses of the theorem,
where N <] G, we have thatiu has a normal 2-complement 02,(6). If my, M, are
non-identity elements of M, then m vy, Consequgntly mlN N G/N m2N,
where N £|G. Because G/02.(G) ¥ M, we must have M 3 02.

Now G = wmC = <M, U&, 02.(G)]>.

[, 0,.(e]] = a.

So, 02,(6)

. .

Suppose there exists xJ such that le > 2,

\

Now xil Xi(m) = 0, from [9.p.16].

it 33

i=1
. ' 5 )
since |G : G'| = 2, G has two linear characters X~ and x* say.
Moreover, x'(m) = 1 and x(m) = -1.
Consequently,
By
Z x 1 x (m) = 0- (7.7.1)
i=3 _
By Theorem 7.1, xj(m) = le~2 which is greater than zero by assumption. In
order that (7.7.1) holds there must exist x* such that ¥ (m) < 0, where
3¢r < h.
But, again by Theorem 7.1, f = (xrl - ¥"(m))/2 and, if x(m) < 0, then

fr # 1 contradicting our initial assumption. So xil =2 for 3¢1igh.

By a result of I. M. Isaacs and D. S. Passman [25,Theopem II] , G has a normal

abelian subgroup of index 2. i.e. G' is abelian. Now M induces a group of
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automorphisms upon G' and (IM], IG'I) = 1. It is easily seen that Theorem
5.2.3 of E&] can be extended to cover this case and we have

¢' = [6', M] x Cg (M),
But ' = [G', M), from above. So Cy, (M) = Cqi(m>) = <1>. Thus m induces a
fixed point free automorphism upon G'. Let g € G' and suppose gm = h.
Because m2 =1, A" = g. Thus (gh)m = hg = gh, because G' is abelian. Since
m induces a fixed point free automorphism, h = g L.

It would be nice if we were able to extend the previous theorem by
letting the fi's take a different set of values. In the solvable case
érogress may be possible, for it is easily seen that the assumption that
fi >0 for 2 ¢ i ¢ h forces G to be a split extension of a group of odd
order by an involution. However, in the non-solvable case matters are more
difficult. If one examines the character tables of non-abelian finite simple‘
groups one does not readily see any straightforward pattern for the fi's

that arise.

e.g. In Janko's group of order 175,560, by considering M to be a Sylow
2-subgroup, we obtain the following set of values for the fi's:-

{o, 7, 7, ¢, 10, 9, 10, 10, 15, 15, 15, 16, 17, 17, 26}.

By assuming that f 1 O for 2 £ i € h we came to the conclusion that

<M>G = G. We now consider the opposite case, that of M being a normal

subgroup of G.

We recall that if M |G, 8€Irr(M) and g € G, we may define o8 ¢lrr(M)
by 85(n) = e(ghg'l), h&M. Further we recall that the Inertial Group of
6, denoted by I(0) is {glgeG, 8% = 6}. Finally if H is a subgroup of G,y ¢IrkC)

and A€Irr(H) such that A is a constituent of x restricted to H, then we

write that A€ x|,

We show that there is a very close relationship between I(8) and CG(m), where

we still assume that 6 is a non-principal character of M and 1 { mg M.
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We first prove an introductory result of independent interest.

Theorem 7.8. Let M<)JG. Suppose that {filz €1 ¢r} are‘the. only non-zero £, 's.
some i,
Then there exists cielrr(l(e)) such that fi =z r.i(l) for)2 € 1 ¢ r.

Conversely, given ;ie Irr(I(6 )) such that 8¢ cllM, then there exists an fi

such that fi = ;i(l).

Proof. Let xleI rr(G) be such that M 4’: Ker(xi).

By Corollary 7.6 we see that f; $o0-= k-
So inM = £, ) & , where {67} =Irr(M)\{1M}.
3

By restricting )(".L to I(8) we may select an CieIrr(I(e)) such that ci& xill(e)
and e&l:iln. Then, from f9.p.53] we see that ci* = xi, where é‘* is the
character of G obtained by inducing ci up to G. Because ;ie.‘[ rr(I(8)) we sce
that Cilu = Ci(l). Consequently by [9.p.53], ci(l) = f,.

The proof of the converse follows by reversing the above argument.
Theorem 7.9. If MG, then ICG(m)I = |1(9)].

Proof. Select Ze Irr(I(8)) such that 6¢ ;IM.
Then,by Theorem 7.8 and from L—g, p.53] it is easily seen that,
gh = Xj and (1) = fj. (7.9.1)

By EQ.P""’S] s

1 -
;*(m) = Ti-(—e-)—l— gzeG C(gmg 1).

Because any two non-identity elements of M are conjugate within G we have,

CG(m)
t*(m) = JTI(_6)+ E c(mk), (7.9.2)

where {mk}are the non-identity elements of M.

Now, (8, 1)y = Tiﬂ-hzen e(h) = 0, by [97 p.14].

So, ] e(m) = -6(1) = -1.
k
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Therefore, t(m ) = z(1) o(m ) = -z(1).
Letmo = ] e elm,

By Theorem 7.2.(1i) and (7.9.1) we have,

w(m) = x'(m) = £, = -x().
Comparing with (7.9.2) we see that ICG(m)[ = |1¢0)].
Suppose we assume that M is a Sylow p-subgroup of G. By a result of Burnside
E(: Theorem 7.1.1] » two elements of M are conjugate within G if and only if
they are conjugate within NG(M). So, in assuming that M is a Sylow p-subgroup

it is reasonable to assume that M<QG.
Under these assumptions we prove the following theorem.

Theorem 7.10. Suppose M is a normal Sylow p-subgroup of G. Then, to each

non-principal character eie Irr(M) there exists 1 % me € M such that

I(ei) = CG(mi)’ and conversely.

Proof. Suppose Gi’ is a non-principal character of M. Let M = <gy> x Ker( ei),

where e(gi) = w, wa primitive p th root of unity.

1t is easily seen that I(ei) '-::NG(Ker( ei)) and that gig = gik, where
geI(9) and kQKer(ei). Consequently, [M, I(ei)] C Ker(o™). By EbTheorem
5,2.@] » 8 may be chosen such that I(ai)E; CG(gi)‘ This particular value of

g; is our desired m . By applying Theorem 7.9, we see that I(e*) = CG(mi)'

conversely, given 1 $ m &M, we consider the following equation, which follows

from [!l.'l'heorem 5.2.3:'.
M= [M, cy(m)] x C(Colmy))

Let CH(CG(mi)) = > x 1(1

and also let K, = [M, Co(m)] x K,.
1f we define 6 by ei(mi) = w and 61(k) = 1 for each k €K,, then it is

easily seen that CG(mi) < I(ei). By Theorem 7.9, we reach the desired

conclusion that CG(mi) = I(ei).



- 73 -

We now obtain information concerning the relationship between I(6)/M and

the {fi|2 €1igh).

Theorem 7.11. Suppose M is a normal Sylow p-subgroup of G and that

{fi|2 £ 1 ¢ r} are the only non-zero fi's. Then {fi|2 € i ¢ r) are the

degrees of the irreducible characters of I(8)/M.

Proof. We consider 6*, the character of I(8) obtained by inducing 6 up to
1(8).

1f e Irr(1(8)) is such that 6 €|y, then |, = t(1)e.
By the Frobenius Reciprocity Theorem [9. p.47],

(Z, 6%)yegy = &y, 0]y = (L),

By Theorem 7.8 we see that there are (r-1) such t's denoted by {t;1|2 £icgr}
and that ci(l) H fi’ vhere 2 ¢ 1 g r.
Let {Ai} = Irr(1(6)/M). These are the characters of I(8) that contain M

in their respective kernels. By Theorem 7.10, there exists an m&M such that

1(8) = cG(m). Moreover, by considering the proof of Theorem 7.10 we see that
m may be chosen such that 8(m) = w, a primitive p th root of unity.

Now the {Ci|2 ¢ i £ r)} are precisely the irreducible characters of I(9) such
that Ker(8) < Ker(g}) and ttm) = cf1)w, for 2 £ 4 € x.

Now M is a normal Sylow p-subgroup of I(8). So, by the Schur-Zassenhaus
Theorem Lfb Theoren 6.2.1] , M has a complement K in I(6). Noting this and
also that m&Z(I(8)) we see that there is a well defined bijection ¢ between

the {Aj} and then {¢*}, given by,

$ @ Aj + ¢J, where we define l;j by

t3 (kgm®)

Aj(kgma)m“, where ke K, g ¢Ker(0) and ae . .

Recalling that fi = ;i for 2 £ 1 ¢ r we see that the proof is complete.

We finish by applying this work to a rather restricted case.

Theorem 7.12. Suppose M is a normal Sylow p-subgroup of G and that G/M is

abelian.
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Suppose = {set of prime divisors of p -1}.
Then, (i) G has a normal abelian Hall w'-subgroup.
(i1) Ccy(m)<lG and G/Cy4(m) is cyclic of order (p"-1).

(iii) CG(m) = Z(G) x M.

Proof. By Corollary 7.6, kifi =0forlcig<h.

Now the non-zero ki are the degrees of the irreducible characters of
G/H. Because G/M is abelian these k { equal 1. By considering Theorem 7.8,
again noting that G/M is abelain we see that the non-zero fi also equal one.
By Theorem 7.1 we see that either xi(l) =1 or xi(l) = pn-l, for 1 g4 ¢ h.
By a theorem of I. M. Isaacs and D. S. Passman Eso'rheomm 3.1:’ » We see that
G has a normal abelian Hall n'-subgroup H, CG(H) Q6 with G/CG(H) cyclic of

order (p“-l) and that cG(H) = 2(G) x B, where B<JG, and c/cG(H) acts fixed

point freely on B.

Now m&H, so CG(m) ?_CG(H).

But |G : CG(m)I = |6 : cym)] = (p"-1).

Therefore, CG(m) = CG(H).

Because M is a normal Sylow p-subgroup of G, M has a complement K in G.

Now K ¥ G/M which is abelian. Therefore B = M and the proof is complete.

The author would like to point out that since he obtained these results

he has become aware of some results of I. M. Isaacs Ek] and unpublished

pesults of E. C. Dade and G. Glauberman that describe the relationships

between the inertial groups and centralizers of elements in far greater

generality.
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