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Abstract Vegas et al. IEEE Trans Softw Eng 42(2):120:135 (2016) raised concerns about
the use of AB/BA crossover designs in empirical software engineering studies. This paper
addresses issues related to calculating standardized effect sizes and their variances that were
not addressed by the Vegas et al.’s paper. In a repeated measures design such as an AB/BA
crossover design each participant uses each method. There are two major implication of
this that have not been discussed in the software engineering literature. Firstly, there are
potentially two different standardized mean difference effect sizes that can be calculated,
depending on whether the mean difference is standardized by the pooled within groups
variance or the within-participants variance. Secondly, as for any estimated parameters and
also for the purposes of undertaking meta-analysis, it is necessary to calculate the variance
of the standardized mean difference effect sizes (which is not the same as the variance of
the study). We present the model underlying the AB/BA crossover design and provide two
examples to demonstrate how to construct the two standardized mean difference effect sizes
and their variances, both from standard descriptive statistics and from the outputs of statis-
tical software. Finally, we discuss the implication of these issues for reporting and planning
software engineering experiments. In particular we consider how researchers should choose
between a crossover design or a between groups design.
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1 Introduction

Vegas et al. (2016) reported that many software engineering experiments had used AB/BA
crossover designs but the reports of the experiments did not use the correct terminology.
In their literature review, they found a total of 82 papers that reported human-participant
based experiments. 33 of those papers used crossover designs in a total of 68 experiments.
Only five of papers employing a crossover design used the term crossover, other papers
used terms that were incorrect or not specific enough. Furthermore, 17 papers did not take
account of participant variability in their analysis (which is the main rationale for using a
repeated measures design such as a crossover).

In their paper, Vegas et al. explain both the terminology used to describe a crossover
design, and how to analyze a crossover design correctly. However, except for warning read-
ers to “Beware of effect size” and to only calculate effect sizes when the main factor is the
only significant variable, Vegas et al. did not discuss effect sizes for crossover designs. In
this paper we explain how to construct effect sizes and their variances for crossover designs.
We provide an overview of the crossover design, as well as its advantages and limitations in
Section 2.

Effect size is a name given to indicators that measure the strength of the investigated
phenomenon, in other words, the magnitude of a treatment effect. Effect sizes are much
less affected by sample size than statistical significance. Hence, they are better indicators of
practical significance (Madeyski 2010; Urdan 2005; Stout and Ruble 1995). Effect sizes are
also essential in meta-analyzes (Kitchenham and Madeyski 2016), which in turn allow us to
summarize results of empirical studies, even those with contradictory results, that address
the same (or closely related) research questions.

Thus the objectives of this paper are as follows:

1. To present the formulas needed to calculate both non-standardized mean difference
effect sizes and standardized mean difference effect sizes1 for AB/BA crossover
designs (see Sections 4 and 5).

2. To present the formulas needed to estimate the variances of the non-standardized and
standardized effect sizes which in the later cases need to be appropriate for the small to
medium sample sizes commonly used in SE crossover designs (see Section 5).

3. To explain how to calculate the effect sizes and their variances both from the descriptive
statistics that should be reported from crossover experiments and from the raw data (see
Section 6).

We discuss why these goals are important and how we address them in Section 3. In Sec-
tion 7, we discuss the implications of the issues presented in this paper from the viewpoint
of researchers trying to decide whether to undertake a crossover study or an indepen-
dent groups study, particularly in the context of families of experiments. We present our
conclusions in Section 8.

It is also worth mentioning that in order to streamline the uptake of the research results
of this paper, the reproducer R package (Madeyski 2017) complements this paper, as
well as Kitchenham et al. (2017a), Madeyski and Jureczko (2015), Jureczko and Madeyski
(2015), with the aim of making our work easier to reproduce by others. We have embedded
a number of the R functions (used to make the statistical analyzes and simulations in the

1For simplicity, we shall refer to these simply as the standardized effect sizes and will not continually repeat
the terms mean difference.
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paper) in the reproducer R package we developed and made available from CRAN (the
official repository of R packages)2. The use of the functions (R commands and outputs) is
presented throughout the paper (see Outputs 3 and 4), as well as Appendix A (see Outputs
Outputs 5, and 6).

2 Background

A crossover design is a form of repeated measures design. A repeated measures design is
one where an individual participant contributes more than a single outcome value.

In the case of a simple AB/BA crossover design, A refers to one software engineering
technique, B refers to another and the goal of the design is to determine which technique
delivers the better outcome. The difference between the outcomes of using technique A and
using technique B is called the technique effect. Participants are split into two groups, and
each participant in one group uses technique A first (on a software engineering task with
materials related to a specific software system or component) and subsequently uses tech-
nique B to perform the same task using materials related to a different software system or
component. Participants in the other group use technique B first, and technique A second.
The group that a participant is assigned to determines the sequence in which a participant
uses the techniques. The first set of outcomes are referred to as the Period 1 outcomes, the
second set of outcomes are referred to as the Period 2 outcomes. The difference between the
outcomes in Period 1 and the outcomes in Period 2 is called the period effect. A full math-
ematical definition of the crossover model3 is shown in Table 1 and explained in Section 4.

The benefit of the crossover design (and other repeated measures designs) is that each
individual acts as his/her own control. The impact of this is that if the resulting data are
correctly analyzed:

1. The effect of individual differences related to innate ability is removed, (i.e., systematic
between participant variation is removed). Thus, the effect of different techniques are
assessed in terms of the individual improvement for each participant.

2. The removal of between participant variation, allows tests of significance to be based on
smaller variances (i.e., significance tests are based on the within-participant variation).

3. Since the variance used to test the technique difference is reduced, it is possible either
to reduce sample sizes and maintain statistical power, or to maintain sample sizes and
increase power.

Since sample sizes are often relatively low in Software Engineering (SE) experiments,
crossover designs have the potential to be very useful. There are obviously disadvantages as
well. The correct analysis of crossover data is more complicated than analysis of data from
simple experiments where participants are randomly allocated to two different treatment
groups4.

2Our package should not be confused with the knitr package we used to embed R code chunks in the paper.
3For readability, we sometimes omit the term AB/BA when referring to the crossover design, but any reference
to a crossover design or model in this paper, refers to an AB/BA crossover, which is based on two techniques
and two time periods.
4This is referred to as a between groups design or an independent groups design. We prefer the term
independent groups in this paper to contrast with repeated measures designs
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Table 1 Expected Outcome for Participants in AB/BA Crossover

Sequence Participant Period 1 Period 2

Group ID

SG1 j y1,1,j = μj + τA y2,2,j = μj + π + τB + λA

(technique A) (technique B)

SG2 k y2,1,k = μk + τB y1,2,k = μk + τA + π + λB

(technique B) (technique A)

Perhaps more importantly, although the crossover design can cope with time period
effects that are consistent across all the participants, crossover designs are vulnerable to
interaction effects including period by technique interaction, where the performance of par-
ticipants is affected by which technique they used first. For example, if a technique involves
providing additional materials to participants, it may be easier first to understand the task
using less (or simpler) documentation, and then perform the subsequent task with the addi-
tional (more complex) information, rather than try to perform the first task with too much
information. The crossover design is also vulnerable to participant by technique interaction
where individual participants behave differently depending on which technique they used.
For example, one technique might improve the performance of less able participants but
have no effect on more able participants, which would reduce the repeated measures cor-
relation. If researchers expect either of these conditions to hold, they should avoid using a
crossover design.

3 Goals and Methodology

Our first goal is to present the formulas needed to estimate the effect sizes used in crossover
designs. This goal is important because researchers in all empirical disciplines are increas-
ingly being encouraged to adopt the use of effect sizes rather than just report the results of
t or F tests (see APA 2010; Kampenes et al. 2007; Cumming and Finch 2001; Cumming
2012).

To address this goal, we begin by presenting a detailed discussion of the AB/BA
crossover model in Section 4, from which the means and variances needed to calculate both
standardized and non-standardized effect sizes are derived.

In Section 5, we specify two different standardized effect sizes suitable for crossover
designs depending on whether researchers are interested only in the personal improvement
offered by a software engineering technique, or are more interested in the effect of the
technique, and want an effect size comparable to that of a standard independent groups
design.

Our second (but equally important) goal is to present formulas needed to calculate the
variance of both non-standardized and standardized effect sizes. This goal is important
because without knowing the variance of effect sizes, it is impossible to derive their con-
fidence intervals (CIs). Researchers are advised to report CIs (see APA 2010; Cumming
and Finch 2001) because they provide a direct link to null hypothesis testing and support
meta-analysis.

To obtain the variances of the two standardized effect sizes, we reviewed the literature
and found one paper that proposed formulas for the standardized effect size variances (see
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Curtin et al. 2002). This paper proposed a formula suitable for small sample sizes and a
simpler approximate formula suitable for larger sample sizes. However, we could not ver-
ify the proposed formulas. For this reason, we derived our equations from first principles
based on the non-central t distribution (Johnson and Welch 1940), as explained in Section
5.3.1. After discussions with Dr. Curtin, we have, together, agreed revised versions of his
equations (see Kitchenham et al. 2017b).

Our third goal is to explain how to calculate the standardized and non-standardized effect
sizes and their variances both from the descriptive statistics that should be reported from
crossover experiments and from the raw data. To address this goal, we present two exam-
ples in Section 6. This goal is important because researchers need to understand how the
outcome from statistical analysis tools map to the parameters of the crossover model. There-
fore, we include in Section 6.3 an explanation of how standardized effect sizes and their
variances can be calculated from analyzes undertaken using R (R Core Team 2016) with the
linear mixed model lme4 package (Bates et al. 2015). In addition, researchers who repli-
cate crossover studies and want to aggregate their results with previous studies may not
have access to the raw data from previous studies. Therefore, they may need to estimate
effect sizes and their estimates from descriptive data. Furthermore, if appropriate descrip-
tive statistics are reported in studies using a crossover design, even if the studies used an
inappropriate analysis, the results could easily be reassessed, if researchers know how the
descriptive statistics map to the parameters of the crossover model.

4 The Non-Standardized Effect Sizes for Crossover Studies
and their Variances

This section explains the AB/BA crossover model and how to calculate the non-standardized
effect sizes and their variances.

4.1 Non-Standardized Effect Sizes of the AB/BA Crossover Model

Senn (2002) provides an extensive discussion of the AB/BA crossover design and we follow
his analysis procedures throughout this section. Following his approach, the most straight-
forward way to represent the design is to model the outcomes for individuals in each
sequence. If we assume:

– τA is the effect of technique A.
– τB is the effect of technique B.
– τAB = τA − τB is the difference between the effect of technique A and technique B. It

is the non-standardized mean technique effect size.
– τBA is the difference between the effect of technique B and technique A where τBA =

−τAB .
– π is the period effect size which is the difference between the outcome of using a

technique in the first time period and the second time period.
– λA is the period by technique interaction due to using technique B after using technique

A5.

5In medical experiments, the period by technique interaction term is often referred to as carry-over. This is
because crossover designs are often used for testing drugs and the effect of the first drug taken may interact
with the second drug in an adverse way. Medical experiments therefore leave an appropriate washout period
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Table 2 Expected Differences and Sums for Participants in an AB/BA Crossover

Sequence Participant Cross-over Period Participant

Group Difference Difference Total

SG1 j τAB − π − λA π + λA − τAB 2μj + π + τA + τB + λA

SG2 k τAB + π + λB τAB + π + λB 2μk + π + τA + τB + λB

– λB is the period by technique interaction due to using technique A after technique B.
– λAB = λA − λB = −λBA is the mean period by technique interaction effect size.
– μi is the average outcome for participant i.
– The group of participants that use technique A first is called sequence group SG1, the

group of participants that use technique B first are called sequence group SG2.

The expected outcome in each period for a typical participant in each sequence group is
shown in Table 16. The observations in each cell (i.e., period and technique combination)
referred to as yt,p,s are identified by the technique (where t = 1 equates to technique A,
and t = 2 equates to technique B), the period (where p = 1 equates to time period 1,
and p = 2 equates to time period 2), and participant (where s = 1, ..., n1 corresponds to
the participants in the group that used technique A in time period 1, i.e., group SG1, and
s = 1, ..., n2 corresponds to the participants in the group that used technique B in time
period 1, i.e., group SG2)7.

Senn (2002) demonstrates how a crossover analysis is based on summing and differenc-
ing outcomes for each participant as shown in Table 2.

The crossover difference for each participant in Table 2 is obtained by subtracting the
outcome obtained using technique A from the outcome obtained using technique B in each
time period. Thus, the crossover difference for participants in group SG1 is:

CODiff1,j = y1,1,j − y2,2,j (1)

and the expected value for each participant is:

CODiff1,j = τA − τB − π − λA = τAB − π − λA (2)

The crossover difference for participants in group SG2 is:

CODiff2,k = y1,2,k − y2,1,k (3)

and the expected value for each participant is:

CODiff2,k = τA − τB + π + λB = τAB + π + λB (4)

Calculating the crossover difference means the effect of the individual participant is
removed.

to allow the effect of the first drug to be eliminated from participants before they are given a second drug.
We use the term period by technique interaction because carry-over and a washout period are not really
appropriate concepts for SE experiments. In fact, in the context of training, it might be argued that we want
to encourage ‘carry-over’ of acquired skills and minimize their ‘washout’.
6By expected outcome, we mean the outcome based on the model excluding any error term. We explain error
terms and variances in Section 4.2.
7Table 1 is equivalent to TABLE 2 in Vegas et al. (2016), except we also specify the model of the data
obtained from individual participants.
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The period difference for each participant is obtained by subtracting the task outcome
for period two from the task outcome for period one, as shown in Table 2. Thus, the period
effect for participants in group SG1 is:

PDiff1,j = y2,2,j − y1,1,j (5)

and the expected value for each participant is:

PDiff1,j = π + τB − τA + λA = π − τAB + λA (6)

The period effect for participants in group SG2 is

PDiff2,k = y1,2,k − y2,1,k (7)

and the expected effect for each participant is:

PDiff2,k = π + τA − τB + λB = π + τAB + λB (8)

Again, calculating the period difference means that the effect of the individual participant
is removed.

The participant total for each participant is obtained by adding the task outcome for
period two to the task outcome for period one, as shown in Table 2. Thus, the participant
total for a participant in group SG1 is:

SG1,j = y1,1,j + y2,2,j (9)

and the expected value for each participant is:

SG1,j = 2μj + π + τA + τB + λA (10)

The participant total for a participant in group SG2 is

SG2,k = y2,1,k + y1,2,k (11)

and the expected value for each participants is:

SG2,k = 2μk + π + τA + τB + λB (12)

It is important to note that the participant total includes the mean task outcome of the
individual participant.

In order to estimate the model parameters, we average the sum of the crossover dif-
ferences, the sum of the period differences and the sum of the participant totals over the
participants in the same group. The expected value for groups are shown in Table 3. To
emphasize that Table 3 provide estimates of the model parameters, each parameter is shown
with a hat symbol over its Greek character. It is important to note that averaging the
participant totals leads to replacing the individual participant outcomes with the average
participant outcome.

Table 3 Expected value of groups means for the crossover design

Sequence Mean crossover Mean period Mean participant

Group Difference Difference Total

SG1 τ̂AB − π̂ − λ̂A π̂ + λ̂A − τ̂AB 2μ̂ + τ̂AB + π̂ + λ̂A

SG2 τ̂AB + π̂ + λ̂B τ̂AB + π̂ + λ̂B 2μ̂ + τ̂AB + π̂ + λ̂B
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The mean crossover difference for SG1, MCO1, is obtained by averaging the crossover
difference of the n1 participants in SG1:

MCO1 = �jCODiff1,j

n1
= τ̂AB − π̂ − λ̂A (13)

The mean crossover difference for SG2, MCO2, is obtained by averaging the crossover
difference of the n2 participants in SG2:

MCO2 = �kCODiff1,k

n2
= τ̂AB + π̂ + λ̂B (14)

This means that:
MCO1 + MCO2 = 2τ̂AB − (λ̂A − λ̂B) (15)

and
MCO1 + MCO2

2
= τ̂AB − (λ̂A − λ̂B)

2
= τ̂AB − λ̂AB

2
(16)

A critical assumption underlying a crossover design is that:

λAB = 0 (17)

so, if the assumption holds, the average of the mean crossover difference estimates the
non-standardized technique effect size, τ̂AB , for a crossover design:

τ̂AB = MCO1 + MCO2

2
(18)

Thus, we assume that any effect caused by undertaking one technique followed by
another is fully modeled by the period effect. We consider this issue further in Section 4.2.2.

The period effect can be calculated as:

−(MCO1 − MCO2)

2
= π̂ + (λ̂A + λ̂B)

2
(19)

Assuming that λ̂A = λ̂B = 0, minus the average of the difference of the mean crossover
differences estimates the period effect:

π̂ = −(MCO1 − MCO2)

2
(20)

Similar equations can be used to calculate the technique effect and the period effect using
the mean period differences.

If the assumption that the period by technique interaction term is zero is true, then it will
not be significantly different from zero. Nonetheless, to estimate the period by technique
interaction term, we use the mean of the participant totals for sequence SG1 and sequence
SG2 where:

MSG1 = �jST1,j

n1
= 2μ̂ + τ̂A + τ̂B + π̂ + λ̂A (21)

and

MSG2 = �kST2,k

n2
= 2μ̂ + τ̂A + τ̂B + π̂ + λ̂B (22)

Thus the difference between the mean participant totals of the two sequence groups
estimates the period by technique interaction effect size:

MSG1 − MSG2 = λ̂A − λ̂B = λ̂AB (23)

This means that the period by technique interaction effect can also be called the sequence
effect.
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4.2 Non-Standardized Effect Size Variances and t-tests

In this section we explain how to calculate the variance of the non-standardized effect sizes,
and how these statistics relate to the t-test of the non-standardized effect size. The relation-
ship between effect sizes and t-variables is also important for estimating the references of
standardized effect sizes (see Section 5.3.1). We also discuss the problems introduced both
by tests of the period by technique interaction effect, and by non-normally distributed data.

4.2.1 The technique effect size variance

In order to identify the variance of the estimated effects, we need to consider the error term
in crossover designs. Senn (2002) points out that the error term associated with the outcome
of a specific individual using a specific technique in a specific period is made up of two
parts:

– βs,i which is the effect due to participant i in sequence group s where s = SG1 or
s = SG2.

– ζi,s,t which is the within participant error.

The expected value of βs,i is zero and the variance of βs,i is σ 2
b . The expected value of

ζi,s,t is zero and the variance of ζi,s,t is σ 2 − w. The simplest model assumes that βs,i and
ζi,s,t are independent, so their covariance is zero, although Senn points out that other models
are possible. The simplest model also assumes that all ζi,s,t are independent of each other.

If we calculate the pooled within period and within technique variance in a crossover
study, we obtain a variance, that is an estimate of the sum of the between-participant
variance and the within-participant variance. So if:

σ 2
IG = σ 2

b + σ 2
w (24)

We can estimate σ 2
IG as follows:

s2
IG = �t,p(nt − 1)

(
yt,p,j − ŷt,p

)2

2n1 + 2n2 − 4
(25)

where nt equal n1 for sequence group SG1 and n2 for sequence group SG2. This calculation
is exactly the same variance calculation we would use if we were analyzing a study based
on four independent groups. For this reason, in the context of repeated measures analysis, it
is labeled σ 2

IG and its estimate is labeled s2
IG, see, for example, Morris and DeShon (2002).

It is important to note that s2
IG should never be used as the basis for the standard error in

a t-test because the repeated measures violate the assumption that all the individual values
are independent.

In a simple independent groups study we are unable to separate the two components of
σ 2

IG. In contrast, with a repeated measures design such as an A/B crossover we are able to
estimate the separate components of variance. However, in order to estimate the variance
components we need to consider the variance of the crossover difference scores, σ 2

diff .
Unlike the error term associated with an individual measurement, the error term asso-

ciated with the crossover difference (or period difference), removes the participant effect
and leaves only the within-participant variation. In simple before-after repeated measures
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designs8, the differences between before and after outcomes lead to a single group of dif-
ferences scores, and the variance of the difference scores is an unbiased estimate of the
within-participant variance (see, for example, Cumming 2012). However, the added compli-
cation of the crossover design means that the variance we obtain from the difference values
is the pooled within sequence group variance (again assuming that the variance of the differ-
ence values in each sequence groups estimate the same underlying variance). Thus estimate
of the difference score variance is calculated as:

s2
diff = (n1 − 1)�j (CODiffj − MCO1)

2 + (n2 − 1)�k(CODiffk − MCO2)
2

(n1 + n2 − 2)
(26)

In simple repeated measures before-after design σ 2
diff and σ 2

w are equal, however,
Freeman (1989) points out that in crossover designs:

σ 2
w = σ 2

diff

2
(27)

Furthermore, the correlation between the outcomes for an individual in both periods is:

ρ =

(
σ 2

IG − σ 2
diff

2

)

σ 2
IG

=
(
σ 2

IG − σ 2
w

)

σ 2
IG

(28)

so
σ 2

diff = 2σ 2
IG(1 − ρ) (29)

and
σ 2

w = σ 2
IG(1 − ρ) (30)

From (18), and the fact that the variance of the mean difference in each sequence group is

assumed to be the same, var(MCOi) = s2
diff

ni
and we can calculate the variance of τ̂ 9 since:

var(τ̂ ) = var(MCO1) + var(MCO2)

4
= s2

diff

4

(
1

n1
+ 1

n2

)
(31)

Since,
(

1
n1

+ 1
n2

)
= (n1+n2)

n1n2
, the square root of the variance of τ̂ which is also called the

standard error of τ̂ is:

seτ̂ = sdiff

2

√
(n1 + n2)

n1n2
= sw√

2

√
(n1 + n2)

n1n2
= sw

√
(n1 + n2)

2n1n2
(32)

Thus, the non-standardized technique effect size for a crossover design is obtained from
(18), while its variance is obtained from (31).

Then, the t-test for the significance of τ̂ is:

t = τ̂

seτ̂

(33)

with degrees of freedom df = n1 + n2 − 2.

8In other disciplines, these are also referred to as pretest-posttest designs.
9The variance of τ̂AB is exactly the same as the variance of τ̂BA, so for variances and standard deviations we
refer to τ̂ without any additional subscript.
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To see whether the period effect is significant, the t-test is based on the same standard
error:

t = π̂

seτ̂

(34)

with df = n1 + n2 − 2.

4.2.2 The period by technique interaction effect

We have not yet considered what to do about the period by technique interaction effect. One
approach is to test the interaction term for statistical significance. A t-test for the interaction
is based on the variance of the sums for each individual (σ 2

sum) and is estimated from pooled
variance of the individual totals within each sequence group (s2

sum):

s2
sum =

(
(n1 − 1)�j (ST1,j − MST1)

2 + (n2 − 1)�k(ST2,k − MST2)
2
)

n1 + n2 − 2
(35)

Referring the components of (35) shown in Tables 2 and 3, in terms of the variances we
have already introduced:

σ 2
sum = 4σ 2

IG (36)
However, although relationship between the parameters is exact, it may not be an exact
relationship between the estimates s2

sum and s2
IG because the variances are estimated in

different ways. Using s2
sum, the t-test is:

t = λ̂AB

2

√
s2
sum

(
1
n1

+ 1
n2

) (37)

with df = n1 + n2 − 2. Since the power of this test is usually low10, an alpha level of
0.1 is usually adopted (see Senn 2002, Section 3.1.4). However, if the crossover design has
been used to reduce sample size, even an alpha level of 0.1 may be insufficient to detect a
genuine period by technique interaction.

If we find a statistically significant period by technique interaction, it might seem tempt-
ing to use (16) to calculate the non-standardized effect size by removing the estimate of
0.5λ̂AB from the mean difference. This appears to be mathematically sound, but it is not
statistically sound. The reason is that the variance of 0.5λ̂AB is 0.25s2

sum ≈ s2
IG. If the

crossover design is used in order to reduce the variance for statistical tests, adjusting the
estimate of τ by half the estimate of λAB reintroduces the between participant variance into
any statistical tests of the revised estimate. This negates any possible benefit of a crossover
design compared with a standard between groups design.

The practical implication of these considerations is that a crossover design should not be
used if a significant period by technique interaction is anticipated. Furthermore, if a period
by technique interaction is not expected, there is no point testing for one11. Thus, we do not
include the period by technique interaction term (which corresponds to the sequence order)
in our data analyzes. However, as Vegas et al. point out, the possibility of an interaction
remains a threat to the validity of the experiment. We return to the issue of what can be done
to address the interaction problem in Section 7.

10Power is the probability of rejecting the null hypothesis when the null hypothesis is false.
11See also the discussion in Senn (2002), Section 3.1.4 that presents the arguments against a two-stage
analysis, where analysts first check for a significant period by treatment interaction. Then, if there is one,
they analyze only the data from the first period, and if there is not they perform a standard crossover analysis.
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4.2.3 Handling non-stable variances and non-normal data

Equation (24) for σ 2
IG assumes that the within-subjects (participants) variance and the

between-subjects (participants) variance are independent and not affected by the different
techniques. This is not necessarily the case. For example, a new technique might improve
the capability of less able participants thus reducing the difference among individuals. Alter-
natively, a new technique might be more difficult to apply than other techniques and might
improve the performance of the most able participants and reduce the performance of the
less able participants making the difference between individuals greater.

If the stability of the variances is in question, there are at least three possible approaches
to consider:

– The least useful option is to base the estimate of s2
IG solely on the n1 participants in the

first period control condition. This is not really useful because for crossover designs n1
is likely to be relatively small, so the estimate is likely to be inaccurate.

– Estimate s2
IG and s2

diff allowing the within cells variance to be different. However, the

implications of this approach, such as the relationship between s2
diff , s2

IG and ρ̂ are not
clear.

– Use a robust, ranked-based analysis. This is the most straightforward option and also
protects against non-normal data, such as skewed data and/or data with outliers.

A robust analysis compares the period differences. This is because the expected value of
the period differences are π −τ for sequence group 1 and π +τ for sequence group 2. Thus
any significant difference between the period differences in the two sequence groups is due
to a significant technique effect.

Thus, using a rank-based analysis, if the rank sum of the period differences in sequence 1
is significantly different from the rank sum of the period differences in sequence 2, you can
reject the hypothesis that the technique effect size is zero (see Senn 2002, Section 4.3.9).
However, if you use the Wilcoxon-Mann-Whitney test it is essential to use the exact test,
which is the default in R. The probability of superiority12 can be used as a non-parametric
effect size constructed from the Mann-Whitney U statistic (see Wilcox 2012; Kitchenham
et al. 2017a).

5 Standardized Effect Sizes for Crossover Studies and their Variances

In this section we discuss standardized effect sizes that can be calculated for crossover
designs and their variances.

5.1 Formulas for the Standardized Effect Sizes

For purposes of meta-analysis, it is important that standardized effect sizes from crossover
designs are comparable with effect sizes obtained from other designs.

12Also known as Varga and Delaney’s Â metric (see Vargha and Delaney 2000; Arcuri and Briand 2014;
Madeyski et al. 2014)
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A crossover standardized effect size comparable to before-after repeated measures
designs is:

δRM = τ

σw

(38)

In contrast, a crossover standardized effect size comparable to independent groups designs
is:

δIG = τ

σIG

(39)

The estimates of δRM and δIG which we refer to as dRM and dIG are obtained by substituting
the sample estimates τ̂ for τ , sw for σw and sIG for σIG. These are similar to Cohen’s d,
although originally Cohen’s d was developed for independent groups studies and used a
variance based only data from the control group.

The relationship between σ 2
w and σ 2

IG in (30) means that there is a functional relationship
between the two standardized effect sizes, such that:

δIG = δRM

√
(1 − ρ) (40)

This relationship is important for calculating the variance of δIG which we discuss later.
However, the estimates dIG and dRM are known to be biased for small to medium sample

sizes and are usually adjusted to remove bias (see Hedges and Olkin 1985; Borenstein et al.
2009; Ciolkowski 1999; Laitenberger et al. 2001). The adjustment factor is:

c(m) =
√

2

m

(
�[m/2]

�[(m − 1)/2]
)

(41)

where � is the gamma function, which is an extension of the factorial function, and m is the
number of degrees of freedom, i.e., m = n1 + n2 − 2. This function is approximated by the
function:

c(m) ≈ 1 − 3

4m − 1
(42)

Hedges and Olkin (1985) reported the exact values of c(m) for values from m = 2 to
m = 50, but even with m = 2, the difference between the exact value (i.e., 0.5642) and the
approximate value (i.e., 0.5714) is only 1.28%, while for m = 10 the difference is less that
0.04%.

Thus, the unbiased estimate of δRM is:

gRM = c(df )dRM = c(df )τ̂

sw
(43)

Since, sw = sIG

√
1 − ρ̂, this is the same formula reported by Laitenberger et al. (2001).

The unbiased estimate δIG is:

gIG = c(df )dIG = c(df )τ̂

sIG

(44)

The statistics gRM and gIG are often referred to as Hedges g statistics.13

13It should be noted that Hedges and Olkin (1985) refer to the small sample size adjusted estimate as d and
the unadjusted estimate as g.



Empir Software Eng (2018) 23:1982–2017 1995

5.2 Choosing the Appropriate Standardized Effect Size

In the past, researchers have proposed standardizing repeated measures studies using the
independent groups variance (see Becker 1988; Dunlap et al. 1996; Borenstein et al. 2009).
The reason for this is to make the results of repeated measures studies comparable with
the results of independent group studies. This is particularly important in the context of
meta-analysis.

Repeated measures designs are intended to remove the potentially large variation
between participants and test the difference between techniques based on the potentially
much smaller within-subject (participant) variation. However, this means that independent
groups experiments standardized by s2

IG would have a smaller effect size than the repeated
measures experiments standardized by s2

w even if the non-standardized mean differences
were the same.

Morris and DeShon (2002), however, make the point that the choice of effect size should
depend on the goal of the meta-analysis. If the goal is to assess the likely improvement
in individual performance then δRM is appropriate. If the goal is to assess the difference
between techniques then δIG is likely to be more appropriate. Nonetheless, whichever goal
a meta-analyst has, it should be clearly stated and the method for calculating the appropriate
variance explained. The need for both effect sizes is also supported by Lakens (2013).

It should be noted that none of the above sources discuss effect sizes in the context of
AB/BA crossover designs. Dunlap et al. (1996), Becker (1988) and Lakens (2013) were
concerned solely with within-subjects before-after experiments. Morris and DeShon (2002)
discuss effect sizes of independent groups and two repeated measures designs: the before-
after design and the independent groups before-after design, which measures all participants
using the same technique prior to splitting the participants into two groups and performing
an independent groups experiment.

5.3 Standardized Effect Size Variances

For standardized effect sizes to be useful we need to calculate their variances. However,
with the exception of Kitchenham and Madeyski (2016), we are not aware of any software
engineering studies that have identified the need to estimate the variance of standardized
mean different effect sizes. In this section, we provide formulas to estimate the variance of
δIG and δRM for small, moderate and large sample sizes.

5.3.1 The basic principle

The variance estimate most suitable for small samples (up to ≈ 30 participants) for any
standardized mean difference effect size is derived from the distribution of Student’s t (see
Morris and DeShon 2002; Morris 2000). The distribution of a t-variable with mean θ and
variance V (θ) is known to be the non-central t distribution. Johnson and Welch (1940)
report the variance of a t variable to be:

V (θ) = df

df − 2

(
1 + θ2

)
− θ2

[c(df )]2
(45)

Where θ is estimated by the t-value, df = (n1 + n2 − 2) are the degrees of freedom associ-
ated with the t-test, and c(df ) is the same function reported in (41) which is approximated
by the formula given in (42).
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If we can estimate the variance of a variable θ , and the relationship between θ and a
standardized effect size δ is given by the equation:

θ = A × δ (46)

where A is a constant term, then14, the variance of δ is:

var(δ) = 1

A2
var(θ). (47)

which expands to:

var(δ) = df

df − 2

(
n1 + n2

2n1n2
+ δ2

)
− δ2

[c(df )]2
(48)

This is true for any standardized effect size that can be calculated from a t-value, includ-
ing those obtained from crossover designs, repeated measures before-after designs, and
independent group designs.

Since gRM is an unbiased estimate of δ, Kitchenham et al. (2017b) show that this leads
to:

var(dRM) = df

df − 2

(
n1 + n2

2n1n2
+ g2

RM

)
− g2

RM

[c(df )]2
(49)

and

var(gRM) = [c(df )]2 df

df − 2

(
(n1 + n2)

2n1n2
+ g2

RM

)
− g2

RM (50)

Since dRM = dIG

sqrt(1−ρ̂)

var(dIG) = df

df − 2

(
(1 − ρ̂)(n1 + n2)

2n1n2
+ g2

IG

)
− g2

IG

[c(df )]2
(51)

and

var(gIG) = [c(df )]2 df

df − 2

(
(1 − ρ̂)(n1 + n2)

2n1n2
+ g2

IG

)
− g2

IG (52)

It is important to appreciate that the value of the constant A defined in (46) depends on

study design type. For crossover designs A =
√

2n1n2
(n1+n2)

. However, for repeated measures

before-after designs A = √
n, while for independent groups designs A =

√
n1n2

(n1+n2)
. Thus,

the construction of mean difference effect sizes and their variances depends on the specific
design type.

5.3.2 Formulas to estimate the medium sample size variance of standardized effect
sizes

For larger samples sizes, approximate equations for the variance of effect sizes are available.
Based on an equation presented by Hedges and Olkin (1985), Kitchenham et al. (2017b)
show that:

var(dRM)approx = (n1 + n2)

2n1n2
+ d2

RM

2(n1 + n2 − 3.94)
(53)

14Since the variance s2 of a variable x multiplied by a constant b is var(b × x) = b2s2
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Hedges and Olkin (1985) recommend a slightly different equation for the approximate
variance of gRM :

var(gRM)approx = [c(df )]2(n1 + n2)

2n1n2
+ g2

RM

2(n1 + n2)
(54)

Based on the relationship between dRM and dIG:

var(dIG)approx = (1 − ρ̂)(n1 + n2)

2n1n2
+ d2

IG

2(n1 + n2 − 3.94)
(55)

and

var(gIG)approx = [c(df )]2(1 − ρ̂)(n1 + n2)

2n1n2
+ g2

IG

2(n1 + n2)
(56)

5.3.3 The approximate variance for large sample sizes

Looking at (49), we can see that if the effect size is close to zero making d2
RM ≈ 0, and the

sample size is very large, so that df ≈ df − 2 and c(m) ≈ 1, then:

var(dRM) ≈ (n1 + n2)

2n1n2

Furthermore, if n1 = n2, the variance is approximately half the inverse of the sample size.
As would be expected, under the same conditions var(gRM) converges on the same value.
In addition, the variances of dIG and gIG also converge on the same value:

var(dIG) ≈ (1 − ρ̂)(n1 + n2)

2n1n2

6 Calculating Effect Sizes and their Variances

In this section, we present two small examples illustrating how to calculate crossover study
effect sizes and their variances. One example is based on real software engineering data to
illustrate the complexity of software engineering data. The other is based on simulated data
to illustrate how the AB/BA crossover model is intended to work given that all the basic
assumptions underlying the model are true.

It is useful to know how to calculate effect sizes (both non-standardized and standard-
ized) and their variances both from descriptive data, as well as by using statistical packages
to analyze the raw data. If authors report appropriate descriptive statistics, then other
researchers (including reviewers and meta-analysts) can, without access to the raw data,
construct the model parameters, effect sizes and their variances from the results reported.
Therefore, we identify the descriptive statistics that are necessary to calculate the various
crossover model parameters and effect sizes. In addition, we show how to analyze raw
crossover data using the R language and the lme4 package, and explain how to extract the
crossover model parameters from the outcomes of the R package.

We, also, demonstrate two graphical methods of presenting the results of crossover stud-
ies. We suggest that they provide a more accurate graphical representation than box plots of
the technique outcomes. In particular, they provide visual indications both of the outcomes
of the experiment, and of the extent to which data conforms with the crossover model.
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Table 4 Scanniello crossover data (labeled as EUBASwideSelected in Output 1)

ID Comp Level.AM Comp Level.SC Comp Diff Comp Sum SequenceGroup

P3 0.82 0.77 0.05 1.59 SG1

P4 0.60 0.70 −0.10 1.30 SG2

P7 0.80 0.93 −0.13 1.73 SG1

P8 0.93 0.90 0.03 1.83 SG2

P11 0.70 0.83 −0.13 1.53 SG1

P12 0.90 0.96 −0.06 1.86 SG2

P15 0.67 0.83 −0.16 1.50 SG1

P16 0.77 0.66 0.11 1.43 SG2

P19 0.80 0.70 0.10 1.50 SG1

P20 1.00 0.85 0.15 1.85 SG2

P23 0.76 0.57 0.19 1.33 SG1

P24 0.87 0.66 0.21 1.53 SG2

This section, thus, provides some advice to authors about how to report the outcomes
of their studies that should make their studies more useful to their readers. It also provides
two worked examples that novice researchers can try out to help them better understand the
crossover design.

6.1 Example 1: Scaniello’s Data

The dataset in Table 4 comprises a subset of the data reported by Scanniello et al. (2014) to
support their paper.

The study investigated the impact of UML analysis models on source code comprehensi-
bility (measured with the Comp Level metric) and modifiability. The two techniques being
compared are AM (analysis model plus source code) and SC (source code only). The tech-
niques were trialed on two software systems S1 (a system to sell and manage CDs/DVDs
in a music shop) and S2 (a software system to book and buy theater tickets. One feature
from each system from each system was used as the object of study. The data relates to
two groups in the dataset from the EUBAS experiment which itself was one of a family of
four experiments. We chose that experiment rather than one of the others, because when we
analyzed the EUBAS data, we found a non-zero repeated measures correlation which is an
important pre-requisite for a crossover design to be of any value in decreasing the variance.
It was also the experiment with the largest number of participants.

The full EUBAS experiment was a four-group crossover with Group 1 and Group 2 com-
prising one AB/BA crossover and Group 3 and Group 4 comprising another. The difference
was that Group 1 and Group 2 used S1 and then S2, while Group 3 and Group 4 used S2
and then S1 (see Scanniello et al. 2014, Table II). We used the data from participants in the
Group 3 and Group 4, as an example of an AB/BA crossover, since we found an anomaly
in the reported data for Group 215. We selected only a subset of Scanniello’s data because
we wanted to explain the AB/BA crossover rather than discuss the more complicated four-group

15The data for participant 2, who is labeled as being in Group 2, are inconsistent. That is, for participant 2,
the labels identifying the system and the time period are the same as for participants in Group 1.
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crossover which can be analyzed as a pair of AB/BA crossovers. Thus, the small balanced
dataset provides an example of how the two-group crossover experimental results can be
reported and the relevant analysis statistics are calculated.

Figure 1 shows two ways to represent crossover data graphically, while the code used to
produce the figure is presented in Output 1.

Output 1 Code to Produce Example of Graphical Methods to Represent Crossover Data
using Data from Scanniello

Panel (a) of Fig. 1 shows a box plot of the cross-over difference for each sequence group.
The box plots show that the median value of the differences for individuals is below zero for
individuals in sequence group 1 and above zero for individuals in sequence group 2. How-
ever, a large part of each box spans zero suggesting that there is no significant technique
effect. Panel (b) shows the outcomes for each individual for technique. Seven of the individ-
uals performed better using AM compared with five who performed better using SC. Again
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Fig. 1 Example of graphical methods to represent crossover data using data from scanniello
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this gives no indication of any major difference between the techniques. An important issue
to note is that participants that used AM before SC did not show the expected association
between participant outcomes, i.e., participants who performed well using AM did not seem
to perform well using SC and vice-versa. In contrast, participants who performed well using
SC first generally performed well when subsequently using AM. The lack of a correlation
between individual participant outcomes in SG1 group means that overall the correlation
between participants may be quite low. The graphical display in panel (b) is useful for small
data sets since the results of box plots based on very few observations may be misleading,
but for larger data sets, the box plots in panel (a) are usually more helpful.

The appropriate descriptive statistics for a cross-over study are shown in Table 5.
From these descriptive statistics all the effect sizes, their t-tests, and the effect size vari-

ances shown in Table 6 can be calculated (even if sample sizes in each sequence group
are unbalanced). For example, using (18), τ̂ = −0.0133+0.0567

2 = 0.0217. Given that the
Comp Level metric varies between 0 and 1, the effect size is extremely small. Using (20),
the period effect size is π̂ = −((−0.0133)−(0.0567))

2 = 0.035. Using (23), the period by treat-

ment interaction effect is λ̂AB = 1.53 − 1.6333 = −0.1033. Thus, in this case, it appears
that interaction is large compared with the technique effect.

Table 6 reports that the t value for testing the significance of τ̂ is 0.5581 which, at an
alpha level of 0.05, is not significantly different from zero. This outcome is consistent with
the inferences we drew from panel (a) in Fig. 1. The estimate of ρ is 0.3613. Thus, the
correlation between repeated measures in the EUBAS data set is rather low compared with
that reported by Dunlap et al. (1996) for test-retest measurements. The low correlation was
indicated by the lack of correlation between individual values for participants in SG1 visible
in panel (b) of Fig. 1. The correlation between an individual’s performance indicates the
extent to which the crossover design has decreased the variance compared with a standard
independent groups design. In extreme cases, if s2

IG ≈ s2
w, then ρ is assumed to be equal to

zero and the crossover design has not reduced the variance at all.

6.2 Simulated Data Example

It is often helpful to use simulated data to understand the behavior of statistical tests and
graphical representations. It allows us to check the accuracy of model parameter estimates
against known values. It can also be used to check how sample size affects the accuracy of
estimates or how violations of model assumptions affect analysis results. Examples of the
use of simulation in software engineering include (Shepperd and Kadoda 2001) who used
simulation to compare prediction techniques, Dieste et al. (2011) who investigated the use

Table 5 Descriptive statistics for the scanniello data

Sequence Statistic AM SC CODiff Participant

Group Total

SG1 Mean 0.7583 0.7717 −0.0133 1.53

Variance 0.0037 0.0155 0.0214 0.0171

Num Obs 6 6 6 6

SG2 Mean 0.845 0.7883 0.0567 1.6333

Variance 0.0201 0.0173 0.0148 0.06

Num Obs 6 6 6 6
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Table 6 Statistics calculated
from scaniello’s data Statistic Equation Value

Number

τ̂ 18 0.0217

π̂ 20 0.035

λ̂AB 23 −0.1033

s2
IG 25 0.0142

s2
diff 26 0.0181

s2
w 27 0.009

ρ̂ 28 0.3613

var(τ̂ ) 31 0.001508

seτ̂ 32 0.03884

t 33 0.5581

of the Q heterogeneity estimator for meta-analysis, and Foss et al. (2003) who investigated
the properties of the MMRE statistic.

In this section we present a simulation study to illustrate the relationships between the
graphical representations and descriptive statistics, in ideal circumstances (i.e., equal num-
bers of participants in each sequence group, stable variances, a large between participant
correlation, no significant period by treatment interaction, and normal distributions). This
dataset will also be used to allow the comparison of model parameter estimates with the
known values of those parameters.

We simulated a data set such that:

– There are 15 participants in each sequence group.
– The average outcome across different participants is μ = 50. We note that many of the

papers used effectiveness measures based on a scale from 0 to 1 based on the proportion
of questions answered correctly (see, for example, Scanniello et al. 2014; Abrahao et
al. 2013). We chose a value of 50 which is equivalent to 50% of correct answers rather
than a value between 0 and 1, so the effects would be clearer in the analysis.

– Users of technique 1 achieve an average of 10 units more than users of technique 2, that
is τ = 10. For a metric scale based on the number of correct answers to 10 questions,
this would be equivalent to increasing the number of correct answers by one.

– Users achieve an average of 5 units more in period 2 than in period 1, that is, π = 5.
– There is no period by technique interaction effect built into the simulation (i.e. λAB = 0).
– The variance among participants using a specific technique in a specific time period is

σ 2 = 25. This means the variance is unaffected by period or technique.
– The correlation between outcomes for an individual participant is ρ = 0.75. We chose

the value 0.75 because (Dunlap et al. 1996) reported that such values are to be expected
for test-retest reliabilities of psycho-metrically sound values. In the software engineering
literature, Laitenberger et al. (2001) reported values of r varying from 0.78 to −0.0216

16According to Laitenberger et al. (2001) the results from one team had a large impact on this correlation
coefficient. When removing this observation the correlation coefficient changes from −0.02 to 0.47.
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Fig. 2 Example of graphical methods to represent crossover data using simulated data

for the correlation between outcomes from teams. However, it would be reasonable to
expect correlations based on individuals to be greater than those based on teams.

We simulated data from two different bivariate normal distributions, corresponding to
the two different sequence groups. The first set of simulate data corresponding to sequence
group SG1 came from a bivariate distribution with means: μ1 = 60 corresponding to the
simulated participants using technique 1 in time period 1 and μ2 = 55 corresponding to
the simulated participants using technique 2 in time period 2. The covariance matrix was
symmetric, with the variance of the simulated participants using a specific technique in
a specific time period being set to 25 and the covariance being set to 25 ∗ (1 − ρ) =
18.75. Observations from sequence group SG2 were simulated from a bivariate normal
distribution with the same variance-covariance matrix and means μ1 = 50 corresponding to
the simulated participants using technique 2 in time period 1, and μ2 = 65 corresponding
to the simulated participants using technique 1 in time period 2. After allowing for the
common mean effect of 50, the simulated data come from a population where the effect of
technique 1 is 10 units and the effect of technique 2 is zero units.

The simulated data set, as well as how the data can be generated using the reproducer
package are presented in Output 5 in Appendix A. The results of this simulation are shown
in Fig. 2, while the code used to produce the figure is presented in Output 2.
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Output 2 Code to Produce Example of Graphical Methods to Represent Crossover Data
using Simulated Data

The first thing to notice is that even with 15 data points in each sequence group, the
box plots deviate from what we expect from a normal distribution (i.e., the median for each
sequence group is not in the center of the box). Looking at the box plot, we see the difference
between the medians of the boxes is approximately (13 − 4) = 9 units. In general, since the
average of the difference values for participants in sequence SG1 are estimates of τ̂ − π̂ and
the average of the difference values for participants in sequence SG2 are estimates of τ̂ + π̂ ,
the difference between the medians will be approximately twice the period effect, which for
our simulation was 5. Also the sum of the medians (13 + 4) = 17 will be approximately
equal to twice the technique effect, which for our simulation was 10.

Looking at the raw data for each individual, we see that the simulated participants in
sequence group S2, that used technique 2 first and subsequently used technique 1, show
a strong difference between their outcomes. This is because the impact of using technique
1 is increased by the period effect. The simulated participants in sequence group S1 that
used technique 1 first however, showed less of a clear advantage when they used technique
1 compared with their results using technique 2. The individual outcomes for simulated
participants in period 2 was greater than the outcome for period 1, for 13 of the 15 simulated
participants but the differences were quite small. This is because in the second time period,
individual results were increased because of the positive impact of the period effect17.

The descriptive statistics for the simulated data are shown in Table 7.
These statistics can be used to calculate the estimates of the sample parameters. For

example, in this case τ̂ = 3.5653+14.1282
2 = 8.84675, which is a reasonable estimate of

τ = 10 and confirms that the effect of the relatively large period effect has been removed.
Table 8 compares the simulation sample estimates to the values of the parameters we

used to simulate the data set18.
The relative error of an estimate is calculated as

PercentRelativeError = 100 ∗ (T heoreticalV alue − SampleEstimate)

T heoreticalV alue
(57)

17Of course, it is also possible for a period effect to be negative.
18We omit an estimate of the period by technique interaction term λAB because we omitted any such term
from our simulation model.
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Table 7 Descriptive statistics for the simulated data crossover design

Sequence Statistic Technique Technique CODiff Participant

Group 1 2 Total

SG1 Mean 61.3772 57.8119 3.5653 119.1891

Variance 12.4561 11.7601 7.7316 40.7007

Num Obs 15 15 15 15

SG2 Mean 65.2768 51.1486 14.1282 116.4254

Variance 12.2649 26.4595 14.9214 62.5274

Num Obs 15 15 15 15

There are some substantial differences between the theoretical values and the estimates
from our sample, particularly for the estimate of σ 2

IG. Thus, even under ideal conditions,
samples based on only 30 observations in all (i.e., 15 in each sequence group) may not give
very reliable results. Nonetheless the value of the t-statistic is 14.40 which is statistically
significant at α = 0.05.

6.3 Using R to Calculate Non-Standardized Effect Sizes and their Variances

Vegas et al. (2016) proposed the use of linear mixed models to analyze crossover data.
They did not recommend a specific statistical package, but in this study we used the R
linear modeling package lme4 which can correctly analyze crossover designs with unequal
sample sizes. This package assumes that the data is in the long format, i.e., there are two
rows for each participant, identifying the participant period, treatment, and results.19

6.3.1 Analyzing Scaniello’s data

Using the long format with variable names: ID for the participant identifier (with values
P1, P2, ..., P12), Time Period (with values R1 and R2) and Technique (with values AM and
SC), and Comp Level for the result, the first few lines of the SE example data would need
to have the structure illustrated in Table 920.

The results of using the lme4 package to analyze the Scanniello data are shown in Output
3.21 ID is treated as a random effects term, whereas Time Period and Technique are treated
as fixed effects terms. Unlike Vegas et al. who include a Sequence effect (which (23) con-
firms is a means of testing the period by treatment interaction) as well as a Time Period and
Technique effect, we adopted Senn’s approach, as discussed in Section 4.2.2, and did not
include a parameter related to the period by treatment interaction term (λAB ).

Output 3 Linear Mixed Model Analysis of the Scaniello Crossover data

19The data in Table 4 is in the wide format where there is one entry of each participant and the outcomes for
each treatment, the sequence order, and the participant identifier are recorded.
20The data we used for the analysis in this section is exactly the same as the data we used in Section 6.1
21The term ” + (1 — ID)” in the formula identifies the factor ID as a random effects term.



Empir Software Eng (2018) 23:1982–2017 2005

The effect size related to TechniqueSC is −0.0217 and the effect size related to TimePe-
riodR2 is 0.035. The non-standardized effect size variance is the square of technique effect
standard error (i.e., 0.3882 = 0.1505). The value for the period effect is the same as we
found in our manual analysis, but the value of the technique effect is minus the value we
found in our analysis. This is because the package calculated τ̂BA rather than τ̂AB . We
treated AM as the experimental effect and associated it with the sequence SG1 as defined
in Table 1. However, the lme4::lmer function in R treats the labels given to different
categorical variables as arbitrary, and uses the category corresponding to the larger alphanu-
meric label as the one for which it will calculate the effect size22. Since SC is greater than

22This is the same for all R ANOVA-like functions.
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Table 8 Parameter and variance estimates for the simulated data

Parameter Sample Theoretical Percent relative

Estimate Value Error

τ̂ 8.8467 10 11.5325

π̂ 5.2814 5 −5.6284

s2
IG 15.7351 25 37.0595

s2
diff 11.3265 12.5 9.388

s2
w 5.6632 6.25 9.388

ρ̂ 0.6401 0.75 14.6548

var(τ̂ ) 0.3775 0.4167 9.4072

seτ̂ 0.6145 0.6455 3.1046

t 14.3978 15.4919 7.5992

AM alphabetically, it calculates the effect size for SC − AM and labels the effect size
T echniqueSC.

The variance term associated with the Residual is s2
w , and the variance term associated

with ID is s2
b giving s2

IG = s2
w + s2

b = 0.014012 compared with our manual estimate of

0.01416. Also, ρ̂ = s2
b

s2
IG

= 0.3546 compared with our manual estimate of 0.36135. Minor

differences between estimates of the variances and the correlation are to be expected when
comparing a mixed effects analysis based on maximum likelihood estimation with a manual
analysis.

6.3.2 Analyzing the simulated data

The results of the analysis of the simulated data set are shown in Output 4 and can be
compared with the values shown in Table 8. The estimates of the period effect sizes are the
same, but, again the estimate of the technique effect is negative. This occurs for the same
reason that the sign of the technique effect changed for Scaniello’s data. From the variances
reported in Output 4, s2

IG = 10.12+5.66 = 15.78 which compares with the manual estimate
of 15.7351 and ρ̂ = 10.12/15.78 = 0.6413 which compares with the manual estimate
0.6401.

Table 9 Example of the long
data format using the scanniello
data

ID TimePeriod Technique Comp Level

P3 R1 AM 0.82

P3 R2 SC 0.77

P4 R1 SC 0.70

P4 R2 AM 0.60
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Output 4 Linear Mixed Model Analysis of the Simulated Crossover data

6.4 Calculating Standardized Effect Sizes and their Variances

The standardized effect sizes based on the linear mixed model analysis are shown in Table 10.
dRM is calculated from (38) and dIG is calculated from (39). Since dIG is standardized with
sIG, its absolute value is smaller than dRM which is standardized with sw . Only when there
is no discernible correlation between the repeated measures will sIG = sw , and the effect
sizes will be the same.

The adjusted standardized effect sizes are shown in Table 11. The values of c(df ) are
derived from (42), with df replaced by the appropriate degrees of freedom, (i.e., 10 for
Scaniello’s data and 28 for the simulated data). gRM is calculated from (43) and gIG is
calculated from (44).

The estimated variance of the effect sizes, the variance approximations and the percent-
age relative error (PRE) of the approximations are shown in Table 12 for each of the datasets.
All the values reported in this table were obtained from values calculated from the lmer
analyzes shown in Output 3 and Output 4. For the simulated data, we can compare the stan-
dardized effect size variances with the theoretical variances obtained by using the variance
formulas with the values used to generate the simulated data. The theoretical variance of
δRM for a data set of 30 observations with 15 in each group is var(δRM) = 0.4013 and
the theoretical variance of δIG is var(δIG) = 0.1003. In comparison with the theoretical
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Table 10 Example standardized effect sizes

Effect Scaniello data Simulation Theoretical Percent

Size Estimate data Value Relative

SC-AM T2-T1 Error

dRM −0.2278 −3.7175 −4 7.0625

dIG −0.183 −2.2268 −2 −11.3384

values, var(dRM) is the best estimate of var(δRM) and var(gRM)approx is the worst, but,
in contrast, var(dIG) is the worst estimate of var(δIG) and var(gIG)approx is the best. A
more extended simulation study would be needed to determine which estimates were most
likely, on average, to be the best.

The percentage relative accuracy is the same for var(dRM)approx and var(dIG)approx .
This occurs because the small sample and medium sample variance of dRM and dIG are
simply a function of the variance of t multiplied by a constant which cancels out when the
relative error is calculated.This is the same for var(gRM)approx and var(gIG)approx .

7 Discussion

This paper is intended to follow-up some additional issues arising from Vegas et al. (2016)’s
recent paper identifying problems with the analysis of crossover experiments. Vegas et al.
discussed four repeated measures designs other than the simple AB/BA crossover. How-
ever, all those designs are extensions of the AB/BA crossover, including either additional
sequences and/or additional periods and/or repeating the same techniques, so in order to
understand these extensions it is important to understand the basic crossover design. We
provide a discussion of the model underlying the AB/BA crossover design, so that issues
connected with the construction of effect sizes and effect size variances can be properly
understood.

7.1 Impact of Incorrect Analysis on Effect Sizes and their Variances

Vegas et al. (2016) reported that many researchers using crossover designs did not account
for the repeated measures in their analysis. For an AB/BA crossover, analyzing the data,
without including a factor relating to individual participants effects, would lead to an over-

Table 11 Example standardized effect size adjustment

Effect Adjustment Scaniello data Adjustment Simulation

Size Scaniello Data Estimate Sim Data Estimate

c(10) Revised c(28) Revised

gRM 0.9231 −0.2103 0.973 −3.617

gIG 0.9231 −0.169 0.973 −2.1666



Empir Software Eng (2018) 23:1982–2017 2009

Table 12 Standardized effect size variances and their approximations

Statistic Equation number Scanniello data Simulation data

var(dRM) 49 0.2117 0.3412

var(dIG) 51 0.1366 0.1224

var(gRM) 50 0.1804 0.3231

var(gIG) 52 0.1164 0.1159

var(dRM)Approx 53 0.1699 0.3318

PREvar(dRM)Approx 57 19.7557% 2.763%

var(dIG)Approx 55 0.1096 0.1191

PREvar(dIG)Approx 57 19.7557% 2.763%

var(gRM)Approx 54 0.1689 0.3003

PREvar(gRM)Approx 57 6.3835% 7.0461%

var(gIG)Approx 56 0.109 0.1077

PREvar(gIG)Approx 57 6.3835% 7.0461%

estimate the degrees of freedom available for statistical tests by using df = 2(n1 + n2 − 2)

instead of df = (n1 + n2 − 2). In this section, we consider, hypothetically, what the impact
on the effect sizes and their variances would be if the subset of the Scaniello data and the
simulated data analyzed in Section 6 were analyzed ignoring the repeated measures and
period effects.

From the viewpoint of constructing effect sizes, the variances used to standardize the
technique effect would be based on the pooled within technique group data. However, in the
presence of a significant period effect, this would be a biased estimate of the σ 2

IG because
the period effect would systematically inflate the variance. This is the inverse of removing
a significant blocking effect in an analysis of variance in order to significantly reduce the
residual error term. If period is a significant blocking effect, failing to remove its effect from
the variance leave an inflated variance. In contrast ignoring the repeated measures might
deflate the variance because, if there is a strong correlation between the repeated measures
there will be less variability among the observations in each technique group than if the the
observations in each group were completely independent.

The value of the technique effect will be correctly estimated by the difference between
the mean of the values in each technique group. It is only likely to be biased if the number
of observations in each sequence group is unequal (i.e., n1 �= n2). Thus, the effect size cal-
culated by using the treatment effect divided by the pooled within group standard deviation
will lead to a slightly biased estimate of δIG.

To convert to Hedges’g the estimate of δIG is multiplied by c(df ). If the analysis has
ignored the repeated measures, df will be 2n1 + 2n2 − 2 rather than n1 +n2 − 2, and c(df )

will be slightly closer to one than it should be.
Based on the datasets introduced in Section 6, the effects of incorrectly calculating sam-

ple statistics are shown in Table 13. As can be seen the bias in the calculation of s2
IG is very

small for the analyzed subset of the Scaniello’s data, which has both a small period effect
and a small technique effect. However, the bias is much larger for the simulated data which
has a relatively large standardized effect size and included a substantial period effect. As a
result the bias in the estimate of δIG is negligible for Scanniello’s data but more substantial
for the simulated data. The impact on c(df) is more pronounced for Scanniello’s data than
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Table 13 Effect of incorrect
analyzes Statistic Scaniello’s data Simulated data

s2
IG 0.0142 15.7351

s2
IGbiased 0.01393 22.9002

dIG −0.0183 −2.2268

dIGbiased −0.01835 −1.849

c(df ) 0.9231 0.973

c(df Wrong) 0.9655 0.9870

gIG −0.169 −2.1666

gIGbiased −0.177 −1.8247

var(gIG) 0.1164 0.1159

var(gIGBiased ) 0.1709 0.09720

the simulated data because the sample size is smaller. In each case the impact on Hedges’ g
is that the small sample adjustment factor is underestimated.

If researchers do not analyze their crossover data as a repeated measures study, they
are likely to estimate the variance of their biased estimate of gIG as if the study was
an independent groups study. In Table 13, we compare the correct estimate of var(gIG)

with var(gIGbiased ) based on the formula for the variance of an adjusted effect size
estimate of an independent groups study (see Hedges and Olkin 1985). For the Scaniello
data, abs(gIGbiased ) is greater than abs(gIG), and the estimate of var(gIGBiased) is
greater than var(gIG). For the simulated data, abs(gIGbiased ) is less than abs(gIG) and
var(gIGBiased) is less than var(gIG). This happens because the formula for var(gIG)

includes the term g2
IG. So, the larger the effect size, the larger the effect size variance.

Overall, we can say that if δRM ≈ 0 and ρ ≈ 0, analyzing a crossover study incorrectly
is unlikely to lead to an incorrect assessment of the significance of the technique effect.
Furthermore, if the effect size is very large, we are likely to find that the effect is statistically
significant. That is, for very small effects and very large effects, the incorrect analysis will
lead to accidentally correct assessments of significance. However, for small to medium
effects it is quite possible that real effects will be considered chance effects, or chance
effects considered significant. In addition, in all cases where the non-standardized effect
size, or ρ, or the period effect are non-zero, any estimates of the standardized effect sizes
and their variances will be unreliable.

7.2 Standardized Effect Sizes and their Variances

Our presentation of the crossover model raises several issues that have not been fully dis-
cussed in the software engineering literature. In particular, we point out that for crossover
designs, there are two different standardized effect sizes that can be calculated. Furthermore,
each standarized effect size has a different formula for its variance. We also point out that
standardized effect sizes and their variances are different for different design types. These
issues have implications for meta-analysis in software engineering, where as far as we are
aware, only (Madeyski 2010) has explicitly discussed the fact that experimental design type
impacts the calculation of standardized effect sizes.

The results of our study have implications for the descriptive data from crossover designs.
Our examples in Section 6 show what sample statistics need to be reported to allow effect
sizes and their variances to be easily calculated from descriptive statistics. Specifically,
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researchers should report the mean, sample size and standard deviation (or variance) for all
four technique and period groups, as well as either the crossover difference mean and stan-
dard deviation for each sequence23. We also suggest graphical representations of crossover
data that allow readers to easily visualize the results of the study.

7.3 Implications for Planning Experiments

The crossover model has limitations, and in particular, we have not identified any method
to properly address the risk of a significant period by technique interaction biasing any
analysis of crossover data. The specific effect of the bias is uncertain because the direction
of the period by technique effect can be positive or negative. Assuming tAB is positive, (16)
confirms that if λAB is positive, the estimate of the non-standardized effect size will be
decreased, if it is negative, the estimate of the non-standardized effect size will be increased.

In the case of software engineering techniques, it is difficult to provide convincing a
priori arguments that techniques do not interact. Indeed, the subset of Scaniello’s software
engineering data that we show in Fig. 1b seems to suggest an interaction term is present
since the results of participants who used AM first did not seem to be correlated while the
results of participants who use SC first did seem to be correlated.

Another concern is that unless the repeated measures correlation, ρ, is relatively large, the
reduction in the variance used for statistical testing will be relatively small. Equation (30)
confirms that the reduction in variance is 100×(σ 2

IG−σ 2
w)/σ 2

IG = ρ. Thus, for Scanniello’s
data, the percentage reduction in the variance given the repeated measure correlation of
0.3613 is approximately 36%. In contrast, for the simulated data, the percentage reduction
in the variance is approximately 64%. Thus, unless we know in advance the likely value of
the repeated measure correlation, we may radically under- or over-estimate the impact of
the crossover design and could adopt an inappropriate sample size.

This suggests that before we could rely on an AB/BA crossover design to investigate
some new topic, we would need to undertake an experiment in order to investigate both
the nature of the period by technique interaction and the repeated measures correlation. We
might envisage an investigatory crossover experiment aimed at providing such information,
where the information from the first period could be used to test the difference between tech-
niques and estimate effect sizes, using a between groups design, and the information from
the second period used to investigate the interaction term and the correlation parameter. The
problem is that to provide reliable information concerning the interaction, an experiment
would have to have a sample size as large as a between groups experiment.

Another option is to consider an alternative to a crossover design that allows the impacts
of skill levels to be removed. This can done using what Morris and DeShon (2002) refer
to as an independent-groups pretest-posttest design 24. In such a design all subjects do the
same task using technique A and the same materials M1, then the participants are split into
two groups and each group learns a new technique (i.e., techniques B and C) to perform the
experimental task. In practice, one of the new techniques might simply be extra coaching for
technique A, but it is likely that the design would be fairer if A was a control method and B and
C were different competing methods. The difference scores can be used to estimate the difference
between technique B and technique C with the effects of individual differences removed.
The disadvantage of this design is that it assumes the time effect is equal for both groups.

23It is also acceptable to report the the value of ρ̂ instead of the crossover difference statistics
24Morris and DeShon also report the formulas for the effect sizes and effect size variances for this design.
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Vegas et al. (2016) mentioned four other possible repeated measures designs, but, unlike
the independent-groups pretest-posttest design, those designs have not been discussed in
the statistical literature. In our opinion, before such designs should be considered for adap-
tion, the full model underlying the design needs to be articulated, as we did for the simple
crossover in Section 4. This should include defining how to calculate appropriate effect
sizes and their variances, as well as specifying the theoretical assumptions and practical
limitations of the design.

Our best advice is to avoid over-complex designs that are not fully understood and always
aim for the largest sample size. If large sample sizes are not possible, consider planning a
distributed experiment as proposed by Budgen et al. (2013). In a distributed experiment, all
related experiments must use the same protocol and results are aggregated as a single nested
experiment. Kitchenham et al. (2017a) report the analysis of the data that was collected
from this distributed experiment.

7.4 Implications for Meta-Analysis

The results in this paper make it clear that it is possible to aggregate experiments that used
independent groups designs with experiments that used crossover designs. The crossover
designs can be aggregated using dIG, since this is comparable with the usual standardized
effect size for independent groups experiments. The experiments that used an independent
groups design, should use the usual standardized mean difference. It is, however, impor-
tant to use the correct effect size variance, which is based on the variance of the related
t-variable. The appropriate formula for the standardized difference of independent group
studies and its variance can be found in Hedges and Olkin (1985). We note that the gRM val-
ues from three studies reported by Laitenberger et al. (2001) were used without adjustment
in a meta-analysis that involved crossover studies, independent groups studies and repeated
measures before/after studies (see Ciolkowski 2009). For example, one of Laitenberger’s
studies reported gRM = 1.4625 but with ρ̂ = 0.77, the value of gIG = 0.70. The results
reported in this paper will, in the future, allow meta-analysts to select the most appropriate
effect size for cross-over studies, before-after studies and independent groups studies.

7.5 Non-Normality and Unstable Variances

We discuss the issue of non-normality briefly in Section 4.2.3, but a more detailed inves-
tigation is needed to determine the most appropriate non-parametric effect sizes and the
variance of non-parametric effect sizes. Also the issue of meta-analysis of non-parametric
effect sizes needs to be investigated, not only when all effect sizes are non-parametric but
also when there is a mixture of non-parametric and parametric effect sizes.

8 Conclusions

This paper provides a discussion of standardized effect size calculations and their variances
for crossover designs. This is becoming important because as Vegas et al. (2016) point
out many software engineering researchers are employing crossover designs and analyzing
them incorrectly. Furthermore, crossover designs are often used in families of experiments,
where researchers attempt to aggregate their results using meta-analysis.

25This was referred to as d in Laitenberger et al. (2001).
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The contribution of this paper is:

– To provide equations for non-standardized and standardized effect sizes. We explain the
need for two different types of standardized effect size, one for the repeated measures
design and one that would be equivalent to an independent groups design.

– To provide formulas for both the small sample size effect size variance and the medium
sample size approximation to the effect size variance, for both types of standardized
effect size.

– To explain how the different effect sizes can be obtained either from standard descrip-
tive statistics or from information provided by the linear mixed model package lme4
in R.

We conclude that crossover designs should be considered only if:

– Previous research has suggested that ρ is greater than zero and preferably greater than
0.25.

– There is either strong theoretical argument, or empirical evidence from a well-powered
study, that the period by technique interaction is negligible.

Having reproducible research in Empirical Software Engineering in mind we would
be happy (after acceptance of the paper and obtaining a permission from the Editor) to
make available the source version of the paper with embedded R code (in addition to the
reproducer R package already available from CRAN) along with the article in the PDF
format.
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Appendix

A Reproducibility of the presented research findings

In order to document the research process and to allow other researchers to check and
reproduce the presented research findings the reproducer R package (Madeyski 2017)
supports the paper. Usage of the functions of the reproducer package, which are closely
related to this paper, is illustrated in the main body of paper. Furthermore, call to Function
getSimulationData() and the first few rows of the simulated data used in Section 6.2
is illustrated in Output 5.

Output 5 R Commands and the first few rows of the Output of Function
getSimulationData() from the reproducer R package

http://creativecommons.org/licenses/by/4.0/
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A key part of documenting the research process with R is recording the R session info,
which makes it easy for future researchers to recreate what was done in the past and which
versions of the R packages were used. The information from the session we used to create
this research paper is shown in Output 6:

Output 6 R session info (R command and related output)
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