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Abstract 

Most analyses in stroke clinical trials assess the primary outcome at a single time point and 

do not consider conducting a longitudinal analysis, even when the outcome has been recorded at 

several time points. Efforts to improve the quality of statistical analyses have previously been made, 

but have been directed at techniques that compare groups at a predetermined fixed time point. 

The aim of this thesis was to specifically investigate the use of longitudinal techniques, such as 

generalised linear mixed models and latent variable methods, to model serially correlated stroke 

outcome data, and to consider the challenge of having a score for death within the scale. The 

chosen outcome was the modified Rankin scale, which is a functional assessment outcome after 

stroke and is one of the most popular endpoints in clinical trials; often recorded repeatedly during 

follow-up. 

Initial chapters describe the epidemiology of stroke and various stroke outcomes, with a 

review of what appears in the literature regarding current longitudinal modelling of mRS data. 

Subsequent chapters report how proportional-odds models are fitted to longitudinal repeated 

measures trial data, with the effect estimates compared to an analysis at a single time point. 

Simulation techniques assess how different patterns of drop-out affect treatment estimates 

derived using all the data. These are then compared to a Markov analysis that treats death as an 

absorbing state. Finally, clustering methods are considered in order to try and describe trajectories 

of the mRS, but it is highlighted that this is challenging given limited movement between states. 

Each of the methods have their own merits, and trials should be encouraged to consider 

longitudinal analyses when there is repeated measures data. 
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1.      Introduction 

 

 

1.1      Project introduction 

 

To a patient who has had a stroke, one of the most important questions they want 

answering is, “when will I recover?” They want to know whether they will recover and be able to 

live the life they did before and how long that process will take. Every stroke is different and 

therefore the recovery will vary from person to person. The objective of my thesis is to investigate 

the recovery of patients who have suffered a stroke during the first 12 months of rehabilitation. 

Very little research is conducted using longitudinal methods in stroke trials, and when they 

are conducted they use specific methods that do not give the best interpretation or use all the data 

available. It is especially important that when collecting data on several scales, these scales are used 

to their full potential and not dichotomised just because the interpretation is easier, as the loss of 

statistical power is great when these techniques are applied (Bath et al. 2012). Previous studies that 

have looked at a follow-up of stroke patients and conducted longitudinal analysis have mainly used 

repeated measures analysis of variance or a linear mixed model. Specifically, functional recovery 

over time is not well researched in stroke trials, this may be due to the fact that general functional 

recovery is hard to specify, with most studies researching the effects of functional recovery in a 

specific body part for example the arm or the leg), or that a lot of recovery is done in the first few 

weeks after the stroke which is often before follow-up interviews and questionnaires have been 

conducted and so they fail to capture the moment at which patients’ recovery begins. Recently, it 

has been realised that better statistical methods are needed in stroke trials, with research in 

America looking at the use of multi-state models, a method we are also considering.  

Inspiration for this work came from researching different longitudinal techniques, with 

special concentration on the techniques that can be applied to ordinal scales – specifically, the 

modified Rankin Scale (mRS), which is the outcome scale that we are most interested in, as it is the 
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most common scale recorded during stroke trials but also appears to be the scale in which the least 

amount of research has been conducted. Because of this, it was decided to focus the research 

conducted in the thesis on the longitudinal analysis of the mRS within a randomised controlled trial 

environment, as this was the type of data that we had available to us. It is worth noting that there 

will be situations other than randomised trials where these techniques may be appropriate, for 

example cohort studies, although attention has not been given to this throughout this project. 

Indeed, many of the techniques used within the project are more commonly found in the analysis 

of cohort studies, with the use within a clinical trial setting being relatively new.  

 

 

1.2      Outline of thesis 

 

Chapter 2 provides an initial background and introduction into the acute condition of 

stroke. The chapter aims to detail a brief introduction as to what a stroke is and the different types 

of stroke that an individual can have. It also covers information about stroke background including 

how a stroke is diagnosed, the different causations and how it is treated. It will provide a wider 

context for the aims of the thesis, and give a good understanding of stroke treatment. In addition 

to this, the chapter looks at the different ways that the severity of a stroke can be measured and 

how these stroke scales differ from each other in what they measure. Finally, this chapter 

introduces the two different datasets that are used in the analyses throughout the thesis, the Stroke 

Oxygen Study and the National Institute of Neurological Disorders and Stroke Trial. The details of 

the design and setting of the trials are given, along with how the data was collected and also the 

follow-up of the trial and the responses at each time point.  

Chapter 3 reviews the current literature surrounding stroke trials and the methods used to 

analyse them. There are several different parts to the review of the literature. A systematic review 

was undertaken to investigate: 
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1) The methods used in recently published stroke trials when considering studies that follow 

individuals over a period of time and report multiple time points. The interest lies in how many 

trials actually conduct some sort of longitudinal analysis and how many ignore the repeated 

measures and conduct the analysis at a single time point.  

2) The different methods that have been applied to the mRS in longitudinal studies in stroke 

research. The mRS is the main outcome scale of interest in this thesis and so it is important to 

research previous and current literature surrounding the longitudinal analysis of this, in order 

to identify previously applied techniques and gaps in the literature.  

As well as looking at longitudinal methods for analysing the mRS, consideration was taken 

into looking how stroke trials analyse the mRS at a single time point in order to identify techniques 

that may be able to be modified and then applied to the mRS in a longitudinal analysis. This was 

further extended to look at the application of potential techniques had been discussed and decided 

upon, in areas other than stroke clinical trials. This was done in order to obtain a better 

understanding of whether the included methods were appropriate for use in the analysis of the 

mRS.  

Finally, the literature was explored to look at other outcome assessment scales that, like 

the mRS have a category for death included in them. These scales can come from anywhere within 

medical assessments and may help to provide information on different methods on how to analyse 

the mRS.  

Chapter 4 investigates the different ways in which an ordinal outcome scale can be treated 

and the potential methods of analysis that can be used that are appropriate for each of different 

ways the scale can be treated. Following this, the methodology for these methods is detailed, 

focusing mainly on the different regression models that can be fitted to the data in order to analyse 

an ordinal outcome scale considered at both at a single follow-up time point and using the 

longitudinal data of the follow-up of a trial, by fitting a repeated measures model. The results 

produced when fitting these models are presented within this chapter, the effects calculated by 
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these regression models are then compared and how well each of the models fit the data is 

considered.  

Chapter 5 is a simulation study that extends the analysis that was conducted in chapter 4. 

The simulation study aims to look at the comparison between the longitudinal repeated measures 

model and the single time point model and how different types of missing data can affect the 

comparison. The study looks at ordinal data simulated from 2 different types of distributions, 

comparing the effect of treatment at the first time point when using just the data at that time point 

alone, to the treatment effect at the first time point having considered the other time points in the 

follow-up. The study compares the differences in estimated effects of the two models, when 

different correlation values between the repeated time points are used. 

Chapter 6 starts to apply more novel methods to the ordinal outcome data, the first being 

the multi-state model that is fitted in this chapter. This method splits the categories of the scale 

into different states and calculates the risk of an individual moving between different states in the 

model. By doing this it allows the category of death to be used in a meaningful way, as it can be 

included without the ordinality of the modified Rankin scale being questioned. 

Chapter 7 applies a technique called latent class growth analysis, where the trajectories of 

an individuals modified Rankin scores are considered over time. Initially, patients included in the 

Stroke Oxygen Study are grouped into various numbers of clusters dependent on their mRS values 

over the follow-up period, with the best fitting model being chosen. After this, only individuals who 

have at least 1 transition between scores over time are considered in the analysis and split again 

into clusters. It is also investigated whether the treatment group and the standard care group have 

different trajectories in the clusters assigned to them. Following this, models were fitted firstly to 

all survivors and secondly to survivors who had a transition between scores over the follow-up time. 

Finally, models were fitted to all patients in the National Institute of Neurological Disorders and 

Stroke Trial dataset as well as the treatment and control groups separately to consider the effect 

of having more time points in the model.  
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Chapter 8 discusses all the different models that have been applied in the thesis, with a brief 

summary of the results and the strengths and limitations of the different longitudinal methods that 

have been applied to the data, as well discussing the impact of the research conducted. Finally, the 

chapter will discuss some of the key decisions that were made throughout the analysis and the 

impact of these, as well as thinking about areas in which future research can be conducted in order 

to extend the research and findings of the project.  

 

1.3      Thesis aims 

 

The overall aim of the thesis is to identify and apply appropriate longitudinal techniques for 

analysing stroke trials with mRS outcome data and a longitudinal follow-up. The research conducted 

in this project will help to identify the best possible methods for analysing stroke outcome data, in 

order to inform clinicians and patients about expected recovery in these patients. The main focus 

of the project is the change in the mRS of patients over the first 12 months following the stroke. It 

is important to find a method to apply to longitudinal data that produces meaningful results that 

are easy for clinicians to interpret. The overall aim of the thesis can be broken down into the 

following sub-aims: 

Aim 1: To identify appropriate longitudinal methods that can be applied to the mRS for use 

in randomised clinical trials. 

The specific objectives of this aim will identify: 

 Previous longitudinal methods applied to any scale in a stroke trial. 

 Previous longitudinal methods applied to the mRS. 

 The use of longitudinal methods that have been identified as appropriate when applied to 

other scales, outside of a stroke clinical trial. 

Aim 2: Explore the different treatment effects produced by using regression models at a 

single time point in the follow-up and a repeated measures regression model 
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 The specific objectives of this aim are to: 

 Identify appropriate regression models in order to calculate a treatment effect. 

 Apply the regression models to the SO2S data and calculate the effect of treatment using 

data from a single time point and data from all the included time points. 

 Simulate new ordinal data to produce alternative scenarios in order to compare the 

differences in the two types of regression model further. 

Aim 3: Model the ordinal mRS, with a multi-state model, as a series of states between which 

patients can transition. 

 The specific objectives of this aim are to: 

 Identify the appropriateness of using multi-state models for ordinal data. 

 Apply the multi-state model using complete data. 

 Apply the multi-state model taking into account missing data. 

Aim 4: Explore whether patients can be clustered into recovery trajectories over time and if 

these trajectories differ between the treatment and control groups. 

The specific objectives of this aim are to: 

 Identify appropriate latent class techniques to model the data. 

 Apply latent class growth analysis models in order to identify different clusters of patient 

trajectories in various scenarios. 

 Identify best models for each scenario with an optimal number of clusters for each scenario.  

It is expected that the different models fitted to satisfy each of the project aims will produce 

differing results, and therefore it is important to consider how these different models compare and 

if there is a single method that produces the best model to be applied to the ordinal outcome data. 

The initial interest of this project was to look at the longitudinal analysis of stroke trial data, 

as an extension of the SO2S project, from which the initial data on this project were collected. After 

obtaining the data and conducting research into the types of scales available, specific focus was 
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drawn to the mRS, due to its ordinal nature with the inclusion of the category of death. The use of 

a score for death within the scale was particularly interesting, along with consideration of the 

impact of using the full scale in longitudinal analysis, rather than just the single 90 day (3 month) 

time point. The work conducted in this project, although specific to the recovery of stroke patients, 

may be applicable in other fields with ordinal outcome scales, specifically if those scales have a 

category for death included. 

A more comprehensive clinical understanding of the treatment effect on outcomes after 

stroke may be better described using repeated measures analysis, if improvement or worsening is 

expected beyond the 90 day outcome. 
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2.      An overview of stroke 

 

This chapter will give a background to the main themes of the thesis – highlighting the 

specific nature of the acute condition of stroke, giving a brief overview to some of the many 

outcome assessments that are used in order to measure the impact of a stroke, and providing a 

wider context for the main aims, both theoretical and clinical, of the project. This chapter will also 

introduce the two randomised clinical trials from which the data used in the thesis were taken. It 

details information about the design and setting, how the data was collected and the information 

collected during follow-up.  

 

2.1      Stroke  

 

2.1.1   Defining a stroke 

 

A stroke or cerebrovascular accident is an acute condition that occurs when the blood 

supply to the brain is obstructed. The World Health Organization (WHO) defines a stroke to be a 

“neurological defect of cerebrovascular cause that persists greater than 24 hours, or is interrupted 

by death less than 24 hours” (The World Health Organisation 1978). During a stroke the restriction 

of the blood supply to the brain can cause brain cells to die, which can result in brain damage, 

causing disability or even death. The resulting disability can have varying consequences and has the 

potential to affect all aspects of an individual’s identity – personally, socially and physiologically. 

A stroke is actually a collective term for two different types of brain injury, which are 

defined by the different causations. The first, an ischaemic stroke, is caused by a blood clot that 

reduces the flow of blood to the brain; the other, a haemorrhagic stroke, is where a blood vessel 

bursts and bleeds into the brain. Approximately 85% of all strokes are ischaemic in nature, usually 

due to a cerebral infarction (Intercollegiate Stroke Working Party 2012). There are several causes 
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of an ischaemic stroke, including an embolism, thrombolysis, and a lacunar stroke. A related 

condition to a stroke is a transient ischaemic attack (TIA), which can be referred to as a mini-stroke. 

This condition does not fall within the remit of a stroke, as it usually lasts for less than 24 hours; 

however it can be an indicator of an individual having an increased risk of developing a stroke 

(Johnston et al. 2000, Lovett et al. 2003).  

 

2.1.2 Epidemiology 

 

Globally, 15 million people suffer from a stroke each year; of these, 5 million will die as a 

result of their stroke (Mackay & Mensah 2004). A stroke was reported to be the second leading 

cause of death worldwide after ischaemic heart disease in 2011 (The World Health Organisation 

2013). In 2010, stroke was the fourth largest cause of mortality in the United Kingdom (UK) of 

people under 75, after cancer, cardiovascular disease and respiratory disease (Townsend et al. 

2012). A stroke accounts for almost 6% of deaths in men and 8% of deaths in women in the UK 

(Stroke Association 2016). However, in recent years there has been a decreasing trend in mortality 

in early strokes, with a 46% reduction in the number of deaths due to stroke between 1990 - 2010 

(Feigin et al. 2014), as more people are surviving stroke due to better health care and medical 

advances.  

A stroke is the leading cause of adult disability in the UK. In 2005, there were over 900,000 

people who had suffered a stroke living in England, with 300,000 of these living with moderate to 

severe disability (Department of Health 2005). Stroke causes a greater range of disability than any 

other disease. Of those who survive a stroke, approximately 42% will be independent afterwards, 

22% will have mild disability, 14% will have moderate disability, 10% will have severe disability and 

12% will have very severe disability, resulting in them needing constant nursing attention as they 

are unable to do anything for themselves (Stroke Association 2013). More than half of stroke 

survivors are left dependent on others for help in everyday activities and as a result of this 
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approximately 11% of stroke survivors are newly admitted into a care home after hospital discharge 

(Royal College of Physicians, Clinical Effectiveness and Evaluation Unit 2014).  

Strokes are largely preventable if an individual with an increased risk of stroke considers a 

lifestyle adjustment; however, there are some risk factors that increase the chances of having a 

stroke that cannot be altered. Patients who are over the age of 65 have an increased risk of having 

a stroke. In all stroke studies, it is clear that with an increase in age there is an increase in incidence 

and prevalence of strokes. Men are also at a greater risk of suffering from a stroke, with 

approximately a 25% higher risk of having a stroke than women (Townsend et al. 2012). People who 

have a close relative who has suffered a stroke or have a family history of either heart disease or 

diabetes are also at an increased risk. Ethnicity can also affect the chances of having a stroke, with 

those of south Asian, African and Caribbean descent at a higher risk; however, this is partly due to 

an increased risk of other factors within these ethnicities such as diabetes and high blood pressure 

(Stroke Association 2016).  

 

2.1.3 Symptoms 

 

The symptoms of stroke will vary from person to person, as they will depend on several 

factors, including the type of stroke, the area of the brain affected, and the severity of the stroke. 

Regardless of what symptoms an individual has, they are likely to come on very suddenly. Common 

symptoms include: numbness or weakness in the face, weakness in the arms and/or legs on one 

side of the body, confusion, difficulty speaking, headaches, loss of vision and dizziness. Less 

common symptoms include: nausea, fever, fainting and loss of consciousness. In the late 1990s a 

group of stroke physicians developed a training tool for ambulance personnel, using the acronym 

FAST, which stands for (F)acial drooping, (A)rm weakness, (S)peech difficulties and (T)ime, to 

identify quickly if a patient was having a stroke. Since its development it has helped to reduce the 

number of misdiagnosed strokes (Harbison et al. 2003). Recently in the UK, the National Health 
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Service (NHS) has used the FAST test in a national campaign to advertise the need to identify if 

someone is having a stroke quickly, so that prompt treatment can be given.  

 

2.1.4 Diagnosis 

 

Stroke treatment differs for the different types of stroke and so being able to identify what 

type of stroke a person is having quickly is one of the most important steps in stroke management. 

The use of computerised tomography (CT) and magnetic resonance imaging (MRI) scans have 

revolutionised this distinction. In the UK, all suspected stroke patients should receive a brain scan 

within 24 hours of stroke onset (NHS Choices 2012a). It may be necessary for further tests to be 

undertaken in order to identify the type of stroke, including a swallow test, as difficulty swallowing 

can lead to aspiration, which can cause further problems such as chest infections, including 

pneumonia (NHS Choices 2012a). Blood tests may also be undertaken to check blood sugar and 

cholesterol levels and pulse measurement is also used in order to detect an irregular heartbeat. To 

ensure a correct diagnosis, ultrasound scans may be carried out on the neck to check arteries to the 

brain or echocardiograms to look for blood clots around the heart (NHS Choices 2012a). 

 

2.1.5 Interventions and prevention 

 

The 10-point stroke action plan identified from the UK’s National Stroke Strategy in 2007 

deems that the care a patient receives in a stroke unit is a principal determinant of a person’s 

outcome following a stroke. All stroke patients should have prompt access to an acute stroke unit 

with specialist care. An acute stroke unit is a specialist unit that provides high-dependency care, 

including physiological and neurological monitoring, rapid treatment of stroke and the associated 

complications, as well as early rehabilitation and palliative care (Department of Health 2007). There 

are different interventions available for the different types of stoke. Ischaemic strokes can be 

treated by clot-busting drugs including recombined tissue plasminogen activator (rt-PA) and 
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alteplase; however, not all patients are suitable for this thrombolysis treatment. These treatments 

are most effective when given early, and so the number of patients benefitting from this treatment 

may be small given the short therapeutic time window. This treatment is not suitable for 

haemorrhagic strokes, which are usually treated by finding the cause of the bleeding in the brain 

and stopping it; surgery may also be considered, with decompressive surgery used to reduce brain 

swelling or a craniotomy to repair burst blood vessels (Stroke Association 2012).  

After a patient has suffered a stroke, anticoagulants or antiplatelet medication may be 

prescribed in order to reduce the chance of blood clots developing and thereby reduce the risk of 

a further stroke, usually in the form of aspirin, a low-cost, widely available and easily administered 

medicine. Medication such as beta blockers may also be given to control high blood pressure and 

statins may be prescribed as a further preventative measure to help lower cholesterol levels if they 

are high (NHS Choices 2012b). Medication like this may also be prescribed to people who are 

classed as high risk of having a stroke in order to prevent the stroke occurring. However, the primary 

method of preventing a stroke is to control the risk factors that increase the chances of having a 

stroke; this can mainly be done by changing lifestyle factors. Factors that are considered to increase 

the risk of a person having a stroke are hypertension, smoking, high cholesterol, diabetes, excessive 

alcohol intake, obesity, lack of exercise, stress and atrial fibrillation (Stroke Association 2016). 

  

2.1.6 Effects of stroke  

 

Stroke can cause widespread disability and recovery can be a gradual process. The 

rehabilitation of each stroke patient will differ depending on severity of the stroke and the 

symptoms the patient exhibits. After a stroke, patients may suffer from psychological problems 

such as depression or anxiety disorders. Patients may feel anger or frustration about the impact of 

the stroke, and may find it difficult to control their emotions. Strokes may also result in cognitive 

impairments; a patient’s memory may be affected, most commonly short term, as well as affecting 
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the ability of the patient to concentrate on tasks. The body may have difficulty processing 

information, leading to apraxia (the inability to execute learned movements), difficulty in decision 

making and social cognition. Physically, strokes can cause muscle weakness or paralysis, which 

leaves patients struggling to move around and can lead to balance and coordination problems, 

especially if a patient also has problems with vision or hearing, as vision loss in one or both eyes 

can also be a common effect of stroke. Fatigue is also an issue with stroke survivors, making patients 

feel like they are not in control of their recovery (NHS Choices 2012c). 

 

2.1.7 Stroke complications 

 

After suffering a stroke, there are several complications that may occur. Patients may 

develop blood clots and muscle weakness after being immobile for a long period of time. Being 

immobile for long periods of time can increase the risk of a patient developing blood clots in the 

deep veins of the legs and can also lead to muscle weakness and decreased muscle flexibility. If the 

stroke has affected the muscles used for swallowing, a patient may find it difficult to eat and drink. 

There is also a greater risk of them inhaling food into the lungs (aspiration), which can lead to 

pneumonia. Finally, some strokes affect the muscles that are used to urinate, leading to loss of 

bladder control. When this happens patients may be fitted with a catheter, which can itself cause 

complications such as urinary tract infections (Poisson et al. 2010).  

 

2.1.8 Measuring stroke severity 

 

The severity of a stroke can differ greatly. Some patients may recover within a day, whereas 

others may die as a result of the stroke. In order to meaningfully describe the recovery in stroke 

survivors, more sophisticated measures are required than simple dichotomous endpoints such as 

mortality or stroke recurrence. There are many outcome scales used to assess the impact of a stroke 

including scales that measure disability, impairment and handicap. These terms are often used 
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interchangeably but have distinct definitions from the World Health Organisation. An impairment 

is defined as a loss of psychological, physiological or anatomical function. Handicap is defined as 

the disadvantage for an individual that prevents or limits fulfilment of a role that is normal. A 

disability is defined as the restrictions of ability of the ability to perform an activity within a range 

that would be considered normal. The term disability can be used generally as an umbrella term for 

any impairment of body function, limitation of activities or participation restriction (Bowling 2005). 

It is important that the scales are reproducible and that they capture at least one of the neurological 

defect, functional impairment and the psychological impact of the stroke not only at onset but also 

during the recovery process, in order to monitor patients and to be used for prognostic purposes. 

At present, the mRS (Rankin 1957), Barthel Index (Mahoney & Barthel 1965) and National Institutes 

of Health Stroke Scale (Brott et al. 1989) are the most routinely used. 

 

2.2      Stroke scales 

 

Stroke scales can be classed as clinimetric scales and functional impairment or handicap 

scales. There are many outcomes that can be used to compare patients after a stroke, such as 

mortality or quality of life, however, functional recovery is the most commonly used outcome, as 

strokes represent the leading global cause of adult disability. Functional outcome scales are usually 

ordinal scales that range from the worst possible state to the best. Questions are asked or signs and 

symptoms observed, with the responses quantified in different categories in order to produce a 

score on the scale. Alternatively, some scales rely on the person assessing the patient to decide 

what response best describes the patient. 

It is recommended that an outcome assessment is undertaken at 3 months for trials 

intending to demonstrate sustained benefit of acute treatment in stroke (Lees et al. 2012). It is 

believed that a patient will have undergone most recovery in the first 3 months after the stroke. 

However a patients’ recovery may continue for up to a year and even beyond. Below is a summary 
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of the different scales used to assess a patient after they have had a stroke. It is important to 

consider the validity, reliability, sensitivity to change and simplicity of the scale. 

The validity of the scale assesses the extent to which it accurately measures the underlying 

concept of interest. Validity can be measured by assessing face validity, content validity and 

criterion-related validity. Face validity evaluates whether the scale is unambiguous and 

appropriate, content validity assesses whether the scale included all relevant concepts of the 

attribute that is being measured, and criterion-related validity compares how well the scale 

measures up to the ‘gold standard’ (Cozby & Bates 2012). In many cases, especially when looking 

at quality of life, this is very hard as there is not usually a recognised gold standard, and so criterion-

related validity is very hard to assess.  

Reliability refers to the ability to produce consistent results on different occasions, when it 

is known no change has occurred. Test-retest reliability looks at whether the results are the same 

after applying the scale repeatedly to the same population. Other ways reliability can be assessed 

are: internal consistency (measurement of the same concept by different scale items), inter-rater 

reliability (consistency of a measure when administered by different interviewers) and intra-rater 

reliability (consistency of a measure when administered more than once by the same interviewers). 

The sensitivity of the scale is the ability of the scale to detect clinically important changes in a 

patient’s condition. The simplicity of a scale is also important, as a complex scale will reduce 

reliability. 
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2.2.1 National Institutes of Health Stroke Scale (NIHSS) 

 

The NIHSS is an observational scale, developed in the early 1980s to provide consistent 

reporting of neurological deficits in acute stroke studies. It was designed to assess the differences 

between interventions given in clinical trials but is now increasingly used as an initial assessment 

tool, due to the fact that it provides a quick and accurate initial evaluation after a stroke, often only 

taking around 6 minutes to perform with no additional equipment needed (Brott et al. 1989). The 

NIHSS is a 15-item impairment scale that standardises and quantifies measures of the key 

components in a standard neurological examination, with the attention centred on those 

components that are most relevant to a stroke. The NIHSS provides a measure of acute impairments 

by assigning numerical values to various aspects of neurological function (Brott et al. 1989). The 

scale incorporates assessment of consciousness, language, motor function, sensory loss, visual 

fields, coordination, extra-ocular movements, neglect and speech. The items that are assessed 

along with the scores received are given in Table 2.1. Scores are summed across each category to 

give a total value that can range from 0 to 42, with 0 representing no impairment. A severe score 

on the NIHSS is often described as a score greater than 21 (Harrison et al. 2013). Different 

components in the score have different scoring values, with some ranging between 0-4 and other 

only taking a value of 0 or 1. The summative score cannot be considered truly ordinal, although a 

higher score indicates a more severe impairment, as it is possible to obtain the same score through 

different combinations of the items on the scale. There is a standardised approach to assessment 

using the NIHSS, usually assessing state of consciousness first, and guidance for when the patient is 

unable to respond to the command (Harrison et al. 2013). 

The validity and reliability of the overall NIHSS has been widely noted (Muir et al. 1996). 

However, there are criticisms for its redundancy and complexity, as it contains items with poor 

reliability, which can lead to low inter-rater reliability (Ghandehari 2013). These poorer items 

include those relating to facial palsy, ataxia, dysarthria and level of consciousness (Lyden et al. 
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1999). There is a modified version of the NIHSS scale that maintains a similar structure, but has the 

items with poor reliability removed (Lyden et al. 2001). The modified NIHSS was intended to be 

easier to administer as it is an 11-item scale and has a simpler grading system. The reliability and 

validity of the modified NIHSS scale has been shown to be higher than those of the NIHSS scale 

(Lyden et al. 2001). Despite the advantages of the modified NIHSS scale (less inter-rater variability 

and simplification) it is not frequently used, and in terms of the length of the scale it is debatable 

whether a shorter scale is needed as the NIHSS is already quick and easy to perform. The NIHSS also 

has predictive validity, as an initial score is a robust predictor of in-hospital complications and 

outcome at 3 months (Johnston & Wagner 2006). 
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Table 2.1: National Institutes of Health Stroke Scale (NIHSS) 

Domain assessed Response Score 

Level of consciousness 

(LOC) 

Alert; keenly responsive  

Not alert; verbally arousable or aroused 

Not alert; only responsive to repeated or strong stimuli Totally 

unresponsive; Responds only with reflexes 

0 

1 

2 

3 

LOC questions (state 

month and age) 

Answers both correctly 

Answers one correctly 

Both incorrect or no reply 

0 

1 

2 

LOC commands (open 

and close eyes, grip and 

release normal hand) 

Correctly performs both tasks 

Correctly performs one task 

Performs neither task correctly 

0 

1 

2 

Best gaze  Normal; able to follow pen or finger to both sides 

Partial gaze palsy; gaze is abnormal in one or both eyes, but gaze 

is not totally paralysed 

Total gaze paresis; gaze is fixed to one side 

0 

1 

 

2 

Visual fields No visual loss (or in coma) 

Partial hemianopia; no visual stimulus in a specific quadrant 

Complete hemianopia; no visual stimulus in one half of the visual 

field 

Bilateral hemianopia (blind from any cause) 

0 

1 

2 

 

3 

Facial palsy Normal symmetrical movements 

Minor; asymmetry on smiling 

Partial; total or near total lower face paralysis 

Complete; absence of movements in upper/lower face 

0 

1 

2 

3 

Best motor arm (score 

either right or left) 

No drift; hold limb at 90 degrees for 10 seconds 

Drift; drifts down but does not hit bed 

Some effort against gravity 

No effort against gravity 

No movement 

0 

1 

2 

3 

4 

Best motor leg (score 

either right or left) 

No drift; hold limb at 45 degrees for 5 seconds 

Drift; drifts down but does not hit bed 

Some effort against gravity 

No effort against gravity 

No movement 

0 

1 

2 

3 

4 

Limb ataxia Absent (or in coma) 

Present in 1 limb 

Present in 2 or more limbs 

0 

1 

2 

Sensory Normal 

Partial loss; patient feels the pinprick but less sharp 

Dense loss; unaware of being touched (or in coma) 

0 

1 

2 

Best language No dysphasia 

Mild dysphasia; obvious loss of fluency or comprehension 

Severe dysphasia; all communication is fragmented 

Mute; no usable speech (or in coma) 

0 

1 

2 

3 

Dysarthria Normal articulation 

Mild dysarthria; patient understood with some difficulty 

Unintelligible or worse (or in coma) 

0 

1 

2 

Neglect No neglect (or in coma) 

Partial neglect 

Complete neglect 

0 

1 

2 
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2.2.2 Modified Rankin Scale (mRS) 

 

The Rankin scale was developed by Scottish physician John Rankin in 1957, in order to 

describe the positive outcomes seen in his prototypic stroke unit (Rankin 1957). Although it was 

not originally intended to be used as an assessment for clinical trials, a modified version of the 

Rankin Scale (mRS) was developed in 1987 (van Swieten et al. 1988). The mRS is a simple 6-point 

scale that assesses the impairment of the patient due to both the limitation in activities and the 

changes in a patient’s lifestyle. It is a hierarchical ordinal scale that ranges from a patient having no 

disability at all to a patient having severe disability, where a patient is unable to look after 

themselves, requiring constant nursing care and attention. There are 6 scores on the mRS, with no 

disability scored at 0 up to severe disability scored at 5. Recently, a score of 6 has been included to 

represent death, used in clinical trials (Uyttenboogaart et al. 2005, Banks & Marotta 2007). The mRS 

has grown in popularity and is now the most popular primary endpoint in clinical trials of stroke 

(Banks & Marotta 2007). The scale is a measure of functional independence and is usually assessed 

under a structured interview. 

A single point change on the mRS will always be clinically relevant; however, with fewer 

categories the mRS may not be very responsive to change. Previously, the reliability of the mRS had 

been found to be satisfactory, though the descriptions of the categories of the mRS were broad and 

open to subjective interpretation (Wilson et al. 2002) and therefore it was left open to the raters 

to develop idiosyncratic criteria. This led to low levels of inter-rater reliability as there was the 

suggestion some raters may systematically assign higher or lower grades than others, introducing 

bias. The use of a structured interview conducted to ascertain the mRS score of a patient helps to 

reduce the variability and bias between raters assigning MRS grades to patients, and therefore 

could potentially improve the quality of results seen in clinical trials, substantially improving 

reliability (Wilson et al. 2002). Another modification to the mRS assessment calculates a pre-stroke 

score. However, the wording of the mRS is not suited to such an assessment and so unsurprisingly 
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it only has moderate validity and reliability when so applied (Fearon et al. 2012). Another 

modification is to use proxies, usually an informant who knows the patient, to supplement or 

complete the interview, as stroke survivors may have physical or language problems that would 

complicate the standard interview (McArthur et al. 2013). Although this method is intuitive, there 

is suboptimal validity and reliability, and so the standard interview for the mRS is the preferred 

assessment. A third version of the mRS has also been developed, the Oxford Handicap Scale (OHS), 

which keeps the same categories but includes information on lifestyle factors to allow the scale to 

measure the handicap of the patient rather than the disability (Bamford et al. 1989). 

 
 
Table 2.2: Modified Rankin scale (mRS) 

Level Description 

0 No symptoms 

1 No significant disability despite symptoms; able to carry out all usual duties and 

activities 

2 Slight disability; unable to carry out all previous activities, but able to look after 

own affairs without assistance 

3 Moderate disability; requiring some help, but able to walk without any 

assistance 

4 Moderately severe disability; unable to walk without assistance, unable to 

attend needs without assistance 

5 Severe disability; bedridden, incontinent and requiring constant nursing care 

and attention 

6 Dead 
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2.2.3 Barthel Index (BI) 

 

The Barthel Index was developed in 1965 by Dr Florence I. Mahoney and Dorothea W. 

Barthel by adapting the Maryland Disability Index to produce “a simple index of independence, 

useful in scoring improvement in rehabilitation” (Mahoney & Barthel 1965). It was developed to 

assist with discharge planning in long-term wards. The scale describes 10 basic aspects relating to 

self-care and mobility, with scores given according to the amount of time or assistance required by 

the patient. The scale ranges from 0–100, as it is usually summed to give a total score, with higher 

scores representing greater independence. There are several different definitions of a good 

outcome on the BI. The most common definition was determined using statistical modelling, where 

a good outcome is defined as a BI score of greater than 80, where patients are generally 

independent. An excellent outcome uses a score of 95 or greater as the optimal choice with less 

than 75 being scored as a poor outcome (Uyttenboogaart et al. 2005). 

The BI is now the most popular activities of daily living (ADL) scale in clinical practice (Wade 

& Collin 1988). It is used repeatedly to assess improvement over time and the score is determined 

by interviews and distant observation of the patient in tasks (Quinn et al. 2011). The BI score is used 

to describe what a patient can do at the time of grading. It is second only to the mRS as a stroke 

outcome measure of choice; however, unlike the mRS the BI does not have a separate score to 

represent mortality, considered to be the poorest outcome after a stroke. The BI has been adopted 

by many disciplines other than stroke including nursing, spinal injury, burns, cardiac disease, 

rheumatoid arthritis and amputations (Quinn et al. 2011), and is a recommended assessment in 

older adult care (Harrison et al. 2013).  

Validity of the scale is well described, and it is recognised as a valid prognostic tool for 

predicting recovery and the level of care required (Huybrechts & Caro 2007). Inter-observer 

reliability is good, and reasonable reliability has been observed. The BI is limited in its ability to 

represent changes throughout the spectrum of potential outcomes, and is susceptible to both a 
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floor and ceiling effect, where the score does not change from the minimum or maximum score 

despite clinical change (Schepers et al. 2006). 

 
 
Table 2.3: Barthel Index (BI) 

Domain assessed Response Score 

Bladder  Incontinent (or catheterised) 

Occasional accident 

Continent 

0 

5 

10 

Bowels Incontinent  

Occasional accident 

Continent 

0 

5 

10 

Toilet use Dependent 

Needs some help 

Independent 

0 

5 

10 

Grooming  Needs help 

Independent 

0 

5 

Dressing Dependent 

Needs some help 

Independent 

0 

5 

10 

Feeding Unable 

Requires assistance 

Independent 

0 

5 

10 

Bathing Dependent 

Independent 

0 

5 

Transfer (bed to chair and 

back) 

Unable 

Major help 

Minor help 

Independent 

0 

5 

10 

15 

Mobility (on level surface) Immobile 

Wheelchair independent, including 

corners 

Walks with help 

Independent 

0 

5 

 

10 

15 

Stairs Unable  

Needs help 

Independent 

0 

5 

10 
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2.2.4 Nottingham Extended Activities of Daily Living scale (NEADL) 

 

The Nottingham Extended Activities of Daily Living scale is an instrumental ADL scale, which 

assesses the level of activity actually performed by a patient (Nouri & Lincoln 1987). It was designed 

in 1987 by Nouri and Lincoln, an occupational therapist and a clinical psychologist respectively, at 

the Stroke Research Unit, Nottingham. The scale considers 22 activities, which can be divided into 

4 subscales: mobility, kitchen, domestic and leisure activities. There are 4 possible responses (0-not 

at all, 1-with help, 2-on my own with difficulty, 3-on my own). Respondents are asked whether they 

actually undertake the activity rather than whether they are able to do so. The NEADL scale has 

been validated for postal use, and it was designed for this purpose (Nouri & Lincoln 1987).  

Originally, items in the scale were designed to be a dichotomous scale, with responses 0 

and 1 combined to represent patients being dependant on others [0]. Patients who scored 2 or 3 

were classed as independent [1], leading to a summary score out of 22. There has recently been a 

movement to give scores based on the responses (1, 2, 3 and 4), looking at summative subscales 

and total scores. There is inconsistent use of both scoring methods, although the validity of the 

total summative score has been questioned. Analysis has been conducted to show that using the 

responses (1, 2, 3 and 4) is not recommended as the scale is not unidimensional, but Rasch analysis 

conducted supported the use of the 4 subscales (das Nair et al. 2011). The NEADL compares 

favourably to the BI and is less susceptible to the latter’s ceiling effects (Sarker et al. 2012). 
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Table 2.4: Nottingham Extended Activities of Daily Living scale (NEADL) 

Domain Assessed Questions asked Score 

Mobility Do you walk around outside? 

Do you climb stairs? 

Do you get in and out of the car? 

Do you walk on uneven ground? 

Do you cross roads? 

Do you travel on public transport? 

0-not at all 

1-with help 

2-on my own with 

difficulty 

3-on my own 

 

In the kitchen Do you manage to feed yourself? 

Do you manage to make a hot drink? 

Do you take hot drinks from one room to another? 

Do you do the washing up? 

Do you make yourself a hot snack? 

0-not at all 

1-with help 

2-on my own with 

difficulty 

3-on my own 

 

Domestic tasks Do you manage your own money when out? 

Do your own shopping? 

Do you wash small items of clothing? 

Do you do a full cloths wash? 

0-not at all 

1-with help 

2-on my own with 

difficulty 

3-on my own 

Leisure activities Do you read newspapers and books? 

Use the telephone? 

Do you write letters? 

Do you go out socially? 

Do you manage your own garden? 

Do you drive a car? 

0-not at all 

1-with help 

2-on my own with 

difficulty 

3-on my own 
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2.3       Comparison of stroke scales 

 

The choice of which stroke scale to use for assessment must be made on the basis of the 

question of interest and the evidence base around its clinimetric properties. There is no ideal stroke 

measure and so the relative strengths and limitations of each assessment strategy must be 

considered, in order to find the most suitable. Within the three core assessment scales, the mRS 

would be recommended when looking at disability, BI when considering basic ADL, and NIHSS when 

looking at the neurological impact of stroke, with training available for each assessment scale. There 

are strong correlations among the three most widely used outcome measures (Lees et al. 2012). 

With 3-month mRS, the Spearman rank correlation was 0.94 with the BI and 0.91 with the NIHSS 

(Lees et al. 2012), when assessed in 9,275 patients from Virtual International Stroke Trials Archive 

(VISTA) (Ali et al. 2007). The correlation between NIHSS and BI was 0.85. Thus, there are strong 

correlations between the outcome measures, especially if examining the full range of the scales. 

The mRS is hierarchical in nature; however, this is not true for either the NIHSS or the BI scale, as a 

particular score may be attained through various combinations of sub items that are not necessarily 

equivalent. Improvements in reliability can be seen on the mRS with the introduction of a structured 

interview (Wilson et al. 2002).  

 

2.4      Stroke Oxygen Study 

 

The main data used in the thesis are from the Stroke Oxygen Study (SO2S). The aims of the 

thesis were designed with these data in mind. Although each chapter will give a more detailed 

explanation of the data used from the trial for each analysis, an overview is given below of the trial 

design, data collection and response to follow-up.  
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2.4.1 Design and setting 

 

This trial was a multi-centre randomised controlled trial of oxygen supplementation in 

patients with acute stroke. The main trial hypothesis was that a fixed dose of oxygen-treatment 

during the first 3 days after an acute stroke improves outcome, with a primary outcome of the mRS 

90 days post-stroke. Further hypotheses extended the times at which the outcome was recorded 

to 6 months and 12 months post-stroke (Roffe et al. 2014).  

This thesis considers the values of the mRS recorded during the whole follow-up period. In 

the trial there are values of the mRS, BI and NEADL scores recorded at 90 days (3 months), 6 months 

and 12 months post-stroke.  

Patients in the study were randomised, based on covariates from the baseline assessment, 

using minimisation to one of three groups in a ratio of 1:1:1: 

 

1. Continuous oxygen supplementation for 72 hours 

2. Nocturnal oxygen supplementation for 3 nights 

3. No routine oxygen supplementation  

 

Individuals who were randomised to receive oxygen were given it at a rate of 2 to 3 l/min, 

depending on baseline oxygen saturation. 

 

2.4.2 Data collection 

 

A pilot study for the SO2S was conducted between July 2004 and April 2008, recruiting 300 

patients (Roffe et al. 2011, Ali et al. 2013). Following the implementation of minor amendments, 

the main study began recruitment in April 2008. Patients were recruited from multiple (>30) centres 

throughout the UK and worldwide. Medical centres were eligible for participation in the study if 

they admitted patients with acute stroke, were able to provide oxygen treatment and monitor 
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oxygen saturation, and if there was a local researcher who was willing to act as the principal 

investigator for the locality. All adult patients who were admitted to one of the centres with 

symptoms of an acute stroke within the preceding 24 hours were eligible to be considered for 

participation in the study, as long as there was no indication for, or contraindication to oxygen 

treatment in the doctor’s opinion (Roffe et al. 2014).  

Patients were not eligible for inclusion in the trial if the responsible doctor considered the 

patient to have definite indications or contraindications to oxygen treatment. This decision was left 

to the responsible doctor and used to ensure best clinical practice. Patients were also excluded if 

the stroke was not the main health problem, or they had another serious life threatening illness 

that was likely to lead to death. These patients were excluded as they were unlikely to receive any 

benefit from the study intervention. The eligibility criteria for inclusion in the trial reflected this 

uncertainty about who should receive oxygen treatment and for how long. This allowed as many 

patients as possible to be recruited into the study.  

The initial assessment was conducted at baseline by the researcher randomising the 

patient. It included the baseline demographics along with date and time of event, the Glasgow 

Coma Scale, predictors of outcome, and the NIHSS. An assessment one week after the stroke was 

conducted in order to confirm diagnosis. It was performed by a trained assessor seven days (± one 

day to allow for weekends and holidays) after enrolment. The assessment documented deaths and 

neurological status (NIHSS), compliance with the intervention, and complications arising during the 

first week. 

Follow-up at 3 months, 6 months and 12 months was conducted centrally in order to ensure 

blinding of the assessors. The assessment was a questionnaire sent out to patients at each specific 

time point, after checking that the patient was still alive. Non-responders were contacted and were 

able to answer the questions by telephone where possible in order to reduce the amount of missing 

data and loss to follow-up. The follow-up questionnaire the patient received contained the 

assessments for three stroke scales the mRS, BI and NEADL. As well as this patients were assessed 



 

Chapter 2  28 
 

 

using the EuroQol five dimensions questionnaire (EQ-5D), which provides a single index value for 

health status as well as being asked questions regarding memory, sleep, speech and discharge 

status. 

 

2.4.3 Response during the follow-up 

 

The original sample size for the study was 6,000 participants. With allowance for a 

maximum of 10% loss to follow-up, the trial had a recruitment target of 6,669 (Roffe et al. 2014). 

The recruitment target was subsequently revised in October 2012 to 8,000 patients, to provide 

greater power to detect an interaction between stroke subgroups (defined by severity) and the 

effect of oxygen versus control. 

In total there were 8,003 individuals that were recruited to the study between April 2008 

and June 2013. All patients had full information recorded at baseline as this information was used 

in the minimisation process. There were 129 patients that had died within the first seven days of 

the study.  

Follow-up questionnaires were sent to individuals with a series of questions that allowed 

the mRS, BI and NEADL to be calculated. At 3 months, 7,370 (92%) patients in the trial were still 

alive, of which 6,936 (94%) of these patients responded to the 3 month questionnaire. At 6 months 

7,167 (89%) patients were still alive and 6,594 (92%) of these patients responded to the 6 month 

questionnaire. At 12 months, 6,957 (86%) recruited patients were still alive and 6,020 (87%) of 

these patients provided responses to the questionnaires. Unlike the other data set included in the 

thesis, where multiple imputations had previously been conducted before the data was obtained, 

no values of the SO2S data set were imputed. This is because all methods that are used for analysis 

throughout the thesis are able to deal with missing data, and there are some concerns about the 

validity of imputing the outcome variable. One if the issues with the missing data for the outcome 

in this case is that there is more than one measurement for each individual, which may lead to the 
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introduction of bias within the imputation strategy (Sterne et al. 2009). Also in order to compute 

the outcome, it is recommended that there is complete data for all covariates that affect the 

outcome, therefore caution should be taken imputing the outcome variable, and it was decided not 

to do this for the SO2S data.  

 

2.5      National Institute of Neurological Disorders and Stroke Trial (NINDS) 

 

The second dataset that was used in the thesis was the National Institute of Neurological 

Disorders and Stroke Trial (NINDS) trial data. This was used because it had the outcome of interest 

recorded at more time points than were available in the SO2S study dataset. This was important for 

the analysis in chapter 7 specifically. This information for the NINDS trials was found using papers 

that had previously conducted analysis of the trial data (Kwiatkowski et al. 1999, Li et al. 2010) any 

more information needed on the NINDS trial can be found in the original paper (The National 

Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group 1995). 

 

2.5.1 Design and setting 

 

The NINDS trial was a clinical trial in acute stroke therapy that was conducted to compare 

the effect of tissue plasminogen activator (t-PA) versus placebo in patients with acute ischaemic 

stroke. The main hypothesis was to test whether t-PA reduced morbidity and mortality in stroke 

patients. The primary outcomes considered were an improvement by more than 4 points on the 

NIHSS or complete resolution at 24 hours and also the proportion with a favourable outcomes at 

90 days after stroke.  

The trial looked at 4 different outcomes: BI, mRS, Glasgow Outcome Scale (GOS) and NIHSS. 

The BI and GOS are recorded at 90 days, 6 months and 12 months post-stroke. The mRS was 
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recorded at 7 days, 90 days, 6 months and 12 months post-stroke. Finally the NIHSS was recorded 

at baseline, 24 hours 7 days and 90 days post stoke.  

Patients were randomised 1:1 to two treatment groups using a permuted-block design with 

blocks of various sizes used for randomisation. Patients were stratified in the randomisation 

according to clinical centre and time of onset of stroke and received one of the following 

treatments: 

 

1.  Placebo  

2.  A recombinant t-PA (rt-PA), in a dose of 0.9 mg per kilogram of body weight (with a 

maximum dose of 90 mg), 10% of which was given as a bolus followed by delivery of the 

remaining 90% as a constant infusion over a period of 60 minutes. 

 

2.5.2 Data collection 

 

The study was split into two separate parts. The first part assessed the change in 

neurological deficit in 24 hours and recruited 291 patients. The second part looked at favourable 

outcomes at 90 days and recruited 333 patients. Both parts of the trial completed the 12-month 

follow-up and so can be considered as one trial, which recruited 624 patients, with 312 patients 

randomised to t-PA and 312 patients randomised to placebo.  

The study was conducted between January 1991 and October 1994. Patients were recruited 

from 8 centres across the USA. The inclusion criteria stated patients must have suffered an 

ischaemic stroke with a clearly defined time of onset (in order for treatment to be administered 

within 3 hours), a deficit measurable on the NIHSS, and a baseline CT scan of the brain that showed 

no evidence of an intracranial haemorrhage.  

Some of the exclusion criteria were previous stroke within 3 months, major surgery in the 

previous 14 days, a seizure at the onset of stroke and the use of anticoagulants or an anti-
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thrombotic within 48 hours preceding stroke onset. A full list can be seen in the original paper (The 

National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group 1995).  

The initial assessment was conducted at baseline by the researcher randomising the patient. It 

included the baseline demographics along with date and time of event, and an indication of 

severity, including a NIHSS score. 

The protocol defined that individuals were followed up for 12 months post-stroke, even 

though the primary outcomes for both parts of the trial were assessed at 90 days post-stroke. 

Despite this, information regarding each individual in the trial was recorded at 24 hours, 7-10 days, 

3 months, 6 months, and 12 months post-stroke. There were 3 outcome scales considered at each 

of these time points, the BI and Glasgow Outcome Scale are recorded at 3 months, 6 months and 

12 months post-stroke. The mRS was recorded at 7-10 days, 3 months, 6 months and 12 months 

post-stroke. 

At 24 hours post-stroke and at 3 months the outcomes of interest were determined by a 

certified examiner who had not been present during the initial treatment, and who also had not 

performed the baseline assessment on the individual.  

 

2.5.3 Response during the follow-up 

 

In total there were 624 individuals recruited as parts of the NINDS trial, of these 291 were 

recruited as part one and 333 were recruited as part two, giving the trial 624 individuals that were 

randomised, 312 in each treatment group. At the initial assessments and for the primary endpoint 

of the trial (3 months) full information is detailed for each individual. At 6 months there were 15 

individuals for whom information was not available, approximately 2.4% of the data, and at 12 

months there were 26 individuals (4.2%) for whom information was not available. For the 

individuals with missing data the trial used multiple imputations in order to give individuals 
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complete values during the follow-up period. There were 5 individuals who had missing data 

recorded at 7-10 days; these values were not imputed in the dataset.  

 

2.6      Conclusions 

 

This chapter aimed to give an overview of the acute condition stroke and introduce the 

main assessment scales that can be used to assess a stroke. As well as this the two datasets that 

are to be used in the thesis have been introduced. Although the trials were conducted 10 years 

apart, the thesis is less interested in the results and conclusions and more interested in the methods 

that can be applied to longitudinal data and the treatment effect they produce. 

From this overview of stroke and the assessment scales, it was decided to focus on the mRS 

as it is of particular interest having a score for death included. The next chapter goes on to conduct 

a systematic review to look at what research has already been conducted in longitudinal stroke 

trials, both generally and specifically with the mRS, in order to identify where the research 

conducted in this thesis can bring new knowledge.  
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3.     Current literature surrounding stroke trials 

 

 

This chapter looks at the current literature surrounding stroke trials and the methods used 

to analyse them. Three systematic reviews were undertaken; firstly, to investigate methods used in 

recently published stroke trials when considering studies that follow up individuals over a period of 

time and report multiple follow-up points, and secondly to look at the different methods that have 

previously been applied to the mRS in longitudinal studies in stroke research. A third systematic 

review was conducted to look at methods that had been identified, and their application in other 

clinical trials. The literature was also explored to investigate other outcome assessment scales, 

similar to the mRS, which include a category for death like the mRS.  

 

3.1      The longitudinal analysis of stroke trials. 

 

A longitudinal study is a study that involves measuring the same variables repeatedly over 

a specified period of time. Unlike cross-sectional studies that compare individuals at one time point, 

longitudinal studies take each individual and track him or her over a continuous period of time. The 

observed data from monitoring an individual are known as repeated measures data and form the 

basis of the analysis.  

Clinical follow-up studies are longitudinal in nature; where a disease is monitored 

systematically in order to establish how the illness progresses over time and what influences their 

prognosis (Coggon et al. 2007). Most follow-up studies document the characteristics of each subject 

when they are recruited to the study (such as age, sex, duration and severity of symptoms) so that 

the association of these variables with prognosis can be examined. Longitudinal studies can have 

either prospective (cohort) or retrospective (case-control) designs, as well as observational and 

experimental designs.  
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In the literature, it is very common to find longitudinal data as panel data, as although the 

patients are being followed up over time, the points at which they assessed are usually predefined 

and therefore the status of each individual is only known at specific time points during the follow-

up period. Panel data records cross-sectional units at repeated time points and can be either 

balanced (observations occur at same time periods) or unbalanced (observations occur at differing 

time periods.  

Longitudinal analyses are often used to look at trends across a life span, or life events over 

generations, and therefore can mainly be found in research in psychology and sociology. There is 

little research conducted using longitudinal methods in stroke trials, even though the trial design 

may incorporate repeated assessments of patients over a follow-up in order to test the effect of an 

intervention.  

 

3.1.1 Introduction 

 

A systematic review of the literature was conducted looking at all stroke trials that had 

published results since 2014 to investigate whether the trial had outcomes that were repeatedly 

measured over a follow-up period and, if so, whether the trials used techniques that analysed these 

data appropriately. To do this for all stroke trials that had ever been published would be a 

formidable task. This review focuses specifically on trials that have been conducted in stroke 

research recently, with articles sourced from papers that have been published from January 2014 

onwards. By looking at papers that have been published from 2014 onwards, the trials identified 

can be considered as using methods that are current practice. Also, recently more emphasis is being 

placed on statistical methods used in stroke research in order to ensure the best use of all available 

outcome data (Bath et al. 2012). It would therefore be expected that more recent publications 

would use methods appropriate for longitudinal data, and consider using the chosen outcome scale 

in a form that uses the most information available.  
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3.1.2     Methods  

 

3.1.2.1     Search Strategy 

 

A search was conducted in Medline and Embase in November 2015 to identify randomised 

controlled trials in stroke research that had been published since January 2014. In order to make 

sure that all possible articles were captured, the search terms in the search strategy included 

“Stroke”, “Randomised”, “Randomized” and “RCTs”. As well as looking at articles that explicitly 

mention the search terms in the title, articles that were tagged as stroke or randomised control 

trials were also identified. Article tags are applied to articles in order to classify the contents and 

help to make them easier to identify.  

 Search terms were kept as broad as possible in order to try to capture all relevant articles. 

Once the search had been conducted, several restrictions were placed on the articles including the 

date published from (January 2014) and also restricting the articles to trials that were conducted in 

human subjects and that the text was available in English. After articles that did not fulfil these 

criteria were discarded, the references that remained were investigated further and an inclusion 

criterion was defined in order to keep only those articles that were relevant to the aim of the 

review. After this, the references of the chosen articles were searched in order to ensure 

completeness of the review.  

 

3.1.2.2      Inclusion Criteria 

 

Initially, the titles of all the articles found were reviewed and those that were obviously not 

appropriate were removed from the list. After this abstracts were reviewed followed by full texts 

of the articles if they were identified to be of interest. Each article was checked to see if the trial 

considered recorded the outcomes at multiple time points or if only a single time point was 
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considered. If the outcome was only recorded at one specific time point, these articles were 

discarded as the interest of the review lies in those that have multiple time points recorded. Once 

the articles that had multiple time points had been identified, the type of analysis was considered 

as to whether the trials utilised all the time points by conducting a longitudinal analysis. The 

different longitudinal methods used by the different trials were noted. Trials were not considered 

if the study population had not had a stroke, if the studies were looking at the risk of having a 

stroke, or if having a stroke was an outcome these trials. Additionally, articles had to refer to a 

stroke trial with results; protocols and other pre-trial articles were excluded. 

 

3.1.3     Results 

 

3.1.3.1     Search strategy 

 

The search conducted in Medline and Embase identified 191,187 articles that had used 

terms that were specifically related to stroke and 428,256 articles that used terms that were related 

to randomised controlled trials. After these two searches were conducted separately, they were 

combined to look for articles that were relevant to both searches and this produced 9,649 articles, 

after the removal of duplicates. Restrictions were placed on the search to exclude trials conducted 

on animals and to consider only those that looked at human subjects, which reduced the number 

of articles down to 9,577.  

Finally, restrictions were placed on the search to look at articles published from January 

2014 up to the date of the search. This greatly reduced the number of articles to consider and there 

were 1,396 articles left that were suitable to consider in more detail about the time points at which 

the outcomes were recorded and the methods that were used to analyse the articles. Appendix A 

contains a flow diagram detailing the articles that were excluded at each stage of the screening. 
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3.1.3.2      Articles found 

 

Initial screening identified 499 studies that were clearly not conducted on stroke patients 

from the title of the articles and so they were instantly discarded. The abstracts of the remaining 

articles were considered in more detail. Out of the remaining studies, 180 were excluded as they 

did not report the results of a stroke trial. A full breakdown of what these excluded articles were 

looking at is given: 

 

 Study protocol (n=79) 

 Commentary/discussion (n=16) 

 Study design (n=13) 

 Rationale (n=11) 

 Secondary analysis (n=7) 

 Cost effectiveness (n=7) 

 Review (n=7) 

 Other study type (n=7)  

 Methodology (n=7) 

 Efficacy & safety (n=6) 

 Feasibility (n=5) 

 Meta-analysis (n=4) 

 Statistical analysis plan (n=3) 

 Trial design (n=3) 

 Baseline characteristics (n=2) 

 Study update (n=2) 

 Recruitment strategy (n=1) 
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This left 717 studies with abstracts to be checked, of these, a further 196 were found to not 

be eligible, even though the word stroke featured in the title. This is because a stroke may have 

been an outcome or the study was looking at the risk of stroke in a certain population. As well as 

this, the information was unclear in the abstracts of 16 studies, and full texts were not able to be 

found for them as they were conference abstracts with no published article. Three studies were not 

able to be considered due to the main article being written in a non-English language.  

This left 505 articles that fitted all the inclusion criteria. After these articles had been 

identified, each abstract and full text were checked to see if the study had the outcome in the study 

recorded only at a single time point or at multiple time points in a follow-up period; the numbers 

of such studies were 329 and 176 respectively. At this point, the type of analysis was not considered. 

The articles recording more than one time point were then further assessed, and articles 

were excluded if the analyses only considered a single time point, ignoring the repeated measures. 

Of the remaining 176 articles, 110 conducted some type of longitudinal analysis, and 66 did not. 

This shows that over a 1/3 of the eligible stroke studies that followed up the patients for several 

months only considered one time point in their analyses. These articles had the references checked 

in order to identify any more potential articles for inclusion, but none were found within the 

considered time period. 

There were eight different statistical methods that were applied to the different outcomes 

considered in the stroke trials. There was no restriction put on the outcome of the study and so 

different methods will have been used that were appropriate for the outcome of interest. The 

methods used included repeated measures Analysis of Variance (ANOVA), linear mixed models, Cox 

regression and Kaplan-Meier curves, ordinal regression, Freidman test, logistic regression, latent 

class growth analysis and functional principal components analysis. There were two studies that 

conducted both repeated measures ANOVA and linear mixed modelling; these were counted twice 

in the list below, which shows the number of studies using each of the statistical methods.  
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 Repeated measures ANOVA (n=55) 

  Linear mixed models (n=21) 

  Cox regression and Kaplan-Meier curves (n=31) 

 Freidman test (n=3) 

  Latent class growth analysis (n=1) 

  Functional principal component analysis (n=1) 

 

Repeated measures ANOVA is an extension of a one-way ANOVA, however, the groups are 

assumed to have a relationship between the outcomes, due to the outcome measure being 

repeatedly assessed for each group. The aim of the repeated measures ANOVA is to detect a change 

in the repeated outcome. In order to conduct this analysis, the outcome variable considered needs 

to be continuous and the intervention variable (within-subjects factor) nominal or ordinal. The 

repeated measures ANOVA looks at the mean change in the outcome variable over two or more 

time points, commonly it is three or more time points as if there were only 2 time points a t-test 

would be used. A repeated measures ANOVA cannot be applied in the case of the mRS, as the 

outcome variable needs to be continuous in order to compare the mean values. Therefore, this 

method is not appropriate for use within this project, but may be useful if considering other stroke 

scales such as the NIHSS, which can be treated as continuous.  

Linear mixed models are an extension of generalised linear models (e.g. logistic regression). 

The term mixed model is derived from the fact that the models can include both fixed and random 

effects. They are particularly useful in a longitudinal analysis when the same outcome measure is 

assessed at repeated time points, as they are able to deal well with missing data, which means they 

are preferable to the repeated measures ANOVA. Linear mixed models are able to be applied to 

both binary and ordinal data. This is useful, as by using these methods we are able to consider the 

effect of dichotomising the mRS scale and contrast the estimates produced from the dichotomised 

and the full ordinal scale by comparing the linear mixed models fitted to the data. These methods 
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are well established and aim to model the odds of a patient being in a specific category on the scale 

depending on the covariates that are included in the model. Linear mixed models are applied to the 

data within this project.  

Cox regression uses time to event data, and so is less interested in the simple fact that a 

specific outcome has occurred, but with when the outcome occurred. The most common use of Cox 

regression analysis is in survival analysis when considering how long patients survive after a 

treatment or diagnosis, for example. One of the main interests in the mRS lies in the fact that it 

includes a point on the scale for death, which can therefore can be considered as part of the main 

analysis. Cox regression would be of interest if we were to consider death separately; however, our 

main outcome is an ordinal scale, not a time to event variable. It is possible to consider joint models 

that combine both the ordinal scale and a time to event variable, and this was considered as a 

potential method to be included in the project. However, the series of follow-up points is very small 

within the data collected, making this type of method hard to conduct. It was decided not to split 

the mRS up and consider death separately, but to keep the mRS as a whole scale and apply methods 

that are appropriate to the ordinal scale including death. Because of this Cox regression models 

were not fitted to the data in this instance, but the can be used in future if mortality is the outcome 

of interest.  

Several papers used a Freidman test, which is a non-parametric statistical test that is 

comparable to repeated measures ANOVA. Its method is similar to a Kruskal-Wallis test, which 

compares two or more independent samples. As a non-parametric test, it is not assumed that the 

data are normally distributed and the data are ranked rather than using the raw scores. This method 

would be appropriate to apply to the mRS data as the Friedman test requires the data to be in an 

ordinal form. The Friedman test uses a ranking system and finds a critical value in order to accept 

or reject the null hypothesis. There need to be at least 3 observations in order for the test to be 

conducted, and if the result is significant then you need to run a second analysis in order to find out 

where the differences actually lie.  
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These were the most popular methods that were used by papers where the outcomes had 

been recorded at multiple time points. One study conducted functional principal components 

analysis (FPCA). FPCA demonstrates how a set of functional data varies with regard to its mean, and 

in terms of these modes of variability; it is commonly used for studying race walking (Dona et al. 

2009). This study identified in the review was a rehabilitation study looking at stroke patients 

regaining independence after stroke. Although this is an interesting and novel method of analysis, 

we are not able to use it in this project as it cannot be used to analyse the mRS, or any of the other 

outcomes that are recorded in the data set.  

The final method that was identified in the review was a latent class growth analysis (LCGA). 

This method works by clustering patients into groups that have similar profiles over time. This is a 

novel method for longitudinal analysis as there has only been one stroke trial published in the time 

period considered that used the method. It can be applied to both continuous and ordinal data and 

therefore is an appropriate method for use with the mRS. This method is considered later in the 

thesis, along with a more detailed review of other areas that have used the method within a 

randomised controlled trial.  

 

3.1.4 Discussion 

 

Although there were many articles that needed to be examined, it was found that only 505 

of 1,396 found were deemed to be suitable for consideration, once non-English, non-stroke and 

non-trial articles had been removed. Of these, there were 176 articles that had multiple follow-up 

time points and over two-thirds of the articles used a method that allowed the repeated measures 

nature of the follow-up to be considered. This means that there were nearly 1/3 of trials that 

recorded measurements at several time points but failed to conduct an appropriate analysis to 

make the full use of the data that they had. A reason for this may be that there is no consensus on 

the methods that should be used for serial measurements and therefore it is easier to just consider 
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a single time point. There are advantages to using the full longitudinal data over just the single time 

point; the sample size would be greatly increased when using the full data rather than just the single 

time point, and there would be greater statistical power with the multiple time points. There are 

increased costs associated with following individuals up over time; therefore, it makes sense that 

the analysis conducted is appropriate and makes use of all the data rather than just a single time 

point, for which it was not necessary to follow up the individuals frequently in the specified time 

period after the intervention has been given. This highlights the importance of the aims of this 

thesis as it will hopefully provide a consensus on the best statistical methods to use when analysing 

longitudinal data from studies of stroke. 

 

3.2      Analysing the mRS in stroke trials.  

 

Recently there has been much research conducted on how best to analyse the outcomes 

of stroke trials with particular emphasis on the mRS (Bath et al. 2012). However, the main interest 

of the majority of the research conducted has been the analysis of the mRS as the primary outcome 

at a single time point rather than longitudinal analysis methods.  

The Optimising Analysis of Stroke Trials (OAST) Collaboration conducted work in 2007 that 

looked at ways in which the statistical analysis of stroke trials can be improved (Bath et al. 2007). 

They assessed which statistical approaches were most efficient when analysing the functional 

outcomes of stroke trials. The outcomes they considered were the mRS, the BI, and “Three 

questions”. The three questions were developed to see whether simple questions could assess 

outcome after stroke (Lindley et al. 1994), and asked: 

 Is the patient alive? 

 In the last two weeks did you require help from another person for everyday activities? 

 Do you feel you have made a complete recovery from your stroke? 
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The OAST collaboration used a variety of different approaches to re-analyse the functional 

data comparing two treatment groups. They obtained 55 datasets, which was comprised of 47 trials 

with approximately 54,000 patients between them. They found that methods that kept the 

functional outcome data in its ordinal form were more statistically efficient than those methods 

that dichotomised the data. The results were consistent across the different outcome measures 

considered. The trials that were analysed in this study looked at the functional outcome at a single 

time point, with methods including ordinal logistic regression, t-tests and robust ranks tests as the 

most favourable methods.  

More work was conducted in 2012 as part of the European Stroke Organisation Outcomes 

Working Group to look at the statistical analysis of the primary outcome in acute stroke trials (Bath 

et al. 2012). They focused on the different methods that could be used to analyse ordinal data 

without the use of dichotomisation, as this can rarely be recommended using the mRS. They 

concluded that preferred statistical approaches to analyse the mRS could include using a sliding 

dichotomy on the scale or treating the scale as either ordinal or continuous. However, they 

conclude that there is no single best approach that will work for all stroke trials and that there will 

be some methods that are better than others depending on the scenario and the question that is 

being considered. 

More recently a systematic review was conducted to look at the analysis of the mRS in 

acute stroke trials (Nunn et al. 2016). The primary aim of the review was to assess whether the 

recommendations given by the OAST collaboration in 2007 had had any influence on the methods 

used to analyse stroke trials since 2007.  

The review identified 42 clinical trials for inclusion in the review, with approximately 32,500 

patients in the incorporated studies. They found that although all reported the mRS, the primary 

outcome differed between published studies, with only 24 studies reporting the mRS as the primary 

outcome alone. Out of the 42 studies, 25 (60%) used a dichotomous analysis compared to only 8 

(19%) using an ordinal analysis. There were 9 (21%) studies that did not fall into either category. 
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The studies that used an ordinal analysis used several different methods. Three studies used ordinal 

logistic regression, five studies used the Cochran-Mantel-Haenszel test, four used a test based on 

the normal distribution, and one used a Mann-Whitney U test. It is important to note that there 

were 12 additional studies that used ordinal methods as a secondary or sensitivity analysis. Once 

again, the main focus of the review was the mRS at a single time point, but it shows that despite 

the recommendations of OAST collaboration, there was not a dramatic shift in the types of analysis 

performed when analysing acute stroke trials. In 2007, the included studies in the OAST project 

paper had 18 studies that used the mRS as the main outcome, with 30% using an ordinal approach 

and 50% using a dichotomised approach. If we compare this to the findings of Nunn et al we see 

that only 19% of included studies use the mRS as an ordinal scale. It is important to note the original 

OAST project aimed to combine trial data from stroke RCT’s and therefore there may have been 

other studied that satisfied the criteria of the search by Nunn et al. that were not originally included, 

due to the study not satisfying the inclusion criteria for the OAST project. This means that the 

numbers of ordinal mRS papers between the OAST project and systematic review may not be 

comparable.  

 

3.3      Longitudinal analysis of stroke trials specifically using the mRS 

 

Many stroke trials tend to look at the psychosocial changes over time rather than functional 

recovery. Psychosocial factors could be mental problems such as depression or social problems 

such as personal relationships. Those studies that do look at functional recovery tend to be focused 

on a particular area (i.e. recovery in the hand) rather than general recovery. This may be because 

recovery is so specific to the individual that it is hard to obtain a global measure of recovery. The 

most common scale recorded in stroke trials is the mRS and therefore this is the scale that we are 

most interested in. I am specifically interested in this scale because of the frequent inclusion of 

death in the scale, and I was interested in how this was dealt with in the longitudinal analysis. In 
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order to identify all possible methods that could be applied to the mRS, the restriction of looking in 

clinical trials was removed when compared to the first search of the literature, with restrictions 

placed to look only for longitudinal studies or analysis. This was to give the broadest possible 

selection of studies that use longitudinal analyses with the mRS scale, to help inform potential 

methods for inclusion in this project. 

 

3.3.1 Introduction 

 

A review was conducted to look specifically for stroke studies that used the outcome of 

mRS for the longitudinal analysis that was conducted. In order to make sure that all possible papers 

were found we extended the search to also look for articles that used the OHS as an outcome as 

well, as this is just an extension of the mRS.  

 

3.3.2      Methods  

 

3.3.2.1      Search Strategy 

 

A search was conducted to identify papers of longitudinal studies in which the mRS or the 

OHS was used as the outcome. First, articles that had been published on stroke patients were 

identified using search terms including ‘stroke’ and ‘cerebrovascular’. Secondly, longitudinal studies 

were identified using the search term ‘longitudinal’, and also those that were tagged as longitudinal 

studies. These two searches were then combined. Finally, a search was done to identify those 

papers that looked at the mRS as the outcome of interest. These searches were then combined 

again. Further restrictions that were placed on the search limited the articles to human patients 

and studies that were published in English.  
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3.3.3      Results  

 

3.3.3.1      Search Strategy 

 

By searching in both Medline and Embase, a total of 41 papers were identified using the 

search strategy above after the searches were combined and the restrictions of human subjects 

and English language publications were placed on the found articles. Appendix A contains a flow 

diagram detailing included studies. Between these two search engines, 9 articles that were found 

were duplicates and were removed. Of the 32 remaining studies, all the abstracts were read in 

order to identify which of the remaining studies were informative in the methods used and results 

of longitudinal analysis using the mRS as the primary outcome. When reading the abstracts, it 

became apparent that there is very little information on longitudinal studies using the mRS. There 

were very few of the studies that took a longitudinal approach to the analysis of the follow-up data 

they reported. There were 6 trials that did not use the mRS as an outcome and 13 trials that were 

not a longitudinal analysis. Finally, two trials were not actually undertaken in stroke patients. Only 

two studies conducted a longitudinal analysis using the mRS as the outcome. 

 

3.3.3.2      Articles  

 

The first study that conducted a longitudinal analysis using the mRS as an outcome was 

published in 2012 and used previously published trial data from the NINDS rt-PA trial (Li et al. 2010). 

The study conducted joint modelling in order to look at the longitudinal ordinal data of the mRS 

with competing risks survival times. The study using the NINDS rt-PA data looked at the mRS values 

at baseline, 7-10 days, 3 months, 6months and 12 months post-stroke. It also re-categorised the 

scale to: 1 = no symptoms or no significant disability despite symptoms, 2 = slight disability, 3 = 

moderate disability or moderately severe disability, 4 = severe disability or dead. It was found that 

the mRS scale has a decreasing trend over time, suggesting recovery of individuals, as a lower mRS 
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score incicates less disability, and that conditional on other covariates and random effects, the 

cumulative odds ratio of a smaller mRS value was 8.33 (95% CI 5.63, 12.33) for 3 months, 9.68 (95% 

CI 6.54, 14.32) for 6 months and 11.59 (95% CI 7.53, 17.84) for 12 months, compared to 7-10 days. 

The study considered itself to be the first to consider competing risks failure times, in an attempt 

to deal with possible non-ignorable missing values in the longitudinal ordinal measurements. The 

missing data after death or dropout could be non-ignorable in this case as patients with a higher 

mRS score would be more likely to die or drop out of the study because of low efficacy of the 

treatment. 

This study kept the mRS is an ordinal form, with a reduction in the number of points on the 

scale by merging some of the categories together, combining severe disability and death within the 

same severity category. This study also used a pre-stroke mRS value as the baseline. This was not 

available in the SO2S data for all patients, only approximately 1000 patients, who had the 

information retrospectively considered. Clinicians were unsure of the accuracy of the pre-stroke 

Rankin data collected in the study, and therefore it was decided not to include it within the analysis 

conducted in the thesis. The joint model fitted by Li et al. investigates the time to drop out and the 

time to death/severe disability. If there were more points available in the SO2S data then it would 

definitely be worth considering fitting a joint model to the SO2S data; however, with such a short 

follow-up time frame, the risk of death and dropout over only 2 follow-up points (as there is no 

baseline value) may not provide accurate estimates.  

The second study published in 2007 was a post hoc analysis of a previously published 

Vitamin Intervention for Stroke Prevention (VISP) trial (Spence et al. 2001), which enrolled 3,680 

adults and followed them up for 2-years post-stroke (Newman et al. 2007) . With an outcome of 

the mRS score, linear mixed effect models (LMM) were fitted to the longitudinal data measured 

over the 2 years. This method allowed the correlation of repeated measures within each subject to 

be considered as well as the inclusion of missing data. The LMM found that there was an 

improvement in the mRS values each month over the 2-year follow-up, suggesting a reduction in 
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disability over time. It was found that there was an increase in disability for older patients and in 

those who were black, but there were no gender effects. The main aim of the paper was to 

investigate the impact of diabetes on functional recovery. A linear mixed effects model is a suitable 

model for the analysis of longitudinal mRS, and one that will be considered in the thesis using both 

a dichotomised and ordinal version of the scale.  

 

3.3.4 Discussion  

 

The two studies both found that over time there was an improvement in the mRS score, 

indicating decreasing disability in a patient who is recovering from a stroke. One study used a joint 

model to investigate the recovery while the other used a linear mixed model. Both papers used 

data from a randomised clinical trial, one looking at a possible treatment for the stroke itself and 

the other the use of an intervention to prevent further vascular injuries. Both of the papers found 

were post hoc analyses of trials that had been previously published, one with a lengthy follow-up 

of two years, the other with a follow-up of a year.  

There were no studies found that looked at the recovery of stroke patients in a natural 

cohort, that is those who received usual treatment and no trial intervention, and as there are only 

two studies that have looked at any longitudinal analysis of the mRS in stroke patients, any new 

research in this area will be novel and will provide new information into the recovery of patients 

over time. The use of just the natural cohort of the SO2S trial was initially considered, this would 

have been done by using just the control arm of the trial. However, it was decided that in order to 

compare the different methods used an effect of treatment should be estimated, which required 

all data from the SO2S trial, meaning that both the treatment group and the control group were 

used in the analyses conducted.  
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3.4      Scales that have death included 

 

When a patient dies within a clinical trial or cohort study, they are usually treated as lost to 

follow-up and removed from the study. This means that they are unable to contribute any 

information to the study after they have died. When a scale has a category for death included like 

the mRS does, the patient that has died has a recorded value and therefore can still contribute to 

the analysis. When a patient has died in this situation, it is not appropriate to treat the value as 

missing and the individual has a known value and data should use the last observation carried 

forward to complete follow-up points after a patient has died. A search was conducted to look at 

other scales that have a category for death included in them.  

 

3.4.1 Methods 

 

No formal search strategy was conducted to identify the scales, as it was found to be very 

hard to define search terms that were able to identify the scales that included death and separate 

these trials from a trial conducted with any assessment scale where the patient had died. Initial 

information came from a text called Measuring Disease by Ann Bowling (Bowling 2001). This 

allowed several scales to be identified, following which more research was conducted into these 

scales, leading to the identification of more scales and a better understanding of the clinical areas 

in which scales including death may be used.  

 

3.4.2 Results 

 

There are two scales that, although not principally designed with stroke assessment in 

mind, have been applied frequently to assess brain injury in stroke patients, usually on hospital 

admission. These scales are mainly used to assess traumatic brain injury.  
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The first scale is the Glasgow Coma Score (GCS) and it is possible for a patient to be classified 

as dead on this scale (Teasdale & Jennett 1974). The Glasgow Coma scale was developed in 1974 

and modified in 1975 by Graham Teasdale and Bryan Jennett to give a reliable, objective way of 

recording the conscious state of a person. It is now commonly used to assess consciousness in all 

acute medical and trauma patients. A patient is assessed against the criteria of the scale, and the 

resulting points give a patient score between 3 (indicating deep unconsciousness) and 15 (fully 

alert). The scale assesses the patient’s ability to open their eyes (E) as well as motor (M) and verbal 

(V) responses; a total summative score is calculated from the 3 categories. In the scale, a person 

who receives a score of 3 is regarded as being in a deep coma or dead. 

The second score found to include death as a category is the Glasgow Outcome Scale (GOS). 

This is a hierarchical ordinal scale, which describes the disability and handicap in patients with a 

brain injury (Jennett & Bond 1975). Developed by Bryan Jennett and Sir Michael Bond in 1975, it 

has 5 categories with scores ranging from 1 (death) to 5 (good recovery). It has been suggested that 

the categories are too broad and so an extended version was developed in 1998 (Wilson et al. 1998), 

which has scores 1-8, including categories with upper and lower degrees to distinguish disability 

better in the higher 3 categories; so, for example, good recovery becomes lower good recovery and 

upper good recovery. It is easy to complete and is conducted via an interview. Although not 

designed to measure stroke severity, these scales have been known to be used on patients who 

have had a stroke as an initial assessment of stroke severity. 

The first scale found in oncology was the Karnofsky Performance Scale (KPS), designed in 

1949 by David A Karnofsky and Joseph H Burchenal, which is a quality of life assessment scale 

(Karnofsky et al. 1948). Its main use is to allow clinicians to evaluate a patient’s ability to survive 

chemotherapy treatment for cancer. However, this is not the purpose that the scale was designed 

for; originally it was used as a measure of nursing workload. But, its assessment of physical 

performance and dependence can be used in oncology. The scale contains rank-ordered decile 

points that range from 0 (dead) to 100 (normal). Patients are assigned to categories using a 
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summation of scores to produce an overall score based on classifications made by health 

professionals, although the validity of the summations is yet to be tested and there are variations 

on the categories that exist. The KPS has been altered to look at paediatric patients. This alteration 

produced the Lansky Scale, however, within this scale the category for death has been removed 

(Lansky et al. 1987).  

Also in the field of oncology, there is a second scale including death that looks at a cancer 

patient’s general well-being and activities of daily living, although it goes by several names; the 

WHO functional scale, the Zubrod Scale, or the Eastern Cooperative Oncology Group (ECOG) 

Performance Status Rating scale (Oken et al. 1982). It is effectively a condensed version of the KPS, 

with 6 ordered categories, that provides information on what a patient is capable of doing, rather 

than what they actually choose to do. In this scale, the range of scores goes from 0 (no impairment) 

to 6 (dead).  

Within patients who suffer from multiple sclerosis (MS), an autoimmune disorder of the 

central nervous system, the Kurtzke Expanded Disability Status Scale (EDSS) is a scale used to 

quantify the disability seen as a result of MS (Kurtzke 1983). It was designed by John F Kurtzke as 

an extension of his 10-step Disability Status Scale (DSS) and is the most widely used assessment 

scale within MS. It has increments of 0.5 and can range from 0, which signifies a normal neurological 

exam, to 10, which signifies death due to MS. Here the death must be specifically related to MS, 

which has not been a stipulation on many of the other assessment scales.  

There are also scales that include death within cardiovascular disease. The Olsson Ranking 

Scale is used to categorise the degree of cardiovascular disability (Olsson et al. 1986). It is based on 

the New York Heart Association (NYHA) functional classification scale, a measure used widely in 

clinical trials of congestive heart failure. The Olsson Ranking Scale classifies patients into seven 

mutually exclusive categories of health state from 1 (dead) to 7 (NYHA Class 1 without side effects 

or complications).  
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The Bulpitt’s Hypertension Questionnaire is an adaptation of Fansel and Bush’s Health 

Status Index (Bulpitt 1982). It focuses on the symptoms associated with hypertension as well as 

looking at the effect on everyday life. It is split into two sections; the first looks at disease-specific 

symptoms and the second about the effect of hypertension on daily life and functioning. The 

questionnaire can be self-administered, with the disability section of the questionnaire being 

scored on a continuum from 0 (dead) to 1 (total well-being). 

There are also scales that have been altered in order to include death, in the hope of 

improving the interpretability or to make them comparable to other scales that are used for 

assessment. The 36-Item Short Form Health Survey (SF-36) scale been altered to include a 

defensible value for death. As well as this, the BI can be altered to have a score of -5 (one worse 

than worst possible outcome on the scale) and also the cog-4 subset of the NIHSS, proposed as a 

quick test of cognitive impairment, has a score of 10 added (one worse than the max score of 9). 

 

3.4.3 Discussion 

 

Outcome assessment scales are used in a large variety of clinical areas and assess many 

different outcomes. This being said, there are very few that, like the mRS, have a category in them 

that is specifically for patients who have died. The review above has found a few scales that this is 

appropriate for; however, it would be hard to form conclusions about how best to treat these data 

when the clinical areas considered are so different. A brief search was conducted in order to identify 

any alternative methods used for longitudinal analysis using any of the scales mentioned above, 

that have not previously been considered, that would be appropriate to use with the mRS. Although 

these scales included death as a category on the scale, the main analyses of papers using these 

scales were time to death analyses, and therefore the majority of analyses that were used were 

Cox regression methods, which are not appropriate for the mRS as an ordinal scale. There was one 

method identified using the EDSS scale for multiple sclerosis that fitted a Markov multi-state model 
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to the data looking at disability progression over time (Palace et al. 2014). Although this paper did 

not include the score of death in the multi-state model, it is possible for this to be done, allowing 

the whole of the mRS scale to be used in full. This would make it an appropriate method to be used 

for an analysis in this project.  

 

3.5 Clinical trials using other methods 

 

Throughout the chapter, different methods for analysing the longitudinal data in the thesis 

have been considered. These include linear mixed models, whose use in clinical trials is well 

established. There were 21 papers identified in the review of trials published in stroke using 

longitudinal methods in Section 3.1. Other methods that will be considered include LCGA and 

Markov multi-state models, whose application in stroke trials is more novel. The use of these 

models is not as well reported, and a quick literature search was conducted to identify any recent 

clinical trial (since January 2014) that used either of these 2 methods as the main method of 

analysis.  

 

3.5.1 Methods 

 

 A search was conducted in Medline and Embase in November 2017 to identify randomised 

controlled trials that had been published between January 2014 and December 2016. In order to 

make sure that all possible articles were captured, the search terms in the search strategy included 

“Latent class growth analysis”, “Markov multistate model”, “Randomised”, “Randomized” and 

“RCTs”. Article tags are applied to articles in order to classify the contents and help to make them 

easier to identify.  

 Search terms were kept as broad as possible in order to try to capture all relevant articles. 
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Once the search had been conducted, several restrictions were placed on the articles, including the 

date published (from January 2014) and also restricting the articles to trials that were conducted in 

human subjects, and that the full text was available in English. After articles that did not fulfil these 

criteria were discarded, the articles that remained were investigated further in order to identify 

only those articles that were relevant to the aim of the review. After this, the references of the 

chosen articles were searched in order to ensure completeness of the review.  

 

3.5.2  Results 

 

The search in Medline and Embase identified 32 articles for latent class growth analyses in 

RCTs and 54 articles for multi-state models in RCTs, before the removal of duplications and 

restrictions on dates. Initially, 13 articles about LCGA and 23 articles about multi-state models were 

removed due to duplication of articles. After the restriction of publication dates there were 10 LGCA 

and 9 multi-state articles of which the abstracts were checked for suitability.  

Out of the 10 potential LCGA articles, 3 were conducted in cohort studies, with the 

remaining 7 articles conducting LCGA in RCTs. In these 7 articles, there were 3 that looked at 

trajectories in depressive and or anxious symptoms. The first in the effect of cognitive behavioural 

therapy in adolescence, second in overweight/obese patients with postpartum depression, and 

third in patients undergoing haemodialysis. There were 2 papers that looked at compliance with 

medication – one looking at adherence to medication in kidney transplant patients and the other 

looking at individuals using nicotine replacement therapy. The final 2 articles were both looking at 

trajectories of weight, with one looking at weight loss in patients with osteoarthritis and the other 

in the life course of patient BMI in Guatemalan adults who were given supplements as an infant. All 

the RCT’s included had a follow-up of at least 12 months up to 30 years’ worth of follow-up, and 

regardless of the number of patients included in the trials, the number of classes in a model fitted 

to the data ranged between 2 and 4 clusters.  
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Out of the 9 potential multi-state articles, 1 did not fit a multi-state model and 3 were not 

conducted in RCTs, which left 5 articles that conducted a multi-state model in an RCT setting. One 

trial looked at disability in the form of the major disability scale and looked at the impact of long-

term physical activities. There were 2 cancer studies, one looking at failure type in non-small cell 

cancer and the other looking at risk screening for prostate cancer. The latter considered 6 potential 

states, similar in size to the mRS, and was the largest number of states found, with all other trials 

fitting a simple illness-death model, which has 3 states of healthy, ill and dead. The final 2 trials 

looked at mortality in coronary artery bypass graft patients compared to percutaneous transluminal 

coronary angioplasty, and heart failure hospitalisations in patients with diagnosed heart failure with 

reduced ejection fraction.  

 

3.5.2.1      Latent Class Papers 

 

A study published in 2016 by Ford et al. looked at life course body mass index (BMI) 

trajectories in Guatemalan adults, randomised to receive improved nutrition in the first 1000 days 

after conception in a study conducted in 1962-77. This RCT had an extended follow-up of over 30 

years and this was used to fit LCGA models, in order to predict trajectories of BMI. The trajectories 

were derived from up to 22 possible measures of height and weight, which is a very large amount 

of data, much more than seen in most other studies conducting LCGA. They also used the idea of 

fitting different models to men and women separately, as it was agreed that there would be distinct 

differences in the change of BMI over the follow-up in both men and women. This meant that there 

were 2 models fitted, 3 different trajectories were found in men and only 2 different trajectories in 

women. The smallest cluster contained 15% of the data, which was one of the male trajectories. 

The paper describes well the process for deciding the optimal number of classes, which included 

using BIC, the bootstrap likelihood ratio test (BLRT), entropy and posterior probabilities. They took 

the interpretability of the classes into account when deciding on the optimal number of clusters. 
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The paper used Mplus in order to carry out the analysis. It also had to extend the models in order 

to account for within family correlation, as over 84% of participants had at least 1 sibling included 

in the trial (Ford et al. 2016). This is not something we need to include in our analysis, as we are 

assuming independence between each individual.  

A second paper found also looked at change in weight data and was conducted by de Vos 

et al. in 2014. This paper focussed on the difference in weight between follow-ups, rather than 

calculating a BMI for the individual. The data was taken from the PROOF study, which was an RCT 

that investigated the effects of weight reduction on the development of knee arthritis. Over a 

follow-up of 2.5 years, information was recorded at 6 month intervals, so patients had a maximum 

of 6 follow-up points to contribute. The paper used a combination of the BIC, BLRT and entropy in 

order to decide on the best fitted model and aimed to fit models with between 2 and 6 clusters 

with linear, quadratic and cubic trajectories. They chose the 3 class linear model. There was a better 

fitting model, however it was decided not to choose this model due to having groups of very small 

numbers; the smallest group in the chosen model was 11.8%. They fitted multivariate multinomial 

regression models alongside the LCGA, in order to test the effect of the baseline covariates on the 

outcome. The paper accurately described the methods used, they fitted the LCGA models with 

Mplus and the regression models in SPSS (de Vos et al. 2014).  

In 2014, Scherphof et al. conducted a LCGA in the use of nicotine replacement therapy in 

adolescents. The aim of the study was to evaluate predictors of compliance trajectories. Firstly, the 

compliance trajectories were identified and then the predictors of these trajectories investigated. 

The models included 6 questionnaires, from the 1st day after quitting until the last day after 

treatment, with uneven spacing in between the considered follow-up points. The models were 

fitted with between 1 and 4 trajectories and the models were compared using BIC, the bootstrap 

likelihood ratio test and entropy, in order to identify the best fitting model. The 4 class model had 

the best fit according to BIC but an insignificant BLRT meant that the 3 class model was chosen as 

the best fitting model. Following on from the identification of the clusters, multinomial regression 
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models were fitted, which compared the groups with moderate and strong decreases in compliance 

over time, with the cluster in which participants were the most compliant over the study period. As 

with previous papers, Mplus was used in order to conduct the LCGA, and the paper provides a 

detailed explanation of the methods used and decisions made in order to choose the best fitting 

model for the data (Scherphof et al. 2014).  

The group based symptom trajectories in the prevention of adolescent depression were 

investigated by Briere in 2015. The RCT contained 3 different interventions and aimed to create 

trajectories based on groups of individuals from pre-test to 2-year follow-up. Initially, each 

intervention was considered distinctly, to look if there were differences in the interventions and 

control, however because the trajectories had similar numbers and shapes across the groups, all 

the patients were considered together. They modelled between 1 and 5 classes, with the best 

model being chosen using information criterion and likelihood ratio tests. Three information 

criterion AIC, BIC and adjusted BIC, and 3 likelihood ration tests Lo-Mendall-Rubin, Vuong-Lo-

Mendall-Rubin and BLRT were used. This is the most thorough paper in terms of testing model fit, 

as they used more tests than the other papers. We considered using all of these tests within the 

model fitting of our LCGA, as this would hopefully give us the most information for fitting the best 

fitting model, if they are in agreement. From this, 4 classes were identified, most having a steady 

change over time, with 1 showing a decrease and resurgence in the depressive symptoms. The 

smallest cluster in this model has 6% of the data in it. After the trajectories had been identified, 

they then considered the effect of the intervention in the trajectories by looking at the prevalence 

of class membership by condition, with no significant difference found in the trajectory 

membership. Finally, multinomial regression models were used to investigate difference between 

predictors within the trajectories (Briere et al. 2015).  
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3.5.2.2 Multi-state Papers 

 

The first multi-state RCT paper identified was an analysis of chemotherapy in non-small cell 

lung cancer – conducted by Rotolo in 2014. The aim of the study was to use multi-state models to 

describe the effect of chemotherapy, for approximately 200 patients recruited between 1995 and 

2001. The median length of follow-up was 7.5 years, in which patients could suffer a local replace, 

distant metastasis or die. The paper doesn’t make it very clear how many states are included in the 

model as they define 2 different types of metastasis but from the text and the diagrams it is unclear 

whether they consider them as distinct or together. The paper provides no indication on how model 

fit was assessed, and although it presents whether calculated hazard ratios are significant or not 

significant, this information could be presented much more clearly. There is no information on what 

statistical package was used to fit the models or what was actually included in them, with the main 

results being adjusted but not described in the text (Rotolo et al. 2014).  

There was another paper in the field of oncology identified that used multi-state models. 

In 2015, Yen et al. looked at risk stratification for prostate cancer screening and fitted a 6 state 

disease progression model to a Finnish RCT on cancer screening. The paper presented the way that 

the model was fitted well, with the transitions defined between states in the disease progression 

and used a 2 step approach. First, it estimated the transition rates without considering genetic 

markers using the Cox and Miller method, followed by the inclusion of predefined genetic markers. 

The models produced a 10 – year risk of progressive prostate cancer, for low, medium and high risk 

groups, who began screening at different ages. There is no description in the text about how model 

fit was assessed, or the program used in order to fit the model to the data, but the model provides 

odds ratios for the effect of the selected SNPs on the risk of prostate cancer (Yen et al. 2015).  

Also in 2015, Zhang et al. analysed Bypass Angioplasty Revascularisation Investigation 

(BARI) trial data using a multi-state model. The RCT randomised patients to 2 different 

cardiovascular treatments, and used a primary outcome of all-cause mortality. The model fitted 
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was a 3 state model of receipt of intervention, myocardial infarction (MI) and death, and was 

compared to a standard survival analysis using Cox regression and Kaplan-Meier curves. It was 

found that the differing effect between treatments may have been disguised without the 

intermediate MI state. As with other papers, there is no discussion on model fit, but the paper does 

report the effects of several covariates on the transitions estimated. Although it doesn’t mention 

the software used, the paper is the only paper to recognise limitations of the multi-state model 

itself within the study limitations, including the complex nature of using software packages to fit 

the data, and the validity of the Markov assumption although, they believe that it holds in this 

instance.  

Upshaw et al. (2016) used a multi-state model in order to predict heart failure 

hospitalisations and all-cause mortality in patients with reduced ejection fraction. They included 12 

covariates in the analysis, which were chosen a priori. They also used a complete case scenario as 

there was less than 1% missing data. They fitted the multi-state model using Cox proportional 

hazards regression, with 3 states in the model, one of which was the absorbing state for death, 

which was estimated separately. The paper explains well how the included covariates were selected 

using a process of univariate models and comparison of the AIC. They then went on to further test 

the models by validating it in a new cohort. Models were fitted using R and the ‘mstate’ and survival 

packages for multi-state modelling (Upshaw et al. 2016).  

The final paper is probably most similar in terms of outcomes to the analysis conducted 

throughout the thesis. In 2016, Gill et al. used multi-state modelling of a RCT to analyse the effect 

of structured exercise on transitions between states of major mobility disability (MMD). MMD was 

defined as the inability to walk 400m and was assessed every 6 months for up to 3 years. A 3 state 

model of no MMD, MMD and death was used, with missing or indeterminate data included as a 

censored state within the model. The model estimates the cumulative incidence for the first 3 

transitions, and obtained estimates for 1 and 2 years of follow-up. The median follow-up was 2.7 

years. The model produced hazard ratios for the comparison of the 2 considered treatment groups, 
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with adjustment some baseline characteristics. The paper accurately details the observed 

transitions between states and the risks associated based on subgroups. The paper clearly 

presented the results and assessed model fit with the addition of covariates using likelihood ratio 

tests. 

 

3.5.3 Discussion 

 

From the papers that have been identified conducted in RCTs, it seems clear that the 

methods detailed in the papers conducting LCGA are much better defined than the papers in which 

multi-state models are conducted. This may be because all the papers used the same software, 

specifically designed for conducting LCGA, and therefore may be following guidelines defined by 

software developers and other research papers. Most of the papers found use continuous follow-

up time rather than discrete periods as with the SO2S, but this could be mainly due to use in areas 

such as oncology where the focus is event based. We also see that the papers have many more 

follow-up points than the 3 and 4 time points used in the data within the thesis. Within the multi-

state models found, most fit a simple 3 state model with an intermediate state to death, however, 

there was one model that fitted 6 states to the data. LCGA models tended to only be fitted with 

between 2 and 5 clusters, but model fit was assessed and reported well within these papers, 

suggesting more model selection takes place with these models, more than multi-state models. The 

papers identified here form a basis on which to build, when planning to conduct the different types 

of analyses used throughout the thesis. They show that although the different areas in which the 

methods have been applied to RCTs are wildly different, it is not common for these methods to be 

used, and therefore the impact of using them is novel work and they should be promoted if 

investigations show they are suitable to be used to analyse RCT data from stroke clinical trials. 
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3.6   Conclusion 

 

This chapter identified the areas in which research has already been conducted by looking 

at potential methods that have previously been used with the mRS and other scales in stroke trials. 

Although many different methods have been applied in previous trials, there are very few found 

for which the mRS is an appropriate outcome. It appears that there is also very little research into 

the longitudinal analysis of the mRS, which is the main focus of this thesis, suggesting that the work 

conducted in this project will be novel and will be able to provide information on which is the best 

method to use. It can also be seen how few scales there are in which there is a category for death, 

suggesting that if the statistical techniques that are used in the thesis work well with the category 

for death included in the scale and the results are sensible, then it would be possible to apply the 

methods that have been identified here in randomised controlled trials that are not just stroke 

related. 
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4.      Analysis using regression models  

 

Previous research has been conducted into the best methods for analysing stroke data, but 

all this research has been conducted using a single primary end point (Bath et al. 2007, Sajobi et al. 

2015). Using an ordinal method was recommended from this research, but it shows that despite 

the recommendations of the OAST collaboration (Bath et al. 2007) , there has not been a dramatic 

shift in the types of analysis performed when analysing acute stroke trials.  

This chapter investigates potential ways that ordinal scales can be treated, looking at 

dichotomising the scale, keeping it as an ordinal scale, and even the potential of using the scale as 

a continuous outcome measure. Next, the different regression models that could be applied to the 

data are discussed and the form of data needed for each of the models. The chapter also considers 

whether to use the full scale with the score for death, or whether it should be removed or 

condensed in some form. 

Once all of this had been reviewed, regression models were applied to the data, including 

binary logistic regression and ordinal logistic regression models. There were some assumptions 

made about using these models, and the analysis goes on to consider how tenable the assumptions 

are, and what the conclusions would be if different assumptions had been made.  

 

4.1 Ordinal outcome scales 

 

Ordinal data are a form of categorical data whereby patients are classified into a specific 

category and these categories have a natural order; for example, a rating scale: “poor”, “good”, 

“excellent”. The scale can be ordinal in nature from the start, like the mRS, or it can be a summative 

score, which is a specific type of ordinal score. It is a measurement score where a series of questions 

are asked and rated, which can be combined to form a total score. This is then usually the ordinal 

score that is due to be analysed. Different methods are needed to analyse these two types of scale, 
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as a summative score made of ordinal items may have interval properties. This chapter will focus 

on methods for just an ordinal score, and will not consider methods for a summative score.  

Ordinal outcome scales pose a statistical challenge for those trying to model them. The 

nature of the ordinal scale means that although the data are in a ranked form, the relative degree 

of difference between points on the scale is not known. The idea of exploiting the ordinal nature of 

an ordered outcome scale is not a new concept in the statistical community. Nevertheless, this 

approach has not been applied to the analysis of clinical trials on a regular basis (Roozenbeek et al. 

2011). 

There are various approaches that can be applied to ordinal outcome data when analysing 

at a single time point. How the ordinal scale is treated will affect the different types of longitudinal 

methods that could be applied to the data. The different ways in which the scale can be treated are 

detailed below. Each different model type has different assumptions associated with it, which will 

need to be assessed as to whether or not the data meet these assumptions. Each method has its 

own advantages and disadvantages, which will be discussed. It is also important to develop a way 

in which fitted models can be compared as this will help to determine the most appropriate way to 

analyse longitudinal stroke trials in future.  

 

4.1.1 Dichotomisation of the scale 

 

The first option is to dichotomise the scale into two categories. This method is most 

commonly used in clinical trials, where the scale is converted into a binary measure, usually a 

favourable and an unfavourable outcome. The main advantage of using the ordinal score in a 

dichotomised form is that the methods used to analyse the data are considered to be simpler 

methods than regression models that make multiple comparisons between the data. They also 

provide effect estimates that are much easier to interpret because there are only two categories 

being compared. Using only two categories makes calculations like the number needed to treat 
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easier, as there are only 2 options, a bad outcome and a good outcome. Dichotomisation is an 

accepted approach for an ordinal scale; however, the simplicity of the scale is obtained at some 

cost (Altman & Royston 2006). 

One disadvantage of dichotomising an ordinal scale is that you are reducing the statistical 

power of being able to detect a relationship between the variable and the patient outcome as 

information is lost due to several categories being combined together. It is only possible to capture 

the transitions of patients across a single cut-off point – other changes, either side of this cut-off, 

are not captured.  

Secondly, there is usually not a defined cut-off for the ordinal scale. Unless extensive 

research has previously been conducted and the best dichotomisation defined, there are several 

ways in which a scale could be dichotomised, which could all lead to different results. This can lead 

to different trials in the same area producing very different results due to the different cut-off 

points applied to the data. One common method, known as the median split, takes the median 

value of the data as the cut-off point. This is more common when categorising continuous data. 

Historically, dichotomising the mRS is the most popular approach to the analysis of clinical trials at 

the primary end point (Bath et al. 2012).  

 

4.1.1.1      Example of potential dichotomisations. 

 

There are 7 points on the mRS and there are several different ways in which the scale can 

be sensibly dichotomised. Figure 4.1 shows the different ways that the mRS has been dichotomised 

in previous studies.  
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Figure 4.1: Potential dichotomisations of the mRS 

 

0 1 2 3 4 5 6 [1] 

         

0 1 2 3 4 5 6 [2] 

         

0 1 2 3 4 5 6 [3] 

         

0 1 2 3 4 5 6 [4] 

  

 

 

The first part of Figure 4.1, [1] shows the most common dichotomisation of the mRS. An 

example of a study using this dichotomisation is the NEST-3 trial (Levine & Hill 2014), where a binary 

mRS score is the primary endpoint at 90 days. On this scale, a favourable outcome, defined as 

success, is a mRS score between 0-2 and an unfavourable outcome, defined as a failure of the 

treatment, is a mRS score of 3-6. The second dichotomisation of the mRS, [2], has recently been 

used in the NBP study (Cui et al. 2013), amongst others. In this study, the primary endpoint was 

also the mRS score at 90 days; however, the favourable outcome was defined as a mRS score of 0-

1, with the unfavourable outcome the remaining 2-6 mRS scores.  

Another possible dichotomisation of the score is to place the cut-off at a mRS value of 3, 

[3]. This is a less favoured dichotomisation as there have been fewer trials that have used it, 

however, it was used by the Controlling hypertension and hypotension immediately post stroke 

 (CHHIPS) study in 2009 (Potter et al. 2009). Here, the researchers defined death or dependency as 

a score of mRS > 3. So the unfavourable outcome contained mRS scores from 4 to 6, and the 

favourable outcome contained mRS scores from 0 to 3.  

Finally, the mRS has been dichotomised into patients who are either dead or alive [4], as 

was used in a subsidiary analysis of a prospective cohort study and systematic review of Interleukin-

6 (Whiteley et al. 2009). Here they detailed that although a dichotomisation of 0-2 and 3-6 was used 



 

Chapter 4  66 
 

 

for the primary analysis, a dichotomisation of alive (mRS 0-5) and dead (mRS=6) was also used, 

turning the mRS into a binary outcome reflecting survival. 

The practice of dichotomising ordinal scales is not just common practice in stroke trials but 

also in many other clinical areas. It is now well recognised that dichotomising an ordinal (or 

continuous scale) and analysing the resulting binary scale means discarding patient information 

that can only be compensated for by substantially enhancing the patient numbers recruited in 

clinical trials. Therefore, it is of interest to use all possible patient information in order to reduce 

recruitment numbers and therefore costs for clinical trials in stroke research.  

 

4.1.2 Ordinal scale 

 

It is possible to keep the data in its raw form and treat it as an ordinal scale. This approach 

keeps all the categories separate with no collapsing of the categories and assumes that all the data 

follow a specific order. The categories are not assumed to be fairly evenly apart; so, there is room 

for there to be a slight variation in the perceived change when a patient transitions from one 

category to the next. This method has advantages over dichotomising the scale as there is more 

statistical power, as information is not being thrown away. Obviously, this method also rules out 

the need to define specific cut points for the data as well, meaning that the results can be more 

comparable across different trials. Of course, if the ordinal scale in question has several categories 

it is possible to condense the categories together, but not into just two categories like the 

dichotomisation. This type of categorisation will also lead to an ordinal scale, just with fewer 

categories than the original ordinal scale. Even in a condensed ordinal scale, there is likely to be 

greater power to detect changes compared to the dichotomised scale. 

The application of ordinal outcome analysis substantially increases the power of a clinical 

trial. Adopting and ordinal outcome analysis will allow the detection of smaller treatment effects, 
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as when the outcome is analysed in an ordinal way, all patients can contribute to the detection of 

a treatment effect (Roozenbeek et al. 2011). 

 

4.1.3 Sliding dichotomy analysis 

 

An extension of the dichotomisation at a single cut-off point is to fit a sliding dichotomy to 

the data. This method can also be referred to as a responder analysis, or a prognosis-adjusted 

analysis. The method works by applying different dichotomies to the data and defines a favourable 

outcome as a function of the baseline prognosis or severity. Each severity band defined at baseline 

will use a different dichotomisation of the scale. By splitting the data in this way, there is less 

information lost, which results in a slight increase in the statistical power and more changes are 

able to be captured, which would otherwise be undetected in a binary analysis. Although there are 

benefits over using a single dichotomy, there are some disadvantages of using the sliding 

dichotomy. There is a lack of efficiency in the method of the analysis, particularly when there are a 

larger number of categories on the ordinal scale (McHugh et al. 2010). The results produced can be 

difficult to interpret, and in some case may not vary a lot between different dichotomies (Saver 

2011), where results are produced by combining the estimates from each strata of the 

dichotomisation. It is also important that sliding dichotomy scale must be defined before the trials, 

with the calibration dependent on the type of patients likely to be recruited (Bath et al. 2012).  

 

4.1.4 Continuous approach 

 

It is possible to take an ordinal scale and treat it as if it was continuous. If the scale was to 

be treated as continuous then an assumption would be made that a patient moving one point on 

the scale would be a change of the same magnitude regardless of where that patient is on the scale 

(Knapp 1990). For example, a patient moving from 2 to 1 would have the same gain as a patient 

moving from 5 to 4, which may not be the case for an ordinal scale. It is possible to test whether 
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treating an ordinal scale as continuous results in a loss of information (Long & Freese 2006). It has 

previously been shown that using linear regression models on an ordinal outcome can lead to 

incorrect conclusions (Winship & Mare 1984). Considering the mRS a continuous scale was 

considered in 2015 by Sajobi et al. and although they found a continuous scale to be as powerful as 

an ordinal scale, caution must be undertaken taking an ordinal scale and treating in a continuous 

manner.  

 

4.2    Logistic regression models 

 

Logistic regression is a regression model where the outcome variable is categorical in 

nature. The regression model works by estimating the probabilities of the relationship between the 

categorical outcome variable and one or more predictor variables considered by the logistic 

function. The outcome variable in logistic regression is able to be binary, ordinal or multinomial. 

The main interest is in how using the different types of regression model can affect the treatment 

effect predicted from the model.  

 

4.2.1 Binary logistic regression 

 

Binary logistic regression is conducted when the outcome of interest has only two possible 

categories. The aim of logistic regression is to predict the likelihood that the outcome variable is 

equal to 1 (compared to 0) given certain values and combinations of the predictor variables.  

First, let us start with the probabilities πi that depend on a vector of observed covariates xi. 

It is possible to let πi be a linear function of the covariates, where β is a vector of regression 

coefficients.  

𝜋𝑖 =  𝑥𝑖𝛽 
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This model is known as the linear probability model and is often estimated from individual 

data using ordinary least squares. The main issue with this model is that the left-hand side is a 

probability and must range from 0 to 1, whereas the right-hand side is a linear combination and can 

take any real value. The solution to this problem is to transform the probability in order to remove 

the restrictions of the range of the left-hand side of the equation. First, this is done by transforming 

the probability to the odds, which is defined as the ratio of the probability to its complement, as 

there are not restrictions on the odds. 

 

𝑜𝑑𝑑𝑠𝑖 =
𝜋𝑖

1 − 𝜋𝑖
 

 

Once this has been done, a second stage of the transformation is to take natural logarithms, which 

removes the effect of the floor restrictions. This leaves us with the log-odds, sometimes known as 

logit. The logit is a one to one transform that maps probabilities from the range (0, 1) onto the real 

number line.  

log (𝑜𝑑𝑑𝑠𝑖 ) = log (
𝜋𝑖

1 − 𝜋𝑖
) = 𝑙𝑜𝑔𝑖𝑡 (𝜋𝑖) 

 

Now that the logit of the probability has been defined, we are in a position to define logistic 

regression, and the logit, rather than the probability, follows a linear model.  

 

ln (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛽0 + 𝛽1𝑋 

 

The model works by estimating the log-odds depending on the covariates included, which can then 

be transformed to give the odds ratio between the two categories of the outcome variable by taking 

the exponential. The link function of a model defines how the model is related to the response 
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variable, in this case the model uses a logit link function, which has been defined above as the log 

odds.  

 

4.2.2 Ordinal logistic regression 

 

The previously defined model for binary logistic regression can be extended to analyse the 

data when the outcome variable is ordinal in nature and not binary. In order to do this, a small 

change is needed to define the probabilities for the outcome variable differently. Instead of 

considering the probability of a single event, the model now considers the probability of that event 

and all the events that are ordered before it. This model also uses a logit link function to define the 

relationship of the predictor variable and the outcome. Ordinal models have been considered with 

other link functions, including the probit link function (Winship & Mare 1984). Both binary and 

ordinal regression models can use a probit link function rather than a logit link function.  

Using a probit link function assumes the errors follow a normal distribution and the effect 

that is calculated cannot be interpreted as easily as using the logit link function, with no odds ratio 

being estimated as there is when using the logit link function. It was decided that the probit link 

function would not be used unless there was a reason why the logit link function could not, as 

testing the distribution of the errors is not easily done, and there is nothing to concern us that a 

logistic distribution is not appropriate. In this situation there was no need to use the probit function, 

and so we focus on logistic regression models because the parameters estimated are conveniently 

interpreted as log-odds ratios. 

Now we can rewrite the odds that we are considering, where k is the event of interest for 

the outcome variable. 

 

𝑜𝑑𝑑𝑠𝑖 =  𝜃𝑖 =
𝑃(𝑌𝑖𝑗 ≤ 𝑘)

𝑃(𝑌𝑖𝑗 > 𝑘)
=

𝑃(𝑌𝑖𝑗 ≤ 𝑘)

1 − 𝑃(𝑌𝑖𝑗 ≤ 𝑘)
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Once again natural logarithms of the odds are taken in order to give the model for ordinal logistic 

regression. 

ln(𝜃𝑖) =  𝛼𝑗 + ∑ 𝑥𝑖𝑘𝛽𝑗𝑘

𝑝

𝑘=1

 

 

Each logit calculated has its own value for αj but the same coefficient for β. The αj terms are 

known as the threshold values, although they are of little interest. Because of this, there is an 

assumption that the effect of the predictor variable is the same for different logit functions. This is 

known as the proportional odds assumption and is why ordinal logistic regression is also known as 

the proportional odds model. The assumption needs to be checked as if it does not hold true 

another model will need to be fitted. The assumption can be checked by comparing the separate 

binary logistic modes underlying the overall model (Winship & Mare 1984). This can be done by 

conducting a Brant test (Brant 1990). Due to the proportional odds assumption, we find β 1k= β 

2k=…= β c-1k, where c is the total number of outcomes and so we can write the log odds as 

 

ln(𝜃𝑖) =  𝛼𝑗 + ∑ 𝑥𝑖𝑘𝛽𝑘

𝑝

𝑘=1

 

 

There are no limits to the types of predictor variable that can be included in the model; 

they may be continuous, categorical or ordinal themselves, although if the predictors were ordinal 

or categorical then they would need to be entered as a set of dummy variables. However, it is 

assumed that if there is more than one predictor variable, there is no multicollinearity, where two 

or more variables are highly correlated with each other.  
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4.2.3 Multinomial logistic regression 

 

If an ordinal regression model is fitted to the data, but the assumption of proportional odds 

is violated, then a multinomial model can be fitted to the data. This is an extension of the binary 

logistic regression model, when there are more than two categories. Although the scale used is 

ordinal there is no assumption is made about the relationship between each category of the scale, 

meaning that the ranking nature of the data is lost. The model is often used to model nominal 

response data where there are various categories with no set order.  

The simplest method of a multinomial model is to nominate one of the response categories 

to act as the baseline or reference category and then to calculate the log-odds for all the other 

categories in the scale relative to that baseline. The model used to fit a multinomial model is 

analogous to a binary logistic regression model, except that the probability distribution of the 

response in now multinomial rather than binomial and there are now multiple equations. A 

common choice for the baseline category is the final response category. 

Let there be c categories for the response variable. Then the model described above can be 

extended so that the odds for each score compared to baseline can be written as 

 

𝑜𝑑𝑑𝑠𝑖 =  𝜃𝑖 =
𝑃(𝑌𝑖 = 𝑦𝑗)

𝑃(𝑌𝑖 = 𝑦𝑐)
          𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑐 − 1 

 

Once again natural logarithms are taken, to work in terms of the log odds, which are written as 

 

ln(𝜃𝑖) =  𝛼𝑗 + ∑ 𝑥𝑖𝑘𝛽𝑗𝑘

𝑝

𝑘=1
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In order for the parameters to be identified, it is important to place restraints on certain parameters 

as each value of β will have a fixed constant added to it – giving the same predicted probabilities. 

So the values αc=0 and β ck = 0 are fixed. 

 

4.2.4 Partial proportional odds model 

 

The partial proportional odds model is very similar to the proportional odds model (ordinal 

logistic regression); however, the assumption of proportional odds is relaxed for some of the 

variables. This is done when there is a violation of the proportional odds assumption for some but 

not all of the predictor variables considered in the model. There are two ways to model these 

variables that do not achieve the proportional odds assumption. One is to fit an unconstrained 

model whereby there are no constraints placed on how the odds ratios vary over different 

thresholds. The other version is a constrained model where there are constraints imposed for the 

variables for which the assumption fails on the linear (proportional) relationship for the odds ratios. 

These constraints are the same for each predictor variable and are derived using a priori 

assumptions about how the data should behave.  

 

4.2.4.1 Unconstrained proportional odds model 

 

An unconstrained proportional odds model takes the following form 

 

ln(𝜃𝑖) =  𝛼𝑗 + ∑ 𝑥𝑖𝑘𝛽𝑗𝑘 + ∑ 𝑇𝑖𝑘𝛾𝑗𝑘            𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑐 − 1

𝑝

𝑘=1

𝑝

𝑘=1

 

 

Here the xik are the values for an individual in each group i with a full set of p explanatory variables, 

and βik are the regression coefficients associated with the p variables in xk. Tik are the q covariates, 

such that q < p and contains the values of an individual in group i on the subset of p explanatory 
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variables for which the proportional odds assumption is not assumed, or is yet to be tested. The 

values for γik are the regression coefficients associated with the q variables in Tik and so Tikγik is an 

increment associated only with the cumulative logit with γ1k =0. If all the values of γik = 0 then the 

model reduces to the proportional odds model.  

 

4.2.4.2      Constrained proportional odds model 

 

Restrictions can be placed on the unconstrained proportional odds model in order to give 

the following constrained proportional odds model.  

 

ln(𝜃𝑖) =  𝛼𝑗 + ∑ 𝑥𝑖𝑘𝛽𝑗𝑘 + ∑ 𝑇𝑖𝑘𝛾𝑘𝛤𝑗           𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑐 − 1

𝑝

𝑘=1

𝑝

𝑘=1

 

 

Here we see that Γj are fixed scalars that are pre-specified with Γ1=0. The new parameters γk are 

now not dependent on j. However, they are multiplied by the fixed constant scalar Γj in the 

calculation of the jth cumulative logit.  

 

4.3     Other models for analysing an ordinal scale 

 

The regression models that have been detailed in the previous section are not the only 

methods that are available to be used to analyse ordinal data. There are models that can be applied 

if the data were to be treated as continuous; however, this method is not really appropriate in the 

case of the mRS where there are distinct categories and the change between categories does not 

appear to be linear. We also wanted the model to be interpretable from an individual perspective; 

therefore it was considered whether to use generalised estimating equations (GEEs). However, the 

decision was taken not to use these because they take a population averaged approach, which is 

not what we wished to consider. Using GEEs would allow the benefit of asymptotically consistent 
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variance-covariance estimates when data are nonexchangeable, even when the precise nature of 

that dependence is unknown, and would be a valid method if we had been interested in estimating 

effects at a population level. 

As well as these, there was consideration as to whether to use robust/cluster standard 

errors; this is a means or empirically correcting the variance-covariance estimates in the presence 

of heteroscedasticity, clustering, and other forms of conditional dependence. However, it was 

decided that using the linear mixed models in the process, and by using random effects in order the 

take into account the correlation, was a better approach than using an adjustment on the standard 

errors.  

There are, however, several other models that are available that can be fitted to ordinal 

data, which uses the data in its ordinal form. These are the continuation ratio model, the stereotype 

logistic regression models and the adjacent category model, which will be discussed below. 

 

4.3.1 Continuation ratio model 

 

The continuation ratio model compares the probability of being in a particular category of 

the ordinal scale with the probability of being in a higher category, given that the individual has 

already reached the category being compared. This model is similar to the proportional odds model 

as it assumes that the effect of treatment would be the same at each level of the outcome variable. 

However, it differs from the proportional odds model as the continuation ratio model calculates 

the probability of being in a category or higher given that the category has been obtained, which 

means that lower categories are discarded, whereas the proportional odds model calculates the 

probability of being in a category or higher compared to any category lower. This means that the 

model does not allow individuals to reverse the progression of the ordinal outcome being 

considered (Armstrong & Sloan 1989).  
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4.3.2 Stereotype logistic regression 

 

The stereotype logistic regression model was developed in 1984 by Anderson and is an 

extension of the multinomial regression model (Anderson 1984). The model is nested within a 

multinomial regression model as it has fewer parameters included and can be described as a non-

linear form of the constrained multinomial model (Lunt 2001). The stereotype regression model, 

like the multinomial model, compares each category in the scale to a baseline category. However, 

it differs from a multinomial model because although the model does not automatically assume an 

order in the outcome, it can allow for an order, unlike multinomial regression. This means that the 

odds ratios that the model produces may be larger for extreme categories and the model would 

not give a single estimate for the difference in the treatment effect. This means that the 

interpretation of the model can be difficult, and although the model is more flexible than previously 

discussed models, it may be that the model is complicated to fit and interpret.  

 

4.3.3 Adjacent category model 

 

The adjacent categories model compares the log odds of each possible pair of adjacent 

categories simultaneously (O'Connell 2006). As with the proportional odds model, the predictor 

variable effects are assumed to be the same over each level of the outcome. The model fits binary 

logistic regression for each of the adjacent category pairs in the model. Each of these models is 

fitted simultaneously and the regression coefficients of each model are equal due to the 

assumptions made. Although the model uses the scale in an ordinal form, it uses less data than 

previously suggested models as it only considers adjacent pairs, and it looks at the associations with 

moving into the next highest category for adjacent pairs (O'Connell 2006).  
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4.4      Dealing with the inclusion of death in the mRS 

 

In a follow-up study, once patients have died they are usually dropped out of the study with 

the date of death recorded along with other information such as the cause of death. They will then 

make no further contribution to the study follow-up. The mRS is unusual because it has a category 

for death in it. This means that individuals who have died are not lost during the follow-up and will 

contribute a score throughout the follow-up that is attempting to be modelled. The mRS is an 

ordinal score with higher categories indicating more severe disability, meaning that the score of 

death being the highest in the scale may give it more influence.  

Research has been conducted into the perceptions of individuals of the outcomes on the 

mRS. A study conducted in both stroke patients and non-stroke patients found that 69% of stroke 

patients and 82% of non-stroke patients would prefer death to severe disability (Hanger et al. 2000). 

This suggests that death may be deemed preferable to severe disability with severe language, 

cognitive and motor defects. By including a score of 6 for death in the mRS, it can be argued that 

the ordinality of the scale is removed and therefore to include death as a higher category on the 

scale may lead to misleading results as the ordinal nature of the scale could be questioned. 

As well as this, the mRS may not be the only scale in which a patient is measured during 

follow-up. Depending on what is being assessed, a patient who is dead would contribute no score 

to the BI. If the two scales were to be analysed and compared, the patients included in the analysis 

would be different as patients who had died would be able to be analysed on the mRS scale but not 

on the BI.  

Previous research investigated the effect of including death in an ordinal scale, mainly 

looking at health status over time, and there have been some suggestions as to how death can be 

treated. Research conducted by Diehr et al proposed several approaches for incorporating death 

when considering health-related variables in longitudinal studies (Diehr et al. 1995). These included 

adding a category for death to the variable of interest as an extreme value on the scale or 
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dichotomising the scale into healthy and not healthy and including those individuals who have died 

as not healthy. Finally, they proposed a method where they transformed the scale into the 

probability of being healthy in the future (Diehr et al. 2005). They concluded that the scale needed 

to make sense in terms of having an extreme value included for death, but that analysis of a scale 

including death in a longitudinal setting was reasonable. They found that strategies that gave death 

less influence tended to show more favourable changes in health over time (Diehr et al. 1995).  

There are several different things we can do with the mRS scale to accommodate the 

category of death. Firstly, the value of death can be removed. There are two ways to do this. Firstly, 

death can be treated as loss to follow-up and the values of 6 in the mRS score replaced with a 

missing value. This means that there will be different sample sizes at each time point in the follow-

up; this is known as an available case analysis. The other way to remove death is to completely 

remove anyone who died from the study and therefore all values at each time point are omitted 

for an individual who has died; this is known as complete case analysis.  

Secondly, we can recode the data to combine the categories of 5 and 6 together in order 

to eliminate the concern about whether the ordinality of the scale holds. This option has been done 

in several studies previously (Lansberg et al. 2009, Whiteley et al. 2009) . Finally, we can leave the 

mRS scale exactly as it has been designed and use it as a seven point ordinal scale that ranges from 

0 to 6 with the category for death assigned an extreme value for the variable.  

It is possible to use all these methods with the mRS scale in all the different types of 

regression models that were previously detailed in section 4.2. It was decided to keep as much 

information from the scale as possible and analyse the mRS scale as a scale that has 6 included for 

an individual who has died.  
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4.5      Appropriate choice of ordinal model  

 

There are several issues to consider when choosing what model to apply to the ordinal data 

that we have. Firstly, it is important to decide if an ordinal model is necessary and whether the 

outcome variable being ordinal is important with respect to the predictor variable(s) being 

considered. It has been suggested previously that in order to model the data as ordinal, the 

outcome must be ordinal with respect to the predictor variables (Anderson 1984).  

Secondly, it needs to be considered whether the model that is being applied is suitable for 

the ordinal scale that is being considered, namely a non-linear probability model (Long & Freese 

2006). Finally, for the modelling that is being conducted here, it must be decided whether the model 

is appropriate to be used in terms of a repeated measures analysis rather than analysis at just a 

single time point.  

A summary of the advantages and disadvantages of using each of the models that have 

previously been described in the chapter are given in Table 4.1. When considering the ordinal mRS 

scale there are several models that are not appropriate, or are less appropriate than other models. 

The aim of this modelling is to find the effect of treatment when using single and repeated measures 

models; therefore the model should produce a single estimate that can be compared between 

models fitted.  

Both multinomial and stereotype logistic regression models compare each category on the 

scale to a single reference category and therefore produce several treatment effect estimates for 

each model fitted. This is not ideal for the comparison with models that produce a single estimate 

and therefore these methods will not be considered. The continuation-ratio model requires the 

outcome variable to be progressive and therefore will not allow an individual go in the opposite 

direction to the progression of the scale. It can be seen that individuals move both up and down 

the mRS scale between two given time points and therefore this method is not appropriate for the 

analysis.  
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For the adjacent categories model, the distances between all the adjacent categories are 

assumed to be equal. This may not be the case for the mRS, and is the reason why the scale cannot 

be considered continuous; therefore this method may not be appropriate for longitudinal modelling 

of the mRS scale. As well as this the model is concerned with individuals moving to the category 

one higher than the current category, which suggests that it does not model the scale moving both 

ways, just like the continuation-ratio model.  

This leaves us with a binary logistic regression model, an ordinal logistic regression model 

(proportional odds model) and the partial proportional odds model. As the partial proportional 

odds model is an extension of the proportional odds model, it will only be required if the 

assumption for proportional odds fails, leaving us with two models to be considered that are both 

easy to interpret for clinicians and easy to fit within statistical packages.  
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Table 4.1: Advantages and disadvantages of potential statistical methods 

Potential methods Advantages Disadvantages 

Binary logistic regression Easy to fit 

Simple to interpret 

Single effect estimate 

Ignores potential relationships – 

due to single cut-off in outcome 

Reduced statistical power 

Ordinal logistic regression 

(Proportional odds 

model) 

Most basic ordinal model 

Easy to fit 

Single effect estimate 

Strong assumptions 

Slightly more complex to 

interpret 

Multinomial logistic 

regression 

Few assumptions needed 

Easy to fit 

Does not account for ordering 

Estimates many parameters 

Compares to reference category 

– no single effect 

Partial proportional odds  More flexible the proportional 

odds model 

Harder to fit than the 

proportional odds model – not 

available in all packages 

Can produce negative 

probabilities 

Continuation-ratio model Outcome variable is 

progressive 

Harder to fit than regression 

models – not available in all 

packages 

Strong assumptions 

Does not use all data 

Adjacent categories 

model 

Good if the outcome variable 

increases by 1 category 

Harder to fit then regression 

models – not available in all 

packages 

Strong assumptions 

Does not use all data 

Stereotype logistic 

regression 

Does not automatically assume 

order, but can allow an order 

unlike multinomial regression 

Not able to fit when the 

outcome has questionable 

ordinality 

Does not use all the data 

 

 

4.6      Application to data  

 

It was decided to fit the different regression models to the SO2S data and look at the effect 

of the model on the 3-month treatment effect. First, each model was fitted at the single 3-month 

time point and so only took into consideration the data at that one time point. Secondly, a repeated 

measures model was fitted to the data, which includes all the information at each of the follow-up 

points. The 3-month treatment effect can then be deduced from the model using a combination of 

the logits that are calculated. The 3-month time point was selected as the point of comparison over 
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the other time points. This is because it is the most commonly recorded endpoint in clinical stroke 

trials. Therefore, if the analysis showed that using further time points in a repeated measures model 

was preferable to just the single time point, the future implications of analysing this time point 

would be greatest in trials. Trials would need to wait for all data to be collected over the follow-up 

before the analysis can take place. This analysis was only conducted in the SO2S data, as previous 

publications (Li et al. 2010) have looked at analysing the NINDS data set already, and the SO2S data 

are the main trial data obtained for the project. 

 

4.6.1 Binary logistic regression 

 

This first regression model fitted to the data was at a single time point. This model ignores 

where an individual was at a previous time point or where they will move to in the future. By doing 

this we remove the longitudinal aspect of the analysis and this is the most common type of analysis 

conducted in stroke trials. The equation for this model is the simple model calculating the log odds 

given in Equation 4.1 below 

 

𝐿𝑛 [
𝑃

1−𝑃
] = 𝛽𝑜 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖  [4.1] 

 

Where β1 represents the difference in the 2 treatment groups at whatever time point the model is 

estimating and β0 represents the log odds estimates for the standard care group. The model is 

simple to fit as there is only one predictor considered and the results, when exponentiated, give an 

odds ratio for the comparison of being dependent to being independent between the oxygen 

treatment group and the standard care group.  

The other model fitted to the data was a repeated measures logistic regression model; this 

allowed all follow-up points in the data to be considered for the model. The model is able to 

estimate the treatment effect at any point during the 12-month follow-up, by using an appropriate 
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contrast. The model is also able to take into account the correlation between the mRS scores as 

they are being estimated at several time points included in the model. The model fitted is described 

in Equation 4.2, with the same covariate of treatment that was fitted in the first model, but also 

with the inclusion of time. As there were only 3 follow-up time points and they were spaced 

irregularly, time was included in the model as a categorical variable by using dummy variables for 

each time point and not as a continuous time variable. Due to the inclusion of time, an interaction 

term between treatment and time was also included in the model. This allows the two groups to 

vary differently over time, as it would be wrong to assume that the groups vary the same over time. 

The model was fitted with a random intercept to allow the individuals to have subject specific 

effects over time. The following logistic regression model was fitted to the data, in order to calculate 

the log odds (Equation 4.2): 

 

𝐿𝑛 [
𝑃

1−𝑃
] = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛽2𝑇𝑖𝑚𝑒1𝑗 + 𝛽3𝑇𝑖𝑚𝑒2𝑗 + 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑇𝑖𝑚𝑒1𝑗) +

                        𝛽5(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑇𝑖𝑚𝑒2𝑗)  + 𝑣𝑖                                      [4.2] 

 

Where 𝛽0 represents the log odds estimates for the standard care group at 3 months and 

Time1 is the contrast from 6 months to 3 months and Time2 contrasts 12 months to 3 months. 

Treatment was coded 0 for the standard care group and 1 for the treatment group. Due to the 

coding of the model, we find that 𝛽1 represents the difference in the 2 groups at 3 months and 𝛽2 , 

𝛽3 represent the difference of the effects at 6 and 12 months compared to 3 months for the 

standard care group. Finally, 𝛽4 and 𝛽5 represent the difference in the time effects between groups, 

which is the extra difference seen in the treatment group compared the standard group at the 

follow-up points and 𝑣𝑖  is included due to the random effects included in the model. The odds ratio 

is calculated from the repeated measures model by taking the exponential of the estimated 

parameter and expresses the odds of being dependent compared to independent between the 

treatment group and the standard care group.  
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4.6.2 Ordinal logistic regression  

 

It has already been explained why dichotomising an ordinal scale is not the best way to 

perform an analysis due to the power and information that is lost. The next analysis fits the same 

two types of model, the single time point regression model and the repeated measures model; 

however, the data that are being modelled is now the full ordinal mRS scale rather than the 

dichotomised version. This model extension means that the log odds of being in a category or lower 

are calculated rather than the odds of being dependent or independent.  

Equation 4.3 shows the model fitted to the single time point using the ordinal scale was as 

follows, 

 

𝐿𝑛 [
𝑃(𝑌𝑖𝑗≤𝑘)

1−𝑃(𝑌𝑖𝑗≤𝑘)
] = 𝛼𝑜𝑘 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖   k=1,…, k-1 [4.3] 

 

Where 𝛼𝑜𝑘 are the k-1 intercept terms to model the marginal frequencies of the k ordered 

categories, which represent the log estimate for the standard care group. Equation 4.4 extends 

the model in order to fit the repeated measures data: 

 

𝐿𝑛 [
𝑃(𝑌𝑖𝑗≤𝑘)

1−𝑃(𝑌𝑖𝑗≤𝑘)
] = 𝛼𝑜𝑘 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛽2𝑇𝑖𝑚𝑒1𝑗 + 𝛽3𝑇𝑖𝑚𝑒2𝑗 +

                                𝛽4(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑇𝑖𝑚𝑒1𝑗) +  𝛽5(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑇𝑖𝑚𝑒2𝑗)  + 𝑣𝑖  k=1,…,k-1 [4.4] 

 

As before, 𝛼𝑜𝑘  are the k-1 intercept terms to model the marginal frequencies of the k 

ordered categories, which in the model represent the log odds estimates for the standard care 

group at 3 months. The covariate Time1 contrasts 6 months to 3 months and Time2 contrasts 12 

months to 3 months and Treatment is coded 0 for the standard care group and 1 for the treatment 

group. Due to the coding of the model, we find that 𝛽1 represents the difference in the 2 groups at 



 

Chapter 4  85 
 

 
3 months and 𝛽2, 𝛽 3 represent the time effects for the standard care group at 6 and 12 moths 

respectively compared to the 3 month effect. Finally, 𝛽4 and 𝛽5 represent the difference in the time 

effects between groups, which as before is the additional difference in log odds for the treatment 

group compared to the standard care group and 𝑣𝑖  is included due to the random effects included 

in the model. Now, instead of the model calculating the odds of being dependent on the 

dichotomised mRS compared to independent, this model looks at the odds of being in a category 

or higher category combined on the mRS compared to the odds of being in any lower category 

combined. 

 

4.6.3 Partial proportional odds model 

 

It is not possible to conduct a Brant test on the repeated measures model in order to assess 

the assumption of proportional odds. It is possible to extend to ordinal regression model with 

proportional odds that has been fitted into a partial proportional odds model as detailed in section 

4.2.4. The previous model included homogenous covariates of treatment, time and the treatment 

time interaction. This meant they were not allowed to vary for each potential cut-off point but were 

forced to be the same, for proportional odds. The first partial proportional odds model fitted 

heterogeneous treatment and time but still included a homogenous treatment by time interaction. 

By including heterogeneous covariates, the proportional odds assumption was relaxed and these 

covariates were allowed to vary for each cut off point. Equation 4.5 shows the partial 

heterogeneous repeated measures model fitted was (Hedeker & Mermelstein 2000): 

 

𝐿𝑜𝑔 [
𝑃(𝑌𝑖𝑗≤𝑘)

1−𝑃(𝑌𝑖𝑗≤𝑘)
] = 𝛼𝑜𝑘 + 𝛼1𝑘𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛼2𝑘𝑇𝑖𝑚𝑒1𝑗 + 𝛼3𝑘𝑇𝑖𝑚𝑒2𝑗 +

                                   𝛽4(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑇𝑖𝑚𝑒1𝑗) + 𝛽5(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑇𝑖𝑚𝑒2𝑗) + 𝑣𝑖   [4.5] 
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Where the regression covariates fitted for time and treatment are now represented by 

alpha rather than 𝛽, showing that they are estimated, and like the 𝛼𝑜𝑘 terms where there are the 

K–1 terms to model the marginal frequencies. The second partial proportional odds model fitted 

heterogeneous covariates, relaxing the assumption of proportional odds for all the covariates 

included in the model, Equation 4.6. The full heterogeneous repeated measures model fitted was 

(Hedeker &Mermelstein 2000): 

 

𝐿𝑜𝑔 [
𝑃(𝑌𝑖𝑗≤𝑘)

1−𝑃(𝑌𝑖𝑗≤𝑘)
] = 𝛼𝑜𝑘 + 𝛼1𝑘𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛼2𝑘𝑇𝑖𝑚𝑒1𝑗 + 𝛼3𝑘𝑇𝑖𝑚𝑒2𝑗 +

                                 𝛽4𝑘(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑇𝑖𝑚𝑒1𝑗) + 𝛽5𝑘(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑇𝑖𝑚𝑒2𝑗) + 𝑣𝑖   [4.6] 

 

4.7      Results 

 

4.7.1  Binary logistic regression 

 

Firstly, before the analysis could be undertaken, the mRS was dichotomised into 2 

categories: those who were independent and those who were dependent, Table 4.2. Patients who 

had a favourable outcome were classed as independent received a mRS of 0-2 as these people were 

able to perform activities and live the life that they were previously able to do before their stroke. 

If patients received a mRS of 3-6, they were classed as dependent, the unfavourable outcome, as 

they were no longer able to live the life they could before the stroke and required assistance, or 

they had died. After much discussion, this was decided to be the optimal cut-off that made clinical 

sense and for which there was a definite distinction between the two groups: those who could still 

do activities that they could before their stroke and those who required assistance to live the life 

they had before the stroke. The details of the number of patients who are in each of the 

dichotomised scores are given below for both the treatment group and the standard care group. 

The trial had randomised patients on a ratio of 1:1:1 to receive either constant oxygen, nightly 
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oxygen or no oxygen (control); the two types of treatment were combined meaning that there was 

a ratio of 2:1 for the numbers of patients in the treatment and control groups. 

 
 
 Table 4.2: Number of individuals dichotomised into each outcome at each of the follow-up points 

Follow-up 

(months) 

Standard care Treatment 

Favourable / 

independent 

Unfavourable/ 

dependent 

Total Favourable / 

independent 

Unfavourable/ 

dependent 

Total 

3 1,317 (52%) 1,206 (48%) 2,523 2,661 (53%) 2,385 (47%) 5,046 

6 1,305 (52%) 1,174 (48%) 2,479 2,618 (53%) 2,333 (47%) 4,951 

12 1,178 (49%) 1,191 (51%) 2,369 2,430 (52%) 2,267 (48%) 4,697 

 

 

Looking at both the treatment and standard care group we see that the numbers of 

individuals in each of the categories of the dichotomised outcome are quite evenly split. There 

appears to be more of a difference in the treatment group, but there are almost twice as many 

individuals in this group compared to the standard care group. The observed odds ratios can be 

calculated for both the oxygen treatment group and the standard care group over the three follow-

up points. We can also calculate the logits for each of the time points. The observed odds ratios are 

given in Table 4.3 below, with the logits associated with the odds ratios given in brackets. The 

logistic regression model was fitted to the data in order to examine the effect of treatment more 

formally. 

 

Table 4.3: Odds and logits of being dependent compared to independent calculated for each follow-
up point 

Follow-up Standard care Treatment 

3 1,206/1,317 = 0.92 (-0.080) 2,385/2,661 = 0.90 (-0.100) 

6 1,174/1,305 = 0.90 (-0.100) 2,333/2,618 = 0.89 (-0.110) 

12 1,191/1,178 = 1.01 (0.009) 2,267/2,430 = 0.93 (-0.070) 

 

 

The regression model at the single time point estimates the log odds of the model, which 

is given in the following table, Table 4.4, along with the standard error and confidence interval.  
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Table 4.4: Binary logistic regression models fitted to data at 3 months 

 Estimate Standard error 95% Confidence interval 

Treatment -0.021 0.049 -0.271, 0.033 

Intercept -0.088 0.040  

 

The model shows that at 3 months those in the oxygen treatment group have a reduction 

in the log odds of being dependent compared to the standard care group of 0.02. This can be 

converted into an odds ratio by taking the exponential of the parameter estimate for the treatment 

effect of the odds of being dependent, which for just the mRS scores recorded at 3 months is 

calculated to be 0.98, suggesting that there is a 2% decrease in the odds of being dependent for 

those individuals on the oxygen treatment. The repeated measures model is more complex than 

the model fitted at the single time point; it now considers the effect of time on the outcome as well 

as the treatment. The following table, Table 4.5, presents the coefficients for the log odds of the 

model, along with the standard errors. 

 

Table 4.5: Repeated measures binary logistic regression model results 

 Homogeneous effects 

 Estimate Standard error 95% Confidence interval 

Intercept -0.173 0.129 -0.427, 0.080 

Treatment -0.100 0.143 -0.410, 0.209 

6 month -0.109 0.101 -0.308, 0.089 

12 month 0.261 0.103 0.059, 0.463 

Treatment x 6 month 0.020 0.124 -0.222, 0.263 

Treatment x 12 months -0.212 0.126 -0.458, 0.034 

Subject SD 4.787 0.115 4.567, 5.019 

Log-likelihood -11,145.6   

 

 

The regression model fitted to the data calculates the log odds of being dependent 

compared to independent. We see that the treatment group has a reduction of log odds of 0.100 

compared to the standard care group at 3 months. There is also a reduction in the log odds of being 

dependent compared to independent in the standard care group at 6 months (-0.109) but an 

increase at 12 months (0.261) compared to 3 months. For those in the treatment group, the change 
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in log odds is 0.020 for 6 months compared to 3 months and an increase of -0.212 for 12 months 

compared to 3 months. Because of how the repeated measures model is defined, the treatment 

effect at 3 months is easily found by the model. The odds ratio of being dependent for the treatment 

group compared to the standard care group is calculated to be 0.90. This suggests that there is a 

10% reduction in the odds of being independent for those individuals who received oxygen 

treatment. The subject standard deviation given in Table 4.5, details the standard deviation of the 

random effect term in the model, which looks at the heterogeneity. The value for this model 

suggests that there is heterogeneity between the individuals included, as if there was no 

heterogeneity then the standard deviation would be close to 0. This value is quite large and it 

suggests that there is substantial variability in the propensity to experience a good outcome. 

However, this is to be expected as there is only a treatment covariate in the model. The log-

likelihood is also presented; it is commonly used to compare models. However, as it is a function of 

the sample size, in order to compare models there needs to be the same number of individuals 

included in each of the models.  

Table 4.6 below compares the odds ratio and log odds of being dependent for the 

treatment group compared to the standard care group from the two different types of model fitted 

to the data. The standard errors and 95% confidence intervals are also presented.  

 

Table 4.6: Comparison of model results for all binary regression models fitted 

Treatment vs standard 

care 

Log odds 95% CI Standard 

error 

Odds ratio 95% CI 

Single time       

 3 months -0.021 -0.271, 0.033 0.048 0.979 0.891, 1.069 

Repeated measures      

3 months -0.100 -0.410, 0.209 0.143 0.904 0.660, 1.199 
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It can be seen that there is a difference of 0.079 between the log odds of an individual being 

dependent at 3 months post-stroke (-0.021 – (-0.10)), with both models agreeing that the oxygen 

treatment group shows a reduction in the log odds of being dependent compared to independent, 

suggesting that both models show that the oxygen treatment may be beneficial. Although it can be 

seen from the confidence intervals calculated that neither reduction in the log odds is statistically 

significant. We see that by taking the exponential of the log odds using a single time point the odds 

ratio is calculated to be 0.98 (95% CI 0.89, 1.07) and using a repeated measures model the odds 

ratio is calculated to be 0.90 (95% CI 0.66, 1.2). The standard error calculated from the repeated 

measures model is much larger due to the inclusion of random effects in the model in order to 

account for the correlation between the repeated measures. We see that the odds ratio suggests 

that there is a larger effect of treatment for the repeated measures effect than the effect seen at 3 

months, as the odds ratio is further from the null than the crude odds ratios calculated in Table 4.3. 

There could be many reasons for this; however, the most probable is that there are missing data in 

the repeated measures models, which could affect the estimation as there will be different 

numbers included in both the model and the observations at each time point.  

Also, the inclusion of a random intercept represents the combined effect of omitted 

subject-specific covariates. By including a random intercept we assume that there in a random 

heterogeneity in a subjects underlying risk of a favourable outcome that persists throughout. These 

differences in the odds ratios could also be due to a different interpretation of the parameters in 

the two models, as the random effects model describes the effect of treatment conditional on the 

specific subject. 

 

4.7.2 Ordinal logistic regression  

 

Table 4.7 below shows the distribution of the mRS scores at each time point for both the 

standard care and treatment groups using the whole mRS scale with no dichotomisation. 



 

Chapter 4  91 
 

 
Table 4.7: Distribution of individuals on each mRS score at each follow-up point stratified by 
treatment 

Follow-up 

(months) 

Standard care 

 0 1 2 3 4 5 6 Total 

3 292 

(12%) 

710 

(28%) 

315 

(13%) 

422 

(17%) 

420 

(17%) 

168 

(7%) 

196 

(8%) 

2,523 

6 315 

(13%) 

667 

(27%) 

323 

(13%) 

402 

(16%) 

374 

(15%) 

125 

(5%) 

273 

(11%) 

2,479 

12 303 

(13%) 

608 

(26%) 

267 

(11%) 

373 

(16%) 

358 

(15%) 

111 

(5%) 

349 

(15%) 

2,369 

 Treatment 

 0 1 2 3 4 5 6 Total 

3 649 

(13%) 

1,361 

(27%) 

651 

(13%) 

875 

(17%) 

769 

(15%) 

304 

(6%) 

437 

(9%) 

5,046 

6 705 

(14%) 

1,234 

(25%) 

679 

(14%) 

819 

(17%) 

713 

(14%) 

238 

(5%) 

563 

(11%) 

4,951 

12 661 

(14%) 

1,179 

(25%) 

590 

(13%) 

688 

(15%) 

681 

(15%) 

201 

(4%) 

697 

(15%) 

4,697 

 

 

It can be seen that there are more variations in the scores that people receive at 3 months, 

6 months and 12 months than in those of the dichotomised scale. This shows how the dichotomised 

scale loses information when the categories are condensed, as these differences would not be able 

to be compared. As with the binary logistic regression, it was possible to fit the ordinal regression 

models individually at each of the follow-up points. Table 4.8, shows the log odds for the treatment 

effect at 3 months.  

 

Table 4.8: Model results for ordinal logistic regression at 3 months 

 Estimate Standard error 95% CI 

Treatment -0.028 0.041 -0.111, 0.062 

 

 

It can be seen that those individuals in the oxygen treatment group have a 0.03 reduction 

in the log odds of being in a higher mRS category than those individuals in the standard care group. 

The estimate of the treatment effect can be used to calculate an odds ratio for the odds of being in 
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a higher category on the mRS, which for the model fitted at the single time point is 0.97. So at any 

category on the scale an individual in the oxygen treatment group has a 3% reduction in the odds 

of being that category or higher on the mRS, to being in a lower category compared to the standard 

care group. A higher mRS category indicates higher disability and so this suggests that those in the 

treatment group are less likely to have a higher disability than those in the standard care group.  

As mentioned before, the ordinal regression model works by assuming that there is one 

common odds ratio for all cut-off points on the scale. This is a substantial assumption to make and 

one that can be tested using a Brant test. The 3-month model produces a p-value of 0.162 for the 

Brant test. This suggests that the proportional odds assumption has not been violated and that the 

model fitted satisfies the underlying assumptions.  

Below in Table 4.9, the coefficients for the log odds for the repeated measures model are 

presented along with the standard errors and 95% confidence interval. The ordinal logistic 

regression model has an assumption that there are proportional odds across each categorisation of 

the mRS; the validity of this assumption cannot be found using a Brant test for the repeated 

measures data.  

 

Table 4.9: Model results for repeated measures ordinal logistic regression 

 Estimate Standard error 95% confidence interval 

Treatment - 0.073 0.137 -0.340, 0.201 

6 month - 0.048 0.059 -0.155, 0.067 

12 month 0.238 0.061 0.121, 0.36 

Treatment x 6 month - 0.018 0.072 -0.161, 0.123 

Treatment x 12 months - 0.126 0.074 -0.265, 0.020 

Subject SD 5.112 0.814 4.961, 5.274 

Log-likelihood - 31,911.9   

 

 

The regression model fitted to the data calculates the log odds of being in a higher mRS 

category compared to a lower one. We see that the treatment group has a reduction of log odds of 

0.07 compared to the standard care group at 3 months. In the standard care group, there is also a 
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reduction in the log odds of being dependent compared to independent at 6 months (-0.048) but 

an increase at 12 months (0.238) compared to 3 months. In the treatment group the difference in 

the log odds at 6 months compared to 3 months is -0.018 and an increase of 0.126 in the log odds 

at 12 months compared to 3 months. Once again the way that the repeated measures model is 

defined means the treatment effect at 3 months is easily found by the model. The estimate of the 

treatment effect can be used to calculate an odds ratio for the odds of being in a higher category 

on the mRS, which for the model fitted at the single time point is 0.93 (95% CI 0.71, 1.21). Here the 

subject standard deviation suggests there is more heterogeneity in the model, when the outcome 

is included in an ordinal manner, but once again there is only the treatment covariate in the model 

to explain the difference seen between individuals. The log-likelihood is much larger in the ordinal 

model, which is expected with a more complex model to be fitted.  

Table 4.10 summarises the odds ratio and log odds of being in a higher mRS category for 

the treatment group compared to the standard care group from the two different types of model 

fitted to the data. The standard errors and 95% confidence intervals are also presented. 

 

Table 4.10: Comparisons on ordinal regression model results 

Treatment vs Standard 

care 

Log odds 95% CI Standard 

error 

Odds ratio 95% CI 

Single time       

3 months -0.028 -0.111, 0.062 0.041 0.972 0.889, 1.050 

Repeated measures      

3 months - 0.073 -0.340, 0.201 0.137 0.929 0.708, 1.210 

 

 

It can be seen that the difference in the log odds calculated at 3 months in the two models 

is 0.04, which is a smaller difference than the difference in the log odds from the binary model, 

suggesting that the single time point and repeated measures model agree more for the ordinal 

regression model than the binary logistic regression model. Once again the log odds calculated for 

both models are not statistically significant and the repeated measures model has a larger standard 
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error due to the inclusion of random effects. The model fitted to a single time point produced an 

odds ratio of 0.97 (95% CI 0.89, 1.05) and for the model fitted with repeated measures, the 

treatment effect at 3 months gives an odds ratio of 0.93 (95% CI 0.71, 1.21). It can be seen that the 

odds ratio calculated for the repeated measures model gives a bigger reduction in the odds of being 

in a higher category on the mRS compared to the single time point model. The difference in the 

odds ratios seen is due to the repeated measures model taking into account what people score 

throughout the follow-up and not just at the 3 month value.  

It had previously been decided that because there were only 3 time points in the data, and 

they were irregularly spaced, using time in a categorical form would be the best way to use the time 

variable in the analysis. The effects of including time as a continuous variable were also considered 

to see if it changed the conclusions drawn from the ordinal regression models. The first model fitted 

included time as a continuous variable, having been centred at 3 months. The second model 

transformed the value of time into the square root value of time, which helps to linearise the 

covariate and force it to be well behaved. Both models fitted used random effects to adjust for the 

correlation between the outcomes at each of the time points, due to there being repeated 

measures, as before 

Table 4.11 looks at the treatment effect and the standard error for the treatment effect, 

specifically at the first time point in the model. This is compared with the treatment effect when 

categorical time was used. As well as this it was considered how well the model fits the data by 

looking at the value of the log-likelihood, Akaike information criterion (AIC) and Bayesian 

Information Criterion (BIC), full descriptions of these are given in Chapter 8.  
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Table 4.11: Comparison of model results with categorical, continuous and square root time 

 Categorical time Continuous time Continuous time – 

square root 

Treatment effect 

(OR) 

-0.073 (0.93) -0.063 (0.94) -0.059 (0.94) 

Standard error 0.139 0.136 0.137 

Log-likelihood -31911.91 -31918.99 -31924.93 

AIC 63847.81 63857.98 63869.85 

BIC 63943.84 63938 63949.87 

 

 

By using continuous time instead of categorical time, it can be seen that the difference in 

the log odds values of the treatment and standard care group are similar to the difference in log 

odds between the treatment and standard care group calculated by the repeated measures model 

when using categorical time. All these treatment values presented in Table 4.11 are calculated at 3 

months. There is a small reduction in the standard errors associated with the treatment effect when 

using continuous time. Both models, continuous time and square root time, calculated an odds ratio 

of 0.94, suggesting that in both models the treatment group has a 6% reduction in the odds of being 

in a higher category, compared to a 7% reduction when using categorical time. It must be noted 

that in the models, all the treatment effect values are not significant. The smallest value of the log-

likelihood is found when the model includes categorical time, as is the smallest value of the AIC, 

whereas for the BIC the smallest value is found when the time variable is included in a continuous 

form. As the smallest log-likelihood and AIC values occur in the model with categorical time, this 

suggests that is may be the best fitting model when treatment, time and the treatment time 

interaction are included in the model. The treatment time interaction is actually not significant for 

any of the models, so it was removed to see how it affected the treatment effect calculated, Table 

4.12. 
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Table 4.12: Comparison of model results after interaction removal for categorical, continuous and 
square root time 

 Categorical time Continuous time Continuous time – 

square root 

Treatment effect 

(OR) 

-0.117(0.89) -0.117 (0.89) -0.118 (0.89) 

Standard error 0.132 0.132 0.132 

Log-likelihood -31913.53 -31920.55 -31926.19 

AIC 63847.06 63859.09 63870.37 

BIC 63927.07 63931.11 63942.39 

 

 

After the removal of the interaction term, which allows the effect of the treatment group 

to vary differently to the log odds over time of the control group over time, the difference in the 

log odds between treatment and control groups at the 3-month follow-up point increases. The log 

odds calculated by the model is still the 3-month effect, but both of the treatment groups are 

assumed to change the same over time rather than being allowed to vary individually. Now for all 

3 models the difference in log odds is approximately -0.117, which is equivalent to an odds ratio of 

0.89, suggesting that the treatment group has an 11% reduction in the odds of being in a higher 

category on the scale when the influence of the repeated measures values is considered. As before, 

the categorical time model has the smallest log-likelihood value, and also the smallest AIC and BIC 

values, suggesting that it is the best fitting model to those data. 

The inclusion of time as a continuous variable was considered because it may be of help if 

the random effects model is extended to include more random effects than just allowing variation 

between individuals. By including a continuous time variable, the number of parameters in the 

model are reduced as categorical time requires dummies and therefore there are more parameters 

in the models. The use of continuous time was assessed graphically, and the assumption of a linear 

association was valid with a log odds outcome. The current model only includes a random intercept 

and allows each individual to vary, but they all follow the same trajectory. By including more 

random effects, this trajectory is able to be varied and a random slope can also be included as well 

as the random intercept. This is done by placing random effects on each of the covariate terms in 
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the model. When these random effects were added to the model with categorical time, the model 

struggled to converge as there were challenges with the numerical derivation of the model. The 

magnitude of random effects that were found was very small, in the order of 10-36, and did not 

change the log-likelihood calculated and therefore did not fit a better model. Considerations of 

parsimony suggest that, in this case, fewer random effects are better, as there are too many 

random effects that the model is trying to estimate when the time is categorical. Using continuous 

time, these extra random effects were also added to the model, but like the categorical time model, 

the inclusion did not provide a treatment estimate that was any closer to the single time point 

model at 3 month, or warrant the extra random effects in the model.  

 

4.7.3 Partial proportional odds model 

 

It is not possible to conduct a Brant test on the repeated measures model in order to assess 

the assumption of proportional odds. Statistical significance is defined at a 5% level, where a p-

value <0.05 is statistically significant, so considering the repeated measures model fitted, by looking 

at the p-values of the included covariates it can be seen that the 12 months covariate is statistically 

significant (p<0.001), which suggests that the proportional odds assumption may not hold for the 

repeated measures model. Table 4.13 shows the results of the partial proportional odds model with 

heterogeneous time and treatment effects, but homogeneous interaction effects. It can be seen 

from Table 4.14 that the interaction between treatment and month has been kept constant across 

each of the cutoff points as these are the covariates that still follow the proportional odds 

assumption. Looking at the treatment effect we can see that there is quite a lot of variation in the 

log odds calculated for each cutoff point. It is important to note that the covariate is still not 

statistically significant for all of the cutoff points, except for the 0 vs 1-6 cut off. 
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Table 4.13: Model results for partial proportional odds model – mixture of homogeneous and 
heterogeneous covariates 

Parameter (SE) 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0-3 vs 4-6 0-4 vs 5-6 0-5 vs 6 

Treatment -0.343 

(0.162)* 

0.033 

(0.1427) 

-0.06 

(0.142) 

0.004 

(0.145) 

0.067 

(0.163) 

0.143 

(0.181) 

6 month -0.26 

(0.091) 

0.002 

(0.074) 

-0.142 

(0.074) 

-0.118 

(0.078) 

0.013 

(0.096) 

0.701 

(0.119) 

12 month -0.259 

(0.094) 

0.033 

(0.077) 

0.066 

(0.076) 

0.31 

(0.081) 

0.601 

(0.097) 

1.814 

(0.121) 

Treatment x 6 

month 

-0.019 

(0.073)* 

-0.019 

(0.073) 

-0.019 

(0.073) 

-0.019 

(0.073) 

-0.019 

(0.073) 

-0.019 

(0.073)* 

Treatment x12 

month 

-0.123 

(0.073)* 

-0.123 

(0.073) 

-0.123 

(0.073) 

-0.123 

(0.073)* 

-0.123 

(0.073)* 

-0.123 

(0.073)* 

* Indicates statistical significance (p<0.05) 

 

Looking at the time covariate, there is also a lot of variation between the log odds estimated 

for each of the cutoff points. There are statistically significant values for 0 vs 1-6 and 0-5 vs 6 for 

the 6 month time point and 0 vs 1-6, 0-3 vs 4-6, 0-4 vs 5-6 and 0-5 vs 6 for the 12-month time point.  

 

Table 4.14: Model results for partial proportional odds model – all heterogeneous covariates 

Parameter (SE) 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0-3 vs 4-6 0-4 vs 5-6 0-5 vs 6 

Treatment -0.437 

(0.185)* 

-0.005 

(0.153) 

0.008 

(0.159) 

-0.099 

(0.158) 

-0.001 

(0.189) 

0.232 

(0.239) 

6 month -0.257 

(0.138) 

-0.018 

(0.098) 

-0.140 

(0.097) 

-0.151 

(0.107) 

0.006 

(0.143) 

0.827 

(0.192)* 

12 month -0.359 

(0.139)* 

0.064 

(0.101)* 

0.175 

(0.099) 

0.228 

(0.109) 

0.562 

(0.143)* 

1.897 

(0.192)* 

Treatment x 6 

month 

-0.023 

(0.166) 

0.014 

(0.119) 

-0.023 

(0.118) 

0.033 

(0.131) 

-0.014 

(0.177) 

0.024 

(0.169) 

Treatment x12 

month 

0.025 

(0.169) 

-0.166 

(0.123) 

-0.287 

(0.122)* 

0.005 

(0.134) 

-0.075 

(0.176) 

-0.265 

(0.232) 

* Indicates statistical significance (p<0.05) 

 

When the heterogeneous model is applied to the data, the estimates for treatment vary 

slightly but are still similar to the partial heterogeneous model, the standard errors have increased 

a little, and only the 0 vs 1-6 cut off has a statistically significant estimate. After the interaction term 

is included, only the 0-5 vs 6 cut off is statistically significant for the 6 month covariate, but the 
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statistically significant estimates for 12 months are the same. The interaction terms obviously now 

vary and are found to be not statistically significant for all the treatment x 6 months estimates, and 

only statistically significant for the estimate at the 0-2 vs 3-6 cut off for the treatment x 12 month 

interaction. 

The goodness of fit of the model can be explored by looking at the -2 log-likelihood value 

as well as the AIC and BIC values calculated from each model. The -2 log-likelihood was considered 

here, as that was what the partial proportional odds regression model produced. Table 4.15 gives 

these values for the ordinal regression model with homogeneous covariates (proportional odds 

model), the ordinal regression model with partial homogeneous covariates, and the ordinal 

regression model with all heterogeneous covariates, calculated using the code given in Appendix B 

(Carriere & Bouyer 2006). 

 

Table 4.15: Goodness of fit statistics for proportional and partial proportional odds models 

 Proportional 

odds model 

Partial proportional odds 

model - treatment and time 

Partial proportional 

odds model – all 

covariates 

-2 log-likelihood 63822 64024 64017 

AIC  63847 64078 64091 

BIC  63944 64266 64349 

 

 

The smallest values for all 3 criteria are found in the proportional odds model, which 

includes a random effect to account for the repeated measures but includes all covariates as 

satisfying the proportional odds assumption. This suggests that relaxing the proportional odds 

assumption does not improve the fit of the model and the spread of variation seen shows us that 

these models are still not able to estimate the single time point treatment effect.  

Looking at the partial proportional odds models has shown that there is no improvement 

in fit over the proportional odds model; however, we are still unsure how well this model fits the 

data due to the lack of a Brant test. It is possible to check how well the proportional odds model 



 

Chapter 4  100 
 

 

fits by comparing the numbers of estimated individuals in each treatment group for each of the 

mRS scores with the numbers observed. Therefore, plots have been produced that show both the 

expected and the observed proportion of individuals in both the treatment and controls groups at 

each of the follow-up time points. The following plots show the predicted proportions of individuals 

in the treatment and standard care groups for the repeated measures ordinal model at 3, 6 and 12 

months in the follow- up. This is done separately for each value of the mRS scale.  

 

Figure 4.2: Observed and expected proportions of individuals during follow-up when mRS=0 

 

 

 
Figure 4.3: Observed and expected proportions of individuals during follow-up when mRS=1 
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Figure 4.4: Observed and expected proportions of individuals during follow-up when mRS=2 

 

 
Figure 4.5: Observed and expected proportions of individuals during follow-up when mRS=3 

 

 
Figure 4.6: Observed and expected proportions of individuals during follow-up when mRS=4 
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Figure 4.7: Observed and expected proportions of individuals during follow-up when mRS=5 

 

 
 
Figure 4.8: Observed and expected proportions of individuals during follow-up when mRS=6 
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the mRS is 2 once again the model underestimates the proportions in each group at 3 months but 

is well fitted at 12 months. When the mRS is 3 the model fits well at 3 months and at 12 months for 

the standard care group but overestimates the oxygen treatment group, which has a sudden drop 

in the observed numbers compared to the standard care group. When the mRS is 4 the model over 

predicts the proportion of the expected numbers in each of the treatment group compared to the 

observed numbers. When the mRS is 5 the model estimates the proportions in each group well at 

3 months, but slightly over-estimates the proportions at 12 months. Finally, when the mRS is 6 the 

model overestimates the proportions seen at 3 months but estimates the proportion in each group 

well at the 12 months follow-up time point. In most of the graphs the numbers of observed 

individuals in the oxygen treatment groups and the standard care group are fairly similar. It is 

unclear why the model fits some of the categories on the mRS better than others, although looking 

at the graphs it seems that where there are larger changes over time in the observed number in 

each of the group, the poorer the fit is between the observed and expected values.  

 

4.8      Discussion 

 

This chapter aimed to assess potential regression models for the analysis of the mRS scale. 

Several different models were considered, in the end only 2 different types of model were used. A 

logistic regression model was used, with the scale dichotomised into a binary variable and an 

ordinal regression model. Both models were fitted to a single time point and all the time points in 

the data. It was found that the treatment effects calculated were not statistically significant but 

that there was variation in the effects calculated dependent on the type of model fitted.  

 These models fitted calculate a treatment effect by assessing its effect on the value of the 

mRS. These methods have been applied before in clinical stroke trials and therefore are an obvious 

choice for analysing the longitudinal clinical trial data using the mRS. It is possible that these 

methods can be extended to analyse data that differs from the data included in this analysis. For 
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example, the models are able to handle data with more time points in the model, and there would 

be no effect if these extra points were regularly spaced or irregularly spaced time points, as has 

been shown in the current analyses. The model would be able to handle the inclusion of a baseline 

measurement, indeed this would be of benefit to the analysis and is a limitation of using the mRS 

scale as the main outcome. Missing data has been suggested to affect the treatment effect 

calculated in the repeated measures model, but the model handles some missing data well, 

although little to no missing data is preferable. Also if the data shows little or no change over time 

the models can also deal with this, as well as modelling data that shows large changes over time. 

 

 
4.8.1 Model comparison 

 

Both binary and ordinal logistic regression models were fitted to the SO2S data. There were 

two different models fitted, the first looked at the mRS values at just the 3-month time point and 

the second fitted a repeated measures model, including all three time points in the model. From 

this model it is possible to estimate the effects at 3 months as well and compare to the previous 

model.  

 It is very hard to compare the single time point models and the repeated measures models 

using the usual goodness of fit statistics, AIC, BIC or log-likelihood. This is due to there being 

different numbers of observations in the models due to the there being one or three time points.  

In the binary regression model, the repeated measures model reduced the odds ratio from 

0.98 in the single time point model to 0.90 in the repeated measures model. This model included a 

dichotomised mRS with 0-2 representing independent individuals, the favourable outcome and 3-

6 representing dependent individuals. Both of these odds ratios show that the treatment is 

favourable as there is a reduction in the odds of being dependent compared to independent for the 

treatment group in comparison to the standard care group at 3 months. This reduction increases 

from 2% for the single time point model to 10% in the repeated measures model. Both of the odds 
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ratios calculated are not statistically significant, as the confidence intervals contain 1, which would 

indicate no difference between treatments. The standard errors calculated from the repeated 

measures model were much larger due to the random effects in the model in order to account for 

the correlation between the repeated measures. By dichotomising the mRS scale, information from 

the scale is lost and may exaggerate (or reduce) the differences seen in comparing the two 

treatment groups due to categories in the scale being combined and only compared across one 

value of the mRS.  

Because of this an ordinal regression model was fitted to the data using the same data but 

keeping it in the form of a seven point ordinal scale rather than dichotomising it. The model fitted 

to a single time point produced an odds ratio of 0.97 and the model fitted with repeated measures 

gave an odds ratio of 0.93 at 3 months. It can be seen that the odds ratio calculated for the repeated 

measures model gave a bigger reduction in the odds of being in a higher category on the mRS (for 

the treatment group compared to standard care) than the single time point model. The ordinal 

regression model calculates the odds of being in a higher category on the mRS, which has a 

reduction of 3% for the treatment group compared to the standard care group in the single time 

point model and a 7% reduction in the odds for the treatment group compared to the control group 

for the repeated measures model. The difference in the odds ratios produced by the ordinal models 

at 3 months are smaller than the difference in the odds ratios produced by the binary models at 3 

months. Once again the log odds calculated for both models were not statistically significant and 

the repeated measures model had a larger standard error due to the inclusion of random effects. 

The difference in the odds ratios seen was due to the repeated measures model taking into account 

what people score throughout the follow-up and not just at the 3-month value.  

The proportional odds assumption was tested for the single time point model using a Brant 

test; this calculated a p-value of 0.162 for the treatment variable, suggesting that the proportional 

odds assumption is valid. The proportional odds assumption could not be tested for the repeated 

measures model. However, fitting a model where part of the proportional odds assumption was 
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relaxed showed no improved fit or reduced log-likelihood compared to the proportional odds 

model, neither when the assumption was relaxed only for treatment and time nor when relaxed 

for all of the covariates in the model.  

The use of categorical time was also investigated, comparing it with using continuous time 

in the model. The use of continuous time was considered using time centred on 3 months and also 

using a square root transformation of time. Neither improved the fit of the model from the 

categorical time repeated measures model. The fit of the model was also considered by plotting 

the observed and expected values of individuals with each mRS score at each time point. These 

graphs show that the fit of the model is not too bad; for some scores the observed and predicted 

values are very close together, for others the fit of the model is worse. 

The differences seen between the single time point model and the repeated measures 

model are apparent and they occur due to the difference in the modelling properties, whereby the 

repeated measures model borrows an effect from all the considered time points; the values are 

therefore influenced by either future or past observations. This is introduced as a random effect, 

which adds uncertainty into the model, reflected in the size of the confidence intervals, which are 

wider than those of the single time point model.  

 

4.8.2 Further work 

 

The main analysis in this chapter looked only at the inclusion of the treatment variable, as 

well as a time covariate in the repeated measures model. An analysis was run with basic covariates 

included (age, gender and baseline NIHSS), and although statistically significant themselves, they 

had no effect on the treatment estimate, which is the only variable of interest in the models fitted 

here. It may also be of interest to fit and undertake a full model selection with available covariates 

now that it has been decided that the ordinal regression models are better than binary regression 

models when considering the ordinal longitudinal analysis of the mRS.  
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The systematic review of mRS longitudinal analysis of the mRS identified a paper for which 

a joint model of the mRS and survival had been conducted. Due to restrictions with the SO2S data 

and because this had already been conducted within the NINDs data and shown to be appropriate, 

it was decided to focus just on the effects of longitudinal models in the treatment effect and to not 

consider survival as well. This however could be a good extension to the regression models fitted, 

but may require a longer follow-up period to obtain more repeated measures to model as 3 time 

points is unable to give a reasonable profile if an individual was to die.  

As well as this, more consideration could be taken into methods that compare the goodness 

of fit of a model when the AIC/BIC cannot be compared in this situation. Roozenbeck et al. (2011) 

calculated the ratio of the Wald statistics, which can be interpreted as the gain in information 

density, and therefore, could be considered a suitable measure for the efficiency of the different 

approaches and allow two different types of model to be compared (Roozenbeek et al. 2011).  

Also, the use of interaction terms within the model could be considered. When considering 

the results of the repeated measures model it may be of interest to consider the effect of treatment 

independent of time of the follow-up point. But looking for such a statistic in the context of a model 

with interaction terms doesn't actually make any sense. By adopting a model with interaction 

terms, you are explicitly claiming that the effect of group differs from one time to the next. A pooled 

effect can be nothing other than some sort of weighted average of those, and it is more an artefact 

of the weights you choose for that averaging process than anything else. If you believe that the 

effect varies over time, then you need an interaction model and it is a contradiction in terms to talk 

about a pooled effect. However, if you were unsure about the necessity of the interaction terms 

then it would be possible to use techniques to create a pooled effect, which would give the effect 

of treatment independent of time.  
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4.8.3 Conclusions 

 

When the data that are being considered for the analysis are ordinal, it is important to make 

the best use of the data and fit an appropriate model. Although it is commonly claimed a binary 

regression model is easier to interpret, most ordinal models are an extension of a binary model and 

therefore the interpretation is not much harder. It is usually suggested that a binary model is easier 

to fit, but ordinal methods are found in several statistical packages now and they are therefore 

readily accessible. It may be that there is not a lot of difference in the results of a binary and an 

ordinal regression model, but it is important to use an ordinal model in order to get the best effect 

estimate. Here it was found that an ordinal regression model was the best model fit to the data. 

The model needs the random effects included to account for the repeated measures, but allowing 

the covariates in the model to have random effects assigned to them does not improve the fit of 

the model. There was no evidence that relaxing the proportional odds assumption made the data 

fit the model any better, which would need to be assessed for every application as it is an important 

assumption to test. 

Having fitted an ordinal regression model with repeated measures, it was found that the 

repeated measures model was not able to estimate the 3-month treatment effect very well, 

overestimating the odds, it was considered whether there was any situation in which the two 

models would agree. A simulation study was conducted with ordinal data generated to investigate 

whether the repeated measures model was able to estimate the first time point effect similar to 

the single time point model and also if there was missing data in the follow-up, that the model was 

able to adjust for this and still produce similar estimates.  
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5    Simulation 

 

The previous chapter identified that a random effects proportional odds logistic regression 

model, is the best type of model to apply to the stroke data when conducting a longitudinal analysis 

of an ordinal variable. This being said, this repeated measures model produces a different 

treatment effect than if the model was fitted at the single time point. Our data has a high correlation 

between the repeated measurements and also loss to follow-up is fairly small. If the data had a 

lower correlation value, would similar results occur? It could be expected that the higher the value 

of correlation between the repeated measures, the more similar value are throughout follow-up 

and therefore the more similar the results of the two different model types.  

The aim of this chapter is to conduct a simulation study, where ordinal data are randomly 

generated and then the ordinal logistic regression models applied to the data, with comparisons 

made between the treatment effect estimated at the first time point using both a single time point 

and repeated measures model. It was also decided to add different dropout patterns and 

magnitudes of drop out to the follow-up data generated, in order to see if the results were affected 

by the type of dropout, as in a longitudinal analysis dropout over time due to loss to follow-up or 

withdrawal will normally occur.  

 

5.1     Introduction 

 

Having conducted regression models in the previous chapter, this chapter now focuses 

further on the comparison between fitting a regression model at a single time point and a repeated 

measures regression model that estimates the results at the same time point as the single time 

point model. It was decided to focus specifically on the ordinal regression model with the 

proportional odds assumption, as this was favoured in the previous chapter.  
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The primary analysis in a longitudinal randomized controlled trial is sometimes a 

comparison of arms at a single time point. While a two-sample t-test is often used, missing data are 

common in longitudinal studies and decreases power by reducing sample size. Mixed models for 

repeated measures (MMRM) can test treatment effects at specific time points by using an 

appropriate contrast matrix. This chapter highlights a simulation study to compare the performance 

of an ordinal regression model fitted to a single time point with that of a mixed effects one applied 

to all available data. In this way two odds ratios assessing any potential treatment effect are 

generated. The impact of within and between-person variance, dropout mechanism, and variance-

covariance structure were all considered. 

The main aim of the chapter is to look at how the different missing data mechanisms affect 

the results for the treatment effect at the first time point calculated from the repeated measures 

model and the single point treatment effect. In order to investigate this, a simulation study was 

conducted applying different dropout mechanisms to the generated data and the treatment effects 

were compared. This chapter presents a detailed introduction to simulation studies as well as an 

account of the design of the study conducted in the thesis. The different dropout patterns were 

applied to datasets that had been generated with different correlation structures. The correlation 

structure suggests how correlated the values of the repeated measures are across each of the 

individuals generated in the simulation study. By varying the correlation structures, the data is 

generated so that if the correlation value is high, the ordinal data is more likely to be more similar 

across time points that a lower correlation value.  

 

Dataset 1: 20% correlation structure, between outcome correlations of 0.2 

Dataset 2: 40% correlation structure, between outcome correlations of 0.4 

Dataset 3: 60% correlation structure, between outcome correlations of 0.6 
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5.2      Background  

 

A simulation study, also known as Monte Carlo simulation, is a computerised procedure 

that uses numerical techniques to help evaluate the relative effectiveness of statistical methods. A 

simulation study involves random sampling either from probability distributions or from a 

population with known parameters. The goal of a simulation study is to use a statistical method to 

make inferences about the population from the random sample, by generating a dataset with 

specific characteristics for the statistical methods to be applied to. Using Monte Carlo simulation 

techniques, the simulation is completed hundreds of times and the results compared. Simulation 

studies are very useful when a theoretical explanation is difficult, or cannot be obtained. Simulation 

studies may be used to compare the performance of two or more models that are analysing the 

same problem, as is the case with the simulation in this thesis.  

A simulation study evaluating different missing data methods takes random samples of the 

same size from the population, with complete data throughout the sample. An ordinal regression 

model estimates the treatment effect at the first time point in this model. Following this, missing 

data mechanisms impose different structures of missing values on these random samples. Once the 

missing data mechanisms have been applied to the samples, a second ordinal regression model is 

fitted to the data and the parameters estimated from this model are compared with the previously 

estimated parameters. A detailed description of the method is given in the following section.  

 

5.3     Methods 

 

Ordinal data for the simulation study were generated using SAS 9.3, and used methods 

developed for generating correlated discrete ordinal data (Ibrahim & Suliadi 2011). It was decided 

to use this method as this way it is possible to model different correlation structures. This allows 

for a comparison to be made between differing correlation values, knowing that the data have been 



 

Chapter 5  112 
 

 

generated using the same methods so variation seen will be due to the differing values of the 

correlation structure chosen. It is possible to use the trial data to inform the generation of the 

simulation data, however this would lead to only a single dataset with the same properties of the 

trial. We have learnt how the two types of model compare in such a highly correlated dataset and 

therefore this is of less interest to us and the comparison of how the models work with differing 

correlation values is of most interest to us.  

The analysis was conducted using Stata 14, using the same regression models fitted in 

Chapter 4, both a single time point model and a repeated measures ordinal regression model with 

the proportional odds assumption. Although this assumption cannot be tested easily it was decided 

not to use partial proportional odds models with the simulated data, in order to provide a clear and 

concise message from the results. A detailed method for the simulation procedure is explained 

below.  

 

5.3.1 Step 1: Generating complete datasets 

 

There were several different complete data sets generated for the simulation study. Using 

the SAS macro developed by Ibrahim and Sulialdi (Ibrahim & Suliadi 2011) it was possible to 

generate correlated ordinal response data. The basics of this model include a binary predictor for 

the group effect, and assessment time (T) and an interaction term between the group and time. 

This produces a proportional odds model written as:  

 

𝐿𝑜𝑔𝑖𝑡[𝑃(𝑌𝑖𝑗 ≤ 𝑘)| 𝑥𝑖, 𝑡𝑗] = 𝛽0𝑘 + 𝛽𝑥𝑥𝑖 + 𝛽𝑡𝑡𝑗 + 𝛽𝑡𝑥𝑥𝑖𝑡𝑗  [5.1] 

 

Where x is the group covariate, t is the time covariate and i =1 …, N; j= 1 … T; k=1, …, k-1. There are 

only 3 required elements to Ibrahim’s macro, the marginal probabilities at each time point, the 

correlation structure, and the sample size.  
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5.3.1.1      Marginal probabilities 

 

In order to generate the longitudinal data for the two groups, the macro was applied twice, 

once with x=0 and once with x=1 and then the data was combined to form the whole dataset. The 

marginal probabilities were calculated for both of the groups in order to be used in each separate 

run of the macro. The marginal probabilities were calculated using theoretical values of the model 

parameters displayed in Table 5.1.  

In order to generate the ordinal data a value of k must be chosen, which represents the 

number of categories of the ordinal scale being generated. In our case, we picked K=7 in Table 5.1, 

as this is the number of categories that is in the mRS scale, this was done in order to make the 

generated data comparable to the mRS to a degree. However, it would have been possible to pick 

any of the values of K in order to generate an ordinal scale with between 2-7 categories. In the table 

the β values are those in Equation 5.1, and are used in order to calculate the log odds used in the 

data generation.  

 

Table 5.1: Theoretical values of coefficients for calculating log odds used in generation of ordinal 
data  

Distribution K β 01 β02 β03 β04 β05 β06 βx βt βtx 

Well-balanced 2 -0.25      0.10 0.10 -0.15 

 3 -0.71 0.66     0.10 0.10 -0.15 

 4 -1.10 0.00 1.10    0.10 0.10 -0.15 

 5 -1.39 -0.41 0.41 1.39   0.10 0.10 -0.15 

 7 -1.79 -0.92 -0.29 0.29 0.92 1.79 0.10 0.10 -0.15 

           

Skewed 2 1.00      0.80 0.10 -0.25 

 3 -2.20 -0.85     0.80 0.10 -0.25 

 4 -0.41 0.00 0.41    0.80 0.10 -0.25 

 5 -0.85 -0.20 0.20 0.85   0.80 0.10 -0.25 

 7 -1.39 -0.66 -0.16 0.16 0.66 1.39 0.80 0.10 -0.25 
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The marginal probabilities are calculated by substituting the values of Table 5.1 into 

Equation 5.1, once setting x=0 and working out the marginal probabilities for that group at each 

time point in the model and once setting x=1 and working out the marginal probabilities for each 

time point in the model. The different values of k indicate the number of ordinal responses that are 

being generated. In the above table, the data generated can have between 2 and 7 responses. It 

was chosen that the simulated data generated would have 7 ordinal responses and both well-

balanced data and skewed data was considered. Well-balanced data generated data from marginal 

probabilities that were of a similar size across each outcome score, whereas the skewed data had 

marginal probabilities that were skewed to favour lower outcome scores.  

The following marginal probabilities (Tables 5.2 and 5.3) were calculated in order to 

generate the complete datasets that were used in the simulation studies. The ordinal response 

variable generated had 7 categories included in it, the same number as in the mRS. The datasets 

were simulated to contain 3 time points, just like the SO2S dataset. For the well-balanced 

distribution of the data, the marginal probabilities in Table 5.2 were calculated for each of the two 

groups. 

 

Table 5.2: Marginal probabilities for generation of well-balanced data 

 Control Treatment 

Outcome 

score 

Time point 

1 

Time point 

2 

Time point 

3 

Time point 

1 

Time point 

2 

Time point 

3 

1 0.149 0.143 0.137 0.156 0.169 0.184 

2 0.146 0.142 0.138 0.150 0.158 0.166 

3 0.145 0.143 0.141 0.147 0.150 0.153 

4 0.144 0.144 0.144 0.144 0.143 0.141 

5 0.141 0.143 0.145 0.139 0.134 0.129 

6 0.138 0.142 0.146 0.134 0.126 0.118 

7 0.137 0.143 0.149 0.131 0.120 0.110 

 

For the data generated from the skewed distribution of the data, the marginal probabilities 

in Table 5.3 were calculated for each of the two groups.  
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Table 5.3: Marginal probabilities for generation of skewed data 

 Control Treat 

Outcome 

score 

Time point 

1 

Time point 

2 

Time point 

3 

Time point 

1 

Time point 

2 

Time point 

3 

1 0.216 0.233 0.252 0.208 0.199 0.192 

2 0.148 0.154 0.159 0.145 0.141 0.138 

3 0.121 0.123 0.124 0.120 0.119 0.118 

4 0.080 0.079 0.078 0.080 0.080 0.080 

5 0.117 0.114 0.110 0.118 0.119 0.120 

6 0.135 0.128 0.121 0.138 0.141 0.145 

7 0.184 0.169 0.156 0.192 0.199 0.208 

 

 

 

5.3.1.2      Correlation structure 

 

The correlation structure defines how the outcomes that are generated at each time point 

are related to each other. For the correlation structure, a simple exchangeable correlation structure 

was used, (i =1 … n…; j, k=1, …, T): 

𝐶𝑜𝑟𝑟(𝑌𝑖𝑗 , 𝑌𝑖𝑘) = {
1         𝑗 = 𝑘
𝑥       𝑗 ≠ 𝑘

 

 

 

The values of x differed for each of the different scenarios that were used, so x took the value of 

0.2, 0.4 and 0.6. These values are smaller than the correlations seen between the mRS outcomes 

at each time point, which are all in the region of 0.8. It was attempted to include a correlation 

structure of 0.8 for the simulation study, however the model failed to converge for these models. 

An exchangeable correlation structure was used as this allows for values to be equally correlated 

for each individual over time. This is the most appropriate choice for a correlation structure, as we 

know the observations are not unstructured or independent and they are from the same individual, 

therefore there must be some correlation observed. An auto-regressive correlation structure could 

have ne chosen, however when looking at the data we would expect values to be more correlated 

over time as recovery slows, down rather that less correlated, hence the exchangeable structure 

being the most appropriate correlation matrix of choice. 
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5.3.1.3      Sample size and time points 

 

The simulated dataset also contained 3 time points like in the SO2S dataset, and it was 

decided to generate 1000 individuals for inclusion in the data. There were 500 generated in the 

treatment group and 500 generated in the control, giving the whole dataset 1000 individuals. It was 

thought that this was a sufficiently large number, but it would still be computationally manageable 

even though the numbers were not of the magnitude of the SO2S trial itself. There was one dataset 

for which the data was well balanced and one where the data was drawn from a skewed 

distribution.  

A master data set was generated for each of the complete dataset options; this was used 

to work out the treatment effect at the first time point, using an ordinal regression model. Following 

this, the data generating mechanism was replicated 500 times in order to create the final dataset 

on which the repeated measures analysis was conducted. This figure was conducted based on the 

analysis conducted looking at multiple imputation methods for incomplete longitudinal ordinal data 

(Donneau et al. 2015). 

 

5.3.2 Step 2: Generating missing data 

 

From the complete datasets, incomplete datasets were created by using pre-defined 

deletion criteria. The missing data mechanisms were based on a simulation study looking at the 

effect of missing data in randomised clinical trials (Joseph 2015). It was decided that the first value 

in the data set would remain complete for all individuals. This is because in most longitudinal trials 

the majority of data are caused by individuals who drop out during the follow-up time increases as 

the time between recruitment and follow-up increases. The type of missing data mechanism 

applied to the datasets follows a monotone pattern; this means that individuals will have missing 

data for all subsequent visits after they have one missing observation. Obviously, in practice, there 

may be a small number of individuals who have non-monotone missing data (where an individual 
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has missed one assessment, but returns for subsequent assessments). For simplicity, it was 

assumed that a monotone missing pattern is observed for the dropout rates and mechanisms 

applied in the simulation study. This is reflected in the SO2S trial data, where at the first time point, 

which is 3 months post-stroke, the value of the mRS is known for 98% of the individuals. This 

reduces to 87% by 12 months. Both the dropout rate for the time points and the choice of dropout 

mechanism used in the simulation study were predefined.  

In a randomised trial there are usually 2 causes for missing data, one is loss to follow-up 

and the second is death. In the mRS scale with the category for death included missing data in the 

follow-up of a study can only occur due to loss to follow-up. Consideration was made as to whether 

an absorbing score, such as that of death in the mRS could be included in the setup of the simulation 

study. Because of the missingness mechanisms used (with a monotone pattern), including a score 

where data is never missing in the simulation is complicated. This is because the missingness 

mechanisms are added by generating a random variable, the value would be required to be re-

added, if the value representing death was omitted. This would only be possible if the value was 

known before, therefore could only be useful for those who died at the first time point as it would 

be possible to carry forward the observation. But by doing this there would be an effect on the 

amount of missing data, as although the different rates defined below would have been applied, 

values would have been re-added and therefore the rates would not be the same across the 

different datasets used in the analysis. It was decided that as the data generated in not specifically 

from the SO2S trial and is randomly generated data that an absorbing category would not be 

considered and that dropout may occur form any point on the scale. Although this is different to 

the outcome analysed in the previous chapter, there is still merit in the work as it is looking at what 

happens in different correlation structures and in different data (well-balanced or skewed), and 

understanding whether missing data, and the type of missing data, affect the conclusions drawn.  

The two main types of mechanisms used are described below, missing completely at 

random and missing at random. The first, as the name suggests, has data missing completely at 
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random, whereas the second relies on some noticeable pattern to inform drop-out. As there are no 

baseline characteristics, apart from treatment group included in the model, it was decided that to 

inform the dropout the missing at random pattern would restrict dropout to those individuals who 

had a generated values larger than the median value of the whole dataset for that time point. This 

method was chosen as in the mRS scale, those with higher scores are more disabled and therefore 

may be more likely to be lost to follow-up as they are unable to complete follow-up questionnaires 

themselves. This method satisfies the criteria for missing at random data when there are no 

observed variables in order to inform the pattern of missingness.  

 

5.3.2.1      Choice of dropout rate 

 

After deciding that the first time point would have complete data, it then needed to be 

decided how many individuals would drop out at the remaining points in the data set. It was decided 

that two of the dropout patterns would include equal dropout rates for both of the two groups in 

the generated dataset. The other two dropout patterns would have unequal dropout rates between 

the two groups in the dataset. It was further decided that the control group would have a larger 

dropout than the treatment group, implying a favourable treatment. Using the SO2S trial as a guide, 

it was decided that at the second time point 10% of individuals would have dropped out. This 

increased to 20% dropout at the third time point. For the dropout patterns with unequal dropout, 

the dropout in the treatment group was halved so that there was a 5% dropout at the second time 

point, and a 10% dropout at the third time point. 

 

5.3.2.2      Missing completely at random (MCAR) 

 

Using a missing completely at random (MCAR) dropout mechanism, means we assume that 

there is no relationship between the missing values and any unobserved or observed values in the 

dataset. Let us denote complete data as Ycom, which is made up of Yobs, Ymis as the observed and 
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missing parts such that Ycom= (Yobs, Ymis). Rubin defined missing data to be MCAR if the missingness 

does not depend on the observed values (Rubin 1976): 

 

P(R|Ycom)  =  P(R)   [5.2] 

 

 This means that the individuals with missing data are just a random subset of the data. When 

conducting analysis on individuals who have data MCAR, the analyses will be completely unbiased.  

 

5.3.2.3      Missing at random (MAR) 

 

Using a missing at random (MAR) dropout mechanism we assume that there is a 

relationship between the missing values and one or more observed variables in the dataset. Rubin 

defined missing data to be MAR if the distribution of missingness does not depend on Ymis (Rubin 

1976): 

P(R|Ycom)  = P(R|Yobs).  [5.3] 

 

This means that the missingness can be fully accounted for by variables with complete information. 

However, there is still an assumption that the missing values are not dependent on any unobserved 

variable(s). An assumption of MAR is hard to verify, so reasonable justification may need to be used. 

MAR data are also called ignorable non-response data, (Schafer & Graham 2002).  

 

5.3.2.4       Missing not at random (MNAR) 

 

It was decided not to include a missing not a random (MNAR) dropout mechanism, which 

assumes that the missing values are dependent on the variables that are missing. Data are said to 

be MNAR if the data violates Equation 5.3 and this type of data is known as non-ignorable data, it 
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is hard to identify the difference between ignorable and non-ignorable data in observed data 

(Schafer & Graham 2002).  

 

5.3.3 Step 3: Analysis  

 

The first step of the analysis was conducted once the first complete dataset was generated. 

From this dataset, an ordinal logistic regression model was applied to the data using only the first 

time point of the generated data, and the difference between the two groups was found. This 

difference was calculated in logit form.  

After the replication of the data and the application of the dropout mechanisms, a repeated 

measures ordinal logistic regression was fitted to the data. The model was fitted, using each of the 

replications in the dataset, which provided 500 treatment effect estimates at the first time point. 

This repeated measures model takes into account the value of the ordinal outcome at the other 

time points in the model and estimates the effect at the first time point from this, taking account 

of the missing data that we have introduced.  

The treatment effect at the first time point that is reported from the repeated measures 

model after the dropout mechanism has been applied is an average of each of the 500 treatment 

effects that were calculated with each replication of the data.  

 

5.3.4 Measures of performance 

 

In order to consider the model performance, different assessment criteria tools were used. 

The main performance assessment used was the difference calculated between the true effect and 

the treatment effects from the repeated measures model. The standard errors of the model fitted 

were also recorded. Finally, the percentage change in between the two calculated effects was 

considered.  
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5.3.4.1      Difference in estimates  

 

The difference in the estimates is defined as the difference between the average value of 

the treatment effect and the corresponding parameter – the true treatment effect. The value of 

the treatment effect is calculated for each of the repetitions and then the overall estimated 

treatment effect is calculated by taking the average effect size of the 500 repetitions ran. It is the 

difference between this and the true treatment effect of the model that is calculated: 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑡𝑟𝑢𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡

−  𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 𝑓𝑟𝑜𝑚 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝑚𝑜𝑑𝑒𝑙 

 

If the value of the difference is negative then the treatment effect has been overestimated, 

and if the value of the difference is positive there is an underestimation of the treatment effect. 

Although the above is true, we are specifically interested in the how much the true effect and the 

repeated measures effect differ, not the direction of the difference and therefore absolute values 

will be presented.  

 

5.3.4.2      Percentage change 

 

Finally, the percentage change was considered, which looks at the difference as a 

percentage of the true effect of the model.  

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =  100 × (
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 

𝑡𝑟𝑢𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡
) 
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5.4      Results 

 

5.4.1  Well-balanced data 

 

The first dataset that was generated was taken from the well-balanced distribution – this 

is most similar to the mRS distribution within the SO2S, especially at the first time point, where 

there is a fairly even spread of individuals across all scores. Each dataset contained 1000 individuals, 

(500 treatment, and 500 control) and correlation values of 0.2, 0.4 and 0.6 were used to generate 

the different datasets. 

 Figure 5.1 shows the results of the simulation for the well-balanced data with 3 time points. 

The graph shows the true value of the treatment effect at the first time point as a constant line for 

comparison and estimated value of the treatment effect at the first time point using a repeated 

measures model before and after the four different dropout mechanisms are applied. A table of 

results given in Appendix D. 

It can be seen that as with the results found in the previous chapter, the use of the repeated 

measures model causes an overestimation of the treatment effect of the model in some cases. 

When there is a smaller correlation value, there appears to be almost no difference in the true 

effect and the effect estimated by the repeated measures model. With increasing correlation size 

there appears to be more variation seen between the single time point and the repeated measures 

model. There does not appear to be a pattern with increasing correlation as the 40% correlation 

looks like it over estimates the treatment effect more than the 60% correlation estimates.  
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Figure 5.1: Graph of first time point treatment estimates (and standard errors) before and after 

dropout, for varying correlation clause in well-balanced data with 1000 patients

 
 

 

It is encouraging to see that there appears to be little difference in the effect of the dropout 

patterns applied, with the most variation across drop out patterns seen in the 60% correlation 

dataset. The difference in the effect sizes has been calculated and is given in the table below. 

 

Table 5.4: Difference between the average treatment effect at first time point from repeated 
measures model before and after dropout and the true effect from a single time point model for 
well-balanced data 

  Effect Difference 

Correlation 
value 

True 
effect 

No 
dropout 

Dropout 
1 

Dropout 
2 

Dropout 
3 

Dropout 
4 

20% 0.107 0.002 0.004 0.004 0.003 0.003 

40% -0.077 0.068 0.067 0.064 0.067 0.069 

60% -0.044 0.025 0.025 0.017 0.024 0.028 

Dropout 1: MCAR – equal dropout; dropout 2: MAR – equal dropout; dropout 3: MAR – unequal dropout; 
dropout 4: MCAR – unequal dropout 
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Here we see how small the differences in the effect sizes are, especially for the 20% 

correlation dataset. The true effect in this data set suggested a positive treatment effect, whereas 

the larger datasets suggested a negative treatment effect. For both of the larger 2 datasets drop 

out 2 appear to produce the smallest difference in treatment effect estimates, where the data is 

MAR with equal dropout rates in both of the groups. We also considered what would happen if the 

data had been drawn from a skewed distribution, rather than a well-balanced one.  

 

5.4.2 Skewed data 

 

Figure 5.2 shows the results of the simulation for the skewed data with 3 time points for 

each of the datasets that were generated. As with the well-balanced data, the red line shows the 

true value of the treatment effect at the first time point along with estimated value of the treatment 

effect (with standard error) at the first time point using a repeated measures model before and the 

four different dropout mechanisms are applied. A table of results given in Appendix D. 
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Figure 5.2: Graph of first time point treatment estimates (and standard errors) before and after 

dropout, for varying correlation values in skewed data with 1000 patients 

 
 

 

As with the well-balanced data, a correlation value of 20% gives the least amount of 

difference between the true and estimated treatment effects. All 3 of the datasets give an 

overestimation of the true effect, with a pattern of increasing size with the higher correlation value 

applied. For the datasets with 20% and 60% correlation there does not appear to be much variation 

in the different types of dropout applied, or the effect of dropout from the estimates with no 

dropout applied. However, for the 40% dataset there appears to be a systematic decrease in the 

estimated treatment effect with the application of the drop out mechanisms. These differences can 

be quantified and are given in Table 5.5 
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Table 5.5: Difference between the average treatment effect at first time point from repeated 
measures model before and after dropout and the true effect from a single time point model for 
skewed data 

  Effect Difference 

Correlation 
value 

True 
effect 

No 
dropout 

Dropout 
1 

Dropout 
2 

Dropout 
3 

Dropout 
4 

20% 0.072 0.010 0.009 0.005 0.006 0.010 

40% 0.05 0.112 0.054 0.057 0.056 0.053 

60% -0.001 0.070 0.060 0.067 0.065 0.062 

Dropout 1: MCAR – equal dropout; dropout 2: MAR – equal dropout; dropout 3: MAR – unequal dropout; 
dropout 4: MCAR – unequal dropout 

 

 

The table shows that the differences between the estimates are of a similar magnitude for 

the higher correlations, with small differences seen in the 20% correlated dataset, as shown in 

Figure 5.2 as well. For the 20% correlated dataset, data MAR with either equal or unequal drop out 

has a smaller difference in estimates than MCAR data, whereas this is reversed for the larger 

datasets with data MCAR providing more similar estimates with the repeated measures model.  

 

5.5      Discussion 

 

The aim of this chapter was to use a simulation study in order to identify if there was a 

scenario where the repeated measures model was able to estimate the value of the true effect at 

the first time point well. There were four different dropout patterns that were applied to a variety 

of datasets. The dataset included randomly generating ordinal data with correlations structure of 

20%, 40% and 60% between the repeated measures. The randomly generated data were generated 

using both a well-balanced distribution and a skewed distribution, giving a total of 6 different 

datasets of varying correlation structures, distributed data and sizes.  

After the data had been generated, the four dropout patterns were applied to the data in 

turn and a repeated measures model generated the treatment effect each time this occurred. It 

was done 500 times for each scenario. The estimates fitted were summarised and compared in 

order to look for patterns of how well the data can estimate the true effect estimated at the single 
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time point, without repeated measures. It was found that there was no real pattern to which 

scenarios were best at predicting the true effect. The dropout mechanism varied between scenarios 

as to which was best. When there was 20% correlation, the first time point for the repeated 

measures model had the closest treatment effects to the true effect, which is surprising as you 

would expect that a larger correlation structure would give more similar results over time and 

therefore be better at predicting the first time point, as the other values would be similar. A more 

detailed comparison of the studies is given below.  

 

 

5.5.1 Comparison of datasets 

 

Having used three different correlation values before applying the various dropout 

mechanisms, comparisons are able to be drawn with how well the repeated measures models are 

able to predict the true value of the data before and after dropout mechanisms are able to be 

applied. We can conclude several things when comparing the well-balanced and skewed datasets. 

Firstly, there is a large amount of agreement between the true effect of the simulated data and the 

effects estimates using the repeated measures data, both before and after the dropout 

mechanisms have been applied. This is most surprising because in the scenario, there is likely to be 

more variation in the simulated data because there is the lowest correlation structure of the 3 

applied to it. There will be more change over time being captured and estimated within the model, 

as the repeated measures model takes into account all the follow-up points as well as the initial 

time point. When the data is well-balanced, there does not appear to be a pattern in the different 

drop out mechanisms applied, as there is some disagreement between the datasets, when the data 

is skewed there do appear to be differences in effect of the dropout mechanisms.  

Secondly, we can look at the percentage change between the repeated measures effects 

and true effect of the model. These tables are given in Appendix E. The first table, Table E1 looks at 

the percentage change of the true effect and the estimated effect after dropout. The percentage 
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changes are calculated for the two different types of dropout patterns as well. The average 

percentage change for the MAR dropout and the MCAR dropout patterns are detailed, to see 

whether the type of dropout applied has an effect on the size of the bias. The second table looks at 

the average percentage change for the rates of the dropout to see whether dropout mechanisms 

with equal dropout rates have a different percentage change from those where the dropout pattern 

applied with unequal dropout rates.  

When the correlation is set at 20%, the smallest percentage change values are produced 

for all types and sizes of data, approximately 3% difference compared to the size of the true effect. 

Looking at the two different dropout types when the correlation is 40% or 60%, the MCAR dropout 

produces more scenarios with smaller percentage change values, with equal percentage change in 

the 20% correlated data set.  

It becomes very obvious from looking at the table, Table E1 that when the treatment effect 

calculated is very small, the percentage change is very large. This occurs with several of the 

calculated values when the correlation is at 40% or 60%. Some of the values are as high as a 6600% 

change when comparing the size of the bias to the size of the treatment effect. However, the 

treatment effect is so small (- 0.001) that we would expect to see a large value of percentage change 

even though the bias is no larger than the other bias values calculated in the other datasets.  

If we consider the second table, Table E2 where the percentage dropout is compared for 

equal and unequal dropout rates, it can be found that when the data has 20% correlation, unequal 

dropout rates produce smaller percentage change than the equal rates; however, this is reversed 

when the correlation is set at 40% and 60%. Once again there are several percentage change values 

that are very large for the treatment effects that are very small. These tables, Tables E1 and E2 are 

used for more of a descriptive value, as a percentage change of 6350% is hard to quantify, although 

there are justifications for why values of this size are seen.  
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5.5.2 Further work 

 

Obviously, there are still a variety of different scenarios that could be applied to the data. 

The first approach would be to look at the size of dropout that was used. Here, when there were 

equal dropout rates, total dropout of 20% was used. This was a large dropout, but without causing 

a majority of missing data. When there were unequal dropout rates the rate in the treatment group 

was halved to 10% missing data. Other dropout rates may provide different results.  

Also, it is important to note that the ordinal data generated had seven categories in order 

to make them comparable to the mRS, our outcome of interest for the analyses throughout the 

thesis. The mRS has the category of death, therefore an individual who has died will always have a 

mRS value and will be included throughout the follow-up. The dropout mechanisms applied to the 

data were unable to capture this and dropped out an individual even if they had a score of 7 (the 

highest score on the randomly generated data and therefore similar to death on the mRS). This was 

due to the monotone nature of the dropout mechanism. An extension would be to try to model a 

missing data mechanism that reflected the mRS more similarly, which produced the missing data, 

but kept the highest score on the scale complete to see how this affects the treatment estimates 

from the repeated measures analysis.  

 

5.5.3 Conclusions 

 

The simulation study that has been conducted in this chapter has highlighted that there 

may not be a pattern to be identified as to when the repeated measures model fits the outcome at 

the first time point and when there is variation seen in the estimates. The data generated here had 

3 different correlation structures applied to it, however there does not seem to be a clear pattern 

arising as to whether the type of missing data the follow-up has or whether the equal or unequal 

dropout rates are about to be modelled better.  
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The following chapter moves away from the ordinal regression models that have been 

fitted in the previous chapters and moves on to a different approach, which will make difference 

assumptions about the data and apply multi-state Markov models to model how individuals move 

over time.
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6   Multi-state modelling 

 

Having considered how well the repeated measures regression models fit the data using 

both the SO2S trial data and a simulation study, the analysis now moves on to alternative methods. 

The first of these methods considered for the analysis of longitudinal ordinal data is a multi-state 

Markov model. This method allows for the ordinality of the scale to be preserved while treating 

each point on the scale as an individual category. Patients transition between states, which 

represent each of the categories in the ordinal score.  

 The first model fitted requires individuals to have at least 2 complete follow-up time points, 

so individuals with missing data are removed from the analysis. The second model fitted uses the 

idea of censored states in order to incorporate those individuals who have missing data, allowing 

them to be in the model without a state assigned at each follow-up point. 

 

6.1       Introduction 

 

Multi-state models based on Markov processes are a well-established method of 

estimating rates of transition between stages of a disease, and this is one of the proposed methods 

for analysing the longitudinal mRS scores. There are some considerations that must be made when 

fitting the multi-state Markov models, due to the nature of the data that is being modelled.  

Many previous publications that have used multi-state Markov models to analyse clinical 

data have considered fewer states in the model than the number of mRS disability states (7 in total 

including death) (O’Keeffe et al. 2011, Titman 2011, Saint-Pierre et al. 2003). Markov models have 

been used to relate progression in multiple sclerosis to baseline covariates (Palace et al. 2014). 

However, such models assume that further progression essentially depends only on the previous 

measurement and may be less able to cope with issues such as missing data and the need for 

imputation. Arguments for having an adjusted analysis in stroke trials would introduce multiple 
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parameter estimates, and the aim is to find a parsimonious model, therefore, only the treatment 

covariate was included in the model, this is in line with the regression models that have previously 

been fitted.  

Previously, there has been research being conducted by Cassarly in the use of multi-state 

models for acute stroke therapy clinical trials (Cassarly 2015). Other published articles have been 

found that conduct multi-state models within stroke research but their focuses are different to the 

project. The first used a 3 state model to look at the transitions between healthy, history of stroke 

and death (Kapetanakis et al. 2013). The second multi-state model found fitted a model the BI as 3 

states; a poor functional state (BI between 0 and 40), a moderate functional state (BI between 45 

and 80) and good functional state (BI greater than 80) (Pan et al. 2008b). 

The most common use of a multi-state model is in event history analysis, looking at when 

the event of interest has occurred, assuming that the time at which the event occurred is known. 

Multi-state models have previously been applied in several areas of medicine, including problems 

arising from lung and heart transplants, HIV infection and AIDS, breast cancer and cervical cancer 

screening, diabetic complications, hepatic cancer and liver cirrhosis (Cassarly 2015). There is also 

very little literature on how well the models work when the data being fitted are sparsely 

populated. The data that is being fitted here is sparsely populated in parts as there are a large 

number of health states and the movement between them can be considered restrictive. Most 

subjects transition into an adjacent state, whereas there are a few subjects that transition into a 

non-adjacent state. As well as this, the mRS is not recorded at baseline, only at time points during 

the follow-up.  

 

6.2       Methods 

 

A Markov multi-state model can be used in order to describe how an individual transitions 

through a series of states during a continuous period of time. It is an alternative method that can 
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be used to model an ordinal outcome with repeated measures. This is due to the nature of the 

ordinal scale, as each individual category on the scale can be treated as a state in its own right, 

reflecting the natural process of a disease transitioning through the different stages of severity in 

the scale. These models allow for all the information about disease severity to be included, with no 

need for a dichotomisation of the scale, which would lead to a loss of information and reduced 

statistical power. This type of model also allows those who have died to be included in the model 

as death can be included as a separate state, although once in that state it is impossible to move 

out of it, whereas individuals are otherwise free to move between any other states as appropriate. 

Usually, a multi-state model is fitted to data that represent a continuously observed 

process, so the state of the individual is known at all times during the follow-up period. The simplest 

example of this is a survival model where the patient is either alive or dead, where it is assumed 

the patient remains alive until the date of death is observed or the patient is censored. 

 

6.2.1 Illness death model 

 

A commonly used multi-state model is the illness-death model, where there are three 

states in the model representing health, illness and death. In this basic form, an individual is able 

to make a transition from health to illness, illness to death and also from health to death, as seen 

in Figure 6.1. The model can also be extended to allow individuals to recover from an illness where 

it is possible for the individual to transition from illness to health, shown in Figure 6.2. The state of 

death is known as an absorbing state and so although it is possible for an individual to transition 

into the state it is not possible for an individual to transition back out of this state.  
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Figure 6.1: Illness-death multi-state model 

 

 

Figure 6.2: Illness-death multi-state model with recovery 

 

 

 

6.2.2 Disease progression model 

 

This basic illness-death model with recovery can further be extended to include a series of 

successively more severe disease stages with an absorbing death state. The individual may move 

though the disease states by advancing or recovering into the neighbouring state from which they 

are currently in, shown in Figure 6.3. The final state of the model is the most severe in terms of 

disease progression and is usually the absorbing state of the model, commonly death. The stages 

of the disease are able to be modelled as a both homogeneous continuous-time and discrete time 

Markov process, described in 6.2.4.  

 

 Figure 6.3: Disease progression multi-state model 
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Healthy 

Ill Dead 
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Ill Dead 



 

Chapter 6  135 
 

 
6.2.3 Multi-state model for panel data 

 

In longitudinal data where there are repeated measures for the outcome of interest, 

although the current state of the individual is recorded at set times during the follow-up, the actual 

time at which the transition into the state is usually unknown. This is because the individuals are 

only assessed at specific time points – usually prearranged, such as follow-up visits at which 

monitoring information is collected. Although a fixed schedule is usually specified, this is usually 

hard to comply with due to the health of the patient. Date of death is usually known as an exact 

date within the arranged time points as this is recorded separately and so the transition to death is 

usually known in more detail than the rest of the outcomes being measured. It is also possible to 

have censored observations within a multi-state model; this is where it is known that the patient is 

alive (as they have not been recorded as dead) but the actual current state of the individual is 

unknown. These censored observations could be individuals that are lost to follow-up during the 

follow-up period.  

Data that take the form of a continuous process but are recorded at discrete time points 

are known as panel data. Panel data can be modelled using both continuous and discrete multi-

state models, although in order for the discrete model to be used, the time in between each time 

the outcome is recorded during the follow-up period must be equally spaced.  

 

6.2.4 Markov property 

 

In order to fit a multi-state model to panel data, it must be assumed that the Markov 

property is valid for the data. The Markov property refers to the memoryless property of a 

stochastic process and requires future states of the model to depend only on the current state and 

not those that have come before it. This means that the transition intensity (see definition below) 

that is being estimated is independent of the observation history of all other transitions made up 

to the present transition.  
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6.2.5 Transition intensities 

 

The event of interest in a multi-state model is the transition of an individual between two 

different states. The state that an individual moves into is governed by a set of transition intensities 

that are calculated for each pair of states within the model. The intensities may also depend on the 

time at which the event occurred, or even more generally a set of individual-specific or time-

dependent explanatory variables, denoted here as z(t). The transition intensity represents the 

instantaneous risk of an individual moving from one state to the other.  

Suppose an individual moves from state r to state s, and s≠r, then the transition intensity 

qrs(t, z(t)) is: 

 

q𝑟𝑠(t, z(t)) =  lim
𝛿𝑡 →0

𝑃(𝑆(𝑡 + 𝛿𝑡) = 𝑠|𝑆(𝑡) = 𝑟)

𝛿𝑡
 

 

The qrs values form an R X R matrix, Q, whose rows sum to 0, such that the diagonal entries are 

defined by: 

− ∑ 𝑞𝑟𝑠

𝑠≠𝑟

  

 

This matrix is known as the transition intensity matrix, and it is constant throughout the 

follow-up period in a time-homogeneous model. In time-homogeneous models each qrs is 

independent of time. The amount of time that an individual is in state r is exponentially distributed 

with a mean of -1/qrr. The probability of an individual moving into state s from state r is –qrs/qrr.  

The ‘msm’ package in the software package R can be used to fit multi-state Markov models 

to the data. This package has been designed to allow a general multi-state model to be fitted to the 

data and uses methods that allow models for continuous time Markov models for panel data. 
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6.3      Application to SO2S trial data 

 

The model for disease progression, in this case, is described by the following transition 

intensity matrix. There are eleven non-zero, non-diagonal entries which represent the 

instantaneous risk of moving from state r to state s. Each non-zero element indicates a transition 

that is able to occur within the model. The seventh row of the matrix has entries that are all set to 

0 as this is the absorbing state in the model and it is impossible to transition out of this state. It was 

also decided to assume that in order to move between states more than 1 state apart a patient 

would have moved through the intermediate states. Because of this, patients can only transition 

into death from the previous state and not every state in the model. A model with a transition 

straight into death from any other state may be considered as an extension in further work.  
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The inclusion of control variables in multi-state models proves tricky, as each time a variable 

(continuous or dichotomised) is introduced into the model, the number of parameters to be 

estimated increases by 11, as there are 11 possible transitions that are being modelled. This can 

lead to complex models when a large number of control variables are included, which can be 

computationally intensive and the model may fail to converge on a maximum likelihood estimation. 

Therefore, it is important that the specific control variables to be included are carefully pre-defined 

using clinical knowledge. The main and only predictor variable included in the current model is the 

treatment that each individual received: either standard care or oxygen treatment. By including 
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treatment, the model created is interpretable and can be compared to other models that have been 

fitted to the SO2S data. The models converged to the maximum likelihood and the Hessian matrices 

were estimated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. A Hessian matrix is 

a square matrix of second-order partial derivatives, which can be approximated using an iterative 

methods such as the BFGS algorithm, which has been shown to perform well (Liu & Nocedal 1989). 

In order to determine whether the Markov property is valid for the model, the observed 

and expected numbers of individuals in each state are plotted over the follow-up time. An 

assumption of the model could be considered to be violated if there is a significant deviation of the 

expected numbers from those that were actually observed. This method is also used to assess the 

goodness of fit of the model. As there is a covariate included in the model, a likelihood ratio test 

will be conducted in order to compare nested models. This will allow us to determine whether the 

included covariate is statistically significant within the model.  

 

6.4        Results 

 

6.4.1  Disability progression model with no censoring 

 

The first model that was applied to the data considered all those patients who had 2 or 

more recorded mRS values over the 12-month follow-up time, whether the values recorded were 

at consecutive time points or with a break in between the recorded values.  

A total of 8,003 individuals were recruited to the SO2S trial and followed up over 12-months. 

In total there were 278 (3.5%) individuals who were completely lost to follow-up, having no mRS 

value recorded at any of the time points. These individuals were excluded from the analyses along 

with individuals who had two missing mRS follow-up values. There were 27 individuals missing a 

mRS score at both the 3- and 6-month follow-up points, 189 missing a mRS score at both the 6 and 

12-month follow-up points and 5 individuals missing a mRS score at both the 3- and 12-month 
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follow-up points. These individuals were all excluded from the analyses as they only had one 

recorded mRS value and so did not make any transition. Finally, individuals who had died at 3 

months were excluded from the analysis as they would make no transition between states as they 

were in the absorbing state at the start. This excluded 633 individuals from the analysis. This left 

the dataset with 6,871 individuals with 2 or more follow-up points where the mRS value was 

recorded for inclusion in the model. 

The transitions that occur from one visit in the follow-up to the next are described below. 

The first table, Table 6.1, shows the transitions that occur between the first time point at 3 months 

and the second time point at 6 months.  

 

Table 6.1: Observed transitions in SO2S data between 3 months and 6 months 

 6 month mRS  

3 month mRS 0 1 2 3 4 5 6 Missing Total 

0 661 160 33 30 19 4 3 10 920 

1 267 1,307 208 143 61 2 13 11 2,012 

2 41 234 476 115 59 5 3 6 939 

3 32 145 199 722 147 7 8 13 1,273 

4 15 49 84 201 695 57 28 21 1,150 

5 2 4 2 8 101 285 33 18 453 

Missing 2 1 0 1 4 1 0 0 9 

Total 1,020 1,900 1,002 1,220 1,086 361 88 79 6,756 

 

 

The above table shows how many of the individuals remained in the same mRS category 

between two time points. Approximately 61% (4,146/6,756) of all the observed transitions remain 

in the same state. It can then be seen that there are 79 individuals who have a missing value for 6 

months, who had a value recorded at 3 months (and 9 who had a missing value at 3 months but 

had a value at 6 months). There are many transitions within the data where an individual moves to 

the state next to the one that they are in at the first time point, approximately 25% of the observed 

transitions. For example, 267 individuals have a score of 1 on the mRS at 3 months and have 

transitioned to a mRS score of 0 by 12 months. These transitions are known as adjacent-state 
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transitions. It can be seen that although non-adjacent-state transitions occur, they are much less 

frequent than adjacent-state transitions. The second table, Table 6.2, shows the transitions that 

occur between the second time point of 6 months and the final time point at 12 months.  

 

Table 6.2: Observed transitions in SO2S data between 6 months and 12 months 

 12 month mRS  

6 month mRS 0 1 2 3 4 5 6 Missing Total 

0 647 211 33 35 29 4 6 55 1,020 

1 222 1,176 169 157 60 4 18 94 1,900 

2 42 216 407 160 91 8 10 68 1,002 

3 27 134 175 570 185 17 18 94 1,220 

4 21 38 71 131 609 77 38 101 1,086 

5 3 3 1 4 60 198 39 53 361 

6 0 0 0 0 0 0 88 0 88 

Missing 2 9 0 4 5 3 56 0 79 

Total 964 1,787 856 1,061 1,039 311 273 465 6,756 

 

 

Once again, it can be seen that the majority of individuals do not transition to another state 

but remain in the same state between the 6-month and 12-month follow-up. Half of those that do 

transition mainly move into an adjacent category in the mRS scale (24% of observed transitions). 

There are transitions that occur where an individual moves more than one state away from the 

original state they are in, with fewer of these types of transitions occurring as the size of the 

transition increases, as there are decreasing numbers when the number of states that are being 

transitioned gets larger. This leads us to have what is considered sparse data in the more extreme 

transitions (further from the diagonal) that are being attempted to be modelled. Also, the 79 

individuals that had missing data at 6 months all have a mRS value recorded at 12 months, with two 

scoring a 0, nine scoring a 1, four scoring a 3, five scoring a 4 and three scoring a 5 on the mRS scale. 

Of the individuals that have a missing mRS value at 6 months, 56 have died at the 12-month follow-

up point. Once again, non-adjacent transitions are sparse amongst the data and the number of 

patients moving between each of the states is similar to those that move between 3 and 6 months.  
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Due to the Markov property, the multi-state model only looks at the immediate transition 

and not the ones before it; therefore it models each transition on its own regardless of the time. 

This means that a summary table can be created (Table 6.3) of all the transitions that are made by 

every patient in the trial, regardless of the time period in which the transitions occurred. The 

summary table excludes those individuals who have a missing value at the start or the end of the 

transition period. In the table, an individual with 3 follow-up mRS values recorded will feature in 

the table twice, as each transition is counted separately, although the model accounts for each 

individual and the number of transitions they have.  

 

Table 6.3: All observed transitions in SO2S data between 2 consecutive time points 

 Time point 2 

Time point 1 0 1 2 3 4 5 6 

0 1,308 371 66 65 48 8 9 

1 489 2,483 377 300 121 6 31 

2 83 450 883 275 150 13 13 

3 59 279 374 1,292 332 24 26 

4 36 87 155 332 1,304 134 66 

5 5 7 3 12 161 483 72 

6 0 0 0 0 0 0 88 

 
 
 

6.4.1.1      Model results 

 

The transition intensities that were calculated for each possible transition defined by the 

model regardless of the treatment group that the individual is in are given in Table 6.4. The 

transition intensities represent the instantaneous risk of a patient moving from one state to an 

adjacent one, if the patient is to make a transition. It is possible for individuals to remain in the 

same state however this is not fitted in the model, therefore the diagonal entries of Table 6.4 and 

all other tables of transition intensities are calculated from the non-diagonal elements. The 

intensities on the diagonal are the negatives of the sum of the non-diagonal elements, as detailed 

in 6.2.5. The model is defined such that the intensities of each row must sum to 0. It can be seen 
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that there is quite a large difference in the transition intensities depending on where the patient 

started on the mRS scale. A larger transition intensity can be seen as a greater risk of the individual 

moving to the adjacent state. Those who have an extreme value, i.e. severely disabled or no 

disability at all, have a much smaller risk of making any transition than those patients who fall within 

the middle of the scale. 

The transition intensities can be separated into the two different treatment groups in the 

model, the standard care group and also the oxygen treatment group. The transition intensities and 

95% confidence intervals for these are given in Table 6.5. Confidence intervals are calculated from 

the covariance matrix of the estimates by assuming the distribution is symmetric on the log scale. 

Overall the transition intensities are very similar in the two groups to those calculated for the whole 

model before the treatment group was considered. Individuals in the standard care group have a 

fractionally smaller risk of moving to a lower state in the model, suggesting that they may be less 

likely to recover. There are also wider confidence intervals for the transition intensities in the 

standard care group, suggesting more uncertainty in the model. From these transition intensities, 

it is possible to calculate the hazard ratio comparing the oxygen treatment group to the standard 

care group, to allow interpretation of the treatment effect. The hazard ratios are calculated by 

taking the exponential of the transition intensities calculated for each pair of adjacent states.  
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Table 6.4: Transition intensities and confidence intervals of multi-state model 

 Transition intensities (95% confidence interval) 

 Final state 

Initial 

state 

0 1 2 3 4 5 6 

0 -0.10 (-0.11, -0.09) 0.10 (0.09, 0.11)      

1 0.06 (0.05, 0.06) -0.17 (-0.18, -0.16) 0.11 (0.10, 0.12)     

2  0.21 (0.20, 0.23) -0.54 (-0.59, 0.50) 0.33 (0.29, 0.37)    

3   0.26 (0.23, 0.30) -0.38 (-0.41,-0.35) 0.12 (0.11, 0.13)   

4    0.11 (0.10, 0.12) -0.16 (-0.17,-0.15) 0.05 (0.04, 0.05)  

5     0.08 (0.07, 0.09) -0.15 (-0.16, -0.14) 0.07 (0.06, 0.08) 
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Table 6.5: Transition intensities and confidence intervals of multi-state model for oxygen treatment and standard care group separately 

  Oxygen treatment transition intensities (95% confidence intervals) 

 Final state 

Initial 

state 

0 1 2 3 4 5 6 

0 -0.10 (-0.11, -0.09) 0.10 ( 0.09, 0.11)      

1 0.06 (0.05, 0.07) -0.18 (-0.19, -0.16) 0.12 (0.11, 0.13)     

2  0.22 (0.20, 0.24) -0.54 (-0.60, -0.49) 0.33 (0.28, 0.38)    

3   0.27 (0.23, 0.32) -0.39 (-0.43, -0.34) 0.12 (0.10, 0.13)   

4    0.11 (0.10, 0.12) -0.16 (-0.17, -0.15) 0.05 (0.04, 0.05)  

5     0.08 (0.06, 0.09) -0.15 ( -0.17, -0.13) 0.07 (0.06, 0.08) 

 Standard care transition intensities (95% confidence intervals) 

 Final state 

Initial 

state 

0 1 2 3 4 5 6 

0 -0.10 (-0.11, -0.09) 0.10 ( 0.09, 0.11)      

1 0.05 (0.05, 0.06) -0.15 (-0.17, -0.14) 0.10(0.09, 0.11)     

2  0.21 (0.18, 0.23) -0.54 (-0.60, -0.49) 0.33 (0.27, 0.41)    

3   0.24 (0.19, 0.29) -0.35 (-0.42, -0.31) 0.12 (0.10, 0.14)   

4    0.11 (0.10, 0.13) -0.16 (-0.19, -0.15) 0.05 (0.04, 0.06)  

5     0.08 (0.06, 0.10) -0.15 ( -0.18, -0.13) 0.08 (0.06, 0.09) 
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The following table, Table 6.6, details the hazard ratios and the 95% confidence intervals 

detailing the chance an individual has of moving to an adjacent state in the model in the treatment 

group compared to the standard care group. The hazard ratio shows the association between the 

treatment and the rate of transition. A hazard ratio of one indicates that there is no association 

between treatment and the rate of transition meaning there is no difference between the two 

groups. The interpretation of the hazard ratio depends on the transition that is occurring. In Table 

6.6 the first column represents transitions down the mRS scale, indicating recovery whereas the 

second column represents transitions to a higher mRS score, which is a worse scenario.  

  A hazard ratio larger than one indicates a positive association between treatment and rate 

of transition and is favourable on the downward transitions. A hazard ratio of less than one 

indicates a negative association, which is favourable on the upwards transitions.  

 

Table 6.6: Hazard ratios for oxygen treatment compared to standard care group 

Hazard ratios (95% confidence interval) 

Treatment vs Control 0 to 1 0.97 (0.81,1.17) 

1 to 0 1.12 (0.94,1.34) 1 to 2 1.16 (0.98,1.37) 

2 to 1 1.05 (0.88,1.25) 2 to 3 0.99 (0.76,1.28) 

3 to 2 1.14 (0.88,1.47) 3 to 4 0.97 (0.82,1.15) 

4 to 3 0.98 (0.81,1.18) 4 to 5 0.94 (0.75,1.18) 

5 to 4 0.99 (0.73,1.35) 5 to 6 0.94 (0.73,1.20) 

Favourable 

outcome 

1.03 (0.96, 1.11) Unfavourable 

outcome 

1.09 (1.01, 1.18) 

 

 

Most of the hazard ratios presented show a positive treatment effect, suggesting that 

treatment may be beneficial when considering the rate at which patients’ transition, if a transition 

occurs. For example, the oxygen treatment group has a 12% increase in the risk of moving from a 

mRS of 1 to a mRS of 0 compared to the standard care group, suggesting a favourable outcome. 

However, the oxygen treatment group also has a much higher risk of moving in the opposite 

direction from a mRS of 1 to a mRS of 2 that the standard care group, approximately 16%, which is 
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an unfavourable outcome. This is the only unfavourable outcome in the data, with a hazard ratio of 

less than one, suggesting the treatment group is less likely to make that transition, if the transition 

occurs.  

Otherwise, the treatment group has a very small, non-significant, reduced risk of moving 

into a higher category on the mRS than the standard care group. None of the associations that are 

seen in the model are statistically significant, suggesting any possible benefit received from the 

treatment is not large enough to be considered a real benefit. Even though the results produced 

are not statistically significant, they still provide an understanding of the treatment effect for an 

individual receiving oxygen treatment when considering the full mRS ordinal scale, and specifically 

how it varies depending on where an individual is in the scale. Although it is not possible to calculate 

a single treatment effect, it is possible to apply constraints to the model that restrict the upwards 

and downward transitions to be equal at all points on the scale. In Table 6.6 it can be seen that 

these overall hazard ratios calculated indicate an increase in the risk of moving for the treatment 

group, regardless of the direction of the movement, (recovery transition OR 1.03 (0.96, 1.11, 

worsening transition OR 1.09 (1.01, 1.18)). By constraining the effects to be the same (in a similar 

manner to the proportional odds assumption) the benefit of treatment has been masked, as the 

unfavourable outcome between 1 and 2 appears to be influential.  

As well as considering the hazard ratios and instantaneous risk with the transition 

intensities, it is also possible to calculate the probability of each state s being the next state in the 

process after each r state, calculated as –qrs/qrr for each defined entry in the transition intensity 

matrix. This method gives a more intuitive parameterisation of a multi-state model than the raw 

transition intensities. Table 6.7 gives the probability of moving into an adjacent state for both the 

standard care and the oxygen treatment group. This table looks solely at individuals who move to 

an adjacent state, and ignores those who stay in the same state. The sum of the rows total 100% as 

if an individual does not move to one adjacent state then they are assumed to move the other way.



 

 

 

 
 
 
 
 
Table 6.7: Probability of moving to an adjacent state 

Initial State Probability of next state (%) (95% Confidence interval) 

Standard care 0 1 2 3 4 5 6 

0  1      

1 0.35 (0.3, 0.39)  0.65 (0.61, 0.70)     

2  0.38 (0.33, 0.45)  0.62 (0.55, 0.68)    

3   0.67 (0.61, 0.72)  0.33 (0.28, 0.39)   

4    0.69 (0.63, 74)  0.31 (0.26, 0.37)  

5     0.51 (0.41, 0.58)  0.49 (0.41, 0.58) 

Treatment        

0  1      

1 0.34 (0.30, 0.37)  0.66 (0.64, 0.69)     

2  0.39 (0.35, 0.44)  0.61 (0.56, 0.65)    

3   0.70 (0.66, 0.74)  0.30 (0.26, 0.34)   

4    0.70 (0.66, 0.72)  0.30 (0.27, 0.34)  

5     0.52 (0.46, 0.58)  0.48 (0.42, 0.54) 
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Obviously for those with a mRS value of 0 at the first time point the only adjacent state that 

they can transition to is a mRS score of 1, therefore if a transition occurs it will be into mRS 1, which 

is why the value is 100% for both the treatment and standard care groups. For both groups up until 

mRS of 3, patients are more likely to have a worse score at the next time point than see an 

improvement in the mRS score, although these transitions do occur. In the standard care group, an 

individual with a mRS score of 2 has a 62% chance of moving to a score of 3 and a 38% chance of 

moving to a score of 1; in the treatment group these probabilities are 61% and 39% respectively. 

However, patients that have a score of 3, 4 or 5 on the mRS are more likely to move to a score lower 

on the mRS scale at the following time point, which indicates an improvement. Looking at an 

individual who has a score of 3 on the mRS scale in the standard care group has a 67% chance of 

moving to a 2 compared with a 70% chance if they were in the oxygen treatment group. Although 

the values are quite similar throughout, there are slight differences in the probabilities calculated 

in the oxygen treatment group compared to the standard care group, where those who have a 

worse score to start in the treatment group are slightly more likely to see an improvement than 

those in the control group. As well as this, the estimated transition probability matrix can be 

estimated, which calculates where an individual will be during a given time period in the model. An 

individual is able to transition to any state in the model it is just assumed that they will have moved 

through adjacent states in order to get there.  

Table 6.8 details the estimated transition probabilities; they take the score at 3 months and 

estimate the probability of where an individual will be at 12 months. For example, those with a mRS 

score of 2 only have 19% chance of staying at the same score, a 9% chance of recovering to a score 

of 0 and a 30% chance of recovering to a score of 1. They may also worsen, with a 23% chance of 

scoring 3, 15% chance of scoring 4, a 3% chance of scoring 5 and a 1% chance of being dead at the 

next time point. Those with a score of 5 have a 30% chance of staying at 5 and a 37% chance of 

being dead at the next time point. They have a 2% chance of scoring a 1, 3% chance of scoring a 2, 

7% chance of scoring a 3 and 20% chance of scoring a 4. The two scores, (mRS=2 and 5) are the only 



 

Chapter 6  149 
 

 
scores where at 12 months the probability of an individual moving into an adjacent state is higher 

than the probability that they will remain in the same state. Table 6.9 details these estimated 

transition probabilities when stratified into the two groups in the model.  



 

 

 

 

 

 

Table 6.8: Probabilities for an individual in each state to move to any other state in the model 

 
 

  

 Probabilities of where an individual will move to at the next time point 

 Final state 

Initial state 0 1 2 3 4 5 6 

0 0.50 (0.47,0.52) 0.35 (0.33,0.37) 0.08 (0.08,0.10) 0.06 (0.05,0.06) 0.02 (0.01,0.02) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 

1 0.20 (0.19,0.21) 0.44 (0.42,0.45) 0.16 (0.16,0.17) 0.14 (0.13,0.15) 0.06 (0.05,0.06) 0.01 (0.01,0.02) 0.00 (0.00,0.00) 

2 0.09 (0.08,0.10) 0.30 (0.29,0.31) 0.19 (0.19,0.20) 0.23 (0.22,0.24) 0.15 (0.14,0.16) 0.03 (0.02,0.03) 0.01 (0.01,0.02) 

3 0.05 (0.04,0.05) 0.21 (0.20,0.23) 0.19 (0.18,0.19) 0.26 (0.25,0.28) 0.22 (0.21,0.24) 0.05 (0.04,0.05) 0.02 (0.01,0.02) 

4 0.01 (0.01,0.02) 0.08 (0.08,0.09) 0.11 (0.10,0.12) 0.21 (0.20,0.23) 0.38 (0.36,0.40) 0.13 (0.12,0.14) 0.07 (0.06,0.08) 

5 0.00 (0.00,0.00) 0.02 (0.01,0.02) 0.03 (0.02,0.04) 0.07 (0.06,0.08) 0.20 (0.18,0.23) 0.30 (0.27,0.34) 0.37 (0.34,0.41) 

6 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 1 (1.00, 1.00) 
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Table 6.9: Probabilities for an individual in each state to move to any other state in the model stratified by treatment group 

 Standard care estimated transition probabilities 

    Final state    

Initial state 0 1 2 3 4 5 6 

0 0.49 (0.44,0.54) 0.36 (0.33,0.40) 0.08 (0.07,0.09) 0.05 (0.05,0.07) 0.02 (0.01,0.02) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 

1 0.19 (0.17,0.21) 0.46 (0.43,0.49) 0.15 (0.13,0.16) 0.14 (0.12,0.10) 0.06 (0.05,0.06) 0.00 (0.00,0.01) 0.00 (0.00,0.00) 

2 0.08 (0.07,0.10) 0.30 (0.28,0.33) 0.18 (0.16,0.19) 0.24 (0.22,0.26) 0.15 (0.14,0.17) 0.03 (0.02,0.03) 0.01 (0.01,0.01) 

3 0.04 (0.04,0.05) 0.20 (0.18,0.23) 0.17 (0.16,0.19) 0.28 (0.25,0.30) 0.23 (0.21,0.26) 0.05 (0.04,0.06) 0.02 (0.01,0.02) 

4 0.01 (0.01,0.02) 0.08 (0.07,0.09) 0.10 (0.09,0.12) 0.22 (0.20,0.24) 0.38 (0.35,0.41) 0.13 (0.11,0.16) 0.07 (0.06,0.09) 

5 0.00 (0.00,0.00) 0.01 (0.01,0.02) 0.03 (0.02,0.04) 0.07 (0.06,0.09) 0.20 (0.16,0.24) 0.30 (0.24,0.35) 0.39 (0.33,0.45) 

6 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 1.00 (1.00,1.00) 

 Oxygen treatment estimated transition probabilities 

    Final state    

Initial state 0 1 2 3 4 5 6 

0 0.50 (0.47,0.53) 0.34 (0.32,0.36) 0.09 (0.08,0.10) 0.06 (0.05,0.06) 0.02 (0.01,0.02) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 

1 0.20 (0.19,0.22) 0.43 (0.41,0.44) 0.16 (0.15,0.18) 0.14 (0.13,0.15) 0.06 (0.05,0.06) 0.01 (0.00,0.01) 0.00 (0.00,0.00) 

2 0.10 (0.09,0.11) 0.30 (0.29,0.32) 0.19 (0.18,0.21) 0.23 (0.21,0.24) 0.15 (0.13,0.16) 0.02 (0.02,0.03) 0.01 (0.00,0.01) 

3 0.05 (0.05,0.06) 0.22 (0.20,0.23) 0.19 (0.18,0.20) 0.26 (0.24,0.27) 0.22 (0.20,0.24) 0.05 (0.04,0.05) 0.01 (0.01,0.02) 

4 0.01 (0.01,0.02) 0.08 (0.08,0.09) 0.12 (0.11,0.13) 0.21 (0.19,0.23) 0.38 (0.36,0.41) 0.13 (0.11,0.15) 0.06 (0.05,0.07) 

5 0.00 (0.00,0.00) 0.02 (0.01,0.02) 0.03 (0.03,0.04) 0.07 (0.06,0.08) 0.21 (0.18,0.24) 0.31 (0.27,0.35) 0.37 (0.32,0.41) 

6 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 1.00 (1.00,1.00) 
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The goodness of fit can be tested by looking at the observed and expected values predicted 

by the model and the prevalence plots comparing the expected and observed values. The observed 

values are shown in Table 6.10. The observed values at months 4 and 5 are the observed values at 

month 3 carried forward, similarly the observed values at 6 months are carried forward to 7, 8, 9, 

10 and 11 months. There are 6,747 individuals that start in the model, this is reduced to 6,291 

throughout the rest of the follow-up. These values are both smaller than the 6,871 individuals 

included in the dataset as the model has removed those with missing values. It can be seen that 

over time there is an increase in the number of observed individuals with mRS scores of 0 and 6. 

There are decreases seen in the number of individuals who are observed with a score of 1, 2, 3, 4, 

or 5 from 3 months to 12 months. It is known that a lot more individuals die within the 12-month 

follow-up than are seen here; however, due to those individuals with missing values being excluded, 

all the transitions to death are not able to be captured, only those of individuals already in the 

model.  

 

Table 6.10: Observed numbers of individuals in each state of the model throughout follow-up 

 Model state (mRS score) 

Observed individuals 

at each time point (month) 

0 1 2 3 4 5 6 Total 

3 920 2,012 939 1,273 1,150 453 0 6,747 

4 920 2,012 939 1,273 1,150 453 0 6,747 

5 920 2,012 939 1,273 1,150 453 0 6,747 

6 975 1,817 940 1,139 1,006 326 88 6,291 

7 975 1,817 940 1,139 1,006 326 88 6,291 

8 975 1,817 940 1,139 1,006 326 88 6,291 

9 975 1,817 940 1,139 1,006 326 88 6,291 

10 975 1,817 940 1,139 1,006 326 88 6,291 

11 975 1,817 940 1,139 1,006 326 88 6,291 

12 964 1,787 856 1,061 1,039 311 273 6,291 

 

 

The expected values throughout the model are detailed in Table 6.11. Here there is a 

steadier change in the number of individuals within each category compared to the large jumps 
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seen in the observed data - where the observed values can only be ‘updated’ at 6 and 12 months, 

the expected values are updated by the model at each time point. It can be seen that, like the 

observed data, there are increases seen in the number of individuals who are expected to score a 

0 and 6 over time, with decreases in the remaining scores.  

 

Table 6.11: Expected numbers of individuals in each state of the model throughout follow-up 

 Model state (mRS score) 

Expected individuals 

at each time point 

0 1 2 3 4 5 6 Total 

3 920 2,012 939 1,273 1,150 453 0 6,747 

4 939 1,976 968 1,243 1,147 444 29 6,747 

5 956 1,951 980 1,226 1,141 435 58 6,747 

6 915 1,786 914 1,126 1,051 392 107 6,291 

7 924 1,774 911 1,119 1,044 386 133 6,291 

8 932 1,763 907 1,113 1,037 381 158 6,291 

9 939 1,754 903 1,106 1,030 376 183 6,291 

10 945 1,746 898 1,100 1,023 371 207 6,291 

11 950 1,739 894 1,094 1,016 367 232 6,291 

12 954 1,732 889 1,088 1,010 363 256 6,291 

 

 

The prevalence plots in Figure 6.4 plot the observed and expected values for each category 

in the mRS scale. These can be used to assess how well the model fits the data by comparing how 

similar the prevalence of the expected and observed values are for each category in the model. 

Looking at the figure that there is very little variation seen in the expected and observed values 

from the model. This suggests that the multi-state model with no censoring and the treatment 

covariate included fit the model well.  
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Figure 6.4: Observed and expected prevalence plots over follow-up, stratified by mRS score for 
multi-state model with no censoring  

 

 

A likelihood ratio test was performed comparing the model with the treatment covariate 

included to the null model in order to calculate the statistical significance of treatment in the model. 

According to the likelihood ratio, the model containing treatment was not statistically significant 

(p=0.55) and therefore the treatment covariate was not necessary for inclusion in the model.  

This analysis had anyone with 2 or more missing values removed from the dataset, which 

is not ideal as it would be beneficial to be able to model everyone in the data set like the regression 

models. In order to address this problem, a censored state was added to the model. This allows an 

individual with any missing value to be included in the model as they can be placed in a censored 

state, meaning that they are known to be alive, but the mRS score is unknown, apart from knowing 

that it is not a score of 6. Therefore, all those individuals who were removed in the first analysis are 

now able to be included, as if the value is missing then they will be placed in a censored state, out 

of which they can transition.  
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6.4.2  Disability progression with censored states 

 

As the model including treatment was not statistically significant, the treatment variable 

was removed from the model for the following analyses. Instead, the idea of having censored states 

within the model was introduced. By introducing a censored state, all individuals who had not died 

at 3 months could be included in the model, regardless of the number of actual observations 

recorded for each patient. Table 6.12 gives all the possible transitions that were made by individuals 

between 3 months and 6 months after the stroke, including a censored category.  

 

Table 6.12: Observed transitions in SO2S data between 3 months and 6 months including censoring 

 6 month mRS  

3 month mRS 0 1 2 3 4 5 6 Censored Total 

0 661 160 33 30 19 4 3 31 941 

1 267 1,307 208 143 61 2 13 70 2,071 

2 41 234 476 115 59 5 3 33 966 

3 32 145 199 722 147 7 8 37 1,297 

4 15 49 84 201 695 57 28 60 1,189 

5 2 4 2 8 101 285 33 37 472 

Censored 2 2 0 2 5 3 115 27 156 

Total 1,020 1,901 1,002 1,221 1,087 363 203 295 7,092 

 

 

Looking at the table it can be seen that there are no changes in most of the main body of 

the table from Table 6.1. All the main transitions that were there before are still there; however, 

the main difference is the additional transition that appears due to allowing censored states into 

the model. In Table 6.2 for the disability progression model without censoring, there were 

individuals who had a missing value for 3 months but had a scores recorded at a later time point. 

These individuals are amongst the censored individuals in Table 6.12. The additional individuals in 

this model are those individuals who had 2 missing scores, as they were previously removed, but 

can now be included due to the censored states. There are 27 of these individuals – they will be 
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individuals that have a score recorded at 6 and 12 months, as individuals who had no score recorded 

at any follow-up time are removed from the model. 

 
Table 6.13: Observed transitions in SO2S data between 6 months and 12 months including censoring 

 12 month mRS  

6 month mRS 0 1 2 3 4 5 6 Censored Total 

0 647 211 33 35 29 4 6 55 1,020 

1 222 1,176 169 157 60 4 18 95 1,901 

2 42 216 407 160 91 8 10 68 1,002 

3 27 134 175 570 185 17 18 95 1,221 

4 21 38 71 131 609 77 38 102 1,087 

5 3 3 1 4 60 198 39 55 363 

6 0 0 0 0 0 0 203 0 203 

Censored 2 9 1 4 5 4 81 189 295 

Total 964 1,787 857 1,061 1,039 312 413 659 7,092 

 

 

Similarly, in Table 6.13, which shows the transitions between 6 months and 12 months post-

stroke. There are 189 individuals who have a censored value at 6 and 12 months – these individuals 

will have all transitioned from a value at 3 months to a censored state at 6 months. Originally, they 

would have been excluded from the model, but now they can be included in the form of a censored 

state, as it is known that they have not died, it is just unknown what category of the mRS they fall 

in. Once again, the Markov property for the multi-state model means that time can be ignored and 

all possible transitions combined into one state table that the multi-state model will analyse. All the 

potential transitions that are included in the model are given in Table 6.14.  
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Table 6.14: All observed transitions in SO2S data between 2 time points including censoring 

 Time point 2 

Time point 1 0 1 2 3 4 5 6 Censored 

0 1,308 371 66 65 48 8 9 86 

1 489 2,483 377 300 121 6 31 165 

2 83 450 883 275 150 13 13 101 

3 59 279 374 1,292 332 24 26 132 

4 36 87 155 332 1,304 134 66 162 

5 5 7 3 12 161 483 72 92 

Censored 4 11 1 6 10 7 196 216 

 

 

6.4.2.1      Model results 

 

As before, the transition intensities were calculated for each possible transition defined by 

the model, regardless of the treatment group that the individual was in, and they are given in Table 

6.15. As there is no covariate in the model, the risk of movement cannot be compared between 

groups as it is assumed that everyone in the model transitions in the same way.  

Once again, the risk of moving to an adjacent state is larger in the middle states and those 

patients who have a score of 3, 4, or 5 on the mRS are more likely to move down a score than up a 

score, indicating they are more likely to be getting better (there is a greater chance of reduced 

disability rather than increased disability). These results are similar to those given in Table 6.4, 

suggesting that this model produces similar results to the disability progression model with the 

treatment covariate included and no censoring. 

 



 

 

 

 
 
 
 
 

Table 6.15: Transition intensities and confidence intervals of multi-state model including censoring 

 Transition intensities (95% confidence interval) 

 Final state 

Initial 

state 

0 1 2 3 4 5 6 

0 -0.10 (-0.11,-0.09) 0.10 (0.09, 0.12)      

1 0.06 (0.05, 0.06) -0.17 (-0.18, -0.16) 0.11 (0.10, 0.12)     

2  0.21 (0.20, 0.23) -0.54 (-0.59, -0.50) 0.33 (0.29, 0.37)    

3   0.26 (0.23, 0.30) -0.38 (-0.41, -0.35) 0.12 (0.11, 0.13)   

4    0.11 (0.10, 0.12) -0.16 (-0.17, -0.15) 0.05 (0.05, 0.06)  

5     0.07 (0.06, 0.08) -0.16 (-0.17, -0.14) 0.09 (0.08, 0.10) 
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It is possible to calculate the probability of each state s being the next state in the process 

after each r state, calculated as –qrs/qrr for each defined entry in the transition intensity matrix. This 

method gives a more intuitive parameterisation of a multi-state model than the raw transition 

intensities. Table 6.16 gives the probability of moving into an adjacent state for all individuals. This 

table looks solely at individuals who move to an adjacent state, and ignores those who stay in the 

same state, like table 6.7 from the previous model.  

 



 

 

 

 
 
 
 
 

Table 6.16: Probabilities for an individual in each state to move to any other state in the model including censoring 

 Probability of next state (%) (95% confidence interval) 

Initial state Final state 

0 1 2 3 4 5 6 

0  1      

1 0.34 (0.31, 0.37)  0.66 (0.64, 0.69)     

2  0.39 (0.36, 0.43)  0.61 (0.57, 0.64)    

3   0.69 (0.66, 0.72)  0.31 (0.28, 0.34)   

4    0.69 (0.66, 0.72)  0.31 (0.28, 0.34)  

5     0.44 (0.40, 0.48)  0.56 (0.51, 0.60) 
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For individuals with a score of 1 or 2, they are more likely to move to the adjacent score 

that is higher, indicating that they are more likely to be more disabled after the transition. For those 

individuals with a mRS score of 3 or 4, they have a 69% chance of moving to a score of 2 and a 31% 

chance of moving to a score of 4. Finally, individuals who have a mRS score of 5 have a 44% chance 

of moving to a score of 4 and showing some recovery and a 56% chance of moving to a score of 6 

and dying at the next time point. These values are calculated for any instantaneous time point in 

the model.  

The estimated transition probability matrix can also be estimated, which calculates where 

an individual will be during a given time period in the model (Table 6.17). Here, an individual can 

transition to any state in the model, rather than just an adjacent state, which was the case for the 

probabilities before calculated above. 

 In terms of the estimated transition probabilities, it was once again seen that the highest 

probabilities were usually assigned to an individual staying in the same state that they were at the 

start. This was the case for mRS scores of 0 (50%), 1 (44%), 3 (26%) and 4 (38%). For a mRS score of 

2 the most likely transition was to a mRS score of 1 (30%) and for a mRS score of 5, the most likely 

transition was to a score of 6 (44%).  

 



 

 

 

 
 
 
 
 
 

Table 6.17: Probabilities for an individual in each state to move to any other state in the model including censoring 

 Probabilities of where an individual will move to at the next time point 

 Final state 

Initial 

state 

0 1 2 3 4 5 6 

0 0.50 (0.48,0.52) 0.35 (0.33,0.37) 0.08 (0.08,0.09) 0.06 (0.05,0.06) 0.02 (0.01,0.02) 0.00 (0.00,0.00) 0.00 (0.00,0.00) 

1 0.20 (0.19,0.21) 0.44 (0.42,0.45) 0.16 (0.15,0.17) 0.14 (0.13,0.15) 0.06 (0.05,0.06) 0.01 (0.01,0.01) 0.00 (0.00,0.00) 

2 0.09 (0.08,0.10) 0.30 (0.29,0.32) 0.19 (0.18,0.20) 0.23 (0.22,0.24) 0.15 (0.14,0.16) 0.03 (0.02,0.03) 0.01 (0.01,0.01) 

3 0.05 (0.04,0.05) 0.21 (0.20,0.23) 0.18 (0.17,0.19) 0.26 (0.25,0.28) 0.22 (0.21,0.24) 0.05 (0.04,0.05) 0.02 (0.02,0.02) 

4 0.01 (0.01,0.01) 0.08 (0.07,0.09) 0.11 (0.10,0.12) 0.21 (0.20,0.22) 0.38 (0.36,0.40) 0.13 (0.12,0.14) 0.08 (0.07,0.09) 

5 0.00 (0.00,0.00) 0.01 (0.01,0.02) 0.03 (0.02,0.03) 0.06 (0.05,0.07) 0.18 (0.16,0.20) 0.28 (0.25,0.31) 0.44 (0.41,0.47) 

6 0 0 0 0 0 0 1.00 (1.00,1.00) 

 

 

 

 

 

C
h

ap
te

r 6
 

1
62

 



 

Chapter 6  163 
 

 
The goodness of fit can be tested by looking at the observed and expected values predicted 

by the model and from these, the prevalence plots between the expected and observed values can 

show us how well the model fit with how similar the values are. The observed values in Table 6.18 

remain the same throughout intermediate time points until the information at the next time point 

is given. There were 7,092 individuals starting in the model and this is continued throughout as the 

individuals that are in a censored state, although no listed in Table 6.17 are included. There is a 

small increase in the observed numbers of individuals with a score of 0 and 6, with decreases seen 

in the numbers of individuals who score a mRS of 1, 2, 3, 4, or 5 over time. The data are now more 

representative of all the individuals who are included in the data set; at 12 months there are now 

413 deaths, in total there are 1,046 deaths by 12 months, but the individuals who had died at 3 

months still had be removed, all 633 of them as they occurred at the first time point, leaving us 

with 413 individuals.  

 

Table 6.18: Observed numbers of individuals in each state of the model with censoring throughout 
follow-up 

 Model state (mRS score) 

Observed individuals  

at each time point 

0 1 2 3 4 5 6 Total 

3 943 2,074 966 1,299 1,194 616 0 7,092 

4 943 2,074 966 1,299 1,194 616 0 7,092 

5 943 2,074 966 1,299 1,194 616 0 7,092 

6 1,046 2,000 1,002 1,252 1,147 442 203 7,092 

7 1,046 2,000 1,002 1,252 1,147 442 203 7,092 

8 1,046 2,000 1,002 1,252 1,147 442 203 7,092 

9 1,046 2,000 1,002 1,252 1,147 442 203 7,092 

10 1,046 2,000 1,002 1,252 1,147 442 203 7,092 

11 1,046 2,000 1,002 1,252 1,147 442 203 7,092 

12 1,040 2,036 857 1,180 1,180 386 413 7,092 

 

The expected values for each of the categories of the mRS that are estimated by the model 

are given in Table 6.19. The variation between the expected and the observed values throughout 

the follow-up as the expected values change at each month rather than at the inputted months like 
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the observed data. Generally, there is a decrease over time of the number of individuals with a mRS 

score of 0, 1, 3, 4, and 5. For the scores of 2 and 6, there is an increase in the expected numbers of 

individuals in these categories over the follow-up time. This is slightly different to what happens in 

the observed data, unlike the disability progression model with no censoring for which the trends 

in the expected data reflect the trends in the observed data.  

 

Table 6.19: Expected numbers of individuals in each state of the model with censoring throughout 
follow-up 

 Model state (mRS score) 

Expected individuals  

at each time point 

0 1 2 3 4 5 6 Total 

3 943 2,074 966 1,299 1,194 616 0 7,092 

4 963 2,036 994 1,272 1,194 585 48 7,092 

5 981 2,009 1,005 1,257 1,189 558 93 7,092 

6 1,007 1,971 1,006 1,239 1,176 514 178 7,092 

7 1,018 1,956 1,003 1,233 1,168 496 218 7,092 

8 1,027 1,944 999 1,227 1,159 479 257 7,092 

9 1,034 1,934 994 1,220 1,150 465 295 7,092 

10 1,041 1,924 989 1,214 1,141 452 331 7,092 

11 1,046 1,916 984 1,207 1,131 440 367 7,092 

12 1,051 1,908 979 1,200 1,122 430 401 7,092 

 

The prevalence plots in Figure 6.5 show the observed and expected values for each 

category in the mRS scale for the model with censored data. These can be used to assess how well 

the model fits the data by comparing the observed and expected values of prevalence. Looking at 

the figure, the observed and expected values of the model appear to be very similar, indicating the 

fit of the model can be assumed to be reasonable. The observed prevalence values are blue and 

the expected prevalence values are red.  
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Figure 6.5: Observed and expected prevalence plots over follow-up, stratified by mRS score for 
multi-state model with censoring  

 

 

6.5       Discussion 

 

This chapter aimed to fit a multi-state model to the data from the SO2S trial, which is a 

relatively new method in the longitudinal analysis of stroke trials. A multi-state model was chosen 

because the methods allowed the ordinal nature of the score observed, while also including the 

category of death in a meaningful way. By including death as an absorbing state, individuals in the 

model were able to transition to it, but not leave it, meaning that they would not contribute to the 

analysis anymore, in contrast to the regression models fitted. 

  Two different models were fitted to the data: one that included censored states and one 

where no censoring was considered. The models fitted found that although many patients did not 

undergo any transitions between 3 and 12 months, i.e. remained in the same mRS category, the 

probability for each individual making a transition into a state that is not their current state can be 

quantified. As with the regression model, the inclusion of treatment in the model was not 

statistically significant, and the interpretation of the treatment effect can be seen for each 

individual possible transition, rather than a treatment effect for the scale as a whole.  
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A multi-state model can be fitted to data that has regularly spaced or irregularly spaced 

time points. When the time in between each time the outcome is recorded during the follow-up 

period is equally spaced then a discrete model can be used, but only the continuous model can be 

used if the spacing is uneven. The model can also handle an increase in the number of time points 

included, and 2 time points is the minimum number of points to which a model could be fitted.  

Although the models can handle no baseline outcome, the model would benefit from the 

inclusion of a measurement closer to baseline, which would just be included as the initial values of 

the model. Missing data is more of an issue with a multi-state model, a missing value would not 

inform the model of where the individual was transitioning to or from. Therefore, missing data has 

to be dealt with in a specific way in these models, by the inclusion of censored states.  

The models work on modelling the transitions between states and therefore for an 

outcome with very little change, the transitions estimated would be done so using very little data. 

This is not dependent on the size of the transitions, the model can deal well with data in which the 

transitions are to nearby states and also when there are larger transitions, if the data is not sparse. 

The model can also handle patients who have large numbers of transitions.  

  

6.5.1  Model comparison 

 

It can be seen that the model with no censoring and the model with censored states 

included produce very similar results. The main difference is the inclusion of the treatment variable, 

which helped to make the model more interpretable; however, the likelihood ratio test found it to 

be not statistically significant.  

The first model with no censoring and the treatment covariate included shows that when 

considering the transition intensities calculated from the model there was a larger instantaneous 

risk of patients moving state when they are towards the middle of the scale (for example with a 

score of 3 or 4) than those who are at the extremes of the scale. Those who take an extreme value, 
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i.e. severely disabled or no disability, have a much smaller risk of making any transition than those 

patients who fall within the middle of the scale this may be because these individuals have such a 

large disability that it is to a large degree irreversible. Whereas those who have a lower score, either 

had little disability to begin with, or they have already recovered well and therefore they may 

continue this recovery beyond 3 months. These conclusions are different to the regression model, 

which fitted common odds ratio regardless of where an individual was on the scale.  

When the transition intensities are separated by the treatment that an individual received 

it can be seen that the transition intensities are very similar between the two groups (and thereby 

similar to those calculated for the whole model before the treatment group was considered). 

Individuals in the standard care group have a slightly smaller risk of moving to a lower state in the 

model, suggesting that they may be less likely to recover. The confidence intervals for the standard 

care group are slightly larger than the confidence intervals calculated for the oxygen treatment 

group, suggesting more uncertainty in the estimates, but there are half the number of individuals 

in the standard care group compared to the treatment group, which may lead to more uncertainty 

around the transition intensities.  

This model with the included covariate produces hazard ratios that are comparisons of the 

transition intensities that were calculated. For each adjacent state in the model for which a 

transition is defined in the intensity matrix, the hazard ratio can be calculated. The majority of the 

hazard ratios calculated showed a positive treatment effect (i.e. favouring oxygen), suggesting that 

treatment may be beneficial when considering the rate at which patients transition. The transitions 

where the treatment effect was largest were the transitions between 1 and 2, and 3 and 2 where 

individuals in the treatment group had a 16% (1 to 2) and 14% (3 to 2) increase in the risk of making 

the transition between the 2 states respectively. Otherwise, the oxygen treatment group have a 

very small reduction in the risk of moving into a higher category on the mRS than the standard care 

group. It is important to note that none of the associations seen were statistically significant and 

the treatment variable itself was not statistically significant within the model. The model was also 
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constrained in order to calculate 2 single hazard ratios, one for a favourable transition and one for 

an unfavourable transition. Both of the constrained hazard ratios show that the treatment group 

was more likely to move in either direction, and may have been influenced by the large effect of 

the transition between 1 and 2 as it contrasted all the other individual hazard ratios calculated. 

Although the constrained estimate was calculated, there is merit in the fact that the model 

produces individual hazard ratios. Clinically, they are most interpretable, as a clinician can be more 

specific with their patient about their potential to improve. A patient is interested in how they will 

recover rather than what other people have done or may do.  

The second model with the censored states included shows that when considering the 

transition intensities calculated by the model, these are similar to those seen in the model without 

the censored states. The risk of moving to an adjacent state is larger in the middle states and those 

patients who have a score of 3, 4, or 5 on the mRS are more likely to move down a score than up a 

score, indicating they are more likely to be getting better (there is a greater chance of reduced 

disability rather than increased disability). Individuals with as score of 1 or 2 are more likely to move 

to a score higher rather than a score lower and so this indicates that they are at greater risk of 

increased disability rather than reduced disability. Due to there being no covariate included in the 

model with censored states, hazard ratios for a covariate in the model cannot be calculated as there 

is nothing to be compared. The transition to death has increased due to more individuals being 

included in the model who had a censored state and moved to death, as in the first model this 

individual would have been excluded. The model fits the data well, as can be seen by the prevalence 

plots comparing the prevalence of the expected and observed values within the data. There are 

more individuals included in this analysis than the first model, which is due to the inclusion of the 

censored states.  

All the estimates given in both models are very similar, in term of the transition intensities 

and the probability of transition assigned from each state in the model. Because the models are so 

similar it is very hard to actually contrast them. There are benefits to using the model with censored 
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states as it allows more individuals to be included in the model, and will show a slightly more 

accurate representation of the transition to death as this transition represents most of the 

individuals who were excluded in the first model. These are the individuals that are of most interest 

(as an alternative method for treating the score for death was why the multi-state model was fitted 

in the first place). 

 

6.5.2  Further work 

 

There is already allied work being carried out in this area by (Cassarly 2015). They are 

looking at furthering the use of multi-state models with the mRS by seeking to include a latent 

baseline value estimated from the NIHSS recorded for each patient. This would allow the model to 

estimate transitions from baseline, not only from the 3-month value, allowing the whole year for 

follow-up to be considered. This work is being carried out using the NINDS dataset, and therefore 

it was not appropriate to conduct the multi-state modelling on this dataset as the results have 

already been produced (Cassarly 2015). It is possible to fit multi-state survival models, where the 

model uses states within a cox model framework, calculating survival probabilities. This project 

chose to focus less on the survival of the individuals and more on the methods of analysis of the 

ordinal mRS. However, this could be of interest and could be useful, but would require different 

software, which has been developed for both R and recently Stata (de Wreede et al. 2011, Crowther 

2016) although it requires more detail about transition times. Fitting these models may allow more 

complex models to be fitted; these are the models that were previously discussed but were not 

able to converge for the dataset being used here. It may be that because the size of the dataset and 

the number of states being modelled are both large, the models fitted struggle to converge when 

models with more complex transitions are being fitted. 

An alternative to fitting a multi-state model with censored states included would be to 

create a complete dataset using multiple imputations, however it was decided that because it was 
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the outcome of interest on which the imputation would be performed, that this was not a good 

idea. Also the data that has been used throughout was limited to only the treatment group variable 

and therefore the information used to impute the data would not be included in any of the 

following analysis. This may be an extension to consider in further work, to see how much variation 

is seen when the missing data is imputed and assigned a physical value rather than the model using 

censored states.  

  

6.5.3  Conclusion 

 

Overall, multi-state models are very useful as a novel method for analysing the mRS scale 

without calling into question the ordinality of the data. The results of the model are easy for a 

clinician to interpret and the models fitted do not take long to run. The effects seen here are over 

the whole follow-up period and are calculated for each individual transition rather than one whole 

treatment effect. By including censored states, the model produces good estimates of the 

transitions that an individual may make from the current mRS score that they have during the 12-

month follow-up period. 

The multi-state model has great potential for the longitudinal analysis of stroke trials, it is 

just unfortunate that the software package used was unable to fit potential models that would have 

been of interest looking at the recovery of stroke patient, as the absorbing state has the highest 

value and therefore the model will always be looking at worsening in the disease progression rather 

than recovery. They provide an alternative approach to analyse repeated measures data with an 

ordinal outcome. These models describe how a patient moves between states over time, which is 

desirable in the description of disease progression that naturally moves through increasing stages 

of severity. 

The second alternative to regression modelling is latent class analysis, to be described in 

the next chapter, which looks at the longitudinal analysis of the stroke trial from a different 
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perspective, that of the individual patients rather than just the whole trial population split into 

treatment and standard care.  
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7     Latent class analysis 

 

The previous regression methods discussed have taken a variable-centred approach to 

modelling the data, whereby the aim of the analysis is to identify the relationships between the 

dependent and independent variables. There is an alternative way to identifying relationships, 

which is to take a person-centred approach to the modelling. In a person-centred approach, 

relationships between patients are explored by classifying them into groups, or classes, based on 

individual response patterns. The analysis in this chapter will focus on a person-centred approach, 

specifically a form of latent class analysis (LCA), for two main reasons:  

i) It can provide information about individual patient outcomes over time  

ii)  It can separate the effect of changes observed over time by an individual patient 

from between-subject differences at baseline. 

 

7.1   Introduction 

 

It is very common to observe heterogeneity in treatment response in clinical trials. It is 

challenging for researchers to know how best to examine whether there are patterns to this 

variability. For example, sub populations may exist within larger populations that show differential 

growth trajectories that may be masked when group means are calculated. In terms of treatment, 

identifying and categorising differential responders have implications for trial development and 

clinical management and can potentially highlight information to facilitate the targeting of patients 

most likely to improve.  

The systematic literature review in Chapter 3 identified a latent class growth analysis that 

had previously been used in a randomised clinical trial in stroke. The study looked at a telephone-

based problem-solving intervention for family caregivers of stroke survivors, where the outcome of 

interest was depressive symptoms and the caregivers’ sense of competence (Pfeiffer et al. 2014). 
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This is obviously a very different outcome being assessed to the mRS. Another looked at a change 

in handicap over time looking at LCGA but used the modified BI and the London Handicap Scale as 

the measure of handicap rather than the mRS as well as looking at the changes in depression and 

quality of life of the individuals (Pan et al. 2008a). There have also been studies that conduct LCA, 

without the longitudinal data, for example the profiles of the NIHSS at baseline, which was then 

used to predict patient outcome (Sucharew et al. 2013).  

An abstract presented in 2013 by Busija et al at the International Stroke Conference looked 

at a latent class growth analysis of the mRS in stroke survivors, considering the pre-admission mRS, 

the mRS at hospital admission and the score 3 months post-stroke. They used data from 202 

individuals and were able to identify 6 different clusters in the model. Although this analysis is of a 

similar form to the analyses in this chapter, it is important to note that the model used pre-stroke 

Rankin values that are not available for all the data in this project and this was a survivor only model; 

therefore it does not include a transition to death, which is what is of interest in the models that 

are fitted in this chapter (Busija et al. 2013).  

 

7.2       Latent class analysis 

 

Traditional approaches to the study of post-stroke recovery assume that recovery follows 

a homogeneous path; LCA can be used to investigate potential heterogeneity within the recovery 

pathways. Latent class models aim to measure the change over time in latent variables. LCA 

attempts to identify unobservable subpopulations with distinct characteristics within the overall 

population. There is an assumption that each individual can be classified into one of a finite number 

of unobserved clusters, with the cluster subpopulations based upon patients’ responses to multiple 

unobserved variables. The modelling process uses the probabilistic modelling under finite 

distributions. This uses probability theory to express all uncertainty in the model. It is assumed that 

patients in each cluster will express similar characteristics in the observed variables, whilst these 
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variables will differ between the other clusters recorded. The LCA model can be extended in order 

to look at longitudinal data, where it is possible to conduct latent transition models, longitudinal 

LCA and latent class growth analysis. 

 

7.2.1 Latent transition analysis 

 

Latent transition analysis (LTA) is a statistical method that uses longitudinal data and 

attempts to identify movements between different subgroups that have been identified. LTA is an 

extension of LCA. LCA detects the presence of latent classes within a dataset and looks to create 

patterns of association. These patterns of association are subpopulations that have distinct 

characteristics within the overall population. The subjects in the subpopulations have an 

unmeasured class membership, which is identified using categorical or continuous observed 

variables. LTA is the longitudinal extension of this, where transitions over time are estimated. The 

LTA model aims to estimate the prevalence of stage memberships and the incidence of stage 

transitions. The main difference between LCA and LTA is that in LCA the latent classes are found to 

represent a stable set of characteristics and individuals are specifically categorised, whereas LTA 

allows an individual to change cluster membership at different time points in the model. LTA is 

conducted in a two-step approach. First LCA is performed on a set of variables that are measured 

at each time point, for all the time points that the model is estimating. This allows subjects with 

similar characteristics at each time point to be classified into a cluster. Each individual will be 

assigned to a single cluster at each time point. The second part uses auto-regressive models to 

calculate the effect of being in a specific cluster at time t, dependent on the cluster that the 

individual was in at the previous time (t–1).  

LTA could be considered an appropriate technique to be used in stroke research as we have 

an ordinal scale through which people will change over time, and it is beneficial to see which of 

those individuals that move there have certain characteristics – which have previously been 
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recorded – that indicate that a patient is more likely to transition. LTA is an ideal method for use 

when the observed data are categorical in nature (Collins & Lanza 2010) and we are assessing a 

research question that looks at discrete change over time. However, there are some limits to using 

LTA: firstly, LTA is limited to small models due to the number of parameters included in the model, 

and secondly, it is not able to identify changes across multiple time points for each patient, and 

patients who had similar patterns of recovery would not necessarily be grouped together (Collins 

& Lanza 2010). This is something that the model chosen for this analysis needs to do, and so LTA is 

not appropriate as we want to group people with similar trajectories together. 

 

7.2.2 Longitudinal latent class analysis 

 

The second method that was considered for classifying the longitudinal data into recovery 

trajectories was longitudinal latent class analysis (LLCA). This method is another basic extension of 

LCA, where multiple variables are recorded as a longitudinal sequence of the same variables on 

multiple occasions (Collins & Lanza 2010). It is essentially the same method as the basic LCA model; 

however, there is one variable being considered at multiple time points rather than multiple 

variables at one time point. The aim of the model is to identify patterns of the state of an individual 

over time (Vermunt et al. 2008). The model is capable of identifying trajectories over time as people 

with similar scores at each time point are allocated to the same cluster. The LLCA model is able to 

capture change across multiple time points, unlike the LTA; however, there is no account taken of 

the order in which the values for each of the variables are recorded, so time is not taken into 

account, which is an important consideration when looking at repeated measures data over time. 

There is definitely an order to the mRS values recorded within the data used within this project and 

so it is important to take this into account with the method that is chosen.  
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7.2.3 Latent class growth analysis 

 

The final method that was considered was latent class growth analysis (LCGA). This method 

is similar to LLCA in that the model aims to classify individuals into different clusters based on the 

trajectories over the follow-up time, so it was able to identify patterns of change across multiple 

time points, and unlike the LLCA model, the time order is considered. Each subject in the population 

is assigned to a specific cluster and, unlike LTA, they are not able to transition between clusters, as 

the cluster is the pattern over the whole follow-up period (Collins & Lanza 2010). For each cluster 

fitted to the data, the model estimates the mean growth curve as a function of time with a cluster-

specific intercept and slope parameter. Each patient in the cluster is assumed to follow the same 

mean growth curve, therefore it is assumed that there is no variation between the individuals 

within the same cluster (Vermunt et al. 2008). This method was the one that was chosen as it was 

the most appropriate for the modelling this project is undertaking, as it permitted us to model 

distinct trajectory groups and multiple re-measurement points and accounted for the factor of 

time. It is a useful method to use if the progress of symptoms is expected to vary across time and 

among patients. Within both datasets, although there are many individuals who remain the same, 

there are also many whose disability varies over time. Due to there being no variation between 

individuals in each cluster, the model is reasonable to interpret, and it is possible to use standard 

measures of fit, such as log-likelihood and information criterion, to determine optimal cluster 

membership (Nylund et al. 2007).  

 

7.3      Method 

 

7.3.1 Model description 

 

The method of LCGA fits a semi-parametric model with parameters that describe individual-

level trajectories. For continuous variables, these trajectories are assumed to follow a multivariate 
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normal distribution. The heterogeneity seen in the individual sequences of the variables modelled 

over time is explained using latent variables, and the sequences classified into different clusters. 

For every subject in the dataset, the posterior cluster membership probability of being in each 

cluster is calculated. The individual is then assigned to a cluster, using the maximum probability 

assignment rule, whereby the individual is assigned to the cluster in which their probability of 

membership is the largest. Each cluster is assumed to have no variation between the individuals in 

the cluster and so the mean growth curve is the same for all individuals. The mean intercept and 

linear slopes are calculated using local independence, where the clusters are the only cause of 

dependence among observed variables and there is no residual covariance among them. 

We first start by considering the repeated variable Y. Let Yit denote the value c of that 

repeated variable for the ith individual at time t, where t ∈ {1, 2 … T} and T is the maximum number 

of time periods. The longitudinal sequence of the repeated measures Y can be denoted at each time 

period Yi = (Yi1, Yi2 … YiT). Let X be a latent nominal variable with K clusters. The general form of LCGA 

is as follows:  

 

𝑃(𝑌𝑖𝑡) =  ∑ 𝑃(𝑋 = 𝑘) ∏ 𝑃(𝑌𝑖𝑡 = 𝑐|𝑋 = 𝑘)𝑇
𝑡=1

𝐾
𝑘=1   [7.1] 

 

Where P(Yit) is the unconditional probability of the repeated measure Y. P(X=k) is the probability 

that a randomly selected patient i belongs to cluster k, where k ∈ {1, 2 … K} and P(Yit = c | X = k) is 

the likelihood that a randomly selected patient has a specific value, c, of the repeated measure at 

time point t with the patient in cluster k. So the unconditional probability of the repeated measures 

is calculated by taking the summation of a randomly selected patient belonging in cluster k and the 

product of the likelihood the patient in cluster k has a specific value of the repeated measure, c, at 

time point t. 
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For an ordinal variable, there are adaptations made to the model. There is no adaptation 

needed to the likelihood form for continuous normal variables, and the time order effect as 

specified below is described in a standard regression model: 

 

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽1𝑖𝜂𝑡 + 𝜀𝑖𝑡    [7.2] 

 

In the Equation 7.2, αi is each individual patient i’s intercept parameter. This is interpreted 

as a patient’s response for the repeated measure at time t=1. β1i is the individual i’s linear slope 

parameter, which is the growth rate of Yi from one time point to the next time point (t+1) for patient 

i. εit is the residual at time t for a patient i; this is assumed to be independent across each patient. 

ηit is the time order effect on the repeated measure. It is assumed that at time point t, ηit= t1. The 

correlations between εit , αi , and 𝛽 1i are assumed to be 0 for all i and t.  

There is no variation between individuals within the same cluster, and so all the parameters 

for individuals within the same cluster are equivalent to the mean across all subjects in cluster k, 

Equation 7.3.  

𝛼𝑖
𝑘 =  𝛼𝑘   

𝛽𝑖
𝑘 =  𝛽𝑘   [7.3] 

 

In order to adapt the model for an ordinal variable, an auxiliary threshold model is required 

in the specification of the time order effect. In that auxiliary model an underlying continuous 

variable Yit* is defined, which is assumed to be normally distributed. It is the cut-off point of this 

continuous variable that links Yit* to the ordinal variable Yit with C categories. The cut-offs are 

referred to as the thresholds τs-1 – τ7 (where s is the order of category c of the ordinal variable). The 

underlying continuous variable is defined in the same way as the regression equation above. So as 

before, the cluster specific growth factors, 𝛼∗𝑘  𝛽∗𝑘 are established via the underlying continuous 

variable.  
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For category, c, of the repeated measures score, a cumulative logit is used to calculate the 

probability that a randomly selected patient i has category c or lower on the ordinal variable Yit, in 

a similar form to ordinal regression.  

 

7.3.2 Cluster allocation 

 

The allocation of an individual to a cluster is based on the posterior membership 

probability, which is derived from Bayes’ theorem. This is the likelihood that an individual should 

be allocated to a cluster. It is defined for all possible clusters and the sum of the posterior 

membership probability is equal to one. The probability is estimated from the cluster specific 

parameters 𝛼∗𝑘  𝛽∗𝑘  . The cluster assigned to each individual is the one where the probability is 

highest.  

 

7.3.3 Goodness of fit 

 

The decision in choosing the optimal latent class model, the best number of classes that 

the model should have, can be made using several different criteria and tests to inform the decision. 

There is not common acceptance of the best criteria for deciding the optimal number of classes 

(Nylund et al. 2007). Considered below are the different criteria and tests that can be used to help 

inform the decision when choosing the model with the best fit and an optimal number of classes. 

 

7.3.3.1       Information criteria 

 

The Information criterion (IC) is one option that can be used to consider the optimal 

numbers of classes in a model. These IC indices are based on the maximum log-likelihood of the 

fitted model, with penalties on the model due to the number of parameters and the sample size of 
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the data. Because of the different penalties across the IC indices, it is possible and likely that each 

IC may suggest different models have the optimal number of clusters.  

 

Akaike information criterion 

The Akaike information criterion (AIC) is a measure of the quality of the model commonly 

used in model selection (Akaike 1987). Given a range of models fitted on the same data, the AIC 

value can be compared to judge the model that is most appropriate. The preferred model is the 

one with the smallest AIC value. Unlike a likelihood ratio test, which can only compare nested 

models, there are no restrictions on the models that can be compared using the AIC. For a model 

with k parameters the AIC can be calculated by 

 

𝐴𝐼𝐶 = 2𝑘 − 2 𝐿𝑜𝑔 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

 

Bayesian information criterion 

The Bayesian information criterion (BIC) is a measure closely related to the AIC; however, 

the BIC usually penalises free parameters more than the AIC, as the penalty term for increased 

parameters is larger than in the AIC (Schwarz 1978). The BIC can also be compared between models 

fitted to the same data, and the model with the smallest BIC value would be the preferred model. 

BIC can be calculated for k parameters in a sample size of n individuals 

 

𝐵𝐼𝐶 = 2 𝐿𝑜𝑔 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑘 log (𝑛) 

 

Adjusted BIC 

An adjusted version of the BIC has also been developed where the sample size n is replaced 

by a new variable n*, which is calculated from the sample size (Sclove 1987). The adjusted BIC 

should lead to better performance for model selection, suggesting that the optimal number of 
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clusters is more likely to be chosen, when the number of parameters in the model (k) is large, or 

when the sample size is small (Yang 2006).  

𝑛∗ =
(𝑛 + 2)

24
 

 

IC comparison 

The AIC, BIC and adjusted BIC can all be used to find the best-fitting model to suggest the 

optimal number of classes. If these IC indices agree then the optimal number of classes has been 

found. When these IC indices all suggest different optimal numbers of classes, previous research 

has suggested that the adjusted BIC is superior to other IC indices (Yang 2006). Also, it has been 

suggested that the BIC also a more favourable index than the AIC (Vermunt & Magidson 2003). A 

simulation study conducted to compare the different criteria used to determine the number of 

classes found that the AIC was not a good indicator of the number of classes needed, as it commonly 

identifies models with lower cluster sizes, and the BIC was the superior IC for determining the 

number of classes (Nylund et al. 2007). All 3 IC indices will be considered throughout the analysis; 

however, care will be taken with interpretation, given the differences seen, and favour given to the 

BIC. 

  

7.3.3.2       Likelihood ratio tests 

 

The most commonly used likelihood ratio test (LRT), the log-likelihood ratio test, cannot be 

used to compare nested latent class models. This is because the difference in the log-likelihood of 

two nested models is assumed to follow a chi-squared distribution. Although LCA models with 

different classes are considered to be nested models, if you compute the difference between a 

model with k+1 and k classes the difference is not distributed as chi-square (McLachlan & Peel 
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2000). Therefore, standard testing is not applicable. Because of this, adaptations to a LRT have been 

suggested. 

 

Vuong-Lo-Mendell-Rubin LRT 

The Vuong-Lo-Mendell-Rubin LRT (VLMR-LRT) proposes an approximation to the LRT 

distribution as an alternative method for comparing nested latent class models (Vuong 1898, Lo et 

al. 2001). The VLMR-LRT compares the improvement of fit between two neighbouring class models 

and provides a p-value that can be used to determine the statistical significance in the improvement 

of the fit after the inclusion of one more class in the model. A statistically significant p-value 

suggested that the model with one less class should be rejected in favour of the model with more 

classes. Although there have been criticisms of the model (Jeffries 2003) relating to a flaw in the 

proof, there is uncertainty in how much this critique affects its use in practice.  

 

Adjusted Lo-Mendell-Rubin LRT 

The Vuong-Lo-Mendell-Rubin LRT compares the model fit of a model with k classes to a 

model with k -1 classes and assesses the statistical significance. An adjustment by Lo-Mendell-

Rubin can also be calculated (Lo et al. 2001). The model with one less class is calculated from the 

model with k classes by removing the first class in the model. Because of this, consideration 

should be taken when choosing the starting values of the model so that the last class is the largest 

class in the model where possible. Once again a significant p-value suggests that the model with 

k–1 classes should be rejected in favour of the model with k classes.  

 

Parametric bootstrap LRT 

Another alternative method to compare nested latent class models is the parametric 

bootstrap LRT (BLRT) (McLachlan & Peel 2000). This method uses bootstrap samples to estimate 

the distribution of the difference in log-likelihood test statistic, as the chi-squared distribution 
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cannot be assumed. So instead of assuming a known distribution, the distribution is empirically 

estimated by BLRT. In the same way as the VLMR LRT, the BLRT provides a p-value comparing the 

model fit on a k–1 and a k class model, with a statistically significant p-value rejecting the k–1 model 

in favour of the k class model. The BLRT estimates the distribution for the model comparison with 

the following method:  

1. Estimate both the k–1 and k class models to obtain the likelihoods for calculating the –2 

log-likelihood difference.  

2. Under the null k–1 model, generate bootstrap samples and calculate the difference in –2 

log-likelihood between the k–1 and k class models 

3. Repeat the process independently many times to provide an estimation of the true 

distribution of the –2 log-likelihood difference.  

4. Estimate the p-value by comparing the distribution obtained in stage 3 with the –2 log-

likelihood difference obtained in stage 1.  

5. Use the p-value to decide if the null k–1 model should be rejected in favour of the k class 

model.  

The main disadvantage of the BLRT is the amount of computation time needed to fit each model 

due to the repeated sampling for the bootstrapping. Models fitted in this analysis could take up to 

up to 30 minutes or more to fit for each cluster size.  

 

Comparison of LRT tests 

A simulation study compared the VLMR and BLRT and found that the BLRT performed 

better in most settings (Nylund et al. 2007). Both versions of the LRT had good power to detect the 

changes in the likelihood, but BLRT was more accurate in identifying the correct number of classes. 

It was found that the LMR method overestimated the number of classes. It was also found that the 

LMR method could estimate p-values that changed from being significant to non-significant and 
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back to significant with the inclusion of more classes, whereas once the p-value associated with the 

BLRT was non-significant, it remained that way.  

As well as this, the change in log-likelihood between the different models fitted can be used 

to assess whether the optimal number of clusters has been reached. It has been suggested that 

when the change in log-likelihood decreases between models and starts to plateau, then the 

optimal number of clusters may have been reached (Muthén & Muthén 2009).  

 

7.3.3.3       Numbers in groups 

 

In order to be able to draw conclusions from the clusters and to be able to distinguish the 

characteristics of each cluster, there needs to be a minimum number of individuals in a cluster of a 

k class in order for the k class model to be considered an accurate model. In the literature, there 

does not appear to be a consensus on the minimum cluster size, as it varies depending on the 

sample size and the study aims. For example, class sizes of 1% (Strauss et al. 2014), 5% (Ploubidis 

et al. 2007), 7.8% (White et al. 2000) and 8% (Silverwood et al. 2011) have all been reported within 

previous studies that have conducted either LCA or LCGA, which shows that there is a variety of 

class sizes that could be chosen and no real consensus amongst previous research. Due to the large 

numbers of individuals that are included in the analysis conducted, a minimum class size of 5% was 

chosen (Nylund et al. 2007). This value fits well with the other minimum class sizes that have been 

used previously. It should allow for more clusters to been seen, without including ones that only 

have a few individuals in them. It was also decided that no cluster could be larger than 50% of the 

data; this is to ensure that a cluster does not contain the majority of the data and that there is more 

of an even split of the data amongst the clusters. 
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7.3.3.4       Posterior probabilities 

 

The posterior probabilities show the probability of being in each class for each individual. 

The larger the posterior probability, the greater the chance an individual belongs in that class. It is 

important that the optimal model should not have posterior probabilities for each class that are 

similar to another for a given individual. For example, an individual in class one may have 90% 

chance of being in class 1 and a 10% chance of being in class 2 in a 2 class model. When these 

posterior probability estimates are close (e.g. a 60% chance of being in class 1 and a 40% chance of 

being in class 2 in the 2 class model) then there is said to be indistinct classification. It was decided 

that a model would not be considered if the posterior probability for a cluster in the model was less 

than 0.7. This threshold was adopted to provide for excluding subjects with equivocal assignment 

probabilities (Clark & Muthén 2009).  

 

7.3.4 Choosing an optimal model 

 

It is important to consider several factors when determining the number of classes. This 

includes the goodness of fit of the model, the research question, parsimony, and theoretical 

justification.  

 The fit indices and tests of model fit are useful in the exploratory stages of the analysis.  

 A model can be deemed optimal if the posterior probabilities calculated across all clusters 

are near to 1. 

 Although there is no consensus on the minimum cluster size, it is important that they are 

not too small. It is common to recommend each cluster containing 5% of the data (Nylund 

et al. 2007). The main importance of the cluster size is that the changes in model stability 

can be observed.  
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7.3.5 Model estimation  

 

The LCGA was conducted using the software Mplus (Muthén & Muthén 1998-2015). Mplus 

uses the maximum likelihood methods based on the expectation maximisation algorithm in order 

to estimate the model parameters. These include the conditional probabilities and the cluster 

specific factors.  

First, random start values are generated by the software (default in Mplus is 10) and used 

in the model estimation, with Mplus ranking the resulting log-likelihoods in numerical order. The 

second stage of the process selects the largest log-likelihoods (the number specified by the user) 

and examines replication of the log-likelihood. For example, in a model with 500 random start 

values, and 50 starting value sets, 500 start values will be used to generate log-likelihoods and the 

50 largest will be selected. Increasing the number of starting values increases the chance of 

converging on the largest log-likelihood but also increases the computational time. In addition to 

this, the user can specify the number of iterations (default is 10), which reflects the number of times 

Mplus selects the log-likelihood from the start values. Therefore, increasing the number of 

iterations can increase the probability of converging on the largest optimum log-likelihood. Should 

the log-likelihood replicate, then this value is used to compute the model estimates. 

In the simulations performed in this analysis, 2000 random start values, with the 100 largest 

log-likelihoods selected, and 100 iterations were used. If the log-likelihood did not replicate then 

the random starts were increased exponentially from 2000 to 5000, and 10,000 (with the number 

of values selected and iterations increasing from 100 to 200, and 500 respectively) until model 

convergence was achieved. 
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7.4       Results using the SO2S data 

 

The SO2S study followed individuals over a 12-month follow-up period. There were 3 follow-

up time points – 3 months, 6 months and 12 months post-stroke – and over the 3 follow-up time 

points the score that each individual received on the mRS is recorded. For each patient in the study, 

the change on the scale was noted over the three follow-up time points to distinguish the pattern 

of recovery over time. By looking at each individual, 192 different recovery patterns were found. 

There were 26 different patterns that occurred in approximately 1% or more patients, and these 

are listed in Table 7.1. Only patients who had a mRS value recorded at all 3 follow-up points were 

included in these recovery patterns. This was 6,203 (78%) patients out of the 8,003 patients that 

were recruited for the SO2S trial. 

 
Table 7.1: Recovery patterns that occur in more than 1% of individuals in SO2S dataset 

 

 

The most frequently observed pattern, 111, was observed in approximately 14% of people. 

These are patients who were classed as having no significant disability despite the symptoms of a 

stroke at all time points. The other most frequently observed patterns were 000 (7.3%), 222 (3.3%), 

333 (5.7%), 444 (6.6%), 555 (2.6%). As well as these, there were approximately 10% patients who 

Pattern N % Pattern N % 

000 452 7.3 223 71 1.1 

001 110 1.8 311 67 1.1 

011 81 1.3 322 82 1.3 

100 143 2.3 331 67 1.1 

101 89 1.4 332 90 1.5 

110 150 2.4 333 356 5.7 

111 869 14.0 334 105 1.7 

112 94 1.5 344 73 1.2 

113 81 1.3 433 90 1.5 

121 65 1.0 443 84 1.4 

122 87 1.4 444 408 6.6 

211 134 2.2 555 164 2.6 

221 99 1.6 666 633 10.2 

222 203 3.3    
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were dead at the 3-month follow-up and these patients obviously had a pattern of 666 as they were 

unable to change score over time. These frequently observed patterns represent the patients who 

had no change in their recovery from 3 to 12 months regardless of the disability that they had at 

the 3-month follow-up period. A patient is described as having had some recovery between 3 and 

12 months if they have a lower score at 12 months than 3 months and a patient has deteriorated if 

the score at 12 months is higher than 3 months There are 10 patterns over the follow-up that show 

recovery in a patient and 8 patterns that show patients have deteriorated. There were 8 patterns 

where the 3-month and the 12-month score are the same, showing no change in disability over the 

follow-up time even if there was a change at 6 months.  

 

7.4.1 All patients at 3 consecutive time points  

 

At each of the 3 consecutive time points, the distribution of the mRS is given in Table 7.2. 

This is the distribution of the 7,725 individuals that were included in the LCGA, see Appendix F for 

flow diagram of participants. These were all individuals recruited to the trial, with those individuals 

who had no mRS value at any time point removed. The proportion of individuals in each category 

remained quite steady with the main increase seen in the category for death, as obviously 

individuals do not leave this category.  

 

Table 7.2: Distribution of individuals on the mRS over the 3 follow-up points for SO2S data 

mRS Score 3 months (%) 6 months (%) 12 months (%) 

0 12.4 13.7 13.6 

1 27.4 25.6 25.3 

2 12.8 13.5 12.1 

3 17.1 16.4 15 

4 15.7 14.6 14.7 

5 6.2 4.9 4.4 

6 8.4 11.3 14.8 
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A series of 1, 2 … 6-cluster models were fitted to the data, and the fit indices are defined in 

Table 7.3. Models with 7-clusters or more were unable to be fitted due to the maximum likelihood 

not being able to be replicated. We see that the IC indices have decreased with each additional 

cluster added to the model. This was also replicated in the log-likelihood, with a decrease seen with 

each additional cluster of the model, shown in Figure 7.1. The BLRT gave p-values that were 

statistically significant for the fit of each model with more classes added, similarly for the VLMR and 

adjusted LMR until the 5-cluster model was reached. The 5-cluster model did not show a significant 

improvement on the 4-cluster model, and the 6-cluster model provided an error when trying to 

estimate the VLMR and adjusted LMR LRT.  

 

Table 7.3: Model fit statistics for LCGA models fitted to SO2S data 

Cluster AIC BIC adj BIC VLMR LRT adj LMR LRT BLRT LL 

1 82198.95 82247.62 82225.37 - - - -41092.5 

2 72225.67 72295.19 72263.41 <0.001 <0.001 <0.001 -36102.8 

3 66852.38 66942.75 66901.44 <0.001 <0.001 <0.001 -33413.2 

4 64499.52 64610.75 64559.91 <0.001 <0.001 <0.001 -32233.8 

5 63143.24 63275.33 63214.96 1 1 <0.001 -31552.6 

6 62630.27 62783.22 62713.31 Error -31293.1 

 

 
Figure 7.1: Graph of the values of the log-likelihood for 6 LCGA models fitted to SO2S data 
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With the IC indices and LRTs, the best model that could be fitted to the data was the 4-

cluster model. The numbers of individuals in each cluster were considered to check that each cluster 

contained more individuals than the defined minimum of 5% of the data. The cluster-specific 

proportions and the average posterior probabilities (AvPP) of the cluster membership of the 4-

cluster model are shown in Table 7.4.  

 

Table 7.4: Posterior probabilities and number in each of the assigned clusters for all patients in SO2S 
data 

   Posterior probabilities  

Assigned cluster n % 1 2 3 4 

1 877 11 0.972 0.028 0 0 

2 1,375 18 0.006 0.901 0 0.092 

3 2,752 36 0 0 0.931 0.069 

4 2,721 35 0 0.035 0.055 0.91 

 

 

The distribution of the clusters was fairly evenly spread, with two larger clusters, cluster 3 

(n= 2,753, 36%) and cluster 4 (n= 2,721, 35%), as well as two smaller clusters, cluster 1 (n= 877, 

11%) and cluster 2 (n= 1,375, 18%). There was not one cluster that contained the majority of the 

data. As well as this, the AvPPs indicated that there was a good agreement with the individuals 

being assigned to the correct cluster as the smaller AvPP value was 0.9. The 4 derived cluster-

specific trajectories in the 4--cluster model were evaluated. Table 7.5 displays the item conditional 

probability of each level of the mRS ordinal scale.  
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Table 7.5: Conditional probabilities for each of the assigned clusters for all patients in SO2S data 

mRS  

scale 

3  

months 

6  

months 

12  

months 

mRS 

scale 

3 

months 

6 

months 

12 

months 

Cluster 1    Cluster 2    

0 0 0 0 0 0 0 0 

1 0 0 0 1 0.006 0.005 0.003 

2 0 0 0 2 0.016 0.014 0.01 

3 0.001 0 0 3 0.106 0.092 0.068 

4 0.019 0 0 4 0.596 0.579 0.532 

5 0.113 0 0 5 0.228 0.254 0.309 

6 0.867 1 1 6 0.048 0.056 0.077 

Cluster 3    Cluster 4    

0 0.348 0.355 0.371 0 0.014 0.013 0.013 

1 0.556 0.552 0.542 1 0.183 0.181 0.177 

2 0.068 0.066 0.063 2 0.283 0.282 0.279 

3 0.023 0.022 0.021 3 0.376 0.378 0.382 

4 0.004 0.004 0.004 4 0.135 0.136 0.14 

5 0 0 0 5 0.008 0.008 0.008 

6 0 0 0 6 0.001 0.001 0.001 

 

 

In cluster 1 (n= 877, 11%), at 3 months the conditional probabilities suggested that 87% 

(0.867) of individuals had already died, followed by 11% (0.113) who were classified as being 

severely disabled and 2% (0.019) who had a moderate-severe disability. By the 6-month follow-up, 

all individuals who were in this cluster had died.  

In cluster 2 (n= 1375, 18%), the conditional probabilities showed that the cluster contained 

those individuals who were more severely disabled but had not died by 6 months. Within this 

cluster, 23% were classified as severely disabled at 3 months, and this increased to 25% at 6 months 

and 31% at 12 months. Most individuals had a mRS score of 4 at each follow-up point, with nearly 

60% at 3 months, which decreased to 58% at 6 months and 53% at 12 months. There were 10% of 

individuals who had a moderate disability (mRS=3) at 3 months, which decreased to 6% at 12 

months. The number of individuals who had died increased (5% at 3 months, 6% at 6 months and 

8% at 12 months).  
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The largest cluster in the model was cluster 3 (n=2,752, 36%) in which most individuals had 

no disability at all and could be classed as independent. There were 35% of individuals who scored 

a mRS of 0 at 3 months, which increased by 1% for each follow-up time point. The majority of the 

individuals in this cluster were classified as having a mRS score of 1, indicating no disability despite 

having symptoms: approximately 56% of individuals at 3 months, 55% at 6 months and 54% at 12 

months. The remaining individuals were spread evenly across other categories over time; 6% scored 

a mRS score of 6 and 2% a mRS score of 3.  

Cluster 4 (n= 2,721, 35%) was only marginally smaller than cluster 3 and represented a 

much broader range of disability than had been seen in the other clusters, which is consistent across 

the follow-up time period. There were approximately 18% of individuals who had no disability at all 

(mRS=1). Approximately 28% of the patients in this cluster were defined as having a slight disability 

(mRS=2). Almost 38% of the individuals in the cluster score had a mRS of 3. Finally, there were still 

14% of individuals in the cluster who scored even higher on the mRS scale, with a moderate-to-

severe disability.  

  The cluster specific characteristics for each of the fitted clusters of the model are described 

in Table 7.6 to give an indication of the profile of each cluster over time. It can be seen that apart 

from the movement to a score of 6 (death) seen in cluster 1, there was not a lot of movement of 

individuals within each of the clusters. This may be because many individuals do not have a change 

in the mRS score over the follow-up period. 

 

Table 7.6: Characteristics of the 4-cluster model fitted to all individuals in SO2S data 

Assigned cluster n % Characteristics 

1 877 11 Some severe disability to death 

2 1,375 18 Moderate-severe throughout 

3 2,752 36 No disability throughout 

4 2,721 35 Slight to moderate disability throughout. 
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Figure 7.2: Graph showing the trajectories the individuals in each cluster, for all patients in SO2S 
trial 

 

 

Figure 7.2 shows the model trajectories for the 4 clusters that were fitted in the model. 

These trajectories were found using the score with the largest percentage of individuals with the 

score at each time point within each cluster. The trajectories calculated for the 4-cluster model 

showed no change over time from 3 months to 12 months, as each cluster had a trajectory that was 

a straight line throughout the follow-up.  

To summarise, when considering the full SO2S data set and the changes in the mRS score 

over time, these can be described by a 4-cluster model. Patients in each of the clusters defined had 

very little change over time and any variations seen within the scores of each cluster at each time 

point were not large enough to change the recovery profiles from straight lines throughout the 

follow-up period. In order to try and find a model that helped to represent the changes seen in 

those patients, it was decided to remove individuals who scored the same mRS value at all three of 

the follow-up time points to see if the model was able to capture the movement of individuals 

better.  
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7.4.2 Patients who undergo a transition within the 3 consecutive time points 

 

When we considered the different recovery patterns over time, Table 7.1, patterns where 

patients who make no transition at all and score the same value at 3, 6 and 12 months were seen 

in 3,085 of the 6,203 patients, which is just under 50% of the data. Because of this, they were 

obviously going to dominate the clusters that each LCGA model creates. It was decided to remove 

these individuals and an LCGA was conducted in only individuals who did not score the same value 

at all 3 time points. In order to fit the model, the mRS score needed to be complete at all time 

points. Therefore, patients who had died at 3 months were kept in the analysis so the mRS score 

included the values between 0 and 6 at each time point. This meant that 2,452 individuals were 

removed from the 7,725 in the previous analysis, leaving 5,273 individuals; see Appendix F for flow 

diagram of participants. At each of the 3 consecutive time points, the distribution of the mRS is 

detailed in Table 7.7. This was the distribution seen in the 5,273 individuals that were included in 

the analysis looking at patients who did not have repeated scores at each time point:  

 

Table 7.7: Distribution of mRS values at each follow-up point for SO2S individuals with a transition 

 mRS Score 3 months (%) 6 months (%) 12 months (%) 

0 9.5 11.4 11.1 

1 23.5 20.7 19.9 

2 14.9 16.1 14.2 

3 18.4 17.4 15.3 

4 15.3 13.6 13.7 

5 6.0 4.0 3.2 

6 12.4 16.8 22.6 

 

 

A series of 1, 2 … 10-cluster LCGA models were fitted to the data and their fit indices are 

described in Table 7.8. 10 clusters were chosen to be fitted to the data in order to try and find as 

many different trajectories as possible in the clusters seen. The 3 IC indices all showed a decrease 

as one more clusters were added to the model, although the amount of the decrease became 
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smaller as there were more clusters added to the model. This suggested that an optimal model may 

not be identifiable by using the IC indices alone. When we considered the likelihood ratio tests, we 

see that the BLRT indicates that each time a cluster was added to the model it provided a significant 

improvement in the fit of the model. However, the VLMR LRT showed that the 6-cluster model did 

not show a significant improvement on the model fit of the 5-cluster model, though the 7-cluster 

model showed an improvement on the 6-cluster model. We also saw no improved fit in the 8-cluster 

model compared to the 7-cluster model. The log-likelihood decreased when another cluster was 

added, and we see that similar to the IC indices, the decrease in log-likelihood lessens as more 

clusters are added. This occurs particularly in the 9 and 10-cluster models, as can be seen in Figure 

7.3. 

 

Table 7.8: Model fit statistics for LCGA models fitted to individuals with a transition in SO2S data  

Cluster AIC BIC adj BIC VLMR LRT adj LMR LRT BLRT LL 

1 61814.54 61867.54 61841.68 - - - -30899.3 

2 48345.91 48411.62 48379.84 <0.001 <0.001 <0.001 -24163.0 

3 46082.85 46168.26 46126.95 <0.001 <0.001 <0.001 -23028.4 

4 45419.72 45524.85 45474.00 <0.001 <0.001 <0.001 -22693.9 

5 45143.24 45268.07 45207.70 <0.001 <0.001 <0.001 -22552.6 

6 44880.88 45025.43 44955.52 0.4268 0.4268 <0.001 -22418.4 

7 44672.01 44836.27 44756.82 <0.001 <0.001 <0.001 -22311.0 

8 44497.32 44681.29 44592.32 0.3089 0.3089 <0.001 -22220.7 

9 44373.27 44576.96 44478.45 0.0049 0.0054 <0.001 -22155.6 

10 44265.82 44489.21 44381.17 <0.001 <0.001 <0.001 -22098.9 
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Figure 7.3: Graph of the values of the log-likelihood for 10 LCGA models fitted to SO2S data when 
an individual undergoes at least one transition in the follow-up 

 

 

The IC indices and LMR tests suggested that a model with a higher number of clusters could 

be the best model; however, it is important to consider the number of individuals in each cluster of 

the model. When this was considered this, the models with 7, 8, 9 and 10- clusters did not satisfy 

this criterion.  

The model with the highest number of clusters that had over 5% of the data in each 

category was the 6-cluster model. However, this model had not improved the fit of the model 

compared to the 5-cluster model. The cluster-specific proportions and the average probabilities of 

the cluster membership of the 5-cluster model are shown in Table 7.9.  

 

Table 7.9: Posterior probabilities and number in each of the assigned clusters for all patients with a 
transition in SO2S data 

   Posterior Probabilities 

Assigned Cluster n % 1 2 3 4 5 

1 822 16 0.972 0 0.001 0.027 0 

2 2,088 40 0 0.79 0.116 0.001 0.093 

3 1,057 20 0.001 0.147 0.758 0.093 0.001 

4 419 8 0.06 0.014 0.115 0.811 0.001 

5 887 17 0 0.12 0.001 0 0.879 
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The distribution of the individuals was fairly well spread between each cluster. We saw that 

the largest cluster did not include the majority of individuals (n=2,088, 40%), and the smallest 

cluster was not too small in comparison (n=419, 8%). As well as this, looking at the AvPPs for each 

cluster we see that the small cluster has a high AvPP assignment (0.811). In addition, all clusters 

had good AvPPs of assignment ranging from 0.758 to 0.972.  

Finally, the 5 derived cluster-specific trajectories in the 5-cluster model were evaluated. 

Table 7.10 displays the item conditional probability of each level of the mRS ordinal scale.  

 

Table 7.10: Conditional probabilities for each of the assigned clusters for patients with transition in 
SO2S data 

mRS  

scale 

3  

months 

6  

months 

12  

months 

mRS 

scale 

3 

months 

6 

months 

12 

months 

Cluster 1    Cluster 2    

0 0 0 0 0 0.06 0.058 0.054 

1 0 0 0 1 0.337 0.33 0.315 

2 0 0 0 2 0.296 0.297 0.298 

3 0.001 0 0 3 0.228 0.233 0.244 

4 0.015 0 0 4 0.073 0.075 0.081 

5 0.076 0 0 5 0.006 0.006 0.006 

6 0.907 1 1 6 0.001 0.001 0.001 

Cluster 3    Cluster 4    

0 0.007 0.007 0.006 0 0.001 0 0 

1 0.058 0.057 0.054 1 0.007 0.004 0.001 

2 0.127 0.125 0.12 2 0.019 0.01 0.002 

3 0.358 0.355 0.35 3 0.098 0.054 0.014 

4 0.389 0.394 0.403 4 0.516 0.408 0.166 

5 0.051 0.052 0.054 5 0.274 0.37 0.392 

6 0.011 0.011 0.012 6 0.085 0.155 0.424 

Cluster 5        

0 0.418 0.446 0.504     

1 0.462 0.446 0.408     

2 0.081 0.074 0.06     

3 0.03 0.027 0.022     

4 0.007 0.006 0.005     

5 0.001 0 0     

6 0 0 0     
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The cluster specific characteristics for each fitted cluster of the model are described in 

Table 7.11 to give an indication of the profile of each cluster over time. There was some variation 

seen in the model. However, the clusters still seemed to be fairly rigid in the sense that there still 

were not many transitions seen throughout the follow-up in each cluster fitted in the model.  

 

Table 7.11: Characteristics of the 5-cluster model fitted to all individuals with transition in SO2S data 

Assigned 

cluster 

n % Characteristics 

1 822 16 Severe disability & death 

2 2088 40 Low to moderate throughout 

3 1057 20 Moderate to moderate-severe throughout 

4 419 8 Moderate-severe worsening to severe and death 

5 887 17 Very little disability with slight recovery to no disability 

 

 

Figure 7.4: Graph showing the trajectories the individuals in each cluster, for all patients in SO2S 
trial who undergo a transition within the follow-up 

 

 

Figure 7.4 shows the model trajectories for the 5 clusters that were fitted in the model. 

There was more movement in the trajectories now that the patients who had no change at all over 

the follow-up period had been removed. The trajectories showed 3 clusters that, like before, 
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showed no change in the largest percentage of individuals over time. There was a profile showing 

recovery, cluster 5, when individuals moved from slight disability to no disability, and also a profile 

that showed individuals who worsened over time, cluster 4, where individuals moved two scores 

over time, so at 3 and 6 months, an mRS score of 4 had the largest percentage of patients in the 

cluster and by 12 months it had changed to a score of 6.  

To summarise, when considering the SO2S data set using only those patients who had 

experienced a transition throughout the follow-up period, and the changes in the mRS score over 

time, these can be described by a 5-cluster model. There was more movement seen within the 

clusters that were defined in this model, as could be seen by the cluster descriptions and the 

recovery trajectories predicted from the model.  

The aim of this thesis was to look at the effect of treatment on the mRS and to look at 

different methods and the conclusions that they draw. Next we considered how the distribution of 

mRS scores varies between the standard care group and the oxygen treatment group, see Table 

7.12. 

 

Table 7.12: Distribution of mRS scores for patients with a transition in the SO2S data at each follow-
up point stratified by treatment 

 Standard Care Oxygen Treatment 

mRS score 3 months 

(%) 

6 months 

(%) 

12 months 

(%) 

3 months 

(%) 

6 months 

(%) 

12 months 

(%) 

0 9.0 10.7 10.7 9.8 11.8 11.3 

1 23.8 21.8 19.6 23.3 20.2 20.1 

2 15.1 16.0 13.6 14.8 16.1 14.5 

3 17.5 16.8 16.1 18.8 17.7 14.9 

4 16.6 14.2 14.2 14.6 13.3 13.4 

5 6.5 4.0 3.4 5.8 4.0 3.1 

6 11.5 16.5 22.5 12.8 17.0 22.7 

 

 

Looking at the percentage distribution of the 5,273 individuals that were included in this 

analysis, it can be seen that there was very little difference to be seen in the distribution of 

individuals on each score in the oxygen treatment and standard care groups. There were slightly 



 

Chapter 7  200 
 

 

more moderate-severe (mRS=4) and severely disabled (mRS=5) individuals in the standard care 

group at 3 months, although the distribution was more even at 12 months between the 2 groups. 

Looking at those who could be classed as independent (mRS = 0, 1 and 2), although they start off 

evenly distributed across the oxygen treatment and standard care groups, by 12 months the oxygen 

treatment group seems to have slightly more of these individuals than the standard care group. 

  

7.4.2.1      Standard care group 

 

First, we considered the individuals who only received standard care. This was 1,760 of the 

5,273 individuals who were fitted in the previous model, approximately 1/3 of the data. A new 

model was fitted to just the individuals who received standard care.  

 A series of 1, 2 … 7-cluster models were fitted to the data; after this, the maximum 

likelihood of the models could not be replicated, Table 7.13. Looking at the IC indices, it can be seen 

that they indicate that the larger the number of clusters in the model, the better the fit of the 

model, and additionally the log-likelihood is decreasing each time a new cluster is added. Once 

again, Figure 7.5 shows that the change in log-likelihood appears to be slowing down toward the 7-

cluster model. The BLRT indicates that each additional cluster improves the fit of the model; 

however, the 5 and 6-cluster models appear not to have any improvement of fit on the 4 and 5-

cluster models respectively.  

 

Table 7.13: Model fit statistics for LCGA models fitted to standard care group with transition for 
SO2S data  

Cluster AIC BIC adj BIC VLMR LRT adj LMR LRT BLRT LL 

1 18404.99 18443.3 18421.06       -9195.49 

2 16237.83 16292.56 16260.79 <0.001 <0.001 <0.001 -8108.92 

3 15404.35 15475.5 15434.2 <0.001 <0.001 <0.001 -7689.17 

4 15162.11 15249.68 15198.85 <0.001 <0.001 <0.001 -7565.05 

5 15082.36 15186.34 15125.98 1 1 <0.001 -7522.18 

6 15007.78 15128.18 15058.29 0.5429 0.5429 <0.001 -7481.89 

7 14941.77 15078.59 14999.17 <0.001 <0.001 <0.001 -7445.88 
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Figure 7.5: Graph of the values of the log-likelihood for 7 LCGA models fitted to standard care 
group with transition for SO2S data  

 

 

From the above IC indices and tests, it appears that the more clusters in the model the 

better the fit of the data. However, the numbers of individuals in each cluster needed to be 

examined as each cluster in the model must meet the minimum cluster size. Unfortunately, the 7-

cluster model contained a cluster with only 21 individuals (1%) and therefore does not meet the 

minimum requirement. Although the 5- and 6-cluster models met the requirement for the number 

of individuals in each category, the VLMR LRT indicates that they showed no improvement on the 

fit of the previous models, and the last model that did so was the 4-cluster model. The 4-cluster 

model satisfied the criteria for the minimum numbers of individuals in each cluster, and each cluster 

has a distinct trajectory. The cluster-specific proportions and the average probabilities of the cluster 

membership of the 4-cluster model are shown in Table 7.14.  

-9500

-9000

-8500

-8000

-7500

-7000

0 1 2 3 4 5 6 7

Lo
g 

lik
e

lih
o

o
d

Number of Clusters

Log Likelihood



 

Chapter 7  202 
 

 

Table 7.14: Posterior probabilities and number in each of the assigned clusters for standard care 
group patients with a transition in SO2S data 

      Posterior Probabilities 

Assigned Cluster n % 1 2 3 4 

1 314 18 0.962 0.036 0 0.002 

2 418 24 0.015 0.868 0 0.116 

3 312 18 0 0 0.888 0.112 

4 716 41 0 0.08 0.065 0.855 

 

 

Looking at Table 7.14, the largest cluster was cluster 4 (n=314, 41%), which contained 41% 

of the individuals in the analysis. This largest cluster did not contain a majority of the data. The 

remaining clusters were evenly spread with the rest of the individuals (Cluster 1: n=314, 18%, 

Cluster 2: n=418, 24%, Cluster 3: n=312, 18%). The AvPPs were all larger than 0.86 and indicated 

that there is a good probability that individuals that belong in each cluster have been assigned to 

the correct cluster. The 4 derived cluster-specific trajectories in the 4-cluster model were evaluated. 

Table 7.15 displays the item conditional probability of each level of the mRS ordinal scale. 
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Table 7.15: Conditional probabilities for each of the assigned clusters for standard care group who 
transition in SO2S data 

mRS scale 3 months 6 months 12 months mRS 

scale 

3 

months 

6 

months 

12 

months 

Cluster 1   Cluster 2   

0 0 0 0 0 0.003 0.003 0.002 

1 0 0 0 1 0.034 0.029 0.021 

2 0.001 0 0 2 0.081 0.07 0.052 

3 0.007 0.001 0 3 0.283 0.26 0.212 

4 0.057 0.008 0 4 0.448 0.464 0.484 

5 0.183 0.033 0.001 5 0.115 0.131 0.169 

6 0.751 0.958 0.999 6 0.037 0.043 0.059 

Cluster 3   Cluster 4   

0 0.424 0.445 0.49 0 0.045 0.042 0.038 

1 0.478 0.464 0.433 1 0.325 0.315 0.294 

2 0.067 0.062 0.053 2 0.3 0.3 0.3 

3 0.024 0.022 0.019 3 0.241 0.248 0.264 

4 0.006 0.005 0.004 4 0.078 0.082 0.091 

5 0.001 0.001 0 5 0.009 0.01 0.011 

6 0 0 0 6 0.003 0.003 0.003 

 

 

The cluster specific characteristics for each fitted cluster of the model are described in Table 

7.16 to give an indication of the profile of each cluster over time. These clusters appeared to be 

slightly less rigid than those seen in previous models fitted, as the clusters represent individuals at 

different stages of disability, with some change seen in the conditional probabilities of the scores 

during the follow-up time period.  

 

Table 7.16: Characteristics of the 4-cluster model fitted to individuals in the standard care group 
with transition in SO2S data 

Assigned 

Cluster 

n % Characteristics 

1 314 18 Severe disability to death 

2 418 24 Moderate – severe disability with some worsening but little change 

3 312 18 No disability with improvement 

4 716 41 Slight to moderate disability with some worsening 
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Figure 7.6: Graph showing the trajectories the individuals in each cluster, for all patients in 
standard care group with transition for SO2S trial 

 

 

Figure 7.6 shows the model trajectories for the 4 clusters that were fitted in the model. For 

those individuals who received only standard care, it could be seen that the recovery trajectories 

calculated from the model were quite different from the trajectories in those models including all 

patients with a transition. There was still a trajectory with recovery from slight disability to no 

disability but the movement occurs later, between 6 and 12 months rather than 3 and 6 months. 

There were also still 2 clusters where a large percentage of individuals in that cluster remain at the 

same mRS score throughout follow-up. There was also a cluster with a worsening trajectory, cluster 

4. These individuals had slightly more disability by the end of follow-up than at the start of follow-

up, with the majority of people scoring 1 at 3 and 6 months and a mRS score of 2 at 12 months.  

To summarise, when considering the SO2S data set using individuals who received only 

standard care, and only those who experienced a transition throughout the follow-up period, the 

changes in the mRS score over time can be described by a 4-cluster model. There was some 

movement of individuals over the follow-up period but these changes occurred in individuals who 
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were less disabled at the start of the follow-up period, with clusters that contained individuals who 

were more disabled showing less movement with constant mRS values over time.  

 

7.4.2.2      Oxygen treatment group 

 

After considering the standard care group, attention was turned to those individuals who 

received the oxygen treatment as part of the study. Out of the 5,273 individuals included in first 

analysis, 3,513 received the oxygen treatment and were included in the LCGA.  

A series of 1, 2 … 10-cluster models were fitted to the data as there were no issues with the 

maximum likelihood being replicated as in the standard care group, Table 7.17. The 10-cluster 

model had the lowest values for each of the IC indices, suggesting that it had the best goodness of 

fit out of all the models fitted to the data. The log-likelihood was also lowest for the 10-cluster 

model, and Figure 7.7 shows the plateauing of the log-likelihood. Once again the BLRT showed that 

every model with an additional cluster had an improvement in fit on the previous model, as does 

the VLMR LRT and adjusted LMR LRT.  

 

Table 7.17: Model fit statistics for LCGA models fitted to treatment group with transition in SO2S 
data 

Cluster AIC  BIC  adj BIC VLMR LRT adj LMR LRT BLRT LL 

1 36697.1 36740.25 36718.01       -18341.6 

2 32117.89 32179.53 32147.76 <0.001 <0.001 <0.001 -16048.9 

3 30691.29 30771.43 30730.12 <0.001 <0.001 <0.001 -15332.6 

4 30255.76 30354.39 30303.55 <0.001 <0.001 <0.001 -15111.9 

5 30078.86 30195.98 30135.61 <0.001 <0.001 <0.001 -15020.4 

6 29892.12 30027.73 29957.83 <0.001 <0.001 <0.001 -14924.1 

7 29743.96 29898.06 29818.63 <0.001 <0.001 <0.001 -14847.0 

8 29625.63 29798.23 29709.26 <0.001 <0.001 <0.001 -14784.8 

9 29544.7 29735.79 29637.28 0.0384 0.0408 <0.001 -14741.3 

10 29473.67 29683.25 29575.22 <0.001 <0.001 <0.001 -14702.8 
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Figure 7.7: Graph of the values of the log-likelihood for 10 LCGA models fitted to oxygen 
treatment group for SO2S data 

 

 

Looking at the numbers of individuals in each cluster, models with 7 clusters or more had 

clusters with less than 5% of individuals assigned to them. The 6-cluster model was the largest 

model where the minimum number of individuals in a cluster was met. The cluster-specific 

proportions and the average probabilities of the cluster membership of the 6-cluster model are 

shown in Table 7.18.  

 

Table 7.18: Posterior probabilities and number in each of the assigned clusters for treatment group 
patients with transitions in SO2S data 

   Posterior Probabilities 

Assigned Cluster n % 1 2 3 4 5 6 

1 543 15 0.981 0.018 0 0 0 0 

2 275 8 0.061 0.819 0 0 0.108 0.011 

3 234 7 0 0.001 0.841 0.078 0.002 0.077 

4 376 11 0 0 0.069 0.836 0.001 0.093 

5 695 20 0 0.088 0 0.001 0.757 0.153 

6 1389 40 0 0.001 0.017 0.048 0.116 0.818 

 

 

The largest cluster in the model was cluster 6 (n=1389, 40%). This cluster was twice as big 

as the next largest cluster and almost 6 times larger than the smallest cluster; however, this was 
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not a cause for concern as it still did not contain the majority of individuals in the analysis. The 

smallest two clusters had only 234 and 275 patients in each of them, approximately 7% and 8% 

respectively. The AvPPs indicated that generally, an individual who belonged to a specific cluster 

was likely to have been assigned to it. Most of the AvPPs were about 0.8, which was larger than 

predefined value of 0.7. The 6 derived cluster-specific trajectories in the 6-cluster model were 

evaluated. Table 7.19 displays the item conditional probability of each level of the mRS ordinal 

scale. 

 

Table 7.19: Conditional probabilities for each of the assigned clusters for treatment group with 
transition in SO2S data 

mRS scale 3 months 6 months 12 months mRS 

scale 

3 

months 

6 

months 

12 

months 

Cluster 1    Cluster 2   

0 0 0 0 0 0 0 0 

1 0 0 0 1 0.007 0.004 0.001 

2 0 0 0 2 0.018 0.009 0.002 

3 0.001 0 0 3 0.094 0.051 0.013 

4 0.011 0 0 4 0.507 0.395 0.156 

5 0.058 0 0 5 0.285 0.381 0.39 

6 0.93 1 1 6 0.088 0.16 0.437 

Cluster 3   Cluster 4   

0 0.879 0.624 0.073 0 0.201 0.421 0.866 

1 0.112 0.338 0.475 1 0.593 0.496 0.124 

2 0.006 0.026 0.257 2 0.135 0.057 0.007 

3 0.002 0.009 0.151 3 0.056 0.021 0.002 

4 0 0.002 0.041 4 0.013 0.005 0.001 

5 0 0 0.003 5 0.001 0 0 

6 0 0 0.001 6 0 0 0 

Cluster 5   Cluster 6   

0 0.005 0.004 0.004 0 0.039 0.04 0.041 

1 0.061 0.06 0.058 1 0.347 0.35 0.357 

2 0.127 0.125 0.121 2 0.295 0.295 0.294 

3 0.36 0.359 0.355 3 0.236 0.234 0.229 

4 0.386 0.39 0.397 4 0.075 0.074 0.072 

5 0.051 0.052 0.054 5 0.006 0.006 0.006 

6 0.01 0.011 0.011 6 0.001 0.001 0.001 
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The cluster specific characteristics for each fitted cluster of the model are described in Table 

7.20 to give an indication of the profile of each cluster over time. These clusters were split slightly 

to include some clusters that were rigid with no movement with them, and others in which 

individuals definitely moved amongst scores over the follow-up of the study.  

 

Table 7.20: Characteristics of the 6-cluster model fitted to individuals in the treatment group with 
transition in SO2S data 

Assigned 

Cluster 

N % Characteristics 

1 543 15 Severe disability & death 

2 275 8 Moderate to severe disability worsening to severe death 

3 234 7 No to slight disability worsening to slight to moderate disability 

4 376 11 Slight disability with recovery to no disability 

5 695 20 Moderate disability with no change throughout 

6 1389 40 Slight disability with no change throughout 

 

 

Figure 7.8: Graph showing the trajectories the individuals in each cluster, for all patients in to 
oxygen treatment group for SO2S data 

 

 

Figure 7.8 shows the model trajectories for the 5 clusters that were fitted in the model. 

With more clusters fitted in the model it can be seen that there was more movement in the scores 
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that had the largest percentage of individuals within each cluster. There were 3 clusters that 

contained no movement on the score with the largest percentage of individuals over time. There 

were 2 worsening profiles and 1 recovering one. The recovering one was the same as for the 

standard care group where patients moved from slight disability to no disability over time. One of 

the worsening profiles was seen before the individuals were split into treatment groups, where the 

largest percentage of patients scored a mRS of 4 at 3 and 6 months and had died at 12 months. The 

second profile were patients who had no disability at 3 and 6 months, but by 12 months they were 

experiencing some form of disability. There were most likely other underlying causes for this 

disability shown.  

To summarise the model fitted to individuals who received oxygen treatment when 

considering the SO2S data set using only those patients who experienced a transition throughout 

the follow-up period, the changes in the mRS score over time can be described by a 6-cluster model. 

Having 6 clusters allowed more movement of the cluster, as previously fitted clusters with no 

movement over time could be separated into clusters that may have a change in the trajectory 

rather than a constant line. 

 

7.4.2.3      Comparison of standard care and oxygen treatment groups 

 

The model fitted to the standard care group showed that the best model that was fitted 

was the 4-cluster model. There were 1,760 individuals split into 4 clusters and each cluster had a 

distinct trajectory over the 12-month follow-up period. The model fitted to the treatment group 

shows that the best model that was fitted was the 6-cluster model. There were 3,513 individuals 

split into 6 clusters in the model all took distinct trajectories over the 12 months follow-up period.  

Both models contained the cluster in which individuals were severely disabled and died 

during the follow-up period, the majority making that transition between 3 and 6 months. These 

clusters were of similar sizes in both models with 18% of individuals in the model fitted to the 
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standard care group and 15% of individuals in the oxygen treatment group. There were 2 other 

clusters that feature in both models – the first was the cluster where individuals have little or no 

disability and recovered and the second was the cluster who had a slight or moderate disability that 

worsened to have a moderate disability by the 12-month assessment. 

 The 4-cluster model had a cluster that individuals changed very little over time in, like two 

of the clusters in the treatment model, however the initial severity in the 4-cluster model was 

higher than the 2 clusters seen in the 6-cluster model. There were definitely differences seen 

between the clusters fitted to each of the stratified treatment groups, suggesting that there may 

be different recovery trajectories depending on which treatment group you are in.  

By looking at the model fitted to all the data, it can be seen whether these distinct clusters 

in each model were still seen, or whether when the data are combined these distinct trajectories 

were lost. The model fitted to all the data with no distinction between treatment groups showed 

that the best model that was fitted was the 5-cluster model. There were distinct trajectories for the 

12-month follow-up with the 5,273 individuals assigned to one of the 5 distinct clusters in the 

model.  

The model containing all individuals had two clusters that matched up with ones that had 

previously been fitted. The clusters where individuals were severely disabled at 3 months and died 

by the end of the follow-up and the cluster where individuals had no or little disability at 3 months 

and recovered to show no disability at all at 12 months. These clusters represent individuals at the 

opposite ends of the mRS scale. 

Surprisingly, there was no cluster that had individuals with a slight disability moving to 

moderate disability over time, which had been seen in both the 4 and 5-cluster models previously 

fitted. The remaining clusters were a mixture of those seen in the other models fitted. There was a 

cluster that had moderate-severe disability throughout the follow-up like in the 4-cluster model 

and one where individuals have low to moderate disability throughout the follow-up like in the 5-

cluster model.  
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7.4.3 Survivor only model 

 

One of the issues with fitting the models that had individuals removed if they made no 

transition over the follow-up period was that individuals who had died at 3 months had to be 

included as otherwise the models would have outcomes of different sizes at different follow-up 

time points that the software could not compute, as the outcome needed to have the same number 

of categories at each follow-up point. One way to overcome this was to look at the recovery in 

individuals who had survived the whole follow-up time period. Next, models were fitted that 

removed any individual who had died at any stage in the follow-up. The first included all patients 

in the study, so long as they did not die during follow-up, and this included 6,679 out of the original 

8,003 individuals. The second looked at individuals who did not die in the follow-up time who had 

some transition between two categories on the scale at some point, this model included 4,227 out 

of the original 8,003 individuals, see Appendix F for flow diagram of participants. 

 

7.4.3.1      Survivor only – all patients 

 

The first survivor model fitted included at all patients within the study. As before, the 

distribution of the percentages of patients with each score on the mRS was considered. The table 

below, Table 7.21, details the distribution at the 3 consecutive time points. We see that the number 

of individuals in each category on the mRS remained fairly stable across the time points. Obviously, 

because those individuals who had died have been completely removed there is no 7th category on 

the scale.  
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Table 7.21: Distribution of survivors on the mRS over the 3 follow-up points in SO2S data 

mRS score 3 months (%) 6 months (%) 12 months (%) 

0 13.9 15.7 16 

1 30.5 29.1 29.7 

2 14.2 15.3 14.2 

3 18.8 18.6 17.6 

4 16.8 16.2 17.3 

5 5.8 5 5.2 

 

 

1, 2 … 9-cluster LCGA models were fitted to the data and their fit indices are described in 

table 7.22. 10 clusters were chosen to be fitted to the data in order to try and find as many different 

trajectories in the clusters seen, however, the model with 10 clusters failed to converge on a 

likelihood. When we considered the likelihood ratio tests, we see that the BLRT indicates that each 

time a cluster is added to the model it provided a significant improvement in the fit of the model, 

as do the VLMR and the adjusted LMR. The log-likelihood also decreased for each model when 

another cluster was added, and we saw that similar to the IC indices the decrease in log-likelihood 

lessens as more clusters are added. This occurs particularly in the 8 and 10-cluster models, as can 

be seen in Figure 7.9. 

 

Table 7.22: Model fit statistics for LCGA models fitted to survivors in SO2S data 

Cluster AIC BIC adj BIC VLMR LRT adj LMR LRT BLRT LL 

1 73421.83 73469.48 73447.23    -36703.9 

2 66162.78 66237.66 66202.7 <0.001 <0.001 <0.001 -33070.4 

3 63347.36 63449.47 63401.8 <0.001 <0.001 <0.001 -31658.7 

4 61952.53 62054.86 61994.48 <0.001 <0.001 <0.001 -30943.8 

5 61173.88 61330.44 61257.35 <0.001 <0.001 <0.001 -30563.9 

6 60919.74 61103.52 61014.72 <0.001 <0.001 <0.001 -30432.9 

7 60759.99 60970.91 60872.4 <0.001 <0.001 <0.001 -30348.9 

8 60596.59 60834.82 60723.6 <0.001 <0.001 <0.001 -30263.3 

9 60498.7 60756.46 60632.22 <0.001 <0.001 <0.001 -30206.3 
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Figure 7.9: Graph of the values of the log-likelihood for 9 LCGA models fitted to survivors in SO2S 
data 

 

 

The IC indices and LMR tests suggested that models with a higher number of clusters could 

be the best model; however, it was important to consider the number of individuals in each cluster 

of the model. When we considered this, the models with 6, 7, 8 and 9 clusters did not satisfy this 

criterion. The model with the highest number of clusters that had over 5% of the data in each 

category was the 5-cluster model. This model had improved fit compared to the 4-cluster model. 

The cluster-specific proportions and the average probabilities of the cluster membership of the 5-

cluster model are shown in Table 7.23.  

 

Table 7.23: Posterior probabilities and number in each of the assigned clusters for survivors in SO2S 
data 

   Posterior Probabilities 

Assigned Cluster n % 1 2 3 4 5 

1 2,168 32 0.873 0 0 0.069 0.058 

2 811 12 0 0.897 0 0 0.103 

3 322 5 0.001 0 0.943 0.056 0 

4 933 14 0.082 0 0.029 0.888 0.001 

5 2,446 37 0.099 0.037 0 0 0.864 
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There were two very large clusters, cluster 1 has 2,168 individuals (32%) and cluster 5 has 

2,446 individuals (37%). The next 2 largest clusters were very similar in size to each other, cluster 2 

has 811 individuals (12%) and cluster 4 has 933 individuals (14%). The final cluster was a lot smaller 

than the other clusters; cluster 3 has only 322 individuals, which was only 5% of the data. The AvPPs 

are all higher than 0.864. The 5 derived cluster-specific trajectories in the 5-cluster model were 

evaluated. Table 7.24 displays the item conditional probability of each level of the mRS ordinal 

scale. 

 

Table 7.24: Conditional probabilities for each of the assigned clusters for all survivors in SO2S data 

mRS scale 3 months 6 months 12 months mRS 

scale 

3 

months 

6 

months 

12 

months 

Cluster 1    Cluster 2   

0 0.006 0.006 0.006 0 0.838 0.843 0.853 

1 0.135 0.136 0.138 1 0.154 0.15 0.141 

2 0.276 0.277 0.279 2 0.006 0.005 0.005 

3 0.434 0.433 0.431 3 0.001 0.001 0.001 

4 0.145 0.144 0.142 4 0 0 0 

5 0.003 0.003 0.003 5 0 0 0 

Cluster 3    Cluster 4   

0 0 0 0 0 0 0 0 

1 0 0 0 1 0.006 0.005 0.005 

2 0 0 0 2 0.019 0.019 0.018 

3 0.002 0.002 0.004 3 0.145 0.142 0.136 

4 0.099 0.123 0.189 4 0.754 0.755 0.758 

5 0.899 0.874 0.807 5 0.076 0.078 0.082 

Cluster 5        

0 0.124 0.129 0.139     

1 0.665 0.668 0.671     

2 0.153 0.148 0.139     

3 0.05 0.048 0.045     

4 0.007 0.007 0.007     

5 0 0 0     
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The cluster specific characteristics for each cluster of the model are described in Table 7.25 

to give an indication of the profile of each cluster over time. It can be seen that with the exception 

for cluster 3, where those individuals who were severely disabled have a small recovery, the clusters 

had individuals who made no transition and remained in the same state of disability throughout. 

 

Table 7.25: Characteristics of the 5-cluster model fitted to all survivors in SO2S data 

Assigned 

Cluster 

n % Characteristics 

1 2,168 32 Moderate disability throughout 

2 811 12 No disability throughout 

3 322 5 Severe disability with recovery 

4 933 14 Moderate to moderate-severe disability throughout 

5 2,446 37 Slight to no disability throughout 

 
 
 
Figure 7.10: Graph showing the trajectories the individuals in each cluster, for all survivors in SO2S 
trial 

 

 

Figure 7.10 shows the model trajectories for the 5 clusters that were fitted in the model. It 

can be seen that for all clusters in the model the score with the largest percentage of individuals 

did not change at any time point throughout the follow-up, leading to constant recovery 

trajectories.  
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To summarise, when considering the SO2S data set using all patients who survive the follow-

up period, and the changes in the mRS score over time, then these can be described by a 5-cluster 

model. It can be seen from the model descriptions that with the exception of cluster 3, where 

individuals undergo some recovery over time, each cluster was fairly constant in the severity of 

disability throughout the follow-up period. Cluster 3, although there was movement present, still 

had a score of 5 as the score with the largest percentage of individuals at each time point. This was 

consistent with what has been seen before in previous models that we have fitted to the SO2S using 

all individuals with no stratification for treatment. Once again individuals who did not make a 

transition were removed to see how this affected the clusters fitted to the survivors of the study.  

 

7.4.3.2      Survivors who make a transition somewhere at one of the 3 consecutive time 
points 
 

The second model, which looked only at patients who survived the whole 12 months follow-

up, was fitted to individuals who had at least 1 change in the mRS score over the 12-month follow-

up period. This was 4,227 individuals out of the original dataset. The percentage of individuals with 

each score on the mRS is given in the table below, Table 7.26, in order to look at the distribution of 

mRS scores over time. It could be seen that there was slightly more change in the percentages of 

individuals with each score over time, especially for the lower categories on the mRS.  

 

Table 7.26: Distribution of survivors with transition on the mRS over the 3 follow-up points in SO2S 
data 

mRS score 3 months (%) 6 months (%) 12 months (%) 

0 11.3 14.0 14.3 

1 27.7 25.3 25.7 

2 17.6 19.7 18.3 

3 21.3 21.1 19.8 

4 16.9 16.0 17.7 

5 5.3 4.0 4.1 
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1, 2 … 9-cluster LCGA models were fitted to the data and their fit indices are described in 

Table 7.27. 10 clusters were chosen to be fitted to the data in order to try and find as many different 

trajectories in the clusters seen. As with the survivor only model that included all patients the model 

with 10 clusters failed to converge on the likelihood. The 3 IC indices all showed a decrease with an 

increase in the number of clusters being fitted in each model, although the amount of the decrease 

was getting smaller as there were more clusters added to the model, Figure 7.11. When we 

considered the likelihood ratio tests, we see that the BLRT indicates that each time a cluster is 

added to the model it provides a significant improvement in the fit of the model, as do the VLMR 

and the adjusted LMR. 

 

Table 7.27: Model fit statistics for LCGA models fitted to survivors with transition in SO2S data 

Cluster AIC BIC ad BIC VLMR LRT adj LMR LRT BLRT LL 

1 45392.92 45437.36 45415.11    -22689.5 

2 43051.75 43121.59 43086.63 <0.001 <0.001 <0.001 -21514.9 

3 42302.37 42397.61 42349.94 <0.001 <0.001 <0.001 -21136.2 

4 41976.43 42097.07 42036.7 <0.001 <0.001 <0.001 -20969.2 

5 41724.62 41870.66 41797.57 <0.001 <0.001 <0.001 -20839.3 

6 41578.93 41750.35 41664.56 <0.001 <0.001 <0.001 -20762.5 

7 41501.52 41698.34 41599.84 <0.001 <0.001 <0.001 -20719.8 

8 41438.09 411660.3 41549.1 <0.001 <0.001 <0.001 -20684 

9 41360.93 41608.55 41484.62 <0.001 <0.001 <0.001 -20641.5 

 

Figure 7.11: Graph of the values of the log-likelihood for 9 LCGA models fitted to survivors with a 

transition during follow-up SO2S data 
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After considering the IC indices and the likelihood ratio tests we next considered the 

proportion of individuals in each cluster of the model, in order to find the best fitting model that 

has at least 5% of the data within each cluster of the fitted model. The 7, 8 and 9-cluster models all 

had at least one cluster where there was less than 5% of the individuals in the dataset within the 

cluster. The 6-cluster model was the largest cluster model that satisfied the criteria for the 

proportion of individuals in each cluster. This model also had an improved fit compared to the 5-

cluster model when considering the IC indices and LRT results. The cluster-specific proportions and 

the average probabilities of the cluster membership of the 6-cluster model are shown in Table 7.28.  

 
Table 7.28: Posterior probabilities and number in each of the assigned clusters for survivors who 
make a transition during follow-up in SO2S data 

      Posterior Probabilities 

Assigned 

Cluster 

n % 1 2 3 4 5 6 

1 486 11 0.771 0.075 0.001 0.049 0.104 0 

2 453 11 0.131 0.756 0 0.014 0.098 0 

3 466 11 0.001 0 0.893 0 0.058 0.049 

4 310 7 0.041 0.036 0 0.922 0.001 0 

5 2073 49 0.046 0.048 0.042 0 0.844 0.02 

6 439 10 0 0.001 0.11 0 0.094 0.794 

 

 

The smallest cluster in the model was cluster 4, which only had 310 individuals in it, 

approximately 7% of the data. This was closely followed by cluster 6, which had 439 individuals, 

which was 10% of the data. Clusters 1, 2 and 3 all had 11% of the data in them. The largest cluster, 

cluster 5, contained 2,073 individuals, which was 49% of the data. Although there were no clusters 

that had the majority of the data in them, this was very close to containing 50% of the individuals 

in the dataset. All of the calculated AvPPs were greater than 0.7 and suggested the model was good 

at predicting cluster membership, although some of these values were much lower than have been 

seen in previous models.  
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Finally, the 6 derived cluster-specific trajectories from the 6-cluster model were evaluated. 

Table 7.29 displays the item conditional probability of each level of the mRS ordinal scale. 

 
Table 7.29: Conditional probabilities for each of the assigned clusters for survivors with transition 
in SO2S data 

mRS scale 3 months 6 months 12 months mRS scale 3 

months 

6 

months 

12 

months 

Cluster 1    Cluster 2    

0 0.001 0.002 0.011 0 0.009 0.003 0 

1 0.013 0.029 0.148 1 0.126 0.045 0.005 

2 0.033 0.073 0.247 2 0.226 0.107 0.013 

3 0.226 0.366 0.433 3 0.451 0.428 0.104 

4 0.681 0.51 0.157 4 0.184 0.404 0.761 

5 0.047 0.02 0.004 5 0.004 0.013 0.117 

6 0.001 0.002 0.011 6 0.009 0.003 0 

Cluster 3    Cluster 4    

0 0.179 0.421 0.897 0 0 0 0 

1 0.612 0.505 0.097 1 0 0.001 0.001 

2 0.141 0.052 0.005 2 0.001 0.002 0.003 

3 0.059 0.019 0.002 3 0.01 0.014 0.023 

4 0.009 0.003 0 4 0.388 0.449 0.572 

5 0 0 0 5 0.6 0.535 0.401 

6 0.179 0.421 0.897 6 0 0 0 

Cluster 5    Cluster 6    

0 0.034 0.034 0.035 0 0.83 0.586 0.1 

1 0.344 0.347 0.353 1 0.159 0.375 0.559 

2 0.309 0.309 0.308 2 0.008 0.028 0.216 

3 0.257 0.255 0.25 3 0.003 0.01 0.107 

4 0.055 0.055 0.053 4 0 0.001 0.018 

5 0.001 0.001 0.001 5 0 0 0 

6 0.034 0.034 0.035 6 0.83 0.586 0.1 

 

 

The cluster specific characteristics for each cluster of the model are described in Table 7.30 

to give an indication of the profile of each cluster over time. It could be seen from the table that 

there was a lot more movement in the model fitted to the survivors who have some change in the 

mRS score over the follow-up period, than any of the other models previously fitted to the data, 

with 4 of the 6 clusters showing individuals recovering or deteriorating over time.  
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Table 7.30: Characteristics of the 4-cluster model fitted to all survivors with transition in SO2S data 

Assigned 

Cluster 

n % Characteristics 

1 486 11 Moderate-severe and severe disability with recovery 

2 453 11 Moderate disability with worsening over time 

3 466 11 No to slight disability with recovery 

4 310 7 Severe disability throughout 

5 2073 49 Slight disability throughout follow-up 

6 439 10 No disability with deterioration over time 

 

 

Figure 7.12: Graph showing the trajectories the individuals in each cluster, for all survivors who 
have a transition during follow-up in SO2S trial 

 

 

Figure 7.12 shows the model trajectories for the 6 clusters that were fitted in the model 

Only 1 cluster showed no change over time, cluster 5, those with no-slight disability. Recovery could 

be seen in 3 of the trajectories, cluster 1 showed individuals with score a 4 at 3 months were the 

largest group within that cluster, which decreased to a mRS score of 3 at 6 months. The other 

recovery clusters showed slightly later recovery between 6 and 12 months, with cluster 4 having 

the largest percentage of individuals with a score of 5 then a score of 4, and cluster 3 having the 

largest percentage of individuals scoring a 1 and then 0 with no disability by 12 months. Cluster 2 

had most individuals with moderate disability at 3 months, which increased to a moderate-severe 
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disability at 12 months. The final cluster showed the individuals who have no disability at 3 months 

but slight disability at 12 months.  

To summarise, when considering the changes in the SO2S data set using those patients who 

survived the follow-up and experience a transition throughout the 12-month period, these can be 

described by a 6-cluster model. This model had the most transitions that have been seen in all the 

models fitted to the SO2S data, with 5 of the 6 clusters fitted showing some form of movement over 

time whether that be recovery or a worsening in the score.  

 

7.4.3.3      Comparison of models fitted to SO2S survivor data  

 

There were 2 different models fitted to the SO2S data that only included individuals who 

survived the whole of the 12-month follow-up of the trial. The first was fitted to all patients in the 

trial and the second was fitted to only those individuals in the dataset who had a change in their 

mRS score over the 12-month follow-up.  

The best model fitted to all the patients in the trial was a 5-cluster model and was fitted to 

6,679 individuals. The best model fitted to the individuals who had a transition was a 6-cluster 

model and was fitted to 4,227 individuals. There were only 2 clusters that were the same between 

the two models fitted. The first was those individuals who had a moderate-severe or severe 

disability with recovery over time and the second was those who had slight disability throughout 

the follow-up. The other clusters in the model with all patients were clusters where individuals 

remained on the same scores throughout the follow-up. For the model fitted to patients who 

survived and made a transition, there was a lot more variation seen in the mRS scores, with people 

worsening or recovering over time rather than staying within the same mRS categories. The 

posterior probabilities for these clusters were, however, much lower than the posterior 

probabilities that have been seen in other fitted models, suggesting there was more chance of the 
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model not classifying individuals into the correct clusters, although the values are not below the 

threshold that was deemed to be a good posterior probability.  

A challenge of using the SO2S data was the limited number of data points, therefore the 

NINDS dataset was used, which increased the number of follow-up points to 4. 

  

7.5      Results using the NINDS data 

 

Over the 4 follow-up time points the score that each individual received on the mRS was 

recorded. Each patient in the study had his or her own distinct recovery pattern. The different 

recovery patterns seen in the data were recorded in order to identify the change in mRS score over 

the 4 consecutive time points. There were 163 different patterns of mRS score over the 4 time 

points. Of these 163 patterns, there were 22 recovery trajectories that contained over 1% of the 

data, Table 7.31. Patterns were only considered if they had full mRS data at each time point, which 

meant 619 out of the 624 patients in the study were considered. The remaining 5 individuals had 

missing values during the follow-up.  

 

Table 7.31: Recovery patterns that occur in more than 1% of individuals in NINDS dataset 

Pattern N % Pattern N % 

0000 41 6.6 4222 6 1.0 

0011 6 1.0 4333 25 4.0 

0111 6 1.0 4444 21 3.4 

1000 15 2.4 4666 14 2.2 

1110 7 1.1 5333 7 1.1 

1111 19 3.0 5444 16 2.6 

2111 20 3.2 5466 6 1.0 

3111 7 1.1 5555 14 2.2 

3222 8 1.3 5566 9 1.4 

3333 9 1.4 5666 60 9.6 

4111 12 1.9 6666 38 6.1 
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The most frequently observed pattern in the data was an individual who scored 5666. These 

patients were severely disabled at 7 days and by the 3 month follow-up had died; approximately 

10% of the individuals in the study fell into this trajectory over time. Other frequently observed 

trajectories included 0000 (6.6%), 4333 (4%), 4444 (3.4%), and 6666 (6.1%). Over the 4 time points 

individuals did tend to make a transition at one time point during the follow-up. The change was 

mainly seen between the 7-day and 3-month follow-ups, when a patient appears to be experiencing 

most of his or her recovering. Patients who made no transition at all were also frequently observed, 

a trajectory of 1111 occurring in 3% of patients, 3333 in 1.4%, and 5555 in 2.2% of patients.  

A patient is described to have had some recovery between 7 days and 12 months if they 

have a lower score at 12 months than at 7 days, and a patient has deteriorated if the score at 12 

months was higher than at 7 days then there are 6 trajectories show deterioration and 10 

trajectories that show recovery in a patient.  

 

7.5.1 All patients at 4 consecutive time points 

 

At each of the 4 consecutive time points, the percentage distribution of the mRS score can 

be detailed, as seen in Table 7.32. These values are the percentage distributions of the individuals 

included in the LCGA, excluding those individuals who have missing values. Between 3 and 12 

months the distribution of individuals was stable, however, there were many transitions between 

7 days and 3 months as the distribution seen was very different between these 2 time points. These 

values included all the individuals in the data set, as the LCGA models were fitted to all 624 

individuals, regardless of whether there were missing values.  
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Table 7.32: Distribution of individuals on the mRS over the 4 follow-up points in the NINDS data 

mRS score 7 days (%) 3 months (%) 6 months (%) 12 months (%) 

0 11.6 14.4 14.7 14.6 

1 13.4 20.2 20.0 18.6 

2 9.0 9.8 9.3 9.3 

3 9.4 13.6 14.7 12.3 

4 25.5 16.7 11.5 8.5 

5 24.9 6.4 5.1 5.1 

6 6.1 18.9 24.5 31.6 

 

A series of 1, 2 … 10-cluster models were fitted the data, see Table 7.33 for the results. The 

IC indices were decreasing as each extra class was added. The AIC and adjusted BIC were lowest in 

the 10-cluster model and the BIC was lowest in the 9-cluster model. We also see that the log-

likelihood was reduced with each added cluster of the model. From Figure 7.13, the decreasing log-

likelihood can be seen, and the amount that the likelihood was decreasing flattens off from the 8-

cluster model onwards. When considering the LRTs, the BLRT suggested that there was an 

improvement in the fit of the model for every model as new clusters were added. The VLMR and 

adjusted LMR LRTs agree with this; however, the 10-cluster model had non-significant p-values 

suggesting that there was no increase in the fit of the 10-cluster model compared to the 9-cluster 

model. 

 

Table 7.33: Model fit statistics for LCGA models fitted to NINDS data 

Cluster AIC BIC adj BIC VLMR LRT adj LMR LRT BLRT LL 

1 9541.653 9572.706 9550.482    -4763.83 

2 8172.521 8216.883 8185.134 <0.001 <0.001 <0.001 -4076.26 

3 7344.751 7402.421 7361.147 <0.001 <0.001 <0.001 -3659.38 

4 7095.035 7116.013 7115.216 <0.001 <0.001 <0.001 -3531.52 

5 6938.504 7022.79 6962.468 <0.001 <0.001 <0.001 -3450.25 

6 6749.413 6847.008 6777.161 <0.001 <0.001 <0.001 -3352.71 

7 6713.192 6824.096 6744.725 0.0254 0.0301 <0.001 -3331.6 

8 6686.745 6810.957 6722.061 <0.001 <0.001 <0.001 -3315.37 

9 6660.617 6798.138 6699.718 <0.001 <0.001 <0.001 -3299.31 

10 6648.485 6799.314 6691.369 0.199 0.2096 <0.001 -3290.24 
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Figure 7.13: Graph of the values of the log-likelihood for 10 LCGA models fitted to NINDS data 

 

 

The IC indices and the LRTs give an indication that having more clusters gave models that 

fitted the data better; however, each cluster must contain at least 5%. Looking at the numbers in 

each class, both the 6- and 7-cluster models contained at least 5% of the data in each cluster. 

However, the 5-cluster and the 8-, 9- and 10-cluster models had less than 5% of the data in at least 

one cluster of the model. The 7-cluster model was chosen as it was the model with the largest 

number of clusters that still satisfied the minimum number of individuals in each cluster. The 

cluster-specific proportions and the average probabilities of the cluster membership of the 7-

cluster model are shown in Table 7.34.  

 

Table 7.34: Posterior probabilities and number in each of the assigned clusters for all patients in 
NINDS data 

   Posterior Probabilities 

Assigned Cluster n % 1 2 3 4 5 6 7 

1 34 5 0.839 0.055 0.029 0.056 0.009 0 0.011 

2 136 22 0.006 0.917 0 0.038 0.038 0 0 

3 140 22 0 0 0.984 0.016 0 0 0 

4 105 17 0.002 0.072 0.017 0.909 0 0 0 

5 106 17 0 0.033 0 0 0.865 0.002 0.1 

6 70 11 0 0 0 0 0.015 0.952 0.033 

7 33 5 0 0 0 0 0.094 0.041 0.865 
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The smallest cluster, cluster 7, had only 33 people in it, closely followed by cluster 1 with 

34, and these clusters were both borderline as they contain just 5% of the data in each. However, 

there was not one cluster that contained a large proportion and the others are fairly similar, with 

clusters 2, and 3 containing 136 and 140 individuals respectively, which were approximately 22% of 

the data in each cluster. The AvPP assignments were all high, ranging from 0.84 to 0.98, suggesting 

that individuals in each cluster were highly likely to be assigned that cluster.  

Finally, the 7 derived cluster-specific trajectories in the 7-cluster model were evaluated. 

Table 7.35 displays the item conditional probability of each level of the mRS ordinal scale. 
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Table 7.35: Conditional probabilities for each of the assigned clusters for all patients in NINDS data 

mRS 

scale 

7-10 

days 

3 

months 

6 

months 

12 

Months 

mRS 

scale 

7-10 

days 

3 

months 

6 

months 

12 

months 

Cluster 1    Cluster 2    

0 0.369 0.033 0.002 0 0 0.001 0.001 0.002 0.006 

1 0.588 0.531 0.055 0 1 0.033 0.05 0.076 0.175 

2 0.035 0.3 0.171 0 2 0.113 0.158 0.216 0.338 

3 0.008 0.111 0.413 0.003 3 0.363 0.405 0.421 0.348 

4 0.001 0.023 0.306 0.028 4 0.402 0.327 0.246 0.118 

5 0 0.002 0.045 0.159 5 0.075 0.05 0.033 0.013 

6 0 0 0.008 0.809 6 0.013 0.009 0.005 0.002 

Cluster 3    Cluster 4    

0 0 0 0 0 0 0 0 0 0 

1 0.001 0 0 0 1 0.005 0.005 0.004 0.003 

2 0.004 0 0 0 2 0.021 0.018 0.016 0.013 

3 0.026 0.002 0 0 3 0.112 0.103 0.093 0.075 

4 0.212 0.022 0.001 0 4 0.478 0.464 0.448 0.409 

5 0.455 0.129 0.01 0 5 0.304 0.322 0.341 0.378 

6 0.301 0.846 0.989 1 6 0.08 0.088 0.098 0.122 

Cluster 5    Cluster 6    

0 0.019 0.037 0.074 0.262 0 0.641 0.896 0.979 0.999 

1 0.406 0.554 0.676 0.668 1 0.344 0.101 0.02 0.001 

2 0.358 0.285 0.187 0.055 2 0.012 0.002 0 0 

3 0.172 0.101 0.053 0.013 3 0.003 0.001 0 0 

4 0.039 0.02 0.01 0.002 4 0 0 0 0 

5 0.004 0.002 0.001 0 5 0 0 0 0 

6 0.001 0 0 0 6 0 0 0 0 

Cluster 7         

0 0.475 0.393 0.31 0.175      

1 0.496 0.568 0.634 0.713      

2 0.023 0.031 0.044 0.087      

3 0.005 0.007 0.01 0.021      

4 0.001 0.001 0.002 0.004      

5 0 0 0 0      

6 0 0 0 0      

 

 

The cluster specific characteristics for each fitted cluster of the model are described in Table 

7.36 to give an indication of the profile of each cluster over time. Having 4 time points in the follow-

up gave individuals more room to transition than only having 3 follow-up time points. 
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Table 7.36: Characteristics of the 7-cluster model fitted to all individuals in NINDS data 

Assigned 

cluster 

n % Characteristics 

1 34 5 No-slight disability with deterioration to severe disability or death 

2 136 22 Slight to moderate-severe disability with recovery 

3 140 22 Moderate-severe disability moving to death 

4 105 17 Moderate to severe disability with little movement over time 

5 106 17 Slight to moderate disability with recovery 

6 70 11 Slight or no disability to no disability 

7 33 5 Slight disability with deterioration over time 

 

 

Figure 7.14: Graph showing the trajectories the individuals in each cluster, for all patients in 
NINDS trial 

 

 

Figure 7.14 shows the model trajectories for the 7 clusters that were fitted in the model. 

With the exception of cluster 1, which showed a recovery trajectory that worsened at each time 

point in the model, the trajectories show the most change in the mRS score occurred between 7-

10 days and 3 months, if a change occurred. Clusters 5 and 7 had the same mRS score for the largest 

percentage of individuals at each cluster. So although the movement was slightly different within 

each cluster, cluster 5 had some recovery and cluster 7 had some deterioration, overall the score 
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with the largest percentage of individuals was the same. Individuals in cluster 3 worsened between 

7-10 days and 3 months, and the majority had died at 3 months. The majority of individuals in 

cluster 2 had a moderate-severe disability at 7-10 days, which decreased to moderate disability at 

3 months. 

To summarise, when considering the NINDS dataset and the changes in the mRS score over 

time, these can be described by a 7-cluster model. These clusters showed some movement, with 

most movement occurring early in the follow-up period. Figure 7.14 shows us that we had 2 clusters 

that follow the same trajectory for the majority of individuals and so this model was not really 

appropriate, even though it was chosen as the best fitting model and appears to had distinct 

clusters within it 

A comparison to look at whether there was a difference between those individuals who 

received the placebo and those individuals who received the rt-PA treatment during the trial was 

conducted by fitting the treatment and control groups in separate models. The distribution of the 

mRS scores has been stratified between the treatment and the placebo group and is detailed in the 

table below, Table 7.37. 

 

Table 7.37: Distribution of mRS values for each follow-up point stratified by treatment for NINDS 
trial 

 Placebo group rt-PA treatment group 

 mRS 

score 

7 days 

(%) 

3 

months 

(%) 

6 

months 

(%) 

12 

months 

(%) 

7 days 

(%) 

3 

months 

(%) 

6 

months 

(%) 

12 

months 

(%) 

0 7.4 10.6 10.6 10.3 15.8 18.3 18.9 18.9 

1 10.0 16.0 17.9 16 16.8 24.4 22.1 21.2 

2 9.7 11.9 10.3 11.5 8.4 7.7 8.3 7.1 

3 9.4 14.4 16.0 12.2 9.4 12.8 13.5 12.5 

4 29.1 19.9 13.5 10.9 21.9 13.5 9.6 6.1 

5 26.5 6.7 5.8 5.8 23.2 6.1 4.5 4.5 

6 7.8 20.5 26.0 33.3 4.5 17.3 23.1 29.8 

 



 

Chapter 7  230 
 

 

Looking at Table 7.37, individuals in the placebo group seemed to have worse mRS scores 

at 7 days than those in the treatment group. This difference did not appear to have evened itself 

out over the follow-up period, with more individuals in the treatment group having no-to-slight 

disability than in the placebo group. Apart from the increasing number of individuals who had died 

by 12 months, both groups showed that after 12 months follow-up patients do appear to exhibit 

some recovery, as there are fewer individuals distributed in the higher mRS categories.  

 

7.5.2 Placebo treatment group 

 

First, we considered those individuals who received the placebo treatment. In the trial, 

individuals were randomised 1:1 to each treatment so there are 312 individuals in the placebo 

group. A series of 1, 2 … 10-cluster models were fitted to the data containing the only those who 

received the placebo treatment, as was done with all individuals, Table 7.38. It was found that the 

AIC and adjusted BIC were lowest for the 10-cluster model, but the BIC was lowest for the 9-cluster 

model. The log-likelihood also reduced with every additional cluster added to the model, and the 

reduction in log-likelihood can be seen in Figure 7.15. Once again, the BLRT indicated that every 

additional cluster in the model improved the fit of the model. It was seen from the VLMR LRT and 

the adjusted LMR LRT that most models had an improved fit on the one before, except the 7- and 

8-cluster models, which had a statistically non-significant p-value.  
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Table 7.38: Model fit statistics for LCGA models fitted to placebo group in the NINDS data 

Cluster AIC  BIC  adj BIC VLMR 

LRT 

adj LMR LRT BLRT LL 

1 4759.415 4785.616 4763.414 - - - -2372.71 

2 4109.934 4147.364 4115.648 <0.001 <0.001 <0.001 -2004.97 

3 3746.686 3795.345 3754.114 <0.001 <0.001 <0.001 -1860.34 

4 3638.001 3697.889 3647.143 <0.001 0.0012 <0.001 -1803 

5 3549.641 3620.758 3560.496 <0.001 <0.001 <0.001 -1755.82 

6 3482.453 3564.799 3495.022 0.0174 0.021 <0.001 -1719.23 

7 3462.878 3556.453 3447.161 0.75 0.7545 <0.001 -1706.44 

8 3450.265 3555.069 3466.262 0.6509 0.6539 <0.001 -1697.13 

9 3438.951 3554.984 3456.663 0.0134 0.0098 <0.001 -1688.48 

10 3429.705 3556.967 3449.13 <0.001 <0.001 <0.001 -1680.85 

 

 
Figure 7.15: Graph of the values of the log-likelihood for 10 LCGA models fitted to placebo 
treatment group of NINDS data 

 

 

Having considered the IC statistics and the LRTs, we next looked at which model met the 

minimum requirement for numbers of individuals within each category. The 6-cluster model was 

the model with the largest number of clusters that had the minimum number of individuals in each 

category. The IC indices and LRTs suggested that this model had the best fit, as it was an 

improvement on the 5-cluster model, and so this was the chosen model. The cluster-specific 

proportions and the average probabilities of the cluster membership of the 6-cluster model are 

shown in Table 7.39.  
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Table 7.39: Posterior probabilities and number in each of the assigned clusters for placebo group 
patients in NINDS data 

   Posterior probabilities 

Assigned cluster n % 1 2 3 4 5 6 

1 75 24 0.985 0 0 0 0.015 0 

2 58 19 0 0.937 0 0.007 0 0.056 

3 16 5 0.024 0.012 0.888 0 0.047 0.029 

4 23 7 0 0.048 0 0.952 0 0 

5 63 20 0.006 0 0.006 0 0.941 0.047 

6 77 25 0 0.05 0.005 0 0.036 0.91 

 

 

Compared to previous models that had been fitted, there was not one very large cluster in 

this model, and although there were 2 smaller clusters with 5% and 7% of individuals in them 

respectively, they were not much smaller than the rest. The largest cluster, cluster 6, contained 

25% of the data, which was closely followed by cluster 1 with 24% of the individuals in the model. 

This cluster had the best AvPP at 0.985. In fact, all the AvPPs were large with the smallest being 

0.888 in cluster 3, suggesting that the model was very good at assigning individuals to the correct 

cluster of the model.  

Finally, the 6 derived cluster-specific trajectories over time in the 6-cluster model were 

evaluated. Table 7.40 displays the item conditional probability of each level of the mRS ordinal scale 

at each of the 4 follow-up points. 
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Table 7.40: Conditional probabilities for each of the assigned clusters for placebo group patients in 
NINDS data 

mRS 

 scale 

7-10 

days 

3  

months 

6  

months 

12  

months 

mRS 

scale 

7-10 

days 

3 

months 

6 

months 

12 

months 

Cluster 1     Cluster 2    

0 0 0 0 0 0 0.083 0.113 0.155 0.28 

1 0.001 0 0 0 1 0.498 0.547 0.582 0.576 

2 0.004 0 0 0 2 0.292 0.246 0.196 0.111 

3 0.023 0.002 0 0 3 0.102 0.076 0.054 0.027 

4 0.218 0.02 0.001 0 4 0.023 0.016 0.011 0.005 

5 0.446 0.111 0.007 0 5 0.002 0.001 0.001 0 

6 0.307 0.867 0.992 1 6 0 0 0 0 

Cluster 3     Cluster 4    

0 0.464 0.052 0.003 0 0 0.456 0.913 0.994 1 

1 0.466 0.406 0.038 0 1 0.472 0.081 0.006 0 

2 0.055 0.35 0.135 0 2 0.057 0.005 0 0 

3 0.012 0.151 0.37 0.002 3 0.013 0.001 0 0 

4 0.002 0.037 0.386 0.026 4 0.003 0 0 0 

5 0 0.003 0.058 0.141 5 0 0 0 0 

6 0 0.001 0.011 0.831 6 0 0 0 0 

Cluster 5     Cluster 6    

0 0 0 0 0 0 0.002 0.004 0.007 0.019 

1 0.005 0.004 0.004 0.004 1 0.033 0.053 0.085 0.209 

2 0.019 0.018 0.017 0.015 2 0.12 0.174 0.243 0.367 

3 0.098 0.094 0.089 0.08 3 0.354 0.397 0.404 0.297 

4 0.489 0.482 0.474 0.456 4 0.412 0.323 0.23 0.097 

5 0.304 0.313 0.322 0.341 5 0.066 0.042 0.026 0.009 

6 0.084 0.089 0.093 0.104 6 0.012 0.008 0.005 0.002 

 

The cluster specific characteristics for each fitted cluster of the model are described in 

Table 7.41 to give an indication of the profile of each cluster over time. Comparing these cluster 

specific characteristics to those of all the individuals in the trial there are lots of similarities in the 

cluster characteristics.  



 

Chapter 7  234 
 

 

Table 7.41: Characteristics of the 4-cluster model fitted to individuals in the placebo group in NINDS 
data 

Assigned 

Cluster 

n % Characteristics 

1 75 24 Moderate-severe & severe to death 

2 58 19 No to moderate disability with some recovery over time 

3 16 5 No to slight disability deteriorating greatly over time to death 

4 23 7 No to slight disability with full recovery 

5 63 20 Moderate-severe & severe throughout 

6 77 25 Slight to moderate-severe disability with recovery 

 

Figure 7.16: Graph showing the trajectories the individuals in each cluster, for patients in placebo 
treatment group of NINDS trial 

 

 

Figure 7.16 shows the model trajectories for the 6 clusters that were fitted in the model. 

The trajectories that showed deterioration over time were clusters 1 and 3 and these were the 

same trajectories as two of the clusters in the model that included all individuals in the trial. Two 

clusters showed no movement in the score of the majority of individuals over time. Finally, two 

clusters showed recovery over time; both clusters had a one-score decrease on the mRS between 

7-10 days and 3 months, with cluster 6 showing a second recovery step and a further one-score 

decrease between 6 and 12 months.  
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To summarise, when considering the individuals in the NINDS dataset who received the 

placebo treatment, the changes in the mRS score over time can be described by a 6-cluster model. 

There were a lot of similarities seen in the clusters fitted in just those individuals who had placebo 

and all individuals, with similar deterioration clusters. The clusters that showed recovery were 

specific to those who recovered the placebo treatment.  

 

7.5.3 rt-PA treatment group 

 

Next, we considered the other 312 individuals who received the rt-PA treatment during the 

trial. As with the other 2 models using the NINDS data, 1, 2… 10-cluster models were fitted to the 

data. There were no problems with the estimation of the maximum likelihood. As has been seen 

before, the lowest values of the IC indices were for the 10-cluster model, and they agreed with each 

other, unlike the model fitted to the placebo group, Table 7.42. As each cluster was added to the 

model, the log-likelihood decreased; this can be seen in Figure 7.17. At the start, the change in log-

likelihood was large between models, but it began to decrease for higher-cluster models. The BLRT 

indicated that every model improves the model fit on the one with one less cluster. However, the 

VLMR LRT suggested that the models with 7 clusters or more show no better fit than the previous 

model as all the p-values are not statistically significant.  

 

Table 7.42: Model fit statistics for LCGA models fitted to the treatment group in the NINDS data 

Cluster AIC BIC adj BIC VLMR LRT adj LMR LRT BLRT LL 

1 4728.729 4754.93 4732.728 - - - -2357.36 

2 3967.758 4005.188 3973.472 <0.001 <0.001 <0.001 -1973.88 

3 3586.351 3635.01 3593.778 <0.001 <0.001 <0.001 -1780.18 

4 3424.637 3484.525 3433.778 <0.001 <0.001 <0.001 -1696.32 

5 3340.759 3411.873 3351.612 <0.001 <0.001 <0.001 -1651.38 

6 3271.679 3354.025 3284.248 0.0058 0.0075 <0.001 -1613.84 

7 3257.032 3350.607 3271.316 0.1281 0.1422 <0.001 -1603.52 

8 3241.991 3346.95 3257.989 0.6756 0.6933 <0.001 -1593.0 

9 3231.47 3347.503 3249.181 0.1444 0.1497 <0.001 -1584.74 

10 3216.392 3343.654 3235.818 0.2175 0.228 <0.001 -1574.2 
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Figure 7.17: Graph of the values of the log-likelihood for 10 LCGA models fitted to treatment 
group if NINDS trial 

 

 

The minimum number of individuals for each cluster were considered and it was found the 

6-cluster model had enough individuals to satisfy the minimum criterion. This was the largest model 

to do so, as the 7-cluster model and models with a higher number of clusters contained clusters 

with only 1% of individuals in them, as did the 5-cluster model. The cluster-specific proportions and 

the average probabilities of the cluster membership of the 6-cluster model are shown in Table 7.43.  

 
Table 7.43: Posterior probabilities and number in each of the assigned clusters for treatment group 
patients in NINDS data 

      Posterior probabilities 

Assigned cluster N % 1 2 3 4 5 6 

1 67 21 0.969 0 0 0 0.03 0 

2 44 14 0 0.982 0 0 0 0.018 

3 61 20 0 0 0.938 0.002 0.045 0.015 

4 20 6 0.018 0 0.085 0.825 0.045 0.027 

5 37 12 0.013 0 0.089 0.003 0.894 0 

6 83 27 0 0.026 0.022 0.001 0 0.95 

 

 

The largest cluster in the model was cluster 6 (n=83, 27%) and the smaller was cluster 4 

(n=20, 6%). The largest cluster had 4 times as many individuals in the cluster than the smallest, but 
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still contained nowhere near enough individuals to have the majority of those in the dataset. All of 

the AvPPs showed that the model fitted the data well; the smallest was 0.825 and every individual 

in the model had a very good chance of being assigned to the correct cluster. The 6 derived cluster-

specific trajectories in the 6-cluster model were evaluated. Table 7.44 displays the item conditional 

probability of each level of the mRS ordinal scale over the 4 follow-up time points. 

 

Table 7.44: Conditional probabilities for each of the assigned clusters for treatment group in SO2S 
data 

mRS 

 scale 

7-10 

days 

3  

months 

6  

months 

12  

months 

mRS 

scale 

7-10 

days 

3 

months 

6 

months 

12 

months 

Cluster 1     Cluster 2    

0 0 0 0 0 0 0.763 0.904 0.968 0.997 

1 0.001 0 0 0 1 0.225 0.092 0.031 0.003 

2 0.004 0 0 0 2 0.009 0.003 0.001 0 

3 0.027 0.002 0 0 3 0.003 0.001 0 0 

4 0.2 0.023 0.002 0 4 0 0 0 0 

5 0.477 0.151 0.013 0 5 0 0 0 0 

6 0.29 0.823 0.985 1 6 0 0 0 0 

Cluster 3     Cluster 4    

0 0.002 0.002 0.003 0.008 0 0.347 0.036 0.002 0 

1 0.035 0.052 0.077 0.168 1 0.584 0.452 0.049 0 

2 0.094 0.13 0.177 0.282 2 0.051 0.302 0.125 0 

3 0.368 0.414 0.439 0.39 3 0.016 0.171 0.409 0.003 

4 0.402 0.334 0.258 0.133 4 0.003 0.034 0.342 0.031 

5 0.086 0.06 0.04 0.017 5 0 0.004 0.062 0.189 

6 0.013 0.009 0.006 0.002 6 0 0.001 0.01 0.776 

Cluster 5     Cluster 6    

0 0 0 0 0 0 0.095 0.123 0.16 0.266 

1 0.006 0.005 0.004 0.003 1 0.631 0.657 0.668 0.635 

2 0.018 0.016 0.013 0.009 2 0.187 0.154 0.122 0.071 

3 0.12 0.103 0.088 0.062 3 0.073 0.056 0.042 0.023 

4 0.462 0.44 0.412 0.347 4 0.013 0.01 0.007 0.004 

5 0.319 0.348 0.379 0.434 5 0.001 0.001 0.001 0 

6 0.074 0.087 0.104 0.146 6 0 0 0 0 

 

 

The cluster specific characteristics for each fitted cluster of the model are described in Table 

7.45 to give an indication of the profile of each cluster over time. There were a lot of similarities 
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seen in the clusters fitted in individuals who received the rt-PA treatment and those fitted in 

individuals who received the placebo.  

 

Table 7.45: Characteristics of the 6-cluster model fitted to the treatment group in NINDS data 

Assigned Cluster N % Characteristics 

1 67 21 Moderate-severe & severe to death 

2 44 14 No to slight disability with full recovery  

3 61 20 No to moderate disability with some recovery over time 

4 20 6 No to slight disability deteriorating greatly over time to death 

5 37 12 Moderate severe & severe with some deterioration 

6 83 27 Slight to moderate-severe disability with recovery 

 

Figure 7.18: Graph showing the trajectories the individuals in each cluster, for patients in 
treatment group of NINDS trial 

 

 

Figure 7.18 shows the model trajectories for the 6 clusters that were fitted in the model. 

Although there were similarities in the cluster descriptions and the small movements within a 

cluster between the treatment and the placebo, the trajectories for the treatment group showed 

less movement over time. Apart from cluster 4 showing deterioration at each time point of the 

model, all movement occurs early in the follow-up. There were only 2 clusters that had movement, 

one with those who were severely disabled and died at 3 months and one where the majority of 
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individuals had a moderate-severe disability and showed some recovery in the first few months to 

have only a moderate disability.  

To summarise, when considering the individuals in the NINDS dataset who received the rt-

PA treatment and the changes in the mRS score over time, these can also be described by a 6-

cluster model. Although there were similarities in the cluster descriptions and the small movements 

within a cluster between the treatment and the placebo, there was less movement over time in the 

treatment group. With the exception of the cluster that transitioned from no disability to death, all 

recovery or deterioration was done early.  

 

7.5.4 Comparison of placebo and rt-PA groups 

 

The models fitted to the placebo group showed that the best model was the 6-cluster 

model. There were 312 individuals split into 6 clusters and each cluster had a distinct trajectory 

over the 12-month follow-up period. The models fitted to the rt-PA treatment group showed that 

the best model was the 6 cluster model. There were distinct trajectories for the 12-month follow-

up with the 312 individuals assigned to one of the 6 distinct clusters in the model.  

The models fitted to the placebo group and the rt-PA treatment group are very similar in 

the clusters that are fitted to the data. Out of the 6 clusters in each model, 5 of the clusters are very 

similar in the characteristics of the trajectories that they show. Both models had clusters where 

individuals move from moderate and severe disability at 7 days to death at 12 months, and no or 

slight disability at 7 days with deterioration to death at 12 months. There are also clusters where 

individuals had no or slight disability with no change. There are two clusters in which recovery is 

seen, where individuals show recovery from between slight and moderate-severe disability and 

from no and moderate disability. The only cluster where the models differ slightly is the cluster 

where the placebo group individuals had moderate-severe disability throughout, whereas in the rt-

PA treatment group there is some deterioration seen to slightly more severely disabled. The 
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treatments were also considered when they were combined together, which seems sensible as the 

clusters fitted to the placebo and rt-PA treatments are very similar.  

The model fitted to the data combined across treatment groups shows that the best model 

that was fitted was the 7-cluster model. There were 624 individuals split into 7 clusters and each 

cluster had a distinct trajectory over the 12-month follow-up period.  

As expected, the model fitted to all the data provided very similar clusters to those seen in 

the 6-cluster model for the placebo and the 6-cluster model for the rt-PA. The main difference was 

that there was a 7th cluster in the model with all the data, which was a cluster that shows individuals 

with a slight disability at 7 days who then go on to deteriorate over time. The only other difference 

between the models was that the cluster in the placebo and rt-PA fitted models had a cluster with 

no to moderate disability with recovery, which in the model with all the data has individuals who 

are slightly more disabled and range from slight to moderate disability at 7 days before recovery. 

Otherwise, the clusters produced by the models are consistent across all the models fitted.  

 

7.6      Discussion 

 

This chapter aimed to use a person-centred approach to the longitudinal analysis of the 

mRS, by conducting LCGA. The analysis was conducted in order to look at the clustering of 

individuals due to similar trajectories of their recovery profiles over time. LCGA models were fitted 

firstly to the SO2S data using all patients at 3 consecutive time points, followed by individuals who 

experienced some change in the mRS score during the follow-up time period, and finally individuals 

who did not die during the 12-month follow-up period. Models were also fitted using 4 consecutive 

time points using the NINDS dataset for all individuals that were followed up over the 12 months.  

The models fitted found that similar results in these individuals were mainly clustered into 

trajectories that remained the same over time, even after those individuals were removed. More 

variable profiles were seen with 4 consecutive follow-up time points, although still very similar.  
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 These models as with all those models in the thesis can be extended to various other 

scenarios. As with multi-state models, data that change very little over time are less suitable with 

this type of modelling, as there would be little movement within the trajectories over time, meaning 

little variation to distinguish between the clusters. The models need a minimum of 3 time points in 

order to be able to draw a useful trajectory, but with a larger number of time points the model can 

handle both regular and irregularly spaced follow-up points.  

 The trajectories are modelled from the first time point, therefore it there was a baseline 

measurement of the outcome then this would be the starting point of the trajectories rather than 

the first follow-up time point. LCGA models are able to handle missing data well, patients with 

missing data are able to be included in the analysis as the model is able to cope with small amounts 

of missing data.  

  

7.6.1 Model comparisons 

 

The first model fitted used all the individuals that had been followed up for 12 months in 

the SO2S dataset. The model was fitted to 7,725 individuals who were split into 4 distinct clusters 

within the model. Patients in each of the clusters defined had very little change over time and any 

variations seen within the scores of each cluster at each time point were not large enough to change 

the recovery profiles from straight lines throughout the follow-up period. The 4 clusters had 

individuals who were severely disabled, moderate-severely disabled, had no disability at all and 

with slight to moderate disability throughout the follow-up. 

The second set of models fitted to the data removed those individuals who did not make 

any transition to another mRS value over the follow-up period. The first model was fitted to all 

5,273 individuals who showed some movement throughout the follow-up, and had 5 distinct 

clusters. For the model fitted to the standard care group there were 1,760 individuals split into 4 
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clusters and in the treatment group there were 3,513 individuals split into 6 clusters in the model 

all took distinct trajectories over the 12 months follow-up period. 

There were 2 clusters that featured consistently about throughout the three models, one 

where the individuals were severely disabled and had died by 12 months and one where individuals 

had no or slight disability and showed signs of recovery other the 12 months. Other clusters were 

unique to each of the models but included a cluster of individuals with slight/moderate disability 

who worsened over time and clusters with low/moderate or moderate sever disability who 

remained the same throughout the follow-up.  

The third set of models were fitted to only those individuals who were alive at the 12-month 

follow-up assessment. The first of these models was fitted to 6,679 individuals who were all 

individuals alive at 12 months and there were 5 distinct clusters found. The second model fitted to 

those individuals who were alive at 12 months only considered individuals who had a change in the 

mRS score at some point over the 12-month follow-up. This applied to 4,227 individuals and a 6-

cluster model was fitted to the data. The only common cluster in the models was the cluster in 

which there are individuals with slight disability throughout follow-up. Otherwise the clusters were 

distinct in the two models, with no movement overtime seen in the model with all individuals and 

changes in trajectories seen in the second model, where individuals need to have at least one 

transition.  

The fourth set of models were fitted to the NINDS dataset, looking at 4 consecutive follow-

up time points rather than the 3 consecutive time points in the SO2S dataset. The first of these 

models was fitted to the full 624 individuals and there were 7 distinct clusters found. The second 

model fitted used just the placebo group, which was 312 individuals, and there were 6 distinct 

clusters fitted to the data. The final model was fitted the rt-PA group, which was 312 individuals, 

and there were 6 distinct clusters fitted to the data. There are 5 of the clusters are very similar in 

the characteristics of the trajectories that they show. All the models had clusters where individuals 

move from moderate and severe disability at 7 days to death at 12 months, and no or slight 
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disability at 7 days with deterioration to death at 12 months. There are also clusters where 

individuals had no or slight disability with no change. There are two clusters in which recovery is 

seen, where individuals show recovery from between slight and moderate-severe disability and 

from no and moderate disability. 

It can be seen across the entire collection of models fitted that there was not a great deal 

of change in the conditional probabilities calculated over time, giving clusters an overall impression 

that there was not much movement of individuals between scores on the mRS scale. This was 

consistent with other results found in the thesis. The biggest surprise was that even when 

individuals who do not make a transition are removed, the movement between scores is very small 

and that there appears to be no overall change within the cluster. However, this may have been 

expected, given that a change of 1 was seen to be of clinical importance in the mRS, this transition 

may be hard to capture on such a large scale. When we remove individuals who have died at 12 

months and restrict the model to individuals who have a change in the mRS during the follow-up, 

we begin to see more movement of the individuals within the clusters; however, this is probably 

the worst fitting model of all the LCGA models fitted to the data. We also see more movement when 

there are 4 consecutive time points rather than 3. This could also be due to the time at which the 

mRS was recorded, as the first time point is at 7 days and the second at 3 months, this time interval 

is where most of the recovery of a stroke patient occurs, and so we would expect to see more 

changes here than we would expect to see from 3 months onwards.  

 

7.6.2 Further work 

 

There are other models that could be fitted the data that use a person centred approach 

The main one that is most comparable is growth mixture modelling (GMM). It can be seen as an 

extension to LCGA where the assumption of no variation between individuals within the clusters 

has been relaxed. This means that individuals who are in the same cluster are allowed to have 
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varying growth curves, but the growth curves are assumed to be similar to the mean curve for each 

cluster. The GMM adds a random effect to allow individuals to vary the growth curve that they 

follow. There are different types of GMM that can be fitted, including quadratic or cubic trajectory 

models, that model linear growth; however, they require 4 and 5 time points respectively, which is 

obviously more than is recorded in the SO2S dataset. Alternatively, it is possible to fit a freely 

estimated time factor model, which requires only 3 time points and models non-linear growth, 

which may be a model that is possible to fit to extend the person-centred analysis. This technique 

requires a large amount of time to compute, and often provides no additional benefit to LCGA 

(Strauss et al. 2014). 

As well as this, it would be of interest to investigate the baseline covariates that were 

recorded to see if the individuals in each of the clusters in the model have specific characteristics 

that could be used to predict the membership of an individual to each cluster. For the purpose of 

this analysis the main interest lay in the effect of treatment on the mRS, with each individual 

assigned to a cluster depending in the trajectory of the mRS over time. Once assigned to a cluster 

it is possible to look at characteristics of the individuals in each cluster of the final model, for 

example age, gender and assessed baseline severity, or other things that could be used as covariate 

adjustment in a regression model. Questions that this could answer may include are there different 

ages ranges in the clusters found, are the older individuals in the clusters that have more disability 

or are there clusters that a made up of considerably more women or men? This extension may be 

of interest to help identify the potential trajectories of individuals who have had a stroke with 

specific mRS scores at a 3 month time point. Although this was not investigated in full, due to there 

being so many different models fitted to the data, as an example the baseline characteristics for 

the SO2S model with all patients who make a transition are detailed in the table below. 
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Table 7.46: Baseline characteristics of each of the identified groups in the 5 cluster model for all 
patients who make a transition in the follow-up time 

 Age (years) % Female week 1 NIHSS % Treatment Group 

Cluster 1 80.1 56% 13 (0-38) 67% 

Cluster 2 70.1 44% 3 (0-30) 67% 

Cluster 3 72.7 48% 6 (0-34) 66% 

Cluster 4 79.4 52% 9 (0-34) 64% 

Cluster 5 69.6 39% 2 (0-16) 68% 

 

 

It can be seen that there do appear to be some differences in the baseline characteristics 

detailed here. For example, cluster 1, in which patients were severely disabled and moved to death, 

were on average 10 years older than the other clusters, with more females and a high NIHSS score 

at week 1, indicating a more severe stroke. In contrast, cluster 5, in which patients had little to no 

disability, had the lowest average age and the smallest NIHSS score at week 1, suggesting that the 

effects of the stroke were not so severe. This type of investigation could be conducted for any of 

the LCGA models fitted to the data, and for any range of baseline indicators. These could then be 

used to inform clinicians about the potential recovery that an individual has, depending on their 

characteristics and the cluster into which they best fit.  

 

7.6.3 Conclusions 

 

Looking at the LCGA models fitted to both datasets, there does appear to be a difference 

in the recovery trajectories when the treatment and control groups are fitted separately. The model 

is unable to quantify this difference as a treatment effect cannot be calculated. This method can 

provide a visual representation of how individuals change over time after they have had a stroke. 

These methods have already been applied in the field of stroke, but rarely in a longitudinal setting, 

and these results suggest that using LCGA may provide additional information on how the 

treatment effects recovery by comparing the profiles of the trajectories.  
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The graphs produced are appealing to clinicians as the visual trajectories are easy to 

interpret. The trajectories found for most of the models show little change over time, but speaking 

to clinicians this could be clinically accurate, as although recovery can occur over a 12 month follow-

up, the most common time for recovery is early after the stroke, which is not recorded within this 

data, as the first follow-up point is 3 months.  

Having fitted several different models to the data, the next chapter looks at how each 

different model fitted estimates the treatment effect of the data, provides a commentary on what 

the different models mean, and reflects on key decisions that have been made throughout the 

thesis. It also looks at how the work conducted tries to address the aims of the thesis, as well as 

future work that could be conducted.  
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8   Discussion 

 

In this PhD project, I have investigated several methods that can be used to conduct a 

longitudinal analysis of stroke data. The focus of the research has been the mRS, a common primary 

end point for stroke trials and a scale rarely utilised for a longitudinal analysis. This chapter reviews 

the reasons for undertaking the analysis and the principal findings from the different longitudinal 

methods that have been fitted. This is followed by a discussion of the key decisions that were made 

throughout the thesis and their impact on the project. Finally, the chapter concludes with future 

research and the implications of this work.  

 

8.1      Current gaps in knowledge and thesis objectives 

 

From a review of the literature, it was found that very little research was conducted using 

longitudinal methods in stroke trials. The systematic review identified that nearly a third of trials 

that recorded measurements at multiple time points failed to conduct a longitudinal analysis. One 

reason for this may be that there is currently no consensus on the best method to use for serial 

measurements, which highlights the importance of the aim of this project. It was found that when 

a longitudinal analysis was conducted in a stroke trial, the methods that were chosen may not have 

given the best interpretation of the data, and usually failed to fit models that used all available data. 

It is important to remember that when collecting data on several scales, these scales should be 

used to their full potential and not dichotomised just because the interpretation is considered to 

be easier, as there is a loss of statistical power when dichotomisation is applied, which is not offset 

by the ease of interpretation. 

Recently there has been much research conducted on how best to analyse the outcomes 

of stroke trials, with particular emphasis on the mRS (Bath et al. 2012). The Optimising Analysis of 

Stroke Trials (OAST) Collaboration conducted work on this question in 2007, and recommended 
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methods that keep the functional outcome data in its ordinal form is more statistically efficient than 

those methods that dichotomise the data (Bath et al. 2007). The results were consistent across the 

different outcome measures considered. Even after these recommendations, there has not been a 

dramatic shift in the types of analysis performed when analysing acute stroke trials (Nunn et al. 

2016).  

Functional recovery over time is not well researched in stroke. This may be due to the fact 

that general recovery is hard to specify and that a lot of recovery is done in the first few weeks, 

which is often before follow-up interviews and questionnaires have been conducted, and so they 

fail to capture the moment at which patients’ recovery begins. The aim of this thesis was to apply 

different statistical models to the mRS in order to look at how the different models affect the 

estimate of treatment effect during the follow-up time. 

 

8.2       Summary of main findings 

 

8.2.1 Using regression models to analyse SO2S dataset 

 

Exploring the use of repeated measures regression models in order to analyse longitudinal 

data (Chapter 4) revealed that using ordinal regression models is preferable in the analysis of the 

mRS to dichotomising the data and conducting binary logistic regression. The chapter looked at 

how well a repeated measures model was able to estimate the treatment effect at 3 months 

(usually the primary endpoint of a trial), compared to a regression model with a single 3-month 

time point. It was found that both the dichotomised mRS and the mRS kept in its full ordinal form 

produced an overestimate of the treatment effect at 3 months. However, the magnitude of the 

overestimation was smaller when the mRS was kept in an ordinal form (3% overestimation vs 7% 

overestimation in the effect of treatment compared to control). The repeated measures analysis 
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fitted to the longitudinal data uses all data that are recorded in the follow-up and not just a single 

isolated point.  

 

8.2.2 Using a simulation study to investigate the association between effect estimates of the 

repeated measures model and the single ordinal regression model.  
 

 There was a high correlation between the mRS at each of the time points in the follow-up, 

which prompts the question: is this always the case, or are there certain situations for which the 

difference in the single time point model and the repeated measures model treatment estimates 

at the same time point are very similar, or even more different than has been observed, suggesting 

the 2 could not be used interchangeably. If a difference is always seen, this would suggest that it 

would be reasonable to use a repeated measures model to find the treatment effect as a main 

analysis for a trial, when longitudinal data have been collected. This simulation study fitted ordinal 

data with exchangeable correlation structures of 0.2, 0.4 and 0.6. Surprisingly, the smallest 

correlation values appears to give the best similarities between the results of the single time point 

and the repeated measures model, even though the outcomes vary more over time than with a 

higher correlation structure. There did not appear to be any distinguishable pattern between the 

effect estimates and the different dropout patterns that were applied to the data, with MAR or 

MCAR, suggesting that the agreement between the repeated measures model and the single 

ordinal regression model cannot be predicted.  

It was thought that using only 3 time points for the follow-up may be too short in order to 

be able to draw meaningful conclusions about how the repeated measures model performs.  
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8.2.3 Using multi-state models to analyse SO2S dataset 

 

Multi-state models were applied to the SO2S dataset in order to keep the mRS as an ordinal 

variable, whilst allowing each category in the scale to be defined as a state in the model, which 

meant that the transitions of individuals between each state could be identified.  

It was found that fitting models that had no censored states and those that included 

censored states within the model produced very similar results, and that the model was able to 

calculate a treatment effect by producing a hazard ratio for each potential transition in the model. 

There are benefits to using the model with censored states as it allows more individuals to be 

included in the model, and will show a slightly more accurate representation of the transition to 

death, as these are most of the individuals who were excluded in the first model. 

As had been found in the regression models that were fitted to the data, the treatment 

effect was calculated to be not statistically significant, and although a treatment effect was unable 

to be calculated as a single effect, it is useful to be able to distinguish between different transitions 

in the model.  

Although the model was restricted to allow individuals to transition to the adjacent state 

from the current state, an individual was assumed to have moved to further states in the model by 

assuming that they had moved through consecutive states to reach the final state. By using a multi-

state model, having fewer time points in the model is less of a limitation as the Markov property of 

the multi-state model suggests that previous state transitions are to be ignored and the model 

works on calculating only the instantaneous risk of an individual in the model. Restrictions were 

placed in upwards and downwards transitions to give single estimates. 
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8.2.4 Using LCGA models to analyse both SO2S and NINDS datasets 

 

There have been applications of LCGA within stroke trials (Busija et al. 2013, Pan et al. 

2008a), though not necessarily using the mRS, and an extension to fit a LCGA model to the data was 

therefore a natural extension. The LCGA analysis took a different approach again to analysing the 

data and took a person-centred approach, whereby groups of individuals were clustered together 

based upon the trajectories of the mRS score over time. Identifying potential recovery patterns over 

time showed that many individuals had no change over the follow-up period, and so after an initial 

model had been fitted to the data, these individuals were removed in order to try to classify 

individuals that had a change of score between 3 and 12 months. These individuals were also 

modelled as treatment and standard care groups separately, so that, although an effect estimate 

for the difference in treatment and standard care groups was not estimable, visual differences in 

the trajectories could be observed. The LCGA analysis was the only model fitted in the study that 

excluded individuals who had died, as the inclusion of death on the mRS was one of the main 

interests.  

Having 3 follow-up points means that there are only 2 potential points at which an 

individual can move states, so by using the NINDS dataset the LCGA could be fitted to 4 points, 

which showed that there was more movement within the clusters of the model. The majority of 

this movement was seen within the earliest 2 time points, before the time at which the SO2S dataset 

recorded the mRS, where individuals are expected to have more recovery. 

 

8.3       Comparison of techniques applied 

 

There are several different statistical techniques that have been used to conduct the 

analyses of longitudinal data in this project. The different models fitted use different numbers of 
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individuals and so it is hard to use conventional techniques to compare the different models fitted 

– for example, AIC and BIC – as these may not have been calculated like in the multi-state models 

that have been fitted. Therefore, this section aims to compare the different models through 

discussion, looking at the effect estimates that are produced and the assumptions that the models 

require in order to be fitted to the data.  

Without considering the results of the models, the first thing that can be compared 

between them is how missing data are dealt with. Both the regression models (ordinal and binary) 

as well as the LCGA models are able to accommodate missing data within the analysis that is being 

conducted because the models are able to deal with the missing outcome values for 1 or 2 of the 

time points. For the multi-state models, this is not that case, and those individuals with a missing 

outcome values are not immediately included within the analysis, as a missing value would not 

inform the model of where the individual was transitioning to or from. In this scenario a censored 

state can be included in the model, which allows the model to know that the individual has not 

died, but could be in any of the other states in the model.  

All three models that were fitted to the data were able to model the irregularly spaced 

time-points of the outcome included. The regression model did this by including dummy variables 

and treating time as a categorical value, with a sensitivity analysis conducted to consider the effects 

of continuous time. The use of categorical time meant that the treatment effect could only be 

estimated at the times for which the outcome was actually recorded. The multi-state model fits a 

transition between 2 time points, and assumes a Markov property such that each time point does 

not depend on the previous time points; therefore the 2 potential transitions between the 3 time 

points could be estimated, using methods for panel data, which were able to able to deal with the 

unequal time spacing. Finally, the LCGA model looks at transitions between each consecutive time 

point in the model; therefore, this method also had no issues with modelling unequally spaced data.  

The regression models were able to estimate specific overall treatment effects, for the odds 

of being dependent compared to independent for the binary model, and the odds of being in a 
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higher category than the cut off in the ordinal model. These overall effects are useful because they 

are easy to interpret; however, there is the potential for some information to be lost, due to the 

assumption of proportional odds producing the same estimates for each cut-off rather than 

estimates the vary dependent of the comparison that is being made. The proportional odds 

assumption was assessed in the regression models fitted and, although there was no improvement 

in the fit if the model, it could be seen that by relaxing the assumption different estimates were 

produced for treatment at the different cut off points of the model. These differing estimates are 

lost when proportional odds are assumed. 

The multi-state model fitted to the data calculated a treatment effect for each of the 

potential adjacent state transition, with small differences seen in the treatment effect depending 

on where an individual started on the scale. The individual estimates for the treatment effect on 

the worsening or recovery of individuals on the mRS are potentially useful because it may be that 

there is a subgroup within the scale that is more likely to benefit from treatment, for example those 

with an mRS between 2 and 4, and therefore the treatment may have the potential to target these 

individuals, for whom a benefit may not have been seen with an overall treatment effect. Unlike 

the other models in the analysis, the differences between the treatment and control groups could 

not be quantified by the LCGA models that were fitted to the data. Visual comparisons can be made, 

and indeed presenting the results as a visual trajectory of movement over time is a novel way of 

presenting the data and may be useful as an aid for explaining potential recovery to patients, who 

may not understand the odds ratios and hazard ratios calculated in the other models.  

There are different restrictions placed on the individuals that were able to be included in 

the models that were fitted. All individuals were able to be included in the regression models that 

were fitted, due to the fact that that the model could deal with missing data and could include 

individuals if they had died at 3 months using the last observation carried forward. The multi-state 

models needed censored states to deal with individuals with missing state values, but the model 

was not able to model individuals who had died at 3 months, as this would require modelling a 
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transition into the same state (the absorbing one) and although the model allows individuals to 

remain in the same state, it is defined for an individual’s moving to an adjacent state, which is not 

possible for the absorbing state. Because of this, individuals who had died at 3 months were 

dropped and those who died at 6 or 12 months were included with a missing value at 12 months if 

an individual had died at 6 months. The opposite happened for the LCGA, when considering 

individuals who had a transition in the model, those who had died at 3 months had to be include, 

even though they made no transition throughout the follow-up. This is because the outcome 

included in the LCGA needed to have the same number of categories at each time point (0 – 6), 

without those who had died at 3 months included the first time point had an outcome that only 

ranged from 0 – 5.  

 

8.4       Strengths and limitations 

 

A major strength for all the different analyses used within the project is the size of the 

dataset that has been included; due to the large numbers in the trial, over 7,700 of the 8,003 

individuals could be included in the analysis. The large sample size helps to reduce the amount of 

uncertainty seen in the model because of the larger numbers it removes the idea that the 

differences seen in the analysis are seen by chance. As well as this the estimates produced are more 

reflective of what would happen in the general population, as more individuals are included in 

deriving them.  

 

8.4.1 Regression models 

 

Strengths of the regression models that were fitted were that these models could be fitted 

in readily available statistical packages, were easy to fit, and also provided single treatment effect 

estimates that were easy to interpret. The findings here supported the work that has previously 
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been conducted in stroke research (Bath et al. 2007) in suggesting that an ordinal regression model 

was the best model to be applied to the mRS at both a single time point, which was previously 

recommended, and when using a repeated measures model to consider the effect over time. If 

researchers want to investigate the effects of a predictor variable on an ordinal scale, it is important 

that these effects can be calculated at all stages of the ordered categorical response and not just at 

a single point on the scale; ordinal regression should therefore be used in preference to a binary 

model (Javali & Pandit 2010).  

A further strength of the work conducted here was that the assumptions of the 

proportional odds model were checked and the models extended in a systematic way, rather than 

using a package with an auto fit option, for example, gologit2 in Stata. By doing this it meant that 

the random effect for the individuals could still be incorporated in the repeated measures model, 

which is important to account for the correlation between the outcomes at each time point due to 

their being observed repeatedly for each individual in the model. This could not be done in available 

software and required the use of a written SAS program, given in Appendix B.  

A limitation of the work completed is the inability to compare how well the single time 

point and repeated measures models fit the data, due to the inability to compare goodness of fit 

statistics. This is because there are different numbers of data points within each model. Because of 

this, each model could be assessed on how good the fit of the model was within each setting and 

the treatment effects could be calculated and compared; however, the goodness of fit statistics of 

the two types of model fitted could not be compared. Roozenbeck et al. (2011) calculated the ratio 

of the Wald statistics, which can be interpreted as the gain in information density, and therefore, 

could be considered a suitable measure for the efficiency of the different approaches and allow two 

different types of model to be compared, 

There was also a limitation with the number of follow-up points recorded in the SO2S study. 

With only 3 follow-up points there are few opportunities for changes to be observed, and once an 

individual had died, the series of repeated measures they have was reduced further, with a last 
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observation carried forward used to impute a value at the following time points, as they were 

known to have died. A longer follow-up period, or just more regularly recorded repeated measures 

outcomes within the year-long follow-up, would increase the number of serial observations and 

allow more complex models like a joint ordinal regression and survival model to be fitted to the 

data, but with the limited series that was recorded in this data, a joint model was unable to produce 

accurate results.  

 

8.4.2 Simulation study 

 

A strength of the simulation study lies in the variety of scenarios that were tested to see 

how well the repeated measures model can estimate the true effect. The number of time points 

was chosen based on the SO2S dataset that has been used in the thesis for different types of 

analyses.  

There was a decision made that because there were 500 repetitions of the dropout pattern 

application and it was computationally intensive to fit the regression models, 1000 individuals 

would be sufficient, although not as many as were included in the SO2S trial data. Having completed 

the study, this decision seems appropriate as there is no real pattern seen, therefore including more 

individuals would not produce better estimates than the ones that were seen, and so 1000 

individuals were sufficient due to a lack of consistency in the results seen. 

A limitation of the study was that each of the generated datasets produced a different true 

effect. This meant that sometimes the results were influences by the size of that initial effect (i.e. 

when it was very small). In hindsight, it would have perhaps been better to simulate data with the 

same common treatment effect across all the different dataset generated in order to be able to 

make better comparisons of the effects.  

 

8.4.3 Multi-state model 
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There are several advantages to fitting multi-state models to longitudinal stroke data. The 

first is that it provides a way to use the whole of the mRS scale without having to worry about 

violating the ordinality of the scale. Although each score on the scale is considered as a different 

category, ordinality is still preserved in the model as patients are able to transition to categories 

(albeit only to adjacent categories) in the model and it is also assumed that patients will transition 

throughout the model on the way to death.  

Secondly, by only using adjacent states as defined transitions, the transitions being used 

are using information in the dataset where the data are not sparse, which is the case with 

transitions that move further off the diagonal. As well as this, the inclusion of censored states allows 

a number of individuals to be included in the analysis where they would normally be excluded for 

having missing values. Furthermore, a change of one point on the mRS is deemed to be clinically 

relevant (Harrison et al. 2013) and this is what the multi-state model fitted to the data is modelling. 

The adjacent-state modelling does not restrict individuals just to transitioning to the next state; it 

just means that they are assumed to have transitioned through each adjacent state in order to get 

to one further away.  

Having only a few time points in the model is less of a limitation, as the Markov property of 

the multi-state model suggests that previous state transitions are to be ignored and the model 

works on calculating only the instantaneous risk of an individual in the model. As well as this, it is 

possible that using these types of model will bring out important insights that may be missed by 

ordinal regression models. With the assumption that the odds proportional, the estimates are the 

same for each cut-off point on the scale and the overall estimate represents transitions in a single 

direction, whereas each individual transition and direction of transition is able to be modelled using 

multi-state models. 

Lastly, the computation time needed to fit the model is small, with the multi-state models 

converging faster than some of the more complex regression models fitted in Chapter 4, and 

definitely in a shorter time than the latent class analysis models fitted in Chapter 7.  
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There are some limitations to using multi-state models, including fitted models that would 

not converge for the data at hand. Models that had censored states and included the treatment 

variable would not converge to the Hessian matrix and the maximum likelihood values could not 

be estimated even after several increases in the number of iterations. Secondly, convergence was 

also an issue for models that had a transition to death at any stage in the model and not just from 

the adjacent state. Once again, the maximum likelihood values could not be estimated and there 

was no convergence after numerous increases in the number of iterations and adjustments to 

starting values.  

The use of censored states allowed more individuals to be included in the model; however, 

the added complexity made the models hard to fit and converge. An alternative to the censored 

state would have been to impute the missing data.  

Another limitation is the lack of an overall treatment effect from the model. Each individual 

transition has his or her own treatment effect in the first model; however, it is hard to generalise 

this into one effect for the standard care group and one effect for the oxygen treatment group, 

although having an effect for each individual transition means the model has good interpretation 

for the movement of an individual with a specific mRS score.  

There is the potential for these methods to be used more widely by practitioners, but at 

the moment there is a lack of software that can be used for these models, which could be 

responsible for their limited use (Meira-Machado et al. 2009). 

 

8.4.4 LCGA 

 

A strength of this type of analysis was that it uses the whole mRS scale without loss of 

information and it is taken from a person-centred approach, unlike other models fitted to the data, 

which take a variable-centred approach to modelling the data. Using a person-centred approach 

makes no assumption that the individuals come from a population with a single growth trajectory 
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that can effectively approximate the entire population, but assumes that there are several 

underlying trajectories into which individuals can be grouped.  

There are other strengths of using LCGA, which include the fact that there can be unequal 

spacing in the observations measured over time, and the model works well even when there is a 

limited number of time points for the transitions that are being modelled to be observed in. As well 

as this there are goodness of fit indices and tests, even if there is still some disagreement about 

which are the best ones to use to decide the number of clusters that should be included in a model.  

This type of analysis can have quite a long computation time, especially when there are lots 

of clusters being attempted to be fitted and more being added to the model. It is important to 

balance the fact that we would like to fit as many clusters as possible, with the computation time 

that is needed to fit those clusters. The computational burden and computation time is also 

increased when there are larger numbers of start values included in the model; this happens when 

there is non-convergence in the model. It was found in the models fitted here that models with 

large numbers of clusters that failed to converge would not be considered due to the small numbers 

of individuals chosen for each cluster. This additional complexity also may not be warranted, as the 

extra computational time and burden may not benefit the aims of the research (Strauss et al. 2014).  

A limitation of the LCGA models fitted to the data is the need for the outcome variable 

being analysed to have the same number of categories at each of the time points included in the 

model, so for example the outcome has 7 categories at all time points, rather than 6 at one time 

point and 7 at the others. Because of this, for the analyses fitted to patients with at least one 

transition, individuals who had died at 3 months needed to be included in the models, even though 

they did not undergo a transition themselves, and indeed dominated one of the clusters in each of 

the different models fitted to the data.  

There are also potential convergence issues within the LCGA models fitted to the data, 

sometimes the maximum likelihood was not able to be replicated, even after increasing the number 

of random starts. It is known that convergence can be an issue, especially when the numbers of 
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clusters are increasing, with local solutions being found and also non-convergence (Hipp & Bauer 

2006).  

Finally, although the difference in the recovery trajectories of the two different treatment 

groups has been compared by fitting models to each group separately, there is no overall treatment 

effect produced by the model. Therefore, it is hard to quantify the difference in the treatment 

effect. It is possible to add a treatment effect into the model to estimate a model with all 

individuals, which then compares the numbers of individuals in the treatment and control groups 

within each cluster. However, this is still unable to quantify the difference specifically between the 

treatment and control groups. Obviously, fitting the two groups separately allows you to visually 

compare the trajectories of the model, and we saw that there were common clusters between 

these models but also some different ones, and both were reflected in models with all the potential 

individuals.  

 

8.5       Key decisions 

 

8.5.1 Use of only the mRS 

 

The decision was made to conduct the analysis in this thesis using the mRS as the outcome 

of interest, and to ignore the other stroke scales that were recorded in the datasets. There were 

several reasons for this. First, the mRS is the most commonly used primary outcome of a stroke 

trial, which would mean that by using the mRS for the analysis in this thesis, it has the best chance 

of being able to be used and make recommendations for stroke trials in the future. Secondly, there 

was a great interest in the category on the scale for death. This is not a common occurrence, as was 

seen in a review of the literature of outcome scores that include death within them. This inclusion 

of death posed statistical challenges, especially when the ordinality of the scale had the potential 

to be questioned due to its inclusion. Usually in a follow-up study, once patients have died they are 

dropped out of the study, with the date of death recorded along with other information such as the 
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cause of death. They will then make no further contribution to the study follow-up. However, with 

the inclusion of a category for death this will not be the case as the individual will have a score to 

contribute to the model.  

Research conducted by Diehr et al (2015) proposed several approaches for incorporating 

death when considering health-related variables in longitudinal studies (Diehr et al. 1995). These 

included adding a category for death to the variable of interest as an extreme value on the scale or 

dichotomising the scale into healthy and not healthy and including those individuals who have died 

as not healthy. Death in our case is the most extreme end of the scale and the research conducted 

shows that binary regression loses information when the scale is ordinal and, according to Bath et 

al (2007), is not the recommended way to analyse the mRS. It has been advocated including the 

score for death so long as care was taken, as strategies that gave death less influence tended to 

show more favourable changes in health over time (Diehr et al. 1995).  

It has been seen throughout this thesis that the mRS has remained largely constant across 

the follow-up period of the trial. This suggests that the mRS may be insensitive to change, when it 

comes to conducting a longitudinal analysis. This may be one of the reasons why there has been 

little research done using the mRS in a longitudinal setting. The lack of movement in the mRS raises 

the question of whether the mRS should be considered at all for the longitudinal analysis of stroke 

trials. Would it be better if the BI was used, although this scale would bring its own problems? For 

example, any analysis would have to try and account for the floor and ceiling effects of the BI.  

 

8.5.2 Use of SO2S and NINDS data 

 

The data that were used in this thesis came from two randomised controlled trials in stroke. 

Both completed follow-ups on the individuals recruited in the study for 12 months. Both of these 

datasets were chosen for practical reasons. The SO2S trial was a large trial with over 8,000 

individuals recruited to receive oxygen therapy. The recruitment for the trial had just finished when 
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the idea for this project was developed. The size of the trial was very promising with such a large 

number of individuals recruited. There was one major problem with using the SO2S trial data, which 

was that the follow-up period of the trial was relatively short for a longitudinal study and this left 

us with a limited series of data with which to work. Therefore, the analysis that has been conducted 

has tried to make the best of the available data and to present the most efficient analyses that are 

possible using data with such a short follow-up. This short series of repeated measures meant that 

there were some methods that would have been appropriate for the data, for example a joint 

model of ordinal regression and the time to event data, which it would have been advantageous to 

apply; however, it was not possible to fit reasonable models with the limited data available. Hence, 

a second dataset with more data points was also used, despite the length of the follow-up for the 

NINDS trial being the same as in the SO2S trial. This is due to the fact that the trial recorded the mRS 

at a much earlier time point to the SO2S trial, between 7 and 10 days. At this time point in the SO2S 

study, the only outcome recorded was the NIHSS.  

This particular dataset was chosen for practical reasons, as it was open access and similar 

analyses to those applied in this thesis to the SO2S data had previously been applied to the NINDS 

data (ordinal regression in a joint model and multi-state model (Li et al. 2010, Cassarly 2015)). This 

did mean however, that we were not able to apply all of the methods of the thesis to both datasets 

as it would be conducting the same analysis twice. A limitation of the NINDS dataset is that it is very 

small in comparison to the SO2S trial, with the size of the trials less than 10% of the SO2S trial. Both 

trials recruited from multiple centres, the SO2S trial based in the UK and the NINDS from acute 

stroke centres in USA.  

 

8.5.3 Decision to focus solely on treatment effect 

 

A decision was made to focus on the different models as applied solely to the treatment 

variable. This was because when the project was developed, the main results SO2S trial analysis had 
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not been published. The trial analysis plan included a longitudinal analysis of the data and so it was 

decided that in order to avoid duplication by conducting analyses that could be included in the trial 

analysis, taking one specific focus would be best. This is why only the treatment variable was 

considered. It was considered whether to look at a completely different covariate, such as the effect 

of a thrombolysis, as 17% of individuals in the data had this treatment, but this would then cause 

issues with randomisation (which was on the basis of oxygen treatment, not thrombolysis), and so 

it was decided that using just a treatment effect would be suitable and the analysis undertaken 

would be appropriately different from the trial analysis.  

The results of the SO2S trial found that the treatment had no effect on the primary 

outcome, which was the mRS at 3 months. There were discussions about whether, since it was 

known that treatment was ineffective, the trial could be used as one whole natural cohort for a 

study. However, it was decided that the effect of different models in the treatment variable was to 

be the interest of this project. The project was not interested in what the effect of treatment was, 

only how the different models that were applied to the data changed the effect of treatment that 

was calculated and presented. The fact that treatment was always going to be non-significant in 

the model could be accepted, the inclusion of treatment, time and the interaction of treatment and 

time pre-specified as the only predictor variables included in the model. 

 

8.5.4 Choice of software 

 

The thesis used several different software packages in order to fit the different models that 

were required. The ordinal and binary logistic regression models were completed in Stata. However, 

in order to fit the proportional odds model in a stepwise form, as was shown in section 4.7.3, the 

models needed to be fitted using a SAS program, Appendix B. Additionally, as a sensitivity analysis, 

the ordinal regression model with proportional odds fitted in Stata was also fitted using the SAS 

program and it was found that there was very little difference in the estimates that both models 
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produced. This meant that it could be sure that although fitted using different software the models 

were comparable. It is also why the -2 log-likelihood was compared as this was the value produced 

by the SAS package. It was important to check that both statistical packages produced the same 

estimates for the proportional odds model, in order to be able to make comparison with the new 

models fitted in SAS and the previous model fitted in Stata. If these models had produced different 

results, this would have been concerning as it was the same model being fitted to the same dataset 

just in different packages.  

SAS was also used in order to generate the discrete ordinal data that were used in the 

simulation study. The reason that this package was chosen over Stata was that a paper was found 

that generated longitudinal ordinal data (Ibrahim & Suliadi 2011), in the exact form that was 

required for the simulation study. This study also went on the add missingness to the data, but then 

went on to look at multiple imputation methods in order to deal with it.  

R was used in order to fit the multi-state models to the data. There was a software package 

that had previously been written, the msm package, that allowed multi-state Markov models to be 

fitted to the data, with or without censored states and it also allowed for the inclusion of predictor 

variables. The computation time in this package was small for these models; however, with the 

attempted inclusion of several predictor variables in the more complex models that were 

considered, convergence was an issue. The number of iterations was increased, as well as reducing 

the size of the data set by taking a random sample in order to see if converge would occur, but this 

was not the case.  

Initially, R was also considered in order to estimate the LCGA models. However, the 

computation time for fitting models that contained only 4 clusters was upwards of 24 hours and so 

it was decided that a better software package needed to be used. Mplus was chosen because it is 

known for its flexibility in fitting different forms of LCA and was chosen over LatentGOLD, which is 

another common package used for LCA and its extensions. Mplus was chosen to be used over 
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LatentGOLD because of online support forums that are available to discuss problems that arose 

with the analysis that was conducted.  

  

8.6       Future research 

 

There are many challenges that have been faced with having such a limited number of 

follow-up points. Having only considered the mRS in isolation, it was found that using ordinal 

regression models to model the repeated measures data was better than dichotomising the scale 

and fitting logistic regression models. There are several studies that advocated the idea of 

modelling more than one outcome variable simultaneously, even if they consist of data of mixed 

types.  

Teixeira-Pinto and Mauri (2011) described how clinical trials and observational studies 

involving multiple outcomes are common in medical research (Teixeira-Pinto & Mauri 2011). It is 

considered that disease complexity may often not be adequately characterised by using a single 

outcome, and several aspects of the patients’ response must be considered. Furthermore, one can 

examine how the association between outcomes evolves over time, how outcome-specific 

evolutions are related to each other (Fieuws & Verbeke 2004), or one can even consider joint testing 

of a treatment effect on a set of outcomes. These situations require a joint model for all outcomes.  

Using a joint analysis avoids the need for multiple testing and leads to a natural global test, 

which results in increased power and better control of type 1 error rates. Significant efficiency gains 

over separate univariate analyses have also been reported, especially in settings where there are 

missing data. By modelling all the outcomes jointly, we may be able to correct for this bias through 

the correlation between the outcomes obtained from the complete cases, in which all the outcomes 

are observed. To achieve this, Verbeke et al (2012) suggest that the final modelling choice will 

depend on the research questions, the data structure (balanced/unbalanced), the desire to model 
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observed outcomes rather than latent constructs, the dimension of the problem, and the nature of 

the outcomes (Verbeke et al. 2012). 

So should an investigator just pick one outcome of choice, the mRS? An alternative would 

be to conduct an analysis with more than one stroke scale included. If the treatment has a beneficial 

effect on all scales, then combining them will increase the power to demonstrate the advantage of 

the treatment. Tilley et al. (1996) combined four scales in the trial of rT-PA as a treatment in acute 

stroke conducted by the National Institute of Neurological Disorders and Stroke (Tilley et al. 1996). 

The results of the trial were positive and the approach was well received. The approach used by 

Tilley et al. combined three analyses using generalised estimating equations (based on an 

independence covariance structure). That is, one would analyse as if the three scores were 

independent, but adjust the standard error of the treatment effect estimate using the sandwich 

estimator. But within this study all outcomes were dichotomised and we prefer to retain the ordinal 

nature of the mRS.  

We propose to consider the approach of Ivanova (2016) who describes approaches for the 

joint modelling of different types of responses. For a bivariate model involving a continuous and 

ordinal outcome we need to define the core components to developing a joint model (Ivanova et 

al. 2016). Obviously these methods proposed would all benefit from a longer series of follow-up 

points to be included in the model, in order to provide more information of where individuals 

change mRS scores within the follow-up. Using this approach could provide more information as 

more other stroke scales may not be as insensitive to change as the mRS scale.  

 

8.7       Conclusions 

 

The conclusions of the research conducted in this project are in agreement with previous 

research that concludes that because the mRS is an ordinal scale, the best way of including it within 



 

Chapter 8  267 
 

 
any analysis is to keep it in its ordinal form. This project has shown that there are methods that can 

be used in order to conduct a longitudinal analysis of the mRS.  

These methods have application not only within future stroke research but also with other 

clinical areas that have assessment scales that are ordinal in nature, especially if there is a category 

of death in the model that may call the ordinality of the scale into question. All of the methods 

included within the thesis can also be applied within cohort studies, as all the methods are suitable 

for longitudinal analyses, and are able to be extended out of a trial setting. Specifically, LCGA may 

be more applicable in a cohort study, rather than a trial setting, due to what is usually a lengthier 

follow-up and there are therefore more potential time points to use in order to construct the 

trajectories, although the method is still valid within clinical trials.  

These methods have highlighted that the use of longitudinal analysis applied to repeated 

measures data needs to be encouraged, and that the results obtained, especially when considering 

the regression models do not change the conclusions drawn about the treatment effect when using 

repeated measures models compared to regression models at a single fixed time point. This means 

that statisticians should be encouraged to plan to conduct a longitudinal analysis on all the follow-

up time points that they record rather than taking a single fixed time point to conduct the analysis 

on, whilst using the ordinal scale in its full form in order to draw the best conclusions from the data 

and use as much information from the outcomes recorded as possible.  

Out of the proposed methods used in the thesis, the method that I would select for use in 

a longitudinal stroke trial would be the Markov multi-state model. This method uses the ordinal 

scale in such a way that is meaningful and is easily interpretable for clinicians. One of the main 

benefits of fitting this type of model is that it is able to estimate each transition separately allowing 

for a more accurate estimation of treatment depending on what your starting value of the mRS is. 

The use of the scale as states within the model allows for various transitions to occur and it works 

well with no baseline value because the memoryless property means that a transition is not 

dependent on where the patient has moved previously, only where the patient is at the time of the 
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transition. The estimates of risk calculated are easily interpretable and the treatment effect can 

also be obtained easily. 

 

8.8 Summary 

 

The research conducted highlights the importance of trying to find a suitable model to try 

and capture the change in the mRS over time, due to the limited movement of patients within the 

scale. As the recommended scale to assess disability in stroke patients after they have left hospital, 

it is an important scale for which to determine optimum analyses. The research in this thesis has 

shown that the application of different models will provide different values of the treatment effect 

when considered in the longitudinal analysis of the mRS, and therefore consideration should be 

taken in advance of the clinical question that is trying to be answered in order to analysis a scale 

such as the mRS, which is ordinal in nature and has a category included within the scale for death.  

Following on from the research by Bath et al (2007), it is also recommended that the mRS 

is analysed in its full ordinal scale for longitudinal regression models as well as at the single time 

point previously considered. Although, this research is not widely followed give the research 

conducted by Nunn et al. (2016), however hopefully individuals conducting stroke research will take 

heed and will start to use the mRS in an ordinal form more often.  

The use of the ordinal scale with death calls into question the ordinality of categories and 

therefore some individuals may feel like the scale is no longer ordinal. In this case, a multi-state 

model is a good modelling tool to use as each category is considered individually, but not compared 

to a single reference category, like multinomial modelling and therefore the comparisons made are 

more clinically meaningful.  

Finally, researchers may wish to analyse the data from a patient-level perspective, which is 

what the LCGA models do, allowing for individuals who a have similar trajectories to be clustered 

together. This method is good because it produces trajectories of individuals through time. The only 
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downside to using these models is that changes do not occur often on the mRS scale, therefore the 

LCGA is not very sensitive to change, however it is a useful tool for stroke research because it is 

able to be applied to other stroke scales that include more variation in the scores seen over time.  

To conclude, this thesis has investigated potential methods that could be used for the 

longitudinal analysis of future stroke trials, using novel techniques that have not often been applied 

in stroke trials, but have successfully been applied elsewhere that are applicable in the analysis of 

the mRS and potential other stroke scales that are used to assess the recovery of an individual after 

they have had a stroke.  
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Appendix A 

Appendix A.1: Flow diagram showing articles identified for stroke trials using longitudinal analysis 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Records identified through 

database searching (n = 1396) 

Records after initial screening 

(n = 897) 

Records screened 

(n = 717) 

Records excluded (n =376) 

 

 Study protocol (n=79) 

 Commentary/discussion (n=16) 

 Study design (n=13) 

 Rationale (n=11) 

 Secondary analysis (n=7) 

 Cost effectiveness (n=7) 

 Review (n=7) 

 Other study type (n=7)  

 Methodology (n=7) 

 Efficacy & safety (n=6) 

 Feasibility (n=5) 

 Meta-analysis (n=4) 

 Statistical analysis plan (n=3) 

 Trial design (n=3) 

 Baseline characteristics (n=2) 

 Study update (n=2) 

 Recruitment strategy (n=1) 

 Not stroke trial (n=196) 
 

Full-text articles assessed 

for eligibility (n = 505) 
Full-text articles excluded as only 

a single time point 

(n = 329) 

Studies with multiple time 

points recorded (n = 176) 

Studies data extracted 

from (n = 110) 

Full-text articles excluded, as 

not longitudinal analysis  

(n = 66) 



 

  282 
 

 

Appendix A.2: Flow diagram showing articles identified for stroke trials conducting a longitudinal 

analysis with the mRS
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Appendix B 

 

Appendix B1: Repeated measures proportional odds models SAS code 

 
title1 ' Generalized ordered logit model' ; 

title2 ' TIME, treatment' ; 

proc nlmixed data=reg.sos_data qmax=5000 ; 

bounds i1>0, i2>0, i3>0, i4>0, i5>0; 

parms beta11=0.56 beta12=0.61 beta13=0.64 beta14=0.64 beta15=0.64 

beta16=0.64 beta31=0.56 beta32=0.61 beta33=0.64 beta34=0.64 

beta35=0.64 beta36=0.64 beta41=0.56 beta42=0.61 beta43=0.64 

beta44=0.64 beta45=0.64 beta46=0.64 beta51=0.56 beta52=0.61 

beta53=0.64 beta54=0.64 beta55=0.64 beta56=0.64 i1=0.2 i2=0.2 

i3=0.3 i4=0.4 i5=0.3 su=0.4 beta0=-10 beta26=0.3 beta25=0.3 

beta24=0.3 beta23=0.3 beta22=0.3 beta21=0.3; 

 

eta6 = beta0 + beta16*treat + beta26*dummy6 + beta36*dummy12 + 

beta46*inter6 + beta56*inter12 + u ; 

eta5 = beta0 + i1 + beta15*treat + beta25*dummy6 + beta35*dummy12 

+ beta45*inter6 + beta55*inter12 + u ; 

eta4 = beta0 + i1 + i2+ beta14*treat + beta24*dummy6 + 

beta34*dummy12 + beta44*inter6 + beta54*inter12 + u ; 

eta3 = beta0 + i1 + i2 + i3+ beta13*treat + beta23*dummy6 + 

beta33*dummy12 + beta43*inter6 + beta53*inter12 + u ; 

eta2 = beta0 + i1 + i2 + i3 + i4+ beta12*treat + beta22*dummy6 + 

beta32*dummy12 + beta42*inter6 + beta52*inter12 + u ; 

eta1 = beta0 + i1 + i2 + i3 + i4 + i5+ beta11*treat + 

beta21*dummy6 + beta31*dummy12 + beta41*inter6 + beta51*inter12 + 

u ; 

 

if      (imrs=6) then z= 1/(1+exp(-eta6)) ; 

else if (imrs=5) then z= 1/(1+exp(-eta5)) - 1/(1+exp(-eta6)) ; 

else if (imrs=4) then z= 1/(1+exp(-eta4)) - 1/(1+exp(-eta5)) ; 

else if (imrs=3) then z= 1/(1+exp(-eta3)) - 1/(1+exp(-eta4)) ; 

else if (imrs=2) then z= 1/(1+exp(-eta2)) - 1/(1+exp(-eta3)) ; 

else if (imrs=1) then z= 1/(1+exp(-eta1)) - 1/(1+exp(-eta2)) ; 

else if (imrs=0) then z= 1 - 1/(1+exp(-eta1)); 

ll=log(z) ; 

model imrs ~ general(ll); 

random u ~ normal(0,su**2) subject=id; 

estimate 'int6' beta0; 

estimate 'int5' beta0+i1; 

estimate 'int4' beta0+i1+i2; 

estimate 'int3' beta0+i1+i2+i3; 

estimate 'int2' beta0+i1+i2+i3+i4; 

estimate 'int1' beta0+i1+i2+i3+i4+i5; 

predict eta1 out=eta1; 

predict eta2 out=eta2; 

predict eta3 out=eta3; 

predict eta4 out=eta4; 
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predict eta5 out=eta5; 

predict eta6 out=eta6; 

run; 

 

Beta values were adjusted for the partial proportional odds models
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Appendix C 

Appendix C1: Example Code for generation of ordinal data for simulation study 
/**********************************/ 

/**********************************/ 

/*** MODALITY = 7  et TIME = 3 ***/ 

/**********************************/ 

/**********************************/ 

/*Marginal probabilities for X=0*/ 

data simul.marginal0;input C1 C2 C3; 

cards; 

0.216 0.233 0.252 

0.148 0.154 0.159 

0.121 0.123 0.124 

0.080 0.079 0.078 

0.117 0.114 0.110 

0.135 0.128 0.121 

0.184 0.169 0.156 

;run; 

/*Correlation matrix*/ 

data simul.good;input C1 C2 C3; 

cards; 

1 0.2 0.2  

0.2 1 0.2  

0.2 0.2 1  

 

;run; 

/*Marginal probabilities for X=1*/ 

data simul.marginal1;input C1 C2 C3; 

cards; 

0.208 0.199 0.192 

0.145 0.141 0.138 

0.120 0.119 0.118 

0.080 0.080 0.080 

0.118 0.119 0.120 

0.138 0.141 0.145 

0.192 0.199 0.208 

;run; 

 

/****************************************/ 

/**** Generation COMPLETE DATA N= 100****/ 

/****************************************/ 

/*X=0*/ 

%simul_ordi(marginal=simul.marginal0,corr=simul.good,N=100); 

data simul.simul0;set simul;X=0;run; 

/*X=1*/ 

%simul_ordi(marginal=simul.marginal1,corr=simul.good,N=100); 

data simul.simul1;set simul;X=1;run; 

data simul.final_100;set simul.simul0 simul.simul1;run; 

/****************************************/ 

/**** Generation COMPLETE DATA N= 300****/ 

/****************************************/ 

 

/*X=0*/ 
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%simul_ordi(marginal=simul.marginal0,corr=simul.good,N=300); 

data simul.simul0;set simul;X=0;run; 

/*X=1*/ 

%simul_ordi(marginal=simul.marginal1,corr=simul.good,N=300); 

data simul.simul1;set simul;X=1;run; 

data simul.final_300;set simul.simul0 simul.simul1;run; 

 

 

/****************************************/ 

/**** Generation COMPLETE DATA N= 500****/ 

/****************************************/ 

 

/*X=0*/ 

%simul_ordi(marginal=simul.marginal0,corr=simul.good,N=500); 

data simul.simul0;set simul;X=0;run; 

/*X=1*/ 

%simul_ordi(marginal=simul.marginal1,corr=simul.good,N=500); 

data simul.simul1;set simul;X=1;run; 

data simul.final_500;set simul.simul0 simul.simul1;run; 
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Appendix D 

Legend: Dropout 1: MCAR – equal dropout; dropout 2: MAR – equal dropout; dropout 3: MAR – 

unequal dropout; dropout 4: MCAR – unequal dropout 

 

Appendix D.1: First time point estimates before and after dropout – well-balanced data 

  No dropout Dropout 1 Dropout 2 Dropout 3 Dropout 4 

Dataset size True effect RM treatment effect at time point 1 

20% 0.107 0.108 0.108 0.108 0.107 0.108 

40% -0.077 -0.145 -0.144 -0.140 -0.143 -0.145 

60% -0.044 -0.069 -0.069 -0.061 -0.068 -0.072 

 

 

Appendix D.2: First time point estimates before and after dropout – skewed data 

  No dropout Dropout 1 Dropout 2 Dropout 3 Dropout 4 

Dataset size True effect RM treatment effect at time point 1 

20% 0.072 0.082 0.081 0.077 0.078 0.082 

40% 0.050 0.162 0.104 0.106 0.106 0.103 

60% -0.044 -0.069 -0.069 -0.061 -0.068 -0.072 

 

 

 

 

 



 

  
 

 

Appendix E 

Appendix E.1: The average percentage change between the simulated effect and the true effect for each correlation value, and dataset split by type of 

missingness mechanism used. 

 20% Correlation 40% Correlation 60% Correlation 

  Average percentage change  Average percentage change  Average percentage change 

 True Effect MCAR MAR True Effect MCAR MAR True Effect MCAR MAR 

Well balanced 0.107 3 3 -0.077 88 96 -0.044 60 82 

Skewed 0.072 13 8 0.05 107 113 -0.001 6100 6600 

 

 

 

Appendix E.2: The average percentage change between the simulated effect and the true effect for each correlation value, and dataset split by whether the 

dropout rate was equal or unequal between groups. 

 20% Correlation 40% Correlation 60% Correlation 

  Average percentage change  Average percentage change  Average percentage change 

 True 
effect 

Equal 
dropout 

Unequal 
dropout 

True 
Effect 

Equal 
dropout 

Unequal 
dropout 

True 
Effect 

Equal 
dropout 

Unequal 
dropout 

Well-balanced 0.107 4 3 -0.077 85 88 -0.044 48 59 

Skewed 0.072 10 11 0.050 111 109 -0.001 6350 6350 
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Appendix F 

Appendix F.1:  Flow diagram indicating flow of individuals in SO2S study, used in the different 
LCGA model 
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had at least 1 time 
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had all 3 time 
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5,273 individuals 
had at least 1 
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follow-up 

1,760 received 
standard care 

3,513 received oxygen 
treatment 

6,679 survivors in the trial 

4,227 of these had 
at least 1 
transition 
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