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Abstract
Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which
the interplay between inflammatory and neurodegenerative processes typically results in
intermittent neurological disturbance followed by progressive accumulation of disability.1

Epidemiological studies have shown that genetic factors are primarily responsible for the
substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and
systematic attempts to identify linkage in multiplex families have confirmed that variation within
the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4

Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20
additional risk loci to be identified and have shown that multiple variants exerting modest
individual effects play a key role in disease susceptibility.11 Most of the genetic architecture
underlying susceptibility to the disease remains to be defined and is anticipated to require the
analysis of sample sizes that are beyond the numbers currently available to individual research
groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23
research groups working in 15 different countries, we have replicated almost all of the previously
suggested associations and identified at least a further 29 novel susceptibility loci. Within the
MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the
HLA-A gene underlies the independent protective effect attributable to the Class I region.
Immunologically relevant genes are significantly over-represented amongst those mapping close
to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of
multiple sclerosis.

Keywords
multiple sclerosis; GWAS; genetics

We performed a large GWAS as part of the Wellcome Trust Case Control Consortium 2
(WTCCC2) project. Cases were recruited through the International Multiple Sclerosis
Genetics Consortium (IMSGC) and compared with the WTCCC2 common control set12,13

supplemented by data from the control arms of existing GWAS. We introduced a number of
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novel quality control (QC) methods for processing these datasets (see Supplementary
Information), which ultimately provided reliable information from 9772 cases and 17376
controls (see Figure 1A). Following single nucleotide polymorphism (SNP) based QC, data
from 441547 autosomal SNPs, common to all internally and externally generated datasets,
were available for analysis.

The multi-population nature of our study (Figure 1 A and B) afforded an opportunity to
assess various published approaches for controlling the potential confounding effects of
population structure, several of which (in the event) proved unhelpful (see Supplementary
Information). Whilst not common in primary GWAS undertaken to date, the challenge of
combining data across populations, in contexts where not all case samples have controls
available from the same population (thus precluding standard meta-analytical techniques),
may become more routine as study sizes increase.

We attempted analyses of the non-United Kingdom (UK) data with the now widespread
technique of using principal components as covariates to correct for structure. However,
even use of all seven top principal components which captured genome-wide effects in our
data resulted in an unacceptably high genomic inflation: for example, the genomic control
factor (λ)14 was λ = 1.2. We tried to reduce the genomic inflation by discarding the case
samples that seemed least well matched to control sets. Removal of half the available cases
in this fashion only reduced λ to 1.1. In another approach to handling structure, statistical
clustering algorithms were successful in identifying subgroups of the data within which
cases and controls appeared well-matched for ancestry (See Supplementary figure S17).
However tests within these subgroups combined via fixed-effects meta-analysis also yielded
unacceptably high genomic inflation (λ >1.4) in an analysis with seven matched sub-groups
of cases and controls. Finally, we applied a novel variance components method (similar to
Kang et al.15), separately to the UK and non-UK datasets, that explicitly accounts for
correlations among the phenotypes of individuals resulting from relatedness, allowing us to
deal successfully with all sources of structure in our samples (see Supplementary
Information for details of the linear mixed model we used). For example, the genomic
inflation was reduced to λ = 0.995 in the UK and 1.016 in the non-UK data (see also
Supplementary Information). After fixed effects meta-analysis of the results from the UK
and non-UK datasets, the inflation factor was λ = 1.045. We adopted this approach for all
subsequent non-MHC association analyses.

Outside the MHC we identified 95 distinct regions having at least one SNP associated with
multiple sclerosis at pGWAS <1×10−4.5; in six of these 95 regions conditional analysis
revealed an additional SNP showing association to the same locus (one locus containing two
such SNPs). In total we took all 102 SNPs forward to replication, which we performed using
data from previously reported multiple sclerosis GWAS8,9 and the iControl database
(excluding any WTCCC controls previously used in these studies). In total, the replication
analysis included data from 4218 cases and 7296 controls. These were considered in six
independent strata after which results were combined through a fixed effects meta-analysis.
For 98 of the 102 SNPs, the same allele was over-represented in cases compared to controls.
Twenty three of the 26 previously known or strongly suggested multiple sclerosis associated
loci were replicated in our primary GWAS with pGWAS <1×10−3. Our GWAS and
replication also revealed another 29 novel associated regions (defined as having pGWAS
<1×10−4.5, one-sided pReplication <0.05, and pCombined <5×10−8), and a further 5 regions with
strong evidence for association (with pGWAS <1×10−4.5, one sided pReplication <0.05, and
pCombined <5×10−7). In one previously reported locus and two novel loci, additional SNPs
were identified as being conditionally important in explaining risk. Just over one third of the
identified loci overlap with regions already confirmed as associated with at least one other
autoimmune disease (according to the GWAS catalog, http://www.genome.gov/
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gwastudies/). Results both for the previously established and novel loci are shown in Figure
2 and Supplementary Tables 1-3; and details of all 102 SNPs taken to replication are
available in the Supplementary Data file.

In order to assess objectively the collective evidence across the associated regions for
particular classes of genes, we performed statistical analyses to look for enrichment of genes
with similar function. We first identified the nearest gene to the lead SNP in each of the (52)
regions of association and used the Gene Ontology (GO) database16 to define sets of
functionally related genes (GO terms). We then tested whether the set of nearest-genes was
enriched for particular GO terms using Fisher’s exact test. The GO terms having the most
significant enrichment include genes linked to lymphocyte function (p =3.2×10−11, OR =
35.96) and in particular those with a role in T cell activation and proliferation (p =
1.85×10−9, OR = 40.85). These are representative of a larger group associated with various
components of the GO ‘immune system process’ (p = 8.6×10−11, OR = 9.12). A similar
analysis based on all genes in or near association regions showed similar enrichment, as did
independent analyses based on nearest-gene or all genes in our next tier of signals, the 42
regions taken to replication but not meeting the thresholds above for association (see
Supplementary file.) Although GO immune system genes only account for 7% of human
genes, in 30% of our association regions the nearest gene to the lead SNP is an immune
system gene. As an illustration, Figure 3 shows a schematic of genes involved in the T
helper cell differentiation pathway; a striking number show strong evidence for association
with multiple sclerosis particularly those acting as cell surface receptors. We infer from this
pathway analysis of our GWAS signals that specific classes of immune system genes are
especially important in the pathogenesis of multiple sclerosis.

Our screen not only implicates a multitude of genes coding for cytokine pathway (CXCR5,
IL2RA, IL7R, IL7, IL12RB1, IL22RA2, IL12A, IL12B, IRF8, TNFRSF1A, TNFRSF14,
TNFSF14), co-stimulatory (CD37, CD40, CD58, CD80, CD86, CLECL1) and signal
transduction (CBLB, GPR65, MALT1, RGS1, STAT3, TAGAP, TYK2) molecules of
immunological relevance, but also relates to previously reported environmental risk factors
such as Vitamin D9,17 (CYP27B1, CYP24A1) and therapies for multiple sclerosis including
Natalizumab18 (VCAM1) and Daclizumab19 (IL2RA). There is a relative absence of genes
relevant to potential pathways for neurodegeneration independent of inflammation (GALC,
KIF21B).

To refine our understanding of the MHC associations in multiple sclerosis we imputed
classical Human Leukocyte Antigen (HLA) types at six loci (A, B, C, DQA1, DQB1 and
DRB1)20 and analysed these alongside the SNPs (see Supplementary Information for
validation; at alleles responsible for the major signals described below, estimated specificity
was at least 0.99 and sensitivity was at least 0.98, except for DRB1*13:03, where it was
0.88). Primary discovery was focused on the UK cohort with candidate signals being
validated through support from additional case-control cohorts. Because of the extensive
linkage disequilibrium within the MHC, we identified associated alleles in a stepwise
manner, selecting the most strongly associated to include in a general model, in turn, if pUK
<10−4 and pcombined <10−9 (Supplementary Information). At each stage we explored
possible interactions and departures from the simple model in which risk increases
multiplicatively with each additional copy of the relevant allele (additive increase on the
log-odds scale) within the logistic risk framework.

By this approach we found that DRB1*15:01 has the strongest association with multiple
sclerosis amongst all classical and SNP alleles, with a consistent effect between cohorts (p
<1×10−320: Figure 4A). The data are consistent with an additive effect on the log-odds scale
for each additional allele. Conditioning on DRB1*15:01, we confirmed the presence of a
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protective Class I allele and identified the signal as being driven by HLA-A*02:01 (as
previously suggested),21 with a consistent effect size across cohorts (p = 9.1×10−23: Figure
4A). Again, we found no strong evidence for departure from additivity on the log-odds scale
or statistical interaction with DRB1*15:01. Conditioning on both DRB1*15:01 and A*02:01
revealed additional risk associated with the strongly linked alleles DRB1*03:01 and
DQB1*02:01 (p = 3.6×10−10: Figure 4A; note that we cannot separate these alleles but for
simplicity refer only to DRB1*03:01 below). Further conditioning identified an additional
DRB1 risk allele DRB1*13:03 (p = 1.3×10−11: Figure 4A). Although no other classical
alleles meet the above criteria, we did observe several SNPs providing independent signals,
the strongest coming from rs9277535_G (combined OR 1.28, p = 2.2×10−22), an allele
known to be in linkage disequilibrium with DPB1*03:01 (r2 = 0.37).22

Analysis of the MHC SNP data using a genealogical method (GENECLUSTER)23 offers an
alternate means of relating our results to classical HLA alleles that provides additional
insight into the underlying genetic architecture (see Supplementary Information). Figure 4B
shows genealogical trees relating the classical alleles at DRB1 and HLA-A, together with
the estimated evolutionary position of the mutations predicted by GENECLUSTER as most
completely modelling the association. At HLA-DRB1, three mutations are predicted, each of
which implicates a clade of haplotypes carrying particular DRB1 alleles. All of the DRB1
alleles we have shown to be independently associated are included in these clades, each
corresponding to a particular mutation. In addition, the analysis also explains why those
haplotypes carrying the *08:01 allele have previously been shown to increase risk24,25 since
they carry the same mutation as those bearing *13:03. At HLA-A, the predicted protective
mutation is also concordant with our regression analysis of classical alleles in implicating
*02:01 but, in addition, predicts that *68:01, *02:05, and *02:06 carry the same protective
allele. All of these secondary predictions (increased risk from DRB1*08:01 and protection
from HLA-A*68:01, *02:05, and *02:06) are supported in our regression analysis of
classical alleles but the power to detect them in the primary analyses is limited because each
allele occurs at a very low frequency.

We found no evidence for genetic associations with clinical course, severity of disease or
month of birth, and no evidence of interaction with gender or DRB1*15:01 in any part of the
genome (see Supplementary Information). However, analysis with respect to age at onset
replicated the previously suggested association with the DRB1*15:01 allele.26 Although no
other part of the genome contained individual SNPs showing strong evidence for
association, risk alleles determining susceptibility are collectively more closely associated
with age at onset than expected by chance, suggesting that individual genetic susceptibility
is inversely correlated with age at onset.

Our GWAS - large for any complex trait having a prevalence of 1:1000 and involving
diverse populations of European descent - has identified 29 novel susceptibility loci. Four
mutations, one from Class I and three from Class II, with effects modelled in a simple
multiplicative manner within and across loci are sufficient to account for most of the risk
attributable to the MHC (see Supplementary file). Although our data do not address the issue
of which components within the nervous system are initially damaged by the inflammatory
response the over-representation of genes that influence T cell maturation provides
independent and compelling evidence that the critical disease mechanisms primarily involve
immune dysregulation.

More generally, our study reinforces the view that the GWAS design, combined with very
large experimental sample sizes and careful statistical analysis, provides valuable insights
into the genetic architecture of common complex diseases. Here, this approach has identified
many associated genetic variants close to genes, which are both individually interesting and
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collectively illuminate the roles of key biological pathways. It also provides indirect
evidence that many more common variants of small effect contribute to genetic
susceptibility for multiple sclerosis. Simple models, in which the previously-known and
newly-identified variants affect risk multiplicatively, both within and across loci, explain a
meaningful proportion (~20%, see Supplementary Information) of genetic risk for the
disease. Important challenges lie ahead, in understanding overlap between the genetic basis
for susceptibility in the context of different autoimmune diseases, and in uncovering the
functional mechanisms underlying these associations.

Materials and Methods
Details of case ascertainment, processing and genotyping, together with sample and
genotyping quality control are provided in the Supplementary Information. Statistical
methods developed for testing the reliability of externally generated data sets, detecting
samples with non-European ancestry, correcting for structure, classical HLA imputation and
meta-analysis are also outlined in the Supplementary Information. Results for all scans and
all reported loci are described in detail in the Supplementary Information.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Distribution of cases and controls. All cases and controls were drawn from populations with
European ancestry; cases from 15 countries and controls from 8. A: numbers of case (red)
and control (black) samples from each country. B: The projection of samples onto the first
two principal components of genetic variation, with cases shown on the left and controls on
the right. The axes are orientated to approximate to the geography, and samples are colour
coded as indicated in the legend. We genotyped the cases (9772) and some Swedish controls
(527) using the Illumina Human 660-Quad platform, and the UK controls (5175, the
WTCCC2 common control set12,13) using the Illumina 1.2M platform. All other controls
were genotyped externally using various Illumina genotyping systems (see Supplementary
Information).
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Figure 2.
Regions of the genome showing association to multiple sclerosis. Columns from left to
right: evidence for association from the linear mixed model analysis of the discovery data
(thresholded at −log10(p) = 12). Non-MHC regions containing associated SNPs are shown in
red and are labelled with the rsID (bold for newly identified loci, black for strong evidence,
grey for previously reported) and risk allele of the most significant SNP. * indicates that the
locus contains a secondary SNP signal. Odds ratio and 95% confidence intervals estimated
from the meta-analysis of the discovery and replication data (+ indicates estimates for
previously-known loci from discovery data only). Risk allele frequency estimates in each of
the control populations used in the study (each is shown as a vertical bar on a scale from 0 to
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1 going left to right). For each region of association the number of genes is reported, and
where non-zero a candidate gene is given. Black dots indicate that the candidate gene is
physically the nearest gene included in the “immune system process” GO term. When the
most-significant SNP tags a SNP predicted to have an impact on the function of the
candidate gene this is indicated. Where such a SNP exists, the gene involved is selected as
the candidate gene; otherwise the nearest gene is selected unless there are strong biological
reasons for a different choice. The final column indicates SNPs which are correlated (r2 >
0.1) with SNPs reported to be associated with other autoimmune (AI) diseases
(abbreviations: RA = Rheumatoid arthritis; CeD = Celiac disease; UC = Ulcerative colitis;
CrD = Crohns’s disease; T1D = Type 1 diabetes; PS = Psoriasis). An interactive version of
the figure is available at www.well.ox.ac.uk/wtccc2/ms.

et al. Page 14

Nature. Author manuscript; available in PMC 2012 February 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.well.ox.ac.uk/wtccc2/ms


Figure 3.
Graphical representation of the T helper cell differentiation pathway. The figure is derived
from an image generated by Ingenuity Pathway Analysis (IPA) software version 8.8
(Ingenuity Systems, Inc., Redwood City, CA, USA). Alpha-numeric labels indicate the
individual genes and gene complexes (nodes) included in the pathway (note some are
included more than once). Coloured nodes are those containing a gene implicated by
proximity to a SNP showing evidence of association. Red: in bold or grey in Figure 2 (plus
MHC class II region and TNFα); Orange: other loci in Figure 2 or discovery P value <
1×10−4.5 and consistent replication data. Yellow: Discovery P value < 1×10−3. Other
molecules (proteins, vitamins etc.) may also be of relevance in these processes but are not
included here as they are not currently listed as being part of this particular pathway in the
IPA database.
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Figure 4.
Results for the main MHC alleles. A: Forest plots for each of the primary HLA alleles
(HLA-A*02:01, DRB1*15:01, DRB1*03:01 and DRB1*13:03) showing consistency of
effect across the populations and combined OR of 0.73, 3.1, 1.26 and 2.4 respectively
(whiskers indicate 95% confidence intervals). B: The genealogical trees estimated for DRB1
(top) and HLA-A (bottom). These trees were constructed using classical HLA and SNP
typing data available from the HapMap CEU haplotype data. Each left hand branch of the
tree terminates on a set of haplotypes carrying a particular HLA allele. The coloured dots
indicate the mostly likely locations for a disease-associated mutation as predicted by the
GENECLUSTER program23. In the DRB1 tree, the blue dot captures a risk effect
attributable to all haplotypes carrying the *15:01 allele. The green dot captures a risk effect
carried by all haplotypes carrying the *03:01 allele and the red dot captures a risk effect on
haplotypes carrying *13:03 or *08:01. In the HLA-A plot, the orange dot is a protective
mutation lying at the root of all *02:01, *02:05, *02:06 and *68:01 alleles. The blue dot in
brackets denotes a branch containing those *03:01 haplotypes that also carry DRB1*15:01;
the GENECLUSTER prediction here is thus a reflection, due to linkage disequilibrium of
the risk attributable to DRB1*15:01. The terminal branches are labelled with the allele
carried by the haplotype and its frequency.
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