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NOTATION AND TEPHINOLOGY

G denotes a finite group and H and A are subgroups of G. A finite set
T of group elements has |T| distinct elements. If o is an automorphism
of G we denote by S, the elements of G which are inverted by a. We
define

ba) = 15 /1] and 2(@) = max  a(n),
vy € Aut G

where Aut G denotes the full group of automorphisms of G. If g2(a) = k,
we call a a k-automorphism and if k > %we also say that o is a

> :ZLautomorphism. A group with a > %-automrphism is called a

> %—-group and a group with a k-automorphism 1s called a k-group,

0 <k £1. Given x; €6 (1 - 1, «eey, T) and a subset T of G,

(xl, eeey xr,'l‘) denotes the subgroup generated by X5 seey X, and
the elements of T. Gp is the set of all non-Abellan groups with order
divisible by no prime less than the prime p.

(G s+ H) is the index of the subgroup H in G.

@, B, «es, Automorphisms of a group G.

Fo Subgroup of all elements fixed by a.

I Inner automorphism g + x"lgx for all g e G.

[a, b) = a~lblap = a71ab, [2, b, ¢c] = [ [a 1), c]

G' is the commutator subgroup of G.

2(G) is the centre of G.

Q The Quaternion group of order 8.

Dn The dihedral group of order 2n.

Sn The symmetric group on n symbols.

An The alternatirg group on n symbols.
Cn The cyclic group of order n.

AxB The direct product of groups A and B.
A/B The factor group of A modulo B.

AN The set {ala c 4, a ¢ B} .

N, (4) The normalizer of the subgroup A in G.
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Notation and Terminology cont'd..

Aq

CA(x)

n|n
cP

A subgroup of maximum order in S o
The centralizer in the subgroup A of the element x.
m divides n.

The subgroup generated by the pth powers of the elements
of G.



ABSTRACT of the Thesis “Finite Groupé with AutomorphismsInverting
Hany Elements"

by Patrick Desmond MacHale, University of Keele, 1972.
It is known that a group is Abelian if and only if it has an

automorphism inverting every element. We consider finite non-Abelian
groups with an automorphism inverting mary elements.

Firstly, we consider the case where G is a group with an auto-
morphism inverting more than %’-]G] elements, a problem first considered
by G. A. Miller in a series of papers. We prove that either G has
an Abelian subgroup of index 2 (with no further restrictions) or G is
nilpotent of class 2, with an elementary Abelian commutator subgroup
of order 2 or L. We &lso prove that if a, and a, are automorphlsms
of G which invert more than §|G| elements, then both ay and o,
invert %—|G| elements for some positive integer q.

As a special case we obtain the structure of groups in which
the identity automorphism inverts more than half the elements. These
are precisely the groups in which at least helf the elements are
involutions. This problem was also considered by G. A. Miller and
more recently by C. T. C. Wall who used character theory to obtain a
classification. -

Next we consider groups G of odd order, where no prime less than
the prime p divides |G|. When G is non-Abelian we show that no
automorphism can invert more than -1-|o| elements of G and we obtain: a
complete clauifica'd.on of all groupa G with an automorphism inverting
exactly -|G| elements. We prove that either G has an Abelian
subgroup of index p which does not contain all the elements of order

p or G is nilpotent of class 2 with commutator subgroup of order s a.nd'G:\Gp=l
or G/Z(G) is non-Abelian of order p3 and exponént D.

Next we obtain a complete classification of groups G with an
automorphism inverting exactly %IGI elements. If G is non-Abelian,
we show that G has an Abelian subgroup of index 2 or 4 or G has
commutator subgroup of order 2. The classification divides into many
cases as detalled in the structure theorems.

A1l the groups considered are close to being Abelian in some
sense i.e. they are soluble and have either Abelian subgroups of
small index, large centres, or small commutator subgroups. Let
2(G) be the greatest proportion of elements of a finite group G that
are inverted by an automorphism. Thus g(G) = 1 if and only if G is
Abelisn and we have classified groups for which &(G) > %-, £(G) = 51-,
and 2(G) '%, vhere p is the least prime which divides lci.

/Cont'de.,



Let k(G) be the number of conjugacy classes in G and let
R(G) = k(G)/|al. K. 8. Jcseph has studied the properties of the
function R(G) and used its value as a measure of the commutativity
of G, since it is the probability that a pair of elements chosen at
random from G cammute with each other. We use %(G) as another measure
of commutativity and show that when 2(G) 3 5 or when GeG (p odd)
and £(G) = _I; then R(G) is large also.

Finally, we define a C-set of a finite group to be a subset s of G
guch that given 81,8,€ S, then slsee S if and only .if sy and s
commute. If S is a C-set of maximm order in G we define b(G)
to be |s|/|G| and we use b(G) as another measure of commutativity.

We show that if p 1s the least prime which divides 6] then b(G) € 2B
P

ig G is non-Abelian, with equality if and only if G/Z(G) has order
P « We examine groups with b(G) > -2- and show that G is soluble. We
also show that if a C-set contains more than §|G| elements of G, then

it contains 9—-|(}| elements for some positive integer q and we derive
some results on the structure of G.



INTRODUCTIOMN

It is well known that a group is Abellan if and only if it
has an automorphism inverting ell its elements. We are concerned
with finite non-Abelian groups in which some automorphism inverts
a large proportion of the elements of the group. For groups of
even order, we find the complete structure of groups G with an
automorphism inverting at least 2|G| elements. If G has odd order
we show that no automorphism can invert more than -|G|elements,
where p is the least prime which divides |G|. Finally, we give a
complete cla.ssi.fication of all groups G with an autamorphism
inverting exactly -|G|elements, where p is the least prime which
divides |G|.

A1l the groups we consider are in same sense "close to being
Abelian" and we are led to define and compare certain measures of
commutativity in finite groups.

Many of the ideas in this thesis are based on the work of
G. A, Miller who first attempted to solve some of the problems we
look at. His analysis was incomplete and difficult to follow and
indeed some of his results aresomewhat in conflict with ours.

The material of CHAPTER 1 of this thesis has already appeared

in published form [16] and the material of CHAPTER 2 has been
accepted for publication [17].




CHAPTER 1,  CROUPS HITH'%»AUTO?’!ORPHISHS

SECTION (1.1) Introductory Remarks

We begin by giving a complete classification of non-ibelian
groups G with an automorphism inverting more than %]G] elements.
We prove that either they possess an Abellan subgroup of index 2
(with no further restriction) or ;,hey are nilpotent of class 2 of a
special type, as detailed in Theorem ‘1.3.1.3 .
Our problem has attracted the attention of a number of authors
in the early part of this century. In 1906 Manning [ 7] proved that
a group G has an automorphism inverting exactly ﬁl G| elements if and
only if (G : Z(G)) = L. He also showed that if a group has a k-automorphism
with k 3 % then k = %’ %, ﬁ, or 1. Miller [8 ] obtained similar results .
and considered more generally the properties of groups with a k-automorphism,
k> %.
We extend Manning's result by showing that if G has a kl-automorphi;m

and a k,-automorphism, kl > %, k, > %—, then kl - k2 - 92% for some
positive integer q.

Section (1.2) Preliminary Theorems

(1.2.1) lemma. Givena € Aut G and 8 ¢ S,» let I, be the inmer

sutomorphism defined by gI_ = s gs, ge G. Then S, the set of

B
elements of G inverted by the automorphism 8 = Is“’ is given by
-1
SB =S,8 =85, and thus 2(B) = 2(a).
1

Proof. g(IsG) -g

Therefore S = S“s-l. The second equality follows similarly.

iff (s'lgs)a - g‘l iff (gs)a = (gs)-l iff gse S .

(1.2.2) Subgroup Theorem. Let H be a subgroup of a > %—group G.

Then there is a > -%- automorphism of G that inverts more than half the

elements of H ( and so maps H onto itself). Moreover L(H) 3 2(G).

Proof. ILet o be a > 3-automorphism of G. Since |S,| = 2(a)|a], 1t



follows that some coset of H in G, Hs say, has at least g(a)lﬂsl
elements in S,. We may clearly choose the coset representative s in Su.
From the inequality
|Bs NS | 3 2(a)|Hs]
it follows that
lEAs ™ 5 26))H .
Put 8 = Io. Then, by Lemma (1.2.1) 2(8) = 2(a) and
lEASs| > 1G)H .
Thus B inverts more than half the elements of H. Denote by g|H

the automorphism of H induced by g. Then

2(8|H) = J-}-I-‘%-l-sﬁl-z 2(8).

It follows that if we choose o such that £(ax) = 2(G), then
2(8|H) 3 2(8) = £(G) and so ¢ (H) 3 2(G).

The following corollary is an immediate consequence of the subgroup

theorem,

{(1.2.3) Corollary. 1If H is an Abelian subgroup of a » %—-group G
then there is a> lyautomorphism of G which inverts H elementwise.

Abelian subgroups play a fundamental role in the structure of
>%—groups and we proceed to study them in same detail.

(1.2.4) lemma. Letg be a> %—-a,utomrphism of G that inverts an

Abellan subgroup H elementwise. Suppose that the coset Hg has non-

trivial intersection with Sg. Then the number of elements in Hg that
are inverted by B is.|CH(g)| , the order of the centralizer of g in H.
Proof. By hypothesis Hg SB is not empty, so we may choose 8 ¢ S

8
such that Hg = Hs. Now for he H, (hs)g = (hs)™’ if and only if

hlgl s'lh'l. Hence

Hg N 83 = (Cyls))s.
But CH(s) - CH(g), and the lemma follows.



L
(1.2.5) Transversal Theorem. Iet B be a > %—automorphism of G that

inverts the Abelian subgroup H elementwise. If H is a maximal subgroup
of SB (i.e. H is not contained properly in a subgroup of G lying
entirely in SB) then there exists a decomposition of G relative to
cosets of H

G=Hs,VHs,V...VHs, s =1,
such that s, ¢ Se (L =1, ¢eey n)e
Proof. Suppose that Hg contains an element s ¢ SB; then Hg = Hs, and
8 may be chosen as coset repre'sentative. Now if Hs ¥ H then CH(S) must
be a proper subgroup of H,for otherwise < 8, H> lies in S8 and properly
contains H, contrary to hypothesis. By Lemma (1.2.h), at most half the
elements of Hg belong to S+ Hence if some coset of H in G contained no
elements of S, then ISBI could not exceed %-[ Gl Since g is a> %—auto-

morphism,every coset must contain an element of SB and the theorem is

proved,

{3.2.6) Centralizer Theorem. Let H be a maximal subgroup of SB where

B 1s a > %—automorphism of G. ILet

(102'7) G-HUng Uoo.qun
be a composition of G relative to cosets of H. Put
q = (H : Cylg,))
Then
Is,| ]

2, S - =
(1.2.8) 8 |5| +iz2 ICH(gi)l, where q,3 2 (1 = 2, ..., n),
Moreover, the following inequality on the indices 9 holds.

n
1l 1 1l
(10209) 122 (f - q'l)< f .

Proof. Formula (1.2.8) follows from Lemma (1.2.4) and Theorem (1.2.5).

The inequality (1.2.9) is a consequence of the fact that |SB| > %—nl H|.

(1.2.10) Corollary. An automorphism which inverts more than half the
elements of a group G inverts exactly £(G)|G| elements.



Proof. leta bea > %-automorphism of G, and let H be an arblitrary
maximal Abelian subgroup of G. By the Subgroup Theorem (1.2.2) and
Corollary (1.2.3), there exists en automorphism g that inverts H
elementwise and such that £(8) = 2(x). Since H is maximsl Abelian in

G it is certainly a maximal subgroup of SB' Therefore by (1.2.8)

(1.2.11) Is,| = ISgl = || +i§2|cﬂ(gi)|,

where we suppose that G admits a coset decomposition (1.2.7). But the
number given by the right hand side of (1.2.11) is independent of aj so
any > %—automorphism must invert this number of elements.

Hence we obtain a formula which relates this number to the Abelian
subgroup structure of G: If H is an arbitrary maximal Abelian subgroup of a
> -2]=-group G, then

L(@fe] = 18 + I |Gy e)]
i=2
where G admits a coset decomposition (1.2.7).

As a consequence of the centralizer inequality (1.2.9) we can
easily impose conditions on the maximal Abelian subgroups of a > %-group
G and restrictions on the values of numbers qi. Suppose a maximal
Abelian subgroup H has index n in G. Then relative to a suitable ordering
of the cosets of H in G only the following cases can possibly arise:

I n=2;

II n3 39 =2(1=2, «.cy n);

IIT n3 3, 433, q =2 (1 =3, .0, n); 1.2.12
IV n33 9 =3 qy=hbor5, q =2 (=L «cc, n);

VvV n3 3, 9 = 953" 3,q_l-2 (L =Ly eeey n)e

In order to show that some of these possibilities do not arise in
> %—groups we need some further results concerning the Abelian subgroup
structure of >!2'—-groups.

(1.2.13) The Squares Theorem. Let H be a subgroup of maximum order in

SB’ where g8 is a > %—automorphism of G. Then the square of every element

in SB belongs to H.



Proof. Suppose s € SB but s ¢ H. We must show 82 e H If (G:sH)=2
the result is clear. So we may suppose that (G : H) = n 3 3. We first
consider the case (H @ CH(s)) = 2. The group H, = <s, CH(s)> is

2
contained in SB. If s° does not belong to CH(s) then [Hﬂ 3 3|ca(s)| 3
but |H| = 2|Cy(s)|and so H does not have maximum order in Sa,contrary

to hypothesis. We conclude that 82 € CH(s) C H.

We next consider the case q = (H : CH(S)) s 3. If a2 does not belong

1

to H then Hs and Hs ~ are distinct cosets. Since CH(s) - Cﬂ(s'l) the only

possible structure of G is subject to condition (1.2.12)V. In particular
-
(1.2.14) (H CH(s)) = (H CH(s)) - 3,

We may suppose that 83 belongs to CH(S) , for otherwise <s R CH(s )> ,
which belongs to S

B? has order greater than that of H.
We may put Gl = <s, H->‘ Two possibilities arise:
Case (i) H 1s normal in G ; here 8 inverts s hs for all h in H,
that 1s

s~lhls - (s'lh:s)":L - (s-lhs)B = sh~ls™l,
2
Hence 8 commutes with every element of H and thus 32 is contained in H,

which is contrary to hypothesis.
Case (ii) H is not normal in G,; in this case s~tHs ¥ H. We choose
an element h ¢ H such that h ¢/ CH(B). Then by (1.2.1L),

i é, CH(s)>, h% Gy (s).
Now

Cy(8) = Cy(sh) = Cy(sh?)

and so each of these centralizers has index 3 in H. Since G must satisfy
condition (1.2.12)V, two of the three cosets Hs, Hsh, Hsh® must be equal.
But it 13 easy to see that this implies that H is normal in G1 ,contrary
to hypothesis.

We conclude that 82 must belong to H, and the proof is complete.

(1.2.15) The Index 2 Theorem, let A be an Abelian subgroup of maximum

order in G. Iet B be & > %—-automorphism that inverts A elementwise.
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ThenforseSB,s[A,Ahasindex2in s,A>.

Proof. Put G = (s, A and (G : A) = n. Two cases arise.
Case (1) (A : CA(s))- 2. The centre of G, is Z = CA(s), and Gl/Z has
order 2n with a subgroup A/Z of order 2, Now if Gl/Z contains a coset
bZ of order m > 2, then B = <b, z> is Abelian end |B| = m|z| > 2|2z| = |Al,
which contradicts the definition of A. Therefore Gl/Z is elementary
Abelian, and so A is a normal subgroup of Gl. By the SquaregTheorem
(1.2.13), s° € A and hence n = 2.
Case (1) q = (A 3 CA(s)) 3 3. Suppose by way of contradiction that
n > 2. Then besides A and As there exists a third coset of A in Gl,and,
since A52 = A, it must be of the form Asa for some a € A, a ¢ CA(S)‘ Now
CA(s) = CA(sa) and so G, must satisfy condition (1.2.12)V. Therefore q = 3
and

A= <a, CA(s)>, a e CA(s).
But we also have CA(s) - CA(saz) and so, according to (1.2.12)V, two of
the three cosets As, Asa, Asaz are equal. From thié we find easily that

A 1s normal in Gl‘ But 52 € A and so n = 2, This contradiction completes
the proof.

(1.2.16) Remark. In the last theorem we required A to be an Abelian

subgroup of maximum order in G. The assumption that A be of maximum order
in SB (as was required in the Squares Theorem) is not sufficient. For
example, in the symmetric group on three symbols, the identity automorphism,
1s 1s a %—automorphism, and H = <(l2)> is a subgroup of maximum order
in S‘. The permutation s = (13) belongs to S,» but H has index 3 in
<s ) H> .

We reserve the letter A to denote an Abelian subgroup of maximum order
in G,

SECTION (1.3) The structure of Non-Abelian > %-groups

The results of section(l2)elate the subgroup structure of a > %-group

G to sets of elements inverted by a > %‘-automorphism. We are now able to
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develop properties of G that do not refer to specific automorphisms.,
Finally we obtain a complete classification of all non-Abelian > %-groups.

Throughout this section G denotes a > %‘-group and A is an Abellan
subgroup of maximum order in G.

(1.3.1) Theorem. The subgroup A is normal in G and G/A is an

elementary Abelian 2-group.
Proof. By Corollary (1.2.3) there is a > %—automorphism 8 that inverts
A elementwise. By the Transversal Theorem (1.2.5) every element g € G
is expressible in the form g = as for some a € A, 8 € SB' Clearly
g lhg = 5"TAs. Now suppose g ¥ A. Put G - <s, KY . By theorem (1.2.15),
(Gl ¢t A) =2, Thus A is normal in Gl and so g'lAg - slas = 2. Since g
1.s arbitrary, it follows that A is normal in G. Moreover
| g = (as)? = (as®) (s as)
and so, by the Squares Theorem (1.2.13), g2 € A. Thus G/A is an elementary
Abelian 2-group.

(1.3.2) Centralizer Structure Theorem. lLet G = AU Ag2 v...U Agn

be a decomposition of G into a union of disjoint cosets of A, end put

q = (a: CA(gi)) ( =2, .vs, n). Then, relative to a suitable ordering
_of the cosets, one of the following conditions must hold (the corresponding
values of 2(G) are indicated in brackets).

I n=2; (1(c) =

QP +1
5 )

k
' on=2f (k32),q =2 (12w, 29 (o) - EE )
2

I n=by g =hayg=q =2; (%a) -793-) .
Proof. We have glrea.dy established conditions (1.2.12) and it remains
to show that some of the cases listed there are not possible in >%—-groups.
Firstly by Theorem (1.3.1), the index n must be a power of 2. Next we

rule out conditions (1.2.12) IV and V. For suppose that q = (A s CA(gz)) = 3

and qy = (A3 CA(g3)) = 3, 4L or 5. Since G/A is elementary Abelian, the



cosets Ag2 ’ Ag3, and Ag2g3 are distinct. Assuming that condition IV or

V holds, we must have (4 : CA(g2g3)) = 2, Now, since 322 €A,

2
Cy(g3) = C;(e,"89) 2 Cy () O C,(gy84) = B, say.
Clearly B has index 6 in A and so CA(SB) cannot have index L or 5 in A.

So we may assume qQ, = q3 = 3, But then

Cy(g;84) 2 Cy(g,) N Cy(gy) = €, say,
where C has index 3 or ¢ in A. Since C cannot be contained in a subgroup
of index 2 in A, the case qQ = q3 = 3 1s ruled out.

Next we consider conditlon III. Firstly, from the condition q = 2
(1 3 3) it follows that q, = 2 or 4, for

6y(ey) = C(ey85) 26, (gpey) N Cyley)
and since gzg3 may be taken as the fourth coset representative, this last
intersection has index 2 or 4 in A.
The case n = L, q = L, q3 = qh = 2 arises in >32'-groups, but
n = 2K (k> 2), q, = L, q =2 (L =3, oesy 2k) 1s impossible as we now
prove,
It is convenient at this point to introduce a notation that exhibits
G/A as an elementary Abelian 2-group. Suppose G/A has order 2k (ks 2)
end is generated by XA, X,A, .., x Ae We select X, such that (4 : CA(xl)) =)
and assume that (A : C,(x)) = 2 for 211 x ¢ AUx/A. Our proof 1s based
on the following observation.
(1.3.3) Suppose xA # yA and C, (x), C,(y) both have index 2 in A. Then
€, (x) = C,(3) = ¢,(xy) = ¢, (x).
For, under the hypothesis, CA(qu)Q CA(x) N CA(y) = CA(x), and since
Xy ¢ A, the possibility CA(xy) = A is ruled out.
Now the elements X5 x3, XyXas XXy xlx3, and :1:1x2:oc3 belong to
distinct cosets and their centralizers in A have index 2 in A, Moreover
Cy(x) = 6(5%,") 26,(5%,) M, (x,)
and since CA(xl) has index 4 in A, we have equality here. By an
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extension of this argument we obtain

Cy(x;) = €, (xyx,) MG (xy) = €y (%) (Y Cy(x3) = G, (xyxpxs) (1, (%)
Thus the centralizer in A of each of the 6 listed elements contains CA(xl)

and

(1.3.4) € (xx,) # €, (xy)s Cy(xyxy) # 4 (xy)s Cy(xyx%0) # € (x5x5)e
Now A/CA(xl) is elementary Abelian of order 4 and so contains 3 subgroups
of index 2.

Therefore the centralizers of the 6 listed elements are distributed
among a set of three subgroups of index 2 in A. By (1.3.3), either
CA(xz), CA(x3)’ and CA(xgx?))~ are all equal or they are all different. Both
cases easily lead to a contradiction of (1.3.Lh) by application of (1.3.3).
This shows that (G ¢ A) = n> ok (k > 2) is not possible and completes the
proof of the theorem.

With the help of Theorem (1.3.2) we will be able to obtain a complete
classification of > -21..groups. We shall see that each of the cases I', II"
and III" leads to a class of such groups, which we call groups of typesl,

2 and 3 respectively.

Firstly, every group G of type 1 has a > %—automorphism. G contains

an Abelian subgroup A of index 2 in G. Let G = 4 U Ax.

a+ a'l, ax+ a~t '1, ag A

The mapping

defines a %L-automorphism whose inverted set is A U (CA(x))x, where
q= (4:C(x)).

To determine the > %-groups of type 2 and 3 we require further analysis.

(1.3.5) Theorem. Let G be a > %—group of type 2 or 3, Ifxandy
lie in different cosets of A in G, then CA(x) ¥ CA(y).

Proof. Assume to the contrary that Ax ¥ Ay, but CA(x) = CA(y). Then
neither x nor y belongs to A and (A : C,(x)) = 2. Let G = <x, Vs A> .
By Theorem (1.2.2), Gl is a> %‘-—group and it is clearly of type 2 or 3.

Now

CA(W) 2 CA(X) N CA(Y) - CA(X)-
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But xy ¢ A, and so CA(W) - CA(X)-
Thus we have

C,(x) = C,(¥) = C,(xy) = 2, say,
where (A : 2) = 2, This is a contradiction if Gl is of type 3 and since
in that case &.L = G, we may assume for the rest of ths proof that G and
Gl are both type 2.

Clearly Z is the centre of Gl and since it has index 2 in A we may
put A = <a1, Z> with a.12 € Z. We observe that CGl(al) = A, for A must
be self-centralizing. In particular

<1 1
(1.3.6) X TaX ez, T T ~ 8%
where zl and z, are distinct elements of order 2 in Z.
Now 2, d z, » since yx-l does not commute with a,.
We note further that

(1.3.7) xy ¥ yx

for if x and y commute then <x, Y 2> is Abelian and has order 2|4|
which contradicts the choice of A.

Iet o be a > %—automorphism of Gl that inverts A elementwise. By the

Transversal Theorem (1.2.5) we may suppose that ot inverts both x and y,
and 80 A
(1.3.8) (axy)a = e x iy L for a1l a ¢ A.
Now a inverts half of the elements of the coset Axy and since by (1.3.7)
and (1.3.8) no element of Zxy is inverted, we must have

()™ = (o) = & x5
It follows from (1.3.6) that

G " ey T an

and thus [x, y] = z,3,.
Now [xays ¥a.] = [z, ] [x, o]ay, 3] = 2y2522, = 1.
Therefore <xa1, yeys Z> 13 Abelian and has order 2|A|. We have obtained

a contradiction, and the proof is coxriplete.
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(1.3.9) Corollary. Suppose that G is a » %—group of type 2 or 3 such

that G/A is elementary Abelian of order 2k (k3 2) and

G/A = {E;IA, Xphy eees :53€> .
Put Z = CA(xl) N CA(xz) N ... nCA(xk). Then Z is the centre of G and

(A:2)= 2k. Moreover A/Z is elementary Abelian.
Proof. It is clear that Z is the centre of G and that [4/z] ¢ 2.
Consider first G of type 2. By Theorem (1.3.5) A/Z has 2k- 1 distinct
subgroups of index 2. Therefore by a  known theorem it must be
elementary Abelian of order Zk. (Zassenhaus [15] )e

Finally if G has type 3 then two of the centralizers CA(xl)’ CA(xz),
CA(xlx2) have index 2 in A and intersect in the third, which is equal to
Z. Thus in this case A/Z has order L and is elementary Abelian.
Our next result concerns the action of G/A on A.

(1.3,10) lemma. ILet G and G/A be defined as in Corollary (1.3.9),

and suppose that if G is of type 3, generators % and X, are 80 chosen
that C)(x,) end C,(x,) have index 2 in A. Then for 1 =1, ..., k there
exist a € A and Z; € Z such that
[ai’ xi] - zi, [ai’ x‘-;] - 1’ (J f i)
2
with 2y ¥1l, 2, = 1.
Moreover, if G has type 2 then 2z

type3thenz ;‘z.

Proof. Put D, = G, () N... O C,(x, fnc(ﬁﬂ)n".nchﬁ

L "By T oeee ™ 2y, whereas 1f G has

Now (Di $2) =2 and CA(xi) (\D = Z, so we may choose 8 € D‘! (xi),
with the property that [ai, xj'] =1 wvhen J #1 and [ai, x,] Fl. We
now show that ['ai, xj] e 2.

From a well known commutator identity we obtain
-1
[xi-l’ x s ai] J [xj, a , J [ai’ xi’ xj]xi = 1 , and since

[xi ’ xj ] e A and [xJ, ai]:[ =] (1#¥3), it follows that [ai, xj] c D:I.'

Moreover since [ai, xiz] =]l= [aiz, xi] we conclude that [a,, x] e CA(x:L)'
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Hence [ai, x,] € C,(x,) N D, = Z, which leads to the first statement of
the lemma.

Suppose now that G has type 2. Consider the centralizer C (x x
for 1 ¥ J. By what has already been proved this group contains a (m ¥4 or3j)
but does not contaln a8 or aJ. Since it has index 2 in A, we are forced
to the conclusion that 8,8, € CA(x:ij)' Thus

1= [xixd, 8‘18‘:;:' -z 3z
and so z, = zd.

On the other hand, if G has type 3 then'CA(xlxz) has index , in A
and [xlxz, 3132] ¥ 1, giving 2, ¥ z,. This completes the proof.

An immediate consequence of lLemma (1.3.10) is

(.3.11) Corollary. For » %‘-—groups G not of type 1, [G, Iq lies in
the centre of @ and has order 2 or is non-cyclic of order L according as
G has type 2 or 3.

We need one further result before we can give the structure of

1
> &-groups.

(1.3.12) ILerma.

With the notation of Corollary (1.3.9) and Lema (1.3.10),
the elements X132 Xyy eeey Xp CEN be chosen to commute pairwise.

Proof. Consider first G of type 2. By Corollary (1.3.11), [G, A;_] is
generated by an element z, say, which belongs to Z and has order 2.
We show first that for all i, j, [x , x-] =z or 1. For consider

&x 52 C (x )> This is an Abelian subgroup of maximum order in G,

for clearly |AJ| = |A]. By Theorem (1.3.1), A, is normal in G and G/AJ

J
is elementary Abelian, generated by ajAj s and the cosets x,A, for all

1)
1=1, ..., kexcept 1 = J, By Corollary (1.3.11), |G, A3] has order 2,
and since it contains [aj, xj'] = z, we conclude that [G, A;)] = {2y .
Therefore [xi, x&l = zorl.
We can now prove by induction that the coset representatives Xys eeey X

of A.xl, cosy ka can be so chosen ¢that for 1 = 1, seey k, x, commutes
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with x‘1 (3=1, eeey k)o Consider the case L = 1. If [xi, xj] =z,
then we replace xj by 8x 4 as coset representative of Ax,, and obtain
[xl, alx‘p - [xl, ai‘l [xl, x‘,"] = 2% = 1. We note that the elements
815 eoes 8 constructed in Lemma (1.3.10) satisfy the ssme commutator
relations with the new coset representatives as they did with the old.

| Now suppose that we have already chosen Xys eees X such that
Xys Xys eees Xy g commute with Xy (3 =1, «esy k). In particular then X,
commutes with each of Xys ever Xy 3¢ For every J » 1 such that

= . - 2 -

[xi, xg % We replace xj by aixj and obtaln [xi, aixj 2 1. Thus
we construct new coset representatives which commute with Xys and since

they clearly commute with each of Xys sees Xy g9 the proof by induction
is complete.

If G has type 3, we form 4, = <x1, CA(xl)> and by an argument
slmilar to the above we conclude that [xl, xz'] =], 205 %, or 2, 25¢
Depending on which case occurs we f£ind that one of the following pairs of

coset representatives commute: {Jr.l, x2} ’ {xl’ "1"2}’ {a2x1, xg}’
{ale, 81x2}° This completes the proof.

We sumarise our findings in the following theorem.

(1.3.13) Structure Theorem. A non-Abelian » %—-group G 1is one of the

followling types.

Type 3. G has an Abelian subgroup A of index 2 in G. For every such

group if G = A U Ax then the map: (a)a = a‘l, (ax)a = atxt for all a € A

defines a > %-automorphism of G with

2(a) = 2(0) = §T , where q = (4 ¢ C,(x)).
Typa 2. G is nilpotent of class 2. It has commutator subgroup {z)
of order 2. Its centre Z has index 22k (k » 2) in G, and G/Z is an
elementary Abelian 2-group, generated by xlz, x22, eeny ka, alz, azz,
veey a.kZ, subject to the following commutator relations:

[xi, xj] = [ai, ad'] =1 for all 4, J =1, ooy ko

[ai, xj'] =1(1 # 3), [ai, xi] = 2.
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Every such group has a > %‘-automorphism a defined by the map:

€1 €2 €y -1 -€1 -€2 -€k
(g Ty oo I8 T rpy ey
for all a e A = &y, eees @ 2y and e, =0 orl (i =1, «uv, K)o

2k
Moreover, g(a) = £(G) = o5

Type 3. G is nilpotent of class 2. It has elementary Abelian commutator
subgroup (zl, z ) of order 4. Its centre Z has index 2h in G and G/2

is an elementary Abelian 2-group, generated by xlz, xzz, alz, a,Z subject

to the cammutator relations
(s %1 = [ays o) = (s % =Lopr ) = 1,
Lo 3] = 2s Lo ] =3,

Every such group has a > %‘-automorphism a defined by the map

€1 €2 -1 =£1 =€2
(ex; ", "l =a’x "X, 7,

for all ae 4 = &, 8y, 2) and gy = O0orl (1 =1, 2).
Moreover, £(a) = 2(G) = 126 .

{1.3.14) Comments and Examples. Note that in (1.3.13) we do not

speclfy the orders of the xi's and the ai's in groups of type 2 and 3.
The only condition imposed on powers of these elements is that their
squares must lie in the centre Z of G, for clearly [ai , xj] [ai, xﬁ]
[ai, x] =1 for al1 1, J. It follows immedistely from the structure
theorem that in a > %ﬁgroup G of type 2 or 3 the elements of odd order
form a subgroup Zo of the centre and G splits into a direct product of Zo
and a 2-group.

The dihedral group Dn (n 3 3) of order 2n is an example of a group
of type 1. The direct product of the quatermiongroup Q and the group D, ,
with centres amalgamated, 1s a group of type 2. In fact any extra-special
2-group is a group of type 2 and this type is characterised by the
condition |G'| =2,

The most elementary example of a group of type 3 1s the direct .
product of the quaternim group Q and the group Dh' In fact the direct
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product of any two groups with a ﬁ-automorphism is a group of type 3.

SECTION (1.4) Groups consisting mostly of involutions

In [13] Wall classified all groups at least half of whose elements
were involutions. This problem has a long history, having been considered
in a series of papers by G. A, Miller [ 9 ] who finally arrived at a
classification which 1s not too easy to follow. We obtain s solution of
. this problem by classifying all groups in which the identity automorphsm
is a » %—automorphism. We thus present an alternative treatment by
"elementary" methods, since Professor Wall used character theory in his
analysis,

Throughout this section we let G denote a non-Abelian group such
that the identity aﬁtomorphism, 1, s a > %‘-—automorphism. Thus G has

precisely £(G)|G] - 1 » %lGI involutions.

(1.4.1) Groups of Type 1. Two cases arise. If A is an Abelian subgroup

of maximum order in Gthen either ({) every element of A is mapped by 1

onto its inverse, and so A is an elementary Abelian 2-group; or (ii)

A is not elementary Abelian. In this case, by the proof of Thecrem (1.2.2)

with a = 1, there is an inner automorphism Ix (xe St) that inverts A

elementwise, In other words, there exists an involution x such that

xLax = g1 for all a € A,

and so

| (%2)° = 1 for all a ¢ A.

In either case the centre 2 of G 1s an elementary Abelian 2-group.
We now employ Theorem (1.3.13) to obtain the structure of G.

In case (1) G has an elementary Abelian subgroup A of index 2 and an

involution x ¢ A which induces by conjugation an arbitrary automprphism

of order 2 in A. These groups appear in class IV of Wall's classification.
In case (ii), G has an Abelian subgroup A of index 2 and arbitrary

order which is not elementary Abelian, and an involution x ¢ A which
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induces in A the automorphism that inverts A elementwise. These groups
appear in class I of Wall's classification.

Clearly in this case G may be chosen to have arbitrary even order 3 6.

Ll.h;.2) Groups of Type 2. The centre Z of G may be written as a direct

product Z = < z.> x E where z generates the commutator subgroup . of G,
and E 1s an eler'nentary Abelian 2-group (if non-trivial). Clearly E splits'
from G for otherwise at least half the elements of G have order > 2.
So G = G, x E, where Go’ is a type 2 group with centre Go' of order 2.
We show that Go has an Abelian subgroup of maximum order that is
elementary Abelian. For the square of every element of Go is equal to
z or 1 and so one of 8ys Xy &%, has order 2. We select such an element
for each 1 (1 = 1, «se, k). They generate with z the required elementary
Abelian subgroup.

It follows that Go has the presentation Go - <z, X)s eees X 85
ceey a.klz2 = xi2 - a:‘_2 = 1, all pairs of generators commute except
[81s xi] =2 (1 =1, ooy k) > . These are Walls class III groups. As

he points out, they are the product of k dihedral groups of order 8 with
centres amalgamated.,

.4.3) Type 3. Here G = G, x E, where G, is a type 3 group
whose centre Go' is a four-group. Hence Go has order 64 and an analysis
similar to the sbove shows that there is only one group of this type that

1
admits 1 as a > E—automorphism. Go has presentation

Go = <zl:‘ Zys 91: 855 X lezi2 - xi2 - ea.:‘.2 = 1, all pairs of generators

comnmtfe except [ai, xi] -z (1 =1, ‘2)>.
This is Wall's class II group: it is the direct product of two dihedral

groups of order 8.
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CHAPTER 2  GROUPS OF ODD ORDER

SECTION (2.1) Introduction

We next turn our attention to the case where G has odd order.

Let G be a non-Abelian group and let p (odd) be the smallest prime
which divides the order of G. It is known that no automorphism of

G inverts more than.% of the elements of G. In this chapter we obtain
a complete classification of groups G in which some automorphism
inverts exactly'%|G| elements. We show that either G has an Abelian
subgroup of index p and an element of order p not contained in this
subgroup, or G is a direct product of a p-group of nilpotency class

2 or 3 and en Abelian p'-group. The deteiled structure is given in
Theorems 2.3.7, 2.4.h4,and 2.5.1.

The result (Lemmata 2.2.3 and 2.2.4) that G has an automorphism
inverting % of its elements if and only if G has an involutory auto-
morphism fixing exactly p elements, leads to an slternative formulation
of our problem: classify all non-Abelian groups of odd order with
an involutory automorphism whose fixed point group is as small as
possible. Since a group of odd order is Abelian if and only if it has
& fixed-point-free automorphism of order 2, we are again considering
groups which are "almost" Abelian in some sense. Our problem is also
a very special case of that of Kovhcs and Wall [ 6 ] and Ward fiy 7]
who studied the structure of odd order groups with an Involutory
automorphism whose fixed point group is nilpotent.

In [10] and [11] Miller considered the case where G is an
odd order p-group. Some of his results are in conflict with ours and
he did not obtain a classification.

There is an obvious similarity between.%-groups and the

>%-groups classified in Chapter 1.
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SECTION (2.2) Preliminary Theorems

We begin by showing that if G belongs to Gp (p > 2) then

£(G) ¢ %. (Our attention was drawn to this result by Dr. T. J. Laffey.)
(2.2.1) lemma: Iet G be a group of odd order and let a be an

2 = 1., Then

1) s, ={ee) | gcc};

(11) G =S.F,, S,NF, =1, and |S | = (¢ : F).

automorphism of G with a

Proof (Gorenstein [ 1] 10.4) (1)  Clearly (g'l(ga))a = (g.l(ga))'l.

Conversely, suppose 8 g Sa’ and s2n+1 =],

g=s?%,

Then s = g'l(ga) where

-1 -1
(11) () = y ~(yu) if and onlyifnyEF a.ndenSf is empty
unless f = f., where f of. tF o

(2.2.2) ~ Theorem. TIf G ¢ 6, “and p 1s odd, then 2(G) %.

Proof. Assume 4(G) > 3. Let @ be an sutomorphism with || > o]
The elements of Sa generate G and 80 > = 1. By Lemma (2.2.1) (ii),
p(G ¢ F)> |G, Since F_is a subgroup of G, it follows that F, =1
and S = G, contradicting the fact that G is non-Abelian.

We PI‘Oceed to investigate the structure of groups G € G (p>2)
with ¢(G) = ;- Our immediate aim is to show that either G ha.s a
-]p;automorphism a such that S a is a subgroup, or G is a direct product
.of & p-group and an Abelian p'=-group.

For the rest of this section G denotes a group in Gp (p > 2)

with a -:‘;-automorphism o,

(2.2.3) lemma. Every %—automorphism of G has order 2.

Proof. 1Let abe a %-automorphism. If Sy is not a subgroup then <S > G
and clearly u = 1, Suppose that Sa = A, a subgroup of G. Then A is
Abelian and of index p in G, and so is normal in G since p 1s the
least prime which divides the order of G. lLet G = {4, g> . It is

2

sufficlent to show that ga™ = g, Now for all‘a‘ €A, gag"l € A and so

(gag™)™ = (gag™l)a = (go)a (gL,
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Hence g-l(gu) centralizes A and so belongs to A, since G is non-Abelian.
That is gu .= ga* for some a¥ ¢ A, and guz - (g;)a*'l =g,

(2.2.4) Iemma. For every %-automorphism as lFal = p,

Proof. This is an immediate consequence of Lemma (2.2.1)(ii).

(2,2.5) Iemma. No element of the set Saf’ fe Fa’ £ #1, 1s
inverted by a.

Proof. Suppose s ¢ Sa ns,t. Then 8 = slf for some s, € Su'

Application of o gives sls'l - sl'ls and hence 82 = 812. But |G] i3 odd,
and s0 g = 8, and £ = 1, a contradiction.
We now define A(= Aa) to be a subgroup of G of maximum order in

Sy» where a is a %—automorphism of Gs A 1s clearly Abelian.

{2.2.6) TLemma. Let ge G\A and suppose that the set Ag N Sa

is not empty. Then
lagns | = |c,(e)l < %,1AI-

Proof. By hypothesis Agf\ Sa is not empty, so we may choose s ¢ Sa
such that Ag = As. Now for a ¢ A, (as)a = (as)'l if and only if
[a, 8] = 1. Hence Ag N S, = (CA(s))s. But CA(s) = CA(g), and the
equality follows.

Finally, suppose CA(g) = A; then CA(s) = A and so <s, A> < S,.
By the maximality of A, s € A and hence g € A, a contradiction.

Since CA(g) is a subgroup of A, the inequality follows.

(2.2.7) Theorem. (Coset decomposition of G relative to A.) Let

f generate Fyo Then there exists a coset decomposition

(2.2.8) G=aUarU AU .. UaP Y a7 (G ¢ 4) = ps

(2.2.9) @=aVaruar®V .. UaPtUss Vo Uns ar

(G : A) > p, such that 8; €5, (L =1, ¢ss, n)s Moreover,
(1) artn S, 1s empty (1 = 1, <o, p-1)3

(1) |asyNs | = [c,Gsy)] -%m (3 =1, eeu, n).
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Proof. No non-trivial element of A is fixed by a, and so we may
choose distinct cosets; Afi(i =1, eeey p-1). Lemma 2.2.5 gives

result (1). Clearly exactly -]; of the elements of AU Af U.., UasPd
are inverted by a. By Lemma 2.2.6 every other coset must have |
exactly% of its elements in §_.

(2.2.10) ILemma. ILet B be a subgroup of maximum order in S

8?
where 8 = I a for some s ¢ S . Then |4] = |B|.

Proof. Clearly both s and C,(s) are contained in S, and 50 is the
subgroup X -<CA(s), s> . Thus |B| 3 |X| and by Theorem 2.2.7, |X| 5 |4].
Conversely, o = IS_IB , where sl ¢ Sg and thus by the above proof

14 » | B, which proves the lemma.
Lerma (2.2.10) does not hold for arbitrary %-au'bomorphisms

@and 8, as will be shown in examples 2.5.3 and 2.5.kL.

{2.2.11) Theorem. For all xe¢ G, X € A.
Proof. Suppose first that x = as for some a € A, s € S,+ The
subgroup B = <CA(s), x> is inverted elementwise by g = Iaa.
By Theorem (2.2.7) |B| 3 |A}, and so by Lemma (2.2.10), |B| = |4].
Hence xP ¢ CA(s) CA.

It remains to prove the result for elements x = af where f is
an arbitrary generator of F . Since (af£)P e A if and only if (fa)f ¢ 4,
we may assume that fa ¢ AfT for some integer r. We show that r = 1,
For £faf™" ¢ A and (faf™")a = £a~1£T ¢ A which implies that fa’f L ¢ A
and (since |G| 1s odd) that faf™t ¢ A.

We suppose by way of contradiction that (alf)p £ A for some
8, € A. By the above, fal = a.2f for some a, € A. Moreover
(a,£) £ &, for otherwise (fa;)P and (a;£)P ave both contained in 4.
Proceeding in this way we obtain a sequence of elements 85 oo, ap
of A such that fai = ai+1f (L =1, ¢eey p=1) and (ai+lf)p £A. But

then (alf)p =8 8, e apfp € A, and this contradiction establishes

the theorem.
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(2.2.12) Corollary. Every p'-element of G belongs to A.

(2.2.13) Theorem. If (G : &) > p then G is the direct product

P x M of a Sylow p-subgroup P, with 2(P) = % and an Abelian
p'-subgroup M contained in A.

Proof. For every prime divisor q of |G|, q # p, G has a unique
Sylow g-subgroup and this belongs to A by Corollary 2.2.12. Let M
denote the direct product of all such subgroups. Clearly M is
Abelian and characteristic in G. We must show that M belongs to
the centre of G. By hypothesis G has a coset decomposition 2.2.9
relative to A. We first show that every element of Asi centralizes
M (1«1, ieoy n)e

For all m ¢ M, s; ms, € M. Hence (si‘lmsi)-l = ( L

S, ms )u =8 ntg, "L
i i i

si'
From this it follows that s 12 and thus also s 3

To show that f commutes with m, we consider slf. This element

clearly cannot belong to a coset ij (3 =0, eeey p-1). Thus slfe Asi

for some i, and as was shown above, both 8y and slf commute with m;

commutes with m.

hence s'o‘ does f£.
It is now clear that G = P x M, and that a %—automorphism of G
that inverts A elementwise induces a %— automorphism in P.
As a consequence of this theorem, in order to classify groups
Ge G with £(c) = %, 1t 1s sufficlent to consider the following cases:

I. G is a p-group with a %—automorphism @ such that (G s A,) > p.

JI. Some Abelian subgroup of index p in G is elementwise
inverted by a %-automorphism.

In order to show that groups satisfying condition I are divided
into two distinct types we need some further analysis. For the rest
of this section let G denote a p-group (p > 2) with a %—automorphism

such that A (= A,) has index at least p2 in G.
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(2.2,14) Lemma. ILet sc¢ Sa\k. Then s £ NG(A).

Proof. Suppose to the contrary that s'las € A for all ae A- Then

(s'las)-l = (s'las)a = sa~t 'l, and hence 8° end 8 commute with a.

Thus A © <A,s> = S, end this contredicts the maximality of A,

(2.2.15) Lemm'a; Let f generate F,. Then
(1) Ng(a) = {A,£) and () :4) = p 5
(i1) NG(A) is normal in G.

Proof. (i) Consider a coset decomposition (2.2.9). By Iemma 2.2.1L,
no element as,, a € A (£ =1, +eey n) belongs to NG(A). Since G is

a p-group, A is properly contained in its normalizer and the result
follows.

(11) Iet N = NG(A). It is sufficient to show that s-le = N for

every s SQ\N. Write A = <‘CA(s), a>. We must show that s las

and s"lfs belong to N. Suppose by way of contradiction that s'las ¢ N.

Then according to (2.2.9), s~Las ¢ As, for same s, € S,s that is

i i

s las = arcsi, where ¢ ¢ CA(s) and O € r < p.

Hence o inverts o ta Ts™las whence sa’s cormutes with a. If

T =0 then 82 and hence s commutes with a, contrary to hypothesis.
If r > 0, then, since sa’s commutes with a’, we obtain (sa.r)2 = (ars)z,

whence sa® = a's and as = sa, again a contradiction.

Finally, the assumption that s™*

to the untenable ecnclusion that xt

fs ¢ As:l for some 81 € Sc leads
fx = £71 for some x € Ge
We are now in a position to state the various types of %-groups

which arise and to analyse each type individually.

Type be G is a p-group (p > 2) with a %—automorphism a such that

A (= A,) has index at least p° in G. In sddition, N,(B) is Abelien
for all subgroups B of maximum order in Sqe

Iype 5. G is a p-group (p > 2) with a %rautomorphism & such that

A (= A) has index at least p° in G. In addition,N (A) is non-belian

for some subgroup A of maximum order in S .
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Type 6. Some Abelian subgroup of index p in G is elementwise
inverted by a %;automorphism.

SECTION (2.3). Groups of Type L

Throughout this section we let G be a group of type L.

(2.3.1) Lemma. The subgroup F, is contained in the centre of G.
Proof. As before suppose that F, is generated by £f. By Lerma 2.2.15,
e NG(A); hence £ commutes with every element of A. Now consider

se S\A. Put B=<C,(s), 8>, Then BES and |B| = |A|. By Lemma
2,2.15 Ny(B) = <B, £, which is Abelian by hypothesis, Thus f
commutes with s, and the proof is complete.

(2.3.2) lemma. The commutator subgroup G' is equal to Fu’ and so
G is nilpotent of class 2.
Proof. We first show that for any s e SQ\A, (4, 8] = F .
Let A = <CA(s), & ). By Lemmata 2.2.1L and 2.2.15 (1)
s™las = atcf,
where ¢ ¢ CA(B) end f generates F . Applying a we get
sa~ts™t = aTc7lr s
and hence, since f is central
sa~ls~2as = £2 ,
Thus [a, s%] € ¥, and the result follows.
Now le-t. s* be an arbitrary element of S,. By considering
A* = @A(s*) , s*> , which is elementwise inverted by a, we obtain
[s*, §] ¢ F . But the elements of S, generate G and so the lemma is
proved.
In Lemma 2.2.15 (ii) we showed that N (= NG(A)) is a normal
subgroup of G. We now know that it contains G'. Thus by Theorem
2.2.11 the quotient group G/N is elementary Abelian.

We now examine the centralizers in A of elements in G\y.
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(2.3.3) Lemma. For elements x, y¢ N, CA(x) - CA(y) if and only
if y e Nx® for some t, 0< t < p.
Proof. Suppose that C,(x) = C,(y) = C. Then A = {c, &> and
[as x] = £, [a, 3] = i‘t, where O < t < p and f generates Fu. Hence

[es W] =1, where w = yx-t'.
Contradict the lemma by supposing w ¢ N. The coset Nw contains elements
inverted by a, and so there exists a*eA and s ¢ SG\A such that w = as,
The %—automorphism g = (Ia*)a inverts w and every element of A. Thus
B={4,wycC Sqe By Lemma 2.2.10, w ¢ 4, & contradiction,

The converse is obvious.

(2.3.h) Corollary. Suppose the elementary Abelian grouE G/N is
generated as a direct product by le, cesy ka Put D = Q C (x

Then A/D is also elementary Abelian of order pk.

Proof. Since (A : CA(x)) = p for all x ¢ N, A/D is clearly elementary

Abelian of order ¢ pk. But, by Lemma 2.3.3, A/D must have as many

distinct subgroups of index p as there are subgroups of order p in

G/N. Hence (Zassenhaus [15] , page 143) A/D has order pk.

§2.§.§2 Lerma. let X)5 s+e5 X and D be defined as in Corollary

2.3.4. Then there exist generators Day, «esy Doy of A/D such that
[ai, xJ] =1, 1 ¥ 3; [ai, xi] =f,1=1, ..., k,

where f generates Foe

Pr . -
oof Put Di @ c (xj) Then D has index p in D, end
1lgjsk

D, = <D, ai> s where aip € D. Since a, ¢ CA(xi)’ the commutator
[:ai, xi] is equal to fri ¥ 1, where f 1s a fixed generator of Fa'
By replacing 8 by a power of itself, if necessary, it 1s possible to
have r, = 1 for all 4. It is clear that [e,5 xj] = 1 when 1 ¥ j.

(2.3.6) Lemma. The elemsnts X;, +«+» X introduced in Corollary

2.3.4 can be chosen to commute pairwise.
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t
Proof. Suppose we are given Xy sees X such that [xj, x]] -
(J =2, «ooy k). Then there exist coset representatives of G/N
xl* =X, xJ* - al-tjx:j such that [x %, xl*] =1 (J =2, eeuy k).
Note that the new coset representatives satisfy the relations of

Lemma 2.3.5. The proof is now easily completed by induction in the

manner of Lemma 1,3.12.

We can now give the structure of groups of Type L.

(2.3.7) _ Theorem. Let G be & group of type L. Then G is nilpotent

of class 2 with commutator subgroup £ of order p. Its centre is a
direct product Z = D x {f) and has index p2k in G. G/Z is elementary
Abelian, generated by Za.l, seey Zak‘Z)&, seey Zxk subject to the
relations

[xi, xi] - [:ai, aj] =1 fori, J =1, oo k,

a.i, xj-] =] (i f J), [ai, xj-] = £ (i = 1’ eney k)o

The pth power of x, and of &, (£ =1, ees, k) 1lies in D. Conversely,

every such group has a %—autcxnorphism a, whose fixed group is (f) ’
defined by the map
(aftxlql cee xqu)a - a’lftxl-ql eoe xk-qk

for all a e<a1, s By, DD and 0 ¢ q < p(L =1, ooy K)o

The simplest examples of groups of type L are a non-Abelian
group of order p3 and exponent p (k = 1), and the central product of
two such groups (k = 2). In both cases D = 1.

It is possible to show that groups in Gp with a %automorphism

of type i are characterised by the fact that G' = C_ and GPfy ¢ =1

SECTION (2.L) Groups of Type 5

In this section let A be such that N (= NG(A)) is non-Abelian.

By lemma 2.2.15, N = <A, f> where f generates Fc.

(2.4.1) Lemma. let x¢ N. Then CA(x) - CA(f) = Z, the centre of G.

ORI O R R S e
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Proof. There exists s € S, Such that x € As. Hence CA(x) - CA(s).

To prove the lemma we show that

CA(s) - CA(sf) = CA(f).
Suppose that a ¢ CA(sf). Then s™tas = faf™* ¢ A, and a new familiar
argurent gives a ¢ CA(s), and CA(sf) < CA(s). Now sf ¢ N, and CA(sf)
end CA(S) both have index p in A. Hence they are equal, and thus

C,(s) = C,(sf) = c,(£).

(2.4.2,) Terma., The centre of G/Z is <Zf>.

Proof. Put N -<Z, a, f> where a € A. Since N/Z has order p2

it is Abelian and so [a, ﬂ € Z. Now consider s ¢ Sa\N . The subgroup
B =<z, s> is elementwise inverted by a. By Lemma (2.2.15)

Ny(B) = {B, £, and by the above argument [s, £f] € 2. Thus {zf)
is a subgroup of the centre of G/Z. But every element of the centre
of G/Z belongs to N/Z, end since for all s € SNN, [e, 8] # 2, we

know that Za does not belong to the centre of G/Z. The lemma follows.

{2.4.3) Temma, The index of N in G is p.

Proof. Suppose by way of contradiction that there exist 815 8, € S“\N
with s, ;f.Nslr for ellr, 0€ r<p. Put K= {2z, £>, N = {K, a),
g = <N, si> (1 =1, 2). By Lemma 2.4.2, K is normsl in G, and G,/K
is Abelian of order p2. Thus for a suitable choice of generator £

of F,

2[e, &;] = 2f end 2[s, 8,] = 2¢°
for some r,0 < r < p. Hence we find x = sl"'rs2 ¢ Nbut [a, x] e 2€ 4,
and so x normalizes <Z, a) = A, contradicting the fact that N is the

normalizer of A.

{2.4.4) Theorem. A group G of type 5 has centre Z of index p3
such that G/Z is non-Abelian of exponent p. Conversely, every such
pP-group has a %automorphism.

Proof. By the results of this section a group G of type 5 has G/Z
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of order p>. Moreover G/Z is non-Abelian, end since xP € C,(x) = Z
for all x ¢ G, the exponent of G/Z is p.

Conversely, consider a p-group G with centre Z such that G/Z
has order p3 and exponent p. Then G = <Z, a, £*, s) where

(1) G/Z has centre of order p generated by Zf*

(11) there exist 35 255 23 € Z such that

[2, 8] = f*zl, [e*, s] = 2y, [*, a] = 25

and one of z, and 23, say 23, is not equal to the identity;

(111) 1 = [P, o] = [£*, P = 2,° and similarly 23p = 1.
An easy calculation gives

[, &%) = (f*zl)mz2m(§)23n(?) .

)P " a
Hence (f zl) = 1., Now write £ = f zl(22z3) .
Clearly £ - 1.
We now claim that G has a %)-- automorphism that maps a to a.-l ’

8 to s'l, £ to £, and z to 2L for all z € Z. To see this we note

, +1
[a, S] = f(2223)Ez—: [f: 5] = 25 rf: aJ -2z 3°

and [a s 8 ]= [PY, 521 = £(z,2 1 -f(z )-251
273 3

The rest of the verification is routine.

SECTION (2.5) Groups of Type 6.

Theorem (2.5.1) A group G in Gp which has an Abelian subgroup
A of index p in G has a %automorphism inverting A elementwise if and only
if there exists £ € G\ such that £f = 1,

Proof. Suppose that ais a %—automorphism such that S = A =4,
a subgroup of index p in G. Then, by Lemma 2.2.L, F, is generated by
f of order p and clearly f ¢ A.

Conversely, given G = ¢4, £ ) ¢ G, with £P = 1 and A an Abelian
subgroup of index p in G, then A is normal in G and the map «
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(ath)a = a2t a c A (4 = 0, 40, p1),
defines a %—automorphism of G which inverts the elements of A. Hence
Ge Gp has type 6 if and only if G has an Abelian subgroup A of index
p which does not contain all the elements of order p in G.

£2.5.2) Example. There exist groups in Gp with an Abelian sub-
group of index p which do not have %—automorphisms. This fact is
11lustrated by the group of order 63

6= {a, b & =1, bab = a8, 13 - a'>.
The unique subgroup A = { a of index 3 in G contains all the elements of
order 3.

There can be no overlap between groups of type L and type 5 since
the orders of the corresponding central factor groups are different.
However, the following examples show that there exist groups which are
simultaneously of type L and type 6 and groups which are simultaneously
of type 5 ard type 6.

32.5.32 Example. The non-Abellan group of order p3 and exponent p
is of type L and type 6.

{2.5.4) Example. Let T = {2z, £, 8> be the non-Abelian group of
3

order p” and exponent p, where [f, 8 ]= z. Let G be the split extension

of T by the automorphism z + z, £ + fz'l, 8+ sf'l, that 18, 0 = {T, a),
vwhere aP = 1 ang [a, 8] = £5 [£, 4 = z'l, (e 2] =1.

The following maps define %—automorphisms of types 5 and 6 respectively.
ata+ a'l, 8 + s'l, £f+.£, z+ 2L, (Aa = (g, 2));

B :a+ a, (as) (as)'l, £+ r‘l, z 421, (AB - <z, £, as) )e

Maximal subgroups of s, and SB are indicated. We note that

14,1 7 [4,].



CHAPTER 3. GROUPS WITH ,}Aurovmpmsns

SE o1 Introduction
Wo now enalyse the case where some automorphism of G inverts exactly

%‘I G| elements. Since some Abelian groups and also some groups of types
1 and 2 will be seen to fall into this category, the above condition is
not equivelent to the condition £(G) = . If G is non-Abelien we show
that either G has an Abelien subgroup of index 2 ot 4 or G is nilpotent
of class 2 with commutatof subgroup of order 2, We note that in all cases
G is soluble of solubllity length at most 3.

The analysis of %—groups is considerably more involved than that of
> %—gr oups or %-groups and the classification is subdivided into many
different types, as detailed in the structure treorems.

SECTION (3.2) Abelian l-g groups.

Throughout this section let G denote an Abelian group of even order.

3:2.1.) Theorem. Let G be an Abelian group with a Z-automorphism.

Then G 1s not of the form C2 x N where N has odd order. Conversely,every
Abelian grouwp of even order which is not of this form has a %—automorphism.
Proof. Let G be of the form 62 x N, where N 1s Abelian of odd order, and
let o be a %-automorphism of G. Since in an Abelian group elements inverted

by an automorphism form a subémup, we have 5 = N, and t, the uniqua involution
in G, is characteristic in G and hence )y =t = t"L. Thus wo have shown

that t ¢ N, alcontradiction.

c°nver331¥,if G is Abelian of even order and not of the form C2 x N,

¥here N has odd order, we show that G has a F-automorphism. We look at

two cases,

Case (1). G has more than one involution: 1let t, and t, be distinct

involutions, Thus t,t, is also an involution, Let A be any subgroup of

index 2 i G. If tl ¢ A and t2 ¢ A then t1t2 ¢ A, and hence A contains
- - '1

&t least one involution, say t« The map a+ a 1, o 4 8 1txT, for all

& el, where G = 4 U Ax, defines a %—automorphism of G whosae inverted set
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is A,

Case (11). G has exactly one involution t : If t ¢ A for any subgroup
A of index 2, then G = A x {t) where A has odd order, contrary to
hypothesis. Hence t ¢ A for some subgroup A of index 2 and again the map

as a-l, ax » 8 lgxL

for all a € A, where G = A U Ax, defines a %—auto-
morphism of G.

For campleteness of classification we call Abelian %-groups groups
of Type T+

SECTION (3.3) Preliminary Analysis.

For the remainder of this chapter we let G denote a non-Abelian
1
E-gr OUup .«

Examination of the alternating group on L symbols, which is a
%-group, shows that the Abelian subgroup of maximum order, which is a
four-group, is not elementwise inverted by any %-automorphism. Hence there
can be no hope of an analogue of Corollary 1.2.3 for %—groups. With these
facts in mind we make the following important definition .

(3.3.1) Definition. ILet G be non-Abelian and let B8 be an automorphism
1
of G for which ‘Sa| = 56|, i

Consider the set D = {1plse S}» which by Lenma 1.2.1
is a set .Of lyautomorphisms of G. Let A be a subgroup of maxlmum possitle
order which is elementwise inverted by a, as a ranges over the elements
of D,
The subgroup A is obviously Abelian and plays a crucial role in the
analysis of %-groups. We let (G ¢t A) = n and we suppose that a is
& %-automorphism which inverts the elements of A.' Firstly we look at

the relatively easy case where (G : 4) = n = 2,

(.3.2) Theorem. (Groups of Type 8) Let G be a non-Abelian group

With en Abelian subgroup A of index 2. Let G = A U Ax and let
*

A = {a € Alx'lax = a'l} o Then G has a %-automorphism which inverts the
elements of 4 if and only if G' is a proper subgroup of .
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Proof., Since G' = [A, o and x"l[a, Hx =[x, & for all ac A, we
See that G' is a subgroup of A%,

Firstly, let a be an automorphism of G such that Sa = A and So N Ax

2 . (m)z. But (x)o = a'x *

1%y = a*'l. Now

is empty. Now x° e A end thus (xz)u =-x

for some a*(fl) € A, and thus x‘2

- (a.'”'x'l )2 whence x
(ax)a = (ax)™t 1f and only if a” = [x, 2] and hence if a is a %—autonorphism
then there is an element a ¢ A*\G".

Conversely, given a* € A*\G' a routine calculation shows that the mapping
a~+ a-l, ax+ s 2%t is an automorphism of G whose inverted set is

exactly A.

3.3.3) Fxample. Tet B =G, ble® =1 = b7, b7lab = ). 1f we let

A= <_a), we see that A” = A, When n is odd we know that G' = A* and when

nis even we know that G!' is a proper subgroup of A, Theorem 3.3.2 now

tells us that Dn has a %’-automorphism of type 8 1f and only if n is even.
Now we suppose that (G : A) = n > 2,

(3.3.4) TLemma. ILet A be as defined in 3.3.1 and let & be a %—automorphism
of G which inverts the elements of A. Suppose that g ¢ A and that the coset
Ag has non-trivial intersection with Sa' Then |Ag M\ Sal - |CA(g)| - -}IIAI,
where n is an integer 3 2.

Proof. By hypothesis, Ag N S, 18 not empty, 8o we may choose 8 € S,

such thet Ag = As. Now for a ¢ A, (as)a = (e.s)"l if and only if

el . s a"l, Hence

ag N5y = (¢, (s))s = (Cy(e))s
and the result follows.
Since CA(g) is a subgroup of A, we have |CA(g)| = %lAl and all that
Temains is to show that n = 1 is not possible.
For suppose that n = 1, then CA(g) = A= CA(s), where
Ag = Ag and 8 ¢ Sa. The proof is completed by observing that <A, s> s

which is contained in S“, has order greater than that of 4, contrery to
the definition of 4,
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At this stage we introduce some terminology which will simplify the
analysis. If for g ¢ A, the coset Ag has theproperty that |Ag N Sul = %‘ Al N
Wo 82y that Ag is a T-coset. If for g ¢ A,AgN S, is empty, we say
that Ag is an empty-coset.

£3.3.5)  Iemma. At most one coset of 4 in G is en empty-coset.

Proof. Suppose that G = A U Agy U g, U As, U...V As__, 1s e coset
decomposition of G relative to A, where Agl and A32 are distinct empty-
cosets and 8, € S, (1 = 2, ey n-2) Then, by Lerma 3.3.L,

(3.3.6) s, | = |al + Z | XERIE

But Lemma 3.3.4 also tells us that (A CA(si)) » 2 and hence 3.3.6 contra-
dlcts the fact that [S | = 3/0].

(3.3.7) _ Theorem. Let G be a non-Abelian group with a %’-—automorphism

inverting the e1emenfs of A, where A 1s as defined in 3.3.1, and let

(G :A) =n>2, Then G has a coset decomposition

(3'308) G=A U Ag U A82 U see U Asn"'l’ (n * 3)
where Ag is an empty-coset, s;e 5,8 =1, and (A CA(B;L)) -q =2,
(=2, ...y n1) OR G has a coset decomposition

(3.3.9) G=1 Uas, Y As, U...Uss , withs,e 5, s, "1 (1=1, ..., n)

and the following equality on the indices q = (4 CA(a 1)) holds:
3.3.10) 122(% - %1) -3
Proof. By Lemma 3.3.5 at most one coset of A in G 1s an empty-coset. If
exactly one coset is an empty-coset, then we get the decomposition 3.3.8.
Since by Lemma 3.3.L

2ol = Is,] = lal + 2 lc, ()
and (4 : A(S )) » 2, we must have (A 3 C (s )) =2 (i =2, seey n-l)
| If every coset of A in G has non-trivial intersection with S, we
get a coset decomposition 3.3.9. The centralizer equality 3.3.10 is now an
immediate consequence of the fact that

n
sl = zlol = Il + T I,



3

For any given value of n there is only a finite number of solutions
of the Diophantine equation 3.3.10. Hence, relative to a suitable ordering
of the cosets of A in G, only the following cases can arises:
I n13,q2-6, q3-3,q_1-2 (L =Ly eeey n)
(3.3.11) 11 “n 33,9, =q37q =3 9 =2 (L =5, «esp, n) 3
IITI n3 3,q2-q3-h,qi-2 (L = L4y eeey n)e
Together with 3.3.8, cases 3.3.11. I, II.and IITgive rise to separate
categories of %—groups and we proceed to examine each category in turn.

To complete this section we prove a useful Lemma,

(3.3.12) Lemma. Let G be a non-Abelian %—group and & an asutomorphism

which inverts the elements of A, where A is as defined in 3.3.1. If Ag

is not an empty-coset and (A : CA(g)) = 2, then

(1) (ag)2 e 4, for a1l ac 4,

(11) Every element of Ag normalizes A.
ﬂ‘_g&f_,_ (1) Since Ag is not an empty-coset, we can choose s ¢ Sa such
that Ag = As. Hence (A : CA(as)) = (A : CA(g)) = 2, Consider A" = <CA(as), as>,
for any a € A. The %‘-—automorphism Iau inverts as and also every element of
PA(as). Thus A" is a subgroup of Sg» where 8 = I o, and hence by the
definition of A, |A"] § |A|. Since (A 1 Cy(as)) = 2 we have at once that
(aus)2 € A and thus the square of every element of Ag is contained in A.
(11) since agag and 82 ¢ A, wo have (g-z)(gaz) - e-lag € A, for every
a in A, and hence every element of Ag normalizes A.

SECTION (3.}) The Empty-Coset Case.

In this section we examine %—groups G with a coset decomposition of
type 3.3.8, where exactly one coset of A in G contains no elements in S,

{3:4:1) Theorem. Let G be a non-Abelian %-group and let a be a

1l
3-automorphism of G which inverts the elements of A, with A as in 3.3.1.

If a coset of G relative to A is en empty-coset, then A is normal in G end
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G/A is an elementary Abelian 2-group.

Proof. 1Let G = A U Ag UA32 U...UAsn_l, n? 3, 8, €S,, 8 =1, and

1
(a4 s C,(s;)) = 2,1 =2, ..., n-1. Assume that no element of the coset Ag
is contained in Sa. By Lemma (3.3.12), (aa)2 e A, forall ac 4, s¢ Sa'
Suppose now by way of contradiction that g‘l ¢ Ag. Then g'l = gs,
for some e ¢ A, 5 ¢ Se\ie  Thus
Ag = as~1a™d = palglsl,
But (a.ls-la'l)u = asa = (a~ts™*a"l)"l and hence Ag is not an empty-coset.

1 eAg and hence g2 ¢ A, where g is

Thus we are forced to conclude that g~
an arbitrary coset representative of the empty-coset. It follows that

t2 € Afor all t in G, Thus A is normal in G and G/A is an elsmentary
Abelian 2-group.

{3.4.2) TLemma. 1If Ag is en empty-coset, then (A 3 CA(g)) =1, 2, or L.
Proof. Ifse Su\A’ we have
C,(g) = CA(szg) 2 ¢,(s) NC,(se)e

Now, since G/A is elementary Abelian, the cosets Asg, Ag, and A are distinct
and hence (4 : CA(sg)) = 2, by Lemma 3.3.7. Hence (A : C,(s) N C,(sg)) = 2 or L.
Thus CA(g) contains a subgroup of index 2 or L in A and hence (A : CA(g)) -
1, 2 or ). ‘

At this stage we introduce .a convenient notation to simplify the analysis.
Let the elementary Abelian 2-group G/A be gensrated by Ax)y ooy Axp,
n=2ka (G : 4), x, € S (L =1, ceoy, k)o We let Axlx2 be the empty-coset.
We note that every coset of A in G is g~invariant and hence q (suitably
restricted) induces an automorphism on any subgroup of G which contains A,

We now consider the various possibilities (A 3 CA(xlxz)) =}, 2and
in turn,

1&:22401‘!11_9'. If (A CA(xlxz)) = )i, where Ax,x, is an empty-coset,

then (G : 4) = ),

Eroof.  We consider A" = <A, X5 12> . Now
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6y x,) = €, (x)) 0 G (xy) = 2(A%) = 2.
Thus since (A : CA(JLsz)) = ), ws have CA(xl) d CA(xz)- Let us write
CA(xl) =2V Zay, CA(xz) =2 U Za,, where [al, x?] -[az, xﬂ =1, Now
A/Z is elementary Abelian of order l, since it has two distinct subgroups

of order 2.

The relations [812, X:J '[51, x12] = 1 imply that [31’ x:l] € CA(xl)’l
Y Xp I R N LS R
and the Wirt Identity [x,™", x,, 2]7° [x,0 8,7 7] [31' x5 %) 1
glves at once that [a,, x;] € C,(x;). Hence [a), x] e C,(x)) N C,(x,) = 2.
' 2

Th:s [a.l, xl] “2%e Z, with zy = 1, % ¥ 1l. Similarly Laz: 12] =" 2%e %
2,0 =1, 2, #1. Now [elaa, xlxz] = 2,2, # 1 since CA(xlxz) = Z and hence
Zl # 220

Now suppose that there exists x3 3 SG\A*. Then, since o induces
> %—automorphisms on the groups <A, X, x3> end {4, Xy, x3> , these gr-ups
are both of Type 2. By the Structure Theorem 1.3.13,

[ x] = <o) = [h %) = (o) = [8 57

contradicting the faet that 2, ¥ z,ye

Thus we have proved that no such x, can exist and hence (G : 4) = L.

3
€. 8
Now the condition for an element 28, "8, X, X, to be inverted by o« is

[xl, x2] = zlezz‘s, where z ¢ Z, X5 X5 € Su' Hence, since Axlx2 is an
emply-coset we have
(3:bl) EEARRCHLE

The analysis of %—groups with an empty-coset Ax, x, for which
(41 ¢,(xx,)) = L now subdivides into groups of three distinct types,
depending on whether ::ci2 (1 =1, 2) are contained in Z or not.

£3.4.5) Groups of Type 9. let G = <A, X x2> where Ax1x2 is an empty-
coset, Ax) and Ax, are S-cosets, and 0, (%) = C,(x) ) N ¢, (xy) = 2(0) = 2,
the centre of G, By Lemma 3.l4.3 we know that CA(xl) AV Zag, CA(xz) -
y AV Za,, where [81’ xZ] =1=[a, x1] » and [al, xl] and [a,, x,] are
distinct elements of order 2 in Z. For groups of type 9, we assume that

2
¥} €2and x22 € 2.
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Now ("1"2)2 e C(xx,) = 2. It follows that [x), x] = 5, ¢ 2,
and since [xlz, x] =1, 2, has order 2. By 3.L.L, G' is elementary
Abelian of order 8 and is contained in the centre of G. The group G/2
is elementary Abelian of order 16.

We summarise our findings in the following Structure Theorem.

Q_‘A;LT_hw. Let G be a non-Abelian %—group, Axlx2 an empty-coset
for whi : = 2 2
which (A CA(xlxz)) L, and suppose that x,“ and x,° are both contained

in C\(xx,) = €, (x,) N C,(x,) = Z, the centre of G, with A as in (3.3.1).
Then G/A = {ax, Ax,) is elementary Abelian of order L. G is nilpotent
of class 2 with elementary Abelian commutator subgroup ( 2y 2y, 212> of
order 8. G/z = {Za), Za,, Zx), Zx,p 18 elementary Abelian of order 16,
and the following commutator relations hold:

(o1r 85] = [ays %3] = [a0 x] =33 [y x] = 2y (=1, 2) and [x), x,] = 2,

Conversely, every such group has a %‘-automorphiama defined by
€ €5 &, § -€y <€5 -8, 8§
1 "2 "1 "2 <1 "1 2_""1 2

(ze) "o "y o T m gy Te TRy T

for all z¢Z,¢, = 0,1, 6, =0, 1, (1 =1, 2).

b
(3.4.7)  Groups of Type 10. As in (3.4.5) we let G = <A, X, x2>, where

i

Axlxz is an empty-coset, A"L.L and sz are %—cosets , and
CA(xle )= CA(xl) N cA(xz) = 2(G) = 2, the centre of G. In addition A/2Z =
<312, a22> 1s elementary Abelian of order L and (A C,(x;%,)) = Lo Agein
[als xz] = ]'_'_a2, ;&] =] and El’ ’L.I..] and [az, xa are distinct elements of
act
order 2 in Z, For groups of type 10 we assume t.h:);/ can:léy of the two elements
2 .
% end x22 (xlz, 8ay) is contained in Z.
Since 2e Z, 2;0( N\Z, we have 2-2 and 2. % « Since
" K e Oix, H "Eyadn tar

(xlxz)z € Z 1t follows that [x), x| = a;3),, with 2), € Z. The relation

[ﬁz: xz] = 1 now gives (31212)2 ol ) and thus G' = (22, alzlz)is isomorphic

to C, x ch' We can now give a structure theorem to summarise our findings.
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«li.8 Theorem. Let G be a non-Abelian %-group, Axlxz an empty-coset
for which (4 : CA(x1x2)) = |y and suppose that 112 € CA(xlxz) = Z but
2
X; ¢ Z, with A as 1n 3.3.1. Then G/A = {Ax;, Ax,)is elementary Abelian
of order J and A/Z = (Zal, Za,‘,> is also elementary Abelian of order L.
G has Abelian commutator subgroup <z2, al’lZ» which is isomorphic to
C, x Ch. G/Z = <Za2, x, Zx2> is isomorphic to Dh x Cy, and the following
commutator relations hold:
[51’ 52] - [81, x2] = [az, JL_L] =1, [ai, xi] "z and [xl, x2] " 82 whore
2z, has order 2 in Z and (alzlz)2 -z (1=1,2), and =

12

Conversely, any such group has a %—automrphism o defined by

€ 2.

for all z ¢ 2, € 61-0,1, (1 =1, 2).

£3:4:9) Groups of type 11. Again we let G = (A, x5 X, » where hx,x,
1s an empty-coset, Ax, end Ax, ave %-cosets, and CA(xlx2) - CA(XI) OVCA(xz) -
Z(G) = 2, the centre of G. In addition A/Z = <Zalg 282> is elementary
Abelian of order L and (4 s C,(x)x,)) = k. Again [a), x,] = le)s %] =3,
and [31: ﬁ_-] and [a2 s xz] are distinct elements of order 2 in Z, For
groups of type 11 we assume that neither of the elements HZ ’ x22 is contained

Sincexzsc(x’\Z(i-l 2), we have 2 a2, and x,? = a g

1 ¢ Gl 2 2)s X TeEyand Xy T AR
02109 with 215 ¢ Z. By expressing the
commutator D‘l’ 122] in two different ways we find (61&2312 )2 = 22,0 Thus
LIS

G <Zl, 8182212> is isomorphic to 02 x Ch.

Finally, we give another structure theorem.

flow 1t follows that [x), x,] = a8

340 Theorem. Let G be a non-Abelian %—-group, Ax,x, an empty-coset
for 2
which (4 CA(:&xz)) = ), and suppose that xlz, X, 4 CA(x1x2) = Z, the cantr
With A a5 1n 3.3.1. Then G/A = (Axl, sz) is elementary Abelian of order
L ang A/Z = (Zal’ Za2> is also elementary Abelian of order L. G has
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Abelien carmutator subgroup <z1, 8132212> which is isomorphio to C2 x Ch

G/Z = <Zx1 Zx2> is isomorphic to the group
l, mlz -] = m ’ [’,, m] - ’,zmz’ [x,y‘, ] =1 for all x,y.t) and the fOIIWing
cormutator relations hold:

(o 2 = [y, %] = [ x] =1, [ai, x] =z, end [, 1] = &8z,

¥here 2y has order 2 1n Z end (a8,2,)° = 7y (1 =1, 2) and 3y, € 2.

Conversely, any such group has a %-automorphism a defined by
€y €, & 6 -€ -t =8 -6
1 %2 "1 "2, _ -1 1 2 1 2
(za; o, X X oz Ta, X X, 5,
for a-ll z e Z’ ei’ 61 = O, 1, (i = 1’ 2).

We next turn our attention to the case where Ax1x2 is an empty-coset
for which (A ;: ¢ - 1
: A(xlxz)) 2, where Ax, and Ax, are z-cosets.
3.4.11)

G/A is elementary Abelian of order L.

Lerma. IfQ CA(xlxz)) = 2, vhere Ax;x, is an empty-coset, then

Proof. By (3.4.1) G/A is elementary Abelian(of order >2)so we need only

show that (G 4) = . We consider two cases.

(1) ¢ (xl) £ C (%) Lot A <A, x, "2> and thus Z(A") = Cy(x) N c,(x,) =2,
Now A/Z = <Za1, Za2> 1s non-cyclic of order L4 since it has two distinct

subgroups of index 2. ILet C 2(5) = 2V Zay, C,(x,) = 2 UZa,, where

(s x)] = [a,, x] = 1. The relations [al yx] =1=[a, "1%] imply

t
hat [, x] e ¢ A(%)), end the Witt Identity

- a x "1
[lx]_ l’ X, aﬂxl [xz’ 31-1’ x2-1J 1 [81’ X xZ-J 1 w3

im
plies that [al, x1] € CA(xz)‘ Hence [al, xi] = 2z, of order 2in2Z
an
d sindlary (a,s X,] = z, of order 2 in Z. Now C,(x/x,) = (2, 31&2>
and th ~
us it follows that [alaz, xlx2] =1 = z,3,, vhence £, = 3, "Z.
Ltabe o %—-automorphism of G which inverts the elements of A.

It ¢
8 clear that o induces a %—‘-autunorphism on A*. The condition for an

"lement of 4x x, $0 be inverted by o is (ay "oy X8 = (g Tagkyxy)™ and
& eagy caleulation glves [_xl, xe] = z7+6. Hence,since A.x1x2 is an
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empty-coset we have

(3'h012) [xl, x;l ¢ <z> .
Now suppose by way of contradiction that there exists x3 € SQ\A* and
> assume for convenience that x and x, ere both in Sa' Clearly a induces
1
> g-automorphisms on the groups (A, X, x3> andQ, X5 3!3> and these
groups are both of type 2. By Theorem (1.3.13) we have [4, x] = [4, x)] =
{z) = [a, X}, end the elements [x, x3'| and [k, x;] are both in {z).
In -
sddition 4 = G, (x;) U 8, Gy (x;), with [ay, x], [ag, x], and [a;, x)]
all conteined in (z).
. Since G/A is elementary Abelian Ax1x213 L Axlxz and h:nce Axlxix3 is
8 o B_ Y 6 - 8 Y -
27c0set. It follows that (ay ey 8y XX, = (8 8y 83 X %,%,)™ for
some B, ¥, and 8. The commutator relations now give easily that
[5‘1’ xz] € (z> » contradicting 3.4.12.
i1 - - *
1) 0y(x) = ¢, (x,) = Cy(xx,). Letting A% = (&, x5 x,) we have
¥*
CA(xl) ~Z(A") = 2, Thus A = 2 U a2, with [a, "1] = 2, of order 2 in
2(1=1,2). since [, xlxz] # 1 we have z, ¥ z,. Again suppose that
there exists J,:3 € SN*° It is clear that & induces > %-automorphiams
on the groups(@, X, x3> and <A, %55 x3> and hence these groups are both
of type 2. Theorem 1.3,13 now tells us that
[a, x] = <21> - [a, x; = [4 x] = <¢2§ and this
¢ontradiction establishes the lemma that (G s A) = L in all cases.
We now consider in detail the case where (A 1 CA(xlxz) = 2 and

slio] Lemna, (3112)2 c CA(xl) ﬂ CA(XZ) =27, the centre of Q.
Proof,

<Ioof. Since G/A is an elemsntary Abelian 2-group, (x1x2 )2 is oontained
12 A, Hence (xlxz)za - (xlxz)'z, and assuming that x,and x, are in S, &n
®asy caleuwlation glves (x2x1)2 - (xlx2)2. It follows that [xi. (3112)2] -1
for 1w q, 2) and hence (xlxz)2 € 2Z.

The analysis now subdivides into three cases depending on whether the
elementsg 112 and x22 lie in Z or not.
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Qoholhz Groups of type 12. For this type we assume that x12 ¢ 2eand
2

X; € Z. By Lemma (3.4.13), (xlxz)2 € Z and hence [x), X,] = 2, of
order 2 in Z. By the proof of 3.L.11, G' = { 2, 2.12> is elementary-
Abelien of order i and contatned in the centre of G. /2 = { zay, Za,,
x5 Zx, > 15 elementary Abelian of order 16. This completes the analysis

of groups of type 12 end we give a structure theorem.

£3.4.15) Theorem. ILet G be a non-Abelian %—group, I\xlx.2 an empty-coset

for which : -
i c 2(A CA(xlxz)) 2, Cy(x)) # Cy(x,), end suppose that the elements
¥, &nd x,” are both contained in Z, the centre of G, with A as in 3.3.1.

Then G/A = <Axl, A.x2> and A/Z = < Zay Zaz> are both elementary Abelian
of order L. @ is nilpotent of class 2 with elementary Abelian commutator
subgro
group <2, 212> of order 4. G/Z = <Zal, Zaz, le, Zx2> is
elementary Abelian of order 16 and the following commutator relations hold:
I:a'.l.’ a‘2-l '[31’ x,] '[52’"1] =1; [a, x] =zand[x, x] =3z, .
Conversely, any such group has a %-automorphism a defined by

* € € & § -1 -e1 -€2 -8 -8&2
O A N LEE A s e 2

*
for all 3" ¢ gz, €8, =0orl (1 =1,2).

exact
£3.14.16) Groups of type 13. For this type we assume thﬁ%/oxl:{ of the

elements "1 xz (xl » 8ay) is contained in Z. By Lerma 3.4.13,
(x.lx ¥ ez and hence [JL_L, xz] a.lz 159 8ince x2 ¢ 8,2, The relation
[xl xz] = 1 implies that (ﬁz = gz, where [ﬁ’ xl] - [32, x.‘\] -z,

Thus g '<51212> is cyclic of order L. G/Z = <Zx1, X2, 322> is

isomorphic to D, x C,.

G.har) Theorem. Let @ be a non-Abelian %—group, Ax,x, an anpty-ooset
for which (A4 s

c (xlxz)) =2, Cx) FcC ,(x,) end swppose that xl ¢ 2,
X’ ¢ Z whero 2 1s the centre of G, with A as in 3.3.1. Then

O/A = <Aﬁ’ Ax2> and A/Z = <Zal’ 232> are both elementary Abelian

of
order L, G has Abelian commutator subgroup <31112> which 1s cycllo

of
order 4, G/z = (le’ x,Z, a,22> is isomorphic to Dh x C, and the
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following commutator relations hold:
[81: 8] = (o, x)] = [eps %] =15 [3, %] =zo0f order 2102z (1 »1, 2);
[xl’ le " 83,5, where 2o € Z and (alzl,‘,)2 =g,

Conversely, any such group has a %-automorphiama defined by

1l . -e2 -8 -6
o ey x

*
for all 2" ¢ 2, €5 8 =0Oorl (1=1,2).

(1" oy P ", 20 =

£3.4.18)  Groups of type 1. For this type we assume that neither of the

elements x12, x22 is contained in Z, the centre of G. Hence x12 € Za2 and
2

X2 €Zas By Lemma 3.4.13, (xlx,‘,)2 ¢ 2 and hence 5‘1’ x2] " 88,245

with z12 € Z. The relation [xl, 122] = z gives (5149.22512)2 = ], Hence

G' = <z, 3132212> is elementary Abelian of order L. G/Z = (leg Zx2> ’

with X xzh € Z and [xl, x2] € lezxzz. Once again we give a structure
theorem,

£3.4.19) Theorem. ILet G be a non-Abelian %-group, Ax],x2 an! empty-
co:et for which (4 : cA(x_an)) -2, CA(xl) ’ cA(x,z) and suppose that
X €2y, x22 € Ze,, with A as in 3.3.1. Then G/A = <Ax1. Ax2>and

42 = (2a,, 2a_Yare both alementary Abelian of order L. G has
1 48y

commutator subgroup <z, 9132212> which is elementary Abelian of order L.
/2 - <Zﬁs Zx2>, where x, and x, have order L (mod. 2) and [xl, 12]
€ lezxzz' Moreover, the following commutator relations holdi
[31’ 8,] = [81, x,] =[e,, xl] =1; [a,, x,] =z of order 24in 2, fori =1, 2;
By %] = ayep s
Conversely, any such group has a %-—automxphism a defined by

(z*alelazeleﬁxzﬁz)“ . z-x—lal“l az—cle~51x2"°2, for all

“ €% e, 8 =0o0rl 1=(1,2)

To complete our analysis of groups with an empty-coset Ax1x2 for which

W A(ﬁxz)) = 2, we turn to the case C,(x)) = CA(xz) - CA(x1x2)°

Q:4.20) Groups of type 15. By Lemma 3.4.11, G/A = <A‘1’ Ax2>
18 elementary Abelian of order L and thus C,(x)) = C,(x;) = C,(xx,) = 2,
the centre of g, Let A=2ZVUZa. part (11) of the proof of Lemma 3.L4.11
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tells us that [a, xl] =2 and [a, xz] = 2, are distinct elements of order
2 in Z,

Now the condition that an element of Ax:'_x2 be inverted by a %—auto-
morphism a ig (a.ixlx2 Ja = (aix1x2 )'l. If we assume that both x and x,
belong to Sy» a little calculation shows that this condition reduces to
[11’ %] e <2122> + Since Ax)x, is an empty-coset, we have

(s %) ¢ Gz -
Because the elements x12, x22 , and (xlxz)2 are all contained in Z it

follows that [xl, x2] = z , is conteined in Z. Moreover, the relation

2
5% %] =1 tells us that z),

Hence G has elementary Abelian commutator subgroup (zla 2y ﬁg) of

has order 2.

order L or 8, depending on whether 2,, 18 equal to one of the elements
B %, or not. G/Z = <Za, le, Z.x2> is elementary Abelian of order 8.

{3:4:21) Theorem. Iet G be a non-Abelian %—group, Ax,x, an empty-coset
for which (A ; CA(xlxz)) -2, 'CA(xl) - CA(x2) = Z the centre of G, with A
8 in 3.3.1. Then G/A = (Axl, A.x2> is elementary Abelian of order L and
A/Z = <Za> has order 2. G is nilpotent of class 2, with commutator

subgroup <zl, 2,5 212> elementary Abelian of order L or 8, depending on
whether %)o 1s equal to one of the elements 2y 2, OT not. @/2 =

<Z&, Zx), Zx2> is elementary Abslian of order 8 and the follo
commutator relations hold:
e, x1] - 2, [a, x] = 25 [x)5 x] = 250

Conversely, any such group has a %-automorphismu defined by
(zaixlelx;z)u - z'la'ixl-elxz.eza
forall ze g, €,=0,1, 1=0,1,]=1,2.
To complete this section we must consider the case where Ax;x, is an

TPty-coset for which A = Ca by x,)e

%- Let G be a non-Abelian %—group for which Ax) x, is an

em -
I Pty-coset with (A : CA(xlx2)) = 1 and suppose that (G : A) > L. Then
G" = 2 : 7
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Proof. 1f CA(xl) ¥ C,(x,) we can find an element of A which commutes
with x, and X)X, but not with x,. This contradiction shows that
C0) = () = 2({h, x5 x,)) = 2. Let A = Z U Za and es before
[3: xi] =z, of order 2inZ (1 =1, 2). Now [a, x| = 22, " 1
and hence 2 =2, =z,

Since (G : A) > L there exists Xye Sa\<A, X» X,) o It is clear
that the groups <A, X x3> and <A, oY) x3> are both of type 2 and by
theorem 1.3,13 we have

[a, xl] = [A, x3] - [A, x2] - {z).
In addition, x5, x;] and [x,, x,] are both contained in () .

Now, since Ax,x, is an empty-coset, choosing x, and x, to le in Su,
we have [xl’ %] # 1. By hypothesis, the coset Ax;xpxy 15 & %—-ooset and
& simple calculation gives [xl, xz] e <z)». Since [xl, x;] 71, we have
txl’ x2] = 2z and thus any commtator in G is 1 or z.

If we now drop the restriction that (G : A) > L we are left with
the following possibilities. »

@ (G:8)3 4 and Jo =2
(1) (@ :4)= 4 and laY > 2.

Consider first the case whefe (@:1A)a Land G' = {2), whore s has
order 2 and is contained in Z, the centre of G. Since [02, cg 'Ea, tﬁz -1
for all ¢, d ¢ G we see that G/Z 1s an elementary Abelian 2-group., By
341, o/p = {x), Axyy ooey Ax) 1s elonentery Abelian of order 2%
Lt 4= ¢ (x)V Cy(x,)a for 4 =1, 2, and let A = C,(x,) U C, (x,)a;, for
2§18k Ifwewrtte {4, x;x,) =B, ve shall find that the structure
°f G can be more easily obtained with the help of B.

By Lemna 3.4.22, [a, x1] ~ [a, xe'] - [xl, x)] = 2, of order 21in 2,
the centre of g, Thus [axlw -]w [“‘.LxZ’ x2] , and hence the centre of

<A' X x2> 1s C,(x)) V Cy(x) )a x,x,+ Now consider x; ¢ SO\(A; X x.2> ’
vith 4 - Calx3) U ¢)(xy)aye Since (4, x5 x3) has type 2, Cy(x) # G (xy)

&d 1t £011ows that we can choose 8y such that [aj, x{_[ - [Ajn xz] =1 and



45
[33: x3] = z. If [x, 131 = z then [3311, x3] = 1 and hence we may
choose the coset representatives x) and x, to commute with Xy ¢ It 1s

*

now clear that CB(XB) - CA(XB) U CA(xB)ax:Lx2 s and that the centre 2 of
the group (A, X5 Xps x3> - {8, % x3> 1s (C,(x)) Y Co(xyJaxy x,) N
(CA("3) UCA(xB)axlxz), with B/2° = (Z*a, z*a3> elementary Abelian of
order ).

An obvious argument by induction now gives us the following structure

theoren,

:4:23) Theorem. (Groupe of type 16). Let G be a mon-Abellan 3-group,
A"‘lxz an empty-coset for which (4 : CA(xle)) = 1 and suppose that |G'| = 2,
with 4 as in 3.3.1. Then G 1s nilpotent of class 2 with commutator
subgroup {z% of order 2. G/A = (Axl, A%,y ooy Ax) 1s elementary
Abelian of order 2¥ and G/B = (Bxl, BXj5 eoes Bxk> is elementary Abelian
of order 21, yhore b {8 xx). I£ 2 = C,xq)N Colxg) NN ees NG, (x )y
then 2, the centre of G,is given by Z = Zlu Zlax'le’ where A = CA(x‘.I.) U
‘e /2 = {2a, 2ay, uur, Za.) 1is clenentary Abelien of order 2571,
6/z = { za, Zags eees Zap, Zx), ZXgs eee, Zx) 18 elementary Abellan of
order 22k~2 and the following commutator relations hold:
g0 %] = [, e =1, 1&4, J«k, except that
[‘1’ x,] = 3 [ai, xj'] =1, 14, [ai, xi] =2,3€1¢k
o5 L] =1 171, 2 [as x1] = [a, x2] -z,

Conversely, any such group has a %-automorphiam o defined by

w €] € € €x el 61 "ty -ty -
(& ", "33"'xk Jamatn Txy Txy Tee

foralla*eA, ei-O, l, 151 ¢k,

It will be noticed that groupé of type 2 are identical with groups of
type 16, where the subgroup A of theorem 1.3.13 is replaced by the subgroup
B of theorem 3.4.23.

A1 that now remains is to consider the case where (G 1 A)= L and

IG'| > 2, We omit the now familier snalysis and state the structure
theoren,
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4.2 Theorem (Groups of t. 17). ILet G be a non-Abelian %-group.
A‘l"z an empty-coset for which (A 3 CA(xle)) = 1, with A as in 3.3.1, and
8uppose that [G'] > 2. Then G is nilpotent of class 2 with commutator

subgroup G' = (z, z12> elementary Abelian of order 4. G/A = (ij,’ Ax2>

18 elementary Abelian of order L and A/Z = {aZ)has order 2, where

%) = €\(x,) = 2, the centre of 0. /2 = (Za, 2x), Zx,) 1e
elementary Abelian of order 8 and the following commutator relations hold:
[ 2] = [ %] = 25 [x)5 3] = 2,

Conversely, any such group has a %~automorphiam a defined by

€E €y € - -€7 -¢
(z"a xllxzz)u-z axllxz 2:
3¢
forall 2" ¢ 2, . =0, 1, €y =0, 1 (1=1,2).

1
SECTION (3.5) The Z-Coset Case.

We now turn our attention to condition 3.3.11.I and throughout this
section G will denote a non-Abelian %‘—group for which A (as defined in

3.3.1) gives rise to & %—coset end a i-coset.

3

2.1 Lemma. The subgroup A is normal in G and G/A is an elementary
Abelian 2-gr°up. '

Eroof. 1f (4 , CA(x)) = 2, it follows from lermma 3.3.12 that (&X)z belongs

to A for al1 a 31 A. Assume therefore, by way of contradiction, that

(A:c (x)) = 6 but (ax)2 f A, for some a ¢ A+ Thus A(a.x)2 F A ard hence
the cosets Ax and Ax"lal are distinct. But CA(x) - CA(x°1) - CA(x'la'l)
and thus at least two cosets of A in G are %-coaeta » contradioting condition
3301, I. Hence (ax)? ¢ A for all a in A and we obtain a similar result

1f we assume that (8 : C,(x)) = 3. Thus (ax)? ¢ A for every a ¢ A, x £ A.
Sincex € A and axax ¢ 4 1t follows thatxlaxeA, for all a in A. Thus
448 normal 40 G and G/A 1s an elementary Abslion 2-group.

2:2) Temma. The index of A in G is L.

Boof. By 1emma 3+5.1, (G : A) is a multiple of L end hence at least one

Coset of 3 in g, Axl say, is a %..cosgt. Let sz be a -13-oout and assume,
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without loss of generality, that X, and x, both belong to S,» where a 1s
8 %’a““mrphism of G which inverts the elements of A. Then
Cy(xp) = ¢, (x %) 2 ¢, () N €, (xyx,).

where (4 ; CA(J_:lxz)) = 2, 3, or 6. Now, since G/A is elementary Abelian,
the cosets Ax), Ax,, and Ax,x, are distinct and hence (A : CA(xlxz)) Y3,
since there is a unique %-coset of A in G. The possibility (A 1 C,(x;x,) =2
18 also ruled out because CA(x2) s & subgroup of index 3 in A, cannot contain
& subgroup of index 2 or L4 in A. Hence (A : CA(xlx2)) - 6,

Suppose now that there exists xq ¢ <A, X x2> o Then (A s CA(X3)) -2
end by an argument similar to the above (A : C,(x;%,)) = 6. Since there
is a unique %—coset of A in G, Axyx, = Ay X, and thus Axy = Ax), &
contradiction. Hence G/A = {Ax), Ax,) 1s elementary Abelian of order L.

We are now able to introduce the following notation to describe the
structure of G, (/A = (ax), Axy) , with x, x, € 5,4
CA(xl) ACA(xz) - CA(Jlez) = Z, the centre of G, A -<Z, a) » where A/Z is
cyclic of order 6. Hence CA(xl) LAY Za2 U Zah and CA(xz) =2U Za3.

Consider now A® = <CA(x1) s ’S_) which is a subgroup of maximum order
in Sq2 With (G A*)y « ), In addition, A*/Z 1s cyclic of order 6. Now tre
coset A*a is o %‘-coset and thus only the possibilities 3.3.8 and 3.3.11 I
&nd ITI can arise, The possibility 3.3.11. III is ruled out by the fact
that (4% ; 2) = ¢ and hence by theorems 3.4.1 and 3.5.1, A" 1s normal in
G end 6/4™ 15 elementary Abelian of order L. Finally, it follows that since
Ang* CA(xl)’ G/CA(xl) is elementary Abelian of order 8.

Thus we have proved that all commtators belong to C,(x;) and we now
Proceed to investigate the possibilities for [s, xl], (e, x2]a and [11- !2]°
Te relations [a?, x,] = 1 = [a, x,2] inply that [a, x,]? = 1 and
le, xz]x2 -k, x2]2. It follows that [a, x2] is contained in CA(XJ.&A(IZ)

& thus [a, x,] = a222 or e.hzz, with 2, € 2. If [a, x,] = &232: then

t -
he relation a=x, 2ax22 implies that aa € Z, a contradiction. Hence

[a, x| = ahzz, with a12223 -1,
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The possibilities for [a, ] are z,, 221 and ahzl, with Z ¢ 2.
The relations (2, x12] =1= [e. s x.l] easily rule out the possibilities
a 2, and ahzl and thus l:a, xl] 205 of order 2 in Z,.

Finally, we consider [xl, 12] . IfEcl, x2'1 e a°2, then [ahxl. 12] e 2
end 1f [xl, x,] ¢ ahZ, then [ale, x,] € Z. Hence by a suitable adjustment
of coset representatives (which does not affect the values of [a, xl] and
[= X,]) we can ensure that (x5 x,] = 2z), 1ies in Z, the centre of G.

2
Since G/CA(xl) 1s an elementary Abelian 2-group, [xl, X, ] = 1 and thus

2
%5 = 1. Now suppose that a,ix_'LJ:2 € S,+ An easy calculation gives

%o ® &leizzi, for some 1, 0 < 1 £ 5. Hence ahi € Z, from which it
follows that i=0or 3. If1i=0, then [’L,L’ 2] =1, If31=3, then

%o " ot z 3 3 = z,, and thus [JL.L’ axz] = 1, Hence, by a sultable adjust-
ment of coset representative if necessary, we can always choose x; and x,
to commute, '

To conclude this section we collect our results in a structure

theorem,

1l
{3.5.3)  Theorem (Groups of type 18). Let G be a non-Abelian z-group

whose coset decomposition relative to A involves a %—coaet, with A as in
3.3.1. Then /A = <Ax1, Ax2> is elementary Abelian of order L. The
Pentre of G, 2, 1s given by C,(x,) N C,(x,) = G, (x,x,), and A/2 = {Za)
1s eyclic of order 6, G has Abelian commutator subgroup G' = (ahzlz:.,)
which ig cyclle of order 6. G/Z =. <Za, Zx.l, Zx2> is isomorphiec to
Dyx ¢, x C, subject to the relations:

& xl] 2) of order 2 in Z; [a, xz] - a.hz2 of order 3 with 2, ¢ Z;
B %] -1,

COnversely, every such group has a %‘..autmorphism o defined by

(zaxlxz)a-z axl- k:

£
T zez, 0g1¢5 0g3 ksl

<:3)__Examples. The direct product of the dihedral groups of orders
®and 6 44 an example of a group of type 18, In fact, the direct product
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of a £~8r0up and a %-group is always a %-group of type 18.

SECTION 3.6. The Case of Three -]i-cosets.

Throughout this section let G denote a non-Abelian %—-group such that

three distinet cosets of A in G are %—-cosets.

:6,1) lemma, The index of A in G is 1-4.
Proof. By 3.3.11. IT we need only show that no coset of A in G is a
%-coset. Assume therefore that Axl is a %—coset and let Ax, bo a %-ooset.
Consider now the coset Axx,. If Ax;x, = A, then xx, ¢ A and hence
%) * ax)™", for soms a ¢ A, If follows that Cy(xy) = cA(xz’l) = C,(x;), a
contradiction, since (4 : CA(xl)) =2 and (A 3 CA(xz)) = 3, Now, since
’12 € A by lemma 3.3.12, |
Calx) = 0y x) 2.8, (xy%,) 1 €y

(1 (xxy)) = 2, then €, (x;x,) N\ ¢, (x;) hes index 2 or L 4n A and
hence cannot be contained in cA(xz) which has index 3 in A. It follows
that Axlxz is a %—coset and clearly Ax)x, ¥ Ax,. Lot Ax)x,, Ax,, and
Ax3 be the three distinet -}cosets of A in G. By the above argument the
coset A’ﬁx3 is o %-coset end hence Ax,x, must be equal to Axx, or Ax,,
8ince clearly Ax1x3 # AXB'

Firstly, suppose that A.x1x3 = Ax,s Therefore, ax, = 12::3’1, for some
8¢t A. By lemms 3.3.12, (axl)2 - aJcJ_x2x3'1 belongs to A and thus
bxx, = Ax35 a contradiction, Similarly, the assumption Ax;x, = Axx
leads to the contradiction that Ax, = Ax;. Hence no %—coaet can exist in

this case ang the lemma is proved.

0:6:2)  Lemma. The subgroup A is not normal in G.
M' Suppose, by way of contradiction that A is normsl in G and consider

£
1rst the Possibility that G/A is cyolic of order L. let G = (As 8> ’
W, L
here 8 e 4, with g = ax, a ¢ A, and X ¢ Sq where a 1s a %—automorphiam
whi,

°h inverts the elements of A. Now the subgroup B = <CA(x), ax> is

®rted by the %‘-—automorphism I, and B has coset decomposition
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60 U, (ax) U ¢, (x)(ax)? U 6, (x)(ax)®Us.e But 3lc,(x)| = al 3 Il
which implies that (ax)’ = g> € A, a contradiction since <Ag>is cyclic of
order L.,

Thus we may assume that G/A = (A:&, A.x2> is elemoentary Abelian of
order 4. 1If CA(xl) = C,(x,), then C,(x)) = Cy(x;x,) = 2, the centre of Q.
In this case G/Z hes 10 elements which satiafy (Zg)? = Z and hence must
be elementary Abelian. This is a contradiction since |G/2] = 12.

There remains the possibility that CA(xl)’ CA(xz), and CA(xsz) are
distinct subgroups of index 3 in A, ILet A = (C,(x), &) = (C,(x) 8,),
with o3 ¢ 00,6, 8] =1 = [y 2], for 4 =1, 2. Since A is essuned
to be normal in G, xl'lalxl is o), a;0,, or 81201, where o, 11es in
CA("‘.L) '_< z, a2> end Z 18 the centre of G. Now the possibility o, is
easily excluded so assume that xl'lalxl = 8,0, Nowa = xl"zalxlz - 51012
and thus c12 =1, Finally,:&'lafxl - (Jr.l'la.l:tl)2 - a:‘:"nj_2 - a12, a contia-
diction.

Thus th_'la.iat::l - aizci, with ¢, ¢ CA(xi)’ i =1, 2. An application of
the Witt Identity gives

Ll RN L (RPN
from which it follows that Eaz, x2] € CA(x1)° It follows that
¢ ¢ CA(xl) n C,(x,) = 2, and similarly ¢, € Z.

Suppose now that (xlxz)'lal"aam(xlxz) - al"azm. Using the relations
Just derived, a straightforward calculation gives al"nam ¢ 2, which implies
that €, (x)x,) = Z. This contradicts the fact that (A + C;(xx,)) = 3
and the lemma is established.

If g% ¢ A for a1l g in G, then A is normal in G. Hence there exists
y tG\Asueht}m*r.y2 £A. Nowy = ag, for a ¢ A, g €85, vhere a is a
%"a“tomorphism inverting the elements of A, If we consider B -(CA(Z): &K> ’
the usual argument gives (ag)3 = y3 ¢ A. Hence Ay and Ay'l are distinct
Cosets. Without loss of generality, we may assume that ¥ ¢ 8, since other-

wise I o inverts y and the elements of B and the structure of G (mod B) 1s
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similar to the structure of G (mod A).

Let Ax, with x ¢ S,» be the remaining g-coaet of A in G. Since
(A)a = 4, Ay)a = Ay-l we have (Ax)a = Ax = Ax"Y. Thus x° ¢ A.

6, Lemma. If Z is the centre of G thenG/Z is isomorphic to the
elternating group on four symbols.
Proof. Consider the coset Axy. Clearly Axy cannot be equal to any of
the cosets A, Ay, and Ay"l. Thus Axy = Ax and hence CA(x) - CA(JQ').
Now, since x2 € A,
¢,(v) = ¢,(y) 2,(x) N ¢, () = ¢, (x).

It follows that C,(x) = C,(y) = C,(y 1) = 2, the centre of G. Thus G/Z has
order 12, Now because (G : A) = L, there is a homomorphism of G into Sh’
the symmetric group on four symbols, whose kernel is Core A = Z. But Ah
is the only subgroup of order 12 in Sy, and hence G/Z 1s isomorphic to Ay

Let A ={2, ey, with e3 ¢ Z. Now (xtax)a = (x.la.x)'l, since x° ¢ A
and hqnce x'le.x € S, We claim that A is self-normalizing since otherwise
G/Z has a subgroup N,4(A)/Z of index 2, contradicting the well known fact
that 4), has no subgroué of index 2. If follows that X rax £ A, since other-
wise x normalizes A. Hence X la.x = ¥z, or Yy z , with z, ¢ Z. Since y
and y -1 can be interchanged, we define y by putting x 153 . 752'

Now, since Axy = Ax, xy = & x. By applying a and taking inverses we

2

got x"Lyx « a2, or a’g), with 2, ¢ %o Since ¥ = x -y, the possibility

1)
-1 -
X yx = 327-1 is eliminated, and thus x 1yx " az).

Finally, consider y'lay. Now y'lay £ S , since y2 £ A, and clearly

~1
Y "y 1s not contained in Ay. Thus y ‘ay = axz,, a2xz3. ay 183, or aly” 133

Straightforward calculations tell us that all these possibilities except

the last lead to a contradiction. Thus y'lay - a2y'133, with 5, € Z.
From the relation [s, x°] = 1 1t follows that 2,3, = 1 and thus

[e, x] =, y] = e.'lyzz. The relations [a, y3_] - [a3 , y] - [33 » X] =

[x, ’JJ = 1 imply that a3 = y3523, a6- y633'6, and thus 336 - 32°6. We

°an now give a structure theorem.
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6.4) Theorem  (Groups of type 19 Let G be a non-Abelian %—group
such that three cosets of A in G are %—cosets, with A as in 3.3.1. Then
G - <A: X, y> s where A has index 4 in G. CA(x) - CA(Y) =2, and
Az - (Za) has order 3, where Z is the centre of G. The group
6/2 = {Za, 7x, Zy) is isomorphic to the alternating group on four symbols.

G has commutator subgroup < (a5 x], [as 7] > » and the following relations
hold:
(e, x| = [=, y = a.'lyzz, (e, 7] = 33-123’ o - Y3223a 36 - y623-6:
where the elements x2, yj, %, and zy are all contained in 2.
Conversely, every such group has a %—automorphism a defined by
(za.ixjyk)a - z‘la-ix-‘.,y-k:

for a1l z ¢ 2, 0¢ 1g2 0g¢J3gl, -2¢ksg.

6., Example. The alternating group on four symbols is the simplest

example of a group of type 19.

SECTION 3.7. The Case of Two %;-cosets.

To complete our analysis of %-groups we must consider the case where

two cosets of A in G are -E-cosets and throughout this section let G denote
Such a non-Abelian %—-group and g & %—automorphiam which inverts the elements

of A. We first consider the case whers A is normel in G,

£3:4.1) Temma. If A 15 normal in G then G/A is an elementary Abelian
2-group.

-1

Proof. For all x ¢ Sa’ ae A, x ax ¢ A+ An application of o gives

2 21

[x s & ] = 1 and hence, by condition 3.3.11. III, x2 ¢ A. Hence (a.x)2
2, <1

ax” (x ax)cAforallaeA,xesa,andthuaG/Aisanelementary

Abelian 2-group.

21:2) Iemma, If A is normal in G then (G 1 A) = L.
Proof. Let Axl and Ax, be the distinet %‘—coseta of A in G. By lemma 3.7.1
A"lxz is a ycoset. Suppose now that there exists Xy d (A, X 12> Clearly
{a, XX,s x> 1s & group of type 2 and (A, X, X35 x§ is a group of type
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3. By the structure theorem 1.3.13 we have
(3.7.3) (A, xlxé] = [, x;] - (13) , and
[4, xx] = (213) 1 (23> YR NE
But <A, X, X5, x1x3, x2x3> is a group of type 2 and thus
[a, xle] = [ xx],
which contradicts 3.7.3 and establishes the lemma.
We now examine in turn the various possibilities that can arise
when A is normal in G. Assume firstly that Cy(x)) = Cy(x,) = Z, the centre
of G. G/A = <A.x1, sz) is elementary Abelian of order L and Ax) and
dx, ere the distinct f-cosets. Since A/Z is Abelien of order L it has two
possible structures and each of these possibilities leads to a class of

non-Abelian 3-groups.

(3.7.4) _ Groups of type 20. For this type we assume that A/Z = ez, alzz>
13 elementary Abelian of order L, with [e., xlxﬂ =1, Now [a, x12]- le-
[a.z, xi] implies that [a, xj] € CA(xi), 1 =1, 2. Hence [a, x,] = zi* of
brder 2 1n 2, 4 = 1, 2. But [a, x;x;] =1 = 2, "8,", from which 1t follows
that zl*- z2* = 2.

Similarly, [312’ xiz_] =] - [8122’ x,] glves (8100 %] = 2,5 of
order 2 in Z for 4 = 1, 2. Since [312’ xlxz:] - %2 ¥ 1, we have 2, ' 250
1t [11: X,] # 1 then (allexz)a - (allexz)'l, where q is a %-automorphism
which inverts the elements of A and X, X¢ Sq « An easy calculation gives
[xla x2] = 2,2, and hence [alzx.l, e.lzxa-] - 212322 = 1., Thus in general
We may choose the coset representatives of Axl and Ax, to commute. Clearly
z ¥ 2,5 8ince E“12’ xi] ¥1, fori =1, 2. -Howover, z moy bo equal
0 2,2, We can now give a structure theorem,

Q-'?-S) Theorem. Let G be a non-Abellan %—group whose coset decomposition

Telative to 4 gives rise to two ]]i-cosets Axy and sz. Supposs that A 1s
normal 4n G, C,(x;) = C,(x,) = Z, the centre of G, and A/Z = { Za, Za)5)
1s elementary Abelian of order L. Then G/A = <Ax1, Ax2> is elementary
Ab . N
elian of order L and G/2 <Za, 28,55 Ixy, Zx2> is elementary Abelian
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of order 16, G has commutator subgroup @' = (s, %) z? which is elem-
mentary Abelien of orderlor8 and the following relations hold:

[ %] =2« [a, x]; (200 %) = 23 [o)50 )] = 25 [x0 =] = 2.

Conversely’ every such group has a %-automorphism a defined by
*€1 €2 &) 82, _ w1-€1 -e€2_ -8 -82,
(2% "oy, " Txp T m e ey Ty my

t:'_361-0,1, i=1, 2,

{3:7.6) Groups of type 21.  For this type we assume that C,(x;) = CA(xz) -
Z and that 4/7 = (Za) is cyclic of order 4. The relations [a, 2] =1y
[a s X;] imply that [a, x,] ¢ Z end we can easily rule out the possibilities
[e, x x| e 872 and (e, x;] € a2. Thus [a, x,] = a2 2,5 s
Since [a, x 2] = 1, it follows that [a, i]“ =1, fori =1, 2, Easy
calculations show that [a, xlxz] 7 1 implies that [a, x;] ¥ [a, x,], and

[a ’ 1112'] = 1 implies that [a, x]:] = [a, 12] .

Now, since ("1"2) € A, an applicat.ion of a gives [(xlxz)z. x] =1 and
hence (xlxz)2 e Z. Thus, since xl and x2 both belong to Z, [xl, 22]c Z,
It ot X)X, € 8 4 Where o is a Tautomorphism which inverts the elements of
Awithxl,x € S, then [x,, x;] - g3t 21z21. Hence 1 = 0 and x, and X,
commute,

with 2, ¢ 2, 1 = 1,2,

0.17.7) Theorem. Let G be a non-Abelian 3‘2—group whose coset dacomposition

relative to A gives rise to two ]ll-coaeta A.xl and Ax,. Supposs that A 1s
normal in @, C,(x,) = C,(x,) = 2, the centre of G, and A/Z = {Za) 1s
¢yelic of order 4. Then G/A = ( Ax, .u,» is elementary Abelian of order
L. @ has Abelian commu tator subgroup G! = <a231, 3232> which is
i =
Somorphic to Ch x 02. 6/2 <Za, le, sz> is a split extensionof
Dh( - <Za, Zx]) ) by an element Zx, of order 2 whose aotion 1s dsfined
by the inversion of Za and Zx. The following commutator relations hold:
2 2 -1
[a,x’] "az [a,xi:] =], [a,x]] -[_a,x?] ,[_a,xlxa] -5,
s x] =1, 5, ¢2,1-1, 2.

Conversely, every such group has a %—automprphiam a defined by
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€ 4 =€y =t
(satx, 1x2 2)q « g larte "0 %2,
forallzeZ, 051‘3’ 0‘61,8251.
We next turn our attention to the case where CA(xl) # CA(xz), where
1
Ax, and Ax, are the two E—cosets of Ain G. If CA(xZ)C CA(xlx2) then we

have

Cylxy) = CA("],"zz) 2, (%) NGy (x,) = G, (x,)e
This contradiction shows that cA(x?_) is not contained in C,(x)x,), and thus
A= CA(xz) CA(xlxz). Now Z, the centre of G, is equal to CA(xl) ﬂCA(xz) -
CA(xz) N CA(xlxz) and it follows that A/Z is Abelian of order 8. Now A/Z
is non-cyclic since it has two distinct subgroups CA(xl)/Z and CA(xz)/Z

of the same order. Thus we need only consider the cases A/Z = C, x C2 x 02
and A/Z = Ch x C2.

(3.7.8)  Groups of type 22. For this type we assume G/A = <Ax1, Ax2> is
elementary Abelian of order L, A/Z = <Za, Zb, Zc> is elementary Abelian
of order 8. Put_CA(xl) = ( Zs a), CA(xlxz) = <Z, b, c>, and CA(x2) -

<Z, abc> « The relations [a, x22] - [az, x.z] = 1 imply that [a, xz] eCA(x2)
and an application of the Witt identity gives [a, x;] e C (x1). Hence
[a,xa] = 24 of order 2 in Z. Byasimilarargwnent[’_b x:J -z, of order

2inZ (1 = l, 2). Since [b, xlle 1 we have z, = 2, = z. Similarly,

s x,] = 2 ¥ of order 2 in Z and since [es xlxz'_] = 1 we have zl* - 22* -3
In addition, 1 ¥ [be, ] = 22, whence 2z ¥ z'» Finally, [abe, x2] =1

and hence zzzz* =],

Now if [x), %] ¥ 1, (axyx,)a = (axyx, )L, where a 1s the %-automorphism
which inverts A and x,, X, € S,. Thus [xl, x2] - zj and hence [axl, 12] -

2
23 l. Hence we may choose the coset representatives of Ax1 and sz to

commute. Since (xlx,‘,)2 ¢ A, an application of o gives (x._Lx.‘,_,)2 € CA(xl) N
CA(XZ) = Z, and since [xl, xz] ¢ Z, we have x12 P A a.ndx22 € Z. We can

now glve the structure of G.

(3.7.9) Theorem. Let G be a non-Abelian %'?group whose coset decomposition

relative to A gives rise to two %;—cosets Axl and Ax2. Suppose that A is
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normal in G, CA(xl) # CA(xz) and CA(xl) N GA(xz) = 7, the centre of G, with
8/2 = {2a, Tb, Zc) elementary Abelian of order 8. Then 0/A =< Ax), A%,
is elementary Abelian of order L. G is nilpotent of class 2 with elementary
Abelien commtator subgroup G' = { z, z*) of order L. /2 ={2a, b, Zc,

2x), Zx2> 18 elementary Abelian of order 32 and the following relations
hold:

@ x] = [ebe, x] = [b, xyx;] = [es mx;] =15 Lo, x,] = 2,
e, xi] 'Z*vi'ls 2 and [asxz] -zz*; [xl:le = 1.
Conversely, every such group has a 1 automorphigm a %efined by
€. ~C_. ~ -
2c3x1 x, )a-z la%;b 2 3.1 -2

¢ x Tx
j€2 &, 8 =0,1, 1=1,2,3 k=1,2

(zab

for all 2z

(3.7.10) Groups of type 23. For this type we assume that G/A = <Axl, Ax2>

is elementary Abelian of order 4 and A/Z = <Za, Zb> is C, x C), with

e ez andt? ¢z, ILet c,(x) = Lo 2, C,(x,) = {at?, 2 and

CA(xlxz) = <b, Z). Now [az, x2] =1 =[a, x22] tells us that

[, x;] = 2, of order 2 in Z. Since b2, X,] = 1 we have (2, x] = 2,

and since [bz ’1"2] = 1 we have [b2, x]J = zy. Next, easy calculations
give [b, xj] - b? 2", with 2. € 2, 4 = 1, 2. Now the relation 1 = [b, xlx]

gives (v°z,")%s, *‘1 2* 1, which, when combined with (1%, x] = 2, =

[B, xl]z, gives zl = 22 = 2, and hence ['p, x.;] - [b, xz-] of order L.
Finally, if Erl, x2'] # 1 we have (axlxz)a - (ax1x2)°1 and thus

By» %) = 2+ But then [axl, x2] = 2, 2. 1, showing that we may chooss

the coset representatives of AJ& and sz to commute. Again we give a

structure theorem.

{3.7.11) Theorem. Let G be a non-Abelian %-group whose coset decomposition
relative to A gives rise to two %Tcosets Axl and Ax2. Suppose that A is
normal in G, CA(xl) ¥ CA(xZ),‘and CA("l) N CA(xz) = Z, the centre of G, with
AJ7 = <Za, Zb) isomorphic to 62 x Ch. The G/A = (Axl, Ax2> is elementary
Abelian of order L. G has Abelian commutator subgroup G' = <b22> which

is cyclic of order L. G/Z -<Za, Zb, 2x,, Zx2> has order 32 subject to



57

the relations:
[os =] =%, =) = B mm) = Dy %3] - 2
e x] = 1%, %) = D% =] = 5, 5
[__b, x1] - [b, x2] = bzz, and bh'z2 = Zye The elements 8.2, bh, xlz, xzz,
25 Zps and (x_l.x2)2 all 1lie in 2.

Conversely, any such group has a %‘-—automorphism o defined by

( z'“'aib‘.)x:l.e 1x2e 2 Jo = z*-la-ib-jxl— elx2—€ 2 P

forall z inZ, Ogi,e,¢e,81, OgJs 3

A1l that now remains is to onsider the case where A is not normal in Q.

(3.7.12) Lemma. If A is not normal in G then (G : A) = L.

Proof. We first rule out the possibility that (G : A) = 3. Suppose
G=AUAx VU sz. If g is a %‘-automorphism which inverts the elements
of A, we may suppose that x belongs to Su s 8ince otherwlse ax ¢ Sa for
some a ¢ A, and then the %’-automorphism I inverts A, ax, and (a.x)z. Since
Ax end Ax? are )]_-;-cosets by hypothesis, CA(x) = CA(xz) = 7, the centre of
Ge Let A=2Z U Zal\) Za, U Za&,, where we do not exclude the possibility
that a, = & °.
Now x-la.lx does not belong to S, since this would imply that [xz, a1] =1,
Hence x'lalx = n.al*x2 and similarly x'lazx = az*xz and x-lalazx = alz*xz,
for al*, az*, 812* e A. But then 511’)('::2&2‘)":(2 = alz*xz, which implies that
x2 ¢ A, a contradiction.
Next we show that (G : A) > L is not possible. Suppose therefore that
(G :A) =n> L and let Ax, and Ax, be the distinct )]i-cosets. By lemma
3.3.12, the elements of every other coset of A in G normalize A and hence
n=(G:4a)=(G: NG(A))(NG(A) t4) 3 (G ¢ NG(A)) (n -2)., This is a
contradiction for n> L since (G : NG(A)) is an integer greater than 1.
Hence (G : A) = L4 and thus there is a homomorphism of G into a sub-
group of Sh whose kernel K is Core A (the largest normal subgroup of G

contained in A). Now we have ZS KC A< G. If K = Z we obtaln a
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contradiction because then G/Z has order at least 16 and hence |G/K|
camnot divide |Sh| = 2Lj, It now follows that G/K has order 8 and hence

is isomorphic to a Sylow subgroup of S, which is Dh'

Let G/K = <xK, aK>, where xb', ag ¢ K and 2 ixa = x~t (mod X) and
ae NK. It is clear that CA(x) - CA(xB) =7 and K = CA(xa). Consider
(X, x*) = B which is elementwise inverted by a. We have |A| = |B|
and the cosets Ba and Bx are %‘-—cosats. Thus the remalning coset of B
in G is an empty-coset and hence G has already been classified in Section

3.4 This completes our analysis of %-groups.
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CHAPTER 4. MEASURES OF COMMUTATIVITY

SECTION (L.1)  Introduction
We have already defined £(G) for a finite group G and in previous

chapters examined those groups for which 2(G) is large. It was no
surprise to find that such groups are "nearly Abelian" i.e. they have
large Abelian subgroups and small commutator subgroups. Since 2(G) = 1
if and only if G i1s Abelian, we use the size of R(G) as a measure of the
commutativity of G.

In a doctoral thesis at the University of California in 1969,

K. S. Joseph [5] used the function R(G) = k(G)/|G|, where k(G) is the
number of conjugacy classes in G, as a measure of the commutativity of G.
It is clear that R(G) = 1 if and only if G is Abelian and it is easy to
show that R(G) is the probability that a pair of elements chosen at random
in G will commute with each other. In this chapter we show that if 2(G)

is large then R(G) is slso large. For the groups of typesl to 23 we either
calculate R(G) or give a bound for its value.

The connection between £(G) and R(G) is based on the following
intuitive notion. The number £(G) is the maximum proportion of elements
of G which are mapped onto their inverses by an automorphism. I1f g is
the mapping defined by (x)8 = x * for all x in G, then R(G) is the
proportion of pairs of glements (xi, xJ) which satisfy the automorphism
property ("1"3)3 = ("1)3(‘3)3'

SECTION L.2. Notation and Results

We use the following notation and results from Joseph's thesis and

other sources.

. {4.2.1) Definition, ILet {n,|1 =1, ..., v} be the orders of the

conjugacy classes of G. The conjugate type of G = c.t.(G) = (no =1, 0,
ceey nv), where the n, are distinct.

(4.2.2) Definition. Let {mjlj =1, seey u} be the degrees of the
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absolutely irreducible representations of G. The degree type of G

= d,t.(G) = (mo =1y m, eeey mu), where the mj are distinct.

(4.2.3) Known Results

(i) nil (G : Z) and n, < (G s 2), where Z is the centre of G. Also,
ni £ |G'|.
(11) If A is an Abelian normal subgroup of G, Ito [L] has shown that
mJ|(G t A) and Isaacs and Passman [2] have shown that m:j2 s (G : 2).
1 n-1
(111) If c.t.(@) = (1, n) then R(G) ;(1 + TE:_Z')')'

(iv) R(G) > TE:L.T Q-+ lGé:E]' ), with equality if and only if
c.t.(G) = (1, |a']).

(v) R(O) > gy (@ + <BESh.

(vi) Let p denote the smallest prime divisor of |G]. Then R(G) £ %(1 + -(g-f-lﬂ),
with equelity if and only if c.t.(G) = (1, p).

(vii) Suppose d.t.(G) = (1, m). Then
2
! m -1
R(G) = (l + WT ).
(viii) Let p denote the smallest prime divisor of G . Then

2
R(G) 55]-';_1{1 . ’fE'Tlr ), with equality if and only if d.t.(G) = (1, p).

(L.2.4) Definition. G is said to be isoclinic to G, if
(1) Gl/Z(Gl) is isomorphic to Ge/Z(Gz),

(i1) Gl' is isomorphic to G2' , and .

(111) The isomorphisms y and ¢ in (1) and (i1) respedtively can be chosen

8o that [x,, v;]4 = [x;5 7,], for all x, ¥y € & whenever (x) 2(Gy))y =

x, 2(6,) and (3, 2(6;))y = ¥, Z(G,). |
Joseph [5] has shown that if G, and G, sre isoclinic, then

R(G,) = R(G,).

(4.2,5) Result. Isaacs and Passman [3] have shown that if G is




61
finite and eiiher (1) G has a normal Abelian subgroup of index p
or (i1) G/Z has order p3and exponent p,then d.t.(G) = (1, p).
We arenow in a position to calculate R(G), where G is a group
of type 1 to type 23.

SECTION L.3., Values of R(G).

(L.3.1) )%’-—groups. If G has type 1, then G = A U Ax, where A is

Abelian and q = (A : CA(x)) = (A : Z), FElementary calculations give R(G) =

+ 1 . gtl
%qu and hence R(G) > f. Recall that £(6) = %
If G has type 2, then the conjugacy type of G is (1, 2) since

|a'] = 2. Formula 4.2.3. (iv) now gives R(G) = %‘- + 'é?%TI , where k can
2k+1
2' lz:l L

If G has type 3 we use the fact that any two groups of type 3 are
isoclinic and thus R(G) = R(Dh x Dh) - (R(Dh) )2.- %E, since Dh x Dh has

type 3. We recall that £(G) = %.

be any positive integer. Recall 2(G) =

(4.3.2) Z-groups. 1If G has type L, then |G'| = p, e.t.(a) = (1, p)

and G/Z has order pzk. Formula 4.2.3 (iv) now gives R(G) = % + LZkil .
p

If G has type 5, by L.2.5, d.t.(G) = (1, p). Hence, by L4.2.3 (viii),
1 2_ 2 .3
R(G)-Sz(l +¥E;JI’-). Now |G'| = p° or p’ and hence
R(G) = Fl_; (2p2 - 1) or # (p3 + p2 -1).

If G has type 6, then by L.2.5, d.t.(G) = (1, p)e Thus R(G) =
2
1 -1 1l
4 1+ f—TG, ) and hence R(G) > -

(4.3.3) %—gr'oups. Finally, we calculate or give bounds for the value
of R(G) when 2(G) = %

If G has type T, R(G) = 1 and if G has type 8 then G is also
of type 1.

If G has type 9, formula 4.2.3(iv) tells us that R(G) > I%’ If
G has type 10 or type 11, similarly we have R(G) > i%’
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If G has type 12, formula L.2.3 (iv) implies that R(G) 3 %,9:. Agein,
if G has type 13 or type 1L, R(G) 2%19: .

If G has type 15, (G: Z) = 8 inf. Hence dot.(G) = (1, 2) and
R(G) = ,11(1 + TGZ'T ) Hence R(G) = g or % in this case.

Groups of type 16 coincide with groups of type 2.

If G has type 17, 1t is clear that R(G) = 1.

If G has type 18 then G is isoclinie to Dh x D3. Hence R(G) =

R(D,) x R(D,) = 1%

If G has type 19, formula L.2.3 (¥) tells us that R(G) > E?H
If G has type 20 or type 21, then R(G) > i%

Finally, if G has type 22 or type 23, R(G) 3 %ﬁ-

SECTION L.h4. R(G) and £(G).

In this section we mention some connections between R(G) and £(G)
using the results of Joseph. It is clear that R(G) = 1 = 2(G) if and
only if G is Abellan. Next, R(G) = § if end only if (G ¢ 2(G)) = L
if and only if 2(G) = &, and these are the maximum possible values of
R(G) and 2(G) for non-Abelian groups. It is easy to show that £(G) = %
Af and only 1f R(G) = 5 and in this case |G'] = 3 end (6 :2(a))~ 6.

It seems significant that R(G) and £(G) are both "quantised" i.e.
121> R(G) > 7 then |G| = 2 and R(G) = 3 * spger » and if 2£(6) > §
then 2(G) = 32%, where k and q are positive integers. Joseph (personal
communication) has shown that there are no groups G with %’3 < R(G) < %,
showing tﬁe significance of groups of type 17. If Ge Gp, then
R(G) = % is not possible unless p = 2.

The function R(G) has the following properties:

(1) R is multiplicative i.e. R(G, x G,) = R(G; )R(G,).

(11) If H 4s a subgroup of G then R(H) 2 R(G), and if H is normal in
G, R(G/H) 3 R(G). Hence subgroups and factor groups are at least as
Abelian as the group itself.
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(1i1) 1If G1 is isoclinic to G,, then R(Gl) = R(Gz).

We conjecture that analogues of these results hold for the
function £(G), but suspect that the proofs may be quite difficult. If
Aut (G x G,) = Aut (G;) x Aut (G,), then cleady £(G; x G,) = £(G;)e(G,),
but we have been unable to prove the general result even when one of
the groups is Abelian. However, 2(A x B) = 2(A)2(B) when A is Abelian
and B 1s a>%-group. If H is a characteristic subgroup of G, then the
method of proof of 1.2.2 enables us to prove that £(H) > 2(G) and
2(6/H) 3 2(G).

Examination of the structure theorems for > %—groups s -:’;groups ,
and %’-groups glves much evidence for the conjecture that if Gl and 62
are isoclinic then 2.(61) = 2(G,).

Finally, we note the following anomaly. Let S3 be the symmetric
group on 3 symbols and let G be the provduct of two dihedral gfoups of
order 8 with centres amalgamated. Then R(G) = %% > % = R(S3). However,

=2<2.
1@) = g < £ = 2(sy).
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CﬁAPTER 5. C-SETS
SECTION o1 Intreduation.

In Chapter 4 we have shown how 2(G) serves as a measure of
commutativity of a finite group G. However, 2(G) is not always a good

measure of commutativity as the following lemma and example show.

(5.1.1) TLemma. If both |Aut G| and |G|are odd then 2(G) = 1/|G].
Proof. Let a be any automorphism of G and suppose that g ¢ S(q. Since
|Aut G| is odd, o has order 2n+ 1, for some integer n. Now

g = (£)a°™ = ((g)a®)a = gla) = ™
Thus, since |G| is odd, g = 1. Hence |sa| =1 for all ¢ ¢ Aut G and
it follows that %(G) = 1/]q|.

(5.1.2) Example. The following example, due to G. A. Miller [17]

shows that there exists a group of odd order whose automorphism group
also has odd order. ILet G = (a, b, ¢ where a, b, and ¢ have orders
ph, p3 » and p2 respectively and p is an odd prime. In addition,
[c, a] = ap3; [c, 1] = ¢P, and [b, g = bp2. Then G has order p9
and Aut G is also a p-group. Thus by lemma S.1l.1, 2(G) = 1/]G|.

In cases like this 2(G) gives us no information at all about the
commutativity of G. The difficulty lies in the peculiarity of the
automorphism group of G, so in the next section we define a new measure

of comutaﬁivity which does not depend on automorphisms. Recall

tha.ﬁ if Sa = {x € Gl(x)a = x'l, o € Aut G}, then given X x, € Sa’
XX, € Sa if and only if XXy = XX e

SECTION (5.2) Properties of C-Sets.,

(5.2.1) Definition. A C-set S of a finite group G is a subset g
of G which has the following-prpperty:,

given 8ys 8, € S, 8,8, € S if and only if 818, = 8,8;.
(5.2.2,) Definition If S¥ is a L-set of maximum order in G then

b(e) =|s*|/lal.
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Obviously b(G) = 1 if and only if G is Abelian, so we use b(G)
as another measure of the commutativity of G. We note that if
|G| > 1 then b(G) > 1/|G|, since an Abelian subgroup is always a non-
trivial C-set. It is clear that if s ¢ S then {s) <S, where S is
a C-set of G.

(5.2.3) Lemma. If S* 1s a C-set of maximum order in G, then % D Z(a),

the centre of G.

Proof. Consider 5*z(G). If S*D 2(G) then S*Z(G) is clearly a C-set
which conteins S* properly. This contradicts the definition of % and
establishes the lemma.

For the remainder of this section we let G denote a non-Abelian group
in Gp, where p 1s a prime.

(5.2.4) Theorem. If G is a non-Abelian group in Gp’ then b(G) ¢ %]5 s
with equality if and only if (G : 2(G)) = p°.
Proof., ILet s* be a C-set of maximum order in G and let A be a subgroup
of maximum order in S*. For x £ A, if Ax N S¥ is not empty, choose
x € S®,  Now for & € A, ax € S* if and only if ax = xa and thus Ax N\ §* =
(CA(x))x. If CA(x) = A, then (A, x) is a subgroup contained in S*
" having order greater than that of A. Hence |S* () Ax| = |CA(x)| s%IAI.
It follows that
1] € 1a] + {(e 1 &) =2} Zlal - Zlal + 14l @ - D).
Since (G ¢ A) 3 p, it follows that _
15*] «Zlol +jol @ - 1) = |of ?21;-31 :
Thus b(G) ¢ 32-'-2'-1- .
I¢ b(a) = 2p-L , the sbove snslysis shows that (G : A) = p and
(A CA(x)) -pli)'orallxéA. Iet G = <A, x> with 3 ¢ A. It is
clear that C,(x) = C,(x*) = «vu = ¢, P1) = 2(0).

Hence (G : 2(G)) = p2.
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Conversely, if G/Z = (Za, Zx) is non-cyelic of order pz then
<2, &) = A, an Abelian subgroup of index p in G. Then the set
P 1yy.1 2p-1 _ 2p-1
AUN (,(M)et 15 & C-set of order ()]0l end thus b(0) = 3%2- .
This theorem makes an interesting camparison with the following

theorem of Joseph [ 5] ¢
2
If G is a non-Abelian group in Gp then R(G) ¢ P—+—§;1- , with
Y
equality if and only if (G : 2(G)) = p2.
SUCTION 8.3. Groups with b(G) > 3.

We complete this chapter by deriving some results on groups with

b(G) > 3. (The following proof is based on en idea of Dr. T. J. Laffey.)

(5.3.1) Theorem. If b(G) > % then G is a soluble group.
Proof. Iet S be a C-set in G for which |S| > 3|G|. If the elements of
S are involutions then G is soluble by the results of Chapter 1. Assume
therefore that there exists y e S such that y2 Fl.

Now |G| > |[s Uys U y%s] =

Isl + 138l #15%] - Isays| - s n3®s| - 135 n3%s] + s nys n v

Now consider w € S N yS. It is clear that w = ys = gy, with s ¢ S.
It follows that wy = ysy = yw, and hence w € CG(y). Thus SNyS &€ CG(y)
and similarly § Ny% € Cy(y?). Obviousiy lys Ny®sl = Is Nysl. Next,
let we S N yS with wy = yw. It follows that y 2w = wy™2, with y=2 ¢ S.
Hence y-zw € S and thus w e y°S. Finally,

S Nys =5 NysNyss.

Equation 5.3.2 now gives | > 3|S| = |S nys| - |s 0y,
Using the relations [S| > 3|6|, Coly) € Cu(y%) end S A 35 € C4(¥), we find

16,G°)] > F{6], for all y ¢ S and hence [C4(s7)] » 3ol

Recall that if (G : M) = m and Core M = xgd x"lNLx, then G/Core M
is iscmorphic to a subgroup of Sm, the symmetric group on m symbols. Thus

in this case G/Core CG(yz) is isomorphic to a subgroup of S.. Since the

3.
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second derived group of 83 is the identity, it follows that G" & Core cG‘Gz)
for all y € S, where G" is the second derived group of G. Hence if
W= yQS Core CG(yz), then G" & W.
Finally, consider C,(W). Let X = {x Ca(W)lx e s}, X, considered as
a subset of G contains at least half the elements of G since S< X,
Hence X, considered as a subset of G/CG(W) s contains at least half the

elements of G/C4(W). But if x ¢ S then x°

€ CG(W) and thus X consists
of involutions in G/CG(W). Hence as least half the elements of
G/CG(W) are involutions and by the results of Chapter 1, section 1.l,
@' = Cy(W). Thus G" EW N C,(W) = Z(W) the centre of W, It follows
that G" = 1 and so G 1s sluble of derived length at most three.

We proceed to give some results and the partial structure of groups
with b(G) > 2. Since £(G) >  implies b(G) > & we would expect that
many of the methods of Chapter 1 apply, ahd this is indeed the case.

"Let G be a group for which b(G) > %‘- and let S be a C-set of
maximum order in G for which |S| > %IGI » Let A be a subgroup of
meximum order in S. A is clearly Abelian and if s ¢ S\4, then
4s NS = C,(s)e. Obvicusly |C,(s)| = |4s N S| ¢ 3|Al. Hence every

coset of A in G contains elements of S and we write
(5.3.3) G-AUAszu...U As , 8, €5 1<isn,s

n
(5.3.L) and [s] = |a] + ig,zch(si)l-

Let q = (At Cy(s;)), 1 ¢4 ¢n. The condition |S| > 3|6 tells

1™ L

us that
n
1l 1 1
SE.;.EZ iz (2 - E) < '2"o
The inequality(5.3.5) tells us that relative to a suitable ordering of

the cosets of A in G one of the following conditions must apply,
where (G ¢ A) = n.,
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I n=2;
pas n;3,q1-2,i-=2,...,n;
{5.3.6) IITI n3 3, g, 2 3, Gy =2,1=3 see, 03
v n>,3,q2'3:q3'hor5,q152,i=2-4,...,n;

v n;3,q2'q3'3,qi'2,i'h,---,ns

Firstly, if n =2 then G= A UAs and S = A U(CA(S))S. Thus
b(G) = 92:%, where (A : CA(s)) = q. Clearly any non-Abelian group G
with an Abelian subgroup of index 2 has such a C-set and b(G) = 5%}- i

>§-

(5.3.7) Lemma. If (A s CA(S)) = 2, then 82 € A, where s € S.

Proof. 1If 8% ¢ A, then (C,(s), s) is contained in S and has order
greater than that of A, a contradiction.

Similarly, if in Case TIII (A : C,(s,)) = gy 3 3, we have 8, € A
and hence 32 € A, for all s ¢ S.

In 1ike manner in case IV, 82 € Ay, for all s ¢ S.

(5.3.8) lemma. There are no groups G which satisfy condition 5.3.6.IV.

Proof. Let G = AV ASZU Asy oo, where (4 ¢ CA(SZ)) =3 and (A : CA(“3)) -
L4 or 5. Consider the coset ASZBB. It is clear that A5233 - Asz or
(4 s CA(SZSB)) = 2, Now,

CA(BS) - CA(52253) ECA(SZ) 0 CA(ssz), a contradiction, since
(A : CA(SB)) =) or S and (A : CA(sz) N CA(8253)) =3, 6, or 9.

In contrast with groups for which 2(G) > %, there exist groups
which satisfy condition 5.3.6 V and b(G) > %-.

(5.3.9) Theorem. Let G be a group which satisfies condition 5.3.6 V
and b(G) > %—. Then

(1) (G:A)=n=3

(1) G/Z(G) has order 9, and
(111) b(a) = .
Conversely, every such group G satisfying (1) and (1i) has b(G) = g.
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Proof, Suppose that As, and As, are distinct cosets with (4 CA(sl) -
(A CA(SZ)) = 3 and let As be a coset such that (A : CA(s)) = 2, with

815 8, 8 ¢ S, and S & C-set for which |S| > 3{G|. By lemna 5.3.7
52 e A and hence
- 2 .
(5.3.10) CA(sl) = CA(s sl) ECA(s) n CA(ssl).
Clearly Assl ¥ A, and if (A : CA(ssl)) = 2 we contradict 5.3.10.

Thus (A : CA(le)) = 3 and thus Ass, = As,. Similerly,

CA(sslz) 2 CA(ssl) n CA(Sl)s

and thus (4 + C,(ss,%)) = 3. Hence Ass,? = As, or Ass; and each

of these possibilities easily leads to a contradiction. It follows that
(G s A) = 3.

Now 1f G = A U &x U Ax%, G,(x) = C,(x%) = 2(G) and G/Z(G) hes order
9, where Z is the centre of G. The rest of the proof is now obvious and
corresponds to theorem 5.2.4 with p = 3.

It is interesting to note that the groups of theorem 5.3.9 may have
odd order e.g. the non-Abelian group of order 27 rand exponent 3, in
contrast with the situation when 2(G) > %.

Finally we derive a numerical restriction on the value of b(G)
when b(G) > 12'- .

(5.3.11)  Theorem. If b(G) > }2-, then b(G) = 32% for some positive

integer q.

Proof. Our method of proof is to examine the various possibilities

arising from 5.3.6. Possibility I has already been covered, lemma 5.3.8

has eliminated possibility IV, and for possibility V, b(G) = g

If possibility II arises, b(G) = %:L » where (G : A) = n. In case III,

9 = a: CA(Sl)) 23, 9 "2,3¢1¢n. We clain that q, 1s even.

For if q, 1s odd and A3, 8 ¢ S, is a coset for which (A : CA(s)) -2

then CA(sl) - CA(sls 2) 2 CA(sls) 8} CA(s). Examination of the possibilities

shows that (4 CA(sls) n CA(s)) i3 even, a contradietion. Thus
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ngy, +2 q+1
1] = 18] + (0 - 2| alF + Al s [s]/]0] = 5=~

2nq2 2q
where q = Egg « Thus b(G) is always of the form g?&fl and the proof

is completed.
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