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Dear Editor,

I would like to submit the article: ‘RNA sequencing reveals a key role for the long 

non-coding RNA MIAT in regulating the survival of neuroblastoma and 

glioblastoma cells’, by Aikaterini Bountali, Daniel P. Tonge and Mirna Mourtada-

Maarabouni  for consideration for publication as full-length research article in the 

International Journal of Biological Macromolecules. 

There is currently much interest in the roles that long non-coding RNAs 

(lncRNAs) play in physiology and pathology. Several lncRNAs play key, rate-

limiting roles in oncogenesis, and the mechanisms involved are now being 

elucidated. We and others have identified MIAT lncRNA as a key regulator of cell 

survival and apoptosis in different cell types. The expression of MIAT has been 

reported to be up-regulated in a number of cancers including breast cancer and 

its down-regulation has been shown to negatively affect cancer cell survival. 

In this study, we investigated the role of MIAT in the regulation of cell survival, 

apoptosis and migration in neuroblastoma and glioblastoma multiforme. We used 

RNA sequencing to determine the specific transcriptional signatures regulated by 

MIAT and studied the effects of MIAT silencing on the survival of neuroblastoma 

and glioblastoma cells. Our work demonstrates, for the first time, that silencing of 

endogenous MIAT silencing leads to significant changes in the expression of an 
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outstanding number of genes, including genes involved in cancer-related 

processes, such as cell growth and survival, apoptosis, reactive oxygen species 

(ROS) production and migration. Functional studies have confirmed the RNA 

sequencing leads, with our key findings suggesting that MIAT knockdown 

eliminates long-term survival and migration and increases basal apoptosis in 

neuroblastoma and glioblastoma cell lines. Thus the present work demonstrates 

that MIAT lncRNA may constitute a novel therapeutic target for neuroblastoma 

and glioblastoma. Such findings provide essential information leading to the 

exploitation of this new area to improve the therapy of neuroblastoma and 

glioblastoma and other cancers.  We therefore feel that this paper will be of wide 

interest to your readership.  I can confirm that all authors have approved the 

manuscript for submission and that this work is novel and will not be submitted 

elsewhere pending the outcome of the review process.

Yours faithfully

Dr. Mirna Mourtada-Maarabouni



Response to Reviewer

Manuscript ID: IJBIOMAC_2019_480

We thank the Reviewers for their constructive comments and have 
addressed all the points made as detailed below:

Reviewer 1

Point 2

In defining MIAT in the Abstract the authors use “infraction” 
and it should be “infarction”.

This typo has been identified and corrected in the manuscript.

Point 4 

Since multiple cell lines are used the various Figure panels 
should indicate which cell line is being used.

The name of the cell line used is clearly mentioned in each figure 
legend. However, extra labels have been added on top of every figure, 
so that it is easier to distinguish among the different cell lines.

Point 6

The various gap closure experiments are impossible for me to 
decipher in my copy of the manuscript.  The authors should 
prepare some quantitative data to compare effects of MIAT 
knockdown to controls

The requested quantitative data have been added to the corresponding 
figures (Fig. 5, 8, 10).

Point 8

The authors demonstrate the functional pro-oncogenic 
properties of MIAT and these are straightforward and have 
previously been demonstrated for MIAT and many other 
lncRNAs.  However the Discussion initially focuses on ROS based 
on results of their genomic studies.  Therefore they should at 
least determine if MIAT silencing induces ROS and determine if 
antioxidants (eg NAC, GSH) can reverse some of the MIAT 
knockdown responses.



Although the functional effects of MIAT silencing have been previously 
demonstrated in breast cancer, retina cells and leukemia, our work 
shows for the first time that MIAT regulate neuroblastoma and glioma 
cell survival.  Our RNA sequencing results implicate MIAT in the 
regulation of many biological pathway including apoptosis and 
migration. While the present work confirms the role of MIAT in 
regulating survival, apoptosis and migration, validating the role of MIAT 
in the biological pathways identified by RNA sequencing is beyond the 
scope of this paper and is currently being investigated. 

Point 10

The authors should note that ROS is known to decrease Myc via 
epigenetic pathways (Cancer Cell 20, 606, 20?4) and Myc 
triggers a downstream cascade of events leading to 
downregulation of Sp transcription factors (rev. in Cancer Prev 
Res 11, 371, 2018).  ROS-inducing agents and their mechanism 
of action have been extensively investigated (see review) and 
some of the affected genes are probably modulated in this 
study.

We would like to thank the reviewer for drawing our attention to the 
aforementioned articles. They provided useful insights, and after 
reading them, some pieces of relevant information have been added to 
the discussion (highlighted below in bold), accompanied by two 
supplementary tables listing changes in relevant gene/miRNA 
expression (Supplementary tables 2, 3).

“Given that cell migration comprises one of the first steps towards 
tumour metastasis, MIAT downregulation could be a potent therapeutic 
approach towards the prevention of metastasis.

To link the aforementioned observations, it could be speculated 
that MIAT exerts its effects through a ROS-induced Sp 
(Specificity protein) TF (transcription factor) mechanism. Sps 
belong to the Sp/Krüppel-like factor (KLF) family of TFs and 
play important roles in healthy and pathological settings, 
including cancer [52].  Among the various family members, Sp1, 
Sp3 and Sp4 have gained attention, with Sp1 being the subject 
of thorough investigation [53], and importantly all three 
members displayed at least a three-fold decrease upon MIAT 
knockdown in our RNA sequencing, and in addition, numerous 
regulators of Sp1, including various miRNAs (Supplementary 
table 2) and eighteen members of the ZBTB (zing finger and 



BTB) family were significantly deregulated. Since the elevated 
activity of Sp1 has been associated with malignancy and tumour 
progression in various cancers including glioma [53]–[55], it 
could be assumed that its downregulation could prevent this 
effect. In fact, a reasonable mechanism would suggest that 
MIAT knockdown induces an increase in ROS production, which 
in turn induces a ROS-mediated epigenetic downregulation of c-
MYC [56] leading to the downregulation of Sp1 via the 
regulation of miRNAs and ZBTB proteins. Interestingly, the 
downstream effectors of Sp1 include a variety of crucial cancer-
related genes involved in survival, apoptosis and migration, 
such as cMET (tyrosine-protein kinase Met), survivin, Fas, bcl-2, 
VEGFs and MMPs (matrix metallopeptidases) , and notably, a 
variety are deregulated in our study (Supplementary table 3).

In conclusion, the current study suggests that the downregulation of 
MIAT reduces the long-term survival of neuroblastoma and GBM cells, 
while it promotes basal apoptosis, as well as deteriorates the cells’ 
ability to migrate.”



Abstract 

 

Myocardial Infraction Associated Transcript (MIAT) is a subnuclear lncRNA that 

interferes with alternative splicing and is associated with increased risk of various 

heart conditions and nervous system tumours. The current study aims to elucidate 

the role of MIAT in cell survival, apoptosis and migration in neuroblastoma and 

glioblastoma multiforme. To this end, MIAT was silenced by MIAT-specific siRNAs in 

neuroblastoma and glioblastoma cell lines, and RNA sequencing together with a 

series of functional assays were performed. The RNA sequencing has revealed that 

the expression of an outstanding number of genes is altered, including genes 

involved in cancer-related processes, such as cell growth and survival, apoptosis, 

reactive oxygen species (ROS) production and migration. Furthermore, the 

functional studies have confirmed the RNA sequencing leads, with our key findings 

suggesting that MIAT knockdown eliminates long-term survival and migration and 

increases basal apoptosis in neuroblastoma and glioblastoma cell lines. Taken 

together with the recent demonstration of the involvement of MIAT in glioblastoma, 

our observations suggest that MIAT could possess tumour-promoting properties, 

thereby acting as an oncogene, and has the potential to be used as a reliable 

biomarker for neuroblastoma and glioblastoma and be employed for prognostic, 

predictive and, potentially, therapeutic purposes for these cancers. 
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Abstract

Myocardial Infarction Associated Transcript (MIAT) is a subnuclear lncRNA that 
interferes with alternative splicing and is associated with increased risk of various 
heart conditions and nervous system tumours. The current study aims to elucidate 
the role of MIAT in cell survival, apoptosis and migration in neuroblastoma and 
glioblastoma multiforme. To this end, MIAT was silenced by MIAT-specific siRNAs in 
neuroblastoma and glioblastoma cell lines, and RNA sequencing together with a 
series of functional assays were performed. The RNA sequencing has revealed that 
the expression of an outstanding number of genes is altered, including genes 
involved in cancer-related processes, such as cell growth and survival, apoptosis, 
reactive oxygen species (ROS) production and migration. Furthermore, the functional 
studies have confirmed the RNA sequencing leads, with our key findings suggesting 
that MIAT knockdown eliminates long-term survival and migration and increases 
basal apoptosis in neuroblastoma and glioblastoma cell lines. Taken together with 
the recent demonstration of the involvement of MIAT in glioblastoma, our 
observations suggest that MIAT could possess tumour-promoting properties, thereby 
acting as an oncogene, and has the potential to be used as a reliable biomarker for 
neuroblastoma and glioblastoma and be employed for prognostic, predictive and, 
potentially, therapeutic purposes for these cancers.

Key words: MIAT, RNA sequencing, oxidative stress, apoptosis, neuroblastoma, 
glioblastoma
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1. Introduction

Non-coding RNAs (NcRNAs) are RNAs that lack an apparent open reading frame 
(ORF) [1], [2] and can be further divided into two subcategories: small and long 
ncRNAs, based primarily on their sequence length. Long ncRNAs (lncRNAs) are 
RNA molecules of >200nt length with limited or no protein-coding capacity [1], [3]. 
Their expression is elegantly regulated, following a spatiotemporal- and 
environmental stimulus-specific fashion [4], [5]. They are transcribed by RNA 
polymerase II, they are often 5’ capped and 3’ polyadenylated and multi-exonic, as 
well as subject to alternative splicing, resembling mRNAs [3], [6], [7]. The majority of 
lncRNAs display low levels of evolutionary sequence conservation [3], [8] and being 
very heterogeneous molecules, they are classified based on their genomic position 
relative to neighbouring protein-coding genes [e.g. long/large intergenic/intervening 
RNAs (lincRNAs), enhancer RNAs (eRNAs), intronic lncRNAs etc.)] [6], [9]. 

Myocardial Infarction Associated Transcript (MIAT), also known as Gomafu and 
RNCR2 (retinal non-coding RNA 2) is a nuclear lncRNA that is localised across the 
nucleoplasm in a spotted pattern, but these ‘spots’ do not co-localise with any of the 
known sub-nuclear bodies. MIAT is a ~10kb long transcript transcribed from 
chromosome 22q12.1 [10]–[14]. MIAT is mainly expressed in some cells of the fetal 
brain and the adult brain/CNS (including Müller glia, neurons and endothelial cells 
[15]), especially in the retinal tissue. In addition, MIAT is polyadenylated at the 3’ end 
and has at least 4 and 10 alternatively spliced variants for human and mouse, 
respectively [12], [16]. MIAT is thought to participate in pre-mRNA splicing through its 
binding to splicing factor 1 (SF1), although this interaction is not essential for the 
localisation of MIAT [11]. Apart from its physiological roles in a healthy setting, MIAT 
is associated with various heart conditions [10], [16], [17], eye disorders [15], [18], 
brain disorders such as Alzheimer’s  Disease and Schizophrenia [17], [19], as well as 
various cancers, including  CLL (chronic lymphocytic leukaemia) and DLBL (diffuse 
large B-cell lymphoma) [20].

Neuroblastoma (NB) is the most common extracranial paediatric cancer that 
primarily affects very young children and accounts for 7-10% of all paediatric tumours 
[21], [22]. On the other hand, gliomas are the most common malignant tumours of the 
CNS in adults and are neuroectodermal in origin [23]. The most malignant, yet most 
common, glioma is glioblastoma, also known as glioblastoma multiforme (GBM). A 
long list of lncRNAs, including ncRAN (non-coding RNA expressed in aggressive 
neuroblastoma), T-UC 300A, NBAT (neuroblastoma associated transcript 1), 
lncUSMycN, CAI2 (CDKN2A/ARF Intron 2 lncRNA), Paupar, and MALAT1 
(metastasis-associated lung adenocarcinoma transcript 1) have been considered as 
perfect candidates to be involved in neuroblastoma [24]–[28]. Similarly, several 
studies have implicated lncRNAs, such as linc-POU3F3, HOTAIR (Hox transcript 
antisense intergenic RNA) , H19, TUG1 (taurine upregulated gene 1), GAS5 (growth 
arrest-specific 5), NEAT1 (nuclear enrichment abundant transcript 1)  and MALAT1  
in glioma pathogenesis and progression [7], [29]–[31]. 
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Several lines of evidence have already implicated MIAT in glioma pathogenesis and 
progression. High MIAT expression has been associated with prolonged survival in 
GBM patients [32]. Further, the expression of MIAT is upregulated after de-
methylation treatment, a common therapeutic approach, in GBM patients [33]. 
Together with that, MIAT’s prognostic value has been validated for the stratification of 
GBM patients, as part of a six- lncRNA signature [31]–[33]. Nevertheless, our 
knowledge of the mechanisms mediating these effects, as well as of the eligibility of 
this molecule as a biomarker for neuroblastoma and/or glioma, is still lacking, since 
the precise role of MIAT in these systems is far from being thoroughly investigated 
and fully elucidated.  

To this end, the aim of the current study is to unveil the underpinning role of the 
subnuclear body-associated lncRNA MIAT, in cellular proliferation and survival of 
neuroblastoma and glioma cells. Through sequencing of the whole transcriptome, we 
investigated gene expression changes and key molecular pathways modulated in 
response to altered MIAT levels. Furthermore, the role of MIAT in the regulation of 
both short- and long-term cell survival, cell death and cell migration of neuroblastoma 
and glioma cells was investigated.

2. Materials and Methods

2.1 Cell culture and passaging

Three cell lines were used to perform the studies reported herein: the human 
neuroblastoma SH-SY5Y cell line, purchased from the ATCC (ATCC® CRL-2266™), 
the human astrocytoma/GBM 1321N1 cell line and the human GBM T98G cell line, 
kindly donated by Dr. N. Leslie, Heriot-Watt University. SH-SY5Y and 1321N1 were 
cultured using the HyClone™ DMEM/F12 1:1 growth media (GE Healthcare Life 
Sciences), supplemented with 10% heat-inactivated fetal bovine serum (Biosera), 
2μM L-Glutamine, 1μΜ Sodium Pyruvate and 10mg/ml gentamicin solution (Sigma-
Aldrich). For T98G the same recipe was used, supplemented with an extra 10% FBS, 
15% cell-conditioned growth media and 1% MEM non-essential amino acid solution 
(Sigma-Aldrich). All cells were incubated in a humidified incubator at 37°C and 5% 
CO2 and upon reaching ~80% confluence, were washed twice with phosphate 
buffered saline (PBS), trypsinised by adding 3ml of 0.25% Trypsin/EDTA solution 
(Sigma-Aldrich), centrifuged (1500 rpm, 7 minutes) and finally the cell pellet was 
resuspended in the appropriate volume of growth media to acquire a 8x104 cells/ml 
cell density for SH-SY5Y, a 15x104 cells/ml cell density for 1321N1 and T98G. . Cell 
lines were replaced with fresh stocks after a maximum culture period of 2 months.

2.2 MIAT downregulation

RNA interference 
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The experiments were performed using Nucleofection as a method of transfection. 
The siRNAs used included the Silencer® Negative control siRNA, and three different 
MIAT specific siRNAs: MIAT_1 siRNA, MIAT_2 siRNA and MIAT_3 siRNA (QIAGEN) 
targeting different sites of the fifth exon of the full length MIAT transcript [NR_003491 
(10193 bp)] (Supplementary table 1). The Amaxa™ Cell Line Nucleofector™ Kit V 
(LONZA) and the program A-023 were used for the SH-SY5Y cell line, and the 
Ingenio® kit (Mirus) and the programmes T-016 and X-001 were used for the 
1321N1and T98G cell lines, respectively. 1.5x106 (SH-SY5Y) and 1.2 x106 (1321N1 
and T98G) cells were transfected according to the manufacturer’s protocol, and were 
incubated and re-plated at 1x105 and 0.5 x105 cells/ml (SH-SY5Y, and 
1321N1/T98G, respectively). 

LNA GapmeRs

In addition to siRNAs, LNA GapmeRs were used in a series of experiments to 
knockdown MIAT. Antisense LNA GapmeRs are highly potent, single-stranded 
antisense oligonucleotides (ASO) for silencing of lncRNAs in cell cultures. The 
GapmeRs that were used included the Negative control A Antisense LNA GapmeR 
(QIAGEN) and three custom designed GapmeRs (namely 1_1, 2_1, 2_2) (QIAGEN) 
targeting different sites of the full length MIAT transcript [NR_003491 (10193 bp) 
(Supplementary table 1). The conditions of these experiments were identical to those 
used for the siRNA-mediated knockdown.

2.3 RNA extraction

Total RNA was extracted from cells using the Direct-zol™ RNA MiniPrep kit (ZYMO 
RESEARCH, Cat # R2050), according to the manufacturer’s protocol. The 
assessment of RNA quality and the quantity was performed by spectrophotometric 
analysis (NanoDrop™ 1000, ThermoFisher Scientific). Samples with NanoDrop 
260nm/280nm absorbance ratio between1.8-2 were considered of high purity.

2.4 Real-Time PCR

The effects of the RNA interference on MIAT expression levels was quantified by 
Real-Time PCR. To this end, RNA extracted (as described in section 2.3) from 
transfected cells was reverse transcribed into cDNA using the Omniscript® RT kit 
(QIAGEN), 10 μM random primers (Invitrogen) and 10  units/μl RNaseOUT 
recombinant ribonuclease inhibitor (Invitrogen), following the manufacturer’s 
instructions. 

Real-Time PCR was subsequently performed for the synthesized cDNA using the 
SensiFast Probe Hi-ROX kit and TaqMan Gene Expression Assays (Assay code 
Hs00402814_m1 for MIAT Hs99999901_s1 for eukaryotic 18S rRNA, Applied 
Biosystems), according to the manufacturer’s instructions. The ABI Prism 7000 
(Applied Biosystems) was used for the measurement of real-time fluorescence and 
the ABI Prism 7000 SDS software was used to perform the data analysis. Expression 
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comparisons were made relative to the negative (-ve) siRNA transfected cells, using 
the 2-ΔΔCt method.

2.5 RNA Sequencing

Global gene expression changes in response to MIAT silencing were determined by 
sequencing the whole transcriptome. This approach has key advantages over 
equivalent microarray analyses including identification and quantification of unknown 
transcripts and novel splice variants. Total RNA was extracted as detailed above. 
Next-generation sequencing was conducted by the Earlham Institute; sequencing 
libraries were prepared using the NEXTflex directional RNA-Seq Library Kit, and 
following stringent quality control measures, sequenced to a depth of approximately 
30 million reads per sample, 150bp PE read metric, on the HiSeq 4000 platform. 

Raw sequencing data was trimmed of sequencing adapters and low quality reads 
discarded using the Trimgalore package, a wrapper that incorporates CutAdapt and 
FastQC. Quality controlled reads were aligned to Human Genome build (hg19) using 
Tophat, a splice-junction aware mapping utility necessary for the successful mapping 
of any intron-spanning (multi-exon) transcripts, transcripts were assembled using 
Cufflinks (with GTF support) and the number of reads mapping to each feature 
counted and expressed as FPKM using the CuffNorm package. Differentially 
expressed mRNAs were condensed into gene networks representing biological and 
disease processes using iPathwayGuide, with the aim of elucidating key mechanisms 
responsible for mediating the phenotypic effects of gene knockdown.

2.6 Assessment of apoptosis-mediated cell death

At specific time intervals after transfection (48 and 72h) apoptosis was determined by 
assessment of the nuclear morphology using fluorescence microscopy after staining 
with acridine orange (5μg/ml).

2.7 Assessment of long-term cell survival

The long term survival of the cells depends on their ability to form colonies. 
Therefore, siRNA transfected cells were re-plated 48/72h post transfection in 6-well 
plates at optimized densities (500/75/100 cells/ml for SH-SY5Y/1321N1/T98G, 
respectively) and were incubated for two to three weeks. The colonies were stained 
with 1% w/v Crystal Violet (Sigma-Aldrich), air-dried and counted.  

2.8 Assessment of cell migration

The ability of cell migration was assessed by the wound healing assay. Cells were re-
plated in 12-well plates in triplicates at 2x105 and 1x105 cells/ml (SH-SY5Y, and 
1321N1/T98G, respectively), were incubated for 24 and 48h for 1321N1/T98G and 
SH-SY5Y, respectively, and a small linear scratch was introduced. The cells were 
then washed with PBS and fresh media was added to the wells. The cells were 
observed under transmitted light using the EVOS FL Cell Imaging System (Life 
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Technologies) at 0/18/24h and 0/24/48h for 1321N1/T98G and SH-SY5Y, 
respectively, and the gap closure was calculated using the formula [(Pre-
migration)area-(Migration)area/ (Pre-migration)area] x100 for 15 measurements per 
sample. Image analysis was performed using the ImageJ software.

2.9 Statistical Analysis

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software). 
Data are presented as the mean±SEM; the number of observations (n) refers to 
different transfected samples, each transfection being conducted on a separate 
culture of cells.  Comparisons were made using an unpaired Student's t-test or One-
Way ANOVA with Bonferroni's multiple comparison test (MCT). Statistical 
significance was set at the 0.05 level. Differences were considered statistically 
significant when P-value was <0.05 (95% confidence intervals).

3. Results

3.1 RNA Sequencing reveals cancer-related differentially expressed 
pathways and perturbed biological processes following MIAT 
downregulation in SH-SY5Y cells

In order to elucidate the molecular mechanism through which MIAT exerts its 
biological effects, we identified those genes that exhibited the most pronounced 
expression changes in response to MIAT knockdown. Figure 1 presents the 10000 
most variable genes as a heatmap and revealed a large number of genes that are 
deregulated in response to reduced MIAT levels. Moreover, global gene expression 
analysis also revealed that the two MIAT knockdown experiments (MIAT_2 and 
MIAT_4) did not perform equally, with very pronounced effects of the MIAT_2 siRNA 
noted in comparison with almost non-existent effects of the MIAT_4 siRNA, due to 
the fact that MIAT_4 siRNA knockdown did not lead to the desired downregulation 
levels of MIAT in these specific experiments (Supplementary figure 1).  Therefore 
MIAT_4 was excluded from further functional assays.
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Upregulated
 Genes

Downregulated 
Genes

Cancer Hallmark Oncogene/ 
TSG

Significance 
(p-value)

MAPK signalling pathway

DDIT3 

MYC
FAS
GADD45A

DAXX

Sustaining Proliferative Signalling/  
Resisting Cell Death/ Activating Invasion 
and Metastasis
Evading Growth Suppressors
Resisting Cell Death
Evading Growth Suppressors/ Resisting 
Cell Death
Resisting Cell Death

Oncogene/TSG

Oncogene/TSG
Oncogene
Oncogene/TSG

TSG

0.032

EGFR tyrosine kinase inhibitor 
resistance

NRG1
HRAS
AKT3
STAT3

Sustaining Proliferative Signalling
Evading Growth Suppressors
Resisting Cell Death
Sustaining Proliferative Signalling/   
Resisting Cell Death/ Activating Invasion 
and Metastasis/ Inducing Angiogenesis

Oncogene
Oncogene
Oncogene
Oncogene 0.035

TGF-beta signalling pathway

DCN

SMAD5 
TGFBR1/2

Inducing Angiogenesis/ Avoiding Immune 
Destruction
Evading Growth Suppressors
Evading Growth Suppressors

TSG

TSG
TSG

0.046

Phospholipase D signalling 
pathway

HRAS
MAPK3

SYK

Evading Growth Suppressors
Sustaining Proliferative Signalling
Evading Growth Suppressors/ Resisting 
Cell Death

Oncogene
Oncogene
Oncogene/TSG 0.046

Pathway 
name

NOD-like receptor signalling 
pathway

CASP1/8 
IKBKB/E

RELA

VDAC2
XIAP

Resisting Cell Death 
Sustaining Proliferative Signalling/ 
Resisting Cell Death/ Activating Invasion 
and Metastasis

Sustaining Proliferative Signalling/ 
Resisting Cell Death/  Activating Invasion 
and Metastasis

Resisting Cell Death
Resisting Cell Death

TSG
Oncogene

Oncogene

TSG
Oncogene

0.048

cell death in response to oxidative MAPK7 Sustaining Proliferative Signalling/ Oncogene 1.800e-4
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stress

HIF1A

MCL1

Resisting Cell Death/  Activating Invasion 
and Metastasis

Sustaining Proliferative Signalling/  
Inducing Angiogenesis/ Deregulating 
cellular energetics

Resisting Cell Death

Oncogene

Oncogene

regulation of MAPK cascade

ADAM8

FGF1

HRAS
FAS
GADD45A

Inducing Angiogenesis/ Activating 
Invasion and Metastasis
Evading Growth Suppressors/ Inducing 
Angiogenesis
Evading Growth Suppressors
Resisting Cell Death
Evading Growth Suppressors/ Resisting 
Cell Death

Oncogene

Oncogene

Oncogene
Oncogene
Oncogene/TSG

8.400e-4

cellular response to radiation

TP73 

GADD45A 

MME

Resisting Cell Death/  Deregulating 
cellular energetics
Evading Growth Suppressors/ Resisting 
Cell Death
Deregulating cellular energetics/ 
Activating Invasion and Metastasis

TSG

Oncogene/TSG

Oncogene
0.001

tissue migration

FGF1

CDH13

TGFBR1/2

Evading Growth Suppressors/ Inducing 
Angiogenesis
Sustaining Proliferative Signalling 
/Evading Growth Suppressors/
Resisting Cell Death/ Activating Invasion 
and Metastasis

Evading Growth Suppressors

Oncogene

TSG

TSG

0.004
Biological 
Process

cellular response to oxidative 
stress

ETS1

RELA 

Resisting Cell Death/ Activating Invasion 
and Metastasis/ Inducing Angiogenesis

Sustaining Proliferative Signalling/ 
Resisting Cell Death/ Activating Invasion 
and Metastasis

Oncogene

Oncogene

0.008
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MCL1
FUT8

Resisting Cell Death
Activating Invasion and Metastasis

Oncogene
Oncogene

angiogenesis

ADAM2/8 

CDH13

FGF1

HYAL1

TERT
VEGFB

Inducing Angiogenesis/ Activating 
Invasion and Metastasis
Sustaining Proliferative Signalling 
/Evading Growth Suppressors/
Resisting Cell Death/ Activating Invasion 
and Metastasis

Evading Growth Suppressors/ Inducing 
Angiogenesis
Inducing Angiogenesis/ Activating 
Invasion and Metastasis
Enabling Replicative Immortality
Inducing Angiogenesis

Oncogene

TSG

Oncogene

Oncogene

Oncogene
Oncogene

0.012

vascular endothelial growth factor 
production

BRCA1
NDRG2

HIF1A

Evading Growth Suppressors
Evading Growth Suppressors/ Resisting 
Cell Death/ Inducing Angiogenesis/ 
Deregulating cellular energetics

Sustaining Proliferative Signalling/  
Inducing Angiogenesis/ Deregulating 
cellular energetics

TSG
TSG

Oncogene

0.013

regulation of cell adhesion 
mediated by integrin

MUC1
SYK

ITGAV

Activating Invasion and Metastasis
Evading Growth Suppressors/ Resisting 
Cell Death
Sustaining Proliferative Signalling/ 
Activating Invasion and Metastasis

Oncogene
Oncogene/TSG

Oncogene 0.016

regulation of cellular response to 
oxidative stress

MAPK7

FUT8
MCL1

Sustaining Proliferative Signalling/ 
Resisting Cell Death/  Activating Invasion 
and Metastasis

Activating Invasion and Metastasis
Resisting Cell Death

Oncogene

Oncogene
Oncogene

0.021
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447
448
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Table 1. Molecular and biological perturbations in response to MIAT downregulation (via MIAT_2 siRNA)

TSG: tumour suppressor gene; FAS: Fas cell surface death receptor; GADD45A: growth arrest and DNA damage inducible alpha; DDIT3: DNA damage inducible transcript 3; MYC: MYC 
proto-oncogene, bHLH transcription factor; DAXX: death domain associated protein; NRG1: Neuregulin 1; HRAS: HRas Proto-Oncogene, GTPase; AKT3: AKT Serine/Threonine Kinase 3; 
STAT3: Signal Transducer And Activator Of Transcription 3; SMAD5: SMAD Family Member 5; TGFBR1/2: Transforming Growth Factor Beta Receptor 1/2; DCN: Decorin; SYK: Spleen 
Associated Tyrosine Kinase; MAPK3: Mitogen-Activated Protein Kinase 3; XIAP: X-Linked Inhibitor Of Apoptosis; CASP1/8: Caspase 1/8; IKBKB/E: Inhibitor Of Nuclear Factor Kappa B 
Kinase Subunit Beta/Epsilon; RELA: RELA Proto-Oncogene, NF-KB Subunit;  VDAC2: Voltage Dependent Anion Channel 2; HIF1A: Hypoxia Inducible Factor 1 Alpha Subunit; MCL1: BCL2 
Family Apoptosis Regulator; MAPK7: Mitogen-Activated Protein Kinase 7; ADAM2/8: ADAM Metallopeptidase Domain 2/8; FGF1: Fibroblast Growth Factor 1; TP73:  Tumor Protein P73; 
MME: Membrane Metalloendopeptidase; CDH13: Cadherin 13; ETS1: ETS Proto-Oncogene 1, Transcription Factor; FUT8: Fucosyltransferase 8; HYAL1: Hyaluronoglucosaminidase 1; 
TERT: Telomerase Reverse Transcriptase; NDRG2: N-Myc Downstream Regulated 2; BRCA1: BRCA1, DNA Repair Associated; ITGAV: Integrin Subunit Alpha V; MUC1: Mucin 1, Cell 
Surface Associated; LAMA4: Laminin Subunit Alpha 4; BAG5; BCL2 Associated Athanogene 5; MTMR3: myotubularin related protein 3; RAB23: RAB23, Member RAS Oncogene Family

regulation of cell migration

ADAM8

FGF1

NRG1
TERT 

LAMA4

Inducing Angiogenesis/ Activating 
Invasion and Metastasis
Evading Growth Suppressors/ Inducing 
Angiogenesis
Sustaining Proliferative Signalling
Enabling Replicative Immortality
Inducing Angiogenesis/ Activating 
Invasion and Metastasis

Oncogene

Oncogene

Oncogene
Oncogene

Oncogene

0.045

regulation of oxidative stress-
induced intrinsic apoptotic 
signalling pathway

MAPK7 

MCL1
BAG5

Sustaining Proliferative Signalling/ 
Resisting Cell Death/  Activating Invasion 
and Metastasis

Resisting Cell Death
Resisting Cell Death

Oncogene

Oncogene
Oncogene

0.046

autophagosome assembly

MTMR3 

RAB23

Sustaining Proliferative Signalling/ 
Resisting Cell Death/ Activating Invasion 
and Metastasis

Evading Growth Suppressors

Oncogene

Oncogene

0.049
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Given the superior effects of our MIAT_2 knockdown siRNA, we next investigated 
those genes that were deregulated by a factor of at least 1.5 fold (log2 = 0.6) 
between the control and MIAT_2 knockdown samples. In excess of 10,000 genes 
were identified as being deregulated by at least 1.5 fold and thus we elected to 
condense the individual gene changes into common biological processes and 
pathways prior to interpretation.  

 Pathway analysis revealed that a number of cellular processes were affected by the 
downregulation of MIAT. Among them, numerous cancer-related processes were 
significantly affected, including apoptosis-mediated cell death, oxidative stress, cell 
migration, angiogenesis and autophagy. These perturbations were also reflected in 
the corresponding molecular pathways. Eight pathways were found to be significantly 
impacted and of these, five were cancer-related (Table 1). Figure 2 shows the 
expression of genes implicated in each of these five pathways.

3.2. siRNA-mediated MIAT knockdown increases basal apoptosis and 
decreases long-term survival and migration in SH-SY5Y 
neuroblastoma cells  

Given the fact that among the perturbed pathways as revealed by the RNA 
sequencing cell survival- and cell growth-associated pathways, such as the MAPK 
and EGFR pathways, were significantly deregulated, we were prompted to examine 
the effects of MIAT silencing on long-term survival of our cell lines. For this, SH-
SY5Y neuroblastoma cells were transfected with one of three different siRNAs which 
target different MIAT sequences. Of the three MIAT-specific siRNAs used only 
MIAT_2 and MIAT_3 led to the downregulation of MIAT as assessed by qRT-PCR in 
these cells, and therefore MIAT_1 was excluded from this series of functional assays.

The long-term survival of SH-SY5Y cells, as measured by clonogenic assays, was 
decreased due to the downregulation of MIAT. Specifically, the findings show an 
overall significant decrease in the number of colonies for the two of the three MIAT-
specific siRNAs (Figures 3b, 3c) (34.3% for MIAT_2 and 45.8% for MIAT_3). In 
addition, the levels of apoptosis were measured 48h, 72h and 96h after transfection. 
Impressively, the levels of apoptotic cells were immensely increased at all time 
intervals after downregulation by both MIAT-specific siRNAs, especially 72h post-
Nucleofection, with apoptotic cells comprising about 20% of the cell population 
(Figures 3d-3f). To further validate the effect of MIAT downregulation on apoptosis, a 
LNA GapmeR-mediated downregulation approach was adopted. The obtained results 
confirmed the siRNA results, suggesting that the downregulation of MIAT indeed 
induces a 2-fold increase of apoptotic cells for all of the three different GapmeRs 
(namely 1_1, 2_1, 2_2) used in this case, both after 48h and 72h (supplementary 
figure 2).

The observation of an altered morphology of the SH-SY5Y cells under the 
microscope following transfection (Figure 4) led to the assumption that the migrating 
ability of the cells could be as well affected. To this end, this hypothesis was tested 
via the wound healing assay. The results provided confirmation that the migration 
capability of the cells is deteriorated due to the silencing of MIAT at both time points 
tested (24 and 48h) for both MIAT-specific siRNAs. Specifically, there was 
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significantly less gap closure, with the greatest results being observed after 48h for 
MIAT_2 (33% less gap closure) (Figures 5a-c).

3.3 siRNA-mediated MIAT knockdown increases basal apoptosis and 
decreases long-term survival and migration in  glioblastoma cells

The effects of MIAT knockdown on the levels of apoptosis, long-term survival and 
migration observed in the neuroblastoma cells, together with previous literature that 
strongly associated MIAT with cell survival [31]–[33], generated the question whether 
the same effects would be observed in GBM cell lines. To this end, and similar to the 
response of the SH-SY5Y neuroblastoma cells to MIAT downregulation, the 1321N1 
cells displayed a similar response pattern. In terms of long-term survival, the number 
of colonies was significantly decreased for all three MIAT-specific siRNAs (Figures 
6b, 6c) (18.5% for MIAT_1, 23.1% for MIAT_2 and 26.2% for MIAT_3, n=5 
experiments). Following the same procedure as for the SH-SY5Y cells, apoptosis-
mediated cell death was assessed by acridine orange. The acquired results have 
revealed an outstanding increase of apoptosis for all the three siRNAs at all time 
points (48h/72h/96h), especially for MIAT_2. Similarly to SH-SY5Y, the greatest 
effects were observed 72h after the Nucleofection (Figures 6d-6f). In line with the 
confirmation strategy followed for the neuroblastoma cells, GapmeRs were employed 
to confirm the effect on apoptosis. In this case, as well, all the three GapmeRs 
induced the downregulation of MIAT and consequently induced elevated apoptosis 
levels after 48h and 72h (Supplementary figure 3).

Similar to the SH-SY5Y cells, an unexpected change in morphology was observed in 
the 1321N1 cells as well (Figure 7), giving a lead to assess the cells’ migration ability 
using the wound healing assay. The results provided again confirmation that the 
migration capability of the cells is reduced due to the silencing of MIAT at both time 
points tested (18 and 24h) for all the three MIAT-specific siRNAs. Specifically, there 
was significantly less gap closure, with the greatest results being observed after 24h 
for MIAT_2 (~38% less gap closure) and MIAT_3 (~37% less gap closure) (Figures 
8a-c).

Consistent with these observations, the T98G glioblastoma cells also displayed a 
decrease in the colony number for all three MIAT-specific siRNAs (Figures 9b, 9c), 
however this decrease was statistically significant only for MIAT_1 and MIAT_3 
(24.2% for MIAT_1, and 34.9% for MIAT_3, n=4 experiments), while the decrease in 
MIAT_3 was not significant. As far as the apoptosis levels -as assessed by acridine 
orange- are concerned, the results acquired for the T98G cell line are in agreement 
with the other two studied cell lines. More specifically, in this instance the apoptosis 
levels were assessed 48 and 72h post the re-plating of the cells. The results have 
revealed a significant increase of apoptosis for all the three siRNAs at both time 
points. The magnitude of the effect was similar at both time points, ranging from 
~11% to ~13% of apoptotic cells for siRNA-treated cells versus ~4% for the negative 
control (Figures 9d-9f). In addition, validation of the effect of MIAT downregulation on 
apoptosis was performed using MIAT-specific GapmeRs. The results revealed that 
the knockdown of MIAT causes an elevation in the number of apoptotic cells 
comparing to the negative control (2-3-fold) for all the GapmeRs used at both time 
points assessed (48h and 72h) (Supplementary figure 4).
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Following the same rationale we followed for the other two cell lines, we also decided 
to assess the impact of the downregulation of MIAT on the migratory activity of the 
T98G cells. The wound healing assay results have shown that the ability of the cells 
to migrate is affected by the downregulation of MIAT. In detail, their invasive ability is 
decreased following the downregulation of MIAT by all three MIAT-specific siRNAs. 
This effect is again observed at both time points tested (18 and 24h). Specifically, the 
greatest results were observed after 18h for MIAT_2 (~38% less gap closure) 
(Figures 10a-c). 

 

4. Discussion

Due to their versatility, as well as their diverse and elegantly controlled roles as key 
regulators in every level of gene expression, lncRNAs have been recognised as 
essential players both in normal cell physiology and numerous diseases and 
disorders, including a variety of cancers, and are currently being thoroughly 
investigated [34], [35]. lncRNAs are involved, among others, in the regulation of cell 
survival, apoptosis [34], [36] and migration [37]. To this end, the current study aimed 
at unravelling the role of MIAT in the regulation of these processes in neuroblastoma 
and glioblastoma by MIAT downregulation using a neuroblastoma (SH-SY5Y) and 
two GBM (1321N1 and T98G) cell lines, producing a number of interesting 
observations. Interestingly, these include the deregulation of several vital cancer-
related processes as revealed by the elimination of the long-term survival and the 
migratory ability of the cells, as well as their increased basal apoptosis. 

The RNA sequencing results have provided very useful and diverse insights of the 
role of MIAT in a variety of cancer-related procedures. Of special interest was the 
fact that numerous processes associated with oxidative stress-induced cell death, 
such as the regulation of cellular response to oxidative stress and the regulation of 
oxidative stress-induced intrinsic apoptotic signalling pathway, were remarkably 
perturbed in response to MIAT knockdown. It has long been established that cancer 
cells are metabolically active and undergo severe oxidative stress, leading to the 
production of ROS (reactive oxygen species)[38].  ROS have also long been 
speculated to be associated with diverse cellular responses of the cancer cell 
depending on the cell background, ranging from a transient growth arrest and 
adaptation, increase in cellular proliferation, permanent growth arrest or senescence, 
apoptosis, and necrosis [39]. For example, the notorious c-myc, whose expression is 
slightly downregulated in our dataset, has been implicated in the production of ROS 
through oncogenic processes [40]. From a lncRNA perspective, more recent findings 
suggest that an extensive list of lncRNAs, including NEAT1 (nuclear enrichment 
abundant transcript 1), lincRNA-p21, UCA1 (Urothelial Cancer Associated 1), H19, 
and MALAT1 (metastasis-associated lung adenocarcinoma transcript 1),  are 
implicated in oxidative stress and the consequent hypoxia [41]. In turn, a lot of other 
cellular processes are affected by oxidative stress, including angiogenesis, migration 
and metastasis, through different mechanisms [42]. Therefore, it comes as no 
surprise that MIAT seems to be involved in oxidative stress regulation and its 
downstream effects.

Following the lead of our RNA sequencing results, we performed a series of 
functional assays to validate the suggested effects. In fact, as the sequencing reveals 
in one of the most pronounced deregulated pathways, the NOD-like receptor 
signalling pathway, there is a tremendous upregulation of the initiator Caspase 8, 
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together with a significant downregulation of the anti-apoptotic XIAP (X-linked 
inhibitor of apoptosis protein). In line with that, our functional studies’ results show an 
overall tendency of MIAT-specific siRNA knockdown to cause reduced long-term cell 
viability and an impressive multi-fold increase of the apoptosis levels in all the tested 
cell lines. These effects are in agreement with a number of studies looking into the 
role of MIAT in various healthy and unhealthy cells. For example, MIAT knockdown 
leads to reduced viability and increased apoptosis in endothelial cells, Müller glia and 
neurons, causing neurovascular dysfunctions and neurodegenerative disorders [15]. 
In addition, Shen et al.[18] found that the downregulation of MIAT leads to reduced 
survival of lens epithelial cells in cataract patients. In a cancerous context, Sattari et 
al. [20] found that siRNA-mediated suppression led to increased apoptosis in 
malignant B cells in patients with aggressive chronic lymphocytic leukaemia, while a 
recent study has revealed augmented basal apoptosis in various breast cancer cell 
lines in response to MIAT downregulation [43].

Notably, the effect on the long-term survival was not very pronounced in all cases, 
whereas apoptosis was vastly affected. Cancer is a complex disease in which there 
exist numerous pathway cross-talks. As the RNA sequencing suggests, a number of 
cell growth and pro-survival pathways are affected following MIAT downregulation, 
for example the overlapping MAPK, TGF-β, EGFR and Phospholipase D pathways, 
with a lot of crucial genes being perturbed in both directions (HRAS and SMAD 5, for 
example), making it extremely hard to decipher the direction in which the system is 
balancing. Another such example is c-MYC, a transcription factor that transcribes 
several target genes, mainly associated with cell survival and proliferation. However, 
it has also been found that when deregulated, it participates in both the intrinsic 
apoptotic pathway, therefore promoting apoptosis via anti-apoptotic molecule 
suppression (e.g. Bcl-2 family) and pro-apoptotic molecule induction, and the 
extrinsic apoptotic pathway [44], [45]. Additionally, MYC, which was found to be 
slightly downregulated (as part of the perturbed MAPK signalling cascade) following 
MIAT knockdown in SH-SY5Y cells in our RNA sequencing, had been previously 
found to cause  MIAT’s significant upregulation when inhibited in GBMs [46]. This 
suggests a high versatility of these genes’ functions, as well as a great network 
complexity, especially among different tumour types. Whether MIAT or its 
downregulation is somehow involved in these pathways leading to these phenotypes, 
or whether there is a regulatory loop between the two molecules in neuroblastoma 
and GBM cells remains to be investigated.

The next step incorporated the assessment of the effect of MIAT downregulation on 
cell migration, as implicated by the sequencing results. Similarly to our sequencing, 
prior functional annotation had implied that MIAT is associated with EMT-related 
canonical pathways in hepatocellular carcinoma cells [47], including the TGF-β 
pathway, justifying the perturbations in this pathway following the perturbation in 
MIAT expression in our study. Furthermore, consistent with other studies reporting 
that MIAT is involved in cell migration and invasion and its downregulation inhibits 
this effect in other cancer types, for example in NSCLC (non-small-cell lung cancer) 
[48], colorectal cancer [49], clear cell renal cell carcinoma [50] and breast cancer 
[51], our results reveal that the ability of neuroblastoma and GBM cells to migrate is 
as well inhibited to an important extent when MIAT is knocked down. Given that cell 
migration comprises one of the first steps towards tumour metastasis, MIAT 
downregulation could be a potent therapeutic approach towards the prevention of 
metastasis.
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To link the aforementioned observations, it could be speculated that MIAT exerts its 
effects through a ROS-induced SP (Specificity protein) TF (transcription factor) 
mechanism. Sps belong to the Sp/Krüppel-like factor (KLF) family of TFs and play 
important roles in healthy and pathological settings, including cancer [52].  Among 
the various family members, Sp1, Sp3 and Sp4 have gained attention, with Sp1 
being the subject of thorough investigation [53], and importantly all three members 
displayed at least a three-fold decrease upon MIAT knockdown in our RNA 
sequencing, and in addition, numerous regulators of Sp1, including various miRNAs 
(Supplementary table 2) and eighteen members of the ZBTB (zing finger and BTB) 
family were significantly deregulated. Since the elevated activity of Sp1 has been 
associated with malignancy and tumour progression in various cancers including 
glioma [53]–[55], it could be assumed that its downregulation could prevent this 
effect. In fact, a reasonable mechanism would suggest that MIAT knockdown induces 
an increase in ROS production, which in turn induces a ROS-mediated epigenetic 
downregulation of c-MYC [56] leading to the downregulation of Sp1 via the regulation 
of miRNAs and ZBTB proteins. Interestingly, the downstream effectors of Sp1 include 
a variety of crucial cancer-related genes involved in survival, apoptosis and 
migration, such as cMET (tyrosine-protein kinase Met), survivin, Fas, bcl-2, VEGFs 
and MMPs (matrix metallopeptidases) , and notably, a variety are deregulated in our 
study (Supplementary table 3).

In conclusion, the current study suggests that the downregulation of MIAT reduces 
the long-term survival of neuroblastoma and GBM cells, while it promotes basal 
apoptosis, as well as deteriorates the cells’ ability to migrate. These findings highlight 
the crucial role of MIAT in a variety of cancer-promoting processes in neuroblastoma 
and glioblastoma pathogenesis. However, further research is essential to establish 
that MIAT could be used as a biomarker in neuroblastoma and GBM patient samples 
in the future, like numerous other lncRNAs for a variety of tumours [34], [35], [57] and 
open new prognostic, predictive and even therapeutic avenues for patients suffering 
from these tumours.
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Figure 1: Heatmap of Log2 normalised expression values for the 10000 most variable 
genes. Data are Log normalised read counts expressed as Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM). Dark blue colouration represents higher 
expression, whilst light green colouration denotes lower expression for each given gene. Y-
axis clustering identifies groups of genes with similar expression patterns. The key (top left) 
represents the density of data (y) against expression level (x). ; -ve: negative siRNA.

Figure 2. The expression of individual genes implicated in cancer-related pathways: (a) 
MAPK signalling,  (b) EGFR tyrosine kinase inhibitor resistance, (c) TGF-beta signalling, (d) 
Phospholipase D signalling and  (e) NOD-like receptor signalling as determined by 
sequencing and analysis of the whole transcriptome. Data are the difference in expression 
between MIAT_2 knockdown and control cells expressed as a log fold change. Blue bars 
represent downregulated genes, whilst red bars represent upregulated genes.

Figure 3. MIAT-specific downregulation reduces the long-term survival and increases 
the levels of apoptosis of SH-SY5Y. SH-SY5Y cells were transfected with the negative 
siRNA or one of the two MIAT-specific siRNAs using Nucleofection, and were assessed 
48h/72h/96h post-Nucleofection. The relative expression of MIAT was measured by Real-
Time PCR 48h post-transfection, and was lower for the two siRNAs (a); Cells were also 
seeded and incubated (37°C, 5% CO2) for two weeks, and the colonies formed were stained 
with Crystal Violet (1%w/v) and counted. Overall (n=3), MIAT-specific downregulation induced 
by MIAT-specific siRNAs leads to a decrease in the number of colonies formed (b); 
representative illustration of a clonogenic assay (c); The levels of apoptosis are overall (n=3) 
importantly elevated, especially 72h after Nucleofection, reaching even a 3-fold increase 
(d,e); representative illustration of apoptotic cells 72h post-Nucleofection, stained with 
acridine orange and observed using fluorescent microscopy (f). Grey arrows indicate cells 
undergoing apoptosis; -ve: negative siRNA, M2: MIAT_2, M3: MIAT_3. * indicates a p-
value<0.05; ** indicate a p-value<0.01; **** indicate a p-value<0.001, as measured by One-
way ANOVA tests. Data are represented as mean +/- SEM.

Figure 4. MIAT-specific downregulation alters the cellular morphology of SH-SY5Y. SH-
SY5Y cells were transfected with the negative siRNA or one of the three MIAT-specific 
siRNAs using Nucleofection, and were subsequently stained with acridine orange and 
observed using light and fluorescent microscopy. The morphology of the cells is changed 
after transfection. The cells display less elongated, neuronal-like structures, as well as a more 
sparse spatial distribution pattern. Representative illustration of cells treated with the negative 
siRNA (a) and MIAT_2 siRNA (b); -ve: negative siRNA, M2: MIAT_2. 

Figure 5. MIAT-specific downregulation reduces the migrating ability of SH-SY5Y. SH-
SY5Y cells were transfected with the negative siRNA or one of the three MIAT-specific 
siRNAs using Nucleofection, re-plated, and a linear scratch was introduced 48h post re-
plating. The % gap closure of the scratch was measured after 24 and 48h. The migrating 
ability of the cells is overall (n=3) reduced for all three MIAT-specific siRNAs at both time 
points assessed, especially for  MIAT_2 at 48h (a); relative gap closure of MIAT-specific 
siRNAs versus the –ve siRNA (b); representative illustration of a wound healing (“scratch”) 
assay (c); -ve: negative siRNA, M2: MIAT_2, M3: MIAT_3. * indicates a p-value<0.05; ** 
indicate a p-value<0.01; *** indicate a p-value<0.001, as measured by One-way ANOVA 
tests. Data are represented as mean +/- SEM.



Figure 6. MIAT-specific downregulation reduces the long-term survival and increases 
the levels of apoptosis of 1321N1. 1321N1 cells were transfected with the negative siRNA 
or one of the three MIAT-specific siRNAs using Nucleofection, and were assessed 
48h/72h/96h post-Nucleofection The relative expression of MIAT was measured by Real-Time 
PCR 48h post-transfection, and was lower for all three siRNAs (a); Cells were also seeded 
and incubated (37°C, 5% CO2) for two weeks, and the colonies formed were stained with 
Crystal Violet (1%w/v) and counted. Overall (n=5), MIAT-specific downregulation induced by 
MIAT-specific siRNAs leads to a decrease in the number of colonies formed (b); 
representative illustration of a clonogenic assay (c); The levels of apoptosis are overall (n=3) 
importantly elevated, especially 72h after Nucleofection, reaching a 3-fold increase for 
MIAT_2-induced downregulation (d,e); representative illustration of apoptotic cells 72h post-
Nucleofection, stained with acridine orange and observed using fluorescent microscopy (f). 
Grey arrows indicate cells undergoing apoptosis; -ve: negative siRNA, M1: MIAT_1, M2: 
MIAT_2, M3: MIAT_3. * indicates a p-value<0.05; ** indicate a p-value<0.01; ***/**** indicate 
a p-value<0.001, as measured by One-way ANOVA tests. Data are represented as mean +/- 
SEM.

Figure 7. MIAT-specific downregulation alters the cellular morphology of 1321N1. 
1321N1 cells were transfected with the negative siRNA or one of the three MIAT-specific 
siRNAs using Nucleofection, and were subsequently stained with acridine orange and 
observed using light and fluorescent microscopy. The morphology of the cells is changed 
after transfection. The cells display less elongated, neuronal-like structures, as well as a more 
sparse spatial distribution pattern. Representative illustration of cells treated with the negative 
siRNA (a) and MIAT_2 siRNA (b); -ve: negative siRNA, M2: MIAT_2. 

Figure 8. MIAT-specific downregulation reduces the migrating ability of 1321N1. 
1321N1 cells were transfected with the negative siRNA or one of the three MIAT-specific 
siRNAs using Nucleofection, re-plated, and a linear scratch was introduced 24h post re-
plating. The % gap closure of the scratch was measured after 18 and 24h. The migrating 
ability of the cells is overall (n=3) reduced for all three MIAT-specific siRNAs at both time 
points assessed, especially for MIAT_2 and MIAT_3 at 24h (a); relative gap closure of MIAT-
specific siRNAs versus the –ve siRNA (b); representative illustration of a wound healing 
(“scratch”) assay (c); -ve: negative siRNA, M1: MIAT_1, M2: MIAT_2, M3: MIAT_3. * indicates 
a p-value<0.05; ** indicate a p-value<0.01; ***/**** indicate a p-value<0.001, as measured by 
One-way ANOVA tests.

Figure 9. MIAT-specific downregulation reduces the long-term survival and increases 
the levels of apoptosis of T98G. T98G cells were transfected with the negative siRNA or 
one of the three MIAT-specific siRNAs using Nucleofection, re-plated, and assessed 48h/72h 
post re-plating. The relative expression of MIAT was measured by Real-Time PCR 48h post-
transfection, and was lower for all three siRNAs (a); Cells were also seeded and incubated 
(37°C, 5% CO2) for two weeks, and the colonies formed were stained with Crystal Violet 
(1%w/v) and counted. Overall (n=4), MIAT-specific downregulation induced by MIAT-specific 
siRNAs leads to a decrease in the number of colonies formed (b); representative illustration of 
a clonogenic assay (c); The levels of apoptosis are overall (n=4) importantly elevated, 
reaching a 2-fold increase for all three MIAT-specific siRNAs (d, e); representative illustration 
of apoptotic cells 48h post-Nucleofection, stained with acridine orange and observed using 
fluorescent microscopy (f). Grey arrows indicate cells undergoing apoptosis; -ve: negative 
siRNA, M1: MIAT_1, M2: MIAT_2, M3: MIAT_3. * indicates a p-value<0.05; ** indicate a p-
value<0.01; ***/**** indicate a p-value<0.001, as measured by One-way ANOVA tests. Data 
are represented as mean +/- SEM.



Figure 10. MIAT-specific downregulation reduces migrating ability of T98G. T98G cells 
were transfected with the negative siRNA or one of the three MIAT-specific siRNAs using 
Nucleofection, re-plated, and a linear scratch was introduced 24h post re-plating. The % gap 
closure of the scratch was measured after 18 and 24h. The migrating ability of the cells is 
overall (n=3) tremendously reduced for all three MIAT-specific siRNAs at both time points 
assessed, especially for  MIAT_2 (a); relative gap closure of MIAT-specific siRNAs versus the 
–ve siRNA (b); representative illustration of a wound healing (“scratch”) assay (c); -ve: 
negative siRNA, M1: MIAT_1, M2: MIAT_2, M3: MIAT_3. * indicates a p-value<0.05; ** 
indicate a p-value<0.01; ***/**** indicate a p-value<0.001, as measured by One-way ANOVA 
tests. Data are represented as mean +/- SEM.
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Supplementary figure 1. Expression values of MIAT. Data are expressed as Fragments 
Per Kilobase of transcript per Million mapped reads (FPKM) for the full length MIAT transcript 
[NR_003491 (10193 bp)] (a); MIAT sequence coverage in the different samples (b); -ve: 
negative siRNA.
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Supplementary figure 2. LNA GapmeR- mediated MIAT-specific downregulation increases 

the levels of apoptosis of SH-SY5Y. SH-SY5Y cells were transfected with the negative Ctrl 

GapmeR or one of the three MIAT-specific LNA GapmeRs using Nucleofection, and were 

assessed 48h/72h/96h post-Nucleofection. The relative expression of MIAT was measured by 

Real-Time PCR 48h post-transfection, and was lower for all the three GapmeRs (a); Cells were 

also seeded and incubated (37°C, 5% CO2) for two weeks, and the colonies formed were stained 

with Crystal Violet (1%w/v) and counted. Overall (n=3), MIAT-specific downregulation induced by 

MIAT-specific LNA GapmeRs leads to a significant increase of apoptosis levels, especially 72h 

after Nucleofection, reaching even a 2-fold increase (b,c); representative illustration of apoptotic 

cells 72h post-Nucleofection, stained with acridine orange and observed using fluorescent 

microscopy (f). Grey arrows indicate cells undergoing apoptosis; -ve: negative Control LNA 

GapmeR, 1_1, 2_1, 2_2: MIAT-specific LNA GapmeRs. * indicates a p-value<0.05; ** indicate a 

p-value<0.01; **** indicate a p-value<0.001, as measured by One-way ANOVA tests. Data are 

represented as mean +/- SEM. 
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Supplementary figure 3. LNA GapmeR- mediated MIAT-specific downregulation increases 

the levels of apoptosis of 1321N1. 1321N1 cells were transfected with the negative Ctrl 

GapmeR or one of the three MIAT-specific LNA GapmeRs using Nucleofection, and were 

assessed 48h/72h/96h post-Nucleofection. The relative expression of MIAT was measured by 

Real-Time PCR 48h post-transfection, and was lower for all the three GapmeRs (a); Cells were 

also seeded and incubated (37°C, 5% CO2) for two weeks, and the colonies formed were stained 

with Crystal Violet (1%w/v) and counted. Overall (n=3), MIAT-specific downregulation induced by 

MIAT-specific LNA GapmeRs leads to a significant increase of apoptosis levels, especially 72h 

after Nucleofection, reaching even a 2-fold increase (b,c); representative illustration of apoptotic 

cells 72h post-Nucleofection, stained with acridine orange and observed using fluorescent 

microscopy (f). Grey arrows indicate cells undergoing apoptosis; -ve: negative Control LNA 

GapmeR, 1_1, 2_1, 2_2: MIAT-specific LNA GapmeRs. * indicates a p-value<0.05; ** indicate a 

p-value<0.01; **** indicate a p-value<0.001, as measured by One-way ANOVA tests. Data are 

represented as mean +/- SEM. 
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Supplementary figure 4. LNA GapmeR- mediated MIAT-specific downregulation increases 

the levels of apoptosis of T98G. T98G cells were transfected with the negative Ctrl GapmeR or 

one of the three MIAT-specific LNA GapmeRs using Nucleofection, and were assessed 

48h/72h/96h post-Nucleofection. The relative expression of MIAT was measured by Real-Time 

PCR 48h post-transfection, and was lower for all the three GapmeRs (a); Cells were also seeded 

and incubated (37°C, 5% CO2) for two weeks, and the colonies formed were stained with Crystal 

Violet (1%w/v) and counted. Overall (n=3), MIAT-specific downregulation induced by MIAT-

specific LNA GapmeRs leads to a significant increase of apoptosis levels, especially 72h after 

Nucleofection, reaching even a 2-fold increase (b,c); representative illustration of apoptotic cells 

72h post-Nucleofection, stained with acridine orange and observed using fluorescent microscopy 

(f). Grey arrows indicate cells undergoing apoptosis; -ve: negative Control LNA GapmeR, 1_1, 

2_1, 2_2: MIAT-specific LNA GapmeRs. * indicates a p-value<0.05; ** indicate a p-value<0.01; 

**** indicate a p-value<0.001, as measured by One-way ANOVA tests. Data are represented as 

mean +/- SEM. 

 



Supplementary table 3. Sp (Specificity protein) TF- regulated genes with significant (p-value 
<0.05) differential expression upon MIAT knockdown.

Sp1 target Upregulated/ 
Downregulated Pathway/ Process

FAS Downregulated Apoptosis

Bcl-2 Downregulated Apoptosis

BIRC5 Upregulated Survival/ Proliferation

EGFR Downregulated Membrane signalling

FGFR3 Downregulated Membrane signalling

cMET Downregulated Membrane signalling

VEGFA Downregulated Migration/ 
invasion/metastasis

VEGFB Upregulated Migration/ 
invasion/metastasis

MMP9 Upregulated Migration/ 
invasion/metastasis



 

 

 

Supplementary table 1.  MIAT siRNAs and LNA GapmeRs  details 

 

Method Cat #/ ID Name/ Symbol Sequence 

siRNA 

AM4611 -ve N/A 

SI04287423 MIAT_1 N/A 

SI04314919 MIAT_2 N/A 

SI04344158 MIAT_3 N/A 

LNA GapmeRs 

LG00000002 -ve N/A 

LG00188240 1_1 ACGGGTTAGTAATCGA 

LG00188250 2_1 CAGCGTGAATTGATTT 

LG00188251 2_2 TACAATTGGTTAGCTC 

 

 

 



Supplementary table 2. Significantly deregulated miRNAs inhibiting Sp1 upon MIAT knockdown.

miRNA p-value

miR-200b 1.960e-11

miR-200c 1.960e-11

miR-335 0.003

miR-23b 6.761e-9

miR-29b 4.896e-7

miR-29c 4.896e-7

miR-145 2.982e-8

miR-133a 5.354e-5

miR-133b 1.878e-5

miR-137 1.505e-11

miR-223 1.069e-4

miR-330 1.407e-5

miR-375 0.036

miR--429


