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ABSTRACT of the Thesis "Isomorphisms in Switching Classes 
of Graphs" by David Harriesf University of Keele, 1977.

We introduce notation and terminology to investigate 
conditions on a permutation group G sufficient to ensure that 
G fixes a graph in any switching class of graphs that it 
stabilises. We show that cyclic groups, groups of odd orderr 

groups of order ^k+ 2  and all stabilisers of switching classes 
of graphs on an odd number of vertices have this property.
In Chapter 5 we give a necessary and sufficient condition 
for a dihedral group to have this property.

In Chapter'6 we consider switching classes containing 
forests and graphs with a given girth g ^ 5» We give necessary 
and sufficient conditions for the stabilisers of all such 
switching classes to fix graphs in their classes.

Finally we give a brief account of the link between 
strong graphs and switching, and give an example of a class 
of switching classes with doubly transitive stabilisers.
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CHAPTER 1. INTRODUCTION
J. H. Van Lint and J. J* Seidel |33 state the following 

probl'em: "Problem. Give, for all n, a survey of the equivalence 
classes, under; complementation, of all n—graphs.." We may 
rewrite their problem in the following way: Give a survey 
of all switching classes of graphs*

We will present an approach towards the solution of 
this problem.

We shall observe that a switching class may contain a 
graph such that all isomorphic copies of that graph lie outside 
its switching class. We call such graphs representatives 
of their switching classes. We shall also observe that there 
are switching classes that have no representative. We consider 
the problem of characterising switching classes that contain 
representatives and those that do not, from two points of 
view. The first approach concerns the stabiliser group of 
a switching class.

Let G be a permutation group stabilising the switching 
class -£(f) of a graph T. Although every element of 0 occurs 
in the automorphism group of some graph in M 1"), the group 
G does not necessarily fix a graph in the class. If it 
does, we say that G’ is exposable in 'S(r’). We consider the 
following problem: what conditions on G are sufficient to 
ensure that G is exposable in all the switching classes that 
it stabilises? It is implicit in the work of Mallows and 
Sloane t1*] that it is sufficient for G to be cyclic. Further 
known conditions are that G be of odd order, or of order

In Chapters 5 and *+ we present these results and others 
using our methods. Our main result, however, is in Chapter
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5 where we give necessary and sufficient conditions on the 

permutation representation of a dihedral group G such that 

G is exposable in all switching classes that it stabilises.

Our second approach looks at some properties of graphs 
that are preserved under permutation of the vertices and 
that may or may not be preserved by switching. In Example 
3 .8 we give a very simple condition on the number of edges 
of a graph on an even number of vertices to ensure that such 
a graph is a representative. In Chapter 6 we study graphs 
with a given girth and give a complete analysis of switching 
classes containg graphs of girth g^5 and forests.. That 
is, we decide which switching classes, containing a graph 
with the above property, also contain a representative* 
Finally, in Chapter 7, we consider strong graphs. We give 
a brief sketch of the connection between strong graphs and 
switching.

Our aim is to present a general approach for studying 

isomorphisms in switching classes of graphs, which we apply 

to obtain the results mentioned.
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CHAPTER 2. NOTATION AND PRELIMINARY RESULTS

We consider the collection ^ of labelled, undirected 
graphs on n vertices, without loops' and without multiple 
edges. Let T be a graph in We label its vertices
1, 2, ..., n, and call the set of labels C l - {l, 2 , . *., n3.

A graph r in \  is described by its adjacency matrix 
A = A( r ) , whose entries a.] are given by 

f -1, if i and j are adjacent; 
ct;j = ^ 1, if i and j are not adjacent, i ^ j$

C  0, if 1 = J-
Given a permutation TT in X, the symmetric group on A, 

we define tt P to be the labelled graph, such that £ Tf (i) i TT{j)j 
is an edge in TiP if. and only if { i jj is an edge in f .
We say that P  and ttP are isomorphic*. The permutation tt 
is a permutation of the vertices of T and can be represented 
by a permutation matrix P = (p-̂ ) , where

C 1, if TT(j) — i ; 
flJ ^ 0, otherwise.
We note that according to the above definitions, PAP"'

is the adj/acency matrix of r( T, where A is the adjacency
*■ '

matrix of T.
An ¡fnitomornhlsm of a graph T  is a permutation Tf of 

its vertices such that TfT = P. The set of all automorphisms 
of r forms a group denoted by Aut P .

inVrocJ«.«- a/a <S><kjca«iI matrix ~ (ŝ )̂ called a 
«¡uiinh-matrlx. where

r .1 , if k = je = i ;
= < 1, if k i i , and k ^ 1 ;

/ o, if k * J?.
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Let P be a graph on n vertices with adjacency matrix 
A. Then S^ASl' is the adjacency matrix of the graph obtained 
from T by deleting all the edges in P  that are incident 
to the vertex i, and adding edges } i, j] for all vertices 
j not adjacent to vertex 1.

We call the above operation switching V with resrect 
to vertex 1. and denote the graph obtained from T by P  , 
where S; is a switch assoooW u/i-K the switch-matrix S; .

We now establish some simple results to demonstrate the 
partitioning of & into disjoint switching classes of graphs.

Lemma 2.1. Switching is a commutative operation.
Proof. This Lemma is established by observing that switch- 
matrices are diagonal.

A switch with respect to a set of vertices can now be 
defined unambiguously.

A switch s with respect to a set of vertices i. 9 ..., ir

is defined to be the composition of switches s = S\t

We say that i,, ..., ir is the support of s and write 
supp s = {i,, ...» ir} . Note that the switch-matrix S, that 
<, \i , is the diagonal matrix Si, • • • .

Lemma 2.2. Switching is an equivalence relation on .
Proof, (i) We prove that T is switching equivalent to 
itself by noting that sT -  V if and only if supp s - (j> > 

the empty set, or supp s * d  .
(ii) Suppose that T is switching equivalent to V\ then 
$ A(r) $" = Air) for some switch-matrix S. Since S* = I ,
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the identity matrix, we have SA(rw)'S~,= A(P ). Hence T'is 
switching equivalent to T .
(iii) Suppose that T is switching equivalent to P', and 
that f  is switching equivalent to T". Then 
SA (T ) S = A(T') and S‘A(r')S*  ̂ A(f")
for some switch-matrices S and S*. Consequently

s*SA(r>ss* = A(r’).
By (i), (ii) and(iii), switching is an .equivalence relation 
on i  .

We have noted that a switch s fixes a graph P (that is, 
s r = r ) if and only if supp s = (j , or supp s » PI .
When supp s = / , write s = e, ahd when supp s = PI ,
write s ■= e\ Since sa = e for all switches s, we can
state that s V  = s'P if and only if s's = e. or s's * e .
In the latter case write s' = £ , noting that i = ,
and supp s = n \  supp s.

Lemma 2.^. Switching partitions >  into ______ disjoint
classes, called switching classes, each class containing 2**'° 

graphs«
Proof. By Lemma 2*2, switching partitions ^  into disjoint 
classes. There are T  different n x n diagonal matrices 
with diagonal entries 1 or -1. However, it is clear from 
our previous remarks that SA( V )S = S'A(r)S', where S
and S' are switch-matrices, if and only if either S/ = S 

or s' - ~S . Therefore the switching class containing P 
contains different graphs. It is well known that 
l|| : 1 . From the above it follows that switching
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n >)(*-»■)
partitions ^  into 1 disjoint switching classes.

We denote the switching class containing f , by i  (Fj .
The stabiliser of £(r) is the group Stab 5(r) of all 
permutations in ? that permute the members of $ If) among 
themselves; that is,
Stab ¿ i n  = [ tT e l ]  r  e M D  => i* T ‘ 6 M r ) J .

In order to study the stabiliser of a switching class 
further, we must first establish a relationship between 
switches with support in f l and permutations in X .

Lemma 2A . Let P be the permutation matrix corresponding
to rr f I , and let S be the switch-matrix corresponding to
s with supp s a (t,, ir] g  Q ,  Then PSP*1 Is a
switch-matrix corresponding to the switch denoted - tt s tt~*
with supp^ r ..., tt (l^j g  Q, . -
Proof. The proof is clear from the fact that S is the diagonal
matrix with diagonal entries (S),\[, - -1, T $ j ^ r, andJ )

+1 elsewhere.

The following corollary concerns the manipulation of 
switches with permutations.

Corollary 2.5« Let s be a switch with supp s g  CL , and let 
Tf e ^ be expressed as a product of disjoint cycles.
(i) r s if and only If supp s Involves complete cycles 

of tt .
(ii) = s if and only if it consists of even length » 
cycles only, and supp s Involves alternate symbols from each
cycle of ft •
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Proof. Immediate from Lemma 2 ,k ,

Our next result shows that a necessary and sufficient 
condition for a permutation to belong to the stabiliser of 
£(r) is that it maps any one graph in -MfJ to a graph in 
this class.

Lemma 2.6 . Tf P £ 31^ if and only if__ rt  e S jJo M H .
Proof. Suppose that tt T € M r )  . Then for some switch s, 
^ P = s r . Now consider an arbitrary switch s'. Then by 
Lemma 2.*+,

= Trs'-n-'l-rrO « »s'U D  = s* T £ 5(0)
Therefore tj' £ Stab M r )  • The converse is true by < 
definition.

We are now in a position to state the major problem 
studied in this thesis.

Under what 'conditions' does a switching class M r )  
contain a graph r', such that Aut f  -  Stab -S(r) ? We 
shall approach this problem from two points of view.

Our first approach concerns the structure of permutation 
groups. Let G be a subgroup of Stab M P )  . Two 
possibilities arises either G is a subgroup of the automorphism 
group of some graph in -£(f) , or there is no graph in ¿(P) 

fixed by G.

Definition 2J7. Suppose that G is a subgroup of Stab M T )  
We say that G is exposable in M D  if there is a graph T / 
lr M D  _ such that G S  Aut f'. If G is a subgroup of
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Stab 6 { r )  but there is no graph in -5(P) with the above 
property, then we say that G Is hidden in £(P) . A permutation 
group G Is always exposable if It Is exposable In every 
switching class that It stabilises.

Our second approach will concern the structure of graphs.

Definition 2.8. Let P  be a graph In 3(P^ . We say that 
r  Is a representative of 5(P) if Aut V  =■ Stab 5 (P J .

From these two definitions it is clear that Stab M r )  
is exposable in -Mr) if and only if 4 ( D  contains a 
representative.

Example 2.9»

• * *• '

♦U. 3
Graph P

Graph s^P

Figure 1

2 . X

Graph s, T
l*  3

Graph sx V Graph s,P

i x t i

Graph s.ŝ T

v 3 

Graph s.^P

j

Graph s.s^P
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Figure 1 illustrates a complete switching class of graphs 
on four vertices. There are eight graphs in the class, as 
Lemma 2.3 demands. Note that

r = s. r, s, r  - r,
and so on. This is a consequence of the fact that s.ŝ s*. T = f] 
It will be found that ^  , the collection of graphs on four 
vertices, is the disjoint union of eight switching classes.
Six of these classes contain graphs isomorphic to P, a 
further class contains the graph with no edges, called the 
empty graph on four vertices and denoted Nv, and the final 
class contains the complete graph, denoted . The graph 
P is a representative of i>(r) , for if it were not, ¿[r) 
would contain an isomorphic copy of T , different to r .
The graph is also a representative of iiT ) .
Consequently
Stab ¡5\r) = { UV)(2)(3), (1)(23)<V), (IV)(23), l3*Aut f\
In Figure 1 the following pairs of graphs are isomorphic:

s. r a* j s«. r. r s, r j st r » s , p.

For example, let Tt - (l)(23)(lf).

Then Wt hflee. VL*- ve-e'fi cofi,**, 1
-tr u.r') = (,r,

tr ̂ Tr'̂ TTr) = Slr,

„Set^n = s, r,

" T  »„s.s.T,

« r = s, Sj r ,

w T  = r.



10

This is typical of the sort of calculations we do when 
considering isomorphisms in switching classes.

In order to illustrate the smallest example of a switching 
class that contains no representative, we must consider a 
switching class of graphs on six vertices*

Example 2.10»

Graph P Graph s, sf P

Figure 2

Figure 2 illustrates two isomorphic graphs, P  and $,5rp  
that lie in the same switching class. We shall now prove 
that the switching class 3(r) has no representative.

An isomorphism mapping P to s,srP is Tf = (1^)(2)(35X6).
That is, T i r = s,sr P  . The automorphism group of P, is 
Aut T = < <r > , where <r = (1)(26)(35)(If). From
Definition 2.8, if a m  contains a representative, P', then 
<TT, * > £  Aut r ’, since < r r , <r> C  stab ¿ I D .
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Suppose that <r ( s T ) - sP for some switch s. Then,

since <r V - V , we have aS = s, or t . By

Corollary 2.5(ii) * s is impossible since <r contains

a 1-cycle. If „s = s then either both 3 and 5 H e  in 

the Support of s or neither 3 or 5 lie in the support of s. 

Suppose that /iy (s'P) = s'P for some switch s'. Then,

since Tf T = s , v P  , we have s' = s, sf ot ŝ's* ■=■ S,S4*„5*.
In the second case it will be observed that s' does not exist.
In the first case exactly one of 3 and 5 lies in the support 
of s'. We have proved that for all choices of s and s' with 
the above properties, s £ s' and 5 £ s' . Consequently
Hr) contains no representative, and the group G = <it, <r> 
is hidden in « ( n .

7 The final result In this chapter shows that Example 2.10 
is by no means unique.

Lemma 2.11. For all even values of n greater than four. 
there is a switching class of graphs on n vertices, that 
has no representative.
Proof. We give a construction for T, and show that n r )  

contains no representative.
Let P and fl be two isomorphic graphs each on n, vertices. 

The vertices of (7 are labelled 1, ..., n,, where n, ^ 1.
The vertices of Vx are labelled n, + iy ..., 2n, , where 
£<i) = 1 * i « n, ; and i is an isomorphism
mapping C to 7. We now introduce four new vertices 
labelled 1 a ,+ l , 2n.+l-, l/i,*3 and and construct a
graph f1* from P  by defining their adjacencies in the 
following way. Let vertices labelled + i and 2n,+2 be
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adjacent to every vertex in Q. Let JM.+J be adjacent to 
2<\. + l , and Zn. + h- be adjacent to Z L e t  T, a graph on 
n vertices, be the disjoint union of C and P'. (That is,
P  is the graph whose vertex-set is the vertex-set of H and 
P' , and whose edge-set is the edge-set of 17 and fp..) We 
claim that 5 ( n  has the required properties. Clearly n 
is even, and can take any even value greater than four by 
suitable choice of n, , since n = We observe that
< <r y  Q Aut r, where cr = (2n,+1 2n,+-2)(2n,-+3 Sn,-*-1*).
Furthermore, the graph sT is isomorphic to P, where 
s = sJls4l SlA+x , under the isomorphism tt = S(2n,-*1 2n, + 2).
That is, r f P  = s P . We show that < Tr, <r̂  Aut P # 
for any T / £ ¿( P).

By using Corollary 2.5 and noting that both cr and tT 
contain 1-cycles, we see that whenever <rU • n  = s-r, 
the support of s' contains either both of 2n.+ i and 2A.+-Z, 
or neither of them. Whenever Tf(i"P) = s" P  , exactly 
one of + ' and 2A.+2 lies in the support of s". Therefore 

a-y is hidden in 5(rj.

The next three chapters approach the problem from the 
point of view of permutation group structure.
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CHAPTER 3. SOIffi ALWAYS EXPOSABLE PERMUTATION GROUPS

In this chapter we give a necessary and sufficient 
condition on a subgroup G of the stabiliser of a switching 
class, for G to be exposable in the class. We use this 
result to show that certain permutation grpups are always 
exposable, and that certain switching classes contain a 
representative.

Theorem 3.1. A necessary and sufficient condition for a 
permutation group G to be exnosable in a switching: class 
S(T) is that G has an orbit on ¿(D of odd length. 
Proof. Suppose that V, , ..., Cl is an orbit of G on 

, where r is odd. Let su> denote a switch such that
s“ 1 r = n , i = • • • r.

A permutation rr in G permutes the graphs r., r• • * ) 1 f •
Suppose that TT P = sP . Then
•nr F, = Tts1'-1 r = 5*» s r =Tt"J J &  r - (I.
for some J = 1 , ... , r. Put s' - su>. . . Scr). Since r is

odd,
e r r  = , r„5-5- r  = - rf r j

and hence t f U ‘ H  = 5* P. The choice of J' Is Independent 
from the choice of Tf in G, so G fixes s'T, and G is 
exposable in s i n .  Conversely, if G is exposable in 
then G has an orbit on Hr) of length one.

The following lemma and corollary establish properties 
of switching classes that we will use in conjunction with 
Theorem 3.1.



.3.♦.?• Every switching class contains a unique graph 
in which a given labelled vertex Is adjacent to a given set 
of labelled vérifie e *
Proof. No two graphs in a switching class can have the same 
labelled vertex adjacent to the same set of labelled vertices, 
since a non-trivial switch on a graph changes the adjacencies 
of aIX vertices in that graph. Since a switching class 
contains 2(A ° graphs, all possible adjacencies for a given 
labelled vertex must occur.

Corollary ,1.3. Every switching class contains a uninue graph 
in which a given labelled vertex is Isolated. (An isolated 
vertex has no adjacencies.)

Corollary l A . If a permutation group G has an orbit of 
odd length on Q .  then G is always exnosable.
Proof. Let G stabilise M H .  Thèn there is a correspondence 
between an odd orbit 1, ..., r of G on and an orbit of
G on consisting of graphs in which vertices 1, ...,r
are isolated. The number of graphs in J(r) that have 
isolated vertices with labels from the set Jl, ..., r̂  is 
a divisor of r, and therefore odd. These graphs form an 
orbit o f  G on ¿IP) • Theorem 3 .1, G is exposable in 
i(r) , and, since m  was an arbitrary switching class 
stabilised by G, G is always exposable.

Theorem 3*5.- (Seidel [B] ) Every switching c\asi of gr-opKt on 
odd number of vertices contains a representative.
Proof. The stabiliser of a switching class of graphs on an



odd number of vertices, of necessity, has an orbit of odd 
length on O, since 1 A  1 =• nj which is odd. Therefore,
when n is odd, every stabiliser is always exposable by 
Corollary Hence the switching class contains a ,c
representative.

Note. Theorem 3.5 can be proved directly from the definition 
of switching. We proceed to do this, in order to emphasise 
a difference between switching classes of graphs on an odd 
number of vertices and an even number of vertices. On 
switching a graph on an even number of vertices with respect 
to one vertex, the parity of the valency of each vertex is 
changed. Clearly it follows that on switching such a graph 
with respect to an even number of vertices the parity of the 
valency of each vertex remains unchanged, and on switching 
the graph with respect to an odd number of vertices the parity 
of the valency of each vertex is changed. If f  is a graph 
on n vertices where n is even, and k labelled vertices have 
even valency, then those k vertices are either all even 
valent or all odd valent in each graph in ¿(fj, and the 
other Cn-k) vertices are either all odd valent or all even 
valent respectively in each graph in -&(,P).

On switching a graph on an odd number of vertices with 
respect to one vertex, the parity of the valency of each 
vertex, except for the vertex switched, is changed. It 
follows that if r  is a graph on n vertices where n is odd, 
and vertices i,, ..., i* are all the even valent vertices 
of P, then no other graph in has the property that

i, > ...,iK are a11 its even valent vertices. This fact,
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together with the facts that $ ( D  contains 2^  graphs, 
and that no graph can have an odd number of odd valent vertices, 
tells us that any odd set of labelled vertices occur as all 
the even valent vertices of some graph in S(T) . in 
particular there is a unique graph in ¿(T) in which all 
its vertices are even valent. This graph must be a 
representative of ¿(T). We have proved Theorem 3 .5 and 
shown that every switching class of graphs on an odd number 
of vertices contains a 'natural' representative, an Euler 
graph.

The following corollary is a direct consequence of 
Theorem 3 .1 and Corollary 3.*+.

Coro n a r y , 3 .6. A group of odd order is always exnosahle.

We shall be able to strengthen the above result using 
the results of the next chapter.

Corollary 3*7» Let G be a permutation group containing a 
subgroup H that is always exnosable. If the index of H 1n 
G is odd, then G is always exnosable.

Proof. Suppose that G stabilises . Then there is a
graph r  in 5(T) which is fixed by H. The graph T  lies 
in an orbit of G on 3(r) whose length divides the index of 
H in G. The length of this orbit is odd and so G is always 
exposable, by Theorem 3 .1.

Corollary 3»̂ " takes us some way towards proving that 
all cyclic groups G = < trt > are always exposable. It is
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certainly true that if -rr , expressed as a product of disjoint 
cycles, contains an odd length cycle, then G is always 
exposable. It remains to be proved that if tt consists entirely 
of even length cycles then G is always exposable.

Theorem 3.1 suggests another method of deciding whether 
a switching class contains a representative or not. Choose 
a graph property known to be preserved by permutations of 
the vertices, and count the number of graphs in a switching 
class with that property. If the number of such graphs is 
odd, then the switching class contains a representative. 
Generally this approach appears to be rather difficult. We 
have made some progress, however, by choosing the property 
of girth (the length of the shortest circuit in a graph), 
where, for graphs with girth greater than four, either switching 
cannot preserve the girth or, in special caSes, it is very 
easy to count the number of graphs in a switching class with 
a given girth. This analysis will be done in a later chapter.

We end this chapter with an example illustrating this 

approach.

Example 3.8« let T  be a graph on n vertices, where n is 

even. Let s be a switch. A necessary condition that P  

and sr  be isomorphic graphs is that both graphs have the 

same number of edges. The following operation on P  is 

equivalent to switching P with respect to those vertices 

whose labels lie in the support of s. Partition the vertices 

of r  into two sets, V, and , such that the labels of V, 
are all the symbols in supp s and the labels of are all 
the symbols in supp s. Preserve the edges incident to two
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vertices in V, and to two vertices in \  ; cancel all the 
edges incident to a vertex in V, and a vertex in Vx , and 
introduce an edge between each pair of non-adjacent vertices, 
one of which lies in V, and the other in Vx m Clearly, if 
T and sP are isomorphic and Isupp s( = k, it is necessary 
that the number of edges Joining the two sets of vertices,
V, and V* in P, be £k(n-k). Note that, since n is even, 
then k is even. With these restrictions the minimum of 
■Jk(n-k) is (n-2). We have proved that if V has less than 
(n-2) edges then it is a representative, since there is no 
switch s such that sP has the same number of edges as I , 
Finally we note that the structure, and action of the 
stabiliser of on £(r) , is identical with the structure,
and action of the stabiliser of i m  on ¿(nj ; where P c 
is the graph with the same vertex-set as T and two vertices 
are adjacent in Te if and only if they are not adjacent in T.
The graph P ‘ is called the complement of P. Hence any 
graph on n vertices, where n is even, with greater than 
•§n(n-l)-(n-2) edges is also a representative.

We now turn to cyclic permutation groups, and prove 
that they are always exposable.
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CHAPTER k . CYCLIC SUBGROUPS OF STABILISERS

In order to make further progress on the question of 
which subgroups of stabilisers are exposable, we must return 
to the results of Chapter 2. We observe that the graphs in 
f are permuted by switches, by permutations in X  and by 
compositions of these operations, which we call 
switch-permutations. Their totality forms a group W, where 
the law of composition of a switch and a permutation is given 
by Lemma 2 ,k .  Every element w e W is uniquely expressible 
as a switch-permutation w r srr, where s is a switch, 
and tt € X  • Lemma 2.6 tells us that associated with every 
graph r is a group Q of switch-permutations that fixes P. 
That is, Tf r  - i T  if and only if stt is a switch- 
permutation fixing r . We say that the permutation group 
[ Tf e I  ( s Tf € 0 for some switch s] is the group
of permutations associated with Q. If Q is the largest ■ 
subgroup of W fixing P  then clearly Stab &(n) is the 
permutation group associated with Q. In this chapter and 
the next, we consider cyclic and dihedral groups associated 
with subgroups of W and establish conditions under which 
these groups are exposable. This problem resolves itself 
into two parts. It will be made clear shortly that not all 
subgroups of W fix graphs. We establish a necessary and 
sufficient condition on a subgroup of W in order that a 
graph exists fixed by it. Our second problem is to discover 
whether or not its associated permutation group is exposable.

We illustrate these problems in the following example.
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Example *f.l.

»

S'SxSrì-, P.

Figure 3

Let s be the switch s = s, s, Sf 5, , then , V is the 
only graph in J I D  isomorphic to f, «here f is the graph 
illustrated in Figure 3. Also, since Aut P  = < * p y
where * = (l)(28)(37)<*f6)(5) and

P = (13)(2)(»f8)(57)(6), the stabiliser

Stab -&(r) cr ¡3., , where ^ P  = s P  .

Put ja = (15)(28)(3)(lf6)(7), and ^ has the property

that pT = s T .  An analysis, similar to that of Example 
2.10, of the action of ^  and < on T, shows that -¿lrj 

has no representative. In other words the group Q  = ^ s ^ 

fixes T , but the permutation group <*,/>)> associated 

with Q is hidden in -Sir) . However, the group <j' = , y
also fixes V but the permutation group ft)
associated with Q ‘ is exposable, since ^  Aut (s s T)

Finally, the group Q" = < s,*> fixes no graph in 1{T) . '
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in fact Q" fixes no graph in i  , the set of all graphs on 
eight vertices. This is clear from the observation that 
if the pair [l, 5] is an edge or a non-edge in our putative 
graph, maps (l, 5] to a non-edge or an edge
respectively. Hence there is no graph fixed by Q\

Notajbionjf^. We introduce a convenient notation for the 
switch-permutations v * * tt of W. The permutation n  is 
written as a product of disjoint cycles, and a bar is placed 
over each symbol that occurs in supp s. To illustrate, in 
Example *f.l

= Cl5)(28)(3)ft6)(7).
We observe that the action of s.s.s^ on all graphs is 
identical to that of

- C15)(28)(3)(^6)(7).

We now establish a criterion for the existence of a 
graph fixed by a subgroup Q of W.

Theorem. *f.3 » A subgroup Q of W does not fix anv graph in 
$ if and only if some element of Q involves either a 
switch-transposition (Ij) or switch-l-cvdes 
Pro of. In view of the action of permutations and switches 
on graphs, a necessary and sufficient condition for a 
switch-permutation 5-rr to fix a graph T is as follows: 
for all p, q e a  , { p, q] and tr (q)\ are both
edges or both non-edges of r if and only If supp s contains 
both or neither of -n-(p) and -n (q). The construction of a
graph fixed by Q will break down if and only if the stage
is reached that an unordered pair ft ______ , ,y l 1» Jj represents both an
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edge and a non-edge. This will arise if and only if Q 
contains a switch-permutation sty such that supp s contains 
exactly one of i and j and either (1) Tf(i) - ^  _ 1
or (2) TT(i) = i, Tf(j) = j.

Corollary »It» —a_ group Q of swltch-nermutations fix
a graph. If stc and s'rr belong to Q then s' = s or s '   ̂ ?  

Proof. 5 ty £ &  , s' rr £ <2 => s Tf t t s' = s s' e Q,
By Theorem if.3, Si' = e or s s ’ = £ .

We note also that if Q fixes a graph then Q fixes 
exactly 1 graphst where V is the number of orbits of unordered 
pairs £i, j 3 , 1 £ j, in under the action of the
permutation group associated with Q. It is clear from the 
proof of Theorem if.3 that we assign in each orbit one pair 
to be an edge or a non-edge.

Example If.5. Consider the subgroup Q of W generated by 
w s (l*f58)(2763) = S,SjSrs, jA • We calculate

= (ifs,srs,) r (15)(26)(37) ( W .
By Theorem If.3 there exists a graph on 6 bj Q. \\ w\u ^

found that there are exactly 2. different graphs fixed by Q 
since </>> has eight orbits of unordered pairs on SI x f l .

We now apply Theorem *f»3 to subgroups of W whose 
associated permutation groups are cyclic.

Lemma If.6 . Consider the r-cycle cr = (1 ... r) anri the
switch s, with supp s g  f 1, ..., r] . Then
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, ...(r), if Isupp SI is even,(s<r) = 1 _ . _
(Jl) ...(r), if isupp si is odd.

Moreover, if r g 2k, then (s <r)k involves a switch-
transposition (ij) if and only if isupp si is odd.
Proof. Application of the formula

U  <T)"' - S S S . . c ^ ma _(«'-«) •

Definition >.?. (i) A switch s is strongly compatible with
a permutation tt if supp s contains an even number of symbols 
from each cycle of ty ? v/here Tf is expressed as the product 
of disjoint cycles (including 1-cvcles).
(ii) A switch s is compatible with «rt if either s or s Is 
strongly compatible with tt .
(iii) A switch s is .weakly compatible vith permutations rr 
and p  if s is strongly compatible with Tr and compatible. 
but not strongly compatible,vith ̂  . or if s is strongly 
compatible with ja and compatible, but-not strongly compatible, 
with Tt .

Lemma *t.8. A switch s is compatible with a permutation TT 
if and only if srr fixes some graph.

Proof. By Lemma *+.6 , a switch s is compatible with permutation 
■TT if and only if no power of s if contains switch-l-cycles 
of the form (i)(j)... , or switch-transpositions of the form
(ij) . By Theorem ^.3, this condition holds if and only if 
STt fixes some graph.

Lemma *f.9. A switch s is compatible with a permutation of 
if and only if there exists a switch s' such that

STT = S'TfS'j Or 5 Tf = s'TT s'.
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Proof. If sr( ~ s'rfs' then 5 s '^ s ' and clearly
s Is compatible with ri .

Conversely, suppose that s is compatible with TT . We 
suppose, without loss of generality that supp s involves an 
even number of symbols from each cycle of rr . Consider a 
particular cycle of tt , which we write <r = (1 ... r).
If supp s A  supp <r is not empty then it is expressible in 
the form

supp s a supp (T r i 1., . * • j
where 1 ^ i, C • • k . $ r. Let s' be a switch such
that
supp s' A  supp or = i i I

S -
^  i <

l n  > • • h k i
Then
supp 'S' A  supp <r*rf -- i ¡1

V
<  i ¿Z *vn  * \ " • • ■ i M

and so swpp S u pp r = f ¡,, • « •J \ •
We define s' to be the switch whose support is obtained 

by applying the above construction to all the cycles of rf 
that have common symbols with supp s. Then c' $' = < 
and i  Tf = s ' r r s ' , This completes the proof.

Theorem *f.!0. (Mallows and Sloane M )  A cyclic group is 
always exnosable.
Proof. Suppose a cyclic group G stabilises 4 ( n .  if 
G = <Tf> , then there is a switch s such that srr fixes P  . 
By Lemma ^.8, s is compatible with tt . By Lemma *+.9, there 
is a switch s' such that s'rrs' is equal to either sir or 
tit. But then s'rt s' P - P  ? and hence t t(s'P) = P  # 

Thus Tf fixes the graph s' P, and G is exposable in Hr) .

The following result strengthens Corollary 3.6.
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Theorem *t.ll►_ Let G be a permutation group of order 
coptalPlng_an element of order 2~ Then G is B l m * pT » » .  
i^-Egrllcular^ ail groups of order *fk+2 are always exnosable. 
Proof. Let tt in G have order IT, and let H = <rr>. By 
Theorem V.10, H Is always exposable. H has Index 2k+l In G 
so, by Corollary 3.7, G is always exposable. It follows 
that all groups of order l+k+2 are always exposable, from the 
fact that all such groups contain an element of order two.

Theorem V.10 allows us to derive an explicit formula 
or the number, , of switching classes of graphs on n 

vertices, up to isomorphism. That is, we count the number 
of orbits of W on . In this calculation we shall find that 
the number i, is a function of the number of cycles

of a given length in each permutation of 21 , 
and so we state the following definition. See R oW* oa Crl.

Definition V.12. The cycle type of tT e T  is the ordered 
n~tuple a(ri ) — (a, , ««», )> mtura. is expressed as
the product of disjoint cycles, then tt contains at cycles 
of length 1, 1 ^ 1 4 n. Note that X. i = />

*xi

We apply the following well known result of Burnside 
to our case. Let t be the number of orbits of a group G on 
a set X. Let F(g) be the set of fixed points of g e G;
F(g) « f x £ X I g(x) =• x] . Then

t|G[ r See. Biggs fll.
J 3

as the disjoint union of switching classes, 
permutes the switching classes, by Lemma 2.6 . A 

'fixed point' of tt , in its action on the set of all switching
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classes, is a class 5(PJ SUch that 'tr e Stab M r  ) . Denote
the set of all such classes by V, .

$

Theorem lf.13. Mallows and Sloane Df].
r--- -Vl®> ” Mo)

t. = ,
— Tl i*1 a; !

such that n = L
i- 1

la;, where

V U )  = Z  a ‘a ji.j J +  I  i (a4l +
•*<j

M M  = l a ,
fc “  a2‘ *•) *

sgn(x) = 0, if X = 0, sgn(x) = l.
and (l,j) is the highest common factor of i and j, 
Proof. By Burnside's Lemma

in rti = ^  lTT)| .
I ̂  (tt)| may be calculated in the following way. Let aC^f ) 
be the cycle type of n  , then rr lies in the automorphism 
group of 2 graphs, since V(<KtO) is the number of
orbits of Tf on U  x . Whenever rr e Stab i(rj for 
some switching class s t o  , rr lies in the automorphism

_ X(al1Y>) t , .
group of Z graphs in 31H  , by Theorem if. 10 and
Corollary 2.5» Therefore Jfj(Ti)j r ^<“^ ‘0

I * C  n(V<eU*» - Xcutt))) *and t* = 7TT♦ Tr
There are <iA permutations in £  of cycle type

( 8 I j ) r So
>

=  ! 1rr

Ai a(*r))

/

t
= 1

a

^ >i(») — ^(»1 (\ t
^  TT; i#l <*;! ,

.  v ' lV(») -  M « >

-  L . IT; id; tt j * * cf,
*
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Finally, in this chapter, we give a formula for the 
number of graphs up to isomorphism in a switching class.
That is, we count the number of orbits of Stab 3(f) on (̂P)..

Let G c’ Stab 8(P) • By Theorem lf.10 and Burnside's
Lemma, the number of orbits of G on -6(P) is ^  where

t, I
w I. I altri)

Here we regard G as acting on $(r) , and the 'fixed points' 
of elements in G are the graphs in -{(r) fixed by those 
elements. We note that depends only on the cycle
structure of the elements of G. Furthermore, it will be 
observed that for all n there is a switching class of graphs 
on n vertices, denoted , consisting of the representative

and all the labelled complete bipartite graphs on n vertices. 

Since Stab = X  » we have Proved the following
lemma î

Lemma lf.l*f. The number of graphs, up to isomorphism, in £(r)

is
l

ISU MG)| Z 1xlust«». Hr)

(alrr))

Furthermore, Is the number of orbits of Stab U r)

on the switching class
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CHAPTER 5« DIHEDRAL SUBGROUPS OF STABTT.TRKP.q

Our aim in this chapter is to classify the dihedral 
subgroups in H  which are always exposable. We see from 
Example 2.10 that not all dihedral groups are always exposable» 
The dihedral group Stab Sir) is hidden in 5(f) t where 
r is the graph of Figure 2.

How let D be an arbitrary dihedral subgroup of 51 •
Then D is generated by two involutions, <* and p . The following 
lemma applies as a special case.

Lemma 5.1. Suppose that a subgroup G of X  is pererat.pd 
bv two permutations tt and ^ . If G stabilises a switching 
class -Mr) then G is associated with a group Q fjyjnp a 
graph in -Mr) . such that Q is generated by switch- 
permutations stt arid iu for some switch s..
Proof. By Theorem *f.l0, there is a graph P' in -S(f) which 
is fixed by yu"*Tf . So there is a switch s such that

i t r  = s r ,
and the switch-permutations srr and sjj fix P'.

According to Lemma 5*1» in order to study the action of 
the dihedral group D on a switching class which it stabilises, 
we can equivalently study subgroups Q of W that fix a graph, 
where Q is generated by switch-permutations i* and s f .
We next establish a criterion, depending on s, <* and j? for 
the existence of a graph fixed by Q = < S*, * .

Lemma 5*2. Let d, and ft be involutions. There exists a 

graph fixed by Q = < s<x, s f > if and only if s is
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compatible with both o< and ^ .

Proof. If Q f i x e s  a graph then s is compatible with <* an(3 

f  by Lemma if.8 . Conversely, suppose that s is compatible 
with * and ^ . Then, since * and /J are involutions,

-s = /*s = s- (5*3)
We will show the existence of a graph fixed by Q by an 
application of Theorem I+.3. The elements of Q are of the 
form

K J(
U ®0 U p  s*) = (s*)k

where k = 0 or 1, and I = 0,1,2,..., the last expression 
being obtained on applying (5*3). We must show that the 
conditions of Theorem if. 3 for the non-existence of a graph 
do not arise. This is clear when k = 0. Consider next 
an element w = sc<(jj#<) of Q. If the permutation

transposes two symbols then by (5.3) supp s contains 
both or neither of these symbols. Finally, suppose that 

fixes two symbols i and J. If l  = 2m, put
({?<<) (i) = jj, (jJot) (j) x q. Then

o< ip) =• oc (p <x)r'(i) = i ^ r u j  =
and similarly (q) a q. Since s is compatible with o< , 
supp s contains either both or neither of p and q, and hence 
also both or neither of i * (* £ )~(p) and j * U p T C q ) .  

If X ~ 2.^ + i a similar argument applies to the elements
(1) and ~ (j ) which are fixed by p ,

using the hypothesis that s is compatible with f .

Having established our existence criterion for a graph 
fixed by Q, our next problem is to discover the conditions 
under which its associated permutation group D Is exposable.
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Let the switch s be strongly commtible v-ifv,
— h. the__involutlons «, and f> . Then there Is n 
such that

s* = s ' a s ' and s$ ~ s' jt s' . (5.5)
Proof.. By our hypothesis on s, Its support supp s Is a union

of orblts A .....* °f D = <«. ? >  on « .  Choose
from each orbit & r a symbol ir , r = l, t. Then the
switch s' is defined by the support
supp 1' = { i,) , f . I----- - t, m  , 0.1.1,...].
We will show that s' satisfies relations (5.5), in other 
words, that s = * V '  - * > '  . This follows from the
observation that supp 5' consists of precisely one symbol 
from each transposition in e( and in  ̂ whose symbols lie in 
the support of s. For if this is not the case then for some 
ir in supp s' and some integer m,

(jS«c) (i,.) = o t(± r ) or p(ir).
In either case this leads to the conclusion that either <* 
or f> fixes a symbol in A r. This contradicts that s is 
strongly compatible with *. and with p .

Corollary.5.6 . Suppose that the graph T  Is fixed by

Q = <*«. 1 where « and ft are involutions, If a
is strongly compatible with both + and f then there la *

graph r  in__*§(r) which is fixed bv the dihedral
D ~ < * ,

Proof. Apply Lemma putting r  = ^ r.

We must now consider the case where a switch s Is 
weakly compatible with ".and f  . The following examples 
motivate our next lemma.
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Examples 5.7. (1) Consider the switch-involutions
s *  = (1)(2)(3*0(56)(78) and s -  (12) (35) (L6) (7) (8).
Here s is weakly compatible with <* and £ . There exists 
a switch s' such that s = s V  s' and “s (2 r s' jg s', 
(Choose for example supp S' = fl. 3, 5, 7? or
{2, *+, 6, 7 ] . ) By lemma 5.2 there exists a graph f fixed 
by s* and by s(l , and hence also by f  f . The graph s' P  
is fixed by D = < <  O  .

(ii) Put s«< - (12) (3^) (56) (76) (9 10) (11) (12) and
s = (l)(3)(2l+)(5 10)(67)(89)(Ii 12).

Here again s is weakly compatible with «< and j? . There is 
no switch £ ‘ such that s •< = s'«< s' and 's  ̂ - s' |3 s'. 
Again, by Lemma 5»2, there exists a graph P fixed by 5*.
and by i p , but in this case there is no graph in -S(r) fixed 
by D = ^ »

The essential difference between Examples 5.7(i) and (ii) 
lies in the length of the orbits of D on Q  , none of whose 
symbols is fixed by * or by <3 . In Example 5.7(1) the only 
such orbit is {3 , k 9 5, 6} and in Example 5.7(H) the only
such orbit is f 5, 6, 7, 8, 9 , 10J . As the next lemma shows, 
the length of these orbits is crucial to our analysis.

Proof. Suppose first that there is a switch s' such that
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s* = s'* s' and $ £ = s ' (2 s ' . Then s = s'^s'
and 's = s '^ s 1 . The hypothesis allows us to assume,
without loss of generality, that s is strongly compatible 
with * but not with p , and s is strongly compatible with 
p but not with *. Let A  be an orbit of D on Q  none of 
whose symbols is fixed by * or by p , and assume by way of 
contradiction that I & | = 2 + kk for some integer k.
Then * and £ each contain the symbols of A in l+2k 
transpositions. In the case that the support of s involves 
all the symbols of A  , the support of s' must contain exactly 
one symbol from each of those transpositions that occur In oc, 
which is 1-+ 2k symbols in all from A  . However, because 
s = s' p s', the support of s' must contain an even number 
of symbols from . In the case that the support of s' 
involves all the symbols of A , by the same argument applied 
to P and *, the support of s' involves both an odd and an 
even number of symbols from A  . Hence I A  I = Ifk for 
some integer k.

Conversely, we must prove that subject to the condition 
of Lemma 5.8 an appropriate switch s' is constructible. We 
partition the orbits of D on H  into three classes.
(i) Orbits containing a symbol fixed by * ;
(ii) Orbits containing a symbol fixed by p ;
(iii) Orbits none of whose symbols is fixed by * or by p .
The classes are disjoint, for suppose an orbit A  is common 
to class (i) and class (ii). Then it contains a symbol fixed 
by * and a symbol fixed by p , and this contradicts the 
hypothesis that s is weakly compatible with * and (  . Clearly 
orbits cannot be common to classes (i) and (iii) or to 

classes (ii) and (ill). We will now give a construction for
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a suitable switch s' in the case that the length of all 
orbits in class (iii) are multiples of four.

First consider an orbit A  in class (i). Then the 
symbols of A  are involved in, say, k transpositions of 
£ where IAI = 2k, and fixes at least two symbols
of A  . We claim that is a 2k-cycle; for if not, consider 
a symbol i in A  fixed by «< . Every element of D is 
expressible in the form (* P )r or (<* p )* for some integer 
r- If ot̂3 were not a 2k-cycle then, since 
(<*p)r<* (i) = (<*£)r(i), the group D would not act 
transitively on & .  Choose the support of s' from A as 
k alternate symbols from the cycle « j? , so chosen as to include 
the symbol i. We calculate
«.(■ »¡¡fen =
and

= |5(<<|S/ * (1) = )lk'r"(i).
From this we see that *  fixes setwise the support of s '  

from A , and £ maps this support to its complement in A .
By reversing the roles of <* and $ the choice of the 

support of s' from an orbit in class (ii) is considered 
similarly.

Finally, consider an orbit A  in class (iii). Then 
IAI is even, lAl = 2kt say. Choose an arbitrary symbol 
i in Aw • We will show that the sets
{ (4 (3)r(i) I r = 1, ..., k] and {(« f  ) '< (i) ( r : 1,..., kj 
are disjoint and hence exhaust A  . For if not, then there 
integers b and c such that (* j$)fc (i) = ( « ^ / ^ ( i )
giving (£ <* )c b (i) = . i. This implies that u. or ¡3 

fixes a symbol in A , depending on the parity of (c-b).
We have thus proved that is the product of two
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(a) alternate symbols including i in the cycle of * p that 
contains i, and (b) alternate symbols in the other cycle 
of *{1 not including the symbol <*(i). (It is at this stage 
that we require k to be even and hence to be a multiple
of four.) Here we assume that the support of s involves 
all the symbols of &  . The involution £ fixes setwise the 
support of s' from A  and maps this support to its complement 
in A . In the case that the support of § involves all the 
symbols of A  , choose the support of s' in A  to consist of 
(a) alternate symbols including i in the cycle of that 
contains i, and (b) alternate symbols in the other cycle 
of not including the symbol 0(1). The involution «< 
fixes setwise the support of s' from A  and 0 maps this 
support to its complement in A  » as required.

With s' chosen as above it is clear that s'„s' = s
and s'ps' = s', and the proof is complete.

Corollary 5.9. Suroose that the graph P is fixed bv 
0 « K s . s . where and 0 are involutions. If s
is weaklv compatible with and 0 then the dihedral grout) 
p g q< , is exposable in %( V) if and only If every 
orbit of D on A  containing no symbol fixed bv * or bv 0 

has length divisible by four.

It is clear that a dihedral group D - <«*, 0 ,̂ can
stabilise many switching classes. Provided that a switch s 
is chosen compatible with << and 0 , a switching class 
stabilised by D can be constructed by applying Theorem ^.3  

to the group Q generated by the switch-permutations sc< and
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s ^ . Our next result gives a necessary and sufficient 
condition on a dihedral group D in a permutation representation 
to be always exposable.

■Iile..Qrem..5«IP* A— (3Jh.ed.ral.. group D. represented as a permutat.1 r>p 

group on n  , and generated by involutions << Br^  ft , ^  

^lways_expo_sable if and orlv if a t least ore of the f ^ ] n .,fr r 

three conditions is satisfied.

CD At least ore of * and f fixes no symbol in fL .
(2) Some orbit of D contains a symbol fired by t* Rr>ri a 
symbol fixed bv ft .
(3) -°L.anfl—ft. both fix symbols, (ii) The orbits 
containing symbols .fixed by contain no symbols fired bv ft 
(ill) Every orbit, of D, none of whose symbols is fired hY
ol or by |3 has length divisible bv four.

Remark 5.11» Conditions (1 ) and (2) are equivalent to the 
following condition: for any suitable switch s which is 
compatible with <* and with ft , at least one of s and “s is 
strongly compatible with both «< and ft .

Proof of Theorem 5.10* If condition (1) or condition (2) 
holds thenj by Remark 5.11 and Corollary 5.6, the dihedral 
D is always exposable. If condition (3) holds the result 
follows by Corollary 5.9-

Conversely if none of conditions (1) - (3) hold, then 
again by Corollary 5*9 there is a switching class stabilised 
by D in which D is hidden.

We can simplify Theorem 5.10 in the following way.
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Let the dihedral group ;D be hidden In $ ( T )  . By Theorem 
h.ll 1D| Is divisible by four, IDI * 1*, say. let 
D = <*. P> where «. and f  are Involutions. Consider
the dihedral subgroup D' of D, where

D = ^  $ > * » (f* £ i t ^  , where r and t are any
non-negative integers. We claim that D' is hidden in Sir) 
Let 1' = { - * / *  and f  = None of

conditions (1) - (3) of Theorem 5«10 holds for involutions 
** and p' since none of these conditions hold for <x and fS 
Hence D is hidden in implies that D' is hidden in U r).

How let 2t + I be the la rg es t odd divisor of ifk. That is, 
let ifk * <2t+l)2*, where Jl is an integer, 1*2. Define
D' as before with the above restriction on t. Then D' is 
a subgroup of D of order 2*„ We have proved the following 
corollary to Theorem 5 .10.

2'oJ&JJJL£2L£:J.i• hft-PaK be a dihedral rroun of order hlr  ̂* (I]

and let Jtfe_; _ ( 2_t -+1)2* . where t is a non-neratlv. 
and X. is an,integer greater than one. D,u js hidden in th*
swltching,class.J1 r,.)__if and only If all the subrrnrms fy-
of Pi* are hidden in •&(/").

Corol_la.iy_5^11- A,dihedral, group P2<- , represented as a 
permutation group on Cl , and generated by involutions d  
and 0 , can be hidden in a switching class If and only if 
all of the following conditions are satisfied.
(I] Involutions oc and (3 both fix symbols and the orbits 
of P2<- o a U  containing symbols fixed by are disjoint from 
the orbits of Da<-> On Cl containing symbols fixed by j? .
<2) Involutions « and p have at least one ............. ln
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common.
Proof. Condition (1) negates conditions (1) and (2) 0f 
Theorem 5-10. The proof is complete if we can show that 
condition (2) negates condition (3) (iii) of Theorem 5.10.
We must show that there is at least one orbit of D i-. , none 
of whose symbols is fixed by « or by |3 , that has an even 
length not divisible by four. Since the length of each orbit 
of D z*-‘ on a  divides 2 1, condition (2) establishes the 
result.

We note that it may be possible to use the methods of 
this chapter and Chapter b to study groups of different 
structures in their action on switching classes. In 
particular, it should be possible to analyse all two generator 
groups using these methods. The problem with groups having 
three or more generators is that if such a group G is hidden 
in a switching class, every two generator subgroup of G may 
be exposable. It would be very interesting to know if a 
switching class existed, having no representative, and every 
pair of permutations on the stabiliser generating a subgroup 
exposable in the switching class.
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CHAPTEg_6. SWITCJfJ1?Q CLASSES CONTAINING FORESTST AND GRAPHS
OF GIRTH p tf.

In this chapter we analyse all switching classes containing 
forests, and graphs of girth g ^ 5. a forest is a graph 
with no circuits.

Our analysis will reveal all graphs with the above 
property (a) that are representatives of their switching 
classes; (b) that lie in switching classes containing a 
representative; and (c) that lie in switching classes containing 
no representative. We include graphs on an odd number of 
vertices for completeness.

The chapter will be divided into the following sections:
(1) forests, (2) graphs with finite girth g ^ 7, (3) graphs
with girth 6 , and (*0 graphs with girth 5.

Before beginning our analysis we state the following 
definitions and lemmas, and introduce notation that will 
be used throughout the chapter.

Definition_6 .l. The vertices of P  are denoted bv VP. Let
Vi be a subset of.V P , then the vertex-subgraph of r , denoted

Is the graph consisting of the vertices V: and all 
the edges of r that are Incident in T only wjth vertices 
belonrlnp to V; .

A S 5 Ot\ r  » ¿ U rc.$ p<z.c.V ■fc*’ a SuViei-

of 1 vr, \S V aW/'V Vo VL. f 0 1 lo 0 p» r 0 V o/\« ViipA
VT into two sets, VT * V, U V, , where supp s contains
all the labels of V, and supp 's contains all the labels of 
Va- The vertex-subgraphs and are preserved.
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All the edges of P, incident In T with a vertex from V, 
and a vertex from V, , are cancelled. All non-adjacent pairs 
{a, bj, where a e V, , b e V, become edges.

Let r  be a graph with girth g ^ 5 or a forest. We 
analyse the switching class £(r) by considering the 
conditions under which ¿(P) contains a graph P  with the 
same girth as T, or, if P Is a forest, that p  is a forest 
with the same number of components a s p .  Let j p  - p/
and let T P  = T. U V, , where supr s contains all the labels
of vt and supp s contains all the labels of Vl .

* Usi.rg_the above notation and definitions: jf 
there, is an edge [ a., a,? in < V: V  then esrh vertor in 
£Yj — is- adjacent _to exactly one of the vertices a. flnd «. 
where i, ,1 = 1 , 2  and i ^ 1.
Proof. Immediate from the fact that P  and P' contain no 
3-circuits.

Cpr.pl 1 ary. 6 .3 . If .there is an edge in < V; V  , then thpr* 
a_re.no _e_dg.es ,iri_<_Vj>r , where 1, ,1 = 1. 2 and i =£ p  
Proof, The graphs V  and P' contain no 3-circuits and no 
^-circuits.

Corollary 6.*t. No two edges of are Incident
where i = 1 or 2.

Lemma 6,_5. If NV is a vertex-suberanh of P. than at 10ccf 
three vertices of NV are In Vi , where 1 r 1 nr ?.
Proof. The resultant graph, on switching N* with respect 
to any two of its vertices, is a ^-circuit.
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■Lejnma .6 .6 . Let.S_ ard sT be graths with girth g > A. tp 
<.ViXc .has.a .non-adjacent pair of vertices ffl, . a. j i ^

Las, an edge_„_fbt, b ^  . then every other verf-gy ^
■!7_ Pot, adjacent., to, any of fa, , a.., b, . b A  . v, ,
where 1. .1 - 1 , 2 and i i. 1.
Proof. Let c be a vertex of P not adjacent to any of
a, , a4, b, or b» and suppose that vertex c of VP, lies in
Vj. Applying Lemma 6.2 to the vertex-subgraph
^ { a »> ax» k, , , we see that either P  contains the
vertex subgraph N* consisting of the vertices [a(, a, , ba , c]
say, contradicting Lemma 6.5, or, when fa, , b*j are edges
for k = 1 and 2, s V  contains a 5-circuit.

Lemma 6.7» If P  and sT are graphs with girth e 7 r nv 

forests with the same number of components, and 
1 < Isupp sL <_ n-J, then there is either one edgP nr»
edges in the graph. <V,>r V
Proof. By Corollaries 6.3 and 6 .If, we need only consider the 
possibility that there are at least two disjoint edges in 
<V; > r and no edges in < Vj )>r , where i, j - 1, 2, i £  j. 
Since Vj contains at least two vertices, application of 
Lemma 6 .2 leads to a k y 5, or 6-circuit in P.

In the following analysis the complete bipartite graph 
KKf turns up freauently as a vertex-subgraph of significant 
graphs. We define a p-claw to be the graph Kt (> . We admit 
the possibility of a O-claw, which is an isolated vertex.
In diagrams we represent the p-claw as in Figure L(a).
If two vertices are joined by a dotted line, as in Figure lf(b) f1
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(a) (b)
i "vV

(c)

Figure *+

then the presence or absence of an edge between these two 
vertices is irrelevant. The vertex whose distance is one 
from every other vertex in a p-claw is called the centre of 
the p-claw. Figure Me) represents a graph on 2p+1 vertices. 
It contains a p-claw as a vertex-subgraph. Each of the 
non-central vertices of the p-claw is adjacent to at most 
one other vertex of the graph. Each of the remaining p 
vertices of the graph is adjacent to at most one non-central 
vertex of the p-claw. There are no other adjacencies in the 
graph.

CD Forests.
We shall show that Figure 5 represents all the forests 

that are not representatives of their switching classes.
The graph represented in Figure 5(a) is a tree on p, + p* + 2 
vertices, when [l, 2] is an edge, and a forest with two 
components, when fl, 2} is not an edge. In Figure 5(a)

P, + P4 £ 1» ar3d in Figures 5(b) and 5(c), p,+ pt >, 0.
Figure 5(d) represents a forest on 2p+l vertices-, where 

P 2 1*
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Theorem 6.8. A_g wit chi rip class contains distinct fnr^gfg 

F_and__F with the same number of components, if and only 
If F. Is isomorphic to _a. forest represented in Figure <?. 
Furthermore F is Isomorphic to F'.

Proof. Let F be isomorphic to a forest in Figure 5. The 
following switches, with respect to vertices of the graphs 
of Figure 5, correspond to isomorphisms of those graphs: 
in Figures 5(a), 5(b) and 5(c), switch with respect to vertices 
labelled 1 and 2; in Figure 5(d) switch with respect to the 
vertex labelled 1; and in Figures 5(e) and 5(f),. switch with 
respect to the vertices 1, 3, 5, and 7.

Conversely, suppose F and F # are two forests with the 

same number of components and lie in the same switching class. 

Then sF = F' for some switch s* Let I supp s| s k. 

Since F and F' have the same number of edges, the number of 

edges in F with a vertex in Kv,\ and in <X)>F is 

£k(n-k), where fVFl = n. By Lemma 6.7, consideration of 

the following three cases will complete the proof:

(i) 1 < k <  (n-1 ) and <V.>, U has one edge,

(ii) U  k <  (n-1 ) and <V.>, U has no edges, and

(iii) k = 1 .
Let F have c components.

(i) 1 < k < (n-1 ) and < v , > r u <\>r has one edge.

Since F has n-c edges, we have

■Jk(n-k) - n- C-l.

For positive integers n and c and with the above restrictions  

on k, this equation has solutions c r 1 and k = 2 or h 2 

only. Application of Lemma 6.2 yields the three trees of 

Figures 5(a), 5(b) and 5(c).



(ii) 1 k ^ Cn-1) and {  V, U has ro edges.
In this case the applicable equation is

ik(n-k) * n-c.
This equation has solutions, c a l ,  n = 7, and k s 3 or ^  
or c = 2 and k = 2 or n-2.

On considering the eleven unlabelled trees on seven 
vertices, we find that the only ones with the appropriate 
properties are those shown in Figure 5(e) and 5(f).
Turning to forests with two components and supposing without 
loss of generality that k = 2, it is straight forward to 
show that the only forests with the required properties are 
those of Figures 5(a) and 5(c), where the pairs of vertices 
{ I1,. 2} and ¡3 , ^} are non-edges respectively. It will 
be noted that when the pairs [ l y 2\ and [3 , *+] of 
Figure 5(a) and 5(b), respectively, are non-edges then the 
graphs lie in the same family.
(iii) k : 1.
The vertex to be switched has valency i(n-l). By application 
of Lemma 6.2 and Lemma 6A, the i(n-l) vertices not adjacent 
to the vertex to be switched, are either isolated or have 
valency one, and further application of these two lemmas 
yields the family of Figure 5(d).

We have now discovered all forests that are representatives 
of their switching classes; namely every forest not isomorphic 
to one in Figure 5- We consider in more detail the switching 
classes containing a forest in Figure 5 and determine which 
of these classes contain representatives. Since we know the 
answer to this question, quite generally, for graphs on an 
odd number of vertices, we restrict our analysis to forests
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on an even number of vertices.

Theorem 6 .9 . A.switching olass contains a forpat: p Bnrt 
representative if and only If F 1s isnmm-r,M,. tn » f„„.t 
of Figure 5(c) with p, « p, and >VFI >. A .

Proof. We prove first that If F Is not Isomorphic to a forest 
In Figure 5(c) with p, = p, and IVFI » 6 , then the switching 
class containing F has a representative. By Theorem 6 .8  

and Theorem 3.5, we need only consider forests isomorphic to 
those of Figures 5(a), 5(b) and 5(c) where p, + Vx ±s even.
(i) Let F be a forest of Figure 5(a) where the vertices of
F corresponding to those labelled 1 and 2 in 5(a) are adjacent, 
Then sF is a representative of |(F) , where s is a switch 
with respect bo all the p, + 1 vertices of the p, -claw of 
F, since sF has the unique property in j(f) that two 6f 
its vertices have valency p, +  pa +■ l. a similar argument 
holds when vertices 1 and 2 are not adjacent.
(ii) Let F be a forest of Figure 5(b), where the vertices 
of F corresponding to those labelled 3 and b in 5(b) are 
adjacent. Then sF is a representative of ¿(F) , where s
is a switch with respect to vertex 1 and the p, + 1 vertices 
adjacent to vertex 1, since sF has the unique property in 
4 (F) that two of its vertices have valency p, + Pjl * 3 ,
(iii) Let F be a forest of Figure 5(c). We note first that 
if either p, or pt is zero and (3 , is an edge then F is 
Isomorphic to a tree of Figure 5(a). So we suppose that

P, » Px ^ ® ar,c* P« ̂  P* > or if P, or p4 is zero then {3 , 
is a non-edge. In this case we have

s, SlF = (12)(3*f)F,
and no other switch on F is equivalent to an isomorphism of



F. Since pt £ pt, there is no automorphism of F interchanging 
1 and 2, and so Stab 3(f) = Aut(s.F). Therefore s, F
is a representative of -¿(F) .

Conversely, let F be a forest of Figure 5(c) with 
p( = pa and IVFl ^ 6 . Let <r be the involution (12)(35+), 
and let tr be the involution interchanging 1 and 2, 
interchanging all vertices in the two p,-claws of F and fixing 
3 and *f. Then <rF = s, sxF, and rf F = F, and
the dihedral group Da = or, o-rr̂ > is hidden in ¿(F) 
by Corollary 5-9, where Q = < s, st <r , s, s, (Tt* ]> .
Therefore ¿ ( 0  contains no representative.

Theorem 6 .8 can be used to give examples of switching 
classes with trivial stabilisers. The tree T of Figure 6 

has Aut T = $l} . By Theorem 6 .8,T is a representative 
of ^ IT). Hence Stab 5(T) = fl] .

t *

*I
4--------4-
*. r

Figure 6

7

(2) Graphs of finite girth g 7 .

Theorem 6.10. Let T be a graph with finite girth y.
Then ^ (CJ__has no representative If ard only i f  F Is an

8-circuit.
Proof. Example *+.l proves that if ¿(F) contains a
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representative then P is not an 6-circuit. Conversely, 
suppose that P is not an 8-circuit. We will prove that P  
is a representative. We suppose that f and sT both have 
girth g ^ 7, and show a contradiction.

By Lemma 6.7, consideration of the following three cases 
will complete the proof: (i) I supp s) = 1 or n-1 ;
(ii) 2^ Jsupp sj ^ n-2 and <V,>r \J < V ^ r has no edges;
(iii) 2 4 |supp s|4 n-2 and <V,)p u <Vz)p has one edge.
(i) Isupp s| c 1 or n-L.

Since T has a circuit length g >, 7, there are incident edges 
in one of the graphs <V,]>r or ^Vẑ r , contradicting 
Corollary 6 .̂ .
(ii) 2 ^ Isupp si 4 n-2 and there are no edges in 
<V,>n U  O O r .
In this case P  is bipartite and consequently there are no 
odd length circuits in T . Therefore P either has even 
girth g ^ 10 or girth 8 and IVT) > 8. In either case P 
will contain an N* vertex-subgraph, two vertices of which 
will be in ^V,]>r and two in ^V^>r , contradicting Lemma 6.5.
(iii) 2 4 Isupp si ^ n-2 and there is one edge in
<v ,>r v  <v,>p.
Application of Lemma 6.2, Lemma 6.5, and Lemma 6 .6 yields 
a contradiction in this case.

(3 ) Granhs of girth 6 .

In Figure 7(a), P, , Pz and p, are any non-negative
integers.
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Figure 7



Theorem 6.11. A switching class contains distinct Isomorphic
graphs, r .and of girth 6 If and only if r Is isnmnrp.Mn
to a graph of Figure 7»

Proof. Suppose f is isomorphic to a graph of Figure 7.
The following switches with respect to the vertices of the 
graphs of Figure 7 correspond to isomorphisms of those graphs* 
switch vertices 1 and 2 in the graph of Figure 7(a); switch 
vertices 1, 2 and 3 in the graph of Figure 7(d), and switch 
vertices 1, 3, 5 and 7 in the graphs of Figure 7(b), 7(c) 

and 7(e)*
Conversely, let V and P', two distinct isomorphic 

graphs .of girth 6 , lie in the same switching class. Let 
s T = T' and Isupp si = k. By Corollary 6.3 and 
Corollary 6 .*+, consideration of the following two cases will 
complete the proof, (i) <V,^>r U ^Vx >̂r has no edges,
and (ii) <Cva >̂r is the union of disjoint edges and <V,)r 
has no edges.
(i) The graph <V,>P U has no edges implies that
r is bipartite and, since V has girth 6 , 3 ^ k < n-3 .
In the case that k r 3, application of Lemma 6.5 leads to
a graph isomorphic to the graph of Figure 7(d). In the case 
that k = and n ^ 8, application of Lemma 6.5 yields graphs 
isomorphic to those of Figures 7(b), 7(c) and 7(e). The 
case that 5 4 k ( n-5  leads to a contradiction,as application 
of Lemma 6.5 gives a graph containing a ^-circuit.
(ii) The graph is the union of disjoint edges and
<V,)>r has no edges implies that k = |V, J - Isupp s| = 2 
since, by Lemmas 6.5 and 6.6, if k ̂  3 then P contains a 
lf-circuit or a 5-circuit. It follows immediately that P is 

isomorphic to the graph of Figure 7(a)..
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Theorem 6.12. Let ^ be a graph with Firth 6 . Then 
has no representative If and only if T Is Isomorphic to 
the grarh of Figure 7(b) or 7(e).
Proof.. Let T be a graph isomorphic to the graph of Figure 7(b). 
Switching with respect to the vertices 1, 3» 5 and 7 of 
Figure 7(b) corresponds to an isomorphism cr =• (13)(26)(57)
of the graph, and the involution tt = (^8)(57) is an
automorphism of this graph. The group <cr , cm> is hidden 
in its switching class. Similarly the group ^<r', 
where <r' = (26)(W(9 10) and i t ' = (13) ( W  (57) (9 10),
is hidden in the switching class of the graph of Figure 7(a)»

Conversely, we show that if P  is a graph isomorphic 
to the graph of Figure 7(a), then ,̂(r) contains a 
representative. Let at least one of the integers pt , p, and 
pa be positive. Let s be a switch with respect to U« vert;«.« 
in P corresponding to the vertex in Figure 7(a) labelled 1, 
arid all the vertices adjacent to vertex 1. Then sP is a 
representative of -£(r) since s V  is the unique graph in 
its switching class that has two vertices with valency n-1 .
Now let p s px = p, = 0, then f is a 6-circuit and 5(r) has 
the representative K* u Kx Kt.

By Theorem 6.11 all other graphs of girth 6 are 
representatives, except those of Figure 7(c) and 7(d), which 
have an odd number of vertices.
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(if). Graphs of girth 5.
6 •
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(f) (g)

Figure 8

In Figure 8(a), p, , and p, are any non-negative 
integers.

» A, switching class contains distinct isomorphic 
graphs,, .r and V ,  o f girth 5. If and nr,ly If V i , n--- ^
to a graph of Figure 8.
Proof. Suppose P is isomorphic to a graph of Figure 8. The 
following switches with respect to vertices of the graphs 
of Figure 8 correspond to isomorphisms of those graphs.
Switch vertices 1 and 2 in the graph of Figure 8(a),• switch 
vertices 1, 2 and 3 in the graphs of Figures 8(b), 8(c) and 
8(d), and switch vertices 1, 2, 3 and If in the graphs of 
Figures 8(e), 8(f) and 8(g).

Conversely, let P and P be distinct isomorphic graphs 
of girth 5 in the same switching class* Let s P  = P' 
and Isupp s | = k. We prove that Figure 8 gives all graphs 
with this property by considering all possible values of k. 
Clearly 1 < k < n-1. When k = 2 Lemma 6.2 and Lemma 6.5 
give the graphs of Figure 8(a). We give a detailed proof
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of the case k = 3.
Let supp s = [l, 2, 3 ] • Since P and P' have the

same number of edges, I VTI is odd; also P contains a 
5-circuit so IVPI >y 7* We begin by displaying minimum 
graphs on seven vertices with the above properties, and use 
Lemmas 6.2 and 6.5 to extend these graphs, by adding edges 
and vertices, to graphs with the required properties.

U- - S ’ . i

3

We observe that, by Lemma 6.2, vertex 3 is adjacent to 
vertex b or vertex 5. Without loss of generality, let {3 , 1+] 
be an edge. We further note that the set {1, 3 , 5, 7 J 
forms the vertex set of a \  subgraph of our graph, in 
contradiction to the conditions of Lemma 6 .5. Since fl, 5] 
and [3» 5] cannot be edges the following graphs result. The 
pair f1, 7] is an edge implies that f6, 7] is not an 
edge., and the graph is isomorphic to

the graph of Figure 8(c). The pair (3, 7j is an edge yieldi 
the graphs “■ r 6 "7 t isomorphic to the graphs

of Figure 8(b).. Retaining k r 3 and extending to nine 

vertices leads to graphs isomorphic to the graphs of Figure 8(d) 

Extension beyond nine vertices, retaining k = 3, is impossible



using Lemma 6.5 and that T has girth 5»
Similarly, putting k = b and n is 8 leads to graphs 

isomorphic to those of Figures 8(e), 8(f), 8(g) and a graph 

isomorphic to the graph of Figure 8(a) where p, - p̂  = 0, 

p4 - 1 and £5, i s an edge.
Using Lemma 6.5 we see that 5 ^  k ( n-5 contradicts 

the girth restriction on V .. Hence Figure 8 displays all 
graphs of girth 5 with the required property.

Theorem 6.1^. Let T be a graph of girth 5. Then ^(r) has 
no representative If and only if T is isomorphic to a graph 
of Figure 8(f). 8(e) or of Figure 8(a) with n. « n. .
Proof. The proof is similar to the proof of Theorem 6.12.
We note that the graphs of Figures 8(b), 8(c), 8(d) and 8(e) 
have an odd number of vertices, and that the switching class 
of a graph of Figure 8(a) has a representative whenever

V, =£ V, •

We have concluded our analysis of switching classes 
containing graphs of girth 5. The difficulty of extending 
the analysis to girth k graphs by the methods of this Chapter 
is that none of the lemmas and corollaries at the beginning 
of this Chapter are applicable to the case, except Lemma 6.2.

Turning our attention to switching classes with no 

representative, we conclude this Chapter with the following 

observation and Example. We observe that if P  is a graph 

of girth g ) 5 or a forest and 5lT) has no representative, 

then Stab &(P3 has a dihedral subgroup isomorphic to Dx 

that is hidden in Sir) . However, Corollary 5*13 suggests
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that there may be switching classes with no representative 
but with all the D,. subgroups of their stabilisers exposable. 
Clearly all the graphs in such a switching class would have 
girth *+ or girth 3* Example 6.15 demonstrates that this 
possibility is a reality.

Example 6.15.

Figure 9
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Let r be the graph on l1* vertices represented in Figure 9 . 
It is easy to verify that switch-permutations s<*. and sp 
fix Tr where s* = (12)(3lf) (56) (78) (9 fl) (16) (12) (13 1»+)
and s f  -  (l)(3)(21+)(5)(7)(68) (9 io)(Il 12)(13 I k ) ,

We observe that S(r) has no representative, since 
D = <<* , is hidden in §( T) . We also observe that
Aut T ■= < p • Furthermore s is the only switch on P
corresponding to an isomorphism of P . We prove this by 
noting that vertex l1* is isolated. Any switch corresponding 
to an isomorphism of P must not only isolate a vertex, 
but must have a support of even order, and vertex 13 is the 
only vertex in T with a positive even valency. Therefore 
Stab - M D  = < et , (3 > =  and a11 pr«P*r of
Stab -SIT) are exposable in M P ) .
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CHAPTER 7. SWITCHING CLASSES CONTAINING STRONG GRAPHS

Seidel ^6] [7"] [ 8] and Cameron and Van Lint [2] have 
extensively studied ‘strong graphs'. In this final chapter 
we briefly mention some basic aspects of their work that are 
relevant to our study. We give a necessary condition for 
a switching class to contain a 'strong graph' and no 
representative and we 0lve examples of switching classes of 
'strong graphs' that contain no representative. We begin 
by introducing our notation and defining the property of 

strength.

Notation 7*1. Let P be a graph with an edge [ i, , j,] end 
a non-edge { i4, jx  ̂ . Let u,(i, , j, ) be the number of 
vertices of T , not including j, , adjacent to i, and not 
adjacent to j, ; let u*(i, , j, ) be the number of vertices of 
T, not including i,, adjacent to j, and not adjacent to 1, ; 
let v, (it , Jj.) be the number of vertices of P adjacent to 
i*. and not adjacent to jA , and let M i , ,  jx > be the number 
of vertices of P adjacent to ja and not adjacent to i,.

We are interested in graphs with the property that 
u,(i,, j, ) + M i ,  , j, ) and v, (it, J, ) ■+ M i * ,  J j  are 
the same numbers for all vertices i, and j, adjacent, and 
i, and j* non-adjacent, respectively.

Definition.,7.2. A graph P  is strong if there exist integers
u and v such that for all edges 1 1, , j,j 0f P  ,
u,(ii » j* ) , ji ) - u, and for all non-edges  ̂ix , jt^

of P  » vi (it > Ji. ) v2 (lt , ji ) ~ y. If P  is complete
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then we define v = 0. and if T is empty we define u - 0.

Example 7.1. (i) The complete bipartite graph K0.k is
strong with u = a + b-2 and v = 0.
(ii) The graph of Figure 8(a), with p( = pt * p, = 0 and 
{ 5» 6 } a non-edge, is strong with u r v = 2.
(iii) The graph of Figure 8(g), where { 7, 8$ and [9, lOj 
are edges, known as Petersen's graph, is strong, with
u = v = *t.
(iv) The graph K2 u K* u Kx is strong, with u * 0 and 
v - 2 •

The next theorem gives a necessary condition on the 
parameters of a strong graph for its switching class to 
have no representative.

Theorem 7.*+. Let P be a strong graph on n vertices with 

parameters u and v.

(i) Every graph in -Sir) is strong with parameters u and v
If and only if u -»• v = n-2 .
(ii) If u -+• v n-2 then P  is the only strong rrarh in

JUr).
Proof • (¡) Let P and s T  be strong graphs with parameters u 
and v. Let i and j be vertices of P such that fi, 
is an edge of P and a non-edge of sT, «nd )tk 

VX, C j j 3 r* *  ^ » j ) r  aSSetiftWci wiik P aocf

¥ V* be. unVk *P. TR«.
u, (i, J)r-t ux(i, J)P S n-2-(v, (i, j)4r+ v,.(i, i\ p) m Q  

In the case that sT has all the edges of P, we choose 
[ i, to be a non-edge in T and an edge in s P and a
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similar equation results. Hence we have u ■+■ v - n-2, 
as required.

Conversely, we suppose that P  has parameters u and v 
where u -*• v = n-2. From the fact that if fi, j] is an 
edge (non-edge) of T and s T then the number 
u,(i, J) + u.d, J) (v, (i, j) + (i, j)) is the same in
both r and sT, and from equation© , it follows immediately 
that all graphs in £1 )̂ are strong with parameters u and v» 
(ii) It is clear from the proof of part (i) that if P  and 
s f are strong then it is necessary for the parameters of 
P  and s P  to be the same. Hence if u + v ^  n-2 then P
is the only strong graph in -5(P ) .

We note that Theorem 7.k does not give sufficient conditions 
on a strong graph for its switching class to have no 
representative. Trivial counterexamples are provided by the 
switching classes -8( M  and ^(a/a). j . j . Seidel [9] has 
found non-trivial examples of switching classes of strong 
graphs containing a representative. Graphs with such properties 
exist on 26 and 30 vertices.

The graph of Example 7.3(i), K.A , lies in The
switching classes containing the graphs of Example 7.3 (ii) 
and 7.3(iii) have no representatives, by Theorem 6 .1*+, and 
the graph of Example 7-3(iv) is a representative by Theorem 
7.lf(ii) (and by Theorem 6 .8).

We turn now to consider switching classes with doubly 
transitive stabilisers. We first characterise a switching 
class of strong graphs in the following lemma.
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.Lemrna,_ZA5• T  be a grarh on n vertices not In
^■fte — C— 1-5- 3- strong; graph with parameters u ard v. where
■u t.Ji— =— Ps.2 i *P.aM only If 4 ( D  contains n distinct
£raphs_of_.the form__P' 1/ N. « where T  js a regular rraph of
valency v on n-1 vertices.
f.roqf» Suppose that P is a strong graph not In ilAh) with 
parameters u and v where u * v = n-2. Then, by Theorem 7.It,
every graph in «5(Pj is strong with the same parameters.
In particular, the graph with a given vertex i isolated is 
strong. In this graph v, (i, j) + vk(i, j) r v for all 
vertices j ^ i. Since v,(i, J) r 0, we have vA(i, j) - v 
for all vertices j ^ i and P  is a regular graph of valency 
v. If v = 0 then u * n-2 and P e •$(**/„) , contradicting 
our hypothesis, hence A \ p ) contains n distinct graphs of 
the form T' U N, .

Conversely, suppose that a switching class ^(r) contains 
n distinct graphs of the form P' u N, , where P' is a regular 
graph on n-1 vertices of valency v. Since the graph in 
which vertex i is isolated is unique in "{Ur], for all vertices 
i, vt(i, J)* vt(i, j) = v for all pairs (i, j), i * j. 

The result follows immediately.

Lemma 7 .5 shows that associated with every switching 
class of strong graphs on n vertices there are strong, regular 
graphs on n-1 vertices with valency v and with parameters 
u and v, where u + v * (n-l)-l. A strong, regular graph
is called a strongly re pular graph. An example of this 
is the 5-circuit associated with the graph of Example 7.3(11).

We can now prove the following theorem about doubly
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transitive stabilisers of switching classes.

Theorem 7.6. Let G be a subgroup of the stabiliser nf a 
switching class S(P). If G is doubly transitive on $1 
then Mr) consists of strong graphs only.
Proof. Let G; denote the subgroup of G that fixes i c f l ,  

S/nce G is doubly transitive on ft , G; is transitive on 
ft \{ i j » for all i C . Now G*t is a subgroup of the 
automorphism group of the graph 17 in S(T) in which the 
vertex labelled i is isolated. Therefore either f; is the 
graph NA,where |Vp| = n, or ft, is the union of a regular 
graph on n-1 vertices of valency v > 0,and an Isolated vertex 
labelled i. Since this argument follows for each i t «ft , 
by Lemma 7*5» M r )  consists of strong graphs only.

If we consider switching classes that do not contain 
Kn or Na , then we can make a further comment on the structure 
of doubly transitive stabilisers.

Lemma 7«7» The stabiliser of a switching class 8 (P) is 
3-transltlve on £"t if and only if Mr) is the switching 

class M l Q  or .
Proof. Clearly Stab = Stab SW*) = ¿L,
which is 3-transitive on Ci .

Conversely, suppose that Stab ■MD Is 3-transitive on 
f l  . Then (Stab •$( P  ) is doubly transitive on
and either 17 is the graph Nn or f? is the graph u M ,
Hence 8(P) is the switching class -S(Jc) or



We illustrate Theorem 7.6 with the following example.

Example 7»8.

Figure 10

The graphs in Figure 10(a) and 10(b) are the graphs 
mentioned in Examples 7.3(ii) and 7.3(iii), respectively.

The stabiliser of the switching class of the graph of 
Figure 10(a) is isomorphic to Ar, the group of all even 
permutations of 5 symbols. Ar is doubly transitive in its 
representation on 6 symbols. The stabiliser of the switching 
class containing Petersen's graph is isomorphic to the 
symmetric group on 6 symbols, which is doubly transitive in 
its representation on 10 symbols.

The switching classes of the graphs of Example 7.6 are 
particular examples of a general class of switching classes 
that can be constructed in the following way. Let n-1 be



63

a prime power with n = 2(mod lO. The graph P  has a vertex 
set consisting of the elements of GF(n-l), with two vertices 
adjacent if and only if their difference is a non-zero square. 
The graph P  is strongly regular on n-1 vertices with parameters 
u = v = i(n-2) and valency -¿(n-2). A graph constructed 
in the above way is called a Falev graph. Let P be the 
graph P U N , .  The stabiliser Stab - S I P  is doubly 
transitive on A  , where lAl = n. For a proof of this 
see, for example, Seidel t7], page 507.
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