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ABSTRACT of the Thesis "Isomorphisms in Switching Classes
of Graphs" by David Harrles, University of Keele, 1977.

We introduce notation and terminology to investigate
conditions on a permutation group G sufficient to ensure that
G fixes a graph in any switching class of graphs that it
stabilises. We show that cyelic groups, groups of odd order,
groups of order 4k+2 and all stabilisers of switching classes
of graphs on an odd number of vertices have this property.

In Chapter 5 we give a necessary and sufficient condition
for a dihedral group to have thils property.

In Chapter 6 we corsider switching classes containing
forests and graphs with a given girth g > 5. We give necessary
and sufficient conditions for the stabilisers of all such
switching classes to fix graphs in their classes.

Finally we give a brief account of the link between
strong graphs and switching, and give an example of a class

of switching classes with doubly transitive stabilisers.



CHAPTER 1., INTRODUCTION

J. H. Van Lint and J. J. Seidel [3]state the following
problem: "Problem. Give, for all n, a survey of the equivalence
classes, under complementation, of all n-graphs." We may
rewfite their problem in the following way: Give a survey
of all switching classes of graphs.

We will present an approach towards the solution of
this problemn.

We shall observe that a swltching class may contain a
graph such that all isomorphic copies of that graph lie outside
its switching class. We calllsuch graphs representatives
of their switching classes. We shall also observe that there
are switching classes that have no representative. We consider
the problem of characterising switching classes that contain
representatives and those that do not, from two points of
view. The first approach concerns the stabiliser group of
a switching class.

Let G be a permutation group stabilising the switching
class () of a graph . Although every element of & occurs
in the automorphism group of some graph in 5(r), the group
G does not necessarily fix a graph in the class. If it
does, we say that G is exposable in 4(M). We consider the
following problem: what conditions on G are sufficient to
ensure that G is exposable in all the switching classes that
it stabilises? It is implicit in the work of Mallows and
Sloane [4] that it is sufficient for G to be cyclic. Further
known conditions are that G be of odd order, or of order
Lk+L. In Chapters 3 and Y we present these results and others

using our methods. Our main result, however, is in Chapter



5 where we glve necessary and sufficient conditions on the
permutation representation of a dihedral group G such that
G 1s exposable in all switching classes that it stabilises.
Our second approach looks at some properties of graphs
that are preserved under permutation of the vertices and
that may or may not be preserved by switching. In Example
3.8 we give a very simple condition on the number of edges
of a graph on an even number of vertices to ensure that such
a graph is a representative. In Chapter 6 we study graphs
with a given girth and give a complete analysis of switching
classes containg graphs of girth g>5 and forests. That
is, we decide which switching classes, containing a graph
with the above property, also contain a representative.
Finally, in Chapter 7, we consider strong graphs. We give
a brief sketch of the connection between strong graphs and
switching.
Our aim is to present a general approach for studying
isomorphisms in switching classes of graphs, which we apply

to obtain the results mentioned.



CHAPTER 2. NOTATION AND PRELIMINARY RESULTS

We consider the collection & of labelled, undirected
graphs on n vertices, without loops and without multiple
edges. Let I be a graph in Qr. We label its vertices
1, 2, ++., n, and call the set of labels St = {1, 2, ..., nj.
A graph M in 8«, 1s described by its adjscency matrix

A = A(M), whose entries @i; are given by
-1, if 1 and J are adjacent;
a;; = l, if 1 and J are not adjacent, 1 # J¢
0, if 1 = .

Given a permutation 7 in Z, the symmetriec group on ﬂ,
we define vl to be the labelled graph, such that {'rf(i)JTr(:))}
i1s an edge in 1r{ 1if and only if {¢, _)} is an edge in [ .

We say that | and | are isomorphic. The permutation 1r

is a permutation of the vertices of I" and can be represented

by a permutation matrix P = (P"j) , Where
Iy 4f W = & 3
?‘j B 0, otherwise.

We note that according to the above definitions, PAP™
is the adjacency matrix of ¢ F, ‘where A is the adjacency
matrix of [ . ’

An gutomorphism of a graph [ is a permutation 7vr of
its vertices such that w1 = 7. The set of all automorphisms
of T forms a group denoted by Aut .

We next in¥rodue an Axna &"ﬁcnal matrix S; = (s,;) celled a

switch-matrix, where

-1, if k:ﬂ:i;
Seri = 1, if k= £, and K # 1 j
Qy if k # 1.



Let " be a graph on n vertices with adjacency matrix
A. Then S; AS.' is the adjacency matrix of the graph obtained
from [ by deleting all the edges in {7 that are incident
to the vertex i, and adding edges { i, j} for all vertices

'J not adjacent to vertex 1.

We call the above operation switching 7 with resrect

to vertex i, and denote the graph obtained from " by s;r‘,

where s; 1s a switch assodakxluﬁ+kthe switch-matrix S:.

We now establish some simple results to demorstrate the

partitioning of'é into disjoint switching classes of graphs.

Lemma 2.1. Switching is s commutative operation.

Proof. This Lemma is established by observing that switch-

matrices are dlagonal.

A switch with:respect to a set of vertices can now be
defined unambiguously.

A switch s with respect to a set of vertices by «sey if
is defined to be the composition of switches s = & ..-5¢ .,
We say that i,, ses, }e is the support of s and write
SUPD S = Ly eoey L} . Note that the switch-matrix S, that

¢ 16 associaed with , 1s the dlagonal matrix Si «-- Si,.

Lemma 2.2. Switching is an equivalerce relation on & .

Proof. (1) We prove that [T 1is switching equivalent to
itself by noting that sl = F‘ if and only if supp s = ¢,
the empty set, or supp s = G

(11) Suppose that T is switching equivalent to [, then

s A(T) ST = A for some switch-matrix S. Since s*=1,



the identity matrix, we have SA(Ir’)S = A(T" ). Hence [ is

switching equivalent to 1 .

(11i) Suppose that  is switching equivalent to [, and

that [ is switching equivalent to I"". Then

SA(I)S = A(P) and S*A(T")S* = A(™)

for some switch-matrices S and S*. Consequently
S*SA(r)ss* = A(M).

By (1), (i11) and(iii), switching is an.equivalence relation

on §.

We have noted that a switch s fixes a graph [° (that is,
s = ") if 2nd only if supps = ¢, or supp s = 1.
When supp s = ¢ y write s = e, ahdehen supp s = g ’
write s = €. ©Since s* = e for all switches s, we can
state that sl = s'[" 1f and only if ¢'s = ¢ or s’s = < .,
In the latter case write s’ = S , noting that 5§ = se ,
and supp T = a\supp Se

1y (1) (a-2)

Lemma 2.3« Switching,pa;;;tionsgf; into 1 disjoint

in=+)

classes, called switching claesses, each class containing 2

gra[th.
Proof. By Lemma 2.2, switching partitions & into disjoint

classes. There are 2" different n x n diagonal matrices
with diagonal entries 1 or -1. However, it is clear from
our previous remarks that SA(()S = S'A(M)S’, where S
and §’ are switch-matrices, if and only if either §' =S
or $' = -S. Therefore the switching class containing [
contains 2°" different graphs. It is well known that

TR

‘€;| =1 . From the above 1t follows that switching



,h(nn)(fﬁl)

partitions {; into 1 disjoint switching classes.

We denote the switching class containing (", by I (),

The stabiliser of R() 1is the group Stab R(M) of all

permutations in 2 that permute the members of SKF) among

themselves; that is,

steb 31 = {mweT] e 3N = »lMe 8(r)j.
In order to study the stabiliser of a switching class

further, we must first establish a relationship between

switches with support in §1 and permutations in Y.

Lemma 2.4. Let P be the permutstion matrix corresponding

toqr ¢ 2, and let S be the switch-matrix correspording to

s with supp 8 =  f{iy eeey L} S §1. Then PSP~ 1s &

switch-matrix corresponding to the switch denoted ,$ = Trs 17,

With Supp,S = §wr(i)s oo W) & ST

Proof. The proof is clear from the fact that S i1s the diagonal
matrix with diagonal entries (S)','J;3 = -1, g jgr, and

+]1 elsewhere.

The following corollary concerns the manipulation of

switches with permutations.

Corollary 2.5. Let s be a switch with supp s € §l, and let

™ e 2 be expressed as a product of disjoint cycles.

(1) .$

of 7r .

1)

s 1if and only 1f supp s involves complete cycles

(11) oS = < 1if and only if 1r consists of even length N

cycles only, and supp s involves alternate symbols from each

cycle of 7 .




Proof. Immediate from Lemma 2.4%.

Our next result shows that a necessary and sufficient
condition for a permutation to belong to the stabiliser of
3(r") 1is that it maps any one graph in (") to a graph in
this class.

Lemma 2.6. 1 € MM 1f and opiy 1 1 e Stab &(M).

Proof. Suppose that = [ ¢ 3(F). Then for some switch s,
" = s, Now consider an arbitrary switch s‘. Then by
Lemma 2.4,

wisT) = reom(wl) = ﬁS'\sr') = | ¢ )
Therefore & € Stab %(I") . The converse is true by ¢
definition.

We are now in a position to state the major problem
studied in this thesis.

Under what 'conditions' does a switching class 3(M)
contain a graph 7, such that Aut M = Stab (M) ? We
shall approach this problem from two points of view.

Our first approach concerns the structure of permutation
groups. Let G be a subgroup of Stab &(IM). Two
possibilities arise: either G is a subgroup of the automorphism
group of some graph in 2(r"), or there is no graph in &(r)

fixed by G.

Definition 2.7. Suppose that G 1s a subproup of Stab 3([).

We say that G is exposable in &{l') 4f there is a graph [’

jrp () such that G < Aut [, If G is a subgroup of




Stab &(I") but there is no grarh in J{M) with the above

property, then we say that G is hidden in %(r) . A permutation

group G 1s always exposable if it is exposable in every

switchirg class

that it stabilises.

Qur second approach will concern the structure of graphs.

Definition 2.8.

"' 1s a representative of () if Aut ' =

Let [ be a graph in 8(I).

We say that

Stab 3(r) .,

From these two definitions it is clear that Stab &(M)

is exposable in

representative.

Example 2.9.

Fo

Graph I'

Graph s. [

A1) if and only if 4A(l') contains a

1 2 { 2
e N3
Graph s, [ Graph s, I
| 2 [ 2
1

Graph s.s.| Graph s.s,I"

Figure 1

t a
4 3
Graph s, [

Graph s.s. T



Figure 1 illustrates a complete switching class of graphs
on four vertices. There are eight graphs in the class, as
Lemma 2.3 demands. Note that
s, = s, 5,5, = s, 1,

and so on. This is a consequence of the fact that s,s.5,5. [ = I
It will be found that £, the collection of graphs on four
vertices, 1s the disjoint union of eight switchirg classes.
Six of these classes contain graphs isomorphic to f”, a
further class contairs the graph with no edges, called the
empty graph on four vertices and denoted N,, and the final
class contains the complete graph, denoted XK, ,. The graph
" 1s a representative of %(I") , for if it were not, {(1)
would contain an isomorphic copy of 17, different to .
The grarh s.s. | is also a representative of %(IM).
Consequently
Cstab 31P) = § (@(2)(3), (1)(23)(), (14)(23), 1}=Aut .
In Figure 1 the following pairs of g£aph$ are iscomorphic:

s, ond Ty 6.0 and 575 55,7 and s.s, [
For example, let =~ = (1)(23)(4).
Then we have the (:o\(ow'mj 0\jtbra‘lc v‘z-f'-({cc-\'"o»s:

mlal) = [,

& gawlinl) = g

= sdwl) = 5T,

2
__.J
]
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This is typlcal of the sort of calculations we do when

considering isomorphisms in switching classes.

In order to illustrate the smallest example of a switching
class that contains no representative, we must consider a

switching class of graphs on six vertices.

Example 2.10.

-

2
6 92 ¢
3
¢ 3 '3
[ ]
" L
Graph ' Graph s,S, F
Figure 2

Figure 2 illustrates two isomorphic graphs, U and s,s.[
that lie in the same switching class. We shall now prove
that the switching class - g(fﬁ)’hQS'no representative.

An isomorphism mapping ™ to s,gﬂq is 1 = (14)(2)(35)(6).
That i1s, | = 550 . The automorphism group of [, is
Aut ™ = <o > , where o = (1)(26)(35)(4). From
Definition 2.8, if &(F) contains a representative, I'’, then
{w, 02 € Aut Iy since {1, ¢> € stab A(IM),

—
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Suppose that o (s ) = s for some switch s. Then,

since ¢f" = 7 , wehave ;s = s, or s = §. By
Corollary 2.5(i1) .5 = § 1s impossible since o contains

a l-cycle. If s = s then either both 3 and 5 lie in

the support of s or neither 3 or 5 lie in the support of s.
Suppose that v (s'T") = sI for some switeh s’. Then,
since wl = 5,07, ve have . 's' = 5,5, or,s's' = 5,555,
In the second case it will be observed that s’ does not exist.
In the first case exactly ore of 3 and 5 lies in the support
of s’. We have proved that for all choices of s and s’ with
the above properties, s # s’ and 5§ # s’. Consequently
&([‘) contains no representative, and the group G = <1, ¢

is hidden in R(TI).

3 The final result in this chapter shows that Example 2.10

is by no means unique.

Lemma 2.11. For all even values of n greater than four,

there is a switching class of graphs on n vertices, that

" has no representative.

Proof. We give a construction for [, and show that ()
contains no representative, '
Let 1. and r: be two %somorphic graphs each on n, vertices.

The vertices of [, are labelled 1, ..., n,, wheren, > 1.

The vertices of [, are labelled n,+i, ..., 2n,, vhere

$(1) = n+1, 1 £ 1 £ n,, and § 1s an isomorphism

mapping I, to [[. We now introduce four new vertices

labelled 2a,+ 1, 2n,¢2, 2A,+3 and 2n+4, and construct a

graph I,/ from [J by defining their adjacencies in the

following way. Let vertices labelled 2n,+1 and Zn+ Z be



I2

adjacent to every vertex in 2. Let 2n,+3 be adjacert to
2n.+1, and 2n.+4 be adjecent to 2n+2. Let ', a graph on
n vertices, be the disjoint union of I and [;’. (That is,
[T is the graph whose vertex-set is the vertex-set of I, and
', and whose edge-set is the edge-set of I and [J.) We
claim that £(FW has the required properties. Clearly n
is even, and can take any even value greater than four by
suitable choice of n,, since n = 2n+L. We observe that
< 6> C Aut ', where o = (2n,+1 2n,+2)(2n,+3 2n,+4),
Furthermore, the graph sr1 is isomorphic to rﬁ, where
S = S, Sjaea o under the isomorphism + =  §(2n+1 2n,+2),
That 1s, ar[° = s, We show that <, o> < Aut [
for any M e ?S(r).

By using Corollary 2.5 and noting that both & and ar
contain l-cycles, we see that whenever c(s'fﬁ = S'r;
the support of s’ contains either both of 2n+1 and 2A,+2,
or neither of them. Whenever wisv ) = s” s exactly
one of 2n,+! and 2n,+2 lies in the support of s”. Therefore

¢, o> 1is hidden in 3(T7).

The next three chapters approach the problem from the

point of view of permutation group structure.
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CHAPTER 3. SOME ALWAYS EXPOSABLE PERMUTATIOM GROUPS

In this chapter we give a necessary and sufficient
condition on a subgroup G of the stablliser of a switching
class, for G to be exposable in the class. We use this
result to show that certaln permutation grpups are always
exposable, and that certain switching classes contaln a

representative.

Theorem 3.1. A necessary and sufficient condition for a

permutation group G to be exposable in a switching class

2({") 4s that G has an orbit on 3B{I") of odd length.

Proof. Suppose that fiy eeey [+ 1s an orbit of G on

A(T) , where r is odd. Let s’ denote a switch such that
s"“Y‘ = l". 1= l, ...,

’

A permutation v in G permutes the graphs [, «e., fc .

Suppose that wl = sU'. Then

= ngd'f* = astsl o= @l - r.';J
for some j = 1, e¢eey r. Put s = ,..¢" Since r is
odd,

1,,s’s'r' = (S)'r‘ = sl = «l",
and hence Tls'T) = s* 1", The cholce of s’ 1s independent
from the choice of w in G, so G fixes s'r", and G is
exposable in X (). Conversely, if G is exposable in &(r),
then G has an orbit on 3{I") of length one.

The following lemma and corollary establish properties
of switching classes that we will use in conjunction with

Theorem 3.1l.
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Lemma 3.2. Every switching clsss contains a unigue graph

in which a given labelled vertex is adjacent to a given set

of labelled vertices and nob adjocest to their complemedt.

Proof. No two graphs in a swltching class can have the same
labelled vertex adjacent to the same set of labelled vertices,
since a non-trivial switch on a graph changes the adjacencles
of all vertices in that graph. Sirce a switching class
contains ‘f"”)graphs, all possible adjacencies for a given

labelled vertex must occur.

Corollary 3.3. Every switching class contains a unique graph

in which a given labelled vertex is isolated. (An isolated

vertex has no adjacencies.)

Corollary .4. If a permutation group G has an orbit of

odd length on fl, then G is always exposable.

Proof. Let G stabilise 3(M). Thén there 1s a correspondence
between an odd orbit 1, ..., r of G on f1 and an orbit of

¢ on A consisting of graphs in which vertices 1, ...,r
are isolated. The number of graphs in &(F) that have
1solated vertices with labels from the set {1, ..., r} is

a divisor of r, and therefore odd. These graphs form an

orbit of G on A(I") . By Theorem 3.1, G is exposable in

5(F) , and, since 5(F) was an arbitrary switching class
stabilised by G, G is always exposable.

Theorem 3.5. (Seidel (8]) Every switching class oc qraphs 0n an

odd number of vertices contains a representative.

Proof. The stabiliser of a switching class of graphs on an
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odd number of vertices, of necessity, has an orbit of odd
length on {1 since 1| = n which is odd. Therefore,
when n is odd, every stabiliser is always exposable by
Corollary 3.4. Hence the switching class contains a ¢

representative.

Note. Theorem 3.5 can be proved directly from the definition
of switching. We proceed to do this, in order to emphasise
a difference between switching classes of graphs on an odd
number of vertices and an even number of vertices. On
switching a graph on an even number of vertices with respect
to one vertex, the parity of the valency of each vertex is
changed. Clearly it follows that on switching such a graph
with respect to an even number of vertices the parity of the
valency of each vertex remains unchanged, and on switching
the graph with respect to an odd number of vertices the parity
of the valenay of each vertex is changed. If [ is a graph
on n vertices where n is even, and k labelled vertices have
even valency, then those k vertices are elther all even
valent or all odd valent in each graph in 5([7, and the
other (n-k) vertices are either all odd valent or all even
valent respectively 1n each graph in ‘&(rj,

On switching a graph cn an odd number of vertices with
respect to cne vertex, the parity of the valency of each
vertex, except for the vertex switched, is changed. It
follows that if {" is a graph on n vertices where n is odad,
and vertices i, eesy , are all the even valent vertices
of [, then no other graph in S(F) has the property that

L,y eseybg are all its even valent vertices. This fact,
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together with the facts that X(I") contains 2" graphs,

and that no graph can have an odd number of odd valent vertices,
tells us that any odd set of labelled vertices occur as all

the even valent vertices of some graph in &(F). In
particular there is a unique graph in 5(F) in whiech all

1ts vertices are even valent. This graph must be a
representative of S(P). We have proved Theorem 3.5 and

shown that every switching class of graphs on an odd number

of vertices contains a ‘natural! representative, an Euler

graph.

The following corollary is a direct consequénce of

Theorem 3.1 and Corollary 3.k,

Corollary 3.6. A group of odd order is always _exposable,

We shall be able to strengthen the above result using

the results of the next chapter.

Corollary 3.7. Let G be a permutation proup containing a

subgroup H that is always exposable. If the index of H in

G is odd, then G is always exposable.

Proof. Suppose that G stabilises &("). Then there is a
graph I in 3(T") which is fixed by H. The graph [’ 1lies
in an orbit of G on 3(I") whose length divides the index of
H in G. The length of this orbit is odd and so G ig always
exposable, by Theorem 3.1.

Corollary 3.h takés us some way towards proving that

all cycllc groups G = {7r> are always exposable., It is



certainly true that 1f +~ , expressed as a product of disjoint
" cycles, contains an odd length cycle, then G is always
exposable. It remains to be proved that if 1v consists entirely

of even length cycles then G 1s always exposable.

Theorem 3.1 suggests another method of deciding whether
a switching class contains a representative or not. Choose
a graph property known to be preserved by permutations of
the vertices, and count the number of graphs in a switching
class with that property. If Fhe number of such graphs is
odd, then the switching class contains a representative,
Generally this approach appears to be rather difficult. We
have made some progress, however, by choosing the property
of girth (the length of the shortest circuit in a graph),
Whe;;:—;or graphs with girth greater than four, either switching
cannot preserve the girth or, in special cakes, it is very
easy to count the number of graphs in a switching class with
a given girth. This analysis will be done in a later chapter.
We end this chepter with an example illustrating this

approach.

Example 3.8. Let [" be a graph on n vertices, where n is

even. Let s be a switch. A necessary condition that r

and s be isomorphic graphs is that both graphs have the
same number of edges. The following operation on I is
equivalent to switching T wiFh respect to those vertices
whose labels lie in the support of s. Partition the vertices
of U into two sets, V, and V,, such that the labels of V,

are all the symbols in supp s and the labels of \, are all

the symbols in supp §. Preserve the edges incident to two
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vertices in V, and to two vertices in V. ; cancel all the
edges incident to a vertex in V, and a vertex in V., and
~Introduce an edge between each pair of non-adjacent vertices,
one of which lies in V, and the other in Vye Clearly, if

" and s[" are isomorphic and Isupp s| = k, 1t 1s necessary
that the number of edges Joining the two sets of vertices,

V, and V, in [, be 4k(n-k). Note that, since n is even,
then k i1s even. With these restrictions the minimum of
3k(n-k) 1is (n-2). We have proved that if T" has less than
(n-2) edges then it is a representative, sincethere is no
switch s such that sl has thé same number of edges as | .
Finally we note that the structure, and action of the N
stabiliser of (), on R(r) , is identical with the structure,
and action of the stabiliser of $(“) on &(M); vwhere ¢
is the graph with the same vertex-set as " and two vertices

are adjacent in ¢ if and only 1f they are not adjacent in I,

The graph | ¢ is called the complement of T+ Hence any
graph on n vertices, where n is even, with greater than

4n(n-1)-(n-2) edges is also a representative.

We now turn to cyclic permutation groups, and prove

that they are always exposable.
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CHAPTER 4, CYCLIC SUBGRQUPS OF STABILISER

In order to make further progress on the question of
which subgroups of stabilisers are exposable, we must return
to the results of Chapter 2. We observe that the graphs in
g, are permuted by switches, by permutations in Z and by
compositions of these operations, which we call

gwitch-permutations. Their totality forms a group W, where

the law of composition of a switch and a permutation is given
by Lemma 2.%. Every element w € W is uniquely expressible

as a switch-permutation w = s, vwhere s is a switch,

and 1 € 3 o Lemma 2.6 tells us that associated with every
graph | is a group Q of switch-permutations that fixes [,
That is, wl = s[T  if and only if sar 1is a switch-
permutation fixing [T« We say that the permutation group

f e | s« ¢ @ for some switch s} is the group

of permutations assoclated with Q. If Q 1s the largest -

subgroup of W fixing [" then clearly Stab &(r) is the
permutation group associated with Q. In thils chapter and

the next, we consider cyclic and dihedral groups assoclated
with subgroups of W and establish conditions under which
these groups are exposable. This problem resolves itself
into two parts; It will be made clear shortly that not all
subgroups of W fix graphs. We establish a necessary and
sufficient condition on a subgroup of W in order that a

graph exlsts fixed by it. OQur second problem is to discover
whether or not its associated permutation group is exposable.

We 1llustrate these problems in the following example.
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Example %.1.

Figure 3

Let s be the switch s = 55,5 5, then sI° is the
only graph in 3([) isomorphic to f, where ™ 1is the graph

illustrated in Figurg 3. Also, since Aut ™ - {x, P>J
where & = (1)(28)(37)(46)(5) . and

B = (13)(2)(48)(57)(6), the stabiliser

Stab 4(I") = <«, B, »> , where qu" = o,

Put = (15)(28)(3)(46)(7), and p has the property
that p ™ = s[". &n analysis, similar to that of Example

2.10, of the action of M and « on F, shows that ,5“")

has no representative. 1In other words the group Q@ = {x, sl‘>
fixes ', but the permutation group < «, M> associlated

with Q is hidden irn (), However, the group Q' = (p‘ 5/,,)
also fixes I but the permutztion group  <{f, u>
associated with Q' is exposable, since <§, /A> S Aut (5.‘5z F)‘
Finally, the group Q" = <5%> fixes no graph in Y
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in fact Q" fixes no graph in 4, the set of all graphs on
elght vertices. This is clear from the observation that

if the pair {l, 5} is an edge or a nen-edge in our putative
graph, $, % maps {1, 5} to a non-edge or an edge

respectively. Hepce there is no graph fixed by Q",

Notation 4.2. We introduce a convenient notation for the

switch-permutations w = s1 of W. The permufation T is
written as a product of disjoint cycles, and a bar is placed
over each symbol that occurs in supp s. To illustrate, in
Example 4,1
S.58.5, p = (15)(28)(3) (46) (7).

We observe that the action of as,s,g»; on all graphs is
identical to that of _

Essisess p = sssg = AHEHQIEE) (7).

We now establish a criterion for the existence of a

graph fixed by a subgroup Q of W.

Theorem %.3. A subgroup Q of W does not fix any graph in

JﬁAif and only if some element of Q involves either a

syitch-transposition (11) or switch-l-cyeles (1)(i)...

Proof. In view of the action of permutations and switches
on grapks, a recessary and sufficient condition for a
switch-permutation sw to fix a graph M 1is as follovs:

for all p, q e $U , {P, q} and { v (p), Tf(q)g are both
edges or both non-edges of " if and only if supp s contains
both or neither of av (p) and  (q). The construction of a

graph fixed by Q will break down if and only if the stage
1s reached that an unordered pair {1, J} represents both an
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edge and a non-edge. This will arise if and only if Q

contains a switch-permutation st such that supp s contains

exactly one of 1 and j and either (1) (1) = jJ, Tr(j) = i,
or (2) Tr (i) = 1, 1r()) = jJ.

Corollary 4.4. Let a pgroup Q of switch-permutations fix

a graph. If s and s'tf belong to Q then s’ = s or s’ = &,

Proof. st € @, /1 € @ = stw's' = s¢' € Q,

By Theorem 4.3, ss' = e or ss' = ¢.

We note also that if Q fixes a graph then Q fixes
exactly 1? graphs, where ¥ 1s the number of orbits of unordered
pairs {1, 3}, 1 # 3, in 4= §} under the action of the
permutation group assoclated with Q. It is clear from the
proof of Theorem 4.3 that we assign in each orbit one pair

to be an edge or a non-edge.

Example 4.9. Consider the subgroup Q of W generated by

w = (1458)(2763) = $.S35c5, A We calculate

whoz o 1S5i5e5) (S8t = (15)(26) 37 (B6).

By Theorem 4.3 there exists a graphon 8 vertices fixed by @, 1k Wil be
found that there are exactly 2 different graphs fixed by Q
since </u> has eight orbits of unordered pairs on S x (1.

We now apply Theorem 4.3 to subgroups of W vhose

assoclated permutation groups are cyclic.

Lemma 4%.6. Consider the r-cycle o = (1 ... r) and the

cwitch s, with supp s € §1, ..oy 1. Then
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(s )"

)

{fl) eeo(r), if Isupp st is even,
(1) .;.(F), if tsupp stis odd.

Moreover, if r = 2k, then (s o)X involves a switch-

transposition (ij) if and only if {supp sl is odd.

Proof. Application of the formula

. _
s = S S S .. . ~
(s¢) e® c““"s o™,

Definition %.7. (i) A switch s is stronely compatible with

a permutation vv if supp s contains an even number of symbols

from each eycle of ax¥, where ™ is expressed as the product

of disjoint cyeles (including l-cycles).

Cad

(i1) A switch s is compatible with v if either s or § is

strongly comratible with 77,

(1i1) A switch s is weakly compatible with permutations v

and }A if s is strongly compatible with v and compatible,

but hot strongly comratible, witth o or if s i1s stronrlv

compatible withgﬁ‘ and compatible, but not strongly compatible,

Lemma 4.8, A switch s is compatible with a permutation 17

if and only if svr fixes some graph.

Proof. By Lemma 4.6, a switch s is compatible with permutation
4y if and only if no power of s contains switch-l-cycles

of the form (1)(j)... , or switch-transpositions of the form
(i3). By Theorem k.3, this condit?on holds if and only if

st fixes some graph.

Lemma 4.9. A switch s is compatible with a permutation v

if and only if there exists a switch s’ such that

sTr = s’rs’, or ST = s'mrg’,
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Proof. If s = s'ars’ then § = s’ s’ and clearly
s 1s compatible with 47 .

Conversely, suppose that s i1s compatible withTtr . We
suppose, without loss of generality that supp s involves an
even number of symbols frum each cycle of 4. Consider a
particular cycle of 7, which we write & = (1 eee 1)o
If supp s (N supp ¢ 1s not empty then it is expressible in
the form

supp s N supp ¢ = iiu_, <., llkg,
where 1 € 4, € ++ & iu §& r. Let s’ be a sviteh such
that '
supp s’ N supp & = { "‘ i“l" S l < L“t,.\ q: FEERY kg
Then
supp s’ N supp o = {il 'l.,1..< L £ 'L,.L, q = oo, ki,
and so  supp s’ ' N suppe = L0, oo o, il

We define ¢’ to be the switch whose support is obtained
by applying the above construection to all the cycles of 1r
that have common symbols with supp s. Then '8’ = s

and s9r = s’+rs’s This completes the proof.

Theorem %,10. (Mallows and Sloane \4]) A cyelic group is

alwavs exposable.

Proof. Suprose a cyclic group G stabilises L(r), 1r

¢ = £T> , then there is a switch s such that sw fixes V .
By Lemma 4.8, s i1s compatible with 7. By Lemma 4.9, there
is a switch s’ such that s’® s’ is equal to either s or
1. But then s'ns' [ = r',and hence ~|s'[7) = L

Thus 7@ fixes the grarh s’I", and G is exposable in A(I) .

The following result strengthens Corollary 3.6.
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Theorem 4,11. Let G be a permutation group of order 2'“(2_kfl)

containing an element of order 27, Then G is slways exposable.

In particular, all eroupsof order Yk+2 are always exposable.

Proof. Let 77 in G have order 17, and let H = <ard>. By
Theoren 4,10, H is always exposable. H has index 2k+l in G
so, by Corollary 3.7, G is always exposable. It follows
that all groups of order 4Lk+2 are always exposable, from the

fact that all such groups contain an element of order two.

Theorem 4%.10 allows us to derive an explicit formula
for the number, {.,, of switching clesses of graphs on n
vertices, up to isomorphism. That is, we count the number
of orbits of W on %. In this calculation we shall find that
the number #. is a function of the number of cycles
of a given length in each permutation of 2: ’

and so we state the following definition. See Robwson [5],

Definition %.12. The cycle type of a ¢ } is the ordered

n-tuple a(T1) = (8,, eeey 8,)s whee i{ v 15 expressed as

the product of disjoint cycles, then 1 contains a; cycles

of length 1, 1 ¢ 1 ¢ n. Note that 3 ja; = s,

LR ¥

We aprly the followirg well known result of Burnside
to our case. Let t be the number of orbits of a group G orn
a set X. Let F(g) be the set of fixed points of g ¢ Gs
F(g) = {xeX | g(x) = x} . Then
t1gl = 2 IF(e)l. See Biges [1].
We regamﬂ ﬁ as the disjoigf union of switching classes.
E: permutes the switching classes, by Lemma 2.6. A

1fixed point' of 77, In its action on the set of all switching
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classes, is a class S(P) such that v ¢ Stap §(r) . Denote
the set of all such classes by F; ().

Theorem 4.13. Mallows and Sloane [4].

* Z 2\?(“) = Alo)
n - J
T ™ a, !

a

the sum being over all ordered n-tuples a = (a, , ceey a,)
")

4

X () Ni a; ~ ”SSA(Z‘W:N) ’

sen(x) = 0, if x = 0, sgn(x) = l, 1f x > o,

such that n = Zia;, wher‘e
[y -

]

and (1,J) is the highest common factor of i and J.

Proof. By Burnside's Lemma

tonl = ;H:s (Tf)] .
la (‘”)I may be calculated in the following way. Let a(r)

be the cycle type of v, then » 1lies in the automorphism

Y (alty))

group of 2 graphs, since ¥(a\t)) 1s the number of

orbits of w on §U % §V Whenever w ¢ Stab $(r) for

some switching class X(I") , & 1lies in the automorphism

MMalw))
group of 2 * graphs in 5(!") sy by Theorem 4%.10 and

Corollary 2.5. Therefore IE(T{), - Z(V“W’)-A(a(m))

i z (tatm) = Aatw))) ’
LY A .

and ., =

There are nf/!\‘[.j“‘ a.! permutations in 2. of cycle type

(a. ’ ...,8,)» SO N )
' Yiatw)) = Alalar)
L2

t. - ,

- _L yi(e) = Xlo) nt
- n! Z L 1% q. !
. o —“" ¢ qt-

2V(6)’>\(°)
g z T V% aul B reqund.
[ Lo

o
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Finally, in this chapter, we give a formula for the
number of graphs up to isomorphism in a switching class.
That is, we count the number of orbits of Stab 4(r) on %(Pr).
Let G ¢ Stab 8(r) . By Theorem 4.10 and Burnside's

Lemma, the number of orbits of G on $(r) 1s tGJ . where

¢ = —_—
or L,

Here we regard G as acting on 4('), 2nd the 'fixed points'

of elements in G are the graphs 1in %(F) fixed by those
elements. We note that 1}, - depends only on the cycle
structure of the elements of G. Furthermore, it will be
observed that for all n there is a switching class of graphs

on n vertices, denoted &(A&) y consisting of the representative
AL and all the labelled complete bipartite graphs on n vertices.
Since Stab 4(W.) = i: y we have proved the followirg

lemma:

Lemma 4.14. The number of graphs, up to isomorphism, in %£{r)

is
Paaso = WLLsO) .

¢ Stab AL0)

Furthermore, tstabs(ﬂ is the number of orbits of Stab %(r)

on the switching class AUAR
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CHAPTER 5. DIHEDRAL SUBCROUPS OF STABILISERS

Our aim in thils chapter is to classify the dihedral
subgroups in 2. which are always exposable. We see from
Example 2.10 that not all dihedral groups are always exposable.
The dihedral group Stab $(r") is hidden in &(r") , where
[ 1s the graph of Figure 2.

Now let D be an arbitrary dihedral subgroup of 3 .

Then D is generated by two involutions, « and B . The following

lemma appllies as a specizal case.

Lemma 5.1. Suppose that a subgroup G of ¥ is penerated

by two permutations 7 and m . If G stabilises a switching

class 3(M) then G is sssocisted with a group Q@ fixing a

graph in A(r) , such that Q is generated by switch-

permutations s _and S p for some switeh s..

Proof. By Theorem 4.10, there is a graph {7/ in 4(r) which
is fixed by IA“41. So there is a switch s such that

'h'r” = /ur” = Sr")
and the switch-permutations s and su fix r.

According to Lemma 5.1, in order to study the action of
the dihedral group D on a switching class which 1t stabilises,
we can equivalently study subgroups Q of W that fix a graph,
where Q is generated by switch-permutations s« and sﬂ .

We next establish a criterion, depending on s, « and F for

the existence of a graph fixed by @ = < $«, st>'

Lemma 5.2. Let o« and g be involutions. There exists a

graph fixed by Q = <L sx, sg> 1if and only if s is
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compatible with both « andtf .

Proof. If Q fixes a graph then s is compatible with « and
f by Lemma 4.8. Conversely, suppose that s is compatible
with « and @ . Then, since « and g are involutions,

«S = gS = s, (5.3)
We will show the existence of a graph fixed by Q by an
epplication of Theorem 4.3. The elements of Q@ are of the
form

(s (sps)' = (sx) (pa)t,
where k = Oorl, and { = 0,1,2,..., the last expression
being obtained on applying (9.3). We must show that the
conditions of Theorem 4.3 for the non-existence of a graph
do not arise. This is clear when k = 0. Gonsider next
an element w = Sd(p°01 of @. 1If the permutation
d(px)‘ transposes two symbols then by (5.3) supp s contains
both or neither of these symbols. Finally, suprose that
d(pu)l fixes two symbols 1 and j. If £ = 2m, put
(pok)m(i),. o (‘9&)"\(.1) g. Then
L(p) = 4_(§x)m(i) (#u)"(U = P,

and similarly & (q) = gq. Since s is compatible with « ,

1"
n

supp s contains either both or neither of p and q, and hence
also both or neither of 1 = (% R)7(p) and J = (x$)"(q).
If {4 = 2m+ 1| a similar argument applies to the elements
x(pu)m (i) and d(ﬁd)'“(j) which are fixed by p ,
using the hypothesis that s is compatible with ¢ .

Having established our existence criterion for a graph
fixed by Q, our next problem is to discover the conditions

under which its assoclated permutation group D is exposable.
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Lemma 5.4. Let the switch s be stronply compatible with

both the involutions « and ﬁ . _Then there is a switch s’

such that

s = s’« s’ and S = s'pg s, (5.5)

Proof. By our hypothesis on s, its support supp s is a union
of orbits N,y «eey By of D = Lo, B> on fl. Choose
from each orbit A, a symbol i,, r = 1, ...y t. Then the
switeh s’ is defined by the support
supp 7 = LOF=)"Ch), =t .. t, mo= 0,1,2...0
We will show that s’ satisfies relations (5.5), ir other
words, that s = s',s* = s';s", This follows from the
observation that supp s’ consists of precisely one symbol
from each transposition in « and in # whose symbols lie in
the support of s. For if this is not the case then for some
i, in supp s’ and some integer m,

(F4)"(1,) = o(i,) or B(1,).
In either case this leads to the conclusion that either «
or ﬁ fixes a symbol in A,. This contradicts that s 1is
strongly compatible with « and with g.

Corollary 5.6. Suppose that the graph [ is fixed by

Q = <Lsx, $p> , where « and @ are involutions. If s

¥

is strongly compatible with both & and f then there is a

graph [ in_A(F) which is fixed by the dihedral group

D = Ko, 'B‘>‘.
Proof. Apply Lemma 5.4, putting R

We must now consider the case where a switeh s is
weakly compatible with « and B . The following examples

motivate our next lemma.
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Examples 5.7. (1) Consider the switch-involutions
s = (1)(2)GBM(FE(78) ana 5p = (12)(35) (46) (7)(8).

Here s 1s weakly compatible with « ang f « There exists

a switch s’ such that SX = s'’®s’ and % g = s“Bs’.
(Choose for example supp s’ = {1, 3, 5y, 7{ or

{2, 4, 6, 7}.) By Lemma 5,2 there exists a graph [ fixeq
by $« and by sf, and hence also by §. The graph s’ "
is fixed by D = <« 8>,

(11) Put s« = (12)(35)(3%)(56)(5 10)(11)(12)  ang
SE o= (1)(3)(24)(5 10)(67)(£9)(T] 12).

Herehagain s 1s weakly compatible with o and ﬁ. There 1s
no switeh ¢’ such that s« = g’« g~ and €4 = s p s,
Again, by Lemma 5.2, there exists a graph I fixeg by S
and by s g, but in this case there is no graph in 5(F) fixed
by D = <« gD,

The essential difference between Examples 5.7(1) ang (11)
lies in the length of the orbits of D on $, none of whose
symbols 1s fixed by & or by f. In Example 5.7(1) the only
such orbit is {3, 4, 5, 6} and in Example 5.7(11) the only
such orbit is |5, 6, 7, 8, 9, 10] . As the next lemma shows,

the length of these orbits is crucial to our anaiysis.

Lemma 5.8. Let D be a dihedral group generated by involutions

o0 and B . Suppose that a switeh s is weakly compatible with

o« and g. Then there 1s a switch s’ such that S« = s'o 8’

and g = s'p s’ if and only if évery orbit of D on 7

none of whose symbols is fixed by « or by 8, has length

divisible by four.

Proof. Suppose first that there is a switch s’ such that
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sa = s'’«s’ and S@ = s'@s’. Then s = s’ s’
end S = s’gs’. The hypothesis allows us to assume,
without loss of generality, that s is strongly compatible
with « but rot with g, and § 1s strongly compatible with

p but not with «. Let A be an orbit of D on §1 none of
whose symbols is fixed by « or by B, and assume by way of
contradiction that (Al = 2+4k for some integer k.

Then « and p each contain the symbols of A in 1+ 2k
transpositions. In the case that the support of s involves
all the symbols of A , the support of s’ must contain exactly
one symbol from each of those transpositions that occur ir A,
which is 1+ 2k symbols in all from L\, However, because

5 = s’ gs’, the support of s’ must contain an even number

of symbols from A . In the case that the support of &
involves all the symbols of A , by the same argument applied
to f and 4, the support of s’ involves both an odd and an
even number of symbols from A . Hence |IA} = Lk for
some integer k.

Conversely, we must prove that subject to the condition
of Lemma 5.8 an aprropriate switch s’ is constructible. We
partition the orbits of D on §l into three classes,

(1) Orbits containing a symbol fixed by « j

(11) Orbits containing a symbol fixed by g ;

(111) Orbits none of whose symbols i1s fixed by « or by g .
The classes are disjoint, for suprose an orbit N 1s common

to class (1) and class (i1). Then it contains a symbol fixed
by « and a symbol flxed by f, and this contradicts the
hypothesis that s is weakly compatible with « and §. Clearly

orbits cannot be common to classes (i) and (i1ii) or to

classes (i1) and (111). We will now give a construction for
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a sultable switch s’ in the case that the length of all
orbits in class (11i) are multiples of four.
First consider an orbit A 1n class (i). Then the
symbols of N are involved in, say, k transpositions of
f where IA] = 2k, and « fixes at least two symbols
of . We claim that «B is a 2k-cycle; for If not, consider
a symbol 1 in /A fixed by « . Every element of D is
expressible in the form (*@)" or (4 )= for some integer
r.. If «f were not a 2k-cycle then, since
(ag)'o( (1) = (ok}l)f(i), the group D would not act -
transitively on & . Choose the support of s’ from £\ as
k alternate symbols from the cycle uF_, so chosen as to include
the symbol i. We calculate
L(a P (1) = (AP R = (B (1) = (w4 BYTT(4)
and
B(aP) (1) = P(ap) (1) = (B)7'(1) = («p)*7'(1).
From this we see that « fixes setwise the suprort of s’
from A , and p maps this support to its complement in A .
By reversing the roles of « and g the choice of the
support of s’ from an orbit in class (i1) 1is considered
similarly.
Finally, consider an orbit [\ in class (ii1). Then
IA]  is even, 1Bl = 2k, say. Choose an arbitrary symbol
i in D . We will show that the sets
f e @ r=1, ooy kd and {2 W] r=1,..., k]
are disjoint and hence exhaust O . For if not, then there
integers b and ¢ such that (dﬁ)b (1) (xp)‘o( (1)
°(({,cx)"b(i) = 1. This implies that « or 8

giving
fixes a symbol in A , depending on the parity of (c-b),

We have thus proved that «f 1s the product of two
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k-cycles. Choose the support of s’ in D to consist of
(a) alternate symbols including 1 in the cycle of «fB that
contains i, and (b) alternate symbols in the other cyele
of «ff not including the symbol &% (1). (It is at this stage
that we require k to be even and hence Al to be a multiple
of four.) Here we assume that the support of s involves
alT the symbols of A . The involution P fixes setwise the
support of s’ from A and « maps this support to its complement
in A . In the case that the support of £ involves all the
symbols of /A, choose the support of s’ in A to consist of
(2) alternate symbols including i in the cycle of «f that
contains 1, and (b) alternate symbols in the other cycle
of «f not including the symbol f(i). The involution o
fixes setwise the support of < from A ang £ maps this
support to its complement in [\ , as required. ,

With s’ chosen as above it 1is clear that s'¢8' = s

and s'ps’ = Q, and the proof 1s complete.

Corollary 5.9. Suppose that the graph [ is fixed by

Q = £seo, sE> s Where o and 16 are_involutions. If s

1s weakly comratible with o and A _then the dihedral group

D = <o, B> is exposable in Z([') if and only if every

orbit of D on g containing no symbol fixed by « or by ¢

has length divisible by four.

It i1s clear thet a dihedral group D = ¢ «, > can
stabilise meny switching classes. Provided that a switch s
is chosen compatible with o« and B 5 a switching class
stabilised by D can be censtructed by applying Theorem 4.3

to the group Q generated by the switch-permutstions s« and
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s @. Our next result gives a necessary and sufficient
condition on 2 dihedral group D in a permutation representation

to be always exposable.

Theorem 5.10. A_dihedral group D, rerresented as s permutatipn

group or Sl , and penerated by involutions « and 8 , is

always _exposable 1f and orly if at leest one of the following

three corditions is sastisfied.

(1) At least one of & and g fixes no symbol in &1 .

(2) Some orbit of D contains s _symbol fixed by * and a

symbol fixed by { .

(3) (i) _otand B both fix symbols. (1i) The orbits

containing symbols fixed by & contain no symbols fixed by 4 .

(111) Every orbit of D, rone of whose symbols is fixed by

A or by p has length divisible by four.

Remark 5.11. Conditions (1) and (2) are equivalent to the

following condition: for any suitable switeh s which 1is
compatible with & and with g, at least one of s and § is
strongly compatible with both « and § .

Proof of Theorem 5.10., If condition (1) or condition (2)

holds then, by Femark 5.11 and Corollary 5.6, the dihedral
D is always exposable. If condition (3) holds the result
follows by Corollary 5.9.

Conversely if none of conditions (1) - (3) hold, then
again by Corollary 5.9 there 1s a switching class stabilised
by D in which D is hidden.

We can simplify Theorem 5.10 in the following way.
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Let the dihedral group:D be hidden in $(I"). By Theorem
4.11 ID| is divisible by four, IDI = Lk, say. Let

D = <<, f> where o and @ are involutions. Consider
the dihedral subgroup D’ of D, where g

p' = <(e<(3 YA, (oﬁfi)wuﬂz%> » where r and t are any
non-negative integers. We claim that D' is hidden in §(I) ,
Let &' = (d~ﬁ)rd\ and B' = («p F*""« . None of
conditions (1) - (3) of Theorem 5,10 holds for involutions

«' and p' since none of these conditions hold for ® ard g .
Hence D is hidden in 4(T') implies that D' is hidden in 4(r')
Now let 2t +1 be the largest odd divisor of 4k. That 1is,

let 4k = (2t+1)2", where & is an integer, 132, Define
D’ as before with the above restriction on t. Then D’ is

a subgroup of D of order 2%, Ve have proved the following

corollary to Theorem 5.10.

Corollary 5.12. Let Dy be a dihedral group of order Lk,

end let L4k = (2t+1)2* | where t is a non-negative integer,

and & is an integer preater than one. D,, is hidden ir the

switching class #(") 4f and only if a1l the subproups D

of D, are hidden in R{r).

Corollary 5.13. A dihedral group Dzh', represented as a

permutation grcup on 1l y and generated by involutions o

and $ , can be hidden in a switching class if and only if

all of the following conditions are satisfied.

(1) Involutions <« and $ both fix symbols and the orbits

of Dy on §1 containing symbols fixed by « are disjoint from

the orbits of Dt~ on {l containing symbols fixed by g .

(2) Involutions « and g have at least one transposition in
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common.

Proof. Condition (1) negates conditions (1) and (2) of
Theorem 5.10. The proof is complete if we can show that
condition (2) negates condition (3) (1ii) of Theorem 5.10.

We must show that there is at least ore orbit of D, none
of whose symbols is fixed by & or by p y that has an even
length not divisible by four. Since the length of each orbit
of Dz”‘ on §1 divides 22, condition (2) establishes the

result.

We note that 1t may be possible to use the methods of
this chapter and Chapter 4 to study groups of different
structures in their action on switching classes. In
particular, it should be possible to analyse all two generator
groups using these methods. The problem with groups having
three or more generators 1is that if such a group G is hidden
in a switching class, every two generator subgroup of G may
be exposable. It would be very interesting to know if s
switching class existed, having no representative, and every
pair of permutations on the stabiliser gerneratirg a subgroup

exposable in the switching class.,
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CHAPTER 6. SWITCHING CLASSES CONTAINING FORESTS, AND GRAPHS
OF GIRTH g > 5.

In this chapter‘we analyse all switching classes containing
forests, and graphs of girth g > 5. A forest is a grarh
with no circuits.

Our analysis will reveal all graphs with the above
property (a) that are representatives of their switching
classes; (b) that lle in switching classes containing a
representative; and (c¢) that lie in switching classes containing
no reprecsentative. We include graphs on an odd number of
vertices for completeness.

The chapter will be divided into the following sections:
(1) forests, (2) graphs with finite girth g » 7, (3) graphs
with girth 6, and (4) graphs with girth 9.

Before beginning our analysis we state the following

definitions and lemmas, and introduce notation that will

be used throughout the chapter.

Definition 6.1. The vertices of [~ are denoted by VI. Let

V. be 2 _subset of VI, then the vertex-subgraph of . denoted

(‘V;)r , 1s the grarh consisting of the vertices Vi arnd all

the edges of [ that are ircident in " only with vertices

belonging to Vi.

A Sw'll'o}\"‘_‘s on [ w'\H‘ f'espﬁ’-d'h te @ Subsd'

OC : Vr“ Y1 Qﬂ“]va\en\_ ,For ‘H\e (0”0\,\;»/\3 opqrol';o,\, P;.,\.‘.{;,,\
vr into two sets, VI =V, U V,, where supp s contains

a1l the labels of V, and supp § contains all the labels of

V,. The vertex-subgraphs <V,>,~ end <V,_>r. are preserved,
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A1l the edges of [, incident in I with a vertex from v,
and a vertex from V, , are cancelled. A1}l non-adfacent pairs
{a, b}, where a € V,, b € V,, become edges.

Let [° be a graph with girth g > 5 or a forest. We
analyse the switching class 3(T) by considering the
conditions under which J(I") contains a graph [V with the
same girth as [, or, 4f " is a forest, that [ is a forest
with the same number of components as ", Let sl = [~
and let VI = V, UV V,, where supp s contains all the labels
of V, and supp § contains all the labels of V,.

Lemma 6.2. Usirg the above notation and definitions: if

there is an edge }a,, z,} in <:V}>r then each vertex in

<;\@;>, is_adjacent to exactly one of the vertices a, and 8x o

where 1, 1 = 1, 2 and 1 # 4.

Proof. Immediate from the fact that [~ and I™ contain no

3-circuits.

Corollary 6.3. If there is an edge in < Vi >~ ., then there

are no edges in <(V;>r , where i, 1 =1, 2 and 1 £ 1,

Proof. The graphs [ and [7' contain no 3-circuits ard no
hoecircuits.

Corollary 6.4. No two edpes of {Vi>~ are incident,

where 1 =1 or 2.

Lemma 6.5. If N, is a vertex-subgraph of [T, then at least

three vertices of N, are in Vi, where i = 1 or 2.

proof. The resultant graph, on switching N, with respect

to any two of its vertices, is a W-circuit,
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Lemma 6.6. Let | and s[ be praphs with girth ¢ > 6. If

< V;>m- has a non-adjacent pair of vertices fa., aLl . and

<AY5)p has an edge fb.i bt} o then every other vertex in

{" not adjacent to any of {a.. 824 b, b,} y 1ies in Vi,

where 1, § = 1, 2 and 1 £ 4.

Proof. Let ¢ be a vertex of T not adjacent to any of
a,y 8,9 b, or b, and suppose that vertex ¢ of VI, lies in

V;. Applying Lemma 6.2 to the vertex-subgraph

<{a,s 8y by b,§>?,, we see that either 1" contains the
vertex subgraph N, consisting of the vertices {a,, o, , b,, c}
say, contradicting Lemma 6.5, or, when fa, bg} are edges

for 4 = 1 and 2, s[ contairs a S-circuit.

Lemma 6.7. If ™ _and sV are graphs with girth ¢ > 7. or

forests with the same number of comporents, and

1 < Isupp sl & n-1, then there is either one edge or no
edges in the graph (V.>r- VIRAAY:
Proof. By Corollaries 6.3 and 6.4, we need only consider the

possibility that there are at least two disjoint edges in
<V-.>,. and no edges in <Vj>,-. y where 1, § = 1, 2, 1 £ §.
Since V; contalns at least two vertices, application of

Lemma 6.2 leads to a 4, 5, or 6-circuit in [ .

In the following analysis the complete bipartite graph
K,, turns up frequertly as a vertex-subgraph of significant
graphs. We define a p-claw to be the graph K, , . We admit
the possibility of a O-claw, which is an isolated vertex,
In diagrams we represent the p-claw as in Figure L4(a). '

If two vertices are joired by a dotted line, as in Figure 4(b),
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then the presence or absence of an edge between these two
vertices 1s irrelevant. The vertex whose distance 1s one
from every other vertex in a p~claw is called the centre of
the p-claw. Figure 4(c) represents a graph on 2p+ 1 vertices,
It contains a p-claw as a vertex-subgraph. Each of the
non-central vertices of the p-claw is adjacent to at most

one other vertex of the graph. Each of the remaining p
vertices of the graph is adjacent to at most one non-central

vertex of the p-claw.. There are no other adjacencies in the

graph.

(1) Forests.
We shall show that Figure 5 represents all the forests

that are not representatives of their switching classes.
The graph represented in Figure 5(a) is a tree on P+ p +2
vertices, when {1, 2 1s an edge, and a forest with two
components, when fl, 2} 1s not an edge. In Figure 5(a)
p,+p, > 1, and in Figures 5(b) and 5(c¢), p,+ p, > O.

Figure 5(d) represents a forest on 2p +1 vertices, where

p2>1-
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Theorem 6.8. A switching class contains distinet Forests

F end F/ , with the same rumber of components, if and only

if ¥ 1s isomorphic to 2 forest represented in Fipure 5.

Furthermore F 4s isomorphic to FP’.

Proof. Let F be isomorphic to a forest in Figure 5. The
following switches, with respect to vertices of the graphs

of Figure 5, correspond to isomorphisms of those graphs:

in Figures 5(a), 5(b) and 5(c), switch with respect to vertices
labelled 1 and 2; in Figure 5(d) switch with respect to the
vertex labelled 1; and in Figures 5(e) end 5(f), switeh with
respect to the vertices 1, 3, 5, and 7.

Conversely, suppose F and F! are two forests with the
same number of componepts and lie in the same switching class.
Then sF = F’ for some switch s. Let (supp sf = k.
Since F and F’ have the same number of edges, the number of
edges in F with a vertex in <V,), and in {V,5 is
#k(n-k), where [VFl = n. By Lemma 6.7, consideration of
the following three cases will complete the proof:

(1) 1< k < (n-1) and <V,>, U (V) has one edge,
(11) 12 k< (n-1) and {V.>, U (V). has no edges, and

(111) k = 1.
Let F have c components.
(1) 1 ¢k <(n-1) snd VD, U <(V,). has one edge.
Since F has n-c edges, we have

4+k(n-k) = n-c-1.
For positive integers n and ¢ and with the above restrictions
on k, this equstion has solutions ¢ = 1 and k = 2 or #-2

only. Application of Lemma 6.2 ylields the three trees of

Figures 5(a), 5(b) and 5(c).
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(11) 1 <k < (n-1) ard <V,>, U YV, has ro edges.
In thts case the applicable equation is

3k(n-k) = n-c.
This equation has solutions, ¢ =1, n=7, and k = 3 or 4
or ¢ =2 and k = 2 or n-2,.

On considering the eleven unlabelled trees on seven
vertices, we find that the only ones with the appropriate
properties are those shown in Figure 5(e) and 5(f).

Turning to forests with two components ang suprosing without
loss of generality that k =2, it 1is straight forward to
show that the only forests with the required prorerties are
those of Figures 5(a) and 5(c), where the pairs of vertices
{1, 2} and 23, h} are non-edges respectively. It will
be noted that when the pairs {1, 2} and {3, 4] of
Figure 5(a) and 5(b), respectively, are non-edges then the
graphs lie in the same family.

(111) k= 1.

The vertex to be switched has valency #(n-I). By application
of Lemma 6.2 and Lemma 6.4, the #(n-1) vertices not adjacent
to the vertex to be switched, are either isolated or have

valency one, and further application of these two lemmas

yields the family of Figure 5(d).

We have now discovered all forests that are representatives

of their switching classes; namely every forest not 1somorphie

to one in Figure 5. We consider in more detail the switching
classes containing a forest in Figure 5 end determine which
of these classes contain representatives. Since we know the
answer to thls question, quite generally, for graphs on an

odd number of vertices, we restrict our analysis to forests
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on an even number of vertices.,

Theorem 6.9. A switching eclass contains a forest F and no

representative if and only if F is isomorphic to a forest

of Figure 5(c) with p, = p, and \VF| > 6.

Proof. We prove first that if F is not isomorphic to a forest
in Figure 5(¢) with p, = p, and IVF| > 6, then the switching
class containing F has a representative. By Theorem 6.8
and Theorem 3.5, we need only consider forests isomorphic to
those of Figures 5(a), 5(b) and 5(c) where p, + P, is even.
(1) Let F be a forest of Figure 5(a) where the vertices of
F correspondirg to those labelled 1 and 2 in 5(a) are adjacent.
Then sF 1s a representative of f{(F) , where s is a switch
with respect to all the p, + 1 vertices of the p, ~claw of
F, sinrce sF has the unicue property in $(F) that two of
its vertices have valency P+ P, + 1. A similar argument
holds when verticeé 1 and 2 afe not adjacent.
(11) Let F be a forest of Figure 5(b), where the vertices
of F corresponding to those labelled 3 and 4 in 5(b) are
adjacent. Then sF 1s a representative of 3(F) s Where s
is a switch with respect to vertex 1 and the P, + 1 vertices
adjacent to vertex 1, sirce sF has the unique property in
4(F) that two of its vertices have valency P, + P, + 3.
(111) Let F be a forest of Figure 5(c). We note first that
if either p, or p, i1s zero and {3, hz is an edge then F is
omorphic to a tree of Figure 5(a). So we suprose that
P,y P, >0 and p 4 p,, or if p or p, 1s zero then {3, 4J
is a non-edge. In this case we have

si8. F = (12)(3W)F,

and no other switeh on F is equivalent to an-isomorphism of
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F. Since p, £ P,y there is no automorphism of F interchanging
1 and 2, and so Stab 8(F) =  Aut(s,F). Therefore s, F
is a representative of 4(F) .

Conversely, let F be a forest of Figure 5(¢) with
p, = p, and IVFI > 6. Let o be the involution (12)(34),
and let 7 be the involution interchanging 1 and 2,
interchanging all vertices in the two p, -claws of F and fixing

3 and 4. Then cF = s s,F, and ~F = F, and
the dihedral group D, = <o, cm™> is hidden in 3(F)
by Corollary 5.9, where Q = (8,50, 5,5,06m> .

Therefore X (F) contains ro representative.

Theorem 6.8 can be used to give examples of switching

classes with trivial stabilisers. The tree T of Figure 6

pas Aut T = {1} . By Theorem 6.8,T is a representative
of A(T). Hence Stab 5T) = {1%.
¢
e 5 & ' L - Py
' 2 3 b & 6 7
Figure 6

(2) Graphs of finite girth g > 7.

Theorem 6.10. Let " be a graph with finite girth g > 7.

Then (') has ro representative if ard orly if T 4s an

8-circuit.
Proof. Example 4.1 proves that if r) contains a
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representative ther T is not an EB-circuit. Conversely,
suppose that [ 1s not an 8-circuit. We will prove that [~
1s a representative. We suppose that [ ang s both have
girth g > 7, and show a contradiction.

By Lemma 6.7, consideration of the following three cases
will complete the proof: (i) lsupp s| = 1 or n-1;
(11) 2< Isupp sl € 1-2 and (V,>r U WD, has ro edges;
(111) 2 < lsupp s| ¢ n-2 and {V,). v {V:)« has one edge.
(i) supp s} = 1 or n-1.
Since T' has a circuit length g % 7, there are incident edges
in one of the graphs {V,>n or V.M., contradicting
Corollary 6.4,
(11) 2 £ Isupp sl & n-2 and there are no edges in
V>, U <VL>I" .
In this case [ 1s bipartite and corsequently there are no
odd length circuits in I". Therefore I" either has even
girth g > 10 or girth 8 and IVl > 8. 1In either case 1"
will contain an N, vertex-subgraph, two vertices of which
will be in V,3, and two in {V,). , contradicting Lemma 6.5.
(144) 2 £ lsupp sl £ n-2 and there 1s one edge in
4D TR AESATY
Application of Lemma 6.2, Lemma 6.5, and Lemma 6.6 yields

a contradiction in this csase.

(3) Graphs of girth 6.

In Figure 7(a), p,, p, and p, are any non-negative

integers.
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Theorem 6.11. A switching class contains distiret isomorphic

graphs, I and ', of pgirth 6 if and only if [T is isomorrhiec

to a graph of Figure 7.

Proof. Suppose I 1s isomorphic to a graph of Figure 7.
The following switches with respect to the vertices of the
grarhs of Figure 7 correspond to isomorphisms of those graphs:
switch vertices 1 and 2 in the graph of Figure 7(a); switch
vertices 1, 2 and 3 in the graph of Figure 7(d), and switch
vertices 1, 3, 5 and 7 in the graphs of Figure 7(b), 7(e)
and 7(e).

Conversely, let T and I, two distinct isomorphic
graphs .of girth 6, lie in the same switchirg class. Let
s = T and |Isupp sl = k. By Corollary 6.3 and
Corollary 6.4, consideration of the following two cases will
complete the proof. (1) {V,>r U <{V,)s has po edges,
and (ii) <V,>p is the union of disjoint edges and (V,),.
has no edgese.
(1) The graph {V,Dr U {V,)~ has no edges implies that
[ is bipartite and, since [ has girth 6, 3 < k < n-3.
In the case that k = 3, application of Lemma 6.5 leads to
a graph isomorphic to the graph of Flgure 7(d). In the case
that k = 4 and n > 8, application of Lemma 6.5 yields graphs
jsomorphic to those of Figures 7(b), 7(c) and 7(e). The
case that 5 £ k < n-5 leads to a contradictlon,es aprlication
of Lemma 6.5 gives & graph containing b-circuit.
(1i) The graph {V.), 1s the union of disjoint edges ard
{V,>~ hes ro edges implies that k = {vit = lsupp sl = 2,
since, by Lemmas 6.5 and 6.6, if k> 3 then I" contains a
L-circuit or a S5-circuit. It follows immedlately thet T is

jsomorphic to the graph of Figure 7(a)..
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Theorem 6.12. Let I be_a graph with girth 6. Then %(P)

has no representative if srd only if [ is isomorphic to

the graph of Figure 7(b) or 7(e).

Proof. Let [" be a graph isomorphic to the graph of Figure 7(b).
Switehing with respect to the vertices 1, 3, 5 and 7 of
Figure 7(b) corresponds to an isomorphism ¢ = (13)(26)(57)
of the graph, and the involution 1t = (48)(57) is an
automorphism of this graph. The group <o , ow) is hidden
in its switching class. Similarly the group {o', ¢'m'>,
where o' = (26)(48)(9 10) and ' = (13)(4E)(57)(9 10),
je hidden 1in the switching class of the graph of Filgure 7(e).
Conversely, we show that if [T is a graph isomorphic
to the graph of Figure 7(a), then A(f) contairs a
representative. Let at least one of the integers p,, p, and
p, be positive. Let s be a switch with respect to the verkices
ijn T corresponding to the vertex in Figure 7(a) labelled 1,
and all the vertices sdjacent to vertex 1. Then sl 1is a
representative of $(I') sirce s " 1s the unigue graph in
jts switching class that has two vertices with valency n-1.
Now let p, = P, = P, = 0, then M 1s a 6-circuit and 3J(r) has
the representative K, v K, V K,.
By Theorem 6.11 all other graphs of girth 6 are
representatives, except those of Figure 7(e¢c) and 7(d), which

have an odd number of vertices.
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(4+) Graphs of girth 5.
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Figure 8

In Figure 8(a), p,, P, and p, are any non-negative

integers.

Theorem 6.13. A switching class contains distinet isomorphic .

graphs, U and ™, of girth 5 1f and only if " is isomorphic

to a graph of Figure 8.

Proof. Suppose [’ is isomorphic to a graph of Figure 8. The
following switches with respect to vertices of the graphs

of Figure 8 correspond to isomorphisms of those graphs.
Switch vertices 1 arnd 2 in the graph of Figure 8(a); switch
veftices 1, 2 and 3 in the graphs of Figures 8(b), 8(c) and
8(d), and switch vertices 1, 2, 3 and 4 in the grarhs of
Figures 8(e), 8(f) and 8(g).

Conversely, let " and I’ be distinct isomorphic graphs
of girth § in the same switching class. Let s = [
and lsupp s! = k. We prove that Figure 8 pgives all graphs
with this property by considering all possible values of k.
Clearly 1< k < n-1l. When k = 2 Lemma 6.2 and Lemma 6.5

give the graphs of Figure 8(a). We give a detailled proof
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of the case k = 3.

Let supp s = {1, 2, 3} . Since I and '’ have the
same number of edges, | VIl 1s odd; also I contains a
5-circuit so IVI'l > 7. We begin by displaying minimum
graphs on seven vertices with the above properties, and use
Lemmas 6.2 and 6.5 to extend these graphs, by adding edges
and vertices, to graphs with the required properties.

b . 5. 4 7

' 2 3

We observe that, by Lemma 6.2, vertex 3 is adjacent to
vertex 4 or vertex 5. Without loss of generality, let {3, hz
be an edge. We further note that the set {1, 3, 5, 7]
forms the vertex set of a N, subgraph of our graph, in
contradiction to the corditions of Lemma 6.5. Since {I, 5}
and{3, 5} cannot be edges the following graphs result. The
pair {1, 7] 1is an edge implies that {6, 7} 1is not an

'y (Y é E

edge, and the grarh is isomorphic to

\ 2 3

the graph of Figure 8(c). The pair {3, 7} is an edge yields

“ S S ) 2

the graphs y 1somorphlic to the grarhs

\ 1 3
of Figure 8(b). Retaining k = 3 and extending to nine
vertices leads to graphs isomorphic to the graphs of Figure E(d)

Extension beyond nine vertices, retaining k = 3, 1s impossible
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using Lemma 6.5 and that I’ has girth 5.

Similarly, putting k=% and n > 8 leads to graphs
jsomorphic to those of Figures &E(e), 8(f), 8(g) and a graph
jsomorphic to the graph of Figure 8(a) where p, = p, = 0,
p, = 1 and 5, 6 1is an edge.

Using Lemma 6.5 we see that 5 < k £ n-5 contradicts
the girth restriction on " . Hence Figure 8 displays all
graphs of girth 5 with the required property.

Theorem 6.14%, Let T be a graph of girth 5. Then 3(r) nas

no representative if and orly 1f [ is isomorphic to a graph

of Figure 8(f), 8(g) or of Figure 8(s) with p, = 1,.

Proof. The proof is similar to the proof of Theorem 6.12,
We note that the graphs of Figures 8(b), 8(c), 8(d) and 8(e)
have an odd number of vertices, and that the switching class

of a grarh of Figure 8(a) has a representative whenever

P, # P; -

We have concluded our analysls of swltching classes
containing graphs of girth 5. The difficulty of extending
the analysis to girth 4 graphs by the methods of this Chapter
js that none of the lemmas and corollaries at the beginning
of this Chapter are applicable to the case, except Lemma 6.2,

Turning our attention to switching classes with no
representative, we conclude this Chapter with the following
observatior end Example. We observe that if M 1s a graph
of girth g 2 5 or a forest and %(") has no representative,
then Stab &(") has a dihedral subgroup isomorphic to D,
that is hidden in 3(r) . However, Corollary 5.13 suggests
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that there may be switching classes with no representative
but with all the D, subgroups of their stabilisers exposable,
Clearly all the graphs ir such a switchinrg class would have
girth & or girth 3. Example 6.15 demonstrates that this

poséibility is a reality.

Example 6.15.

Fipure 9
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Let [T be the graph on 14 vertices représented in Figure 9.
It is easy t.o verify that sﬁitch-permutations s and sB
fix [, where sa& = (12)(34)(56)(78)(3 11)(I0)(I2) (13 14)
and sp = (1)(3)1(2H)(5)(7)(68)(9 10)(11 12)(13 1h).
We observe that &(f') has no representative, since
D = <o, > 1is hidden in §(T') . We also observe that
Aut ' = ¢ «x@> . Furthermore s is the only switch on I”
corresponding to an isomorphism of I'. We prove this by
noting that vertex 14 is isolated. Any switch corresponding
to an isomorphism of " must not only isolate a vertex,
but must have a support of even order, and vertex 13 1s the
only vertex in |7 with a positive even valency. Therefore
stab AC) = Loy B> = D,, and all proper subgroups of
stab 8(f) are expcsable in ).
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CHAPTER 7. SWITCHING CLASCES CONTAINING STRONG GRAPHS

seidel 16] [7) [8) and Cameron and Van Lint [2] have

extensively studied ‘'strong graphs'. 1In this final chapter
-we briefly mention some basic sspects of their work that are
relevant to our study. We give a necessary condition for

a switching class to contain a 'strong graph' and no
representative and we give examples of switching classes of
tstrong graphs' that contain no rerresentative. We begin
by introducing our notation and defining the property of

strength.

Notation 7.1. Let [ be a graph with an edge {i,,J,} and

a non-edge {i,, JLS . Let u,(1,, 3, ) be the number of
vertices of I, not including J,, adjacent to 1, and not
adjacent to J.j; let u,(i,, J,) be the rumber of vertices of
", rot including i,, adjacent to J, and not adjacent to 1,3
let v,(1,, J.) be the number of vertices of " adjacent to
4, and not adjacent to J,, and Tet v,(1,, J.) be the number

of vertices of | adjacent to J, and rot adjacent to i,.

We are interested in graphs with the property that
u.(i., j') * uz(il’ Jl) and v\(it’ Jl) + V;(i.,’ J;) are

the same numbers for all vertices 1, and J, adjacent, and

i, and J, non-adjacent, respectively.

Definition 7.2. A graph [" is strong if there exist integers

u and v such that for all edges {i,, j.; of [,

u,(4,, 3+ w4, §) = u, and for all non-edges i 1,, 3‘§

of My, v, (4, L)+ v (L, J) = v. If M is complete
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then we define v = 0, and if I" 4s empty we define u = 0O

Example 7.3. (i) The complete bipartite graph Ko, 1is

strong with u = a+b-2 and v = 0.

(11) The graph of Figure 8(a), with p, = p, = p, = O and
{5, 6% a non-edge, is strong with u =z v = 2.

(111) The graph of Figure 8(g), where { 7, 835 and {9, 10§

are edges, known as Petersen's graph, is strong, with

u=V=’+-
(iv) The graph X,V K, YV K, 1s strong, with u = 0 and

V=2o
The next theorem gives a necessary condition on the
parameters of a strong graph for its switching class to

have no representative.

Theorem 7.4. Let I be a strong graph on n vertices with

parameters u and v.

(1) Every grarh in -8\F) is strong with parameters u and v

1f and only if u+ v = n-2.

(11) If u+ v  n-2 then " is the only strong graph in

().

Proof.(iyLet T and s be strong graphs with parameters u

and v. Let i and j be vertices of [ such that {1, J]
is an edge of [ and a non-edge of sI7, and ek
W i))e + u;li,)), be associated with T and
VL +>V,U,ﬂ,p be associated with <. Then
u, (1, 30+ u, (4, 3. = n-2-(v, (4, D+ v, (4, ). O
In the case that sU has all the edges of [, we choose
{1, j] to be a non-edge in " and an edge in s{" and a
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similar equation results. Hence we have u~+ v = n-2,
as required.

Conversely, we suppose that [ has parameters u and v
where u+ v = n-2. From the fact that 1f {1, j{ is an
edge (non-edge) of I' and s then the number
u, (4, 3+ u, (4, J) (v, (1, 3) + v, (1, §)) 1s the same in
both M and s, and from equation(®) , it follows immediately
that all graphs in &(P) are strong with parameters u and v.
(11) It is clear from the proof of part (i) that if [ and
qu are strong then it 1s necessary for the parameters of
™ and s to be the same. Hence if u+ v # n-2 then [
is the only strong graph in AT .

We note that Theorem 7.4 does not give sufficient conditions
on a strong graph for its switching class to have no
representative. Trivial counterexamples are provided by the
switching classes R(k.) ana A(M). J. 5. seidel 19] has
found non-trivial examples of switching classes of strong
graphs containing a representative. Graphs with such properties
exist on 26 and 30 vertices.

The graph of Example 7.3(1), K., , lies in B(Nay)e  The
switching classes containing the graphs of Example 7.3(11)
and 7.3(i1i) have no representatives, by Theorem 6.1%, and
the graph of Example 7.3(iv) is a representative by Theorem
7,4(11) (and by Theorem 6.8).

We turn now to consider switchirg classes with doubly
transitive stabilisers. We first characterise a switching

class of strong graphs in the following lemma.
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Lemma 7.5. Let [7 be a grarh on n vertices rot in 'g(ﬂﬁ),

The graph [ is a strong graph with parameters u ard v, where

4u+v = n=2, if and only if 4(") contains n distiret

graphs of the form ['UN,, where I'" is a repular graph of

valency v on n-1 vertices.

Proof. Suppose that T is a strong graph not in J(N.) with
parameters u and v where u + v = n-2. Then, by Theorem 7.k,
every graph in 3(r) 1is strong with the same parsmeters.
In particular, the graph with & given vertex 1 isolated is
strong. In this graph v, (i, J) + v,(i, J) = v for all
vertices J # 1. Since v, (i, }) = 0, we have v, (i, J) = v
for all vertices j # 1 and T is a regular graph of valency
vo If v=20then u = n-2 and [ ¢ X(N.), contradicting
our hypothesis, hence ¢%(rﬂ contains n distinct graphs of
the form " VN, .

Conversely, suppose that a switching class -5(F) contains
n distinct graphs of the form [ U N, , where ("’ 1s a regular
graph on n-1 vertices of valency v. Since the graph in
which vertex 1 1s isolated is unique in ‘K(PL for all vertices
1, v, (1, 4+ v, (&, J) = v for all pairs (1, ), 1 + 3.
The result follows immediately.

Lemma 7.5 shows that assoclated with every switching
class of strong graphs on n vertices there are strong, regular
grarhs on n-1 vertices with valency v. and with parameters
u and v, where u +v = (n-1)-1., A strong, regular graph

4s called a strongly repulsr graph. An example of thls

is the 5-circuit associated with the graph of Example 7.3(11).

We can row prove the following theorem about doubly



61

transitive stabilisers of switching classes.

Theorem 7.6. Let G be a subgroup of the stabiliser of a

switching class &(7T ). If G is doubly transitive on S

then () consists of strong graphs orly.

Proof. Let G; denote the subgroup of G that fixes 1 ¢ 1.
Since G is doubly transitive on §{l , Gi is transitive on

¢ \{ 1], for all 1 ¢ fL. Now G; 1s a subgroup of the
automorphism group of the graph E in &(f‘) in which the
vertex labelled i is isolated. Therefore either i 4is the
graph N, ,where |VI"| = n, or T, 1is the union of a regular
graph on n-1 vertices of valency v > 0,and an isolated vertex

labelled 1. Since this argument follows for each 1 ¢ g ’
by Lemma 7.9, Z{") consists of strong graphs only.

If we consider switching classes that do not contailn
Kn or Na, then we can make a further comment on tlie structure

of doubly transitive stabilisers.

Lemma 7.7. The stabiliser of a switching class 2(r) 1s

3-transitive on €1 if and only if %(I’) is the switching

class MK or d(NL) .
Proof. Clearly Stab &(K.) =  Stab 3(WN.) = .,

which is 3-transitive on g,

Conversely, suppose that Stab #{r") 1s 3-transitive on
{1 . Then (Stab 3(f) ); 1s doubly transitive on fl‘\{if,
and either [; 1is the graph N, or [ 1s the graph K., vM . .
Hence R(r) 1is the switching class 8(k.) or R(N.).



We 1llustrate Theorem 7.6 with the following example.

Example 7.8.

(a) (b)

Figure 10

The graphs in Figure 10(a) and 10(b) are the graphs
mentioned in Examples 7.3(ii) and 7.3(iii), respectively.

The stablliser of the switching class of the graph of
Figure 10(a) 1s isomorphic to A., the group of all even
permutations of 5 symbols. A. is doubly transitive in 1its
representation on 6 symbols. The stabiliser of the switching
class containing Petersen's graph 1s isomorphic to the

symmetric group on 6 symbols, which is doubly transitive in

its representation on |10 symbols.

The switching classes of the graphs of Example 7.6 are
particular examples of a general class of switching classes

that can be constructed in the following way. Let n-1 be
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a prime power with n = 2(mod %). The graph [ has a vertex
set consisting of the elements of GF(n-1), with two vertices
adjacént if and only if their difference is a non-zero square.
The graph [’ is strongly regular on n-1 vertices with parameters
u = v = #(n-2) and valency #(n-2). A graph constructed

in the above way is called a Faley graph. Let [" be the

graph T'U N,. The stabiliser Stab 3(MM) 1is doubly
transitive on §1 , where |§1l = n. For a proof of this
see, for example, Seidel [7], page 507.
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