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Abstract

Cardiac pathology is emerging as a prominent systemic feature of spinal muscular atrophy 

(SMA), but little is known about the underlying molecular pathways. Using quantitative 

proteomics analysis, we demonstrate widespread molecular defects in heart tissue from the 

Taiwanese mouse model of severe SMA. We identify increased levels of lamin A/C as a 

robust molecular phenotype in the heart of SMA mice, and show that lamin A/C 

dysregulation is also apparent in SMA patient fibroblast cells and other tissues from SMA 

mice. Lamin A/C expression was regulated in-vitro by knockdown of the E1 ubiquitination 

factor UBA1, a key downstream mediator of SMN-dependent disease pathways, converging 

on β-catenin signalling. Increased levels of lamin A are known to increase the rigidity of 

nuclei, inevitably disrupting contractile activity in cardiomyocytes. The increased lamin A/C 

levels in the hearts of SMA mice therefore provide a likely mechanism explaining 

morphological and functional cardiac defects, leading to blood pooling. Therapeutic 

strategies directed at lamin A/C may therefore offer a new approach to target cardiac 

pathology in SMA.
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Introduction

Spinal muscular atrophy (SMA) is a debilitating genetic disorder, traditionally classified as a 

neuromuscular disease due to the characteristic pathology of lower motor neuron 

degeneration and progressive muscle wasting (1). Accumulating evidence of pathology 

outside of the neuromuscular system, however, suggests that SMA should now be considered 

as a systemic condition (2). SMA has an incidence of approximately 1 in 10,000 live births 

(3), and in ~95% of patients it is caused by homozygous loss of SMN1 gene, resulting in 

insufficient levels of the ubiquitously expressed survival of motor neuron (SMN) protein (4). 

There is no cure for SMA, but the last few years have seen significant progress in the 

development of therapies aimed at alleviating symptoms by raising full-length SMN protein 

levels (5). Nusinersen (SpinrazaTM), an antisense oligonucleotide drug, is now widely 

available for children and young adults with SMA, and most recently, ZolgensmaTM 

(previously known as AVXS-101), an adeno-associated virus-based gene replacement 

therapy, was given approval by the FDA for the treatment of SMA children under 2 years 

of age. Though undoubtedly an enormous step forward, none of the strategies that have 

been developed so far show complete efficiency (5–8). Coupled with uncertainties around 

long-term effectiveness and extremely high price of both strategies, there is keen interest to 

find alternative therapeutic strategies that could, in combination with SMN-targeted therapy, 

offer maximum therapeutic benefit to all SMA patients (9). 

SMN perturbations influence organ development and function across multiple levels (2), and 

so it is likely that organ-specific and/or systemic therapy delivery may be necessary to fully 

rescue the SMA phenotype (5). For example, a systematic review of the literature in 2017 

found 58 studies that reported on a total of 264 SMA patients with cardiac abnormalities (10). 

A common finding among the 77 patients with the most severe type of SMA (Type I) was 
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structural pathology, observed mainly in the septum and/or cardiac outflow tract. All of the 

63 Type II SMA patients identified in the literature search had electrocardiogram (ECG) 

abnormalities, while the 124 patients with Type III SMA had cardiac rhythm disorders and/or 

structural abnormalities. In addition to the numerous reports of cardiac defects among SMA 

patients, the systematic review identified 14 studies that have documented cardiac pathology 

in mouse models of SMA (10). Common macroscopic findings include decreased heart size 

and decreased thickness of the left ventricular wall and interventricular septum, while a 

frequent microscopic observation was cardiac fibrosis, which was detected at a pre-

symptomatic stage of the disease in both severe and intermediate mouse models of SMA (10–

12). In addition, almost all studies of SMA mouse models reported bradyarrhythmias (10). A 

more recent study of a severe mouse model of SMA at pre- and early symptomatic time 

points confirmed many of these previous findings, but also noted significant pooling of blood 

in the heart, together with disorganization of cardiomyocytes and lack of trabecular 

compaction (13). These findings strongly resemble symptoms of cardiomyopathy (13), and 

indicate serious consequences for the normal electrical and mechanical functioning of the 

heart. 

A recent gene-expression study of hearts from the “Taiwanese” mouse model of severe SMA 

identified 205 genes that were down-regulated and 269 genes that were up-regulated at an 

early symptomatic time-point (i.e. P5) (14). Several of these changes were tracked back to a 

pre-symptomatic time-point, suggesting that cardiac defects might be attributable, at least in 

part, to cell autonomous mechanisms (14). To the best of our knowledge, this is the first 

study to date that has conducted a comprehensive analysis of molecular changes in the SMA 

mouse heart, and whilst it has generated novel insights about changes to the transcriptome, 

proteomic insights into the SMA heart are lacking. This is particularly important in the 
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context of emerging evidence showing that the SMN protein plays fundamental roles in 

protein translation (15, 16). In this study, we have conducted a comprehensive quantitative 

proteomics study of heart tissue from the Taiwanese mouse model of severe SMA and show 

that there is widespread dysregulation of protein expression in SMA compared to controls. 

We verified the robust increase of one of these proteins, lamin A/C, in the hearts of SMA 

mice, and propose a role for lamin A/C in SMA cardiac pathology, strongly supported by 

case reports of an adult form of SMA caused by mutations in the lamin A/C encoding gene, 

LMNA (17, 18). As with a wide range of neuromuscular conditions caused by mutations in 

LMNA, including Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy 1B, 

and dilated cardiomyopathy, cardiac involvement was a notable feature in each case of 

LMNA-associated SMA. A role for lamin A/C in SMA is strengthened further by experiments 

in which we demonstrate dysregulation across other cells and tissues, and a mechanistic link 

between lamin A/C and ubiquitin-like modifier activating enzyme 1 (UBA1) protein, a key 

contributor to SMN-dependent disease pathways (19–21).

Results

Quantitative proteomics analysis of heart tissue from severe SMA mice reveals 

widespread molecular defects

To determine the molecular consequences of SMN depletion in the heart of the Taiwanese 

mouse model of severe SMA (22), a quantitative comparison of the SMA and age-matched 

control heart proteome was undertaken using iTRAQTM mass spectrometry analysis. This 

approach identified 3105 proteins in total (Supplementary Table 1), of which 2479 were 

identified with a 5% local false-discovery rate. For reliable quantification, proteins identified 
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from just a single peptide were removed, after which, differentially expressed proteins were 

identified by removal of proteins with a fold-change of less than 1.25, and finally, exclusion 

of proteins with a p-value of >0.05 assigned to their fold changes. This left 383 proteins that 

met the specified criteria for differential expression, of which 177 proteins were increased 

and 206 were decreased in expression in SMA mouse heart compared to controls 

(Supplementary Table 2). Twenty-one of the differentially expressed proteins were also 

altered in expression at the gene level in a recent microarray study of hearts from SMA mice 

at an early symptomatic time-point (i.e. P5) (14), of which 16 followed the same direction of 

differential expression (Supplementary Table 3). 

Gene ontology (GO) analysis using the DAVID platform (23, 24) highlighted enriched 

biological processes and cellular components relating to the up- and down-regulated proteins, 

respectively (Supplementary Table 4). A relatively high proportion of up-regulated proteins 

were found to be blood-related (n=16), and although this compliments a previous report of 

blood pooling in the hearts of the Taiwanese SMA mouse model (13), these proteins were 

excluded from further analysis to retain focus on changes specific to the heart tissue. After 

also removing keratin-associated proteins (n=4), the remaining proteins were then subject to 

analysis using STRING 10 (25) to identify statistically significant associations between them. 

Comparison of the resulting networks with the GO analysis output (Supplementary Table 4) 

identified protein clusters associated with highly enriched molecular and/or biological 

processes. For the up-regulated proteins, enriched processes included organization and/or 

regulation of the cytoskeleton, cell junction, and extracellular matrix (Figure 1A), while 

clusters of down-regulated proteins were associated with translation and metabolic processes 

(Figure 1B).
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Lamin A/C expression is dysregulated in severe SMA mice and SMA patient fibroblasts

One of the 383 differentially expressed proteins, lamin A/C, was of particular interest to us 

since mutations in LMNA, the lamin A/C encoding gene, are known to cause an adult form of 

SMA (17, 18). Additionally, the analysis of published proteomic studies of the 

neuromuscular system in SMA (26) identified lamin A/C as a conserved molecular change 

across three separate studies of SMA (27–29). To date, however, these findings do not appear 

to have been verified, nor has lamin A/C been studied in the context of SMN-dependent 

pathways in heart. We therefore chose to verify and understand the individual contributions 

of lamins A and C to the overall lamin A/C expression trend, using quantitative western 

blotting of heart tissue extracts from P8 SMA mice and healthy littermate controls (see 

workflow in Figure 2A). This analysis confirmed a robust increase in lamin A (69%, p = 

0.0007) and C (91%, p = 0.0079) expression in SMA compared to control heart extracts 

(Figure 2B and 2C). Immunohistochemical analysis of SMA and control mouse heart sections 

revealed few lamin A/C positive cells in the ventricle lumen (Figure 2D), and although we 

cannot rule out a minor contribution, this result confirms that the increased lamin A/C levels 

cannot be solely attributed to circulating blood cells. Indeed, densitometry analysis of lamin 

A/C expression confirmed a robust upregulation of lamin A/C levels in the ventricle wall of 

SMA mouse heart sections compared to the unaffected controls (84%, p = 0.0002) (Figure 

2E). 

Protein extracts of SMA and control mouse brain, spinal cord, muscle, and liver tissue, as 

well as control and SMA patient dermal fibroblast extracts were analysed by quantitative 

western blotting to determine whether lamin A/C dysregulation extends beyond the heart. 

These analyses revealed widespread dysregulation of both lamin A and C, with differing 
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directions of expression change depending on the tissues examined (Figure 2B and 2C). A 

statistically significant reduction of lamin A levels was seen in the SMA patient fibroblast 

cells compared to those from healthy controls (84%, p = 0.0438), while a statistically 

significant upregulation of lamin A levels was found in the brain (25%, p = 0.0434) and liver 

(52%, p = 0.0026) tissue from SMA mice. Spinal cord extracts from SMA mice did not show 

a significant change in lamin A expression compared to the healthy controls, but they did 

show a significant increase in the levels of lamin C (43%, p = 0.0078), as did the liver (42%, 

p = 0.0075) and brain (43%, p= 0.0116). Patient fibroblast cells, on the contrary, showed no 

significant change in lamin C expression compared to the healthy controls, despite having a 

drastic reduction in lamin A levels. It was not possible to reliably determine whether lamin A 

or C were dysregulated in the skeletal muscle extracts due to large variability between 

samples, for reasons we are unable to explain. Lamin A dysregulation in SMA patient 

fibroblasts and SMA mouse heart (where protein levels were lowest, and highest, compared 

to controls, respectively) appears to occur post-transcriptionally, since RT-qPCR analysis 

showed no significant change in lamin A transcript levels in SMA compared to controls 

(Figure 2F).

Lamin A/C and UBA1 are mechanistically linked

Having established the widespread dysregulation of lamin A/C levels across SMA patient 

fibroblasts and mouse tissues (Figure 2), we next wanted to investigate whether there is a 

relationship between lamin A/C and UBA1. The justification for this is that a role for UBA1 

in SMN-dependent pathways has been well characterised across several models of SMA (19–

21), and previous research has shown that like UBA1 (19), lamin A/C is implicated in the 

regulation of the β-catenin signalling pathway (30, 31). In addition, a previous study reported 

decreased levels of UBA1 expression across a range of non-neuronal tissues from the 
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Taiwanese mouse model of SMA compared to controls, with the heart being most severely 

affected, followed by the liver (20). This is of particular interest in context with the current 

study, since heart tissue from SMA mice showed the greatest increase of lamin A/C levels 

across the tissues examined, also followed by the liver (Figure 2). (SMA patient fibroblasts 

appear to be an anomaly, as they were the only sample to show reduced lamin A levels 

compared to controls but had unchanged levels of UBA1 (Supplementary File, S4)). To 

investigate the relationship between lamin A/C, UBA1 and SMN, a western blot study of 

their relative protein expression levels was conducted using equal amounts of total protein 

from heart, muscle, liver, brain and spinal cord tissue extracts from healthy control mice and 

from healthy human fibroblasts. This revealed a strong inverse pattern of lamin A/C and 

UBA1 expression (Figure 3A) whereby the cells / tissues typically considered under the most 

mechanical strain (i.e. fibroblast cells, heart and muscle tissue) had high relative levels of 

lamin A/C and low relative levels of UBA1. Tissues under the least mechanical strain (i.e. 

liver, brain and spinal cord) showed the opposite pattern, with low relative levels of lamin 

A/C and high relative levels of UBA1 (Figure 3A). SMN followed the same expression trend 

as UBA1 across the tissues examined (Figure 3A). 

Having established an inverse correlation between UBA1 and lamin A/C expression across a 

range of tissues, we next wanted to determine whether a mechanistic link exists between 

them. Knockdown of UBA1 expression in human embryonic kidney (HEK) cells resulted in a 

~43% upregulation of lamin A expression (p = 0.0398), independent of changes to lamin C 

and SMN (Figure 3B). We also examined mouse embryonic fibroblast cells lacking the 

LMNA gene (32), and found that UBA1 (55%, p = 0.0053) and SMN (21%, p = 0.0016) were 

significantly reduced compared to the control (Figure 3C). Immunostaining of control and 

SMA patient fibroblasts showed colocalisation between UBA1 and lamin A at the nuclear 
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periphery in control and SMA cells (Figure 4A), indicating a possible interaction between 

lamin A/C and UBA1. To investigate this further, an immunoprecipitation from control and 

SMA mouse heart extracts was performed using a lamin A/C monoclonal antibody attached 

to magnetic beads. Although both lamin A/C and UBA1 were easily detected in SMA and 

control heart extracts by western blot analysis, UBA1 was undetectable in the eluates 

following pull-down (Figure 4B). It is important to note though that an interaction between 

lamin A/C and UBA1 cannot be ruled out on this basis since physiological interactions may 

occur between a minor proportion of the total protein present and/or it may be vulnerable to 

disruption by protein extraction methods (33). Interestingly, however, we did find that a small 

proportion of the total β-catenin co-immunoprecipitated with lamin A/C from both SMA and 

control heart extracts, providing evidence that lamin A/C interacts with β-catenin in the heart 

under normal physiological conditions (Figure 4B). When taken together, these experiments 

demonstrate a mechanistic link between lamin A/C and UBA1, a proven contributor to SMN-

dependent disease pathways, and highlight β-catenin signalling as a potential pathway upon 

which they both converge. 

Discussion

A small percentage of SMA cases are associated with mutations in genes other than SMN, 

including UBA1 (34), GARS1 (35) and LMNA (17, 18). Mutations in the UBA1 gene, which 

encodes the UBA1 protein, cause a form of X-linked infantile SMA (SMAX2) (34), and a 

role for UBA1 in SMN-dependent pathways has also been well characterised across several 

models of SMA (19–21). Mutations in GARS1 are known to cause infantile (36, 37) as well 

as an adult onset type of SMA (35). Dysregulation of UBA1/GARS1 pathways disrupted 

sensory neuron fate and altered sensory-motor connectivity in SMA mice, both of which were 
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corrected following restoration of UBA1 levels (21). Unlike UBA1 and GARS1, however, the 

involvement of LMNA in SMN-dependent disease pathways has so far been unexplored. 

Here, we demonstrated that there are widespread molecular defects in heart tissue from the 

Taiwanese mouse model of severe SMA, one of which is the protein product of the LMNA 

gene, lamin A/C. We verified the robust increase of lamin A/C in the hearts from SMA mice, 

and have identified a mechanistic link between UBA1 and lamin A/C. 

The A-type lamins, lamin A and C, are encoded by LMNA gene, and in addition to providing 

structural support to the nucleus, are involved in several other functions including 

mechanosignaling, chromatin organization and regulation of gene expression (38). Mutations 

in LMNA gene cause a spectrum of disorders known as laminopathies, the majority of which 

prominently feature cardiac pathology. The adult form of SMA caused by LMNA mutations is 

no exception to this, as each of the patients described experienced cardiac problems with 

disease progression and required a pacemaker. Examination of family history in each case 

also revealed a high frequency of cardiac abnormalities and sudden unexplained cardiac 

deaths (15, 16). This indisputable link between lamin A/C mutations and cardiac pathology in 

a wide range of conditions, including a rare form of SMA, leaves very little doubt that correct 

functioning of lamin A/C is a key requirement for the maintenance of cardiac health. The 

finding here that lamin A/C is robustly increased in heart tissue from a mouse model of SMA 

therefore strongly suggests that lamin A/C is responsible, at least in part, for previously 

reported cardiac defects in SMA. 

Lamin A/C plays a significant role in the regulation of cell stability and cell dynamics (39), 

and its expression levels correlate with tissue stiffness, where rigid tissues have the highest 

levels and softer tissues the least (40). This therefore suggests that changes in lamin A/C 
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expression may be most pathologically relevant in SMA in highly mechanically active tissues 

such as the heart, where increased expression of lamin A/C is likely to impair its proper 

functioning. Indeed, increased rigidity of human and rat cardiomyocytes increased the extent 

to which cells/tissues resist deformation (i.e. passive tension) in-vitro (41, 42), and in-vivo rat 

experiments showed that higher passive tension slows the dynamics of myocardium 

contractions and induces functional heart defects (42). Increased cardiomyocyte rigidity was 

also identified in a cell model carrying a mutation in the LMNA gene (43). This mutation 

causes severe dilated cardiomyopathy in humans (43), which strongly mirrors the phenotype 

previously observed in severe and mild mouse models of SMA, including thinning of 

ventricle walls and interventricular septum (11, 13), and dilation of ventricles (13, 44, 45). 

The pathological end-point of dilated cardiomyopathy is systolic heart failure where the heart 

cannot pump blood properly. This would be evidenced by decreased ejection fraction and 

blood pooling in ventricles; both of which were identified in SMA mice (13, 44–46) and 

SMA patients (18, 47, 48). In the context of SMN-dependent SMA, it seems highly likely, 

therefore, that increased levels of lamin A/C would lead to stiffening of the cardiomyocytes, 

impeding their ability to contract properly and inducing the cardiac defects previously 

reported in SMA. In addition, cardiac fibrosis has been described in patients harbouring a 

LMNA mutation (49, 50), and was frequently reported in SMA patients and mouse models of 

SMA (10), even at a pre-symptomatic stage of the disease in both severe and intermediate 

mouse models of SMA (11, 12). As cardiac fibrosis is a key regulator of myocardial rigidity 

(42), it is therefore possible that this might further exacerbate problems described above 

(Figure 5).

A role for lamin A/C in SMA is strengthened further by our data demonstrating a mechanistic 

link between lamin A/C and UBA1, a key contributor to SMN-dependent disease pathways 
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(19–21). It seems highly likely that this mechanism converges on the β-catenin signalling 

pathway, since both lamin A/C and UBA1 are implicated in its regulation (19, 30, 31). UBA1 

controls the stability of β-catenin through the canonical ubiquitin-proteasome pathway, and 

deficiency in UBA1 protein levels leads to β-catenin accumulation and neuromuscular 

pathology in SMA (19). Defective Wnt/β-catenin signalling was found to contribute to the 

pathology of dilated cardiomyopathy caused by mutation in LMNA gene (30), and in a 

separate study, lamin A/C was shown to regulate the differentiation fate of mesenchymal 

stem cells (MSCs) by controlling dynamics of the Wnt/β-catenin signalling pathway (31). 

Lamin A/C overexpression, for example, increased nuclear levels of β-catenin and activated 

the Wnt signalling pathway to promote osteoblast differentiation (31). The same study also 

provided evidence of an interaction between lamin A/C and β-catenin by 

immunoprecipitation of nuclear proteins from MSCs forcibly overexpressing lamin A/C (31). 

This physical interaction was proposed as a mechanism by which β-catenin is translocated to 

the nucleus (31). Here, we further expanded the knowledge of the relationship between lamin 

A/C and β-catenin, by demonstrating an interaction between them in heart extracts under 

normal physiological conditions.

The arguments above support the hypothesis that lamin A/C dysregulation is likely to be 

responsible, at least in part, for previously reported cardiac defects in SMA, but other 

proteins identified in this screen also offer insight into the molecular defects underlying 

cardiac abnormalities in SMA. For example, two such proteins, SUN domain-containing 

protein 2 (SUN2) (51) and cell division cycle 5-like protein (Cdc5l) (52), are known lamin 

A/C interactors and may provide further insights into lamin A/C-associated pathways in 

SMA. Like LMNA, mutations in SUN2, the gene encoding the SUN2 protein, have been 

associated with Emery-Dreifuss muscular dystrophy, a neuromuscular disorder often 
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associated with cardiac defects (53). Cdc5l, on the other hand, is a known splicing complex 

component that appears to require lamin A/C in order to regulate its assembly and targeting 

to the spliceosomal complex (52). Alterations to this interaction may therefore affect splicing 

and gene transcription, further exacerbating the downstream molecular consequences of 

reduced SMN expression. With this in mind, it is interesting to note that a large proportion of 

the down-regulated proteins in the SMA mouse heart were associated with translation, and re-

enforces previous work showing that the SMN protein plays fundamental roles in protein 

translation (15, 16). It is also highly relevant that we found a large proportion of the down-

regulated proteins in the SMA heart to be associated with metabolic processes, while the up-

regulated proteins were strongly associated with cytoskeletal and extracellular matrix 

organisation (Figure 1). Imbalances in contractile performance are known to promote 

remodelling and dedifferentiation of adult cardiomyocytes; the consequences of which 

include cytoskeletal rearrangement, restructuring of contractile apparatus, and reduced 

oxidative metabolism (54). Ironically, it seems that these adaptive processes - presumably 

intended to protect the cardiomyocytes in times of mechanical and/or molecular stress – can 

lead to adverse consequences for the heart (54). Disruption of actin cytoskeleton, for 

example, can impair contractile properties of cardiomyocytes and was implicated in initiation 

of cardiomyocyte apoptosis (55). 

Here we have offered new insight into the molecular defects underlying cardiac abnormalities 

in SMA, but other important questions remain that are worthy of further attention. It would 

be of interest in the future, for example, to explore the functional consequences of lamin A/C 

dysregulation in other cells and tissues throughout the natural history of disease progression 

in SMA. Moreover, identification of upstream regulators of lamin A/C may help to unravel 

the tissue-specific regulatory mechanisms that act on lamin A/C in response to SMN 
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depletion. Finally, and most importantly, it will be crucial to determine the extent to which 

SMN-replacement therapies reverse the molecular defects in SMA, and whether this is 

sufficient to fully rescue the cardiac defects widely reported across SMA patients and mouse 

models. When doing so, it would be important to monitor cardiac health longitudinally to 

determine whether new phenotypes emerge following long-term SMN-replacement therapy, 

and with increasing age. Therapies primarily designed to target neuronal tissues, such as 

Nusinersen, are especially relevant in this context since they are unlikely to rescue 

pathological defects in SMA heart. This knowledge, together with a broader understanding of 

the interplay between lamin A/C and other regulators of heart function in SMA, would help 

to isolate the most appropriate targets for therapy design that could, in combination with 

SMN-targeted therapy, offer maximum therapeutic benefit to all SMA patients.

Materials and Methods

Spinal muscular atrophy mouse model

The Taiwanese mouse model (original strain purchased from Jackson Laboratories, No. 

005058), heterozygous for the SMN2 transgene on Smn null background (Smn−/−;SMN2tg/+) 

(22) and age-matched phenotypically normal controls (Smn+/-; SMN2tg/o) were maintained in 

SPF facilities at the University of Edinburgh. The breeding strategy, and genotyping using 

standard PCR protocols, were employed as previously described (56). Tissue was harvested 

at a symptomatic time point, postnatal day 8 (P8). All animal work was carried under the 

appropriate Project and Personal Licenses from the UK Home Office (PPL:60/4569) and 

following local ethical review.
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Quantitative proteomics analysis

Total protein extracts were prepared from the hearts of postnatal day 8 (P8) SMA mice (n = 

5) and healthy littermate mice (n = 5) for iTRAQ quantitative mass spectrometry analysis as 

previously described (57). Following trypsin digestion, peptides were labelled with iTRAQTM 

tagging reagents according to the protocol in the iTRAQ kit and were assigned to each 

sample group as follows: 114-control and 115-SMA.

High pH reverse-phase liquid chromatography (RPLC) fractionation

All iTRAQ labelled peptides were combined into one tube, concentrated using a vacuum 

concentrator (ThermoSavant, ThermoFisher Scientific) and resuspended in 100 µl of buffer A 

(10 mM ammonium formate (NH4HCO2), 2 % acetonitrile (MeCN), pH 10.0). The peptides 

were then fractionated by high pH reverse-phase liquid chromatography (RPLC) using a C18 

column (XBridge C18 5 µm, 4.6 x 100 mm, Waters). The column was rinsed with 96 % 

buffer A at 1 mL/min for 6 minutes until the optical density (OD) on the ultraviolet 

chromatogram returned to the baseline. The gradient ran from 4-28 % of buffer B (10 mM 

NH4HCO2, 90 % MeCN, pH 10.0) for 30 minutes to 28-50 % buffer B for 6 minutes. The 

column was rinsed in 80 % buffer B for 5 minutes and then was re-equilibrated at initial 

conditions with 4 % buffer B for 11 minutes. Fractions of 0.5 mL were collected every 30 

seconds. The UV chromatogram was analysed and the fractions with similar peptide 

concentration across the elution profile were combined to give 12 fractions. The pooled 

fractions were concentrated in a vacuum concentrator and resuspended in 30 µl of 0.1 % 

formic acid (FA). 

Liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) analysis
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One third of each fraction containing the labelled peptides was analysed by mass 

spectrometry. Peptides were separated by liquid chromatography (LC) using a nanoLC Ultra 

2D plus loading pump and nanoLC AS-2 autosampler chromatography system (Eksigent). 

Peptides were loaded with buffer A (2% MeCN, 0.05% TFA in ultrapure water) and bound to 

an Acclaim PepMap100 trap (100 µm x 2 cm) (ThermoFisher Scientific). The trap was then 

washed for 10 minutes with buffer A, after which the trap was turned in-line with the 

analytical column (Acclaim PepMap RSLC column, 75 µm x 15 cm). The analytical solvent 

system consisted of buffer A and buffer B (98 % MeCN, 0.1 % FA in ultrapure water) at 300 

nl/min flow rate. Peptides were eluted using the followed gradient: linear 2-20 % of buffer B 

over 90 minutes, linear 20-40 % of buffer B for 30 minutes, linear 40-98% of buffer B for 10 

minutes, isocratic 98% of buffer B for 5 minutes, linear 98-2% of buffer B for 2.5 minutes 

and isocratic 2% buffer B for 12.5 minutes. The eluent was sprayed with a NANOSpray II 

source (electrospray ionization, ESI) into the TripleTOF 5600+ tandem mass spectrometer 

(AB Sciex), controlled by Analyst® TF software (AB Sciex). The mass spectrometer was 

operated in data-dependent acquisition (DDA) top20 positive ion mode with 120 ms 

acquisition time for MS (m/z 400-1250) and 80ms for MS/MS (m/z 95-1800), and 15 seconds 

of dynamic exclusion. MS/MS was conducted with a rolling collision energy (CE) inclusive 

of present iTRAQ CE adjustments.

The twelve raw mass spectrometry data files were analysed by ProteinPilot software, version 

5.0.1.0 (Applied Biosystems) with the ParagonTM database search and Pro GroupTM 

Algorithm using the UniProtKB/Swiss-Prot FASTA database. The general Paragon search 

analysis parameters were: type ‘iTRAQ4plex (Peptide Labeled)’, cysteine alkylation 

‘MMTS’, digestion ‘trypsin’ as the cleavage enzyme, instrument ‘TripleTOF, and species 

‘Mouse’ for sample parameters; processing parameters were specified as ‘quantitative’, ‘bias 
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correction’, ‘background correction’; ‘thorough ID’ and ‘biological modifications’. Proteins 

that showed a Protein Threshold > 5 were used for the Pro Group Algorithm to calculate the 

relative quantification of the protein expression, generating an error factor and p-value. A 

false discovery rate (FDR) analysis was performed using the Proteomics System Performance 

Evaluation Pipeline (PSPEP). 

Bioinformatics analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID 6.8) (23, 24) 

was used for the gene ontology (GO) analysis. The analysis was performed separately for 

upregulated and downregulated proteins, and included terms with at least two annotated 

proteins and p-value ≤ 0.05. Differentially expressed proteins were also analysed using the 

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 10 (25) to identify 

statistically significant interactions between them. Association network analysis was 

performed with high confidence (0.700) interaction score for upregulated and with highest 

confidence (0.900) interaction score for downregulated proteins to exclude false positive 

results. 

Cell culture 

Skin fibroblast cells from the Coriell Cell Repository (Supplementary File, S1) were grown in 

high glucose Dulbecco's Modified Eagle Medium (DMEM; Gibco) with 10% fetal bovine 

serum (FBS; Gibco) supplemented with 1% non-essential amino acids (MEM-NEAA; Gibco) 

and 1 % penicillin-streptomycin (PEN-STREP; Lonza). Wild type and LMNA knockout 

mouse embryonic fibroblast cells (MEFs) (32) were grown in DMEM (Gibco) with 15% FBS 

(Gibco) supplemented with 1% MEM-NEAA (Gibco) and 1 % PEN-STREP (Lonza). 
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HEK293 cells were obtained from European Collection of Authenticated Cell Cultures. Cell 

culture and knockdown of ubiquitin-like modifier-activating enzyme 1 (UBA1) was 

performed as previously described (21). Briefly, HEK293 cells were grown in DMEM (Life 

Technologies) with 10% FBS (Sigma), penicillin/streptavidin (Invitrogen) and L-glutamine 

(Invitrogen). Cells were transfected with RNAiMax (Invitrogen) and 2.5µM Silencer Select 

Validated UBA1 siRNA (s601, targeted against exons 24 and 25; Life Technologies) or 

2.5µM negative control siRNA 2 (Life Technologies) according to the manufacturer’s 

instructions. Control (CTR) and UBA1 knockdown (UBA1 KD) HEK cells were harvested 

48h after transfection.

Western blotting

Protein extraction, SDS-PAGE and western blotting were performed as previously described 

(58). Briefly, after SDS-PAGE a part of the gel was excised and stained with Coomassie blue 

as an internal loading control for total protein. Proteins from the remaining part of the gel 

were transferred to nitrocellulose membrane by western blotting overnight. Membranes were 

blocked with 4% powdered milk and incubated with primary antibodies in dilution buffer 

(1% FBS, 1% horse serum, 0.1% BSA in PBS with 0.05% Triton X-100) for a maximum of 

two hours. Primary antibodies were as follows: mouse anti-SMN (MANSMA12 2E6 (59); 

1:100), rabbit anti-UBA1 (Novus; NBP2-67816; 1:500-1:1000), mouse anti-lamin AC 

(MANLAC1 4A7 (60); 1:100) was used for cell extracts and rabbit anti-lamin AC (Abcam; 

ab169532; 1:2000) was used for tissue extracts. Following incubation with HRP-labelled 

rabbit anti-mouse Ig (DAKO, P0260) or HRP-labelled goat anti-rabbit Ig (DAKO, P0488) in 

dilution buffer at 0.25 ng/mL, membranes were incubated with West Pico or West Femto 

(Thermo Fisher) and visualised using a Gel Image Documentation system (Biorad). 

Densitometry measurements of antibody reactive bands were obtained using Fiji software 
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(v1.51) (61) and were normalised to densitometry measurements of the Coomassie stained 

gel. For densitometry measurements only, contrast and brightness were adjusted uniformly 

across the gel and blot to decrease the background and enhance signal detection.

RT-qPCR

Total RNA was extracted using RNeasy Plus Mini kit (Qiagen) and quantified with a 

NanoDrop ND- 1000 spectrophotometer (Thermo Fisher). Absorption ratios (OD260/OD280 

nm; OD260/OD230 nm) were used to verify the integrity of the RNA. Total RNA was reverse 

transcribed using SuperScrip VILO cDNA Synthesis Kit (Invitrogen). Quantitative PCR was 

performed in QuantStudio 3 Real Time PCR system (Applied Biosystems), using SYBR 

Green detection system (SYBR Select Master Mix; Applied Biosystems). All PCR reactions 

were performed in triplicates and contained 3.75 ng of cDNA (fibroblast cells) or 2.8 ng of 

cDNA (heart tissue), and 300 nM Forward and 300 nM Reverse primers in the final volume 

of 20 μL. Parallel wells with no cDNA (NTC; no-template controls) were run for each gene 

to control for contamination. RNA Polymerase II Subunit J (POLR2J) and TATA-Box 

binding protein (TBP) were used as reference genes as they have previously demonstrated 

stable expression across tissues (62). Relative gene expression was quantified using Pfaffl 

method (63). The parameters of the reactions were 50°C for 2 min, 95°C for 10 min, and 40 

cycles of 95°C for 15 sec and 60°C for 1 min. Dissociation curves were obtained for each 

sample and PCR products were run on 1% agarose gel for a quality control. Primer sequences 

for lamin A, POLR2J and TBP are available in the Supplementary File (S2). Efficiency of the 

primer pairs was determined by making serial dilutions of the cDNA, plotting the log values 

of the cDNA against the Ct (cycle threshold) values, and using a slope to calculate the 

efficiency according to the equation: E = 10[–1/slope] x 100 (63).
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Immunohistochemistry (IHC)

SMA and control mouse hearts were fixed in 4% paraformaldehyde for 4 hours, 

cryopreserved in 30% sucrose solution with 0.1% sodium azide and subsequently embedded 

in a 1:1 solution of 30% sucrose and optimum cutting temperature compound (OCT) at -

40oC. Ventricular heart sections (7µm) were air dried for 1 hour and subjected to antigen 

retrieval by submersion for 20 minutes in 10mM sodium citrate buffer at 90°C, followed by 

30 minutes cooling remaining in solution. Sections were incubated for 2 hours in blocking 

solution (0.4% bovine serum albumin (BSA), 1% Triton X-100 in 0.1M PBS) at 4°C and then 

overnight with rabbit anti-lamin A/C antibody (Novus; NBP2-19324) at 4°C. Slides were 

washed twice (10 minutes each in PBT (0.1M phosphate buffered saline (PBS) with 0.1% 

Tween-20)), followed by one 10 minute wash in 0.1M PBS. Sections were incubated with 

Cy3 goat anti-rabbit IgG (H+L) (ThermoFisher; A10520) for 2 hours at 4°C, with successive 

washes as before. Sections were mounted using MOWIOL media (10% Mowiol (Sigma; 

81381), 20% glycerol, 50% 0.2M Tris buffer pH 8.5, 3% 1,4-diazobicyclooctance made up in 

distilled water) containing 4’,6-diamidino-2-phenylindole (DAPI). 

For the Figure, sections were imaged using Nikon eclipse e400 microscope (20x objective). 

For the purpose of quantification, sections were imaged using a Zeiss LSM710 inverted 

confocal microscope (63x objective). Densitometry measurements of lamin A/C staining in 

the heart ventricles were performed using Fiji software (version 1.51) (61). Images were 

calibrated to optical density (OD) as previously described (58), and rectangular selection tool 

of fixed size was used to measure OD of the ventricle wall. Prior to statistical analysis, the 

OD of the background was subtracted from the OD measurements of the ventricle wall. Nine 

sections from each mouse were used in the analysis.
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Immunocytochemistry

Fibroblast cells were fixed in acetone: methanol solution (50:50) for 10 minutes, washed with 

PBS three times for five minutes and incubated with rabbit anti-UBA1 (Novus; NBP2-67816; 

1:100) and mouse anti-lamin A (Santa Cruz; sc-71481; 1:50) in blocking buffer (1% FBS and 

1% HS in PBS) for one or two hours. After incubation with goat anti-rabbit IgG Alexa Fluor 

488 and anti-mouse IgG Alexa Fluor 546 (Life Technologies; 5 μg/mL) in blocking buffer for 

one hour, cells were stained with DAPI (Sigma; 0.4 μg/mL) for 10 minutes and mounted 

using Hydromount (National diagnostics). Between each step cells were washed with PBS 

three times for five minutes. Images were obtained using Leica SP5 confocal microscope 

with 63× oil immersion objective. 

Immunoprecipitation 

Immunoprecipitation was performed as described previously (64). Briefly, anti-mouse Pan 

Ig-coated magnetic beads (50μl) (Dynal, Oslo) were washed with 4% BSA in PBS, then 

incubated with an anti-lamin A/C monoclonal antibody (26) (neat, 50μl) for 1 hour at room 

temperature with gentle rolling. The beads were then washed and incubated for 1 hour at 

room temperature with RIPA extracts of heart tissue from SMA and healthy littermate control 

mice (15μl) on a roller. The beads were washed thoroughly with RIPA buffer before eluting 

captured material by heating at 900C for 3 minutes in 1 x SDS sample buffer (30μl) (2% 

sodium dodecyl sulphate- SDS, 10% glycerol, 5% 2-mercaptoethanol, 62.5 mM Tris-HCl, pH 

6.8). Samples were subjected to western blotting as described above. Primary antibodies were 

as follows: rabbit anti-lamin AC (Abcam; ab169532; 1:2000), rabbit anti-UBA1 (Novus; 

NBP2-67816; 1:1000) and mouse anti-β-catenin (BD Transduction Laboratories; 610154; 

1:1000).
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Statistical analysis

All statistical analyses were performed in GraphPad Prism version 8.0.1 for Windows, 

GraphPad Software, San Diego, California USA, www.graphpad.com. The Shapiro-Wilk test 

was first used to assess the distribution of the data, followed by unpaired two-tailed t-test for 

parametric data, and a Mann-Whitney U test for a non-parametric data. All data are presented 

as mean +SD. Statistical significance was considered to be p ≤ 0.05 for all analyses.

Supplementary material

Supplementary Material is available at... 

Acknowledgements

The authors would like to thank Prof Colin L Stewart, Institute of Medical Biology, 

Singapore, for kindly providing wild type and LMNA knockout mouse embryonic fibroblasts, 

and Prof Glenn E Morris for helpful discussions about lamin A and for providing access to 

laboratory equipment. This research was supported by funding from the Newlife Charity 

[SG/15-16/11] (HF) and Keele University ACORN funding (HF & DS); British Heart 

Foundation [PG/16/68/31991] (IH); UK SMA Research Consortium (SMA Trust) (THG) and 

the Euan MacDonald Centre for Motor Neurone Disease Research (HKS and THG); and 

Wellcome Trust [094476/Z/10/Z] (SLS).

Conflict of interest statement

THG is a member of SMA-related advisory boards for Roche, Muscular Dystrophy UK and 

SMA Europe.  

Page 23 of 42 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

References

1. Groen, E.J.N., Talbot, K. and Gillingwater, T.H. (2018) Advances in therapy for spinal 

muscular atrophy: promises and challenges. Nat. Rev. Neurol., 14, 214–224.

2. Simone, C., Ramirez, A., Bucchia, M., Rinchetti, P., Rideout, H., Papadimitriou, D., Re, 

D.B. and Corti, S. (2016) Is Spinal Muscular Atrophy a disease of the motor neurons 

only: pathogenesis and therapeutic implications? Cell. Mol. Life Sci., 73, 1003–1020.

3. Verhaart, I.E.C., Robertson, A., Wilson, I.J., Aartsma-Rus, A., Cameron, S., Jones, C.C., 

Cook, S.F. and Lochmüller, H. (2017) Prevalence, incidence and carrier frequency of 

5q-linked spinal muscular atrophy-a literature review. Orphanet J. Rare Dis., 12.

4. Lefebvre, S., Burglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., Benichou, B., 

Cruaud, C., Millasseau, P., Zeviani, M., et al. (1995) Identification and characterization 

of a spinal muscular atrophy-determining gene. Cell, 80, 155–165.

5. Sumner, C.J. and Crawford, T.O. (2018) Two breakthrough gene-targeted treatments for 

spinal muscular atrophy: challenges remain. J. Clin. Invest., 128, 3219–3227.

6. Finkel, R.S., Mercuri, E., Darras, B.T., Connolly, A.M., Kuntz, N.L., Kirschner, J., 

Chiriboga, C.A., Saito, K., Servais, L., Tizzano, E., et al. (2017) Nusinersen versus 

Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med., 377, 1723–

1732.

7. Mercuri, E., Darras, B.T., Chiriboga, C.A., Day, J.W., Campbell, C., Connolly, A.M., 

Iannaccone, S.T., Kirschner, J., Kuntz, N.L., Saito, K., et al. (2018) Nusinersen versus 

Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med., 378, 625–635.

8. Mendell, J.R., Al-Zaidy, S., Shell, R., Arnold, W.D., Rodino-Klapac, L.R., Prior, T.W., 

Lowes, L., Alfano, L., Berry, K., Church, K., et al. (2017) Single-Dose Gene-

Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med., 377, 1713–1722.

9. Bowerman, M. (2019) Funding for spinal muscular atrophy research must continue. Futur. 

Page 24 of 42Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Neurol, 14.

10. Wijngaarde, C.A., Blank, A.C., Stam, M., Wadman, R.I., Van Den Berg, L.H. and Van 

Der Pol, W.L. (2017) Cardiac pathology in spinal muscular atrophy: a systematic 

review. Orphanet J. Rare Dis., 12.

11. Shababi, M., Habibi, J., Yang, H.T., Vale, S.M., Sewell, W.A. and Lorson, C.L. (2010) 

Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum. 

Mol. Genet., 19, 4059–4071.

12. Cobb, M.S., Rose, F.F., Rindt, H., Glascock, J.J., Shababi, M., Miller, M.R., Osman, 

E.Y., Yen, P.-F., Garcia, M.L., Martin, B.R., et al. (2013) Development and 

characterization of an SMN2-based intermediate mouse model of Spinal Muscular 

Atrophy. Hum. Mol. Genet., 22, 1843–1855.

13. Maxwell, G.K., Szunyogova, E., Shorrock, H.K., Gillingwater, T.H. and Parson, S.H. 

(2018) Developmental and degenerative cardiac defects in the Taiwanese mouse model 

of severe spinal muscular atrophy. J. Anat., 232, 965–978.

14. Sheng, L., Wan, B., Feng, P., Sun, J., Rigo, F., Bennett, C.F., Akerman, M., Krainer, A.R. 

and Hua, Y. (2018) Downregulation of Survivin contributes to cell-cycle arrest during 

postnatal cardiac development in a severe spinal muscular atrophy mouse model. Hum. 

Mol. Genet., 27, 486–498.

15. Sanchez, G., Dury, A.Y., Murray, L.M., Biondi, O., Tadesse, H., El Fatimy, R., Kothary, 

R., Charbonnier, F., Khandjian, E.W. and Côté, J. (2013) A novel function for the 

survival motoneuron protein as a translational regulator. Hum. Mol. Genet., 22, 668–

684.

16. Bernabò, P., Tebaldi, T., Groen, E.J.N., Quattrone, A., Gillingwater, T.H. and Viero, G. 

(2017) In Vivo Translatome Profiling in Spinal Muscular Atrophy Reveals a Role for 

SMN Protein in Ribosome Biology. Cell Rep., 21, 953–965.

Page 25 of 42 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17. Rudnik-Schöneborn, S., Botzenhart, E., Eggermann, T., Senderek, J., Schoser, B.G.H., 

Schröder, R., Wehnert, M., Wirth, B. and Zerres, K. (2007) Mutations of the LMNA 

gene can mimic autosomal dominant proximal spinal muscular atrophy. Neurogenetics, 

8, 137–142.

18. Iwahara, N., Hisahara, S., Hayashi, T., Kawamata, J. and Shimohama, S. (2015) A novel 

lamin A/C gene mutation causing spinal muscular atrophy phenotype with cardiac 

involvement: report of one case. BMC Neurol., 15, 269.

19. Wishart, T.M., Mutsaers, C.A., Riessland, M., Reimer, M.M., Hunter, G., Hannam, M.L., 

Eaton, S.L., Fuller, H.R., Roche, S.L., Somers, E., et al. (2014) Dysregulation of 

ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. J. Clin. 

Invest., 124, 1821–1834.

20. Powis, R.A., Karyka, E., Boyd, P., Côme, J., Jones, R.A., Zheng, Y., Szunyogova, E., 

Groen, E.J.N., Hunter, G., Thomson, D., et al. (2016) Systemic restoration of UBA1 

ameliorates disease in spinal muscular atrophy. JCI Insight, 1, e87908.

21. Shorrock, H.K., Van Der Hoorn, D., Boyd, P.J., Llavero Hurtado, M., Lamont, D.J., 

Wirth, B., Sleigh, J.N., Schiavo, G., Wishart, T.M., Groen, E.J.N., et al. (2018) 

UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal 

muscular atrophy. Brain, 141, 2878–2894.

22. Hsieh-Li, H.M., Chang, J.-G., Jong, Y.-J., Wu, M.-H., Wang, N.M., Tsai, C.H. and Li, H. 

(2000) A mouse model for spinal muscular atrophy. Nat. Genet., 24, 66–70.

23. Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2009) Systematic and integrative 

analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–

57.

24. Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2009) Bioinformatics enrichment 

tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic 

Page 26 of 42Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Acids Res., 37, 1–13.

25. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., 

Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al. (2015) STRING v10: protein–

protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 43.

26. Fuller, H.R., Gillingwater, T.H. and Wishart, T.M. (2016) Commonality amid diversity: 

Multi-study proteomic identification of conserved disease mechanisms in spinal 

muscular atrophy. Neuromuscul. Disord., 26, 560–569.

27. Mutsaers, C.A., Lamont, D.J., Hunter, G., Wishart, T.M. and Gillingwater, T.H. (2013) 

Label-free proteomics identifies Calreticulin and GRP75/Mortalin as peripherally 

accessible protein biomarkers for spinal muscular atrophy. Genome Med, 5.

28. Aghamaleky Sarvestany, A., Hunter, G., Tavendale, A., Lamont, D.J., Hurtado, M.L., 

Graham, L.C., Wishart, T.M. and Gillingwater, T.H. (2014) Label-Free Quantitative 

Proteomic Profiling Identifies Disruption of Ubiquitin Homeostasis As a Key Driver of 

Schwann Cell Defects in Spinal Muscular Atrophy. J. Proteome Res., 13, 4546–4557.

29. Fuller, H.R., Mandefro, B., Shirran, S.L., Gross, A.R., Kaus, A.S., Botting, C.H., Morris, 

G.E. and Sareen, D. (2016) Spinal Muscular Atrophy Patient iPSC-Derived Motor 

Neurons Have Reduced Expression of Proteins Important in Neuronal Development. 

Front. Cell. Neurosci., 9, 506.

30. Le Dour, C., Macquart, C., Sera, F., Homma, S., Bonne, G., Morrow, J.P., Worman, H.J. 

and Muchir, A. (2017) Decreased WNT/b-catenin signalling contributes to the 

pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. 

Hum. Mol. Genet., 26, 333–343.

31. Bermeo, S., Vidal, C., Zhou, H. and Duque, G. (2015) Lamin A/C Acts as an Essential 

Factor in Mesenchymal Stem Cell Differentiation Through the Regulation of the 

Dynamics of the Wnt/β-Catenin Pathway. J. Cell. Biochem., 116, 2344–2353.

Page 27 of 42 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

32. Sullivan, T., Escalante-Alcalde, D., Bhatt, H., Anver, M., Bhat, N., Nagashima, K., 

Stewart, C.L. and Burke, B. (1999) Loss of A-type Lamin Expression Compromises 

Nuclear Envelope Integrity Leading to Muscular Dystrophy. J. Cell Biol., 147, 913–919.

33. Kubben, N., Voncken, J.W., Demmers, J., Calis, C., van Almen, G., Pinto, Y. and Misteli, 

T. (2010) Identification of differential protein interactors of lamin A and progerin. 

Nucleus, 1, 513–525.

34. Ramser, J., Ahearn, M.E., Lenski, C., Yariz, K.O., Hellebrand, H., von Rhein, M., Clark, 

R.D., Schmutzler, R.K., Lichtner, P., Hoffman, E.P., et al. (2008) Rare Missense and 

Synonymous Variants in UBE1 Are Associated with X-Linked Infantile Spinal 

Muscular Atrophy. Am. J. Hum. Genet., 82, 188–193.

35. Antonellis, A., Ellsworth, R.E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S.-Q., 

Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L.T., et al. (2003) Glycyl 

tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal 

muscular atrophy type V. Am. J. Hum. Genet., 72, 1293–1299.

36. Sivakumar, K., Kyriakides, T., Puls, I., Nicholson, G.A., Funalot, B., Antonellis, A., 

Sambuughin, N., Christodoulou, K., Beggs, J.L., Zamba-Papanicolaou, E., et al. (2005) 

Phenotypic spectrum of disorders associated with glycyl-tRNA synthetase mutations. 

Brain, 128, 2304–2314.

37. James, P.A., Cader, M.Z., Muntoni, F., Childs, A.-M., Crow, Y.J. and Talbot, K. (2006) 

Severe childhood SMA and axonal CMT due to anticodon binding domain mutations in 

the GARS gene. Neurology, 67, 1710–2.

38. Naetar, N., Ferraioli, S. and Foisner, R. (2017) Lamins in the nuclear interior − life 

outside the lamina. J. Cell Sci., 130, 2087–2096.

39. Harada, T., Swift, J., Irianto, J., Shin, J.W., Spinler, K.R., Athirasala, A., Diegmiller, R., 

Dingal, P.C.D.P., Ivanovska, I.L. and Discher, D.E. (2014) Nuclear lamin stiffness is a 

Page 28 of 42Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

barrier to 3D migration, but softness can limit survival. J. Cell Biol., 204, 669–682.

40. Swift, J., Ivanovska, I.L., Buxboim, A., Harada, T., Dingal, P.C.D.P., Pinter, J., 

Pajerowski, J.D., Spinler, K.R., Shin, J.-W., Tewari, M., et al. (2013) Nuclear Lamin-A 

Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science, 

341, 965–966.

41. Borbély, A., Van Der Velden, J., Papp, Z., Bronzwaer, J.G.F., Edes, I., Stienen, G.J.M. 

and Paulus, W.J. (2005) Cardiomyocyte Stiffness in Diastolic Heart Failure. Circulation, 

111, 774–781.

42. Røe, A.T., Magnus Aronsen, J., Skårdal, K., Hamdani, N., Linke, W.A., Danielsen, H.E., 

Sejersted, O.M., Sjaastad, I. and Louch, W.E. (2017) Increased passive stiffness 

promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular 

concentric hypertrophy. Cardiovasc. Res., 113, 1161–1172.

43. Lanzicher, T., Martinelli, V., Puzzi, L., Del Favero, G., Codan, B., Long, C.S., Mestroni, 

L., Taylor, M.R.G. and Sbaizero, O. (2015) The Cardiomyopathy Lamin A/C D192G 

Mutation Disrupts Whole-Cell Biomechanics in Cardiomyocytes as Measured by 

Atomic Force Microscopy Loading-Unloading Curve Analysis. Sci. Reports , 5.

44. Heier, C.R., Satta, R., Lutz, C. and Didonato, C.J. (2010) Arrhythmia and cardiac defects 

are a feature of spinal muscular atrophy model mice. Hum. Mol. Genet., 19, 3906–3918.

45. Bogdanik, L.P., Osborne, M.A., Davis, C., Martin, W.P., Austin, A., Rigo, F., Frank 

Bennett, C. and Lutz, C.M. (2015) Systemic, postsymptomatic antisense oligonucleotide 

rescues motor unit maturation delay in a new mouse model for type II/III spinal 

muscular atrophy. PNAS, 112, E5863–E5872.

46. Shababi, M., Habibi, J., Ma, L., Glascock, J.J., Sowers, J.R. and Lorson, C.L. (2012) 

Partial restoration of cardio-vascular defects in a rescued severe model of spinal 

muscular atrophy. J. Mol. Cell. Cardiol., 52, 1074–1082.

Page 29 of 42 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

47. Yasuma, F., Kuru, S. and Konagaya, M. (2004) Dilated Cardiomyopathy in Kugelberg-

Welander Disease: Coexisting Sleep Disordered Breathing and Its Treatment with 

Continuous Positive Airway Pressure. Intern. Med., 43, 951–954.

48. Roos, M., Sarkozy, A., Chierchia, G.B., De Wilde, P., Schmedding, E. and Brugada, P. 

(2009) Malignant Ventricular Arrhythmia in a Case of Adult Onset of Spinal Muscular 

Atrophy (Kugelberg-Welander Disease). J Cardiovasc Electrophysiol, 20, 342–344.

49. Le Dour, C., Wu, W., Béréziat, V., Capeau, J., Vigouroux, C. and Worman, H.J. (2017) 

Extracellular matrix remodeling and transforming growth factor-β signaling 

abnormalities induced by lamin A/C variants that cause lipodystrophy. J. Lipid Res., 58, 

151–163.

50. van Tintelen, J.P., Tio, R.A., Kerstjens-Frederikse, W.S., van Berlo, J.H., Boven, L.G., 

Suurmeijer, A.J.H., White, S.J., den Dunnen, J.T., te Meerman, G.J., Vos, Y.J., et al. 

(2007) Severe Myocardial Fibrosis Caused by a Deletion of the 5’ End of the Lamin 

A/C Gene. J. Am. Coll. Cardiol., 49, 2430–2439.

51. Taranum, S., Vaylann, E., Meinke, P., Abraham, S., Yang, L., Neumann, S., 

Karakesisoglou, I., Wehnert, M. and Noegel, A.A. (2012) LINC complex alterations in 

DMD and EDMD/CMT fibroblasts. Eur. J. Cell Biol., 91, 614–628.

52. Zahr, H.C. and Jaalouk, D.E. (2018) Exploring the Crosstalk Between LMNA and 

Splicing Machinery Gene Mutations in Dilated Cardiomyopathy. Front. Genet, 9.

53. Meinke, P., Mattioli, E., Haque, F., Antoku, S., Columbaro, M., Straatman, K.R., 

Worman, H.J., Gundersen, G.G., Lattanzi, G., Wehnert, M., et al. (2014) Muscular 

Dystrophy-Associated SUN1 and SUN2 Variants Disrupt Nuclear-Cytoskeletal 

Connections and Myonuclear Organization. PLoS Genet. , 10, e1004605.

54. Szibor, M., Pöling, J., Warnecke, H., Kubin, T. and Braun, T. (2014) Remodeling and 

dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell. Mol. 

Page 30 of 42Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Life Sci, 71, 1907–1916.

55. Communal, C., Sumandea, M., de Tombe, P., Narula, J., Solaro, R.J. and Hajjar, R.J. 

(2002) Functional consequences of caspase activation in cardiac myocytes. PNAS, 99, 

6252–6256.

56. Riessland, M., Ackermann, B., Forster, A., Jakubik, M., Hauke, J., Garbes, L., Fritzsche, 

I., Mende, Y., Blumcke, I., Hahnen, E., et al. (2010) SAHA ameliorates the SMA 

phenotype in two mouse models for spinal muscular atrophy. Hum. Mol. Genet., 19, 

1492–1506.

57. Fuller, H.R., Hurtado, M.L., Wishart, T.M. and Gates, M.A. (2014) The rat striatum 

responds to nigro-striatal degeneration via the increased expression of proteins 

associated with growth and regeneration of neuronal circuitry. 12.

58. Šoltić, D., Bowerman, M., Stock, J., Shorrock, H.K., Gillingwater, T.H. and Fuller, H.R. 

(2018) Multi-Study Proteomic and Bioinformatic Identification of Molecular Overlap 

between Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). 

Brain Sci., 8.

59. Young, P.J., Le, T.T., thi Man, N., Burghes, A.H.M. and Morris, G.E. (2000) The 

Relationship between SMN, the spinal muscular atrophy protein, and nuclear coiled 

bodies in differentiated tissues and cultured cells. Exp. Cell Res., 256, 365–374.

60. Manilal, S., Randles, K.N., Aunac, C., Nguyen, M. thi and Morris, G.E. (2004) A lamin 

A/C beta-strand containing the site of lipodystrophy mutations is a major surface epitope 

for a new panel of monoclonal antibodies. Biochim. Biophys. Acta, 1671, 87–92.

61. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 

Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012) Fiji: an open-source 

platform for biological-image analysis. Nat. Methods, 9, 676–682.

62. Radonić, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W. and Nitsche, A. (2004) 

Page 31 of 42 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. 

Res. Commun., 313, 856–62.

63. Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time 

RT-PCR. Nucleic Acids Res., 29, e45.

64. Fuller, H.R., Marani, L., Holt, I., Woodhams, P.L., Webb, M.M. and Gates, M.A. (2017) 

Monoclonal antibody Py recognizes neurofilament heavy chain and is a selective marker 

for large diameter neurons in the brain. Brain Struct. Funct., 222, 867–879.

Page 32 of 42Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure legends

Figure 1. Bioinformatics analysis of the proteins dysregulated in heart tissue from SMA 

mice. A) Upregulated proteins (n=177) and B) downregulated proteins (n=206) were 

subjected to STRING 10 analysis. Of these, 103 upregulated and 91 downregulated proteins 

are not shown as statistically significant interactions were not identified in STRING 10. 

Protein associations were identified with high confidence (0.700) interaction score for A) 

upregulated and with the highest confidence (0.900) interaction score for B) downregulated 

proteins. The thickness and colour of the lines indicate confidence of the interaction (see 

legend inset in figure). Protein networks were compared to the GO analysis output 

(Supplementary Table 4). The analysis identified protein clusters that associate with enriched 

GO terms in the cellular component (black) and biological process (red) domain. Proteins 

annotated to each term are shown in corresponding circles.  

Figure 2. Widespread dysregulation of lamin A/C expression in fibroblasts from SMA 

patients and in tissues from SMA mice (P8) A) Schematic diagram showing the 

quantitative western blot analysis workflow. Total protein extracts from human fibroblast 

cells and mouse tissues were subjected to SDS-PAGE. A part of the gel was stained with 

Coomassie blue as an internal, total protein loading control. Proteins from the remaining part 

of the gel were transferred to nitrocellulose membrane and developed with the appropriate 

antibody. Quantification of protein levels was performed by normalising densitometry 

measurements of antibody reactive bends to densitometry measurements of Coomassie 

stained gel. Image created with BioRender.com. B) Representative western blots showing 

lamin A/C protein levels in the heart, spinal cord, brain, liver and muscle tissue from SMA 

mice (n=5) and healthy controls (n = 5), and in fibroblast cells from SMA patients (n = 3) and 
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age matched male healthy controls (n = 3). Fibroblast cells are listed in this order: 1. 

GM00498, 2. GM05659, 3. GM00302, 4. GM03813, 5. GM09677, 6. GM00232. The 

uncropped blots and total protein loading controls can be found in the Supplementary File 

(S3). C) Quantification of lamin A/C levels in tissues from SMA mice and in patient 

fibroblast cells. In the liver extract, the lower band was presumed to be lamin C, and the 

upper two bands were presumed to be lamin A isoforms and were consequently measured 

together to give a single value. The graph is presented as average protein levels in SMA 

tissues (expressed relative to the control), with error bars showing standard deviation from 

the mean. The dashed line represents protein levels across healthy control tissues. D) 

Representative immunohistochemistry images showing lamin A/C staining in the heart from 

SMA mouse (P8) and healthy age-matched control. Scale bar = 50 μm. Increased lamin A/C 

staining can be observed in the ventricle wall from SMA mouse, with few lamin A/C positive 

cells found in the ventricle lumen. E) Densitometry measurements of lamin A/C levels in the 

ventricle wall are presented as mean optical density, with error bars showing standard 

deviation from the mean. F) Lamin A transcript levels in the heart from SMA mice (n = 4) 

and healthy controls (n = 4) and in fibroblast cells from SMA patients (n = 3) and healthy 

controls (n = 3). Expression levels of lamin A were normalized to the geometric mean of 

POLR2J and TBP. The graphs are presented as mean expression, with error bars showing 

standard deviation from the mean. CTR- control; ns—not significant; * p < 0.05; ** p < 0.01; 

*** p < 0.001.

Figure 3. UBA1 and lamin A/C are mechanistically linked 

Western blots showing lamin A/C, UBA1 and SMN protein levels in the A) heart, muscle, 

liver, brain and spinal cord tissue from healthy control mice (n=2) and in fibroblast cells from 

healthy individuals (n=2), in B) UBA1 KD and control HEK cells (n = 3) and in C) LMNA 
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KO and wild type MEFs (n = 3). The uncropped blots and loading controls can be found in 

the Supplementary File (S5 and S6). Graphs are presented as average protein levels 

(expressed relative to the control), with error bars showing standard deviation from the mean. 

The dashed line represents protein levels in control cells. H-heart; M-muscle; L-liver; B-

brain; SP-spinal cord; FC-fibroblast cells; ns—not significant; *p < 0.05; ** p < 0.01; *** p 

< 0.001. 

Figure 4. Lamin A/C interacts with β-catenin in mouse heart

A) Representative immunocytochemistry images showing lamin A and UBA1 staining in 

control and SMA patient fibroblast cells. Arrows in the lower magnification images indicate 

cells with the most obvious UBA1 staining at the nuclear periphery. Scale bar = 25 μm. Scale 

bar = 10 μm (control) and 7.5 μm (SMA) in higher magnification images. B) Western blots 

showing lamin A/C, UBA1 and β-catenin expression in the heart tissue from control and 

SMA mice after immunoprecipitation with anti-lamin A/C antibody. Beads alone control 

lanes refer to heart extracts incubated with Dynabeads without the antibody, and represent 

negative control. #β-catenin band was detected in the eluate from lamin A/C pulldown in both 

control and SMA samples, but was not observed in the eluate from the beads alone control. 

Figure 5. Model of how lamin A/C dysregulation, in combination with other molecular 

changes, may contribute to cardiac pathology in SMA. A model is proposed in which 

lamin A/C up-regulation, in combination with other molecular changes that occur in SMA, 

may lead to cardiac fibrosis and impaired cardiac function. Thinner ventricle walls and 

dilated ventricles in SMA heart are clinical features of dilated cardiomyopathy. Image created 

with BioRender.com.
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Abbreviations

SMA- spinal muscular atrophy

SMN- survival of motor neuron

SMN1- survival of motor neuron 1, telomeric

SMN2- survival of motor neuron 2, centromeric

LMNA- lamin A/C

ECG- electrocardiogram

iTRAQ- isobaric tags for relative and absolute quantitation

DAVID- database for annotation, visualization and integrated discovery

STRING 10- search tool for the retrieval of interacting genes/proteins

GO- gene ontology

P8-postnatal day 8

RT-qPCR- reverse transcription- quantitative polymerase chain reaction

Ct- cycle threshold

HEK cells - human embryonic kidney cells

MEFs- mouse embryonic fibroblasts

UBA1- ubiquitin like modifier activating enzyme 1

GARS1- glycyl-tRNA synthetase 1

SMAX2- spinal muscular atrophy, x-linked 2

MSCs- mesenchymal stem cells

SUN2- SUN domain-containing protein 2

SUN2- Sad1 and UNC84 domain containing 2

Cdc5l- cell division cycle 5-like protein

RPLC- reverse-phase liquid chromatography

LC-ESI-MS/MS - liquid chromatography-tandem mass spectrometry
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OD- optical density

FA- formic acid

DDA- data-dependent acquisition

CE- collision energy

FDR- false discovery rate

PSPEP- Proteomics System Performance Evaluation Pipeline

DMEM- Dulbecco's Modified Eagle Medium

FBS- fetal bovine serum

MEM-NEAA- non-essential amino acids

PEN-STREP- penicillin-streptomycin

KD- knockdown

KO- knockout

SDS-PAGE- sodium dodecyl sulfate- polyacrylamide gel electrophoresis

BSA- bovine serum albumin

PBS- phosphate-buffered saline

NTC- no-template control

POLR2J- RNA polymerase II subunit J

TBP- TATA-Box binding protein

OCT- optimum cutting temperature compound

DAPI- 4’,6-diamidino-2-phenylindole
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Figure 3 
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Figure 4 
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