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Abstract
Recognizing users’ daily life activities without disrupting their lifestyle is a key functionality to enable a broad variety of
advanced services for a Smart City, from energy-efficient management of urban spaces to mobility optimization. In this
paper, we propose a novel method for human activity recognition from a collection of outdoor mobility traces acquired
through wearable devices. Our method exploits the regularities naturally present in human mobility patterns to construct
syntactic models in the form of finite state automata, thanks to an approach known as grammatical inference. We also
introduce a measure of similarity that accounts for the intrinsic hierarchical nature of such models, and allows to identify
the common traits in the paths induced by different activities at various granularity levels. Our method has been validated
on a dataset of real traces representing movements of users in a large metropolitan area. The experimental results show
the effectiveness of our similarity measure to correctly identify a set of common coarse-grained activities, as well as their
refinement at a finer level of granularity.

Keywords Grammatical inference · Mobility · Human activity recognition

1 Introduction

Metropolitan areas have witnessed a steady increase in the
number of people living therein, which has triggered an
unprecedented concentration of resources and services within
their boundaries, as well as the deployment of pervasive
urban sensing architectures. As a result, Smart Cities [26]
have emerged as a paradigm to turn the large amounts of
collected data into an asset for city planners and policy
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makers, transforming the whole city into an intelligent envi-
ronment with the ultimate goal of improving the citizens’
lives. However, smart services such as energy-efficient man-
agement of urban spaces, automated surveillance or disaster
risk reduction require an understanding of human behavior
that goes beyond the mere processing of a collection of mea-
surements from pervasive sensing devices. For this reason,
human activity recognition (HAR) [1, 24, 38] has grown
into a self-standing branch of machine learning.

Many of the proposals in the literature [1] heavily
rely on information gathered from the environment to
capture how everyday-life objects are used, or to detect
the presence of the users in relevant areas. Typically
networked heterogeneous sensors, including cameras, RFid,
or contact sensors, needs to be deployed in selected points
of interest. However, extensive and pervasive coverage
is costly, and often impractical in large outdoor settings,
such as Smart Cities. Alternatively, users may be actively
involved in the monitoring process, when wearable sensors
(e.g., heartbeat and body pressure monitors, or sensors
integrated into portable devices, such as smart wristbands)
are used to gather precise information about their actions.
This, however, might result in intolerable invasiveness for
the users.
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In our work, we argue that relevant insight about the
users’ behavior may be gathered by analyzing their mobility
patterns, and we propose a novel approach to complex
human activity recognition from the the analysis of outdoor
mobility traces. Contextual information is gathered without
extensive environmental sensor coverage, and rather just by
means of the GPS sensors of commonly available portable
devices, namely smart phones, in a completely unobtrusive
way. Given the peculiar nature of human mobility, however,
grasping the common traits of seemingly unrelated paths
may be a daunting task. Nonetheless, advanced services
like traffic prediction or mobility optimization require that
an activity is captured in its entirety. It is thus essential
to know why users move across the space (i.e., identify
the activity that induced the trajectory), as opposed to just
how they perform the movement. For instance, a route
recommender system might be able to improve the quality
of the offered service, and tailor it to the specific user’s
needs by suggesting shortest routes to people commuting to
reach their job, scenic ones to tourists on a sightseeing tour,
or less traffic-intensive ones to bikers.

We propose here to represent activities by means of
hierarchical models constructed within the framework of
Algorithmic learning theory (ALT), i.e., the study of
formal languages and their recognizers, automata. Our goal
is to capture the natural regularities in mobility traces
induced by users’ activities by symbolically encoding them,
and regarding them as strings generated by an unknown
grammar. To this aim, we use grammatical interface (GI)
[18], an inductive process capable of selecting the best
grammar consistent with the provided samples, which in
our case are trajectories encoded in symbolic form, and
labeled according to the activities that triggered them. The
obtained models are constructed as a composition of simpler
models of the same nature, so they are naturally suitable to
represent the hierarchical nature of the activities, where each
level on the hierarchy corresponds to a level of geographical
granularity.

We have validated our approach on a publicly available
dataset of real-life trajectories representing movements
of users occurring mostly within a large metropolitan
area, with occasional long-distance transfers. Experimental
results show that our models accurately characterize the
users’ activities at different geographical granularities, and
that the proposed similarity measure can correctly classify
them against a taxonomy representing coarse- and fine-
grained tasks in everyday life.

The contribution of this paper is threefold: (1) we present
a novel tool based on grammatical models to express and
extrapolate the underlying semantics of complex activities
from mobility traces; (2) we describe a framework showing
how the same models can be used to refine the recognition
process, both with respect to more specific activities and

to finer levels of geographical granularity; and finally, (3)
we define a similarity measure that mirrors the intrinsically
hierarchical nature of the proposed models, and makes it
possible to use them to infer the activity performed by
previously unseen users.

The remainder of the paper is organized as follows.
Section 2 summarizes the relevant work on activity
recognition. We describe our approach to building user
activity profiles by grammatical models in Section 3,
and the proposed global similarity measure in Section 4.
Section 5 presents our experimental results on a dataset
of actual mobility traces collected by GPS devices on
smart phones. Finally, Section 6 draws the conclusions and
discusses on-going research.

2 Related work

Many different methodologies have been proposed to
automate the process of human activity recognition. A
first, broad distinction can be made according to the
taxonomy proposed by [1], between single-layered, and
hierarchical approaches (see Fig. 1). In the former case,
human activities are regarded as series of gestures and
actions with sequential characteristics; models are usually
provided in terms of points in a space-time domain or as
sequences of observations. Hierarchical approaches adopt
a different viewpoint, in that they attempt to describe
high-level human activities in terms of simpler ones, so
that the inherent structure may emerge. The authors of
[2], for instance, show that the overall accuracy of the
activity recognition system is improved when a structural

Fig. 1 A taxonomy of HAR methodologies (adapted from [1])
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representation of data features in the form of a graph is
used, and the use of a hierarchy of graphical models, namely
layered hidden Markov models, has been proposed by [29].

A work that is closely related to the approach presented
here is described in [33]. The system proposed therein
maintains the representation of an activity describing how
its composing gestures must be concatenated temporally,
spatially, and logically. Interestingly, the authors suggest
using probabilistic context-free grammars to implement
a semantic-level activity recognition algorithm, and they
show that this leads to an improvement on the overall
system accuracy. However, the syntactical structure itself
is not inferred, but rather matched against the occurrences
of lower-level components. In our approach, on the other
hand, we aim to let syntactical models emerge from data.
By building up on previous work [13, 14], where trajectories
of individual users were represented in the form of finite
state automata, we broaden the scope and focus here on
the capture of the intrinsic structure of complex activities
starting from mobility traces.

Other systems from the literature on HAR are reported
in Table 1 on page 20 along with their discriminating
characteristics, such as the targeted setting—either indoor
or outdoor—the employed sensors, and the range of
recognized activities. We further classify them in terms
of some representative qualitative categories: (a) their
ability to capture the complexity of the activities; (b) the
requirements in terms of monitoring equipment to infer
the context; (c) the practical applicability of the proposed
approach in a real-life setting; and (d) the ability to produce
subject-independent models.

Many approaches are characterized by a focus on ele-
mentary activities performed in constrained environments
or during short periods of time, so they may fail to catch
the inherent complexity of human behavior. As pointed out
by [42], unless only simple, atomic acts are considered, the
diversity arising from concurrent or interleaved activities
necessarily requires the identification of various levels of
abstractions: a high-level activity (e.g., working, shopping
or dining out) is to be expressed as a complex sequence
of actions, which in turn are series of atomic acts (i.e.,
primitive patterns, such as gestures) that may be easily sin-
gled out. Clearly, this usually implies using some kind of
hierarchical model.

A second important parameter to be taken into account
regards the use of context, which is usually associated with
the type of sensors used to detect the behavior of users [32,
40]. The environment may play an active role, as is the
case when sensors are deployed in selected points of interest
to capture how everyday-life objects are used, or when
cameras are used to capture activity-related features such
as position, posture, or motion. While pervasive monitoring
increases the system precision, it clearly requires possibly

costly and hard-to-maintain deployment. On the other hand,
when users are actively involved in the monitoring process,
a personal context may be obtained by means of wearable
sensors, such as heartbeat and body pressure monitors,
or sensors integrated into portable devices, such as smart
wristbands. In [25], a review of the state of the art in HAR
by means of wearable sensors is reported, where the authors
assess 28 systems targeting medical, military, or security
scenarios. In this case, minimizing the inconvenience for the
end-user and preserving their privacy should be the primary
concerns. When mobility is the trait of human behavior that
is to be modeled, smart phones are a natural candidate as
a monitoring device. For example, tracking users exploiting
location data gathered through a cellular network has been
addressed in [5], with an interesting characterization within
an information-theoretic framework, and in [19], where
smart phones are used to recognize complex activities in an
indoor environment, such as cooking or cleaning, by means
of classifiers like multi-layer perceptrons, naı̈ve Bayes, and
Bayesian networks.

A further characterizing feature of HAR systems is the
manner in which data collection is performed. In many
cases, only application-specific activities performed in a
laboratory setting and in a scripted manner are considered.
On one hand, this simplifies the task of obtaining reliable
labels for the training data, which is essential when
supervised methods are to be used for classification;
however, in a real-world scenario, humans perform complex
activities in a variety of ways, and such heterogeneity can
only be captured by performing experiments “in the wild.”

Finally, some of the cited approaches need to be trained
and tested for each individual, while others are able to
produce a classifier which is valid across different subjects,
and can thus deliver subject-independent models for the
activities under exam.

As compared with all of the mentioned works, our
approach is the only one addressing complex activity
recognition in an outdoor setting, with minimal requirement
in terms of the used sensors.

3 Building activity profiles hierarchically

In this work, we aim to address the diversity of complex
human behavior by building structural mobility models,
suitable for matching user mobility models against proto-
typal ones relative to known activities by computing the
relative similarity. The underlying assumption is that human
trajectories are likely to show a high degree of temporal
and spatial regularity which arguably derives from simple,
reproducible patterns rather than abstract statistical mod-
els, such as basic random walk [23]. The concept has been
reaffirmed in [37], where a remarkable lack of variability
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Fig. 2 Outline of the proposed
methodology

in predicted travel patterns was observed by measuring the
entropy of each individual’s trajectory. Hence, it is reason-
able to expect that comprehensive models for all trajectories
related to the same activity may be inferred by capturing
such underlying regularities. In order to do so, we make use
of a structural learning approach.

A comprehensive outline of the proposed approach is
depicted in Fig. 2. Considering the topmost half of the
picture, we assume that a collection of the paths traveled by
a group of users is available, either via a public repository
or acquired through an ad-hoc application, and labeled
according to the activities they were performing. We will
show how a proper encoding system allows to turn such
raw sequences of geographical locations into strings, i.e.,
sequences of symbols corresponding to discrete areas. A
key feature of human mobility is that it is intentional,
as it implies an underlying purpose corresponding to
the activity that is to be performed, e.g., reaching the
workplace, going shopping, and walking in a park. Hence,
our syntactic approach allows us to model trajectories
sharing an underlying regularity (i.e., reflecting the same
underlying activity) by means of finite state automata. As
will be discussed in the following, we will use a supervised
learning method to this end, and discuss the techniques that
can be used in a realistic scenario where data are likely
affected by noise.

The lower half of Fig. 2 shows outlines the recognition
phase of our method. Once reliable general activity models
are produced, the same process may be used on the traces of
a previously unseen user. Their model may then be matched
against the reference activity models produced earlier, and
labelled according to the measure of similarity, which will
be presented in Section 4.

3.1 Expressing trajectories symbolically

Mobility traces are generally stored as sequences of
locations, possibly coupled with a timestamp depending

on the sampling rate of the measurements. A common
representation is by pairs of latitude/longitude coordinates.

Since our approach is based on automata designed to
recognize a language, the coordinates are to be translated
into a symbolic form. To this aim, we selected an encoding
system known as geohash [3], which assigns a hash
string to each latitude/longitude pair in a hierarchical
fashion. Considering a specific geographical zone, and the
corresponding geohash cell, is equivalent to selecting a
specific granularity for measurements. Starting with the
coarsest granularity (covering the entire globe), any chosen
region is divided into 32 subcells identified by a symbol, as
shown in Fig. 3. The process may be recursively repeated
up to the desired precision.

The collection of all sequences of geohash points,
describing the paths travelled by a user while carrying on
a specific activity, represents the raw description of the
activity itself. While coarser granularities may allow us
to capture trajectories in their entirety, the corresponding
strings would lose detail about the geographical position,

Fig. 3 Hierarchical structure of geohash cells
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and the converse holds for finer granularities. For instance,
the simple example in Fig. 4 represents a path of 10
locations in a cell covering a metropolitan area defined
by the wx4 geohash cell. In our encoding, this trajectory
is defined by the sequence of symbols following the cell
geohash prefix, namely eeggggggff:

Fig. 4 A geohash trajectory
crossing multiple subcells

If we focused instead on a smaller area covering just a
neighborhood within the city, we could consider only the
points along the solid line in the figure, characterized by
the longer prefix wx4g, and resulting in a sub-trajectory
described by string bfs67j. On the other hand, if we
selected a country-wide cell such as wx as our base
granularity, the sequence of locations would be completely
described by sequences of varying length of the symbol 4,
which would be recognized by the automaton equivalent to
regular expression 4∗. Although completely accurate, this
representation is not detailed, as it only captures the fact
that the user stays in the country. A comprehensive model,
that is able to capture similarities at the different levels of
granularities is hence needed.

3.2 Hierarchical automatamodels

We now turn our attention to the issue of learning a model
for the movements of a group of users reflecting the activity
that originated them. Provided a symbolic encoding for
the movements, this learning problem may be formulated

in terms of GI as the task of inferring the most general
recognizer of a given set of strings, i.e., the minimal DFA,
consistent with the data. In our case, the alphabet for the
strings used for training is represented by the geohash
symbols. The accepting states of the inferred automaton
would identify those strings corresponding to trajectories
actually traveled by the user when performing the activity
the automaton is intended to recognize. In this work, we
make use of passive learning, a well-known approach for
inferring the automaton recognizing a set of strings provided
as training set. It may be regarded as an inductive process
of a supervised learning, where inference is formulated as a
search in a state space [18].

It is worth pointing out that the chosen symbolic
representation for our trajectory strings gives us the freedom
to apply the learning algorithm at any desired granularity
level. The automaton constructed for a geohash subcell is
thus just a specialization for the corresponding transition of
the parent model, so the overall model can be conveniently
expressed as a composition of automata, as depicted in
Fig. 5.
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Fig. 5 A hierarchy of automata

3.3 Learning from real-life data

To train a passive learning algorithm, data must be presented
to it in the form of positive and negative examples, i.e.,
strings that are supposed to be accepted (respectively,
rejected) by the classifier. Labels will depend, in our case,
by the activity for which the model is being built. Learning
begins by formulating an initial hypothesis as the automaton
representing the available examples. Note that this is always
possible, but one such automaton would trivially recognize
just the strings provided as training. The aim is then to
have it evolve toward a more general automaton, capable
of capturing more strings of the unknown language, which
roughly corresponds to the idea of generalization in typical
machine learning methods. This may be carried on by means
of a structural operator, namely pairwise state merging, that
is able to generate automata describing languages larger
than the original. From the initial, overfitting, automaton, a
lattice of more general recognizers is produced by repeated
application of state merging. In order to avoid mistakenly
accepting negative samples, overgeneralization needs to be
limited, and it may be shown that this amounts to identify
a “frontier” in the search space [18]. When dealing with
symbolic data generated from real-life measurements, the
selection of a meaningful training set of data may be
particularly challenging. It is crucial that examples possibly
leading to overfitting are discarded, while the most relevant
ones are kept. In particular, since the search is constrained
only by negative samples, it is essential that they are as
representative as possible of the target language, and the order
in which they are presented to the algorithm is important.

For coarser granularities (corresponding to geohash
prefixes identifying cells larger than a metropolitan area)
we chose to use Regular Positive and Negative Inference
(RPNI) [31]. This is a passive learning algorithm that
performs an exhaustive search of the automata space built

via repeated application of the state merging operator, until
the frontier of acceptable automata is reached. A remarkable
property of RPNI is that it is able to identify in the
limit the minimum consistent automaton provided that the
learning sample is representative of the unknown model. Its
complexity is heavily influenced by the size of the initial
automaton, whose width is a linear function of the number
of elements in the training set, and whose depth is linear on
the size of the longest string in the training set. However,
coarser granularities are characterized by few, short strings
since many trajectories collapse into the same encoding,
so the overall running time of the algorithm is effectively
contained.

At finer granularities, on the other hand, we want to
account for the fact that our data are not guaranteed to
be completely noise-free, which often results into misla-
beling. For instance, incomplete or noisy measurements
might cause a trajectory string to be assigned to the wrong
class, since a small error in a measure corresponds to a
potentially very different symbolic encoding. Additionally,
structurally similar inputs with contrasting labels typically
lead to a needlessly more complex recognizer, which would
make RPNI impractical. Hence, at finer granularities, we
employed the Blue* algorithm [36], which specifically
addresses potentially mislabeled data by statistically distin-
guishing between relevant and irrelevant information, which
is treated as noise. While the aim is to evolve from the
initial, overfitting automaton towards a more compact and
general automaton, as in RPNI, here some tolerance to an
error in classification is added if it improves generaliza-
tion. In particular, a generalization by state merging will
be deemed as statistically acceptable, and consequently
the reduction in the size of a DFA is accepted, only if
the resulting statistical error does not exceed some chosen
threshold. The underlying idea consists in verifying that the
proportions of misclassified samples do not increase signif-
icantly after a state merging; more specifically, hypothesis
testing [6] is used to drive statistical inference.

As will be shown in Section 5, the combined use of the two
mentioned algorithms allows us to obtain compact models
at all granularities, without hindering the overall accuracy.

4 Similarity between activity models

Once reliable models for the activities related to the mobility
traces of a group of users are available, we need a method
for comparing them. To this aim, we propose a similarity
measure between pairs of activity models that takes into
account their intrinsic hierarchical nature. Initially, we will
focus our attention to the computation of the similarity score
between pairs of local models, i.e., automata built for the
same granularity level. Then, we will show how we can
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formulate a comprehensive similarity measure suitable to
reliably compare the activity models in their entirety, i.e.,
considering all granularities of interest.

4.1 Computing local similarity scores

Unlike statistical models, in which similarity is typically
assessed by evaluating statistical metrics on a chosen set
of features, here activities are described in terms of strings.
This implies that we need to assess the similarity between
two languages. At the same time, we want to account for
the nature of the recognizers we are using (i.e., automata),
so the chosen measure should also consider similarity in
terms of structure. This dual aspect is well captured by the
similarity measure proposed in [41], which results from the
combination of a linguistic part and a structural part.

The first part of the similarity score is computed using
the so-called w-method [11]. Considering two automata A1

and A2 over the same alphabet, a “representative” set of
strings is constructed to be used as probes for the two
automata under observation. Roughly speaking, such strings
need to ensure that each state and transition of the target
automaton is triggered at least once. The score will then
depend on how many strings are identically classified by
both automata (with respect to our scenario, this part of
the measure aims to assess whether geohash trajectory
strings are assigned to the same activity according to both
automata), and will be computed through classic metrics for
classification assessment. More precisely, in order to avoid
a bias of the score toward the positive or negative samples,
the linguistic similarity is expressed as the F-measure, i.e.,
the harmonic mean of precision (prec), and recall (rec):

SL = 2 · prec · rec

(prec + rec)
(1)

The second part of the similarity score aims at comparing
the recognizers not in terms of their languages but in terms
of their states and transition structures. The measure is
based on the “neighbor matching” proposed by [30], whose
underlying idea is that the overall structural similarity
between two automata A1 and A2 can be expressed as the
normalized sum of the highest similarity scores between
pairs of states. The pairwise state similarity xi,j is computed
iteratively in terms of the number of matching incoming
and outgoing transitions in the respective neighborhoods
of states i ∈ A1 and j ∈ A2. Finally, the best k states
according to the pairwise similarity are selected to compute
the overall structural similarity measure, as follows:

SA = 1

n

k∑

l=1

xf (l)g(l) (2)

where n is the maximum number of states in both automata;
f : {1, . . . , k} → states (A1) is the enumeration function

over the states of A1, and g the analogous for A2, that return
the ordering for the final best mapping between nodes of the
two automata.

By construction, both the linguistic and the structural
parts of the similarity score fall within the interval [0, 1],
with the upper bound indicating complete similarity. A
measure expressing the comprehensive similarity of two
automata at the same granularity level may thus be obtained
as a linear weighted sum of the two parts:

S(A1,A2) = γ SL + (1 − γ ) SA (3)

where the parameter γ may be used to fine tune the
relative influence of the linguistic and structural parts on
the composite measure. A small value of γ would bias the
measure towards automata of similar complexity (in terms
of number of states and transitions) and thus be useful to
disregard small differences in the sequence of symbols in
the strings. On the other hand, values of γ close to 1 would
produce higher similarities when the same sets of strings are
recognized identically by the automata, regardless of their
structure.

4.2 Composing local similarity scores into a global
measure

In our approach, the activities are modeled by a hierarchical
composition of automata, so the formulation for a global
similarity score must reflect the same structure.

Referring back to the example in Fig. 5, wx was
selected as the base granularity so trajectories would be
completely described by the automaton equivalent to regular
expression 4∗, assuming that all locations fall within the
4 geohash subcell. Even though such automaton would
provide a satisfactory model with regard to the description
of the user movements, it would not represent their activities
as well. In fact, while its statistical precision would be optimal,
it would not be able to distinguish between sequences of
movements corresponding to the different activities.

With reference to Fig. 6, assume that the solid and dashed
lines identify two classes of trajectories, corresponding
to two different activities of the user (say, “going to
work” and “do shopping”) (Table 2). The algorithm of
grammatical inference would produce the same recognizer
for both activities (i.e., the automaton labeled wx, which
would simply accept all sequences of 4’s and reject
the others). This implies that they would be completely
indistinguishable from each other, at the considered geohash
granularity, according to the previously defined similarity
measure. On the other hand, we would like to retain the
concept that, despite their differences, two activities may
show some degree of similarity as they may occur within
the same geographical area, or involve movements that
are structurally similar. To this end, we can exploit the
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Fig. 6 Capturing dissimilarity at
different granularities

hierarchical nature of the automata models, and consider
the fact that recognizers for lower granularities are more
likely to capture additional details of the user movement.
In our example, this means we focus on the 4 subcell, i.e.,
select points represented by strings sharing the wx4 prefix.
The automata inferred for that granularity would specialize
the transition on symbol 4, and are likely to reflect in their
structure the differences in the shape of the trajectories of
different activities. The procedure can also be iterated at
lower granularities, until we reach such a finer precision that
the concept of trajectory would not be representative any
longer.

An important question arises in this regard: is it possible
to provide a comprehensive formulation of similarity for
any pair of hierarchical automata that globally represent
the model for the user activity? In real-life settings, it has
been shown that people tend to travel frequently on very
few paths, and more rarely vary their routes [23]. This
means that only a minority of the geohash cells at any given
granularity level will contain a non-negligible amount of
trajectories, so it is sufficient to refine our models only for
those subcells.

In order to obtain a measure of similarity accounting for
the hierarchical nature of our models, we compute a global
similarity SG

p at prefix p in terms of the “flat” score Sp,
as computed by (3). The idea is that we consider Sp as an
initial approximation that can be improved by considering
all relevant lower-granularity refinements. Formally:

SG
p = Sp +

∑

c∈Ψ (p)

φc(S
G
c − Sp)

with
|C(p)|∑

c=1

φc = 1 (4)

where c ∈ C(p) denotes all the possible subcells of prefix
p, while Ψ ⊆ C selects the ones that we want to include for
refinement, and φc is the weight modulating the contribution
of each subcell.

The intuition behind the above formulation is as follows:
human mobility is characterized by the fact that most
movements are concentrated in limited areas, not all
subcells will provide a relevant contribution to the similarity
score. Cells interested by limited, or no movement at all can
be excluded, so they do not contribute to the score, which

Table 2 List of the activities used for labeling trajectories

Activity label Description Incidence

Travel Transit through transportation hubs; movements outside of metropolitan area 1.69%

Work Movements to and from university buildings, private companies 71.67%

Leisure Shopping Malls, food and convenience stores 9.35% 26.64%

Sport Use of recreational centers, sport fields, parks, outdoor activities 3.27%

Social Visit to entertainment areas, theaters, museums, friends 4.23%

Spare time Routes within city limits further from other points of interest 9.79%
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would just be determined by the upper-level similarity. On
the other hand, if we choose to refine the score at a given
granularity p by using all its subcells, then the similarity
score would collapse in SG

p = ∑
c∈C(p) φcS

G
c , and hence be

a function of the lower refinements only.
It is also worth pointing out that the term SG

c in the
summation of (4), which refers to the similarity of models
in a subcell, is recursively computed with the same formula.

5 Experimental study

For validating our proposal, we considered the Geolife
dataset [44] provided by Microsoft Research Asia. It
contains a collection of geographical locations in the form
of (latitude, longitude, altitude) triples, representing the
movements of 182 users monitored for 5 years in the region
of Beijing, China, although routes crossing USA and Europe
were occasionally present. More than 17,000 trajectories
are stored, acquired trough GPS loggers and smart phones,
generally with a high sampling rate of 1 to 5 s in time, and 5
to 10 m in space. However, as shown in Fig. 7, for many of
the users, only a small number of trajectories was collected,
some of which are too short, or contain clearly erroneous
measurements. Hence, for our experiments, we selected
10 representative users, each characterized by more than
about 300 non-trivial trajectories. Finally, we disregarded
the information about altitude, which was not relevant for
our purpose.

5.1 Preliminary data processing

The preliminarily step in our analysis consisted of
generating a reliable ground truth for our data. In particular,
even though the Geolife dataset is anonymized for privacy
reasons, the authors of [9] state that a projection of the
available data on a map shows that “the volunteers tend to
have similar background since they share a common area

Fig. 7 Distribution of the monitored trajectories per user

with the highest density of visits, which is the assembling
place of IT companies. This indicates a high chance that the
volunteers may have similar interests to each other.”

In order to transform raw locations into trajectories, the
same authors suggest that only the so-called stay points
are considered, which represent groups of nearby positions
where a user lingered for a sufficient amount of time. After
eliminating outliers, they apply a density-based algorithm to
hierarchically cluster the stay points into areas referred to
as regions of interest (RoI), to which a location semantics,
that is, the intended functionality of that region (e.g., park,
school, workplace, hospital), is associated. Temporal and
location semantics together constitute a so-called T-pattern,
as defined by [22], and an algorithm of frequent sequential
pattern mining is used to extract the sequences of places
frequently visited by a user and to estimate their similarity
with respect to other users. In our experiments, we retained
the idea of computing RoIs from users’ raw locations, but
used them only to semantically label trajectories. The most
frequently visited locations were clustered into RoIs. Their
proximity to known locations was analyzed and they were
tagged as workplaces, transportation hubs, or recreational
locations. Trajectories starting, ending, or traversing them
have been labelled accordingly, and a set of categories
representative of typical users’ activities were assigned to
them. After this step, however, we retain the native sequence
of locations, in geohash encoding, since our aim is to extract
the regularities in their original structure.

The actual encoding of a trajectory as a geohash
string requires choosing a base granularity or, equivalently,
setting a common prefix for the locations. As most of the
trajectories in Geolife occur in the north-eastern part of
China, the shortest possible prefix, w, would allow us to
capture all of them. Considering that strings falling within
geohash cells with a prefix length larger than 5 symbols
would span an area roughly as compact as a few city blocks,
such prefix was assumed to convey satisfactory precision for
our purposes. At the coarser granularity, on the other hand,
the high sampling rate provided by Geolife is redundant.
A series of measurements taken only a few seconds apart
in an area of more than 1000 km2 would be encoded as
long repetitions of identical symbols. Therefore, not only
would they fail to convey any significant information about
the trajectory but also likely hinder the inference process.
In our experiments, we chose to adaptively sample the
data, with a lower rate (60 s) for prefix length shorter
than 4, while keeping the full detail for finer geographical
granularities.

Finally, we note that at any chosen granularity, user paths
traverse only a potentially small subset of all possible 32
subcells. The degree of coverage, defined as the percentage
of trajectories falling into a subcell with respect to the
overall number of trajectories at that granularity, thus
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Table 3 Weights of subcells for global similarity

Granularity Subcell (coverage)

w wx (94.53%)

wx wx4 (95.48%)

wx4 wx4g (51.36%)

wx4e (32.71%)

wx4g wx4g3 (18.51%)

wx4e wx4er (20.92%)

wx4ex (15.84%)

provides a good indicator of the relative importance of
the subcells. Table 3 shows the subcells used to refine
global similarity, and their relative weights, which were
used in our experiments as estimates for parameter φc

in (4).

5.2 Accuracy of structural models

The complete list of activities we aim to identify is
reported in Table 2 together with a brief description, and
the relative percentage of trajectories they refer to. Three
of the categories (travel, work, and leisure) are broadly
scoped, and capture typical activities performed by users
both within, and out of the metropolitan area. As shown,
according to our categorization, users are typically involved
in work-related activities, consistently with documented
in previous works on the same data [9], whereas only a
minority of trajectories are relative to travels. In order to
assess the potentiality of the proposed similarity measure
to discriminate between finer-grained activities, we further
specialized the leisure activity into 4 sub-categories.

Evidently, the reliability of the similarity measure
depends on the accuracy of the inferred models. In a
grammatical inference framework, one of the most delicate
issues is the generation of negative samples. In general,
positive samples will improve the model precision, while
negative ones will guide the learning process and limit
its overgeneralization. Therefore, mislabeling may have

a disruptive effect not only on the accuracy but also
on the complexity of the resulting model, which in turn
would negatively affect the similarity score. In our case,
however, the ground truth assignment provides a reasonable
initial choice of positive and negative sample sets. In
particular, when inferring the model for one of the activities,
trajectories corresponding to the other activities will be used
as negative samples. For instance, in the case of the three
broadly scoped activities, the negative sample set for work
would be represented by leisure, and travel. In general,
whatever is the chosen taxonomy, we cannot be expected
it to cover the whole range of a user’s movements, so we
enrich the negative set by excluding cells not covered by any
trajectory. This has a beneficial side effect for the inference
algorithm, as it potentially reduces the size of the alphabet
of a specific model. Together with our adaptive subsampling
at different prefixes, this allows to keep samples short at
lower granularities, thus lowering the overall running time
and complexity of the algorithm, while keeping the model
simpler.

Models for coarser granularities, where strings show
a simpler structure due to the nature of the movements
at large scale and to our preprocessing, were inferred
using the RPNI algorithm [31], whereas for granularities
corresponding to prefix lengths 4 and beyond, we used
Blue* [36], whose parameters controlling noise tolerance
were selected using a grid search. In all experiments, 75%
of the available data was used for training and the rest for
the test. In order to obtain unbiased results with regard
to the specific subdivision, 10 runs of cross-validation
were performed and the average result was reported. The
plots in Fig. 8 report the accuracy (expressed as the F-
measure) of the models obtained for work, leisure, and
travel for the 10 selected users with increasing granularity.
No trajectories corresponding to a travel-related activity
were found for users 41 and 163, so the corresponding
bars are missing in Fig. 8c. Performances are usually
satisfactory, reaching 0.82 accuracy on an average for work
and 0.73 for leisure, although not homogeneously across
the different granularities. Accuracy results are clearly more

Fig. 8 Accuracy of the individual models for three coarse-grained activities, namely work (a), leisure (b) and travel (c), at varying granularities
for all users
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stable for the work activity, to which the majority of
trajectories belong. travel models, on the other hand, are less
satisfactory. This is likely due to the high imbalance in the
training sets, where negative samples greatly outnumbered
the positive ones.

5.3 Test scenarios for activity discrimination

Our main interest lies in discerning whether two sets
of trajectories were induced by the same activity, which
amounts to assessing how close those are to one another in
terms of our similarity score. In particular, our goal is to be
able to tell activities apart, not only at a coarse-grain level
but with a finer precision as well.

We initially consider two test cases, targeting the
most representative high-level activities, namely work and
leisure. Models for the two activities are inferred from the
trajectories of the 10 selected users, labelled as described
earlier. If our similarity measure is sound and captures the
underlying semantics of the indicated activities, we would
expect any trajectory labelled as work to show a higher
degree of similarity to any other trajectory with identical
label than to any one labelled otherwise. This is indeed
confirmed by inspection of the confusion matrix reported
in the leftmost part of Fig. 9, where darker colors indicate
higher similarity. The matrix clearly shows that, besides
reporting full self-similarity, homogeneous activities show
a higher similarity score even for different users than
heterogeneous activity. This indicates that the proposed
measure is reliable, and indeed captures the nature of the
activity regardless of who actually performed it.

A second test case was then considered, regarding
the ability of the HAR algorithm to refine its outcome.
Specifically, we considered the sub-activities of leisure:
shopping, spare time, social, and sport. In this case,
trajectories for all users were considered together when

Fig. 9 Similarity for the two most frequent coarse-grained activities of
10 users

Table 4 Similarity of test user against reference models

Reference

Work Leisure Travel

Test W 0.43 0.23 0.08

Leisure 0.18 0.37 0.17

Travel 0.05 0.17 0.31

tagged with the same label, and the smaller matrix on the
right side of Fig. 9 shows the corresponding results, grouped
by activity. Again, the fact that similarities between models
for different sub-activities are low indicates that they can
be reliably distinguished from each other. However, a closer
look at the models producing the extremely low scores for
the shopping activity revealed that the corresponding model
was much more complex than the others (it was in fact a 60-
states DFA). This indicates overfitting, and might be a sign
of imprecisions during the tagging of the trajectories.

It is worth noting that our results are in accordance to
what reported in [9], whose authors computed user profiles
based on the same dataset as ours. In their experiments, they
calculated the similarity of two sets of activities depending
on whether they were performed on weekdays or weekends.
Assuming that work activities are mostly performed during
weekdays, whereas weekends are typically reserved for
leisure, the results reported in Fig. 9 show that the highest
pairwise similarities are between users 3-4, as regards work,
and users 153-163, for leisure, which corresponds to the
finding in [9].

Finally, our last experiment was conducted by building
reference models for all coarse-grained activities, using one
of the users as test. The objective is to show how our method
might automatically label the activity of a new user, by
assessing the similarity score with respect to the reference
models. The results reported in Table 4 show that the test
models consistently receive a similarity score that associates
them with the correct reference model. In other words, the
label for the trajectories of the test user could be inferred
by assessing the similarity with the reference models, which
could be useful for instance in the context of a recommender
system application.

6 Conclusions and on-going work

In this work, we presented a method for the recognition
of human activities from mobility traces acquired through
wearable devices, such as GPS loggers and smart phones.
The novelty of our approach lies both in the use of
syntactical models to represent user activities, and in the
definition of a suitable measure to capture the similarity
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among such models by leveraging on their intrinsic
hierarchical nature. Our experiments show that the proposed
grammatical models are able to accurately discriminate
between mobility patterns arising as a consequence of
such coarse-grained activities as work, leisure, or travel.
Moreover, the same models are suitable to refine the
classification and provide a finer distinction into sub-
activities. The fact that the very nature of human mobility is
hierarchical is mirrored in our formulation for the similarity
measure: even though different activities may appear similar
in a broader context, we are able to selectively refine the
measure and provide a more realistic score by considering
lower granularities.

There are, however, open issues worth of further analysis.
First of all, more reliable ground truth is likely to produce
more accurate classifiers; we plan to refine the RoI-based
tagging algorithm and to show the generality of our method
in other contexts not necessarily related to outdoor mobility.
For instance, besides recognizing common activities, or
method could be profitably used to detect anomalous
behavior. Moreover, we plan to test the method on
additional datasets, possibly expanding the taxonomy of
the considered activities, for instance by refining the work
category further.

Finally, we are investigating alternative methods for
the inference of grammatical models, in particular with
reference to active learning [17]. This paradigm is based on
the assumption that an informant, or oracle, may be used
to guide inference by a process of queries and assessment.
One of the most interesting features is that learning does not
need to rely on negative samples, whose selection is usually
the weakest part of passive learning methods. In particular,
we plan to investigate how an oracle may be constructed
by adapting traditional machine learning methods (such as
support vector machines, or deep learning algorithms) to our
mobility scenario.
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