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Abstract

Horse-chestnut (Aesculus hippocastanum L.) is an endemic and relict species from the

Mediterranean biodiversity hotspot and a popular ornamental tree. Knowledge about the

evolutionary history of this species remains scarce. Here, we ask what historical and eco-

logical factors shaped the pattern of genetic diversity and differentiation of this species. We

genotyped 717 individuals from nine natural populations using microsatellite markers. The

influence of distance, topography and habitat variables on spatial genetic structure was

tested within the approaches of isolation-by-distance and isolation-by-ecology. Species

niche modeling was used to project the species theoretical range through time and space.

The species showed high genetic diversity and moderate differentiation for which topogra-

phy, progressive range contraction through the species’ history and long-term persistence

in stable climatic refugia are likely responsible. A strong geographic component was

revealed among five genetic clusters that are connected with very limited gene flow. The

environmental variables were a significant factor in the spatial genetic structure. Modeling

results indicated that future reduction of the species range may affect its survival. The possi-

ble impact of climate changes and high need of in situ conservation are discussed.

Introduction

During the Cenozoic (66–23.03 Ma) period, Arcto-Tertiary flora covered a large part of the

Northern Hemisphere and formed a unique type of forest ecosystem [1–3]. Species of Tertiary

humid-temperate forests began to decline rapidly along with the aridization that appeared in

the middle Miocene and were finally pushed out during cold periods of the Pleistocene into

warm and humid refugia located in the Central Asia and the West Coast of the North America

[4]. Many Tertiary species found safe shelter in the Mediterranean Basin, which is one of the

important refugia for species of this ancient flora [5].
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Accumulation of endemic taxa drives the formation of biodiversity hotspots and most con-

servation effort is expended on these endemic species due to their high extinction risk [6, 7].

The Mediterranean Basin is one of the biodiversity hotspots with an exceptional role in the

preservation of unique species and genetic diversity [6, 8]. Currently, climate change is becom-

ing a serious and the most urgent problem in this region. A wide spectrum of biological and

socio-economic consequences are predicted that impose a challenge for the conservation of

the biodiversity stored in the Mediterranean biodiversity hotspot [9–11]. Expected environ-

mental changes may cause extinction of many endemic species which can persist only in a sta-

ble climate refugia [12]. Therefore, the protection of the Mediterranean relicts and endemics is

an extremely urgent issue and produces a number of challenges.

Firstly, the persistence of Tertiary relicts depends on the conservation of the habitats to

which they are frequently highly specialized [13, 14]. In the densely populated Mediterranean,

increasing demand on land for agriculture and urban development means that protecting hab-

itats for Tertiary relict and other narrowly distributed plants is difficult [15, 16]. Secondly,

long-term survival of relict and endemic species depends on the genetic diversity which is a

measure of the potential within a population to respond to natural selection [17, 18]. There are

many studies concerning genetic diversity patterns and their causal factors in plants, especially

trees, which are key elements of forest ecosystems and in the forest industry [19]. Less atten-

tion is generally paid to rare tree species with low economic importance. However, some of

these can have high biodiversity impact. Study of relict and endemic species allows better

understanding of the processes of extinction and survival, which is especially relevant in the

context of expected climate-induced decline in worldwide populations [20–24].

Two basic sets of factors drive population genetic structure and divergence. One of them is

the historical biogeography including historical climatic change and tectonic movements that

have modified genetic connectivity among populations resulting in significant isolation-by-

distance (IBD) [25, 26]. In the Mediterranean region, geological history has left strong and still

readable signatures in the current spatial organization of genetic diversity and differentiation

[27–30]. The second set of factors affecting the genetic structure are environmental variables

including edaphic conditions and topographic heterogeneity that may drive adaptive diver-

gence [31]. Habitat conditions are especially important to endemic and relict species as their

populations tend to occur in a very narrow range of environmental conditions [13, 32–34].

Populations existing in isolated areas with dissimilar conditions, such as refugia, may undergo

divergent selection that can lead to local adaptation and genetic divergence detectable at

neutral variability [35]. This isolation-by-ecology (IBE), referring to significant negative corre-

lation between genetic distance and ecological dissimilarity (edaphic conditions and topogra-

phy), has recently become recognized as an almost equally important driver of intra-specific

differentiation and speciation as the classic IBD model [31, 36, 37].

Horse-chestnut (Aesculus hippocastanum L.) is a Tertiary relict and naturally occurs only in

the Balkan Peninsula [38]. During the Pliocene, Aesculus was broadly distributed in Europe

and paleaobotanical records prove its presence in Africa and the Caucasus [39, 40]. Climate

change in the Pleistocene pushed the species into mountain refugia in the Balkan Peninsula.

The natural origin of horse-chestnut remained unknown until the end of 19th century,

undoubtedly because of its dispersed and low-density occurrence in the high mountains [38,

41–43]. Paradoxically, the species has been widely cultivated as an ornamental tree in Europe

since the 16th century [41].

As a paleoendemic of Tertiary origin, horse-chestnut has experienced a long and rich his-

tory during which it has experienced several major geological events that were crucial in the

development of spatial genetic structure of tree species in the Mediterranean region [44].

Hence, we postulate that the historical factors might be major determinants of the species’
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genetic diversity and differentiation patterns. Additionally, being an endemic species, horse-

chestnut may show reduced genetic diversity [45, 46] which would be detrimental to retaining

evolutionary potential [47, 48]. Accordingly, the International Union for Conservation of

Nature has recommended urgent genetic research on natural stands of horse-chestnut [49].

In its favour, horse-chestnut is distributed across a large mountain system stretching c. 425

km along the Balkan Peninsula, implying the possibility of abrupt environmental gradients.

Similar to other Tertiary relicts, the species requires humid conditions [13, 50, 51], and shows

some habitat specialization [52]. According to Tsiroukis [53], 62% of natural populations are

located in ravines with constantly flowing water and 11% with temporary water. The remain-

ing small fraction is present in dry ravines or on arid and steep slopes (9% and 6%, respec-

tively). Hence, apart from the historical factors, dissimilar ecological conditions might also

potentially promote genetic differentiation in horse-chestnut through adaptive divergence,

which relates to IBE [54, 55].

In this study we examined genetic diversity and differentiation within natural populations

of horse-chestnut in Greece. We integrated genetic methods with ecological niche modeling to

better understand the processes and factors that have governed species evolution since the

Pleistocene. Such analyses could help to disentangle the roles of historical and ecological fac-

tors in shaping the species’ spatial genetic structure. We hypothesized that: (1) spatial genetic

structure of horse-chestnut is mostly determined by historical factors, and the species natural

populations are characterized by low genetic variability within and high genetic diversity

among populations as expected for a palaeoendemic; (2) the range of horse-chestnut will be

reduced in the future due to climate change.

Material and methods

Species description and population sampling

Horse-chestnut is native to mountainous regions of the Balkan Peninsula, particularly Greece,

where it occurs at altitudes between 228 m and 1485 m a.s.l. [38]. The species is andromonoe-

cious with the majority of flowers functionally male (c. 73%) [56]. Flowers, which are polli-

nated by insects, are an important source of nectar [57, 58]. However, horse-chestnut is

ambophilous since some pollen can also be spread by wind [59]. Large, heavy seeds are dis-

persed mostly by gravity [60]. They may be secondarily dispersed by water since natural popu-

lations occur mostly along streams [53]. Seeds of the related Japanese horse-chestnut (Aesculus
turbinata Blume) travel up to 14.5 m from the parent tree with a mean distance 12.2–44.7 m

[61]. These distances are probably similar in horse-chestnut.

Due to fragmentary information of species distribution in Balkans, collection of the mate-

rial in this study was limited to the core range of the species in Greece. Sites with the highest

number of mature individuals were selected for investigation using data from Avtzis et al. [38].

Since most of the stands were characterized by small populations [38], we included nine of

these in our study to ensure reliable statistical estimations based on microsatellite markers.

Material was collected in June 2015. All field sampling was organized by the Laboratory of Sil-

viculture of the Aristotle University of Thessaloniki, and was carried out in close collaboration

with the local Forest Services. More specifically, field sampling was carried out after communi-

cation with the Directors of the local Forest Districts, and always arranging a local staff accom-

panies the research team for sampling procedure. Horse-chestnut is not a protected species in

Greece and materials were not collected in protected areas, therefore special permissions were

not required. In total, 717 mature individuals were sampled (Table 1, S1 Table). Additionally,

to analyze how genetic diversity is transferred from adult trees to offspring, 191 one-year-old

seedlings were collected in three populations that showed good regeneration (Karitsa I, Karitsa
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II and Perivoli). All sampled populations are distributed in three mountain ranges: Pindos

Mts. (Ondria, Kalampaka, Dasos Nanitsa, Vaeni, Vathirrevma, Perivoli), Ossa Massif (Karitsa

I and Karitsa II) and the more southerly located Parnassus Massif (Mariolata). Most of ana-

lyzed populations grew in the vicinity of streams; the exceptions were populations Ondria and

Mariolata.

We noticed root suckers of Aesculus during the field study, but a full determination of the

connections between individuals was not possible. We used a random pattern of sampling but

estimated the level of clonality in each population using a clonal diversity parameter (geno-

typic richness) R = (G—1) / (N—1), in which G denotes the number of distinct genotypes

scored in a population (genets) and N is the total number of trees sampled (ramets) [62]. The

values of R range from 1, where each genotype is unique, to 0, when all sampled individuals

have the same genotype (Table 1).

DNA isolation and genotyping

Genomic DNA was extracted from leaf tissue using protocols described by Dumolin et al. [63].

To determine the genetic variation and genetic diversity, 10 nuclear microsatellite loci (nSSRs)

developed for A. turbinata were tested [64]. Preliminary analysis allowed final selection of

eight polymorphic loci: AT3D6, AT5D2, AT6D2, AT6D8, AT6D11, AT6D12, AT7D1 and

AT7D8. Two rejected primer pairs (AT6D17 and AT5D10) gave low quality products. PCRs

were conducted in a final volume of 10 μL, containing 1 × reaction buffer with 2.5 mM MgCl2,

2 μM of dNTP mix, 0.5 U of VivaTaq polymerase (Novazym, Poznań, Poland), 0.4 μM of each

starters and 100 ng of DNA. Reactions were conducted using the following thermal protocol:

initial denaturation at 94˚C/12 min., followed by 35 cycles of denaturation at 94˚C/30 s,

annealing at 52˚C or 55˚C (specific to locus) for 30 s, elongation at 72˚C/60 s and final elonga-

tion at 72˚C for 5 min. Products of amplification were analyzed using a 3130 Genetic Analyzer

(Applied Biosystems, Foster City, California, USA) with internal size standard GeneScan LIZ-

500 and genotypes were scored using GENEMAPPER vs. 4.0 (Applied Biosystems, Foster City,

California, USA).

Table 1. Location and clonal structure of the studied populations.

Population Voucher Latitude Longitude Altitude [m a.s.l.] Number of individuals Number of genotypes R

Dasos Nanitsa KOR 51216 39˚42’ N 21˚21’ E 1029 84 83 0.99

Kalampaka No voucher 39˚48’ N 21˚16’ E 1371 23 23 1.00

Mariolata KOR 51230

KOR 51219

38˚37’ N 22˚26’ E 1239 46 46 1.00

Ondria KOR 51217

KOR 51218

40˚20’ N 21˚05’ E 1463 48 48 1.00

Vaeni No voucher 39˚12’ N 21˚42’ E 1089 33 29 0.88

Vathirrevma No voucher 39˚25’ N 21˚25’ E 1028 78 75 0.96

Karitsa I—seedlings KOR 51280 39˚48’ N 22˚45’ E 705 50 50 1.00

Karitsa I—mature KOR 51280 39˚48’ N 22˚45’ E 705 114 94 0.82

Karitsa II—seedlings No voucher 39˚50’ N 22˚42’ E 950 46 46 1.00

Karitsa II—mature No voucher 39˚50’ N 22˚42’ E 950 22 22 1.00

Perivoli—seedlings KOR 51226 39˚58’ N 21˚11’ E 915 95 95 1.00

Perivoli—mature KOR 51226 39˚58’ N 21˚11’ E 915 78 75 0.96

R–level of clonality

https://doi.org/10.1371/journal.pone.0226225.t001
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Genetic diversity and differentiation

All clones were removed before analysis of genetic data, identified using the “Find Clones”

procedure in GENEALEX 6.4 [65]. This software was also used to estimate basic multilocus

within-population diversity estimates such as mean number of alleles (A), effective number of

alleles (Ae) and number of private alleles (Ap). INEST v. 2.0 [66] was used to calculate observed

(Ho) and expected (He) heterozygosity while FSTAT v 2.9.3. [67] was used to compute allelic

richness (Ar). A Bayesian approach implemented in INEST software was applied to estimate

the inbreeding coefficient (FIS) including a ‘null alleles’ correction according to the individual

inbreeding model (IIM). The estimation was run with 500,000 MCMC cycles with every 200th

updated and a burn-in of 50,000. The Deviance Information Criterion (DIC) was used to com-

pare the full model (‘nfb’, when FIS>0) with the random mating model (‘nb’, when FIS = 0) to

assess the determinants of levels of homozygosity. The significance of the heterozygote defi-

ciency in a sampled population was tested by U test [68] in GENEPOP [69], and p-values were

obtained with the Markov chain algorithm using default settings. Frequency of the null alleles

(Null) and Wright’s fixation index (FST) were estimated in FREENA with ENA (Excluding

Null Alleles) correction [70]. This method was used to correct positive bias inducted by the

presence of the null alleles. The hypothesis on the bottleneck effect in the demographic history

of the horse-chestnut populations was tested with the M-ratio approach implemented in

INEST.

Subdivision of the horse-chestnut gene pool was evaluated by a non-spatial Bayesian clus-

tering model implemented in STRUCTURE 2.3.4. [71]. The procedure for each of the 10 inde-

pendent runs included 104 of burn-in and 105 MCMC iterations with the maximum number

of clusters set to K = 10. The STRUCTURE model assumed correlated allele frequencies within

populations and allowed for mixed ancestry of individuals. To estimate the best-supported

number of clusters (S1 Fig; see Supplemental Data with this article), Evanno’s delta K method

implemented in CLUMPAK [72] was used. Individuals that had an assignment for each cluster

of less than 70% were recognized as admixed. In order to detect hidden population-substruc-

ture, additional STRUCTURE analysis for separate populations with K = 5 was performed

with the same initial conditions. INSTRUCT software [73] was used to verify STRUCTURE

results and to estimate selfing rate in each genetic cluster. Analyze was performed for K = 5 as

two independent chains in mode 2 (infer populations structure and selfing rates) with Adap-

tive Independence Sampler, 106 MCMC iterations and 5×105 of burn-in.

In addition to the model-based approach, a discriminant analysis of principal components

(DAPC) [74] was performed to infer homogenous genetic clusters. The main advantage of this

method is that it works in the absence of any assumptions related to population genetic models

and it is a quick computation. DAPC was conducted in the package ‘adegenet’ in R 3.4.3 [75,

76]. In contrast to STRUCTURE, this analytical method can detect hierarchical patterns in the

spatial genetic structure and does not require a priori group definition [74]. DAPC is a multi-

variate two-stage procedure in which data are firstly transformed by principal component

analysis (PCA) to remove correlation between variables, which are then submitted to discrimi-

nant analysis (DA). This part of the procedure aims at partitioning the total genetic variability

into between-cluster and within-cluster components. The procedure optimizes the variance

for the first component and minimizes the within-cluster component to obtain the best dis-

criminative power and to define final clusters. To infer the optimal number of the genetic clus-

ters function ‘find.cluster’ was used, which runs successive K-means clustering with increasing

number of clusters K from 2 to 50 supported by Bayesian Information Criterion (BIC). Func-

tion ‘xvalDapc’ with 30 replications was used to perform cross-validation on varying numbers

of principle components. DAPC was conducted with the function ‘dapc’. Fourteen PCs and an
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optimal number of clusters (10) were applied in estimations. Output was visualized using

library ‘ggplot2’ in R [77]. The program POPULATIONS 1.2.30 was used to construct a phylo-

genetic tree, which shows the relationships among all genetic clusters determined by STRUC-

TURE [78]. A Cavalli-Sforza and Edwards (Dc) genetic distances was used to obtain a

neighbor-joining (NJ) tree.

BAYESASS 3.0 (BA3) was used to infer recent migration rates among studied populations

[79]. BA3 is based on the Bayesian MCMC method and estimates migration over the last few

generations without assumptions on the Hardy-Weinberg equilibrium. It works best when

migration is relatively low [80], which was expected in these isolated populations of horse-

chestnut. To obtain a recommended acceptance rate within the range of 20–40% [81], MCMC

mixing parameters were initially adjusted during the testing stage for inbreeding coefficient

(0.30) and migration rate (0.75) which resulted in acceptance rates of 23% and 28%, respec-

tively. Default settings of mixing parameters for allele frequencies were used. Afterwards, the

final analysis was conducted with 107 MCMC iterations, 106 of burn-in and sapling every

1000th iteration. To check consistency, three independent runs with different random seeds

were carried out. Finally, a script of Meirmans [80] applied in R [76] was used to calculate the

Bayesian deviance for each run. The run with the lowest value of the Bayesian deviance was

chosen and used for our interpretations.

Historical gene flow among populations was investigated with MIGRATE-n v. 3.2.6 [82,

83]. This tool computes mutation-scaled historical effective population size (Θ) and migration

rates (M) using a coalescence approach. All runs used the Bayesian inference method and the

Brownian motion mutation model with identical priors and parameter values, and identical

mutation rates were assumed among loci. Testing runs were conducted to set uniform priors

(minimum, maximum, delta) for Θ and M (0; 10000; 1000) for all subsequent runs. Each run

finally consisted of 50,000 recorded steps at an increment of 100 steps, after a burn-in of

20,000 steps, and a static heating scheme (four chains set at 1, 1.5, 3, 105). We performed three

independent runs with different initial seed numbers to verify consistency and used the Bezier

approximation for the marginal likelihood to test which run best fit the data [83].

Climate niche modeling

The program MAXENT version 3.3.2 [84, 85] was used to build a climate niche model. This

software uses a maximum entropy presence-only model to estimate probability of species

occurrence. The dataset of 74 known localities (S1 Table) was collected from the available liter-

ature on horse-chestnut distribution [38, 42, 86–88]; each population was represented by a sin-

gle point analyses. Bioclimatic variables with a resolution of 30 arc-sec were downloaded from

the WorldClim database [89] but seven out of 19 variables were excluded because of strong

correlation (S2 Table) evaluated using ENMTOOLS v1.3. [90]. Variables for the Mediterra-

nean Basin and Europe were used. Analyses were performed for the present day as well as for

two past periods (maximum glaciation c. 22 000 years ago and mid-Holocene c. 6 000 years

ago) and for future conditions. Three scenarios of climate changes were used for the future

projection: RCP 2.6 (Representative Concentration Pathway)—increase of average tempera-

ture by 1˚C before the year 2065; RCP 4.5: + 1.4˚C before the year 2065; and RCP 8.5: + 2˚C

before the year 2065 [91]. The Community Climate System Model (CCSM) of global climate

was used [92]. Analyses were performed as a bootstrap with 100 replicates; in each replication

20% of the data were set aside as test points and a ‘random seed’ option was applied. The maxi-

mum iterations were set to 10,000, convergence threshold to 0.00001 and output was set to

logistic. A Receiver Operating Characteristic (ROC) curve and Value of Area Under the Curve

(AUC) were used to evaluate the model [93, 94]. Models included areas of Europe, North
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Africa and the Middle East. Results of analyses were visualized in QGIS 2.18.20 ‘Las Palmas’

[95].

Isolation-by-ecology and isolation-by-distance

A connectivity-resistance approach implemented in the software CIRCUITSCAPE v.4.0.5 [96]

was applied to test the significance of the three possibly important factors in gene flow among

horse-chestnut populations (distance, topographic complexity and habitat suitability) within

the approach of IBE. CIRCUITSCAPE is based on the electrical circuit theory. It models the

gene flow (connectivity) between pairs of populations as the resistance distance between nodes

connected by resistors. The resistance surfaces are created by different landscape properties

that may impede or modify the gene flow and the landscape itself is considered as an electric

network. The genetic distance that is built between populations, and is attributable to land-

scape resistance, is termed isolation-by-resistance (IBR). The unique property of the CIR-

CUITSCAPE is that each added additional pathway and connection between nodes reduces

the resistance. In other words, the conductance of the resistors reflects the intensity of gene

flow between populations [97].

Three different resistance surfaces were developed as matrices. A matrix for isolation-by-

distance model (IBD) was created using completely flat landscapes in the program QGIS

2.14.21 [95]; this software was also used for creating a relief raster to topographic complexity

calculations. To test if the past or present environmental conditions were relevant for observed

differentiation pattern (i.e. IBE), past and present layers of the niche suitability previously

obtained with MAXENT were used [84, 85]. Matrices of habitat suitability were used as con-

ductance surfaces. All matrices were tested against the matrices of the genetic distance (pair-

wise FST and FSTNA values) with a multiple matrix regression approach implemented in R

(function ‘mantel.rtest’).

Results

Genetic diversity

Out of 717 individuals genotyped, 686 unique genotypes were identified (Table 1). In most

populations distinct genotypes were detected (R = 1) or only a few individuals (1–3) were of

vegetative origin (Table 1). The highest level of clonality (R = 0.82) was noted in Karitsa I,

where 94 unique genotypes were detected among 114 trees sampled.

Screening the sampled individuals with eight nSSR gave 124 different alleles in total and

number of alleles varied from 48 in Kalampaka to 88 in Karitsa I—mature (S3 Table). The

number of alleles per locus varied from 1–3 (AT6D11) to 8–18 (AT6D12) and was similar to

values for Aesculus turbinata [64]. The highest value of expected heterozygosity (He) was at

locus AT7D1 in population Dasos Nanitsa (0.915) while the lowest (0.000) at AT6D11 in pop-

ulations Kalampaka and Ondria, because this locus was monomorphic in these populations.

The highest frequency of null alleles was observed in the AT6D2 locus in population Perivoli–

mature (23.7%). The effective number of alleles was high at locus AT7D1 in Dasos Nanitsa and

Vathirrevma (10.77 and 10.03, respectively), while in the Karitsa I population the highest val-

ues were at the AT6D12 (11.50) and AT7D8 (10.44) loci.

Estimators of the genetic diversity are presented in Table 2. The average number of alleles

in a population (A) ranged from 6.00 in Kalampaka to 11.00 in Karitsa I. Average effective

number of alleles (Ae) is 4.19, which is much smaller value than average number of alleles

(8.73). The highest value of allelic richness (Ar) was observed in Vathirrevma (8.44), whereas

the lowest was in Kalampaka (5.93). Observed heterozygosity (Ho) ranged from 0.442 (Mario-

lata) to 0.636 (Vathirrevma), while gene diversity (He) varied from 0.533 (Mariolata) to 0.746
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(Vathirrevma). Significant positive FIS values, suggesting an excess of homozygotes, were

observed for all analyzed populations. In Kalampaka, the inbreeding coefficient was highest,

reaching 0.1520. According to DIC criterion, in the majority of the populations inbreeding

was the likely reason for excess homozygotes. In three populations (Karitsa II–mature, Peri-

voli–mature and Perivoli–seedlings), null alleles are probably responsible for increased homo-

zygosity level. Generally, null alleles were present in all populations with an average frequency

of 6.3%. Private alleles were detected in almost all studied stands, and the highest number (4)

was noted for Ondria, located at the northernmost part of the Pindos Mts. (Table 2).

Genetic diversity between mature parental populations and 1-year-old seedlings was very

similar as indicated by He values, with the exception of Ar that appeared lower in seedlings

(Table 2). However, allelic richness differences between mature and seedlings populations was

statistically insignificant (Kruskall-Wallis test, P = 0.513). The allele frequency spectra showed

that some alleles were absent in progeny. The average frequency of lost alleles in seedlings

from Karitsa I was 4.48%, in Karitsa II 2.88%, and in Perivoli 2.89%. New alleles were also

detected in all seedling populations. In Perivoli and Karitsa I the gain of new alleles was low

(1.61% and 1.01%, respectively) but a surprisingly high percentage of new alleles, 6.08%, was

noted in Karitsa II.

Spatial genetic structure

CIRCUITSCAPE indicated significant IBD (r = 0.49, P = 0.0034) for the set of analyzed popu-

lations. Statistically significant global FST values with and without the ENA correction attained

similarly moderate values (FST = 0.109, FST = 0.114, respectively), but the pairwise estimations

showed a wider range of variation (S4 Table). The highest value of FST with ENA correction

was noted between Mariolata and Karitsa II (0.227), while the lowest was between the two clos-

est stands, Karitsa I and Karitsa II (0.035). M-ratio test indicated a significant bottleneck effect

in all studied populations except for Dasos Nanitsa (P = 0.125).

Analysis of recent migration rates among nine studied populations with BAYESASS

showed that migration is very low (S2 Fig, S5 Table). The average proportion of migrants was

Table 2. Parameters of genetic diversity of the studied populations.

Population N A Ae Ar Ap Null Ho He FIS

Dasos Nanitsa 83 9.63 4.68 7.22 1 0.052 0.590 0.670 0.0305���

Kalampaka 23 6.00 3.82 5.93 0 0.096 0.449 0.644 0.1520���

Mariolata 46 7.00 2.77 5.95 0 0.063 0.442 0.533 0.0742���

Ondria 48 9.00 4.48 7.73 4 0.053 0.536 0.623 0.0510 ���

Vaeni 29 8.63 4.97 8.10 3 0.060 0.573 0.705 0.1093���

Vathirrevma 75 10.75 5.34 8.44 2 0.068 0.636 0.746 0.0435���

Karitsa I–mature 94 11.00 5.64 8.35 1 0.050 0.593 0.677 0.0410������

Karitsa I—seedlings 50 9.25 4.37 7.61 0 0.070 0.543 0.664 0.1014���

Karitsa II—mature 22 6.63 3.69 6.56 0 0.041 0.536 0.605 0.0238null���

Karitsa II—seedlings 46 8.13 3.72 6.66 1 0.050 0.521 0.603 0.1016���

Perivoli—mature 75 9.63 3.96 7.22 1 0.081 0.593 0.711 0.0144null���

Perivoli—seedlings 95 9.13 2.83 6.48 0 0.069 0.504 0.607 0.0200null���

Average 8.73 4.19 7.19 1.1 0.063 0.543 0.649

N–number of samples, A–average number of alleles, Ae−effective number of alleles, Ar−allelic richness, Ap−number of private alleles, Null–frequency of null alleles,

Ho−observed heterozygosity, He−expected heterozygosity, FIS−fixation index.

���—departure from HWE at P<0.001.

null���—the random mating model was more probable than the full model.

https://doi.org/10.1371/journal.pone.0226225.t002
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0.011, indicating that only 1.1% of individuals in a population are migrants. Higher migration

was, however, detected between Karitsa I and Karitsa II (0.060) and between Vaeni and Kalam-

paka (0.042). Historical migration, estimated with MIGRATE-n, was more intensive (S3 Fig,

S6 Table). Average numbers of migrants per generation (θM / 4) was 133.74. The highest

migration was noted from Karitsa I to Karitsa II (1202.21), which can be readily explained by

the short distance between these stands. Generally, the gene flow was asymmetrical and more

intensive from west (Pindos) to east (Ossa) than in the opposite direction (S3 Fig, S6 Table).

The exception to this generality may be the intensive gene flow from Karitsa I to Kalampaka

(300.89). The lowest effective population size was in Vaeni (θ = 13.56) and the highest in Kar-

itsa II (θ = 41.65).

The Bayesian analysis of spatial genetic structure made with STRUCTURE defined five

homogenic genetic clusters among nine analyzed mature populations (Fig 1, S1 Fig, S7 Table).

Three of the clusters consisted of a single population (Perivoli–cluster I, Vathirrevma–cluster

II, Mariolata–cluster III), while cluster IV grouped populations from Karitsa I and Karitsa II.

Cluster V was formed by the populations of Ondria, Kalampaka and Dasos Nanitsa (Fig 1).

The Vaeni population exhibited a wide intermixing within all detected clusters but had a

slightly higher percentage of membership to cluster V (34.81%) than to cluster II (30.12%). An

interesting result is the presence of a significant genetic admixture in Karitsa I located in the

Ossa Massif. Phylogenetic analysis made for five detected genetic clusters showed a division

into east populations (Mariolata and Ossa Massif, clusters III and IV) and west populations

(three clusters from Pindos Mts.: clusters I, II and V). The cluster from Perivoli turned out to

be more similar to the south Pindos cluster than to north Pindos (S4 Fig). Eight out of nine

analyzed mature populations showed a division into subpopulations (S5A Fig). In Mariolata

two subpopulations were detected, in Vaeni three, in Dasos Nanitsa four; for Karitsa I, Vathir-

revma and Perivoli the best K was 5. (S6 Fig). Only in Karitsa I was a substructure not detected

(S5A Fig). STRUCTURE analyze for three seedling populations divided young individuals into

two clusters, one for seedlings from Perivoli and a second from Karitsa I and II.

INSTRUCT results for K = 5 are very similar to STRUCTURE genetic groups (S5B Fig).

Lowest selfing rate (0.095) was estimated for cluster IV (Ossa Massif) and highest (0.316) for

cluster III (Mariolata). Values for other clusters ranged between 0.20 and 0.23 (Cluster

I = 0.222, Cluster II = 0.226, Cluster V = 0.203).

DAPC revealed a hierarchical population genetic structure among the analyzed popula-

tions, with an optimal number of clusters of K = 10. Among those ten clusters, five main

Fig 1. Location of the sampled populations with results of clustering analyses made with STRUCTURE.

https://doi.org/10.1371/journal.pone.0226225.g001
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clusters can be readily distinguished, which corresponds to results obtained with STRUC-

TURE (Fig 2, S7 Fig). Two clusters are present only in Perivoli indicating a cryptic substructur-

ing in this population (cluster 2 and 6), one is specific to the isolated population of Mariolata

(cluster 3) and another (cluster 1) was found in populations from Ossa Massif (Karitsa I and

Karitsa II). Clusters 5 and 7 were mainly in Vathirrevma, while remaining clusters (4, 8, 9, 10)

were dispersed across all the analyzed populations, with some tendency to occur in popula-

tions from the Pindos Mts. DAPC conducted for seedling populations showed that young indi-

viduals from each stand formed a separate genetic cluster.

Isolation by ecology (IBE)

The genetic differentiation pattern was driven firstly by topography (r = 0.59, P = 0.0225),

which partially proves IBE. Habitat suitability was not a significant factor of differentiation

(r = 0.34, P = 0.010). The theoretical model of gene flow from CIRCUITSCAPE showed gener-

ally favorable conditions for gene flow in the core range, and pointed to impeded genetic con-

nectivity with the most isolated population from Mariolata (S10 Fig). The genetic connectivity

between the Pindos Mts. and Ossa Massif was also not affected by any physical barrier.

Climate niche modeling

MAXENT models based on our nine sampling locations and 65 records from the literature

gave robust predictions on horse-chestnut’s past, present and future distribution (Fig 3, S8 Fig,

Fig 2. Genetic cluster inferred with DAPC analysis.

https://doi.org/10.1371/journal.pone.0226225.g002
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S9 Fig). All models received AUC (Value of Area Under the Curve) greater than 0.995, indicat-

ing a very good fit of the model. The most important factors that limit the species distribution

are mean temperature of the wettest quarter (relative contribution 29.0, Table 3), precipitation

of the coldest quarter (21.1) and precipitation of the driest month (19.3). Quite important also

are isothermality (13.9), which quantifies how large the day-to-night temperatures oscillations

are relative to summer-winter temperatures, and precipitation seasonality (11.9).

The predictions of horse-chestnut’s current theoretical range mostly overlap our sampling

locations from the Balkan Peninsula, especially the Pindos Mts. (suitability > 0.65). This indi-

cates that our sampling for genetic analysis covered the core of the species potential range.

There was some overprediction of the model in an eastern direction where the species does

not currently occur. Specifically, the Pontic Mts. in Anatolia were highly supported as a possi-

ble area of the species distribution (Fig 3, S9A Fig).

During the period of the Last Glacial Maximum (LGM, c. 22,000 BP), the theoretical range

of the species was likely much larger, and a westward expansion is evident (S8A Fig). Apart

from the Balkan Peninsula, horse-chestnut could grow in wide areas of the northern coasts of

the Mediterranean Sea and the Atlantic coast of Europe. The most suitable (>70%) were the

territories by the Gulf of Lion, the Apennines, and the Atlantic coast in the northern part of

the Iberian Peninsula (Cantabrian Mts.) and Brittany. In Anatolia, only a narrow stripe in the

Pontic Mts. appears as a potential area of distribution but with only a low suitability (< 35%).

During the Mid-Holocene (c. 6000 BP), the theoretical range of horse-chestnut decreased,

but it was still wider than the current range (S8B Fig). The major change was the elimination

of the marginal areas delineated as less suitable during LGM (< 20%). The model also

excluded areas by the Gulf of Lion, which were strongly predicted to have populations of

horse-chestnut during the previous period. The main distribution during the Holocene were

the Pindos Mts. on the Balkan Peninsula and the Cantabrian Mts. on the Iberian Peninsula.

The western part of Anatolia appears as a suitable area (as high as 80%) despite its lack of suit-

ability in the previous period.

In terms of future distribution, RCP 2.6 and RCP 4.5 climate changes scenarios are pre-

dicted not to have a significant impact on the central stands of horse-chestnut, although they

will reduce the potential range (S9B Fig, S9C Fig). Extreme projected climate change in sce-

nario RCP 8.5 may, however, pose a threat to the natural populations (S9D Fig). The models

Fig 3. Theoretical range of Aesculus hippocastanum, estimated using MAXENT. A—period of the maximum glaciation

(c. 22,000 years ago); B—current conditions; C—future conditions estimated for RCP 4.5 scenario of the climate changes.

https://doi.org/10.1371/journal.pone.0226225.g003

Table 3. Percent contribution of the most important bioclimatic variables in the tested climate models.

Model Bio8 Bio19 Bio14 Bio3 Bio15

Current conditions 29.8 18.3 20.1 14.5 12.4

LGM 30.8 19.6 19.4 13.7 11.2

Middle Holocene 29.0 22.1 19.2 13.8 11.7

Future conditions, RCP 2.6 28.8 20.3 19.6 14.0 12.5

Future conditions, RCP 4.5 27.9 23.1 18.6 13.7 11.9

Future conditions, RCP 8.5 27.9 23.1 18.6 13.7 11.9

Average 29.0 21.1 19.3 13.9 11.9

Bio8 –mean temperature of wettest quarter; Bio19 –precipitation of coldest quarter; Bio14 –precipitation of driest month; Bio3 –isothermality; Bio15 –precipitation

seasonality.

https://doi.org/10.1371/journal.pone.0226225.t003
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do not predict a change in bioclimatic conditions, which could result in a shift of the species

range to the north.

Discussion

Level of diversity and its factors

Jiménez-Mejı́as et al. [44] stated that the level of genetic diversity within endemic species from

the Mediterranean zone is related more with historic and environmental factors than with

their biology. Because horse-chestnut is a paleoendemic and a relict with highly fragmented

distribution we expected to find rather low genetic variability due to historical processes lead-

ing to range fragmentation and contraction [44]. Nevertheless, diversity assessment based on

eight microsatellite loci was moderate and similar to other endemic woody species from the

Mediterranean region [98–102]. However, inferences based on a small number of loci that do

not represent the whole genome may be biased.

Being a Tertiary relict, horse-chestnut thrived for a long time under the relatively stable

environment of climatic refugia. According to our modeling, its occurrence in Greece repre-

sents the core species distribution since at least the last glaciation, which could be an important

factor in the diversity reported here [103]. Long-term survival keeps the old genetic diversity

preserved and allows the new genes to accumulate [103, 104]. Recent reviews support the

trend of moderate to high genetic variability among Mediterranean endemics [44, 105] and

examples from other regions suggest that this may not be specific to the Mediterranean [106–

111]. However, the factors underlying the retention of high genetic diversity in endemics are

still rather elusive [51, 112, 113].

Over recent years, many studies have shown the high resilience of trees to negative effects

of fragmentation due to their longevity, prolonged juvenile stage and high rate of gene flow.

All of these are thought to retard the loss of genetic diversity even in endemic species [102,

107, 114, 115]. Hence, in the case of tree relicts, species biology can be as important as histori-

cal factors in its effect of genetic diversity. However, conclusions on high genetic variability

based on mature populations may not reflect the true situation [116]. Accordingly, a closer

look into differences in diversity levels between mature and seedling generations of horse-

chestnut revealed some alarming symptoms of diversity leakage. Generally, two out of the

three mature-offspring population pairs that were studied showed a suggested decrease in alle-

lic richness and increased inbreeding, although differences were not statistically significant;

and heterozygosity decreased in all offspring populations in comparison to mature ones

(Table 2). Comparison of heterozygosity between analyzed loci show similar differences

between mature and offspring populations (S3 Table); higher value of expected heterozygosity

in Karitsa II–seedlings than in Karitsa II–mature probably results from a small number of ana-

lyzed individuals in mature population. Increased homozygosity in young ontogenetic stages

is frequently noted, and inbreeding depression is expected to eliminate inbred individuals

between seed and adult stages. However, the outflow of the allelic diversity noted in seedlings

is worrying, even where the acquisition of new alleles was noted. Detection of new alleles

means either that immigrants moved in, or that the new alleles were simply omitted in the

mature population due to their low frequency and insufficient sampling.

In all populations of horse-chestnut investigated here (except for Dasos Nanitsa), a bottle-

neck was inferred. However, this estimation may be rather weak because it used only eight

loci, where seven is considered a minimum in this type of analysis [117]. Considering that the

range of the species has been reducing since at least last glacial cycle, a bottleneck effect ought

to be assumed, although it is not a general rule among relict species [117–120]. Nevertheless,

the diversity in studied populations was still maintained at a considerable level probably due to
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traits generally perceived as favouring high variability in tree species [19, 121, 122]. Longevity

along with high fecundity would be the factors that might mitigate the effects of fragmentation

on the loss of diversity [19]. High numbers of low-frequency alleles may suggest that popula-

tions experienced a less severe bottleneck and are now at the expansion phase.

Spatial genetic structure and its factors

In principle, becoming a paleoendemic involves the shrinking and disintegration of the once

widespread ancestral range [5, 123]. Distribution in isolated stands may hamper the gene flow

contributing to diversity loss due to genetic drift [48, 124]. Hence, considerable genetic differ-

entiation in this group of plants is expected since population genetic theory predicts that allele

frequencies diverge among small, fragmented and isolated populations [125, 126]. Indeed, the

value of FST = 0.109 indicates a moderate level of genetic differentiation, comparable to several

Mediterranean conifer species that do not have such a fragmented and narrow distribution as

horse-chestnut [105, 127, 128]. Another Tertiary relict, Taxus baccata L. that has a much wider

distribution was reported to attain a very large among-population divergence [129–131]. How-

ever, English yew suffers from strong limitations of gene flow, biparental inbreeding and

almost no natural regeneration [132–135]. Poor regeneration and high seedling mortality is a

common problem in Mediterranean relict species, for example Frangula alnus Mill. subsp.

baetica (E. Rev. and Willk.) [136], Buxus balearica Lam. [137] and Olea europaea L. subsp.

laperrinei (Batt. and Trabut) Cif. [138]. In comparison, the demographic situation in horse-

chestnut populations seems to be better since abundant natural regeneration was reported in

some populations [52].

Detection of significant IBD indicates that geographical separation among horse-chestnut

populations is responsible for the differentiation detected. This means that historical factors,

such as range contraction induced by climatic transformations, are important drivers of spatial

genetic structure in horse-chestnut. Low admixture among populations from distinct geo-

graphic regions and generally a very low rate of recent gene flow both argue for limitations in

current genetic connectivity among populations, which is a consequence of range disintegra-

tion that started even before the last glaciation. This fits with the highest values of FST in pair-

wise comparisons being found between the most distant and marginally located populations,

Mariolata and Karitsa, and the remaining populations; the lowest differentiation was noted

between Karitsa I and Karitsa II separated with only c. 6 km.

Both, DAPC and STUCTURE indicated strong divergence of marginal populations (Mario-

lata, Karitsa I and II) and the very distinct character at Perivoli from the northern Pindos com-

pared to other populations from this part of the mountain range (Fig 2). Populations from

southern Pindos were also different from the northern Pindos. Thus, DAPC suggests the exis-

tence of different gene pools for horse-chestnut in the northern and southern Pindos Mts. The

fact that both southern Pindos populations (Vaeni and Vathirrevma) are located by the rivers

of the Ionian Sea watershed, while the northern Pindos’ rivers flow to the Aegean Sea may con-

tribute to the observed differentiation. Results from STRUCTURE were less exact, giving

Vaeni an intermediate position between Vathirrevma and the northern Pindos populations

(Fig 1).

Phylogeographic studies underline the major role of southern European mountains as the

centers of refugial areas during the last glacial cycle [8]. The physiographic complexity of the

mountain landscapes offered shelter during the climate harshness of the Pleistocene, especially

for Tertiary relicts [4, 5, 29]. However, complex mountainous landscapes may also promote

genetic divergence, especially in endemics [31, 44, 139]. Indeed, our IBE analysis indicated

that out of the two ecological factors considered; only topography was an important driving
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factor in horse-chestnut differentiation. The relatively high FST value between Mariolata and

the remaining populations (average value 0.195) particularly well exemplifies the issue. Mario-

lata is located at the southern edge of the species distribution in the Parnassus Range, which is

in the southwestern spur of the Pindos Mts. This part, unlike to the main Pindos range which

runs along a north-south axis, is more latitudinally-oriented and divided into many smaller

mountain ranges [140]. Such spatial orientation of ridges may produce additional obstacles for

gene flow [141, 142].

Contrary to our initial assumptions, habitat characteristics were not an important factor in

differentiation. We expected to find at least a weak signal of adaptive divergence since some

populations inhabit ecologically very dissimilar habitats. Additionally, limited gene flow would

be a factor enhancing such divergence. One of the reasons that we failed to detect local adapta-

tion may stem from the limited number of populations included in our investigations or too

small an area covered (only the Greek part of the range); only two populations out of nine ana-

lyzed showed a distinct edaphic character, being located on steep and dry slopes. For T. bac-
cata, Mayol et al. [131] confirmed a significant influence of environmental variables on the

current pattern of genetic differentiation. In T. baccata, survival in spatially isolated refugia

under divergent temperature regimes were significant determinants of current genetic differ-

entiation and consequently lead to evolution of two evolutionary lineages adapted to different

temperature ranges.

Clusters inferred by STRUCTURE and INSTRUCT were related to specific mountain

ranges (Fig 1). Such structuring shows that the gene flow among regions, and even between

adjacent populations, is too low in such a complex environment to counteract the effects of the

accumulated differentiation (Fig 1). However, gene flow is also strictly related to mechanisms

of pollen and seeds dispersal. Hence, species biology may be a limiting factor for gene flow.

Pollen movement distance in closely related A. turbinata may reach on average of c. 180 m

with maximum distance reported of over 700 m. Similar distance may be attained in horse-

chestnut, and it may account for effective within-population gene flow resulting in high

within-population diversity. However, this distance is too short to maintain among-population

connectivity in so disjunct a range and such a complex environment. Generally, in animal-pol-

linated tree species, highly mobile pollinators such as birds can work effectively in fragmented

landscapes but in the case of insect-pollinated trees, pollen movement is mostly local [143].

Pollen of tropical tree species is moved further by insects, but even here pollen dispersal over

more than a few kilometers happens only occasionally [144].

Two populations from the easternmost margins of the species range, Karitsa I and II (Ossa

Massif), are separated from the core range although genetic admixture from the northern Pin-

dos was revealed by STRUCTURE. CIRCUITSCAPE. This indicates, at least theoretically, that

there are no impenetrable barriers preventing gene exchange between the Pindos Mts. and the

Ossa Massif (S10 Fig), and gene flow may be asymmetric—primarily in a west-east direction

(S2 Fig, S3 Fig, S10 Fig). We conjecture that this may be related to the hydrochory of species

linked to the river network as the rivers from the northern Pindos that run down to the Aegean

Sea. There are no direct studies on seed dispersal by water in horse-chestnut, but its popula-

tions are restricted to the watercourses which suggests the possibility [53]. In Frangula alnus
subsp. beatica and other Tertiary endemics growing by mountain rivers in southern Spain,

winter flooding events were shown to play an important role in the secondary dispersal of

seeds already spread by birds [136]. Seeds of horse-chestnut are primary barochoric but dis-

persal by rodents or other animals should be considered [145, 146]. Congeneric A. turbinata is

dispersed for distance of up to 114.5 m [61]. Similar dispersal distances can be expected for

horse-chestnut as the seed of both species are of comparable size. However, as with wind-

mediated gene flow, animal-dispersion of seeds would tend to account for local gene flow
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while long-distance gene transfer would require the involvement of a more effective medium;

here, the mountain rivers would suit perfectly. In their work, Robledo-Arnuncio et al. [141]

showed that watersheds were involved in the phylogeographic pattern of Scots pine in the

Northern Meseta of Spain.

Other explanations for the genetic admixture observed between the northern Pindos and

Ossa Massif and for the overall moderate value of genetic differentiation include the histori-

cally larger distribution and more extensive gene exchange in the past. Strong support for this

comes from the estimations of the historical migration rate (S3 Fig) and modeling potential

distributions (Fig 3). Firstly, MIGRATE-n showed more intensive gene flow among studied

populations in the past. Large and demographically stable populations in the past, connected

via gene flow and longevity would synergistically buffer horse-chestnut from the negative

effects of range fragmentation for a long time. Secondly, modeling of theoretical range clearly

shows a possibility of wider distribution in the past. Accordingly, during LGM (ca. 22 ka BP)

Aesculus sp. populations might have occupied extensive areas on the west coast of the Mediter-

ranean Sea (Fig 3). Paleodistribution modeling predicted five main domains of species occur-

rence which were the Pindos Mts., Apennines, areas over the Gulf of Lion, Cantabrian Mts.

and the Brittany Peninsula. Except for the two latter locations, fossil data support the presence

of horse-chestnut in those areas during the Pleistocene [40, 147]. Mid-Holocene sites of horse-

chestnut might even have existed in south-east Ukraine [148], which was also weakly sup-

ported by our distribution modeling (1% of suitability, S4 Fig). Based on these, we propose

that Pleistocene refugial populations might have existed for horse-chestnut in the Gulf of Lion,

Apennines and Pindos Mts., although we cannot distinguish the existence of such population

in the Cantabrian Mts. or Brittany.

Lack of palaeobotanic data on the past occurrence of horse-chestnut in Anatolia makes its

presence there tentative. MAXENT projected the existence of suitable habitats for horse-chest-

nut in the mid-Holocene despite it being absent during the last glaciation, which is rather puz-

zling. Considering its limited colonization ability due to heavy seeds and the mode of their

dispersion, the Holocene colonization of these areas from the Balkan Peninsula across the

Aegean Sea is highly unlikely. More mysterious is the introduction route of horse-chestnut

from Turkey to Europe [41]. It is possible that against the prediction of niche modeling, horse-

chestnut grew in Anatolia during the LGM in local, limited refugia from which it expanded in

the mid-Holocene. Unfortunately, there are no fossil records from this period and the only late

Pliocene pollen record was found in eastern Anatolia [149]. It is possible, that horse-chestnut

was not native to Turkey when discovered by European botanists in the 16th century. It could

have been introduced to Turkey from Greece or Albania in the past, for example at a time

when the Balkan Peninsula was conquered by the Ottoman Empire. However, until new

paleaobotanical data are collected, neither of these hypotheses can be verified.

Conservation remarks

Given the high fragmentation of the horse-chestnut range, there is a serious risk that the cur-

rent level of divergence will be increasing since observed gene flow seems to be insufficient to

maintain functional connectivity among the remnants dispersed in a complex mountainous

landscape. Horse-chestnut is a habitat specialist, like other paleoendemic species [13], and

may not be able to adapt to new conditions. Environmental change, human pressure and espe-

cially limitations of the species biology hinders it from rapid colonization and successful com-

petition. Combination of these factors makes the future of this species uncertain.

Our results indicate increased homozygosity in natural populations, implying a risk of

inbreeding depression and loss of diversity in the future (Table 2). In most cases, the

Genetic structure of natural populations of Aesculus hippocastanum L. in Greece

PLOS ONE | https://doi.org/10.1371/journal.pone.0226225 December 11, 2019 16 / 27

https://doi.org/10.1371/journal.pone.0226225


homozygote excess was due to inbreeding, which may be accounted for by both selfing and bipa-

rental inbreeding. Although data on the mating system of horse-chestnut are missing, the conspe-

cific A. turbinata shows a considerable level of selfing (8.3% self-pollinated seedlings) [150, 151].

Horse-chestnut is primarily entomophilous although the concentration of air-borne pollen and

existence of fossil pollen records suggest that it may be partially anemophilous as well [39, 59].

The homozygosity excess could be also generated by a Wahlund effect. STRUCTURE revealed

hidden population substructure in all (except one) mature populations that may suggest the exis-

tence small local breeding groups. The species reproductive biology in terms of limited capacity of

pollen/seed dispersion could be the possible cause of the observed substructuring and thus, the

homozygosity excess. However, this issue requires further studies.

Many species are currently at high risk from the negative impact of climate change. In the

face of changing environmental conditions, endemic species may not be able to keep pace with

these changes and therefore may be first to disappear [152]. For example, the range of the Chi-

nese Tertiary relictDavidia involucrata Baill., is expected to be reduced to less than 30% of its

current theoretical range [153]. In the Mediterranean region, the distribution of many plant

species is limited by water availability [5, 154, 155] and drought is one of the most important

factor that leads to the decline of forest in this region [156]. Future climate change in the Medi-

terranean may bring some risk to natural populations of horse-chestnut, mainly by the reduc-

tion of rainfall and increasing summer temperature [157]. According to future range modeling,

a moderate scenario of climate change should not cause extinction of the populations in the

Pindos Mts., but extreme changes (RCP 8.5 scenario) entails some risk for species survival.

The results obtained in this work are less optimistic about the future persistence of horse-

chestnut than previous studies [52]. The most important contributing factors are also different.

These result from using a more accurate model. However, it should be remembered that

modeling provides only estimations and the differences between various models can be large,

especially when considering future conditions [158, 159]. Unfortunately, current models of the

future range of horse-chestnut do not show a large expansion of this species to the north to

trace the optimum conditions. Thus, in situ conservation should be a priority and a conserva-

tion program should be immediately launched for Greek populations, which are the largest

[49]. Unfortunately, as observed during this study, most of the natural populations are not pro-

tected and some of them are being destroyed by infrastructure expansion. Although the most

valuable natural populations of the horse-chestnut are located in Greece, this species is not on

the Red List of Greece and a reasonable conservation strategy is lacking [160]. So far horse-

chestnut has been included in the national list of protected species of the Presidential Degree

67/1981, and some populations are within the NATURA 2000 network [38], but it is not

enough. Much more needs to be done and surely can be done in order to protect this beautiful

tree in its natural environment.
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(2012) are approximate.

(XLSX)

S2 Table. Bioclimatic variables from WorldClim database. Variables used in the analysis of

the theoretical range are bolded.

(DOCX)

S3 Table. Parameters of genetic diversity of analyzed loci. A–number of alleles, Ae−effective

number of alleles, Null–frequency of null alleles, Ho−observed heterozygosity, He−expected

heterozygosity.

(XLSX)

S4 Table. Matrix of genetic distance between populations. FST with ENA correction above

diagonal, FST without ENA correction below diagonal. Populations: 1 –Ondria, 2 –Kalampaka,

3 –Dasos Nanitsa, 4 –Vaeni, 5 –Mariolata, 6 –Karitsa I, 7 –Karitsa II, 8 –Vathirrevma, 9 –Peri-

voli. FST is not significant (p> 0.05).

(DOCX)

Genetic structure of natural populations of Aesculus hippocastanum L. in Greece

PLOS ONE | https://doi.org/10.1371/journal.pone.0226225 December 11, 2019 18 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s014
https://doi.org/10.1371/journal.pone.0226225


S5 Table. Matrix of migration rate between populations as calculated by BAYEASS. In

rows are the source populations, in columns—the sink populations. Proportion of migrants

above 2% are bolded. Populations: 1 –Ondria, 2 –Kalampaka, 3 –Dasos Nanitsa, 4 –Vaeni, 5 –

Mariolata, 6 –Karitsa I, 7 –Karitsa II, 8 –Vathirrevma, 9 –Perivoli.

(DOCX)

S6 Table. Matrix of migration (number of individuals per generation) between populations

as calculated by MIGRATE-n. In rows are the source populations, in columns—the popula-

tions into which individuals immigrate. Number of migrants above 150 are bolded. Popula-

tions: 1 –Ondria, 2 –Kalampaka, 3 –Dasos Nanitsa, 4 –Vaeni, 5 –Mariolata, 6 –Karitsa I, 7 –

Karitsa II, 8 –Vathirrevma, 9 –Perivoli.

(DOCX)

S7 Table. Probability of belonging of each individual to each cluster according to STRUC-

TURE analysis.

(DOCX)

Acknowledgments

The authors thank foresters in Greece for their hospitality and help during the fieldwork, Pro-

fessor Jacek Oleksyn for inspiration for this study, E. Pers-Kamczyc for field assistance and M.

Łuczak for help during laboratory works.

Author Contributions

Conceptualization: Grzegorz Iszkuło, Monika Dering.

Data curation: Łukasz Walas.

Formal analysis: Łukasz Walas.

Investigation: Grzegorz Iszkuło, Monika Dering.

Methodology: Łukasz Walas, Monika Dering.

Resources: Petros Ganatsas, Grzegorz Iszkuło, Monika Dering.

Software: Łukasz Walas.

Supervision: Monika Dering.

Validation: Łukasz Walas.

Visualization: Łukasz Walas.

Writing – original draft: Łukasz Walas.

Writing – review & editing: Łukasz Walas, Petros Ganatsas, Grzegorz Iszkuło, Peter A.

Thomas, Monika Dering.

References
1. Chaney RW. Tertiary centers and migration routes. Ecological Monographs 1947; 17: 139–148.

2. Wolfe JA. Tertiary climates and floristic relationships at high latitudes in the Northern Hemisphere.

Palaeogeography, Palaeoclimatology, Palaeoecology 1980; 30: 313–323.

3. Mai DH. Palaeofloristic changes in Europe and the confirmation of the Arctotertiary-Palaeotropical

geofloral concept. Review of Palaeobotany and Palynology 1991; 68: 29–36.

4. Milne RI, Abbott RJ. The origin and evolution of tertiary relict floras. Advances in Botanical Research

2002; 38: 281–314.

Genetic structure of natural populations of Aesculus hippocastanum L. in Greece

PLOS ONE | https://doi.org/10.1371/journal.pone.0226225 December 11, 2019 19 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226225.s017
https://doi.org/10.1371/journal.pone.0226225


5. Thompson JD. Plant evolution in the Mediterranean. Oxford: Oxford University Press on Demand;

2005.

6. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conserva-

tion priorities. Nature 2000; 403: 853–858. https://doi.org/10.1038/35002501 PMID: 10706275

7. Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Levergne S,

Lavorel S, Mouguet N, Paine CET, Renaud J, Thuiller W. Rare Species Support Vulnerable Functions

in High-Diversity Ecosystems. PLOS Biology 2003; 11: e1001569.

8. Feliner GN. Patterns and processes in plant phylogeography in the Mediterranean Basin. A review.

Perspectives in Plant Ecology, Evolution and Systematics 2014; 16: 265–278.

9. Sarris D, Christodoulakis D, Körner C. 2007. Recent decline in precipitation and tree growth in the

eastern Mediterranean. Global Change Biology 13: 1187–1200.
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