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Summary

� The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation,

and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin

monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyl-

transferases, which facilitate their transport to the surface.
� The extent to which cutin monomers affect leaf cell wall architecture and barrier properties

is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-

PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall

properties affecting dehydration in leaves.
� Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by

the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression

of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato

SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, con-

comitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the

outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a

mutants had an impaired cell wall–cuticle continuum and fewer stomata, but showed

increased water loss.
� This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in

influencing epidermal cell properties that are integral to leaf–microbe interactions and in limit-

ing dehydration.

Introduction

Most epidermal cells of the aerial parts of vascular plants are cov-
ered by a hydrophobic extracellular lipid barrier, known as the
cuticle, which is composed of polymeric cutin and waxes (Yeats
& Rose, 2013). The cutin matrix is a highly viscoelastic polymer
with low tensile strength (Fich et al., 2016) that functions as a
transpiration barrier (Schonherr, 1976) and also contributes
mechanical strength to the underlying cell wall (Kolattukudy,
1980). Celluloses, hemicelluloses and pectins from the cell wall
can be incorporated into the cutin matrix, thereby influencing its
elasticity and stiffness (L�opez-Casado et al., 2007) and facilitating
expansion during growth and development and in response to
environmental cues (Bargel & Neinhuis, 2005; Underwood,
2012).

Cutin biosynthesis involves the esterification of oxygenated
16- or 18-carbon fatty acids to glycerol (Beisson et al., 2012)
through the action of glycerol-3-phosphate acyltransferases
(GPAT4, GPAT6 and GPAT8). These enzymes have specificity
for the second carbon of the glycerol (sn-2 position) (Yang et al.,

2012) and exhibit phosphatase activity that removes the phos-
phate group from glycerol-3-phosphate (Yang et al., 2010).
Accordingly, mutants of the Arabidopsis thaliana GPAT4,
GPAT6 and GPAT8 genes display reduced amounts of C16 and
C18 fatty acid cutin monomers (Li et al., 2007; Mazurek et al.,
2016). GPAT4 orthologues in Brassica napus are highly expressed
in the seed coat, periderm and endodermis of roots (Chen et al.,
2011b) and function in the development of reproductive organs
(Chen et al., 2014). GPAT6 is involved in cutin synthesis in
A. thaliana petals (Li-Beisson et al., 2009) and tomato (Solanum
lycopersicum) fruit (Petit et al., 2016) and was found to have mul-
tiple functions in stamen development and fertility (Li et al.,
2012). Analysis of A. thaliana gpat6 knockout lines demonstrated
that GPAT6 is essential for the accumulation of C16 cutin
monomers (Li-Beisson et al., 2009) and that the enzyme has a
higher affinity for C16 and C18 x-oxidized acyl-CoA substrates.
A glossy fruit mutant of the tomato cv Micro-Tom with
increased total wax load, but lower amounts of total cutin in fruit
cuticles, and a much thinner cuticle (Petit et al., 2014), were dis-
covered to be a result of a point mutation in the GPAT6 gene
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that abolished enzymatic activity (Petit et al., 2016). Addition-
ally, the Micro-Tom gpat6-a has perturbed pollen formation but
is not male sterile (Petit et al., 2016).

The cuticle not only controls solute and gas exchange (Ker-
stiens, 1996a; Riederer & Schreiber, 2001) but also provides pro-
tection against pathogen invasion (Kerstiens, 1996a,b).
Accordingly, to gain entry into host tissues, pathogens secrete
hydrolytic enzymes, including cutinases, esterases, lipases and gly-
canases, which destroy the integrity of the cuticle–cell wall con-
tinuum (Belbahri et al., 2008; Blackman et al., 2014). For
example, the oomycete Phytophthora infestans secretes cell wall-
and cuticle-degrading enzymes and forms surface appressoria that
support tissue invasion. P. infestans is an economically important
leaf pathogen of potato (Solanum tuberosum) and tomato
(Haverkort et al., 2008) and can also infect wild tobacco species,
including Nicotiana benthamiana (Becktell et al., 2006). During
the early infection stages, P. infestans lives as a biotroph, prolifer-
ates an extensive intercellular hyphal network within the leaf mes-
ophyll and projects short digit-like haustoria into mesophyll cells
to suppress immunity and support infection. In the later stages of
infection, P. infestans switches to a necrotrophic lifestyle and kills
the host tissue, resulting in necrotic lesions. Other Phytophthora
species with similar lifestyles are not restricted to infecting aerial
tissues. For example, the tropical pathogen P. palmivora can
infect roots and shoots of many vascular and nonvascular host
plants (Torres et al., 2016).

Cutin monomers and cell wall oligosaccharides released during
a pathogen attack can serve as damage-associated molecular pat-
terns, allowing the plant cell to mount mitigating defence and
wall repair responses, but conversely may also stimulate pathogen
colonization by triggering the formation of appressoria (Gilbert
et al., 1996). Phytophthora palmivora forms appressoria when
exposed to cutin monomers in vitro (Wang et al., 2012) and cutin
components have also been reported to trigger spore germination
and cutinase expression in the fungus Botrytis cinerea (Leroch
et al., 2013). The ectopic application of cutin monomers during
root inoculation with P. palmivora was reported to restore full
susceptibility to the Medicago truncatula GPAT mutant ram2
(Wang et al., 2012), suggesting that the oomycete in part relies
on the presence of cutin-derived signals to enhance its
pathogenicity, as reducing GPAT activity enhances resistance to
Phytophthora infection.

Here we document the importance of GPAT6 in leaf infec-
tions by oomycete and fungal pathogens, as well as its contribu-
tion to cell wall properties. We found that GPAT6 transcript
abundance increases in response to Phytophthora infection, and
that overexpression of GPAT6 results in increased resistance to
oomycete infection. Furthermore, although gpat6 mutants are
more susceptible to Phytophthora leaf infection, they display
increased leaf resistance to B. cinerea, suggesting pathogen
lifestyle-specific differences. Changes in pathogen susceptibility
are associated with altered thickness of the leaf cell wall plus cuti-
cle, as well as altered transpiration and numbers of stomata. This
is reflected in elevated transcript abundance of the immunity-
and stomata development-associated receptor-like kinases
SERK3/BAK1 and ERECTA in gpat6-a leaves. Cuticle-associated

genes are consistently altered in leaves and fruits of gpat6-a
plants, whereas more variation exists in genes related to the cell
wall and secondary metabolites. Although GPAT6-like genes
have been implicated in flower, fruit and seed development, our
work uncovers a function in leaves of N. benthamiana and tomato
where GPAT6 genes influence cell wall and cuticular properties
associated with pathogen infection and water regulation.

Materials and Methods

Statistical analysis

Levene’s tests were applied to check for heteroscedasticity
between treatment groups. Following this, the appropriate two-
sample t-test was applied, accounting for equal or unequal vari-
ances, to assess whether the means of two different treatment
groups were significantly different, based on a = 0.5. Figures are
labelled with asterisks to indicate P-value range (i.e. *, P ≤ 0.05;
**, P ≤ 0.01; ***, P ≤ 0.001).

Microbial strains and cultivation

Phytophthora infestans strain 88069, previously described in van
West et al. (1998), was grown at 18°C in the dark on rye sucrose
agar plates. Zoospores were harvested from 14-d-old plates by
adding 6 ml cold sterile H2O, incubating in the dark at 4°C for
45–60 min, then in the light at room temperature for 30 min
and extracting the liquid by pipetting. Approximately
30 spores ll�1 sterile H2O were then used immediately for infec-
tion assays.

Phytophthora palmivora strain P16830-YKDEL was previously
described (Rey et al., 2013). P. palmivora was grown in a Convi-
ron (Winnipeg, MB, Canada) A1000 Reach-In Plant Growth
Chamber at 25°C and 700 lmol intensity. For subculturing, rye
sucrose agar plates were used with the addition of 50 lg ml�1

G418 (geneticin) to select for transformants. For production of
zoospores, agar plates containing 10% unclarified V8 vegetable
juice were used with the addition of 50 lg ml�1 G418 (ge-
neticin). Harvesting of zoospores was performed as for
P. infestans described earlier

Botrytis cinerea R190/11/3, isolated from Geranium by Robert
Saville in 2011 (NIAB-EMR, East Malling, UK) was grown on
potato dextrose agar plates in a Conviron A1000 Reach-In Plant
Growth Chamber at 25°C and 700 lmol intensity and subcul-
tured by excising an agar plug containing conidiophores and
inverting it onto a fresh plate. Conidia for infection assays were
harvested from 7-d-old potato dextrose agar plates but adding
6 ml cold sterile H2O, incubating in the light at room
temperature for 1 h then gently agitating the conidiophores with
a spatula to release the conidia. The concentration was adjusted
to c. 30 conidia ll�1 sterile H2O.

Leaf infection assays

Droplets (10 ll) of identical Phytophthora zoospore (c. 1000
zoospores) or Botrytis conidia count (c. 5000 spores) were placed
onto the abaxial side of all leaves of the experiment between their
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veins. Inoculated leaves were then incubated in a humidified
chamber under illumination at 24°C for the stated time before
imaging. Disease symptom images of P. infestans or P. palmivora
lesions were obtained by placing the infected leaves on a light
table emitting near-UV light in the 380–500 nm range and cov-
ering them with a yellow filter. This created high contrast
between uninfected zones that appear red/orange as a result of
autofluorescence and infected zones that appear black as a result
of cell death-associated loss of autofluorescence. Leaves were
imaged through the filter using a digital camera on a tripod with
long exposure settings and lesion area was quantified using
IMAGEJ. Quantification involved conversion to greyscale, inver-
sion of the colours then application of a threshold (same thresh-
old for all images) to isolate the nonautofluorescent necrotic
lesions from autofluorescent background. Nonautofluorescent
pixels were counted by making a selection around all of the
lesions on a single leaf and then using the ‘Analyze Particles’
function to calculate the total necrotic area per leaf.

Phylogenetic analysis

Protein sequences from N. benthamiana, M. truncatula and
S. lycopersicum homologous to A. thaliana GPATs were identified
by search of the NCBI database (https://blast.ncbi.nlm.nih.gov/
Blast.cgi) using AtGPATs 1–9 as queries (sequence accession
numbers are listed in Supporting information Fig. S1). Obtained
sequences were then aligned using MUSCLE (http://www.ebi.ac.uk/
Tools/msa/muscle/) and a phylogenetic tree constructed using
PHYML (http://atgc.lirmm.fr/phyml/) with the Phylogeny.fr web
tool (http://www.phylogeny.fr/). Branches with < 50% bootstrap
support (100 iterations) were collapsed. The tree presented in
Fig. S1 was rendered using TREEDYN (http://www.treedyn.org/)
and annotated using GIMP (https://www.gimp.org/).

Confocal microscopy

Confocal microscopy was performed using a Leica SP8 (Wetzlar,
Germany) equipped with a white light laser (main laser power
70%, time gating) and a 639 water immersion objective and the
following settings: pinhole, 1.00 AU; scan speed, 200 min–1; line
averaging factor, 4; green fluorescent protein (GFP) excitation,
489 nm; emission window, 500–552 nm; mCherry excitation,
587 nm; emission window, 596–643 nm; plastid autofluores-
cence excitation, 489 nm; emission window, 650–700. Samples
were mounted in water. Images of subcellular localiZation of
NbGPAT6a-GFP protein fusion were taken at 48 h postinocula-
tion upon transient constitutive expression in N. benthamiana
leaf.

Quantitative reverse transcription polymerase chain
reaction (qRT-PCR)

Total RNA was extracted from plant material using Qiagen
RNeasy Plant Mini Kit (Qiagen), including 1% (v/v) b-
mercaptoethanol in the extraction buffer. RNA was then reverse-
transcribed to cDNA using the Roche Transcriptor First Strand

cDNA Synthesis Kit. qPCR was performed in 384 well plates
using a Roche LightCycler 480 SYBR Green I Master Mix in a
Roche LightCycler 480 II machine. Three technical replicates
were performed for each sample. Normalization of crossing
point-PCR-cycle (Cp) values to an internal control was per-
formed against NbEF1a, NbF-BOX or NbL23 (Liu et al., 2012)
for quantification of N. benthamiana transcripts and against
PiWS21 (Yan & Liou, 2006) for P. infestans transcripts.

Expression analysis

Leaves of 6-wk-old tomato cv ‘Micro-Tom’ or gpat6-a mutant
plants were subjected to a detached leaf infection assay (see ear-
lier) and either zoospore suspension or water were applied to the
lower epidermis. Leaf discs were harvested 72 h postinoculation
(hpi). Three biological replicates per sample were obtained and
subjected to RNA extraction and poly(A) selection. cDNA library
preparation was performed with the TruSeq® RNA Sample
Preparation Kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s protocol. cDNA sequencing of the 12 samples
was performed with Illumina NextSeq 2500 in 100 paired-end
mode (Genewiz, Leipzig, Germany). Raw reads were subjected to
quality control with FASTQC (https://www.bioinformatics.bab
raham.ac.uk/projects/fastqc/) and then aligned back to the
S. lycopersicum reference genome ITAG3.1 (ftp://ftp.solgenomics.
net/tomato_genome/annotation/ITAG3.1_release/) using STAR
(v.2.5.2b) aligner. Raw counts were obtained with FEA-
TURECOUNTS (Liao et al. 2014), and only uniquely mapped and
properly paired reads were considered further. Differentially
expressed genes were identified with the DESEQ2 BIOCONDUCTOR

package (Love et al. 2014) following four pairwise comparisons.
Differentially expressed genes (absolute log fold-change
(LFC) ≥ 1.5 and adjusted P-value ≤ 10�3) were used to generate
volcano plots and upset plots using UPSETR package (Conway
et al., 2017).

Cryoscanning electron microscopy

Cryoscanning electron microscopy (cryo-SEM) was performed
on 6-wk-old N. benthamiana and tomato leaves using a Zeiss
EVO HD15 (Oberkochen, Germany) with a Quorum cryo-prep
deck and cryo-stage (Lewes, UK). Leaf sections were mounted,
frozen, positioned inside the cryo-prep deck and then fractured
using a blade to allow for cross-sectional imaging. Sublimation of
samples for 3 min was used to remove surface ice and a 5 nm
platinum coating was applied before imaging via secondary elec-
tron detection.

Cell wall porosity analysis Discs (5 mm diameter) were excised
from leaves using a cork borer and incubated for 1 h at room
temperature with tetramethylrhodamine isothiocyanate (TRITC) :
Dextran (0.1mgml�1, 150k mw; TDB Consultancy AB, Uppsala,
Sweden) and Auramine O (0.01% w/v; Sigma). Images were
acquired using a Leica SP8 equipped with white light laser
(TRITC: excitation, 561 nm; emission window, 609–631 nm;
AuramineO: excitation, 458 nm; emission window, 485–532 nm).
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Water loss/dehydration analysis Whole leaves were harvested,
placed in a ventilated oven (30°C; MAXQ-6000, Thermo Fisher
Scientific, Waltham, MA, USA) and weighed over a time course.

Results

GPAT6 is induced during Phytophthora leaf infections

GPAT enzymes function in root interactions with symbiotic
arbuscular mycorrhiza fungi and pathogenic Phytophthora
oomycetes (Wang et al., 2012), but their roles in leaf interactions
with pathogens have not been well characterized. To this end, we
first identified all GPATs encoded in the tomato and
N. benthamiana genomes and grouped them based on their phy-
logenetic relationship to the better characterized A. thaliana
homologues (Fig. S1; Methods S1). This revealed the presence of
three N. benthamiana genes grouping with AtGPAT1/2/3 that
probably contribute to storage lipid biosynthesis (Zheng et al.,
2003), and three genes associated with AtGPAT5/7 that may be
involved in suberin biosynthesis (Beisson et al., 2007). The two
clades associated with AtGPAT4/8 and AtGPAT6, implicated in
A. thaliana cutin biosynthesis (Li et al., 2007; Li-Beisson et al.,
2009), contain two N. benthamiana genes each (Fig. S1). An
additional group of six N. benthamiana genes form a clade
together with MtRAM2 that is distinct from any A. thaliana
GPAT genes, and were termed NbRAM2A-F.

Previously published data on N. benthamiana root infection by
P. palmivora reported that NbGPAT6a, but none of the other
members of the GPAT4/6/8 clade, showed a consistent and sig-
nificant transcriptional induction during all stages of infection
(Fig. 1; Table S1) (Evangelisti et al., 2017).

Using qRT-PCR, we detected NbGPAT6a expression in
leaves, flowers, seeds and roots, with the highest steady-state levels
in flowers (Fig. 1). This is in agreement with GPAT6 expression
patterns in other species (Li-Beisson et al., 2009; Li et al., 2012;
Petit et al., 2016).

To test whether NbGPAT6a expression levels increase during
infection, we infected N. benthamiana leaves with P. infestans
strain 88069 (van West et al., 1999) zoospore droplets and mea-
sured changes in NbGPAT6a expression over time. NbGPAT6a
was highly induced in leaf tissues at 72 hpi with P. infestans
(Fig. 1). We therefore conclude that NbGPAT6a expression is
upregulated in roots and leaves infected with Phytophthora and
that expression levels in leaves are elevated late during infection
and so are not part of early, inducible, defence responses.

Constitutive expression of NbGPAT6a renders leaves
resistant to Phytophthora infection

To address whether higher GPAT6a transcript abundances influ-
ence Phytophthora infection, we generated constitutive overex-
pression constructs by creating a translational fusion of the
genomic NbGPAT6a open reading frame to the GFP reporter
gene under control of the 35S promoter. We first investigated the
subcellular distribution of the fusion protein upon transient
expression in N. benthamiana leaves. GPAT6 is a predicted

endoplasmic reticulum (ER)-resident enzyme (Chen et al.,
2011a) with two transmembrane domains (Fig. S2b) and we
observed NbGPAT6-GFP signals in the ER of leaf epidermal
cells matching the subcellular distribution of ER-targeted red flu-
orescent protein (RFP) (Fig. S2a). We then generated several
independent N. benthamiana lines that stably and constitutively
expressed NbGPAT6a-GFP (Fig. 2).

Overexpression of NbGPAT6a-GFP resulted in a 73% increase
in total leaf cutin, which was almost entirely a result of elevated
concentrations of x-hydroxyl (OH) fatty acid (-FA) cutin
monomers (Fig. S3a). In particular, concentrations of hexade-
cane-dioic acid, x-hydroxy hexadecanoic acid, x-hydroxy
heptadecanoic acid, x-hydroxy-octadecanoic acid and 10,16-
dihydroxy hexadecanoic acid showed significant increases relative
to GFP16C (control) leaves (Fig. S3b).

When we tested NbGPAT6a-GFP transgenic plants for their
resistance to P. infestans leaf infections, we found that five of
the six lines displayed smaller necrotic areas than the control
lines (Fig. 2) without affecting overall morphology of
P. infestans hyphae or haustoria within leaf epidermal cells of
two independent NbGPATa-GFP transgenic lines (Fig. S4).
Notably, transient expression of NbGPAT6a-GFP in fully
expanded leaves followed 24 h later by P. infestans infection
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did not alter the extent of disease-associated leaf necrosis
(Fig. S5), suggesting that NbGPAT6-mediated resistance is
associated with longer-term leaf development processes. Varia-
tion in these leaf development processes may contribute to the
variation in resistance phenotype we observed across the six
independent overexpressing lines.

Knockdown or knockout of GPAT6 renders leaves more
susceptible to Phytophthora infection but more resistant to
B. cinerea

To test whether reduced GPAT6 levels cause the opposite pheno-
type to increased levels, we established a NbGPAT6a-specific
virus-induced gene silencing (VIGS) construct and demonstrated
that it attenuated transcript abundances of NbGPAT6a, but not
those of homologous transcripts (Figs 3, S6). We found that
siNbGPAT6a-mediated VIGS resulted in stronger leaf necrosis
upon P. infestans infection (Fig. 3), suggesting a higher degree of
susceptibility.

We next tested whether GPAT6 contributes to Phytophthora
infection in tomato using a gpat6-a mutant in the ‘Micro-Tom’
background (Petit et al., 2016). Detached leaf infection assays
showed that the tomato gpat6-a mutant was more susceptible to
P. infestans (Fig. 4a,b) and P. palmivora infection (Fig. 4c), as
evident by larger lesion sizes and higher expression levels of
P. infestans sporulation marker transcript abundances at 48 hpi.
When investigating infection structures, we found that P. infestans
formed normal, digit-like haustoria (55%) but also singly branched
haustoria (45%) in epidermal cells of gpat6-amutant tomato leaves
(65 haustoria counted; Fig. S7a). By contrast, almost exclusively
digit-like haustoria (92%, 61 haustoria counted) were formed in
wild-type (WT) leaves (Fig. S7b). Importantly, gpat6-a mutants
displayed less severe disease symptoms upon infection with the
fungal pathogen B. cinerea (Fig. 4d). Taken together these data
demonstrate that attenuating or knocking out the expression of
GPAT6 genes has the opposite effect to GPAT6 gene overexpres-
sion, further supporting an important role for GPAT6 in ensuring
full resistance to Phytophthora infections.

Modulating GPAT6 expression alters the thickness of the
outer cell walls of the leaf epidermis

The tomato gpat6-a mutant was reported to have an altered fruit
cuticle structure (Petit et al., 2016), which we hypothesized might
be associated with the altered Phytophthora infection phenotypes
described earlier. We imaged the cell wall and cuticle of
NbGPAT6-GFP N. benthamiana leaves that displayed different
degrees of resistance to P. infestans infection, as well as tomato
gpat6-a mutant leaves, using cryo-SEM. We observed that the
outer epidermal cell wall was thinner in NbGPAT6a-GFP lines
compared with those expressing GFP alone (Fig. 5a,b), particu-
larly in the line showing the highest P. infestans resistance
(NbGPAT6a-GFP #21).

Conversely, gpat6-a leaf epidermal cells possessed a thicker cell
wall (Figs 5c,d, S8a–e). This change in thickness was most promi-
nent in the outer, but not the inner, periclinal wall of both the
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autofluorescence and to quantify necrotic area. Scale bar, 30mm.
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abaxial and adaxial leaf epidermis (Fig. S8e). Thus, the cell wall
thickness inversely correlated with the level of GPAT6 expres-
sion.

GPAT6 enzymes are known to be involved in cutin biosynthe-
sis (Li-Beisson et al., 2009) and gpat6-a tomato fruits have
increased cuticle permeability to the dye toluidine blue. We
found that gpat6-a leaves did not show significantly altered per-
meability when toluidine blue was placed on the upper or lower
epidermis, whereras abrasive treatment with bentonite/cellite
resulted in full permeability, confirming the suitability of our
staining procedure (Fig. S9a,b). To test for changes in wall poros-
ity, we applied Dextran-150 kDa-TRITC to WT and gpat6-a
epidermis. Subsequent fluorescent imaging showed that TRITC-
labelled Dextran was incorporated to a greater extent in the
gpat6-a mutant, suggesting a larger porosity of the wall (Fig. 6).

Concomitantly, gpat6-a tomato leaves showed an increased
rate of water loss compared with the WT (Fig. 6e,f). This was sig-
nificant in both the total amount of water loss and the relative
water loss over time. We also observed that the gpat6-a mutant
leaves had fewer stomata than the WT (Figs 6d, S10a), but that
the numbers increased to a value similar to the WT when gpat6-a
plants were grown under high humidity conditions (Fig. S10b).
We did not observe changes in stomata numbers (Fig. S11a) or
water loss over time in overexpressing N. benthamiana GPAT6a-
GFP lines with thinner walls (Fig. S11b,c), suggesting that the
cuticle permeability was not altered, even though it was thinner.
Furthermore, our analysis of the composition and overall archi-
tecture of the bulk leaf cell wall using cell wall antibodies did not
reveal any significant alterations in GPAT6-GFP-overexpressing
plants or the gpat6-a mutant (Fig. S12).

The gpat6-a leaf transcriptome reflects changes in cuticle
and cell wall processes and stomatal patterning

To determine the impact of the gpat6-a mutation on the tomato
transcriptome, we carried out expression analysis of gpat6-a and
WT leaves from both P. infestans-infected and control plants
(Fig. 7), and compared our findings with previous expression
data derived from the tomato fruit exocarp (Petit et al., 2016).

Considering a LFC ≥ 1.5 with an adjusted P-value of signifi-
cance < 10E–3, we found the expression of 124 genes to be
upregulated and 176 to be downregulated compared with unin-
fected leaves of gpat6-a and WT plants (Fig. 7, Dataset S1).
Infection of gpat6-a plants resulted in a much higher number of
induced genes (1021) compared with infection in WT leaves
(345), congruent with gpat6-a leaves being much more suscepti-
ble to P. infestans infection. Notably, there was a higher propor-
tion of genes associated with immune responses (Pombo et al.,
2014) induced in gpat6-a leaves (Dataset S1). The differences in
downregulated genes were more moderate, with 227 in gpat6-a
compared with 136 in WT-infected plants.

Petit et al. (2016) highlighted 42 genes associated with lipid,
secondary metabolite, and cell wall biosynthesis as differentially
expressed in the gpat6-a fruit exocarp. We found only 29 of
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these genes to be altered in the same direction (Table S1).
Genes belonging to the ‘cuticle’ category responded similarly in
leaves and fruit exocarp, with 18 of 21 genes similarly differen-
tially expressed in both organs. However, genes in the ‘cell wall’
gene category responded differently and although we found

seven out of 10 also repressed in leaves, none of the five
reported by Petit et al. (2016) was induced. Two genes, anno-
tated as pectin methyl esterase inhibitor and cellulose synthase-
like, showed opposite expression dynamics between leaves and
fruit. Petit et al. (2016) assigned six differentially expressed genes
to the secondary metabolism category – three repressed and three
induced. Of these, two were also repressed and induced in our
dataset, and two were also induced. In summary, the expression
levels of cuticle-associated genes were consistently altered in leaves
and fruits of gpat6-a tomato plants. More variation was observed
in the cell wall and secondary metabolite categories. As alterations
in the cell wall were seen to be most extensive in the outer wall of
the epidermis, this represents an interesting target for future stud-
ies of expression patterns. However, P. infestans infection rapidly
disrupts epidermal integrity, which represents a major technical
challenge.

Even in uninfected leaves, genes associated with defence and
immunity, such as disease resistance genes, protease inhibitors,
pathogenicity-related genes (PR-3 and PR-5), and chitinases were
noted in the group of gpat6-a repressed genes and absent from
the group of induced genes (Dataset S1). Furthermore, seven
genes encoding glutaredoxins were repressed in gpat6-a, suggest-
ing that this would increase susceptibility to redox stress.
Together these data suggest that the increase in susceptibility of
gpat6-a can, in part, be attributed to constitutively lower levels of
defence gene expression in uninfected gpat6-a plants.

Six leucine-rich repeat receptor like kinases (RLKs) were
induced in gpat6-a compared with WT plants (Dataset S1),
including SERK3/BAK1 (Solyc01g056655), which showed the
strongest transcriptional upregulation of all genes differentially
expressed between gpat6-a and WT leaves, although defence-
associated genes were more frequently repressed in gpat6-a
mutants. A homologue of the ERECTA homologue (Soly-
c01g057680), which is associated with negative regulation of
stomata density in A. thaliana, was also induced. The observed
induction of both SERK3/BAK1 and ERECTA may be related to
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Representative UV images of wild-type (WT) and gpat6-a leaves used for
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the reduced number of stomata in gpat6-a leaves. A. thaliana
homologues of the other induced RLK encoding genes have been
associated with pollen tube guidance (Solyc05g025780/LePRK3)
(Gui et al., 2014), cell wall integrity sensing and resistance
to Fusarium oxysporum root infections (Solyc01g014147, Soly-
c01g009930) (Van der Does et al., 2017) and regulating
cell expansion through the transport of cell wall material
(Solyc05g041750/PERK10) (Humphrey et al., 2014) but their
roles in tomato have yet to be reported.

Discussion

Previous studies have implicated GPAT6 in the development
of flowers and fruit, but its function in leaves has not been
characterized. For example, A. thaliana GPAT6 is highly
expressed in flowers (more than two-fold higher in petals
and sepals than in other GPAT genes) and is known to
function in stamen development and fertility (Li et al.,
2012), while its homologue in tomato has an additional
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function in fruit cutin biosynthesis (Petit et al., 2016). We
demonstrate that despite its low steady-state expression levels,
GPAT6 fulfils an important role in leaves associated with
epidermal outer cell wall properties that confer protection
against dehydration, as well as infection by Phytophthora
species.

Late transcriptional upregulation of NbGPAT6a during
P. infestans infection is a mitigation response

Arabidopsis thaliana GPAT6 is a sn2-acyltransferase that is
involved in cutin biosynthesis. Our analysis shows that
NbGPAT6a overexpression results in increased amounts of cutin
monomers (Fig. S3), indicative of a conserved function. The late
transcriptional upregulation of NbGPAT6 during P. infestans
infection (Fig. 1) can be interpreted either as a pathogen-
controlled lipid harvesting strategy or, alternatively, as a mitiga-
tion response by the plant to tissue damage caused by pathogen
colonization. It was recently hypothesized that obligate
biotrophic fungal pathogens may exert a lipid parasitism, where
the microbe benefits from plant fatty acid production (Jiang
et al., 2017; Keymer & Gutjahr, 2018). In this context it was

interesting to note a high frequency of aberrantly shaped hausto-
ria in infected gpat6-a tomato (Fig. S4). P. infestans haustoria are
intracellular structures and characteristically digit-shaped,
although infrequently branched haustoria can also be observed
(Blackwell, 1953). Whether an altered lipid metabolism in gpat6-
a tomato leaf epidermal cells might affect their development
would require additional investigation using other lipid biosyn-
thesis mutants. Nevertheless, gpat6-a tomato mutants were more
susceptible to both P. infestans and P. palmivora (Fig. 4), suggest-
ing that the observed alteration in haustorium morphology does
not impair infection and that the oomycete does not extensively
rely on cutin monomers provided through GPAT6. It might also
be informative to infect gpat6-a tomato with obligate fungal
pathogens, such as Oidium neolycopersici, to determine whether
lipid parasitism is linked to an obligate biotrophic lifestyle. We
conclude that Phytophthora-controlled lipid harvesting is unlikely
because overproduction of cutin monomers through overexpres-
sion of NbGPAT6a-GFP did not result in increased pathogen-
caused symptoms; indeed, the leaves were more resistant to
P. infestans infection (Fig. 2). Furthermore, Phytophthora-derived
cuticle and cell wall-degrading enzymes probably release cutin
monomers into the apoplast to enable sufficient uptake by the
oomycete for continued infection in WT. We therefore propose
that late transcriptional upregulation of NbGPAT6a during
P. infestans infection is a mitigation response to tissue damage.
Alternatively, it may be part of a delayed defence response, as var-
ious hydroxy fatty acid compounds have been implicated in
pathogen resistance (Schweizer et al., 1996; Hou & Forman Iii,
2000; Wang et al., 2000), including against P. infestans.

Differences in oomycete and fungal leaf infections may be
attributable to their lifestyles

A range of mutations have been reported to increase both leaf
cuticle permeability and pathogen susceptibility (Tang et al.,
2007). However, these mutants are all more resistant to
B. cinerea (Ziv et al., 2018). Explanations for this apparent
paradox include an increased release of disease resistance activa-
tors, antifungal diffusible components and improved uptake of
elicitors in the mutants (Tang et al., 2007; Ziv et al., 2018).
We observed that constitutively expressing NbGPAT6a lines
did not display altered leaf permeability and increased water
loss (Fig. S11), suggesting that other processes contribute to
their increased resistance. Conversely, gpat6-a mutants showed
reduced expression levels of defence- and stress-associated genes
(Dataset S1), which may influence the infection outcome. The
ability of pathogens to infect these mutants may depend on
the pathogen infection biology or lifestyle. Phytophthora
pathogens are hemibiotrophs, which initially require living host
cells for infection (Fawke et al., 2015), whereas B. cinerea is
considered a necrotroph that immediately kills the tissue (Van
Kan et al., 2017). This may explain why gpat6-a tomato leaves
exhibit resistance to B. cinerea. Whereas a reliance on plant
lipid biosynthesis was recently demonstrated for an obligate
biotrophic fungal pathogen (Jiang et al., 2017), this remains to
be reported for oomycetes.
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The leaf cuticle layer may impose a physical restraint upon
the outer facing epidermal cell wall

Our results suggest that GPAT6 influences various properties

of the cell wall–cuticle superstructure. We show that loss of
GPAT6 increased the thickness of the wall (Figs 5c,d, S8), and
overexpression of NbGPAT6a-GFP led to higher amounts of

cutin monomers and reduced wall thickness (Fig. 5a,b). Inter-
estingly, this effect was mainly observed in the outer face of

the epidermal walls, which are also the only walls associated
with a cuticle (Fig. S8e), while the overall composition of the
leaf bulk cell wall was not altered (Fig. S12). This suggests that

the outer epidermal cell wall may respond to its ‘cutin status’
and adapt its thickness, possibly through mechanical or bio-

chemical sensing. An instantaneous and reversible increase in
thickness of the cell wall has previously been observed upon
abrasion of the cuticle (Xia et al., 2009). This suggests that

physical properties of the wall allow it to flexibly expand in
diameter and that cutin monomers contribute to preventing
excessive expansion. Similar increases in wall thickness were

reported when a tomato cutin synthase was mutated, leading
to a substantially thinner fruit cuticle (Yeats et al., 2012).

Although we observed that gpat6-a mutant leaves have a
thicker cell wall and cuticle, whereas those of leaves constitu-
tively expressing NbGPAT6a are thinner, there was not such a

clear contrast in terms of the rate of water loss or stomata

numbers. Specifically, gpat6-a leaves lose more water over time
than those of WT (Fig. 6e,f), whereas leaves constitutively
expressing NbGPAT6a lose the same amount of water as the
WT (Fig. S11). This suggests that a deficiency in cutin
monomers during development has a significant impact on per-
meability, whereas an excess of cutin monomers can be toler-
ated or compensated for by the plant and has no effect on
permeability.

The increased porosity of gpat6-a mutants with thicker walls
may result from the looser packing of wall components, or from
the low amounts of cutin monomers in the wall. This, in turn,
may cause the observed increased rate of water loss, which is com-
pensated for by altering the number of stomata.

Data availability

The raw FASTQ data from the expression analysis are accessible at
http://www.ncbi.nlm.nih.gov/sra/with accession number
SRP158564. These data form the basis of Fig. 7 and Dataset S1.
There are no restrictions on data availability.
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