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Abstract

Managing supply chain risks has received increased attention in recent years,

aiming to shield supply chains from disruptions by predicting their occurrence

and mitigating their adverse effects. At the same time, the resurgence of Artifi-

cial Intelligence (AI) has led to the investigation of machine learning techniques

and their applicability in supply chain risk management. However, most works

focus on prediction performance and neglect the importance of interpretability

so that results can be understood by supply chain practitioners, helping them

make decisions that can mitigate or prevent risks from occurring. In this work,

we first propose a supply chain risk prediction framework using data-driven AI

techniques and relying on the synergy between AI and supply chain experts. We

then explore the trade-off between prediction performance and interpretability

by implementing and applying the framework on the case of predicting deliv-

ery delays in a real-world multi-tier manufacturing supply chain. Experiment

results show that prioritising interpretability over performance may require a

level of compromise, especially with regard to average precision scores.
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1. Introduction

Managing risks in supply chains at a local, national, or global scale has

increasingly attracted attention from both researchers and practitioners in re-

cent years, owing in part to the worldwide economic uncertainty that began

with the 2008 global financial crisis. The field of supply chain risk manage-5

ment (SCRM), which emerged in the early 2000s has now become more than

the overlap of directly related areas such as enterprise risk management and

supply chain management [1]. As defined in [2], SCRM “encompasses the col-

laborative and coordinated efforts of all parties involved in a supply chain to

identify, assess, mitigate and monitor risks with the aim to reduce vulnerability10

and increase robustness and resilience of the supply chain, ensuring profitability

and continuity”.

The wide range of decisions and actions that are involved in SCRM have

led to an equally wide spectrum of solutions proposed by researchers. These

can be broadly classified in three categories: (1) multiple-criteria decision anal-15

ysis techniques; (2) mathematical modelling and optimisation; and (3) Artificial

Intelligence (AI) techniques. The first category includes well-established tech-

niques to evaluate different risk-related criteria that affect supply chains, as well

as the efficiency of potential solutions, such as analytic hierarchy process [3] or

data envelopment analysis [4]. The second category is by far the most common20

one (as analysed in [2, 5]) and includes approached based on stochastic or fuzzy

programming and robust optimisation.

AI techniques have received relatively little attention in relation to SCRM

or supply chain research, in general. Recently, there has been an AI resurgence

due to the availability of increased computing power and large amounts of data,25

as well as the success of approaches within the broad area of machine learning.

This has also led to SCRM researchers considering the potential of AI tech-

niques in relation to tasks such as risk identification, prediction, assessment and

response [6, 7, 8, 9]. However, research is still at early stages, proposing either

purely theoretical frameworks that have not been implemented and applied in30
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real-world case studies [6, 7], or ad-hoc solutions that are only applicable within

the confines of a particular case study [8, 9]. Also, these works do not take

into account the data imbalance which is inherent in risk-related tasks, since for

many risks the ratio of occurrence and non-occurrence is far from balanced.

More importantly, research that uses data-driven AI for SCRM does not35

take into account the importance of interpretability of results: no conclusions

are derived in relation to the reasons behind the results of the machine learning

models they create. As stated by Doshi-Velez and Kim [10], most real-world

tasks addressed using machine learning techniques cannot be described merely

through a result of a single metric, such as classification accuracy. Similarly,40

Domingos [11] posits that instead of accuracy and computational cost, learners

should be evaluated based on how much human effort is saved or how much

insight is gained. Some of the reasons cited by Molnar [12] in support of in-

terpretability are directly relevant to SCRM: (1) finding meaning withing and

gaining the knowledge captured by machine learning models; (2) detecting bias45

in models; and (3) increase acceptance of produced solutions. In the context

of supply chains, we argue that in order for any results coming out of AI solu-

tions to be useful and able to be integrated in SCRM-related decision-making

processes, they have to be interpretable and justifiable.

The research hypothesis investigated in this article is the possibility of utilis-50

ing machine learning technologies to provide predictive analytics for SCRM that

deliver results that are simultaneously interpretable and of a high prediction per-

formance standard. In that sense, we aim to contribute to research in exploring

the untapped potential of data-driven AI techniques within SCRM, as identified

in [2]. We address the aforementioned limitations by focusing on the particular55

task of predicting supply chain risks and propose a generic data-driven risk pre-

diction framework that takes into account the special characteristics of SCRM.

The proposed framework is then implemented and applied on a real-world case

study, investigating a variety of metrics and two well-known machine learn-

ing algorithms, one less and one highly interpretable: support vector machines60

(SVM) and decision tree learning. In the particular case study, risk prediction
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is achieved through classification. Classifiers are trained to determine whether

a delivery is late or not and are then used on unseen data to predict whether

future deliveries will be late or not, in other words whether there is a risk of

delayed delivery or not. The novelty of the presented research lies not in the65

employed algorithms which are well-established and whose choice is indicative,

but rather in the manner in which such technologies are to be integrated in an

SCRM process. Specifically, the contributions of this article are the following:

• A data-driven risk prediction framework that places emphasis on the syn-

ergy between AI and supply chain experts, especially with regard to the70

proper selection of suitable metrics and algorithms according to the goals

and priorities of the supply chain. The proposed framework also takes

into account imbalanced data, a common occurrence in risk prediction.

• An implementation of the proposed framework that demonstrates the

framework’s applicability in predicting delays in deliveries within a real-75

world multi-tier aerospace manufacturing supply chain.

• Quantification of the trade-off between interpretability and prediction per-

formance through experiments for the particular case study.

The remainder of this article is organized as follows. Section 2 offers a

concise summary of research efforts that apply data-driven AI techniques for80

SCRM-related purposes. Section 3 introduces our data-driven risk prediction

framework and analyses the individual phases within from both AI and SCRM

perspectives. Section 4 illustrates the applicability for SCRM within a real-

world supply chain. Then, Section 5 presents results of using the implemented

framework to predict delays in deliveries within the studied supply chain. These85

results are discussed in Section 6, with an emphasis on the trade-off between per-

formance and interpretability, as well as the importance of feature-rich datasets

and the effect of imbalanced datasets. Finally, Section 7 concludes and proposes

directions for future research at the confluence of AI and SCRM.
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2. Related Work90

The potential of applying big data analytics and machine learning techniques

for SCRM has recently been considered in literature. Fan et al. [6] investigate

potential big data sources related to supply chains and then propose an SCRM

framework that relies on the availability of such data. The framework relies on

analysing and monitoring supply chain data to detect emerging risks, maintain95

relevant risk reports and use these to initiate suitable actions such as replanning

the supply chain. He et al. [7] similarly acknowledge the predictive capabilities

of big data analytics and incorporate such a component within a generic SCRM

process model. However, both of these works are purely theoretical in nature,

without implementing or applying the proposed frameworks and models to a100

real-world case study.

To the best of our knowledge, only three articles in literature have applied

big data analytics and machine learning techniques for the purposes of risk

identification through detection or prediction within an SCRM process and,

hence, are directly relevant to the purposes of this work. These are analysed in105

Section 2.1. There is also a number of additional articles that are less relevant,

in that they investigate similar techniques but for different facets of SCRM,

specifically assessing and responding to risks. These are the focus of Section 2.2.

2.1. Risk Identification

Zage et al. [8] address supply chain security risks by proposing methods for110

identifying deceptive practices within the supply chain, specifically for the e-

commerce domain. The approach relies on spectral analysis to analyse large

amounts of online transactions to determine traces of the so-called fraudster-

accomplice strategy: fraudulent vendors interacting exclusively with real or fake

users with good reputation to indirectly and artificially build their a good rep-115

utation for themselves. This process leads to developing graph-based metrics

which are used by semi-supervised clustering algorithms to accurately determine

whether a vendor behaves similarly to a fraudster, based on minimal labeled

data.
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Ye et al. [9] investigate the applicability of machine learning techniques to120

identify supply chain disruptions that are rooted in the economic performance

of firms within the chain. Publically available financial data, such as asset-

liability ratio, are obtained for Chinese firms and for periods before, during and

after some form of supply chain disruption took place. Part of these data are

used to determine classes of similar firms in terms of financial performance.125

The rest are used as features in a multi-class SVM classifier, to determine links

between financial performance and disruption. The resulting system is capable

of determining whether a particular firm exhibits a similar financial profile to

ones that have contributed to disruptions in the past.

Both of the aforementioned works [8, 9] present ad-hoc solutions specifically130

aimed at the particular case studies they focus on. Also, their choice of algo-

rithms and metrics does not take into account interpretability or imbalanced

datasets. In contrast, our work proposes a generic framework for predicting

risks using data-driven AI, which can be applicable to any SCRM-related effort

and which places great emphasis on making the right choice of which algorithm135

and metric to use, based on the supply chain’s goals and priorities and the

characteristics of available data.

The case of increasing supply chain sustainability through risk mitigation is

explored in Mani et al. [13]. In particular, they use data collected through an

Internet-of-Things software platform for fleet management and vehicle tracking.140

Data involves distances travelled, fleet utilisation, vehicle speeds and stoppages

and geo-fencing reports. The authors propose several risk-related usages of such

data, such as: (1) identifying underutilised vehicles and optimise fleet to reduce

carbon footprint; (2) identifying cases of vehicle seizure by law enforcement

through geo-fencing data; and (3) using vehicle stoppage data to identify theft145

and unethical behaviour. However, the focus is on the use of statistical analy-

sis methods, rather than providing some form of predictive capability through

learning. Also, while the authors go into great detail about the relevant data,

there is no discussion with regard to the implementation and evaluation of the

analytics algorithms they employ.150

6



2.2. Risk Assessment and Response

Machine learning and big data analytics have also been used in relation to

risk assessment. The earliest attempt to incorporate machine learning tech-

niques within SCRM is the use of Artificial Neural Networks (ANNs) by Bruz-

zone and Orsoni [14] to assess production losses. The ANNs are trained in a155

supervised mode, supplying them with specific scenarios correlating production

times, quantities and capacities with corresponding cost estimates. Based on

these training data, the ANNs learn how to correlate production characteristics

with actual gains or losses, in order to then be able to assess and calculate cost

estimates for scenarios with an unknown outcome.160

Bayesian networks have shown great potential in modeling for risk assess-

ment, especially in the area of safety risk analysis [15, 16]. Two groups of

researchers have identified this potential in relation to a specific aspect of the

supply chain risk assessment process, namely risk propagation. Garvey et al. [17]

use Bayesian networks to model risk dependency graphs which have the ability165

to adapt when new knowledge is acquired, thus making sure that risk propaga-

tion is modelled accurately. Ojha et al. [18] perform a similar analysis of risk

propagation using Bayesian networks, automatically learning the interconnec-

tions between several risk factors for different supply chain stakeholders and

using this knowledge to determine probability of occurrence and cost for risks.170

Instead of a (parametric) Bayesian network, Shang et al. [19] introduce a non-

parametric Bayes model to assess transport time risks in air cargo supply chains.

The authors show how the model can be used as the foundation for several data-

driven strategic decisions, such as ranking suppliers at the route level, or higher.

A number of studies employ big data analytics in relation to risk response.175

Papadopoulos et al. [20] employ a data-driven approach to determine factors

enabling supply chain resilience, highlighting the importance of swift trust and

quality information sharing. Li and Wang [21], on the other hand, use sensor-

based data within a food supply chain to dynamically predict the product time-

temperature profile; this enables firms to adjust their pricing schemes accord-180

ingly, in order to mitigate risk of spoilage before foods are sold. Chen et al. [22]
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recognise the effect of incomplete or imperfect knowledge in managing disrup-

tion risks and propose a Bayesian learning model to increase robustness in the

evaluation of inventory and sourcing strategies of a manufacturer in response to

risks. Finally, Zhao and Yu [23] explore the potential of machine learning in the185

context of supplier selection. Their work relies on data from several past cases of

selecting suppliers which are clustered based on similarity and are subsequently

fed into a back-propagation ANN to extract rules for optimal supplier selection.

While not directly comparable to our work, the studies summarised in this

subsection show the applicability and potential benefits of machine learning190

and data-driven approaches on a wide array of issues throughout the SCRM

process. In general, even though such techniques represent only a small minority

of SCRM research (e.g. compared to mathematical programming techniques,

as discussed in [2]), their integration in standard SCRM processes can prove

advantageous, as evidenced by the results within the studies presented in this195

section.

3. Data-Driven Risk Prediction Framework

To enhance supply chain risk prediction, we propose a framework that relies

on the integration of artificial intelligence within the SCRM process. The frame-

work aims for a two-way interactivity and synergy between supply chain and AI200

experts: any decision by the AI experts depends on specific input by the supply

chain, while any models and results produced have to be interpretable so that

they can influence SCRM decision-making. Figure 1 illustrates the framework’s

process flow. On the right-hand side of the figure, the focus is on traditional

tasks included in a standard SCRM process. The left-hand side includes the205

major tasks that are involved in a data-driven AI methodology. As should be

obvious, the framework relies on effective synergies between a team involved in

managing risks within a supply chain and a team specialising in data-driven AI.

The remainder of this section is devoted to an in-depth analysis of the proposed

framework.210
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Figure 1: Data-Driven Risk Prediction Framework.
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3.1. Planning and Data Collection

The effectiveness of the proposed risk prediction framework relies on two

fundamental prerequisite characteristics. First, a risk management plan needs

to be created for the supply chain at hand. This plan should clarify the objec-

tives and define the scope of risk management. Indicative questions that would215

need addressing in terms of objectives include why SCRM is necessary, what

outcome is needed and when and which decisions are required and when. In

terms of scope, relevant parties should decide whether the focus is the focal

firm, risks internal or external to the SC and the specific types of these risks

(e.g. environmental, supply, demand, process or control risks according to the220

classification in [24]). Other important planning decisions indicatively include

whether certain types of risk are beyond boundaries and the amount of effort

to be allocated in the SCRM process.

The outcome of SCRM planning leads to the second prerequisite of the pro-

posed framework which involves the collection of relevant data. As analysed225

in [6], data sources in relation to SC are numerous and can be distinguished

into internal and external ones. Internal data sources include purchasing, pro-

duction, delivery and sales records, GPS and container sensor information, firm

finances and human resources data. External sources are not directly related

to the supply chain and can include newsitems, weather reports, social media230

activity, national and international policies and so on. Given the multitude

of sources, making informed choices targeted at the risks identified in SCRM

planning is paramount.

After deciding on particular sources, historical data need to be collected,

going as far back as necessary, taking into account the potential targets of the235

SCRM process and any financial or privacy limitations that may be involved.

It may also be necessary to monitor both external and internal data sources,

in order to continuously update available information and ensuring that any

predictions coming from the framework correspond to the most recent data.

This is especially important if the algorithms chosen at a later stage fall into240

the category of online machine learning, as discussed later in Section 3.3. For
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example, if the SCRM process focuses on predicting supplier score trends based

on previous performance, it is important to keep predictions up to date to ensure

that no supplier is scored based only on their performance in the distant past.

Note that there may be cases where there is also a need for reverse process245

with regard to data collection and SCRM planning, due to difficulties in ob-

taining relevant data. Instead of deciding on a particular SCRM plan which

then exclusively dictates which data needs to be collected, data that is already

available or easily obtainable is used to determine the scope of the SCRM plan.

This is indicated in Figure 1 by the use of arrows on both sides of the edges250

that connects planning with data collection.

3.2. Deciding on Prediction Goals and Features

The outcome of the SCRM planning task naturally leads into the next step

for the SC side of the framework, which is deciding on the specific goals of the

risk prediction process. These may relate to the overall goals and priorities of the255

supply chain and may be influenced by recent events that may have instigated

the need for SCRM in the first place. As with the overall plan, data availability

may also affect the choice of risk prediction goals: a data-driven risk prediction

framework is only able to predict risks for which relevant data is available.

Hence, while SCRM planning may lead to identifying several prediction goals,260

only those for which relevant data collection (internal or external) has been

(or can be) successful may actually be included as targets. The success of this

phase (and the risk prediction process as a whole) largely depends on meaningful

communication between SCRM and AI experts.

The choice of risk prediction goals directly affects the particular features that265

will be the focus of the data-driven AI algorithms. Before this step, however,

there may be a need for some initial processing of the data collected earlier.

Data preprocessing encompasses a wide range of procedures, such as ensuring

that data is in a machine-readable format, cleaning data to remove inconsistent

or incomplete entries, handling gaps and unknown values in data and scaling,270

transforming, normalising or discretising data. Note that some of these processes
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may be dependent on the particular algorithms to be applied, hence they may be

delayed until algorithm selection has been performed, as described in Section 3.3.

The preprocessed data is then subjected to the feature extraction, engineer-

ing and selection processes [25, Chapter 6]. These are significantly important275

and may actually make or break a machine learning project [11]. Hence, they

directly affect the success or failure of data-driven risk prediction. Feature ex-

traction involves examining the raw attributes in the available datasets and

extracting those features that are representative of the dataset and based on

which prediction models can be built. Feature engineering involves adding to280

the initially extracted feature set by combining variables and/or features to cre-

ate new features that may increase predictive power. Finally, feature selection

refers to choosing a subset of the extracted and engineered features to reduce

complexity of the learning process and to tackle notorious issues such as the

curse of dimensionality [26] and overfitting [27]. The ultimate goal of these285

processes is to turn a simple set of values in a dataset into a meaningful set

of features that has the potential to assist in the risk prediction goals defined

previously.

3.3. Linking Prediction Priorities to Metrics and Algorithms

If the previous steps focused on making the best out of the available data,290

the next do the same in terms of available algorithms. Nowadays, there is

a vast array of data analytics techniques and machine learning algorithms at

our disposal and the question has undoubtedly shifted from using any of these

techniques and algorithms to choosing the most suitable ones for the problem

at hand. In the proposed SCRM framework, the choice of both algorithms and295

metrics is inextricably linked to the priorities of the risk prediction task. Below,

we analyse some factors that affect this choice.

3.3.1. Interpretability

The first and foremost issue is whether the risk prediction process is aimed

primarily at maximising prediction performance (e.g. in terms of accuracy)300

12



or understanding which features contribute to a risk becoming a reality. In

the former case, machine learning algorithms that have a proven track record

of performance in a wide variety of settings and data input should be chosen,

regardless of whether they adopt a black box or a white box approach in terms of

their models. However, black box approaches have to be excluded if the priority305

is to understand and explain why the model leads to one prediction instead of

another. The case study presented in Section 4 explores this trade-off in more

detail.

3.3.2. Data Velocity and Volume

Another issue affecting the choice of machine learning algorithms is related310

to the input data sources, which may either be historical, updated at a slow

velocity, or real-time, changing as soon as new information is available. Online

machine learning algorithms fit more with the latter case, while batch learning

may be more suitable for historical data. The decision is again tied to prediction

priorities: if there is a need for an active approach that monitors live data related315

to risks and issues prediction alerts, then online learning has to be used; this

would not be the case, if, for instance, the goal is to assess past iterations of

supply chain interactions to plan future steps.

Similarly, the size of available data also contributes to the decision of which

machine learning algorithm to employ. Algorithms that can be parallelised can320

work more efficiently with large-scale datasets. Note that, at this point, large

data size refers to the number of samples and not the number of dimensions.

Reducing the number of dimensions is handled in previous steps, e.g. through

feature selection, as discussed in Section 3.2.

3.3.3. Metrics325

Equally important to the choice of algorithms is the choice of metrics. Es-

pecially in a risk prediction setting, the chosen metric must be directly linked

to the desired outcome of the prediction process. For instance, if we are using

a classification methodology to predict whether a risk will manifest, then the
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prediction model can lead to one of four outcomes, which may have different330

levels of importance, depending on prediction priorities. Specifically:

• True positive (TP): the model correctly predicts the risk manifesting. This

allows the supply chain to prepare for such an outcome early enough

to mitigate consequences and any resources spent for this are justified.

Hence, true positives have to be maximised and the metrics chosen must335

be able to capture this.

• True negative (TN): the model correctly predicts that the risk will not

manifest. These should also be maximised, but their importance may be

lower than TPs.

• False Positive (FP): the model incorrectly predict that the risk will mani-340

fest, which means mitigation resources have been spent unnececessarily. If

saving resources is prioritised higher than capturing all likely cases of the

risk manifesting, then a metric that lends more importance to FPs than

TPs.

• False Negative (FN): the model incorrectly predict that the risk will not345

manifest. This may be the most undesirable outcome, since, in essence,

the risk prediction goal is not achieved. In some cases, the priority may

be to minimise FNs, even at the expense of an increase in FPs.

Given these, the choice of a standard metric like accuracy ( TP+TN
PP+PN , with

PP = TP + FP and PN = TN + FN) may not be suitable, since high values350

of accuracy may be achieved when TNs are high but FNs are low, leading to a

misleading view of the actual merit of the predictor. Also, since the algorithms’

learning capability is iteratively evaluated using metrics, an unsuitable metric

may also push learning towards an undesirable direction.

3.3.4. Imbalanced Data355

The choice of algorithms and metrics is all the more important when data

is imbalanced, which is a common occurrence in risk prediction settings: in
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historical data, cases where risks occur are less than cases where risks did not

manifest; in a binary classification setting, the former represent the so-called

minor class, with the latter occupying the major class. He and Garcia [28]360

summarise methodologies for handling imbalanced data in three main categories:

sampling methods to rebalance the dataset, cost-sensitive learning algorithms

that penalise misclassification more for minor classes and kernel-based or active

learning methods. They also argue against the use of accuracy metrics in an

imbalanced setting, due to their potential to be deceiving and proposed various365

alternatives such as ROC or precision-recall curves.

3.4. Making Decisions based on Prediction Models and Results

The algorithms and metrics chosen in the previous step yield one or more

trained prediction models which can then be fed with available data to produce

results. These are then used to influence SCRM-related decision making. In-370

dicatively, decisions that can be influenced may revolve around the following

broad risk categories:

• Supplier risk: supplier selection decisions based on score trends (e.g. how

often a supplier delivers on time)

• Demand risk: determining customer volatility in terms of order quantities375

or dates and assisting in peak-and-trough analysis

• Capacity risk: addressing volatile needs due to seasonal trends or because

of conflicting customer order books

• Process/product risk: assessing product complexity (e.g. likelihood of

right first time) and creating product profiles (e.g. runners, repeaters or380

strangers)

4. Case Study

To illustrate the applicability of the proposed framework, we explore the

case of SCRM within a real-world multi-tier aerospace manufacturing supply
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chain, with partners in Europe and Asia. In this section, we explain how we385

employed the proposed framework, presenting a detailed account of each step.

For most data-driven AI tasks, we relied on scikit-learn v. 0.20.2 [29]. For

resampling, we used imbalanced-learn v 0.4.2 [30]. All experiments were per-

formed on a Windows R© 10 system with an Intel R© CoreTM i7-4770 CPU at

3.40GHz and 16 GB RAM. The source code of our implementation is available390

at https://github.com/gmparg/FGCS-SCRM.

4.1. Dataset and SCRM Planning

Through initial discussions, a general understanding of potential risk pre-

diction use cases was gained. However, due to the limited availability of easily

accessible data and the inability to conduct further data collection processes, we395

settled on a dataset containing information on around 500,000 product deliver-

ies from tier 2 suppliers to the tier 1 supplier in the supply chain for a six-year

period (2011-2016). For each delivery, the following data are available:

• Tier 1 supplier: site name and id

• Tier 2 suppliers: supplier name and id400

• Products: part number and description; unit price

• Orders: purchase order number, date and line number; quantity ordered;

due date; original requested delivery date; currently accepted delivery date

• Deliveries: receipt date; quantity received; quantity rejected; purchase

order line delivery status405

While the overall SCRM activities of the particular supply chain expand

across a wide spectrum of potential risks, for this particular case study the fo-

cus was on risks related to suppliers. Particularly, the plan communicated by

partners involved managing risks related to suppliers being unable to fulfil fu-

ture orders or delivering a product late and using such information to determine410

supplier score trends based on the number of successful (early or on-time) deliv-

eries per month. Based on this plan, we opted to explore the case of predicting
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whether a supplier-related risk will occur. To achieve this, we employed binary

classification algorithms to predict whether future deliveries of a particular sup-

plier will be late or not.415

The dataset was provided in CSV format, which can be fed directly as input

to scikit-learn implementations. A number of preprocessing tasks were neces-

sary. First, we removed any incomplete entries, e.g. deliveries where some of the

relevant dates or statuses were not included or were invalid. Also, we removed

redundant variables, specifically the full name of a supplier and the full descrip-420

tion of a part, since alphanumeric identifiers for both suppliers and parts are

also available. Then, all available data had to be converted to numerical form.

In some cases, such as quantities and unit prices, no conversion was necessary.

However, dates had to be split into three numbers (year, month and day), while

alphanumeric values such as supplier identifiers or part numbers were converted425

to unique numerical identifiers. Finally, the resulting numerical data were nor-

malised, scaling individual samples (i.e. deliveries) so that they have unit norm.

We used the least squares norm (also known as L2-norm).

4.2. Feature Engineering and Selection

The next step in the process was to create a feature set with the maximum430

prediction potential. To do this we first had to decide on a particular prediction

goal, in relation with the SCRM plan of managing supplier-related risks. The

goal chosen was to predict, for a particular supplier, whether a delivery will be

late or not. Based on this goal, we first manually assessed the variables within

the dataset to determine relevant features. This resulted in excluding only tier435

1 supplier site and id, since for the particular tier 2 supplier selected, only one

tier 1 supplier site is involved. We also removed any variables that could lead

to data leakage: receipt date, quantity received, quantity rejected and purchase

order line delivery status; this information would not be available at the time of

prediction. This process resulted into 15 features: unique part id, quantity, unit440

price, purchase order year, month and day, due year, month and day, original

request year, month and day and currently accepted delivery year, month and
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day.

As a target variable, we selected the delivery status variable, which takes

one of the following three values: early (8 or more business days early), on time445

(up to 7 business days early or up to 3 business days late) and late (4 or more

business dates late). For simplification, we adapted this to two values: 1 to

denote deliveries that are 4 or more business days late and 0 for all others. In

this way, the goal of predicting whether a delivery is late or not amounts to a

binary classification problem. Note that, as expected, our dataset is imbalanced,450

since 23% of the deliveries contained are late, while the rest are on time or early;

in the case of some suppliers the imbalance is even more pronounced, with only

10% of the deliveries being late.

Initial experiments using the initial feature set led to prediction results that

were only marginally better than those achieved with the Zero Rule classifier.455

This classifier is a more suitable baseline for imbalanced datasets, since it always

chooses the majority class, which means that in our case it classifies all deliveries

as not late. To improve results, we decided to apply feature engineering on some

of these features to create additional ones. Specifically, for each date in the

original feature set, we also added features referring to the week day (from 1 to460

7, corresponding to Sunday through Saturday), week number (from 1 to 52) and

season (from 1 to 4, corresponding to winter, spring, summer and autumn). We

also created features by taking the difference between each distinct pair of dates

(with the 4 dates - purchase order, due, request, currently accepted delivery -

yielding 6 distinct pairs in total). As a result of this process, the feature set size465

increased to 33 features.

Following these manual processes, we run automated feature selection to

rank features based on their importance and exclude the lowest-ranked ones. We

used a number of different approaches implemented in scikit-learn, specifically:

removing features with low variance, univariate feature selection by ranking fea-470

tures based on the ANOVA F-value, mutual information and χ2 test, recursive

feature elimination and feature selection using the Extra-Trees algorithm. In

general, all approaches ranked features similarly. We deferred any decision on
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cutoff thresholds until after selecting and running learning algorithms, so that

we could see how leaving out some of the features affects prediction performance475

(see Section 5).

4.3. Metrics and Algorithms Selection

The final important decision to make was to determine how we would evalu-

ate prediction results and which learning algorithms would deliver these results.

Since no specific prediction priorities were communicated to us at this point,480

we could not make any safe assumptions regarding prioritisation of positive

and negative predictions. The choice of metrics which prioritise one over the

other, such as precision ( TP
TP+FP ) or recall ( TP

TP+FN ) might introduce unjustified

bias, so we opted to use metrics that balance between different outcomes and

ones that are suitable for imbalanced datasets like the one in our case study.485

Specifically, we consider the following:

• F1 score, which is equal to 2∗ precision∗recall
precision+recall , essentially the harmonic av-

erage between precision and recall, attributing equal importance to them.

• Average precision AP =
∑
n(Rn −Rn−1) ∗Pn, with Rn and Pn denoting

precision and recall at the nth threshold, respectively.490

• Matthews correlation coefficient, which is defined by the following equa-

tion: MCC = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

. This is another bal-

anced measure that is especially suitable for imbalanced datasets [31].

• Confusion matrix, in order to obtain a direct view of how numbers shift

between true/false positives and negatives.495

In what concerns the choice of algorithms, as argued in Section 1 we have

to consider the trade-off between performance and interpretability. While the

requirement that algorithms must make correct predictions in as many cases as

possible is undeniable, we also need these results to be explainable so that they

can influence SCRM decision-making. To investigate this trade-off, we selected500

two algorithms. We first chose support vector machines (SVM) with an RBF
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kernel, as an example of highly performant learners [32]. Note that any other

algorithm that is known to perform well in binary classification problems can be

chosen, such as the now ubiquitous neural network-based learning algorithms.

Our choice is indicative and is informed by our need for an off-the-shelf solution505

with as few tuning parameters as possible. On the interpretable side of the

trade-off, we chose decision tree learning, since classification trees are generally

easily understood by non-experts, either in their graphical form or converted to

a set of IF-THEN rules [25].

4.4. Model Generation510

Before feeding the dataset to the selected algorithms, we split it into training

and test sets, holding out 20% of the available data for the test set. Note that

this was done separately for each supplier in our dataset. For the training

process, we used stratified 5-fold cross validation to ensure that each class is

correctly represented in all folds. This is especially important in our case, due515

to data imbalance. In the case of SVM, we used a grid search to determine

optimal parameters C and γ (penalty parameter and kernel coefficient). For

decision tree learning, we run two experiments, one with default parameters

that allow an arbitrarily large tree and one where we limit the tree depth to 6

and the number of leaf nodes to 13. This is aimed at ensuring interpretability520

of the resulting models [12]: a depth of 6 translates to up to 6 decision points,

while limiting leaf nodes ensures that the tree will not grow too large, since a

tree with such depth can contain maximum 26 = 64 nodes.

Since the dataset is imbalanced, we also explored whether techniques specif-

ically designed to address data imbalance could improve the generated models.525

We tested over-sampling techniques (random, SMOTE [33] and ADASYN [34]),

under-sampling techniques (random, cluster centroids and Tomek’s links [35]),

combination of over- and under-sampling (SMOTE+Tomek [36]) and penalised

models, with weights assigned to classes in an inverse proportion to the number

of samples they contain (low weight to major class). Most of these techniques530

had an insignificant effect to the generated models, with the exception of those
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optimising recall, as analysed in the next section.

5. Results

In this section we first present the results of the feature selection process,

followed by the prediction results using the SVM and decision tree models pro-535

duced for the case study. All results presented refer to a single supplier, the one

with the largest number of entries in the dataset (36677 in total). Out of these,

5058 (13.8%) are late deliveries, while the rest are either early or on time. The

validation test comprises 29341 entries (80%), with the remaining 7336 (20%)

constituting the test set.540

5.1. Feature Selection

In general, applying feature selection techniques to the set of 33 features

did not have a very significant effect to prediction results. Out of the explored

techniques, recursive feature elimination seemed to lead to slightly higher scores

for most metrics. We used the implementation provided in scikit-learn which545

also supports cross validation. To rank features, we used a standard linear SVM

with C = 1 and average precision as metric.

Figure 2 shows the results of the recursive feature elimination process. The

plotted scores are the prediction scores (with highest score 1) resulting using

cross validation. The highest score is achieved for the subset containing 26550

features. The 7 features that are eliminated are the following: year the pur-

chase order was raised (ranked 2nd); year of delivery accepted by tier 1 supplier

(ranked 3rd); order quantity (ranked 4th); part number (ranked 5th); day the

purchase order was raised (ranked 6th); the difference between the delivery dates

originally requested and accepted by tier 1 supplier (ranked 7th); and day the555

delivery was due (ranked 8th). For the remainder of this section we present

results using both the original 33 features and the 26 remaining features after

selection.
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Figure 2: Scores for each subset of 33 features

5.2. SVM Models

As mentioned earlier, we conducted grid search using scikit-learn in order560

to find optimal values for the SVM parameters C and γ. C is the penalty

of misclassification, with higher values meaning a higher penalty is imposed,

hence the model is stricter. Values of γ express the influence that each particular

training sample has on the model, with lower values meaning increased influence

and higher values meaning less influence. Given the fact that we consider several565

different metrics, we run grid searches for each metric separately and for both

feature sets (with 33 and 26 features).

Figure 3 shows indicative results of the grid search process, using average

precision and F1 score as metrics. For average precision, very low C values are

not optimal and results generally improve as values of γ increase. Highest av-570

erage precision is achieved for C = 1 and γ = 104, which means that, in this

particular case, precision is not enforced by imposing high penalties on mis-
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(a) Average Precision with 33 features (b) Average Precision with 26 features

(c) F1 score with 33 features (d) F1 score with 26 features

Figure 3: Indicative grid search results for SVM parameters.
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Table 1: Prediction scores using SVM and 33 features

Params Test Scores Classification

C γ AP F1 Recall MCC Acc TP TN FP FN

1 104 0.835 0.764 0.712 0.646 0.939 721 6169 155 291

103 103 0.632 0.771 0.740 0.738 0.940 749 6144 180 263

104 103 0.618 0.765 0.766 0.728 0.935 775 6086 238 237

Table 2: Prediction scores using SVM and 26 features

Params Test Scores Classification

C γ AP F1 Recall MCC Acc TP TN FP FN

1 105 0.851 0.681 0.557 0.664 0.928 564 6244 80 448

102 104 0.651 0.791 0.753 0.775 0.943 774 6141 183 238

103 104 0.643 0.782 0.771 0.747 0.941 780 6120 204 232

classification, but by limiting the influence that each sample has on the model.

For F1, results are similar, although differences are more pronounced. Scores

are much lower for very low C values and while results improve as γ increases,575

they actually deteriorate for the highest value (γ = 104). Highest values are

for C = 104 and γ = 104. Since F1 is the harmonic mean between precision

and recall and given the results on precision, we can draw the conclusion that

higher misclassification penalty is required to achieve high recall while main-

taining high precision. Results are similar between the two feature sets, with580

the smaller set achieving higher scores for a slightly higher range of parameters,

which confirms the results of the recursive feature elimination process.

As should be expected, different optimal parameters were obtained through

the grid search process for each metric and for the two feature sets. Tables 1

and 2 offer a comparison of these results. Each line corresponds to the optimal585

parameters calculated using one of the metrics. Values in bold are the highest

achieved for each metric.

In general, SVM prediction models achieve good results across different met-

24



Table 3: Prediction scores using random oversampling and SVM

Params Test Scores Classification

C γ AP F1 Recall MCC Acc TP TN FP FN

33 features

0.01 104 0.263 0.419 0.973 0.376 0.627 985 3617 2707 27

26 features

10 102 0.465 0.642 0.931 0.608 0.857 942 5342 982 70

rics, although results are lower for balanced metrics and recall, than average pre-

cision. Also, highest values for average precision are achieved for lower penalty590

values (parameter C), while for all other metrics, higher penalty values are

required. The results also show how misleading accuracy can be as a met-

ric in scenarios with imbalanced datasets. If read without analysis, accuracy

scores indicate that, regardless of parameter values, models are highly success-

ful, achieving 94% accuracy. However, if we look at the TP and FN values,595

the reality is that the best-performing model misses 237/1012 = 23.4% of late

delivery cases. This is reflected more accurately in the scores using all other

metrics.

Results improve slightly using the features that remain after the feature

selection process. Highest MCC score is improved the most, by 5%, while highest600

recall is almost unchanged. The model with parameters C = 103 and γ =

104 achieves the lowest number of false positives, predicting correctly 77.1% of

late deliveries. Parameters C = 1 and γ = 105 lead to the highest precision,

with 87.6% of predictions of late delivery being correct. Finally, parameters

C = 102 and γ = 104 lead to the best possible compromise between different605

classifications.

Using resampling techniques to tackle data imbalance does not lead to sig-

nificant improvements in prediction performance, apart from recall. Table 3

shows the results of using random oversampling before running a grid search

optimising recall. While almost perfect recall is achieved for both feature sets610
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Table 4: Prediction scores using decision trees

Test Scores Classification

Features AP F1 Recall MCC Acc TP TN FP FN

33 0.666 0.800 0.817 0.768 0.944 827 6097 227 185

26 0.693 0.816 0.806 0.787 0.949 816 6153 171 196

Table 5: Prediction scores using decision trees with max depth=6 and max leaf nodes=13

Test Scores Classification

Features AP F1 Recall MCC Acc TP TN FP FN

33 0.533 0.704 0.728 0.655 0.915 737 5980 344 275

26 0.516 0.683 0.651 0.636 0.916 659 6066 258 353

(predicting correctly 97.3% and 93.1% of late deliveries using 33 and 26 fea-

tures, respectively, it is at the expense of the other metrics. Specifically, for

the full feature set, 2707 samples are misclassified as late deliveries, leading to

a precision of only 18.5%. For the 26-feature set, results are slightly more bal-

anced, with 982 samples misclassified as late deliveries and a precision of 49%.615

This explains why random oversampling does not improve metrics such as F1

or MCC, since they take into account both false positives and false negatives.

5.3. Decision Tree Models

For decision trees, we first executed the decision tree classifier implemented

in scikit-learn with default parameters. This classifier is an optimised version of620

the CART algorithm uses the gini impurity measure to decide on the quality of

each split in the tree: each split must minimise the probability that a random

element in the sets created by the split is misclassified if classified according to

the label of the majority of the elements. Also, no limit is imposed on the size

and structure of the resulting tree. Results using both feature sets are shown625

in Table 4.

Results are roughly comparable to those using SVM, slightly worse in terms
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Figure 4: Decision tree classifier using restricted parameters

of average precision but with slightly better F1 scores. However, the resulting

trees are considerably large: for 33 features the resulting tree has a maximum

depth of 29 and 2267 total nodes, while for 26 features depth is 28 and total630

nodes are 2401. Since interpretability is hindered when trees grow too large,

we limited the classifier to a maximum depth of 6 and maximum 13 leaf nodes.

This led to trees with 25 nodes in total, such as the one in Figure 4. Results

using restricted parameters are shown in Table 5.

In the tree shown in Figure 4 the feature that contributes to the best split635

(X[24]) is the difference between the due date of the delivery and the date that

was accepted by the tier 1 supplier. This leads to roughly 78% of the training

samples classified as not late if the difference is less than or equal to 21 days

(the value corresponding to 0.0022 before normalisation), which is incorrect for

only 556 samples. For the remaining 23% the decision depends on combinations640

of additional features. For instance, when the season of the due date is not

winter (corresponding to taking the left branch at node where X[14] ≤ 0.001),

the purchase order month is January to June (left branch of X[1] ≤ 0.0015), the
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Table 6: Prediction scores using random oversampling and decision trees

Test Scores Classification

Features AP F1 Recall MCC Acc TP TN FP FN

Unrestricted trees

33 0.698 0.821 0.823 0.792 0.950 833 6139 185 179

26 0.674 0.805 0.810 0.773 0.946 820 6118 206 192

Trees with max depth=6 and max leaf nodes=13

33 0.493 0.670 0.883 0.630 0.880 894 5562 762 118

26 0.453 0.630 0.928 0.595 0.850 939 5295 1029 73

date that was accepted by the tier 1 supplier is not in the last 9 weeks of the

year (left branch of X[31] ≤ 0.012) and the delivery date originally requested by645

the tier 1 supplier is within a year of the currently accepted one (right branch

of X[26] ≤ −0.3887), then the delivery is predicted to be late. This is correct

for 957 of the 1116 samples.

Using resampling techniques in combination with decision trees yields a mix-

ture of results. For unrestricted decision trees, prediction performance is slightly650

improved overall for 33 features but is slightly lower for 26 features. In both

cases, trees are significantly larger than without random oversampling: depth

of 36 and 2711 nodes for 33 features and depth of 37 and 2681 nodes for 26 fea-

tures. For decision trees restricted to a maximum depth of 6 and maximum 13

leaf nodes, results are similar to SVM: recall is significantly improved for both655

33 and 26 features, at the expense of the other metrics. Results are summarised

in Table 6.

6. Discussion

In this section we discuss the presented results in relation to interpretability

and dataset characteristics. Section 6.1 discusses the tradeoff between predic-660

tion performance and interpretability, as well as the potential knowledge that

can be gained from interpretable models to influence SCRM processes. Then,
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Table 7: Summary of best prediction scores for different classifiers and metrics

Classifier AP F1 Recall MCC Acc

SVM 0.851 0.791 0.973 0.775 0.943

DT 0.698 0.821 0.823 0.792 0.950

RDT 0.533 0.704 0.928 0.655 0.916

Section 6.2 summarises the effects of feature engineering and selection, as well

as data imbalance, as perceived in the presented case study. To facilitate dis-

cussion, Table 7 contains only the best scores, from the ones reported in the665

tables of Section 5, that were achieved for each metric using SVM, unrestricted

decision trees (DT) and restricted decision trees (RDT).

6.1. Interpretability

Results in Table 7 show that decision trees without restrictions are capa-

ble of achieving comparable results with SVM, performing slightly worse with670

regard to average precision and recall but doing slightly better in the case of

balanced metrics, F1 score and MCC. Imposing restrictions on decision trees

helps quantify the trade-off between performance and interpretability. For the

particular dataset, a classifier whose results can be easily interpreted achieves

37% lower average precision, 15% lower MCC score, 11% lower F1 score and 5%675

lower recall.

The question that the SCRM decision-makers have to consider is whether

the potentially lower performance of interpretable models is acceptable, given

the fact that predictions can be interpreted. The decision is case-specific and

is entirely dependent to the particular set of data, SCRM plan and prediction680

priorities. If, for instance, the importance placed on precision is high because

there are significant costs in treating a delivery as late when this will not be the

case eventually, then the added value of interpretability may be less appealing.

If, on the other hand, the primary goal of the SCRM plan is to understand what

factors may contribute more to a delivery being late, then some reduction in685
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prediction performance may be deemed acceptable.

With regard to knowledge that can be gained from interpretable machine

learning models, the presented case study shows that decision trees can be

informative, revealing correlations of feature values that lead to one or the other

outcome. Decision trees by design can deliver such interpretation, whereas this690

is not possible with SVM models. The particular dataset and features could only

yield mainly date-related information, but richer datasets could potentially be

even more helpful. This knowledge about correlation patterns in the dataset

can then be taken into account in SCRM decision-making efforts, keeping in

mind that correlation does not necessarily imply causality. The importance of695

tree depth should also be obvious by this example: explaining decisions starts

becoming too complex after 4 or 5 splits.

6.2. Datasets and Imbalance

The importance of a feature-rich dataset is also illustrated in the presented

case study. The feature engineering process yielded additional features based700

on date-related information; however, further feature combinations were not

possible, since the initial feature set was quite limited. Also, feature selection

in such a dataset does not lead to significant improvement in performance;

however, it can definitely prove useful in identifying the most important features

and reducing the size of the feature set to increase execution time for complex705

tasks such as grid search for SVM.

Finally, the significant effect of imbalanced datasets is evident throughout

the presented results, especially with regard to performance metrics. Accuracy

is proven to be not only uninformative but potentially misleading. Balanced

metrics such as F1 and MCC scores present a more conservative but fair evalu-710

ation of prediction performance. However, no one metric is the best choice for

any SCRM prediction task: it is the task and particularly the goals set within

the SCRM planning process that should lead to the correct choice of metrics.

As in the case study, recall is more useful when the goal is to minimise missed

cases of late delivery, while precision is preferable when incorrectly predicting715
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a delivery to be late is especially undesirable. These considerations should be

taken into account in any SCRM-related prediction effort that involves events

and risks that are less likely to occur.

7. Conclusions and Future Work

In this work, we proposed a risk prediction framework for SCRM that utilises720

data-driven AI techniques and relies on the collaboration and interactivity be-

tween AI and supply chain experts. The framework emphasises the need for

linking choices of metrics and algorithms to SCRM goals which may prioritise

interpretability over prediction performance or vice-versa. It also illustrates the

difficulties of working with imbalanced datasets, which may feature in SCRM-725

related scenarios. The applicability of the framework is demonstrated through

a real-world case study of a multi-tier aerospace manufacturing supply chain af-

fected by the risk of delayed deliveries. Results of experiments conducted within

the case study show that the framework can achieve good performance across

a variety of metrics using both black box and interpretable machine learning730

techniques. Prioritising interpretability over performance requires a compro-

mise that is minor in terms of recall (5% decrease in prediction performance)

but much higher in terms of average precision (37% decrease).

Future research directions on the application of AI techniques in SCRM

include: (a) exploring a more feature-rich dataset and a larger set of ma-735

chine learning techniques, including, for instance, neural networks and deep

learning, and their effects on interpretability and performance; (b) extracting

knowledge through a combination of data-driven and knowledge-based AI tech-

niques [37, 38] and using it to derive managerial insights and influence sup-

ply chain decision-making processes; and (c) investigating whether similar ap-740

proaches can be applied in other phases of the SCRM process, such as risk

assessment and response.
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