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Abstract

This thesis is concerned with mathematically modelling the regeneration of cartilage and

cartilage-bone defects. Defects of the bone-cartilage unit, namely chondral and osteochon-

dral defects, are a leading cause of osteoarthritis, the most common type of arthritis in the

UK. These defects can occur through acute trauma, natural wear and tear of the joint, and

underlying disease of the bone, and are typically found in the articular joints. Autologous

Chondrocyte Implantation (ACI) is the most commonly used cell implantation therapy for

treating chondral defects in joints and has good clinical outcomes in osteochondral defects.

The procedure begins by inserting chondrocytes into the defect region. The chondrocytes

initiate healing by proliferating and depositing extracellular matrix, which allows them to

migrate into the defect until it is completely filled with new cartilage. Mesenchymal stem

cells (MSCs) can be used instead of chondrocytes with similar long term results. The main

differences between these implantation techniques is observable at early times, as MSCs must

first differentiate into chondrocytes before cartilage is formed. For osteochondral defect re-

generation, the mechanism behind healing is not fully understood. Though osteochondral

defects can spontaneously repair, the tissue is usually fibrous, typically leading to subsequent

degradation of the newly regenerated tissue. A recent study in ovine models show osteo-

chondral defects heal by first filling with regenerative cartilage tissue which is subsequently

remodelled into bone, replicating the endochondral ossification process.

We refine an existing model of cartilage defect regeneration using ACI to include important

regulatory effects of growth factors, FGF-1 (fibroblast growth factor-1) and BMP-2 (bone

morphogenetic protein-2). In vitro studies hypothesise these growth factors have a trophic

effect on the chondral defect regeneration process. We then model the regeneration of a



ii

bone-cartilage defect using ACI in the presence of growth factors to verify the circumstances

behind osteochondral healing. To the best of our knowledge, this is the first time this has

been modelled for ACI therapy. The mathematical models formulated in this thesis suc-

cessfully demonstrate the above proposed healing and growth factor mechanisms in chondral

and osteochondral defect regeneration. Our key findings indicate a novel cell therapy that

combines the ACI and MSC-implantation strategies increases the cartilage tissue formation

rate within the first year of healing in chondral defects, regardless of the cell implantation

ratio. Additionally, we show that osteochondral defects follow expected regeneration pat-

terns when endochondral ossification is the proposed healing mechanism, under the influence

of regulatory growth factors PTHrP (Parathyroid hormone-related protein) and Ihh (Indian

hedgehog).

The findings of these models enable us to better understand chondral and osteochondral de-

fect regeneration by giving invaluable insight into the healing processes that are occurring,

the impact growth factors have on these healing mechanisms, and highlighting the potential

for advances of novel cell-based therapies.
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stem cell density reduction factor, ᾱ (lighter solid lines) independently from

their base values (dot-dashed lines). See text for parameter values used. x = 0

in the figure represents the location of the base of the defect, x = 1 represents

the surface of articular cartilage. . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Evolution of cell and matrix densities, and nutrient concentration at times

t =0, 11 and 22 days following co-implantation of 90% stem cells and 10%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 98

4.2 Evolution of cell and matrix densities, and nutrient concentration at times

t =1, 3 and 6 months following co-implantation of 90% stem cells and 10%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 98

4.3 Evolution of cell and matrix densities, and nutrient concentration at times

t =9, 12 and 24 months following co-implantation of 90% stem cells and 10%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 99

4.4 Evolution of cell and matrix densities, and nutrient concentration at times

t =0, 11 and 22 days following co-implantation of 70% stem cells and 30%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 101



viii

4.5 Evolution of cell and matrix densities, and nutrient concentration at times

t =1, 3 and 6 months following co-implantation of 70% stem cells and 30%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 101

4.6 Evolution of cell and matrix densities, and nutrient concentration at times

t =9, 12 and 24 months following co-implantation of 70% stem cells and 30%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 102

4.7 Evolution of cell and matrix densities, and nutrient concentration at times

t =0, 11 and 22 days following co-implantation of 50% stem cells and 50%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 103

4.8 Evolution of cell and matrix densities, and nutrient concentration at times

t =1, 3 and 6 months following co-implantation of 50% stem cells and 50%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 103

4.9 Evolution of cell and matrix densities, and nutrient concentration at times

t =9, 12 and 24 months following co-implantation of 50% stem cells and 50%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 104

4.10 Evolution of cell and matrix densities, and nutrient concentration at times

t =0, 11 and 22 days following co-implantation of 30% stem cells and 70%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 105



ix

4.11 Evolution of cell and matrix densities, and nutrient concentration at times

t =1, 3 and 6 months following co-implantation of 30% stem cells and 70%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 105

4.12 Evolution of cell and matrix densities, and nutrient concentration at times

t =9, 12 and 24 months following co-implantation of 30% stem cells and 70%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 106

4.13 Evolution of cell and matrix densities, and nutrient concentration at times

t =0, 11 and 22 days following co-implantation of 10% stem cells and 90%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 107

4.14 Evolution of cell and matrix densities, and nutrient concentration at times

t =1, 3 and 6 months following co-implantation of 10% stem cells and 90%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 107

4.15 Evolution of cell and matrix densities, and nutrient concentration at times

t =9, 12 and 24 months following co-implantation of 10% stem cells and 90%

chondrocytes. x = 0 in the figure represents the location of the base of the

defect, x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . 108

4.16 Comparison of matrix density profiles for all cases at times t = 11 days and 1

month. x = 0 in the figure represents the location of the base of the defect,

x = 1 represents the surface of articular cartilage. . . . . . . . . . . . . . . . . 109



x

4.17 Comparison of matrix density profiles for all cases at times t = 3 and 6 months.

x = 0 in the figure represents the location of the base of the defect, x = 1

represents the surface of articular cartilage. . . . . . . . . . . . . . . . . . . . 109

4.18 Mean densitites of (a) matrix, m, (b) chondrocytes, CC , (c) MSCs, CS , as a

function of the time, in months, from 1-24 months for 0:100 (ACI, blue), 10:90

(orange), 90:10 (grey) and 100:0 (ASI, yellow). x = 0 in the figure represents

the location of the base of the defect, x = 1 represents the surface of articular

cartilage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Schematic of a cross-section of the osteochondral defect. After debridement

of the defect, cells such as chondrocytes or mesenchymal stem cells are seeded

along the defect walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Schematic of a growth factor feedback loop akin to PTHrP and Ihh, modelled

as inducing, modulating and suppressing growth factors. Black arrows indicate

inducing, maroon lines represent inhibiting. Cc and Ch represent chondrocytes

and hypertrophic chondrocytes, respectively. . . . . . . . . . . . . . . . . . . . 124

5.3 Evolution of cell and matrix densities, and nutrient concentration at times t =0

days, 1 month and 3 months following implantation of chondrocytes. x = 0 in

the figure represents the location of the base of the defect, x = 1 represents

the surface of articular cartilage. . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4 Evolution of cell and matrix densities, and nutrient concentration at times

t =6, 12 and 18 months following implantation of chondrocytes. x = 0 in the

figure represents the location of the base of the defect, x = 1 represents the

surface of articular cartilage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



xi

5.5 Evolution of cell and matrix densities, and nutrient concentration at times

t =24, 36 and 48 months following implantation of chondrocytes. x = 0 in the

figure represents the location of the base of the defect, x = 1 represents the

surface of articular cartilage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Sensitivity of hypertrophy-suppressing growth factor diffusion coefficient, DgHS

at t=48 months, following implantation of chondrocytes, with Panel 1 de-

creased DgHS , Panel 2 normal DgHS and Panel 3 increased DgHS . x = 0 in the

figure represents the location of the base of the defect, x = 1 represents the

surface of articular cartilage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.7 Sensitivity of hypertrophy-suppressing growth factor critical concentration,
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Chapter 1

Introduction

Mathematical models have the ability to give information quickly and efficiently, and are a

useful tool for alleviating the need for in vitro and in vivo models for therapies in regenerative

medicine by giving insight into and simulating these complex physiological processes. As the

thesis title suggests, our focus is to mathematically model the regeneration of defects of the

bone-cartilage unit, more specifically chondral and osteochondral defects. The etymology of

these terms helps to make sense of and give context to the work undertaken in this thesis.

Derived from the Greek ’ostéon’, osteo refers to bone, and serves as an indicative prefix

for many bone-related terminologies such as osteoporosis, osteopathy, and osteoarthritis. In

fact, osteon itself is defined to be the canal-like structures found in compact bone. The

term ’chondral’ is derived from the Greek ’khóndros’, a word used to describe something of

granular structure. Hyaline cartilage extracellular matrix is often categorised to be granular

in composition and glassy in appearance, with cartilage cells embedded within. A defect

of either cartilage or cartilage and bone is described to be an area of damage that results

in weakness and structural changes within the affected tissue. In this thesis, the problem

focuses on defects of both cartilage (chondral) and those that penetrate through cartilage to

1
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underlying subchondral bone (osteochondral) within the bone-cartilage unit. Specifically, we

focus on defects located in the knee joint, and aim to mathematically model the morphology

of defect regeneration after cell implantation techniques.

Figure 1.1: Arthroscopic image of a cartilage defect in the knee.

Figure 1.2: Arthroscopic image of a cartilage defect 1 year after repair.

Developing and improving upon the treatment of defects of the bone-cartilage unit is a fun-

damental clinical problem. Articular cartilage damage occurs in several ways, from playing

high contact sport to natural wear and tear, affecting a variety of different age groups and

sexes, with many people experiencing symptoms such as locking and stiffness of the joint

later in life [31, 47]. Articular cartilage is a type of hyaline cartilage that covers the end of
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bones at the articular joint, i.e. the knee, in order to reduce friction, and as a result allows

bones to glide smoothly over one another [11, 121, 164]. This type of cartilage can be found

only in small volumes in the human body and as a result does not absorb shock well [191].

The ability of damaged cartilage to self-repair is limited due to its avascularity [164] and

can often lead to osteoarthritis when left untreated through an osteochondral defect forming

due to an exposure of the end of bones, causing them to rub against one another at a joint

without cushioning and protection [121]. Almost 9 million people in the UK are affected by

osteoarthritis, which carries a lifetime risk in the knee of approximately 45% [13, 5]. Osteo-

chondral defects are defects of the articular cartilage that puncture the subchondral bone

and can undergo spontaneous repair. The tissue that fills the defect is of subsidiary quality

compared with natural articular cartilage due to its fibro-cartilaginous nature, and as a re-

sult degrades quickly. Finding appropriate treatments for these defects is an ongoing clinical

issue with great importance due to the pain and discomfort a defect can cause, leaving many

sufferers debilitated [2]. Though various treatment strategies are available, cell implantation

results in the most promising outcomes for both chondral and osteochondral defects, and will

be the treatment option focused on in this thesis [130].

The clinical translation of in vitro or animal research around treatments for chondral defects,

whether they arise from trauma or diseases such as osteoarthritis, faces one common bar-

rier: the long time needed for demonstrating clinical effectiveness of such treatments. For

instance, up to a period of five years there is no evidence for a clinical difference between

cell-based treatments of chondral defects and their non cell-based comparators [130]. Such

long time periods are well beyond the reach of in vitro models or animal models. Even animal

models that allow a relatively long-term follow-up of 1-2 years, such as equine models, may

still be insufficient. An example is an equine model comparing between mesenchymal stem
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cell implantation and fibrin implantation for chondral defects [128, 179]. At 1 month, this

model suggested better cartilage formation with mesenchymal stem cells, but at 8 months no

difference was visible. Although this has been used as an example of how short-term results

in animal models can be misleading and that long-term results are needed [128], it is also

important to realise that even 8 months of follow-up is still short when it comes to clinical

translation. After all, the 8 month findings do not preclude that differences might appear

after 5 years’ follow-up. Mathematical models do not have this practical time limit and can

be used to study long-term outcomes. Chapter 3 and 4 of this thesis contain examples of

such use of mathematical models, where we investigate the longer term (2-year) implications

for the repair of cartilage defects of short-term (1-month) in vitro experiments.

Autologous chondrocyte implantation is commonly regarded as a treatment for cartilage

defects. For instance, the title of the NICE recommendation is “Autologous chondrocyte

implantation for treating symptomatic articular cartilage defects of the knee” and the ti-

tle of the first report on its clinical use, which appeared in 1994, was “Treatment of deep

cartilage defects in the knee with autologous chondrocyte transplantation” [60, 17]. How-

ever, the German cartilage registry found that a majority of patients treated with ACI have

an ICRS grade IV defect, which is a defect that also involves the underlying bone [142].

This reflects the clinical practice at The Robert Jones and Agnes Hunt Orthopaedic Hos-

pital (RJAH), Oswestry, where 60% of patients treated with ACI had an ICRS grade IV

defect (Personal communication, J.H. Kuiper, 2020 [104]). RJAH is a leading orthopaedic

hospital specialising in the treatment of bone, joint and muscular conditions nationally. In

order to be clinically relevant, mathematical models of cartilage repair must therefore be able

to include the mechanism by which cartilage-bone (osteochondral) defects repair. Chapter 5

of this thesis contains a first step to mathematically model the repair of osteochondral defects.
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Despite significant effort to better understand the circumstances behind chondral and os-

teochondral defect regeneration, the role growth factors play within this process is not fully

understood. The mechanism behind osteochondral defect regeneration is elusive, with scant

studies successfully pinpointing the underlying mechanism. Co-implantation as the chosen

therapy to treat chondral defects has not been extensively explored, despite in vitro studies

indicating the potential for earlier matrix deposition caused by a trophic healing scenario

due to growth factor influence, a streamlined operative procedure, and earlier remobilisation

[9, 184]. The works undertaken in this thesis aim to answer these key open questions within

cartilage tissue engineering by formulating mathematical models to utilise the available data

and observations to predict long-term outcomes, to better understand chondral defect regen-

eration under the influence of important growth factors (Wu et al. [184], in vitro), the benefits

of co-implantation for chondral defects and if an optimal ratio of cells can be identified (Wu

et al. [184], in vitro), and finally, the process by which osteochondral defects regenerate, hy-

pothesised to be via endochondral ossification (Lydon et al. [120], in vivo, ovine).

Mathematical models of biological phenomena can give fundamental information to clinicians

in order to determine treatment strategies that might otherwise be elusive [56, 110]. These

models and computer simulations can also help to reduce the number of animal experiments

conducted, with theoretical results replacing those of sometimes spurious animal experiments

[156, 165]. With regard to chondral and osteochondral defect regeneration, mathematical

models can be formulated to better understand how healing occurs and over what time frame

a defect is fully healed. Previous work of Lutianov et al. [119] on cartilage regeneration af-

ter cell therapy simulated chondral defect healing after chondrocyte or mesenchymal stem
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cell implantation. This work successfully captures some essential features of cartilage defect

regeneration and resulted in some clinically useful information, such as the relatively small

importance of the number of implanted cells. However, it does not address an important

open question: do growth factors thought to have an important influence on the modelled

healing mechanism impact overall healing time? This lack of inclusion could mean certain

healing benchmarks and characteristics may not be captured. This model of cartilage regen-

eration will act as a basis for the works undertaken in this thesis, primarily by extending it

to include the effects of important growth factors, such as FGFs (Fibroblast growth factors)

and BMPs (Bone morphogenetic proteins), and to explore a potential new cell therapy, where

a co-implantation of mesenchymal stem cells and chondrocytes are inserted into the defect

to investigate the expected outcome of a trophic healing scenario, where an optimal ratio of

MSCs and chondrocytes could be identified from the findings of the model to formulate a

novel cell implantation. Additionally, using this refined mathematical model as a basis and

synthesizing further advances within the literature from animal and clinical experiments of

osteochondral defect regeneration, a model of osteochondral defect healing after cell implan-

tation therapy will be formulated. This model will be used to verify the mechanisms behind

osteochondral defect regeneration, whilst including the effects of key regulatory growth fac-

tors as hypothesised in the literature (Chapter 2).

The data that populates any mathematical model comes from some form of experimentation,

whether in vitro, in silico, in vivo or human. These experiments are conducted to obtain

information about potentially important mechanisms occurring over the course of the chosen

experiment, whether that be, for example, to better understand the role of growth factors

within chondral defect regeneration (in vitro, [184]), or to verify the mechanism driving os-

teochondral defect regeneration (in vivo, ovine, [120]). However, there are barriers involved



7

in translating experimental data to useful parameters that populate a mathematical model.

For example, the data obtained from clinical experimentation could be qualitative and not

quantitative, or could be represented as a raw dataset where data was recorded at specific

time points, instead of converted to a rate. The data used from experimentation also has to

performed in a realistic environment, such as the correct mechanical environment (as seen in

bioreactor studies [145]), or with a realistic supply of nutrients over the time-scale the ex-

periment is performed. Additionally, experimentation in vitro has its own weaknesses, such

as cell de-differentiation [145]. It could also be the case that no data has been published to

approximate a parameter that is required to mathematically model a specific scenario. To

help alleviate this barrier, data can be converted into the required format, i.e. a rate, or

an approximation of an unknown parameter can be made, which can then be used within

a mathematical model. To verify data validity, a sensitivity analysis of parameters can be

undertaken where parameters are varied (increased and decreased) to better understand their

sensitivity to change. If parameters are deemed not sensitive to change it is likely their ap-

proximation or conversion from experimental data is representative of the model environment.

Thesis outline

Chapter 2 reviews the biology of chondral and osteochondral defects, first focusing on the

physiology and pathophysiology of the bone-cartilage unit as a whole, specifically the struc-

ture and development of the bone-cartilage unit. Following on from this we discuss cartilage

and bone injury, focusing on possible causes of cartilage only (chondral) and cartilage and

bone (osteochondral) defects. We then discuss how these chondral and osteochondral defects

heal, whether naturally or after a treatment strategy is undertaken, exploring the details and

limitations of current treatment strategies, such as autologous chondrocyte implantation,
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mosaicplasty and microfracture. Following on from this, we then review current mathemat-

ical models within tissue engineering, focusing on various different modelling types such as

reaction-diffusion and multi-phase approaches. We discuss in-depth mathematical models

relevant to the work undertaken in this thesis, such as Lutianov et al. [119], along with other

potentially relevant models, such as those concerned with fracture healing and long bone

growth [7, 64].

Chapter 3 extends the mathematical model formulated by Lutianov et al. concerned with

chondral defect healing following Autologous Chondrocyte Implantation (ACI), a current cell

therapy used to treat chondral defects [119]. Lutianov et al. [119] also explored the effects

of implanting mesenchymal stem cells into a chondral defect, a cell therapy strategy that

replicates the ACI procedure with the hope MSC differentiation into chondrocytes will then

stimulate new cartilage production, referred to as Articular Stem cell Implantation (ASI).

This work is discussed in detail in Chapter 2, with the equations formulated and modelling

choices explained in Chapter 3. We extend this work to answer the open question: does

including the effects of important growth factors identified in the literature, in particular

FGF-1 (Fibroblast Growth Factor-1) and BMP-2 (Bone Morphogenetic Protein-2), which

are thought to have trophic effects on cell-to-cell interaction between mesenchymal stem cells

and chondrocytes, impact matrix deposition, cell evolution and overall healing time? This

inclusion of FGF-1 and BMP-2 is relevant to the mesenchymal stem cell implantation proce-

dure. When MSCs are inserted the defect will contain a population of un-differentiated MSCs

and chondrocytes (from differentiated MSCs), meaning during this time we have two cell pop-

ulations where important trophic effects on chondrogenesis and chondrocyte proliferation are

taking place. The inclusion of these growth factors will result in a refined mathematical

model of cartilage defect regeneration.
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In Chapter 4, we continue with the model from Chapter 3 to simulate a co-implantation

procedure of mesenchymal stem cells and chondrocytes, a treatment strategy currently in

clinical trial that is thought to result in earlier healing due to a trophic effect caused by

growth factors released by cell-to-cell interactions. We explore several cell-implantation ra-

tios, ranging from 10:90 to 90:10 (MSC:chondrocyte), and compare matrix levels for these

ratios with ACI and ASI as shown in Chapter 3 and Lutianov et al. [119], to answer the

open question: can a novel cell implantation therapy be formulated to treat chondral defects

that utilises both MSCs and chondrocytes to reduce healing time and streamline the cell

implantation procedure? The implications of these findings could be indicative to clinicians

about potential cell implantation strategies currently used in the treatment of chondral de-

fects. We also demonstrate the differences in cell-evolution and nutrient utilisation following

co-implantation when compared with single-cell implantation procedures.

In Chapter 5 we formulate a new mathematical model to describe osteochondral defect heal-

ing following autologous chondrocyte implantation. Details of osteochondral defect regen-

eration are relatively elusive, with literature indicating healing occurs via an endochondral

ossification-like process in several animal models [120, 161], where a cartilage model is first

formed within the defect, followed by cartilage calcification and eventual bone production

occurring from the base continuing towards the top until bone formation ceases and a carti-

lage layer is left remaining along the top of the newly regenerated defect. Important growth

factors such as parathyroid hormone-related protein (PTHrP) and Indian Hedgehog (Ihh) are

thought to regulate chondrocyte hypertrophy and suppress endochondral ossification where

necessary, with hypertrophic chondrocytes and bone cells such as osteoblasts and osteoclasts
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driving bone formation [103]. The open question we primarily aim to answer with this model

is: can the endochondral ossification pathway replicate clinical findings by reproducing car-

tilage and bone formation as described in the literature, whilst also including the effects of

important regulatory factors? We endeavour to demonstrate the impact growth factors have

on the system by conducting a thorough sensitivity analysis, which allows us to understand

how growth factors such as PTHrP and Ihh regulate the remaining layer of cartilage in the

regenerated defect, whilst also considering the sensitivity of important parameters within the

model such as the rate of chondrocyte hypertrophy, the initial cartilage healing phase and

cartilage calcification rate.

Finally, in Chapter 6 we summarise our findings, discuss the implications of this work and

possible future work that arises from this thesis.



Chapter 2

Background

In this chapter we begin by summarising the biological and mathematical background un-

derpinning the mathematical models formulated in the following chapters. We begin with

describing the physiology and pathophysiology of the bone-cartilage unit in the joints of the

body. This will be followed by the pathophysiology of chondral and osteochondral defects,

how they occur, and repair. Relevant developmental biology will also be explored such as

endochondral and intramembranous ossification. We then discuss current treatment strate-

gies and clinical problems associated with these types of defects. Following on from this, we

will look at various mathematical modelling techniques used within regenerative medicine,

discussing relevant examples in more detail that demonstrate the modelling techniques we

undertake in the work of this thesis.

2.1 Physiology and pathophysiology of the bone-cartilage unit

Bone and cartilage are connective tissues within the human body, with relatively few cells

embedded in extracellular matrix. The bone-cartilage unit is comprised of articular cartilage,

a calcified cartilage layer and the subchondral bone plate, which lies between the articular

11
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cartilage and the subchondral trabecular bone [117, 124, 189] (Fig. 2.1). The bone-cartilage

unit is found in articular joints such as the ankle and the knee, with the subchondral bone

acting as a key structural component supporting the articular cartilage it lies beneath [124].

Figure 2.1: Schematic of a healthy bone-cartilage unit, comprised of articular cartilage (≈
2-4mm thick [62, 135]), a tidemark, calcified cartilage (≈ 0.1-0.2mm thick [135]) and subchon-
dral bone, with blood vessels indicated. Adapted from Lories et al. [117]. NB: this schematic
is not to scale.

2.1.1 Structure and composition of the bone-cartilage unit

Articular cartilage is a type of hyaline cartilage that covers the end of bones that form a

joint in order to reduce friction, and as a result allows bones to glide smoothly over one

another. Being smooth and pearly-white in appearance, articular cartilage is described to

have a firm texture [29, 133, 191]. Chondrocytes (cartilage cells) are embedded within carti-

laginous extracellular matrix which is largely formed of water, various collagens, hyaluronic

acid and proteoglycans and non-collagenous proteins [172]. There are at least 16 types of

collagen in the body, and they are all highly abundant fibrous proteins. The main type of
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collagen found in articular cartilage is type II, and its properties supply ECM with its durable

properties [26, 51]. The calcified cartilage zone acts as a barrier between the hyaline cartilage

and the hard subchondral bone plate, transferring mechanical stresses and biological stimulus

between the two tissues [192]. The subchondral bone plate’s primary function is to support

the overlying articular cartilage within the bone-cartilage unit [124]. Subchondral bone is

a highly vascular and neural material, filled with many hollow gaps that connect normal

articular cartilage and subarticular spongiosa, an area of subchondral bone located below the

subchondral plate. The health of the subchondral bone is highly important to the health of

the entire bone-cartilage unit as it supplies the overlying cartilage with nourishment [111, 189].

Biomechanical and biochemical properties of the bone-cartilage unit

Articular cartilage is a multiphasic tissue that provides various biomechanical functions within

the bone-cartilage unit, more specifically, load bearing, shock absorption and wear resistance

[118]. When we refer to articular cartilage as multiphasic, we speak of 3 phases, namely a

solid phase, a fluid phase and an ion phase. These three phases all contribute to articular

cartilage’s ability to withstand high compressive loads and compressive and shear stresses.

The solid phase is comprised of collagen fibrillar network containing proteoglycans and gly-

coproteins. The fluid and ion phase is water comprised of dissolved electrolytes, with both

positive and negative charges [63].

Trabecular bone, a constituent of subchondral bone that is located beneath calcified cartilage

and the subchondral plate (Fig. 2.1), demonstrates anisotropic and viscoelastic properties

and has a density ranging from 0.14 g/cm3 to 1.10 g/cm3, lower than that of cortical bone

[112]. Bone undergoes constant remodelling via bone resorption through osteoclasts and bone
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remodelling through osteoblasts. Osteoclastic and osteoblastic activity is regulated by mul-

tiple factors, including locally produced molecules that control cell signalling, released under

the influence of mechanical stimulus [97]. Osteocytes are highly sensitive to mechanical in-

fluence, and are thought to detect physical stimuli, meaning they are essential in mediating

osteoclastic bone resorption. They respond to fluid flows caused by loading within bone,

meaning bone remodelling can be attributed to physiological loading [145].

Mechanotransduction is the result of mechanical forces (such as pressure, shear and elon-

gation) causing tissue remodelling by triggering cell reaction through influence on cellular

metabolism [166]. Cellular responses thought to be a result of mechanical influence include

cell differentiation and proliferation, matrix synthesis, the release of growth and paracrine

factors, and the down- or up-regulation of gene expression. Tissues are influenced by both

internal and externally applied mechanical forces [145]. In vivo external mechanical forces

include flow-mediated shear stress and macroscale forces due to muscle contraction around

the tissue and movement. Internal forces include cell movement, cell adhesion to scaffolds and

extracellular matrix, along with stresses caused by reparative tissue growth and remodelling

[145]. Mechanical influence is highly important to the maintenance of tissues located within

the bone-cartilage unit, and also the regeneration of chondral and osteochondral defects.

2.1.2 Development of the bone-cartilage unit

Bone formation begins in foetal development, where the skeleton is primarily cartilaginous,

and finishes in adulthood. Bone can form via two routes: intramembranous and endochon-

dral ossification. Mineralised bone is comprised of cancellous and compact bone. Compact

bone behaves as a weight-bearing component for the skeleton and can be found underneath
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the periosteum, and cancellous bone is flexible and highly vascular and is located at the end

of long bones beneath cartilage [172]. Cells found in bone are osteoblasts, osteocytes and

osteoclasts, and all of these cells have different roles within bone. During bone formation,

osteoblasts function in groups as single cells cannot make bone. Osteoblasts are a main cel-

lular component of bone with single nuclei that secrete bone material [57]. Osteocytes, the

most abundant cell type in bone, are found in mature bone located inside lacunae and are

derived from osteoblasts [37]. Osteoclasts are essential in the remodelling, maintenance and

repair of tissue due to their ability to break down bone [55, 57]. They have multiple nuclei

and cleverly form macrophages, a type of white blood cell.

Intramembranous and Endochondral ossification

Ossification occurs via two bone formation pathways. Intramembranous ossification is bone

formation that occurs in and replaces connective tissue in the absence of cartilage. This type

of ossification happens primarily in the cranial bones of the skull and the clavicles and forms

flat bones [61]. Mesenchymal cells cluster, where they differentiate into osteoblasts, forming

an ossification centre. Bone matrix is then secreted by the osteoblasts which undergoes

mineralisation within a few days. The remaining trapped osteoblasts become osteocytes [61].

Endochondral ossification is the process of cartilage being replaced by bone tissue occurring

in the stages of prenatal development and healing. This type of ossification is the mechanism

behind long bone growth in the epiphyseal plate (growth plate), first occurring in the centre

of long bones and spreading to the periphery. During this process, chondrocytes synthe-

sise a cartilage model which then undergoes calcification and is ossified [121]. This method

of bone formation starts similarly to intramembranous ossification, when clusters of mes-

enchymal cells, referred to as condensations, form within the body from the influence of cell
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adhesion molecules (CAMs). CAMs are made up of proteins that promote the attraction of

cells, known as molecular binding, to other cells or ECM. These clusters of cells differentiate

into chondrocytes, with the cells at the edges of these clusters forming perichondrium. The

chondrocytes secrete matrix components, amongst which are type II collagen. The cartilage

formed by these chondrocytes grows due to chondrocyte proliferation and matrix production

[182]. Proliferation ceases in the central (core) chondrocytes which then undergo hypertro-

phy, synthesise type X collagen, and secrete matrix vesicles containing alkaline phosphatase.

These form a structure for upcoming calcification and eventual endochondral ossification

[167]. The hypertrophic chondrocytes (HCs), due to their 5-fold increase in size, are the

main driver of bone growth [182]. Hypertrophic chondrocytes attract blood vessels, ensure

mineralization in the surrounding matrix and attract chondroclasts [103]. Chondroclasts

are giant multinucleated cells which are linked with cartilage absorption. The hypertrophic

chondrocytes help form a bone collar by regulating the perichondrial cells to differentiate into

osteoblasts; these HCs then undergo apoptosis [103]. A calcified cartilage matrix scaffold is

left behind for osteoblasts to secrete true bone with the invasion of blood cells. A strong re-

lationship has been identified between bone growth and the volume increase of hypertrophic

chondrocytes [3]. Osteoblasts encased in bone form osteocytes or differentiate into bone lin-

ing cells [37]. This process occurs in the entire skeleton, converting the cartilaginous skeletal

tissue into mineralised bone that acts as an essential framework with several important roles

within the body. Aside from movement and support the skeleton helps protect and produce

blood cells, as well as storing ions such as calcium, and regulating the secretion of important

macromolecules such as insulin and other hormones. Cartilage located in the joints does

not undergo ossification and as a result remains permanently in the body. These areas of

remaining cartilage are primarily located at the end of long bones, and together with the

subchondral bone form the bone-cartilage unit.
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Regulators of endochondral ossification

Figure 2.2: Schematic of the PTHrP-Ihh feedback loop that occurs during endochondral
ossification. Adapted from Kronenberg et al. [103]

Growth factors such as PTHrP (Parathyroid hormone-related Protein) and Ihh (Indian

Hedgehog) help regulate the process of endochondral ossification. Indian hedgehog (Ihh)

is part of the Sonic hedgehog family of secreted proteins. Ihh is referred to as a master

regulator of the development of bone and is needed during embryonic and post-natal growth

for the proliferation of chondrocytes in addition to chondrocyte and osteoblast differentiation

[103]. When chondrocytes are transitioning from a proliferative to a hypertrophic state Ihh

is secreted; this stimulates the production of PTHrP by proliferative chondrocytes. Together

they form a negative feedback loop due to PTHrP’s role in keeping chondrocytes proliferating,

which postpones the production of Ihh. Indian hedgehog is only produced when the source of

PTHrP is ’distant enough’ and its local concentration is low, which increases the rate of tran-

sition to a hypertrophic state and increases the production of PTHrP [173] (Fig. 2.2). Other

growth factors such as fibroblast growth factors, C-type natriuretic peptide (CNP), epidermal
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growth factors (EGF), insulin-like growth factors (IGFs), and transforming growth factor α

(TGF-α) contribute to the maturation and hypertrophy of chondrocytes during endochondral

ossification in the growth plate [100]. Fibroblast growth factor signalling, more specifically

growth factors FGF-9 and FGF-18, are thought to influence chondrogenesis, acting in an an-

tagonistic manner with CNP. C-type natriuretic peptide is secreted by pre-hypertrophic and

proliferating chondrocytes and together with FGF-18 blocks chondrocyte hypertrophy. They

are thought to act together as a sensor of sorts, to ensure appropriate levels of chondrocytes

(proliferative and pre-hypertrophic) are present for hypertrophy to begin in cells that are

distant enough from PTHrP [100].

2.1.3 Injury and repair of the bone-cartilage unit

The bone-cartilage unit acts in unison, with articular cartilage acting as a low-friction bearing

component and the underlying subchondral plate absorbing shock and providing the required

structural support. Once a component of the bone-cartilage unit is damaged, whether through

disease of the joint or wear-and-tear of the tissue, the entire unit is affected and undergoes

structural changes [117, 124]. A healthy bone-cartilage unit is essential to proper joint func-

tion, with changes in cartilage or bone mechanical properties attributed to increased OA

(osteoarthritis) expression due to biochemical changes in cartilage and underlying subchon-

dral bone.

Causes of chondral and osteochondral defects

Causes of articular cartilage damage are most commonly by injury or normal ‘wear and tear’,

and less commonly by diseases of the subchondral bone, such as osteochondritis dissecans and
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osteonecrosis [123, 129, 180]. Damaged articular cartilage can eventually cause long term de-

generative arthritis due to an exposure of the end of bones, causing them to rub against one

another at a joint junction without the cushioning and protection provided by articular car-

tilage [29, 191]. Symptoms of damaged articular cartilage can include joint swelling, stiffness

and pain, with the ability to move being restricted.

Articular cartilage defects are usually categorised as either full-thickness defects or partial-

thickness defects. Partial-thickness defects are defects of only articular cartilage, varying in

size from small lesions to significant cartilage degradation, and typically have many suitable

treatment options due to underlying subchondral bone being in-tact and lower risk of os-

teoarthritic characteristics. Full-thickness defects are articular cartilage defects that extend

down to the underlying calcified cartilage zone, with the subchondral plate exposed but not

damaged [123]. Osteochondral defects are classified as defects that puncture the underlying

subchondral bone and vary greatly in dimension from patient to patient [177]. These defects

can be caused by a number of factors including repetitive trauma, genetic and metabolic

causes, and injuries that can cause cartilage to shear [76]. The 3 main areas of the body

for chondral and osteochondral defects to occur are the knee, hip, and ankle, with injuries

of the knee and ankle being very common sport injuries, resulting in a sizable proportion of

young people being found to have partial and full-thickness defects [116]. The pathology of

osteochondral defects can vary greatly, with some being classified as only a small lesion of

the articular cartilage and subchondral bone, and with others being fractures of the articular

cartilage and subchondral bone, with many other categorisations in-between [39]. A common

example of an osteochondral defect resulting from injury would be a sprained ankle that gives

painful symptoms long term, and therefore has not settled despite rehabilitation. Possible

treatments of this type of defect would be through nonsurgical management or surgery such
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as drilling of the subchondral bone, osteochondral grafting, and ACI [156]. It is commonly

observed that adults with osteochondral defects will usually require surgery, with ankle le-

sions responding much better to surgical treatment than lesions of the knee [45, 101, 172].

Chondral and osteochondral defects are both a cause and result of osteoarthritis, a degen-

erative condition that causes the joints to become painful and stiff, primarily occurring in

patients over 45 years old [52, 134]. Varying from patient to patient, the course of the dis-

ease can be unpredictable and in some cases can lead to complete degeneration of the joint

leading to a permanent disability [89]. Osteoarthritis causes changes of all tissues in the joint

affected [69]. Symptoms of osteoarthritis can be linked to a number of factors including age,

sex, weight, genetics, previous joint injury, and other debilitating diseases [2]. Living with

osteoarthritis can make normal day to day tasks much harder, often affecting the patient’s

ability to work, sleep, and exercise primarily. There is no cure for osteoarthritis meaning the

disease can only be managed to make it easier to live with.

Natural repair of chondral and osteochondral defects

Lacking neural tissue and being avascular, articular cartilage’s ability to self-heal is limited,

partly due to an absence of supply of blood and oxygen [169]. Articular cartilage is composed

of a sparsely distributed population of chondrocytes, and a much larger proportion of ECM,

which acts as a structural component and supports the tissue [29, 191]. Chondrocytes are es-

sential to producing and maintaining articular cartilage matrix and are the only type of cells

found in healthy cartilage, besides a small number of chondro-progenitor cells in the surface

zone. Autologous chondrocytes have been well documented for their reparative abilities of

chondral defects, but as there is a very sparse population of chondrocytes in cartilage tissue,
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it is hard to harvest them. Additionally, as chondrocytes are embedded in ECM their move-

ment is limited [25], which is thought to also contribute to the cartilage’s lack of capability

to self-repair, as chondrocytes cannot migrate to the site of a wound [47]. Nevertheless, a

proportion of the population has asymptomatic defects that seem to heal spontaneously [46].

It is not known how these defects heal, but perhaps the chondro-progenitor cells play a role.

Osteochondral defect healing is spontaneous with quality of the regenerated tissue unpre-

dictable, and can often be primarily fibrous resulting in subsequent degradation. When an

osteochondral defect forms, damaged blood vessels located within bone at the site of the

defect produce blood which coagulates and forms a fibrous clot. Within this clot there are

thought to be cartilage and bone precursors, such as mesenchymal stem cells, along with a

fibrin net that acts as a scaffold for cells to travel along [123]. These MSCs are thought to

move into the defect, differentiate into chondrocytes, fibroblasts and osteoblasts which syn-

thesize new bone at the bottom of the defect. Growth factors such as Ihh and PTHrP help

mediate the process of healing, which is hypothesised to occur via endochondral ossification,

the process of cartilage being replaced by bone tissue occurring in the presence of chondro-

cytes [120]. Cartilage initially fills the osteochondral defect before endochondral ossification

takes place, initially occurring at the base of the defect and continuing until bone tissue is

restored and a layer of cartilage is left remaining at the top of the defect. The tissue resulting

from natural healing of osteochondral defects is generally of poor quality overall; although

the defect may fill it is typically with fibro-cartilaginous tissue which is not the hyaline-type

needed to withstand the compressive forces exerted across the knee and other weight-bearing

joints [74, 83]. Generally, this fibrocartilage tissue that fills the defect will degrade meaning

the original symptoms of pain and discomfort return, occasionally with the patient develop-

ing osteoarthritis as a result, and as such is of inferior quality compared to natural articular



22

cartilage [177].

Natural repair in animal models

Various animal studies show osteochondral defects healing via an endochondral ossification-

type process, with an initial cartilage template being formed with subsequent calcified car-

tilage and bone formation. Gotterbarm et al. [73] used the Gottingen mini-pig as a trans-

lational model to investigate healing of full-thickness chondral and osteochondral defects.

Osteochondral defects of 5.4 - 6.3 mm x 8 - 10mm were created in the medial of the patello-

femoral joint. These defects filled with fibrous tissue and fibrocartilage after 6 & 12 weeks,

with endochondral ossification occurring first at the edges of the defect at 12 weeks. Bone

restoration was reported to be 80% of maximum at 1 year. Despite these defects showing

some reparative characteristics, overall these defects did not heal well, indicating they were

of or above a critical size at which successful healing does not occur. Shapiro et al. [161]

created 3 mm diameter osteochondral defects in New Zealand white rabbits. Their results

showed that within a few weeks the defect had filled almost entirely with a cartilage matrix,

with chondrocytes undergoing an endochondral type sequence in the deepest layers of the

cartilage, with endochondral bone first formed here at 12-24 weeks post operation.

Lydon et al. [120] showed osteochondral defects located in the distal medial femoral condyle

of an ovine model healed via endochondral ossification, with the purpose of the study be-

ing to uncover the underlying mechanism driving osteochondral defect healing after much

hypothesis that defects exhibit endochondral ossification characteristics in rabbits and goats

[83, 120, 161]. Defects of size 7mm x 6mm were created in 40 adult sheep, with no cells

implanted so spontaneous repair could be observed. Their results showed blood clot and
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fibrous tissue to fill the defect at 2 weeks, with new cartilage formation adjacent to the dam-

aged articular cartilage layer between 4 and 8 weeks. It is thought the cartilage was first

forming here due to chondrocytes at the edges of the damaged defect promoting healing, or

chondrocytes derived from the fibrous tissue contributing to cartilage regeneration. By 8

weeks, chondrocytes lined the edges of the defect and cartilage formation had occurred, with

new bone observed by 18 weeks at the edges and bottom of the defect. At 26 weeks healing

was nearly complete, with cartilage and bone filling the entire defect but no proper tidemark

formation. There was some remaining cartilage in the subchondral bone, which would likely

undergo remodelling in the future. This study successfully showed the sequential process of

osteochondral defect healing via endochondral ossification in ovine models.

2.1.4 Current treatment of chondral and osteochondral defects

Suitable treatment strategies for defects of the bone-cartilage unit are of high clinical impor-

tance due to cartilage’s limited reparative capability and defects puncturing the subchondral

plate typically resulting in fibrocartilage regenerative tissue, which is inferior to natural artic-

ular cartilage and subchondral bone. Symptomatic chondral and osteochondral defects that

are left untreated can lead to gradually increasing cartilage loss and progressive degenerative

osteoarthritis (OA). In humans, many details of tissue regeneration after surgical cell implan-

tation are unknown. Some insight into cartilage healing can be obtained from animal models

[1]. Characterising the success of the surgery is closely linked to the structural composition

of the regenerated tissue [174].
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Surgical strategies

Depending on various factors such as patient age, defect size, location and quality, surgical

intervention is the appropriate treatment strategy for chondral and osteochondral defects

that are not yet osteoarthritic. These treatment options include bone-marrow stimulus pro-

cedures such as microfracture and mosaicplasty, cell therapies such as ACI and ASI, and in

some cases total knee arthroplasty [19].

Microfracture is a surgical keyhole procedure that involves creating a small incision into the

knee in order to insert a camera and instruments to create small holes in the subchondral

bone that stimulate cartilage healing [102, 131]. Creating these holes allows more vascular

bone, such as cancellous and cortical bone, to be exposed near the joint along with a new

blood supply [151]. The subchondral plate is avascular, meaning its capacity for healing

is limited, whereas deeper bone contains marrow cells and can therefore promote cartilage

growth [151]. This process however does have its limitations: the tissue thought to regen-

erate in the defect is of inferior quality to articular cartilage, and is expected to degenerate

over time. Studies have shown that after a 5-year period the quality of tissue regenerated by

microfracture surgery begins to deteriorate, with patients struggling with recurrence of pain

due to their bone being re-exposed [98].

The procedure of mosaicplasty/OATs uses an autologous osteochondral graft, usually cylin-

drical, which is attached to the subchondral bone. This osteochondral graft is taken from

a low weight-bearing area [155]. The procedure can be described as minimally invasive due

to the small incisions required to obtain and insert grafts and the short healing time (2-4

weeks for weight-bearing activity) [29]. Mosaicplasty is only used on ’young’ patients and
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is not suitable for patients showing early signs of osteoarthritis, which makes this treatment

unsuitable in many cases due to the reasonable proportion of chondral and osteochondral

defects presenting with osteoarthritic attributes [10, 29, 155]. OATs performs well in large

size osteochondral defects with regenerated tissue of hyaline quality, but drawbacks of this

technique include donor site morbidity, lack of availability of healthy cartilage in the human

body, and the difficulty to match grafts [80, 90, 125].

Total knee replacement arthroplasty first began in the 1970s and it has since been a challenge

for researchers to find materials that can replicate the longevity and absorbability of articular

cartilage [6, 162]. The materials currently used are metals, plastics (such as polyethylene),

and ceramics [162, 168]. Patients sometimes find their movement is limited as soon as one

year after knee replacement surgery and can also experience swelling of the joint along with

pain and numbness around the scar left behind from the surgery. Knee replacements are

usually recommended for patients over the age of 55 as artificial joints are not expected to

function fully for much more than 15 years [132, 162]; the number of young patients receiving

this surgery is very low because of this [39, 70]. There are several possible surgical compli-

cations that can occur during the procedure, with patients being at risk of a fracture in the

femur, patella or tibia [169]. Blood vessels and nerves can also become damaged and deep-

vein thrombosis can occur [72, 157]. Despite these complications and drawbacks, satisfaction

levels for total knee arthroplasty are reported to be greater than 80% [88].

Autologous Chondrocyte Implantation (ACI) was first put into practice in the late 20th cen-

tury and is usually performed on the knee, although it can also be carried out on defects in

the ankle, shoulder, hip, and elbow, but this is less common [29]. ACI involves a keyhole
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harvest procedure to obtain chondrocytes from healthy cartilage, a period of culturing and

expanding the chondrocytes in vitro, and implantation of these cultured cells into the defect.

Once the cells have been cultured to an amount in the region of 5-10 million there is thought

to be a sufficient amount to implant into the defect [10]. The defect is debrided to healthy

cartilage and sealed by either a periosteal patch obtained from the shin-bone or a collagen-

membrane cover [71, 75, 123] (Fig. 2.3).

Figure 2.3: Schematic of an ACI procedure. The ACI scheme is courtesy of Andy Biggs
(medical illustrator at the RJAH Orthopaedic Hospital, Oswestry).

Trials have suggested that ACI treated defects produce a better quality articular cartilage,

surpassing that of most other available treatments [10]. Generally, ACI repair tissue is similar

to that in appearance of natural articular cartilage, albeit a little softer in texture, as shown in

animal models [35]. ACI is a treatment strategy widely used for chondral and osteochondral

defects, with favourable outcomes in both small and large sized defects [43, 142]. In October

2017, the National Institute for Health and Care Excellence (NICE) decided this procedure
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was cost-effective and approved its use in the NHS [60, 130].

A comparison study conducted by Bentley, Biant et al., [10] suggests the quality of articular

cartilage produced by the method of mosaicplasty is inferior to that of autologous chondro-

cyte implantation (ACI) in osteochondral defects. The results from this study showed that

88% of patients who had lesions treated with ACI had a ’good or excellent’ quality of carti-

lage in the defect after 1 year, as opposed to mosaicplasty which only had 69% categorised

in the same way. It is also noteworthy that of those treated with mosaicplasty, 17% had

worse quality of cartilage in the defect than prior to the procedure; all ACI treated cartilage

showed an improvement over the duration of the experiment [10]. Additionally, a review by

Harris et al. [75] shows both ACI and microfracture treated articular cartilage defects showed

improvement when tested on a sample of 60 patients; this was also reported by Basad et al.

[8]. It was clear from the studies conducted that patients treated with ACI had a better

outcome overall, with patients having a better quality of life and suffering less pain than that

of microfracture treated patients [75]. The patients’ ability to return to intensive activities

such as sports after 2 years was equal between both treatments, whereas after 5 years mi-

crofracture treated defects had seen a deterioration in ability but ACI treated defects had

not. This demonstrates that long term ACI is better able to restore functionality of damaged

articular cartilage [75]. It is natural to conclude that ACI is the most promising treatment

for articular cartilage damage due to lowest prevalence of complications, a generally better

quality of cartilage reproduction, and longer durability. Studies by de Windt et al. [43] also

suggest ACI is the preferred treatment strategy for defects varying in size from below 2.5cm2

to larger than 4cm2, located in both the femoral and patella compartment with the knee

joint, whether chondral or osteochondral, with only chondral and osteochondral defects be-

low 2.5cm2 located in the femoral recommended for treating with a microfracture or OATs
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procedure over ACI, respectively. This also demonstrates that in most cases of cartilage and

subchondral bone damage, ACI is the gold standard treatment [43].

Novel cell therapies

An alternate cell-based therapy, which we refer to as Articular Stem Cell Implantation (ASI),

replicates the ACI procedure except instead of chondrocytes, mesenchymal stem cells (MSCs)

are used [141]. The capacity of stem cells to differentiate into different cell types along with

their abundance within the body and the ease with which they can be harvested makes them

advantageous to be used in cell-based therapies instead of chondrocytes. This larger volume

of stem cell availability could mean the culturing period of cells required during ACI is not

necessary. Despite these advantages, when using stem cells in place of chondrocytes in an

implantation procedure there may be a delay period in which the stem cells must first differ-

entiate into chondrocytes before the healing process can be initiated.

The co-implantation of mesenchymal stem cells and chondrocytes into chondral and osteo-

chondral defects in an ACI-like procedure is hypothesised to result in enhanced chondrogenesis

and extracellular matrix production, and is a new potential cell therapy for the treatment of

defects of the bone-cartilage unit [35, 140, 194].

Wu et al. published a series of articles focused on the trophic effect mesenchymal stem cells

have during cartilage regeneration [187, 188, 185, 186, 107]. Their work demonstrated co-

cultures of human mesenchymal stem cells (hMSCs) and bovine mesenchymal stem cells

(bMSCs) resulted in enhanced matrix formation when compared with matrix formation of
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the individual cell populations. This was verified by histology and glycosaminoglycan levels

in assay. Their work also demonstrated an increase in cartilage matrix production regardless

of the source of MSCs, whilst also studying the effects of different culture media to show

this enhanced effect occurred, regardless of culture conditions. They also set up experiments

to identify the soluble factors they noted as responsible for this trophic effect on matrix

formation when MSCs and chondrocytes are co-implanted. They identified candidate genes

for the factors, validated by human qPCR. Immuno-fluorescent staining confirmed fibroblast

growth factor-1 (FGF-1) was being expressed primarily by MSCs. BMP-2 is thought to be

predominantly expressed by chondrocytes, and was also identified at higher levels in the co-

culture pellets. Drawbacks of such in vitro studies include a short time-frame upon which

the experiment is conducted, the lack of physiological mechanical loading, which would influ-

ence in vivo cell behaviour, and risk of de-differentiation of cells. Work by Bekkers et al. [9]

also demonstrated the combination of chondrons (chondrocytes in their native matrix) with

mesenchymal stromal cells resulted in increased cartilage formation in freshly created goat

cartilage defects. Their study showed the combination of chondrons and MSCs performed

favourably compared to microfracture.

The assumptions we made in this model do simplify the biological process occurring during os-

teochondral healing, potentially limiting conclusions we can draw from this work. Important

factors we do not consider in our model include biochemical and biomechanical influences (as

detailed in Chapter 2), which play a key role in cell differentiation, matrix synthesis and cell

proliferation, among other important mechanisms within osteochondral defect regeneration

[106]. Mechanical loading is also thought to influence the patterns of endochondral ossifica-

tion, specifically in the formation of long bones [183]. We also excluded the effects of other

local growth factors, with FGFs and BMPs thought to play an important role in the endo-

chondral ossification process [103]. Additionally, we considered our critical cartilage density,
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mCcrit , as the local hypertrophy-initiating factor, following earlier work [24, 66]. However, a

biologically more appropriate method of modelling the local factor might be through a locally

produced growth factor. A specific candidate would be C-type natriuretic peptide (CNP),

which is produced by chondrocytes and is thought to have a critical concentration above

which hypertrophy is initiated [100]. Effectively, our model used cartilage density as a proxy

for CNP concentration and although modelling CNP separately might affect the results, the

change is most likely minor.

Stimulated repair in animal models

Schlichting et al.[160] created critical sized osteochondral defects in the femoral condyle in

an ovine model, to explore the effects of scaffold implantation and stiffness in osteochondral

healing. Critical sized defects are defined to be defects that fail to heal as they are too large in

size, with classification differing between animal species. In ovine models this critical size is

assumed to be approximately 20 mm3 [1]. They observed in untreated defects endochondral

ossification occurring as early as 3 months post defect creation, with their work concluding

that the inclusion of a stiff scaffold supports the defect during repair and results in improved

reparative tissue at early time. Soft scaffolds did not show good healing at 3 months, but

by 6 months both groups with soft and stiff scaffold exhibited similar results, indicating stiff

scaffolds have the most significant effect at early time, but do not change the overall outcome

of defect healing. These findings indicate changes in mechanical properties in critical sized

ovine osteochondral defects can impact healing success at early times.

Wakitani et al. [177] explored the implantation of osteochondral progenitor cells, such as

mesenchymal stem cells, into osteochondral defects in the hope to promote tissue regenera-
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tion, akin to an ASI procedure. They created defects sized 3 × 6mm in the medial femoral

condyle of rabbits. They inserted collagen gels seeded with bone-marrow-derived or periosteal

cells into half of the defects. Defects in the contralateral knee were used as the control, with

some left empty and some with a cell-free collagen gel implanted. Their results showed the

implantation of MSCs/periosteal cells resulted in very similar results, so there was no signif-

icant difference with the two cell sources. The implanted cells differentiated uniformly into

chondrocytes, with cartilage formation first observed to fill the defect which was subsequently

converted into bone at the base, with completely repaired subchondral bone by 24 weeks. The

empty defects also healed, with mechanical testing showing the cell-implanted defects had

stiffer repair tissue, but less stiff than natural articular cartilage.

2.2 Mathematical modelling

A simple mathematical model transforms a concept using mathematical notation in place

of ordinary language to represent a complex scientific problem. Mathematical modelling in

regenerative medicine has been developed and improved upon to give an understanding of

the regrowth of bone and cartilage in joints, along with tumour angiogenesis, wound heal-

ing, fracture healing and many other important biological processes. These models simplify

complicated processes while still capturing important components of real world problems and

producing relevant and informative results.

Chondral and osteochondral defect regeneration is driven by cell behaviour and extracellular

matrix deposition to form newly regenerated tissue; more specifically chondrocyte, mesenchy-

mal stem cell and osteoblast motility, which can be modelled as a diffusive process, along with
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cartilage and bone matrix production, cell proliferation, mesenchymal stem cell differentia-

tion, chondrocyte hypertrophy, nutrient utilisation and apoptosis. The literature explored in

this section will give examples of how these processes can be modelled, whether for cartilage

and bone regeneration or more broadly within tissue engineering and regenerative medicine.

First, we will discuss the importance of and detail the principles that underpin mathematical

modelling within regenerative medicine, including Fick’s Law of diffusion, that can be used

to describe cell motility, and Michaelis-Menten kinetics, that is used to model cell nutrient

uptake and cell diffusion dependence on extracellular matrix. We will then discuss relevant

literature that uses the reaction-diffusion modelling approach to describe cartilage and bone

regeneration and the effects of growth factors on these healing mechanisms. Then, we will ex-

plore a multiphase modelling approach, followed by discussion of current mathematical models

relevant to our problem of chondral and osteochondral defect regeneration. We will also dis-

cuss other relevant and important modelling examples, such as those of tumour growth and

wound healing, to give a broader overview of the application of these modelling approaches.

The modelling techniques undertaken in these works form a basis for the following chapters,

where a continuum reaction-diffusion modelling approach is undertaken, independent of the

influence of mechanics.

2.2.1 General modelling principles & regenerative medicine

Regenerative medicine underpins highly complex mechanisms which can be difficult to pre-

dict without knowledge of the processes governing tissue growth and cell to cell, matrix to

cell and phase interactions. Although having various limitations such as unknown parame-

ters, potentially unrealistic predictions and over-simplifications, mathematical models have
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the ability to be refined and can allow us to better understand problems that would be

otherwise unpredictable. Many cases can be explored using mathematical models that have

not yet been predicted using clinical trials. Within mathematical modelling of regenerative

medicine, either a continuum or discrete modelling approach is undertaken. The continuum

approach considers a cell population as a whole that completely occupies its space, and is the

approach typically undertaken when cell numbers are very large. Discrete models consider

cells individually, referred to typically as agent-based models, and is applied to problems

studying phenomena on a small scale, where cell properties differ spatially [20, 139]. In many

scenarios of mathematical modelling within tissue engineering and regenerative medicine cell

numbers exceed the levels appropriate to undertake a discrete modelling approach, and un-

derstanding the fate of each individual cell is not informative, and as such we focus on the

continuum modelling technique in the remainder of this chapter and is the chosen approach

for the following models formulated in this thesis [20].

Reaction-Diffusion modelling Reaction-diffusion systems are systems of equations where

spatial variance, x, is of importance within the specific problem [176]. Reaction-diffusion

modelling is an approach widely used in many biological scenarios, such as population dy-

namics, predator-prey systems, competition, symbiosis, and chemical reactions [105], and

is formulated to predict how concentration changes over time by diffusion. Reaction terms

within these systems of equations can describe cell behaviour, with cell motility described by

Fick’s first and second laws. These laws were refined by Alan Turing in 1952 [171], where

he proposed the development of tissue (morphogenesis) was driven by diffusion and chemical

reaction, and based on these observations subsequent mathematical models of tissue pattern

formation have been formulated [34, 99, 171].
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In the mid-19th century Adolf Fick derived Fick’s laws of diffusion to describe the relation-

ship between diffusive flux and concentration. Under the assumption of a steady state, Fick

postulated that spatial variance is proportional to the magnitude of the flux moving from a

high concentration to a low concentration [82, 176].

∂φ

∂t
= −D∂

2φ

∂x2
, (2.1)

where D represents a diffusion coefficient (rate) and φ represents substance (per unit volume).

This equation is commonly referred to as Fick’s first law of diffusion, or the heat equation,

and is used to describe the diffusive behaviour of cell populations where cell motility can be

described as a diffusive process, with φ representing a cell density (per unit volume).

Fick’s second law is widely used as a backbone in the area of mathematical modelling for

regenerative medicine and has been used to form a basis for many reaction-diffusion models.

Reaction-diffusion models explain how the concentration of several substances changes due

to chemical reactions and diffusion [82, 99]. The typical form of a reaction-diffusion equation

comprises a diffusion term, as detailed by Fick’s first law, and reaction terms [176].

∂φ

∂t
= −D∂

2φ

∂x2
+R, (2.2)

where R represents the reaction terms (rates). Reaction terms can be used to describe certain

cell characteristics such as cell proliferation, differentiation, and apoptosis i.e. a cell prolifera-

tion rate, as obtained from experimental data, modelled proportional to the cell population, φ.
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Also fundamental to the formulation of reaction diffusion models is Michaelis-Menten kinetics,

a principle that relates reaction rate to substrate concentration. This modelling approach is

widely used when describing the saturation of cell nutrient uptake rates and random motility

of cells when attached to a substrate, along with other cell behaviours [48, 79, 148, 149, 178].

The relationship between substrate and reaction rate is given by:

d[P ]

dt
=

Vmax[S]

(Km + [S])
(2.3)

where [P ] is product formation, [S] substrate concentration, Vmax the maximum reaction

rate at enzyme saturation, and Km the Michaelis-Menten constant defined as the substrate

concentration at half Vmax.

An example of how these modelling principles can be used together in reaction diffusion mod-

elling is for cell behaviour where cell diffusion (motility) is dependent on extracellular matrix

density, relevant to our problem of chondral and osteochondral defect regeneration, i.e.,

∂φ

∂t
= −Dφ

( m

m2 +m2
1

)∂2φ

∂x2
+Rφ, (2.4)

where Dφ represents cell diffusion coefficient (rate), φ represents a cell density (per unit vol-

ume), m represents extracellular matrix density (per unit volume), m1 represents a reference

matrix density (per unit volume), and R the proliferation (rate) of φ.

This models cell behaviour where cells proliferate with a specified rate R, and diffuse depen-

dent on the matrix density, with cell diffusion formulated to increase for low matrix densities

and decrease for high matrix densities [119].
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Types of Solutions for Partial Differential Equation (PDE) systems For the above

system we have formulated a PDE, where boundary (φx(x = x0, t) = φ0) and initial (i.e.

φ(x, t = 0) = φinit) conditions are applied to create a PDE problem, that can have 2 forms

of solution:

(1.) Analytical solution, where the solution is a mathematical function that can be solved

exactly.

(2.) Numerical solution, where the solution is not a mathematical function, and is therefore

solved by numerical approximation of the analytical solution, with high accuracy.

For many systems of PDEs, and much of the literature that follows in the remainder of this

chapter and the mathematical models that are formulated within this thesis, a numerical

approximation of the solution is the chosen approach, as no analytical solution exists (i.e.,

the PDE systems are non-linear). An example of a numerical scheme that can be used to solve

a system of PDEs is the Method of Lines (MOL), where we replace the spatial derivatives in

the PDE with approximations in algebraic form:

The First step is to approximate the spatial derivative with an algebraic expression, using a

second order central finite difference approximation, such as

∂2φ

∂x2
≈ φi+1 − 2φi + φi−1

h2
(2.5)

Where i represents the location along the grid x ≤ i ≤ χ. For the minimum value of x, i = 1,
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and for the maximum value of x, i = χ, meaning the grid has χ points. Then we have

∂φ

∂t
= −Dφ

( m

m2 +m2
1

)φi+1 − 2φi + φi−1

h2
+Rφ, x ≤ i ≤ χ. (2.6)

We have replaced the spatial derivatives by a system of ordinary differential equations (ODEs)

that approximates the original PDE. Then, all boundary and initial conditions must also be

approximated using the same above method. Finally, we are ready to integrate the system

over t. The solution of this ODE system outputs χ functions φ1(t), ..., φχ(t).

The numerical scheme detailed above is the method used for the mathematical models for-

mulated in this thesis, solved in in MATLAB (Release 2013a, The MathWorks, Inc., Natick,

Massachusetts, United States) using the stiff ODE solver ode15s.

NB. Other methods of finite difference approximation include first-order forward, first-order backward,

second-order forward and second-order backward. The method shown here is the method undertaken

in the remainder of the thesis.

Reaction-Diffusion models of cartilage and bone regeneration

Most relevant to the works undertaken in this thesis, Lutianov et al. [119] formulated a math-

ematical model of the regeneration of cartilage after cell therapy, most specifically when an

ACI or ASI procedure is undertaken, as detailed in 2.1.4, for which a mathematical model

had not been previously developed [119]. A continuum, reaction-diffusion-type mathematical

model was formulated to better understand the repair of cartilage once previously expanded

chondrocytes or mesenchymal stem cells are inserted into a chondral defect, with the hope

of regenerating usually irreparable or highly degradable cartilage. The mechanical loading
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environment and growth factors were not considered in this model despite their important

roles in the regrowth of damaged cartilage. Modulating cell proliferation, differentiation and

migration, the mechanical loading can influence the overall structure of the tissue and the

extracellular matrix production. Growth factors belonging to the TGF-β superfamily, more

specifically TGF-β1, FGF-1,2 are well documented for their abilities to increase the formation

of cartilaginous tissue and chondrogenesis, but are not considered here for simplicity. Their

mathematical model follows the framework of a reaction-diffusion process with reaction terms

consisting of cell proliferation, cell differentiation and apoptosis, with nutrient uptake and

cell diffusion modelled using Michaelis-Menten kinetic terms to simulate limiting behaviour

associated with these processes.

They first simulated chondrocyte implantation, corresponding to ACI, with cells initially

seeded along the subchondral bone interface. Over longer time periods, due to low chondro-

cyte proliferation, diffusion is the main cause of chondrocytes reaching the top of the defect.

As there is a large supply of nutrients matrix is produced at a high rate, and consequently

the density of chondrocytes is restricted due to the larger volume of matrix present. At

around 36 months, the chondrocytes and matrix in the defect have diffused to a steady state

with a large volume of regenerated matrix present, almost filling the entirety of the defect.

Next, they consider an initial implantation of mesenchymal stem cells, corresponding to ASI.

Nutrients are utilised much faster at early times and as a result stem cells diffuse to the

top of the defect where more nutrients are available. The implanted mesenchymal stem cells

then continue to proliferate and eventually differentiate into chondrocytes once they have

surpassed their differentiation threshold value, with matrix deposition following soon after.

Their findings show there is minimal difference in healing time between chondrocytes or mes-

enchymal stem cells being initially implanted into the chondral defect, but observe differences
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in the evolution of healing. In fact, they conclude that due to stem cells needing to take up a

large amount of nutrients to differentiate into chondrocytes, the case where chondrocytes are

implanted is a more optimal route to take during a cell implantation surgery. When stem cells

are implanted there is a delay in the production of chondrocytes but still a large amount of

nutrients being utilised, meaning when matrix begins to be produced in larger volumes once

the stem cells have exceeded their differentiation threshold, there are less nutrients for the

matrix and as such limits the matrix production rate. This leads to the conclusion that stem

cell implantation might not be optimal in comparison to the initial implantation of chon-

drocytes alone. The results obtained by Lutianov et al. [119] are justified by findings from

animal models and previous clinical studies and successfully capture the key characteristics

of chondral healing. This model will act as a basis for the work undertaken in Chapters 3 &

4, where the equations (and modifications) will be stated and modelling justifications detailed.

Bailon-Plaza and Van der Meulen [7] developed a mathematical model focusing on fracture

healing and the effects cytokines and growth factors have on this process. The main growth

factors that have been identified to regulate the fracture healing process are TGF-β and

BMPs. Their equations modelled the evolution of chondrocytes and osteoblasts residing in

the fracture callus. They assumed, following an assumption of rotational symmetry about the

marrow cavity, that their problem was two-dimensional. Their work is based on underlying

principles seen in earlier literature of fracture healing, hypothesising that cartilage and bone

formation is dependent on the level of mechanical stress and strain in various regions within

the callus and occurs via endochondral ossification. For this mathematical model cell pro-

liferation, differentiation and migration, growth factor production and diffusion, and ECM

synthesis and degradation are simulated at the fracture site over time. The approach taken

for this mathematical model follows the earlier work of Olsen et al. 1996, 1997 [147, 146], and
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Murray 1993 [138], in which models for wound healing, tumour morphogenesis and angio-

genesis have been outlined. These models have given an indispensable understanding of how

growth factors and extracellular matrix regulate these processes. This mathematical model

is formed to further extend the knowledge of the effects on the healing response of the initial

concentrations of the released growth factors. The effects of the mechanical environment

in the callus, along with interactions between ECM, receptors and growth factors were not

considered for simplicity. In addition, during fracture healing more tissue forming cells and

ECM types are present than are considered in this model. Despite this, the model presented

was able to successfully simulate fracture healing histology observed in rats via the process

of endochondral ossification.

Obradovic et al. [144] formulated a mathematical model of glycosaminoglycan (GAG) depo-

sition in engineered cartilage, specifically cartilage produced from chondrocytes seeded onto

a biodegradable scaffold cultivated in bioreactors. Their model and experiments were de-

veloped to understand the relationship between GAG expression and oxygen concentration,

where GAG production was used as a marker for chondrogenesis. Their model utilised a

reaction-diffusion type approach and Michaelis-Menten principles to model chondrocyte up-

take of oxygen. Their model successfully supported their hypothesis of glycosaminoglycan

synthesis and oxygen expression, demonstrating low oxygen levels inhibit good cartilage for-

mation as proposed in the literature, and approximated the processes occurring in engineered

cartilage formation that mediate development.

Garzon-Alvardo et al. [64] undertook a reaction-diffusion modelling approach to describe the

process of long bone growth, occurring via endochondral ossification, under the influence of
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important biochemical signalling pathways such as PTHrP and Ihh and mechanical stresses

and strains. Their model predicts diaphysis growth and epiphysis formation of a long bone

with spatial distribution of chondrocytes shown to influence bone morphology. Despite mak-

ing several simplifications, their model corresponds to experimental findings and data.

Other more recent modelling studies have highlighted the importance of growth factors and

MSC-chondrocyte interactions within chondral defect regeneration. Kimpton et al. [96]

showed how different cell seeding strategies and growth factors affect the spatial distribution

of cells within a hydrogel inserted into a chondral defect. Chen et al. [27] explored the in-

teractions between MSCs, chondrocytes and TGF-β. They demonstrated how adopting this

strategy combining growth factors produced by the cells and exogenous addition of growth

factors has advantages over each individual strategy.

Multiphase modelling and Mixture theory Multiphase modelling is a mathematical

modelling technique used to describe multiphase flow scenarios, i.e. tissue growth with multi-

ple tissue types (phases). Mixture theory uses the theories of continuum mechanics to model

complex multiphase systems, with major application in regenerative medicine. It is derived

from early work in the mid 1800’s by Fick and Stefan [33]. The theory of mixtures considers

solid and liquid phases to be present at any point within a continuum, meaning these points

are not distinguishable from one another. A mixture is comprised of at least 2 ingredients

and can be classed as either immiscible, when the particles remain identifiable, and miscible if

they lose their identity within the mixture [33]. Mixture theory requires constitutive laws to

describe the type of phase. For example, a liquid phase can be modelled as either Newtonian

or non-Newtonian by the viscosity, the measurement of the resistance to gradual deformation
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when under shear or tensile stress. Corresponding to each constituent of a mixture, Truesdell

and Toupin [170] formulated energy balance equations of momentum, mass and energy. The

equations for a multiphase modelling approach are formulated using spatial averaging with

variables including true density, pressure, velocity and stress. The sum of the liquid and solid

fractions are equal to one [85]. The theory of mixtures has been applied to several different

areas of tissue engineering such as tumour growth, which uses the specific assumption of

a fluid model [81]. Other applications of mixture theory include models for incompressible

fluid-particle suspensions, interstitial tissue growth and nutrient depletion [33, 85, 108].

Multiphase modelling of cartilage and bone regeneration

Mow et al. [133] formulated a mathematical model of biphasic interactions within articular

cartilage. At this time articular cartilage was considered to have no or very little internal

interactions between phases due to its lack of blood supply, nerves and lymphatic system. In

this work, Mow et al. hypothesise biphasic theory, a theory that specifically focuses on the

interactions between the interstitial fluid phase and solid matrix phase of articular cartilage

using the theory of mixtures. They derive their equations using balance of momentum, con-

stitutive mass laws, energy balance and entropy inequality, linear deformation theory and the

assumption that the organic solid matrix and the interstitial fluids are intrinsically incom-

pressible. Their biphasic theory model was the first to accurately predict the deformation of

articular cartilage, although at the time of the research some of their assumptions had not

been experimentally verified.

Kelly and Prendergast [91] built on biphasic poroelastic finite element models of spontaneous

repair applied to osteochondral defects in the knee, specifically focusing on the mechano-
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biological influence on stem cell differentiation. This mathematical model focuses on a

relationship between the diffusion, differentiation, proliferation and eventual apoptosis of

mesenchymal stem cells and the mechanical environment. Kelly and Prendergast model the

formation of bone through both endochondral and intramembranous ossification at the bot-

tom of the defect, the formation of cartilage in the centre of the defect and fibrous tissue

formation at the top of the defect, with a greater amount of fibrous tissue predicted to grow in

larger osteochondral defects. The results obtained from the model demonstrated that osteo-

genesis (bone formation) is initiated due to the osteochondral defect being protected initially

by adjacent cartilage that is still in-tact. Once the repair tissue starts to stiffen, mechanical

loads can be supported and chondrogenesis commences in the centre of the defect. Direct

intramembranous and endochondral ossification at the base of the defect begins a progression

leading to fibrous tissue forming at the articular cartilage surface because of the fluid flow

and strain in this area. The volume of cartilage in the defect is then predicted to decrease

due to areas containing cartilage differentiating into fibrous tissue, and endochondral ossifi-

cation increasing bone formation. Despite the achievements of this model, there are many

simplifications, i.e. the effects of growth factors such as TGF-β and BMPs being ignored

(unlike in earlier work [7]), and additionally an initial cartilage fill is not observed here but

is shown to occur in animal experiments [120, 161]. The model still accurately simulated the

differentiation observed in cells during osteochondral defect healing experiments, and as such

can be successfully used to develop a theory to explain the rapid degradation of osteochondral

defect repair.

Zhang et al. [193] formulated a mathematical model focusing on the chemical and mechanical

stimuli moderating the healing of bone fractures. They proposed a model investigating the

repair of a fracture callus that is treated as a multiphase mixture comprised of liquid, solid
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and solute phases, modelled as a combination of diffusion and advection equations. The liq-

uid phase represents interstitial fluid, thought to be the most likely stress-derived factor that

informs the bone cells of mechanical loading. The solid phase and solute phase represents

ECM and growth factors, such as IGFs (Insulin-like Growth Factors), respectively. Their

computational model considers the fracture conditions such as shape, position and size, the

method of fixation used for the fracture along with loads exerted due to the patient’s natural

movement. The solid phase in this model is assumed to be linearly elastic which, although

is justifiable for simple modelling, is not feasible due to the fracture callus being a hetero-

geneous material; for a more practical and refined model this assumption would have to be

improved upon to consider the fracture callus more realistically.

2.2.2 Mathematical modelling of tissue growth and regeneration

Here we consider mathematical models with a broader application within regenerative medicine,

i.e. those concerned with tumour growth, epidermal wound healing and engineered tissue

growth. We include these models to show more examples of the modelling approaches un-

dertaken in the following chapters of this thesis and how these methods can be applied to

various scenarios within regenerative medicine.

Lemon et al. [109] formulated a framework for the modelling of porous flow for in vitro tis-

sue growth. Focusing on the microscopic level, they chose to model the tissue growth and

dynamics involved in this process, and ignore the interactions between cells and other ma-

terials. Each tissue constituent has a corresponding equation formulated of mass and force

equations. Interphase and intraphase pressure terms are derived from mechanical interac-

tions at the microscopic level between the tissue constituents. Inertial effects are neglected
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along with water being assumed as an inviscid fluid. Their constituents are considered to

have no voids, i.e. they sum to 1. They derive a general equation for an ith phase using an

equation for mass transfer, and once summing over all of the i phases we obtain a conserva-

tion condition. Porous flow models are now used to relate the dynamics of the phases at any

non-specific point within the in vitro tissue, through which each phases’ motion is in reaction

to the stresses within its phase, and also by the pressures applied from the other phases. The

interphase forces, defined as the forces influencing the interfaces joining each pair of phases,

are modelled with forces comprised in terms of drag components and interphase pressures.

Later in 2007 Lemon and King expand on their multiphase porous flow model to apply it

to cell behaviour on artificial scaffolds [108]. Their work concentrates on the effects of non-

uniform porosity and the depletion of nutrients. For their model they assume the cells act as

a viscous fluid, the scaffold is porous and rigid with its porosity inconsistent and water as an

inviscid fluid. Their simulations show that without a notable effect on the total cell yield that

a better penetration of cells into the scaffold can be achieved by increasing the motility of cells.

Prendergast et al. [152] formulated a mathematical model focused on the biophysical stim-

uli on cells during tissue differentiation at implant interfaces. They outline a mathematical

model based on the biphasic theory represented by Mow et al. [133] to describe how cell

differentiation is mediated by stimulus from the surrounding mechanical environment. It is

thought this stimulus can alter cell shape and influence the motility of bioactive factors, but

the influence on cell differentiation had not yet been explored. Prendergast et al. assume all

constituents of their mixture are present at all material points and as such can assume that

the sum of the volume fraction is 1, following from the biphasic and mixture theories. They

formulate their equations using the conservation of linear momentum, thermodynamic con-

straints and Darcy’s law. Their model is formulated using the previous work of Kelly, 1964
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[93], Cowin & Hegedus, 1976 [32, 77] and Mow et al. [133] to derive their equations for the

mixture. They use a finite element model to analyse the peri-implant tissues and push-out

tests were implemented to calculate the Young’s modulus of the interface tissues. Push-out

tests are conducted to test for the adhesion of the implant with the bone. It was seen that

tissue differentiation increased as the Young’s modulus of the interfacial tissue was intensified.

Their mixture theory model predicts their hypothesis; the mechanical environment has influ-

ence on the differentiation of tissue, indicating there may be boundaries between mechanical

states with reactions taking place once a boundary is crossed, initiating differentiation from

one tissue type to another.

Orme and Chaplain [148] developed a mathematical model describing vascular tumour growth

and invasion. Their model details how a tumour grows and forms a necrotic core due to high

nutrient demand, leaving central cells dead and outer cells still proliferating; this results in

the tumour growth stopping. The tumour can undergo angiogenesis, the formation of new

blood vessels, which gives the tumour a new supply of nutrition, supressing its inactive state.

Orme and Chaplain touched upon other pathological conditions in which angiogenesis can

be undertaken such as chronic inflammation, arthritis and diabetic retinopathy. Their math-

ematical model follows Liotta et al. [114] using conservation of mass laws to formulate their

equations. They formulate their model under the assumption tumour cells react to blood

vessels as observed in taxis, the movement of continuous living systems in response to a

stimulus such as nutrients. Previous models assume the tumour to be modelled as a diffusive

term but this is not applicable here. In this case, the tumour cells are moving upward a

capillary gradient. Because of this, the tumour cell flux is modelled as the sum of a diffusion

term and a taxis term. Assumptions also made include rapid proliferation of the tumour,

providing there is a sufficient amount of nutrients available, and when the tumour is in its
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avascular stage it becomes dormant and has reached its largest possible size. It is also as-

sumed that the tumour is radially symmetrical. After running simulations, it is noted that

the model reproduced the key events that occur during vascular tumour growth. Diffusion,

migration and proliferation of tumour cells causes the cells to advance across the host tissue

field. Liotta et al. [114] shows that cells not reaching the centre of the tumour fast enough

explains the formation of a necrotic core. Once vascularisation has taken place the entirety

of the tumour is crossed with capillaries. Orme and Chaplain later discuss the restrictions

of their model stating that some assumptions made and mechanisms neglected call for the

model to be not entirely accurate, such as cell to matrix interactions and the development of

an age-structured model where two ages of cells would be observed. Despite this, the model

successfully replicates the results of in vivo observations.

Many other models describing the various mechanisms occurring during tumour growth have

been formulated since, such as those by Ward et al., 1997 [178], and Hubbard and Byrne,

2012 , [81]. A mathematical model was formulated by Ward et al. to describe determinis-

tic tumour growth, with the tumour assumed to be an conglomeration of living and dead

cells (two phases), a modelling approach of tumour growth that had not been previously

attempted. A velocity field is created within the tumour from expansion generated by living

cells, and contraction generated by cell death. They modelled cell growth and division to be

dependent on nutrient availability, described using Michaelis-Menten principles. Their model

successfully demonstrated an initial exponential growth that becomes linear over time. They

deduce that nutrient diffusion is highly important in the phases of growth, and also demon-

strate a correlation between their model results and experimental data. In more recent work

by Hubbard and Byrne [81] a multi-dimensional model of avascular tumour growth using a

multiphase continuum approach is proposed. They consider the tissue to be comprised of 4
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distinct phases: healthy cells, tumour cells, blood vessels and extracellular matrix. All phases

are assumed to act as a viscous fluid. Applying the principles of conservation of mass and

momentum a two-dimensional model is formulated which is then discretised using a finite

element/volume scheme. Their simulations indicate the mathematical model formulated ac-

curately replicates the characteristic pattern of vascular tumour growth. This model could

be successfully applied to other biological problems including tissue engineering and wound

healing.

2.3 Summary

It has been demonstrated in this chapter there is a large body of literature studying mathe-

matical modelling of fracture healing, tumour growth and angiogenesis, bone regeneration and

growth, and engineered tissue growth. However, very little literature focuses on mathemati-

cal modelling of osetochondral defect regeneration, in particular using the reaction-diffusion

modelling approach, reproducing the sequential healing process as described in the literature

[120, 161], and considering the effects of cell implantation. Additionally, there is no math-

ematical model to describe the effects of growth factors on the chondral healing process, or

how co-implantation of MSCs and chondrocytes might impact defect healing, despite litera-

ture indicating co-implantation could result in a trophic healing scenario through the effect

of important growth factors [184]. The mathematical models formulated in the following

chapters of this thesis aim to bridge these gaps in the literature, with the effects of growth

factors and co-implantation of mesenchymal stem cells and chondrocytes on chondral healing

being explored in chapters 3 & 4, following the work of Lutianov et al. [119]. Chapter 5 sees

a novel mathematical model formulated to describe osteochondral defect regeneration after
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cell implantation, following the modelling approaches demonstrated in chapters 3 & 4 and

relevant literature discussed in this chapter, particularly those that use a reaction-diffusion

modelling approach [7, 119].



Chapter 3

Mathematical model of chondral

defect regeneration after cell

therapy – the influence of growth

factors

Within this chapter we will develop a mathematical model to explore the hypothesis that

the mutual growth factor mediated interaction between mesenchymal stromal cells (MSCs)

and chondrocytes, after implanting these cells into a cartilage defect, affects the pattern of

cartilage matrix production over the time-frame needed to achieve repair. The hypothesised

nature of the interaction and its short-term effects (up to 1 month) on matrix production will

be based on the in vitro experimental findings of Wu et al.[184]. The various rate constants

required in the mathematical model will be based on in vitro or in vivo data where possible,

otherwise an assumption will be made. For all model parameters, sensitivity analyses will be

50
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performed to determine the influence of the parameter value on the model outcomes. The

specific role of the mathematical model is to find the extent to which short-term (1-2 months)

effects on matrix production persist in the longer term (1-2 years).

Firstly, the model formulation is discussed with explanation for modelling choices of the

growth factors provided, along with details of non-dimensionalisation and parameter choices.

Next, we present the results of the model and make comparison to simulations not including

the effects of growth factors in order to highlight the impact of their inclusion. Following on

from this, we conduct a sensitivity analysis to validate our parameter choices, and discuss in

more detail those parameters that exhibit particularly interesting characteristics when varied.

Finally, we summarise the findings of this work, with main discussion located in Chapter 6.

3.1 Introducing the problem

Autologous Chondrocyte Implantation (ACI) is a commonly used cell-based therapy mainly

used in the treatment of cartilage damage in the knee, first implemented clinically in 1987 [17].

The treatment involves obtaining chondrocytes from a biopsy of healthy cartilage, culturing

and expanding these chondrocytes in vitro for several weeks to an amount in excess of 5-10

million [190], and a surgical implantation procedure of these cultured cells into the damaged

(or defect) region [15, 17].

The geometry represented in Fig 3.1 represents an in vivo scenario. The rationale for the 1D

assumption is based on evidence from large-animal models that variations in cell and matrix

density or nutrient concentration during and following repair primarily occur along the depth

of the defect, as labelled in Fig. 3.1, whereas relatively little variation occurs along the width

of the defect [143, 179]. We acknowledge that chondral defects can vary greatly in dimension,
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Figure 3.1: Schematic of a cross-section of the defect. The diameter of the defect is approxi-
mately 10-20mm and its thickness 2-3mm. After debridement of the defect, chondrocytes or
MSCs are implanted into the defect along the bottom and sides. The initial number of cells
implanted are around 106 cells/cm2 of defect area [58].

from small mm-sized lesions of articular cartilage to cm-sized defects of full thickness that

penetrate through to the calcified cartilage zone. However, cell therapy is only advised when

defects are at least 2 cm2 (equivalent to 1.6cm diameter) [60] and in practice only defects

down to or into the subchondral bone are treated [142]. Hence, a model based on a 1-D

geometry that covers the full depth of a defect can concentrate on the essential processes

of cartilage repair following cell implantation, while neglecting the dimensions where little

variation is observed.

The chondrocytes proliferate (by taking-up nutrients) and migrate, in the process forming

extracellular matrix (ECM) and new cartilage. In the case of MSCs, the process of form-

ing new cartilage is initiated only after the stem cells first differentiate into chondrocytes.

Growth factors, such as those from the Transforming Growth Factor-beta (TGF-β) family,

e.g., TGF-β-1 and Bone Morphogenetic Protein (BMP-2), and Fibroblast Growth Factor,

FGF-1 and FGF-2, are also known to regulate cell migration, proliferation and differentia-

tion, although their mechanisms are not clearly understood.
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As detailed in Chapter 2, Wu [184] showed increase in matrix deposition when co-culturing

mesenchymal stem cells (MSCs) and chondrocytes in vitro. Their findings show that when

culturing a mixture of stem cells and chondrocytes, an increase in matrix deposition is ob-

served. This increase can be approximately quantified to be 50% for a 50:50 ratio of MSCs

to chondrocytes, and 30% for an 80:20 ratio in comparison to a 100% MSC seeding at 4

weeks. They identified two growth factors, FGF-1, produced by the MSCs and is shown

to influence the proliferation of the chondrocyte population, and, BMP-2, produced by the

chondrocytes and is shown to induce chondrogenesis of MSCs. These two growth factors are

hypothesised to mediate the mutual chondrocyte and MSC interaction as shown in Fig. 5.4

[187, 188, 185, 186, 107]. This hypothesis assumes that the increased matrix production is

explained by the increased number of chondrocytes due to the actions of both growth factors.

The same authors also found evidence that FGF-1 leads to increased matrix production per

chondrocyte, which could also explain the increased matrix deposition in their experiments.

Figure 3.2: Schematic of hypothesised crosstalking between chondrocytes and MSCs mediated
by FGF- 1 and BMP-2. Adapted from Wu et al. [184]
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In 2011, Lutianov et al. [119] formulated a mathematical model to describe the various

processes involved in the regeneration of a cartilage defect following the implantation of

chondrocytes (ACI) or MSCs (ASI). This model showed that during the healing process

there is very little difference in the overall time taken to heal the defect between the two cell

therapies, suggesting that regeneration using stem cells alone is no better or worse than that

using chondrocytes. The stem cells need to first differentiate into chondrocytes before form-

ing ECM and new cartilage, a process that is initiated only after the stem cell density exceeds

a threshold value. The overall healing time frame of about 18 months for the defect to reach

full maturation corresponds with results from clinical studies and demonstrated that cartilage

regeneration is a slow process. The only stem cell-chondrocyte interaction considered in this

work was the one-way interaction in which MSCs differentiated to form chondrocytes once a

threshold stem cell density was exceeded. This work did not include the influence of growth

factors, as well as MSC-chondrocyte interaction.

The focus of this chapter, encouraged by the findings of Wu [184], is to investigate the role of

growth factors and MSC-chondrocyte interactions in the regeneration of cartilage after stem

cell implantation (ASI). Once stem cells differentiate into chondrocytes we can expect to see

the same cell-to-cell interaction observed in co-cultures of MSCs and chondrocytes with sim-

ilar trophic effects [187, 188, 185, 186, 107]. In Chapter 4, we will consider a co-implantation

of MSCs and chondrocytes to see how this impacts matrix deposition compared with ACI

and ASI cell therapies, motivated by a potentially earlier healing time. To achieve this, we

first seek to address the specific question of the impact of growth factors, released via cell-

to-cell interaction, on the deposition of matrix during chondral healing. Co-implantation of

MSCs and chondrocytes could have important implications on how clinicians approach sur-

gical procedures of the regeneration of cartilage, indicating a potentially superior procedure
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could be implemented involving a mixture of MSCs and chondrocytes. We extend Lutianov

et al. [119] to include the actions of growth factors BMP-2 and FGF-1 and investigate their

mediating role on chondrocyte and MSC interaction hypothesised by Wu [184] and shown in

Fig. 5.4. Including their proposed stem cell-chondrocyte interaction into our model would

also enable validation of the enhanced matrix levels observed [184].

3.2 Mathematical model

3.2.1 Formulation

A typical cartilage defect has a small thickness depth to length ratio. This enables us to sim-

plify to a one-dimensional problem where cell growth is modelled along the defect thickness

only, shown as the x-direction in Fig. 3.1. The variables in our model are: the stem cell

density, CS (cells/mm3), chondrocyte density, CC (cells/mm3), matrix density, m (g/mm3),

nutrient concentration, n (moles/mm3), FGF-1 concentration, g (g/mm3), and BMP-2 con-

centration, b (g/mm3). Our model includes two types of cells, MSCs and chondrocytes. Both

cell types in the model are able to migrate non-directionally (randomly) and proliferate via

the uptake of nutrients. MSCs are able to differentiate and chondrocytes can deposit cartilage

matrix. In order to explore the hypothesis that a mutual growth factor mediated interaction

between MSCs and chondrocytes affects cartilage production, we include a further mechanism

that models the soluble growth-factor mediated influence of chondrocytes on MSC differenti-

ation and that of MSCs on chondrocyte proliferation. We do not include the biomechanical

and biochemical effects discussed in Chapter 2. We also do not explicitly include directed

cell migration (chemotaxis), the migration of a cell up or down the gradient of a stimulant

(such as nutrient) or repellent. In this model, and the models formulated in the subsequent
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chapters, the motility of cells is modelled proportional to the nutrient concentration, with

cell proliferation and differentiation ceasing to occur when nutrient levels are low, meaning

cell motility is the driving force of evolution at these times, migrating towards locations of

higher nutrient concentration.

We follow the model of Lutianov et al. [119] to describe the evolution of the cell and matrix

densities and nutrient concentration in time, t, and space, x, measured along the thickness of

the defect (see Fig. 3.1). We state with brief comments the equations, with details of their

results and model implications described in Chapter 2.

The rate of change of stem cell density, based on proliferation by uptake of nutrients, migra-

tion and differentiation into chondrocytes, is modelled as

∂CS
∂t

=
∂

∂x

(
DS(m)

∂CS
∂x

)
+ p1

(
m,

CS
CS,max(m)

)
n

n+ n0
CSH(n− n1)

− p2CSH(CS − CS0(b))− p3CSH(n1 − n). (3.1)

The third term on the right of Eq. (3.1) models stem cell differentiation into chondrocytes at

a rate p2 (assumed constant). This process is initiated once CS exceeds a threshold density

CS0 modelled using the Heaviside function H(CS − CS0), which takes the unit value when

CS > CS0 and zero otherwise. We assume that the BMP-2 growth factor concentration

modulates stem cell differentiation by reducing the threshold density and is modelled as

CS0(b) = (CS0,max − CS0,min)e−αb + CS0,min , (3.2)

where CS0,max and CS0,min are maximum and minimum threshold densities, respectively,
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and α is a decay constant. Alternatively, one could also model this modulation by making

the stem cell differentiation rate, p2, dependent on the BMP-2 growth factor concentration,

keeping CS0 fixed. We do not consider this here but briefly mention any sensitivity to this in

section 3.3.2 on Sensitivity of parameters and initial conditions. The first, second and fourth

terms on the right of Eq. (3.1) model stem cell migration (modelled as a diffusion process),

proliferation and cell death, respectively, where Ds is the stem cell random motility (diffusion)

coefficient (assumed to depend on the matrix density), p1 is the stem cell proliferation rate

(assumed to depend on the matrix and stem cell densities) and p3 is the stem cell death rate

(assumed constant) [119]. Following Lutianov et al. [119], we choose

DS(m) = DS0

m

m2 +m2
1

, p1

(
m,

CS
CS,max(m)

)
= A(m)

(
1− CS

CS,max(m)

)
,

A(m) = p10

m

m2 +m2
2

, CS,max(m) = CS,max0

(
1− m

mmax

)

where DS0 and p10 are reference migration and proliferation rates, respectively, m1 and m2

are reference matrix densities, and CS,max0 and mmax are a maximum stem cell and matrix

density, respectively. Diffusion is modelled to be dependent on the matrix density, as done

in the related literature [7]. Cell motility is expected to increase for lower matrix densities

and decrease for higher densities [119].

Similar to the above, the rate of change of chondrocyte density is modelled as

∂CC
∂t

=
∂

∂x

(
DC(m)

∂CC
∂x

)
+ p4

(
m, g,

CC
CC,max(m)

)
n

n+ n0
CCH(n− n1)

+ p2CSH(CS − CS0(b))− p5CCH(n1 − n), (3.3)

where DC is the chondrocyte random motility (diffusion) coefficient, p4 is the chondrocyte



58

proliferation rate and p5 is the chondrocyte death rate, as in Lutianov et al. [119]. We use

similar expressions as above for

DC(m) = DC0

m

m2 +m2
1

, p4

(
m, g,

CC
CC,max(m)

)
= B(m, g)

(
1− CC

CC,max(m)

)
,

B(m, g) =

(
p40

m

m2 +m2
2

+ p400

g

g + g0

)
, CC,max(m) = CC,max0

(
1− m

mmax

)

where DC0 is a reference diffusion rate, p40 is a reference proliferation rate, m1 and m2 are

reference matrix densities and CC,max0 is a maximum chondrocyte density [119]. The ad-

ditional contribution to chondrocyte proliferation due to the influence of the FGF-1 growth

factor is modelled by the second term in the expression for B(m, g) in Eq. (3.4). Here p400

and g0 are a reference proliferation rate and FGF-1 concentration, respectively (Table 3.1).

When g is small, p400

g

g + g0
increases linearly, saturating to a limiting value of p400 for larger

values of g. A similar term representing the effect of growth factors on proliferation is used

by Bailon-Plaza and Vander Meulen [7], and replicates a Michaelis-Menten-type saturation

term. We assume the biological effect of the growth factor is an additive contribution to that

from the matrix density, hence we add it to the original proliferation term, p40

m

m2 +m2
2

.

The rate of change of nutrient concentration and matrix density are as detailed below, adapted

from Lutianov et al. [119] with minor changes made to our m equation. The rate of change

of nutrient concentration is modelled by a Fickian-type diffusion term with nutrient uptake

terms proportional to chondrocyte and stem cell densities, with a Michaelis-Menten type

nutrient saturation. The rate of change of matrix density is similarly comprised of a diffu-

sion term, a production term proportional to the chondrocyte density that is limited by a

Michaelis-Menten type nutrient saturation term.
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∂n

∂t
= Dn

∂2n

∂x2
− n

n+ n0
(p6CS + p7CC), (3.4)

∂m

∂t
= Dm

∂2m

∂x2
+ p8(m, g)

n

n+ n0
CC , (3.5)

where Dn and Dm are the nutrient and matrix diffusion coefficients, respectively (assumed

constant), n0 is a reference nutrient concentration, p6 and p7 represent the nutrient up-

take rate by stem cells and chondrocytes, respectively (assumed constant) and p8(m, g) =

(p80 − p81m)(1 + p800

g

g + g0
) is the matrix synthesis rate, where p80 is a matrix production

rate, p81 is a matrix degradation rate and the last term in the brackets accounts for any ad-

ditional matrix directly produced by FGF-1 with a pre-factor 0 < p800 < 1 [119]. The main

effect of FGF-1 is thought to be indirectly through the increase in chondrocyte proliferation

modelled in Eq. (3.3). For our simulations we set p800 = 0 and explore the effects of non-zero

values of p800 in the section Sensitivity of parameters and Initial conditions.

The growth factor FGF-1 is produced by the stem cells, it migrates along the defect, degrades

and then diffuses out of the upper end of the defect. Using this information, we model the

rate of change of FGF-1 as

∂g

∂t
= Dg

∂2g

∂x2
+ p9CS − p11g. (3.6)

The first term on the right of Eq. (3.6) models diffusion of FGF-1 along the defect, with

Dg (assumed constant) representing its diffusion coefficient. The second term on the right

of Eq. (3.6) models the production of FGF-1, assumed proportional to the stem cell density,

with production rate p9. The third term on the right of Eq. (3.6) models the degradation of

FGF-1 at a constant rate p11. The growth factor BMP-2 is produced by the chondrocytes,



60

it can migrate along the defect and degrades. Using this information, we model the rate of

change of BMP-2 as

∂b

∂t
= Db

∂2b

∂x2
+ p12CC − p13b. (3.7)

The first term on the right of Eq. (3.7) models diffusion of BMP-2 along the defect, with Db

(assumed constant) representing its diffusion coefficient. The second term on the right of Eq.

(3.7) models the production of BMP-2, assumed proportional to the chondrocyte density,

with production rate p12. The third term on the right of Eq. (3.7) models the degradation

of BMP-2 at a constant rate p13.

3.2.2 Boundary conditions

We need to prescribe two boundary conditions for each variable. These boundary conditions

are specified at the lower end of the defect, x =0 (subchondral bone interface), and upper

end of the defect, x =d (normal cartilage surface), where d is the thickness of the defect. At

x = 0 we impose no flux of cells, matrix, nutrients and growth factors, i.e.,

−DS(m)
∂Cs
∂x

= −DC(m)
∂Cc
∂x

= −Dn
∂n

∂x
= −Dm

∂m

∂x
= −Dg

∂g

∂x
= −Db

∂b

∂x
= 0.

At x = d we impose

−DS(m)
∂Cs
∂x

= −DC(m)
∂Cc
∂x

= −Dm
∂m

∂x
= 0, n = N0, −Dg

∂g

∂x
= γg, −Db ∂b

∂x
= χb.

The first, second and third boundary conditions represent no flux of stem cells, chondrocytes

and matrix, respectively, from the normal cartilage interface. We assume that a reservoir of

nutrients with concentration, N0, is always available at this end.

A small flux of growth factors FGF-1 and BMP-2 are allowed to diffuse out of the defect and is
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modelled to be proportional to the respective growth factor concentrations with constants of

proportionality, γ and χ (assumed constant). A sensitivity analysis has been performed on γ

and χ in section 3.3.2 Sensitivity of parameters and Initial conditions, with their approximate

values given in Table 3.1.

3.2.3 Initial conditions

The initial conditions at t = 0 are prescribed as follows:

CS = C
(0)
S h(x), CC = C

(0)
C , n = N0, m = m3, g = ginit, b = binit. (3.8)

Here, C
(0)
S and h(x) are an initial stem cell density and profile, respectively. C

(0)
C , m3, ginit

and binit are some initial chondrocyte and matrix densities, and growth factor concentrations

(assumed to be uniformly distributed in the defect). The initial nutrient concentration is uni-

form with value N0. The values of C
(0)
S , C

(0)
C , N0,m3, ginit, and binit are stated and referenced

in Table 3.1.

3.2.4 Non-dimensionalisation

There are several dimensional parameters appearing in the model. Their estimated values

and the references from which they are obtained are provided in Table 3.1. All approximated

parameters are disclosed in the table and references are given where available.

Once we have non-dimensionalised the system of equations all parameters are scaled against

one another, meaning parameters with particularly large or small magnitude in non-dimensional

space can be identified, indicating which mechanisms are likely to be most important to the

investigated scenario. Non-dimensionalisation also makes it easier to observe how parameters
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change in relation to one another, i.e. during a sensitivity analysis. Non-dimensionalisation

can also be used to reduce the amount of parameters in a model, which can lead to simplifi-

cation from a system of PDEs to ODEs. We do not use non-dimensionalisation for reduction

in this thesis.
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dimensional parameters estimated value, source type

d, defect thickness 2 mm

DS , maximum stem cell migration (or dif-

fusion) coefficient

3.6 × (10−4 - 10−3) mm2/hr [144], in silico

DC , maximum chondrocyte migration (or

diffusion) coefficient

3.6 × 10−4 mm2/hr [144] in silico

DS0 = 2m1DS , stem cell migration 7.2 × (10−9-10−8) (mm2/hr) (g/mm3)

(or diffusion) constant, (assuming m1 = 10−5 g/mm3 )

DC0 = 2m1DC , chondrocyte migration 7.2 × 10−9 (mm2/hr) (g/mm3)

(or diffusion) constant, (assuming m1 = 10−5 g/mm3 )

Dn, nutrient diffusion coefficient 4.6 mm2/hr [195], mathematical model

Dm, matrix diffusion coefficient 2.5 × 10−5 mm2/hr [144], in silico

Dg, FGF-1 diffusion coefficient 2 × 10−3 mm2/hr [7], mathematical model

Db, BMP-2 diffusion coefficient 2 × 10−3 mm2/hr [7], mathematical model

p1, maximum stem cell proliferation rate 0.2 cell/hr or 5 cells/day [7], mathematical model

p10 = 2m2p1, stem cell proliferation con-

stant

4× 10−6 g/mm3/hr (assuming m2 = 10−5 g/mm3)

[119], mathematical model

p2, stem cell differentiation rate 3.75 × 10−3/hr [144], in silico

p3, stem cell death rate 3.75 × 10−3/hr (guess)

p4, maximum chondrocyte proliferation

rate

2 × 10−4/hr (guess)

p40 = 2m2p4, chondrocyte proliferation

constant

4 × 10−9 g/mm3/hr [119], mathematical model

p5, chondrocyte death rate 3.75 × 10−3/hr (guess)



64

p9, FGF-1 production constant 10−17(g/mm3)/((Nc/mm3) hr) (guess)

p11, FGF-1 degradation rate 5.8× 10−2 /hr (based on an approximate 12hr half-

life, [38], in vitro)

p12, BMP-2 production constant 10−17(g/mm3)/((Nc/mm3) hr) (guess)

p13, BMP-2 degradation rate 5.8× 10−2 /hr (based on an approximate 12hr half-

life, [14], in vitro)

p400 , chondrocyte proliferation rate (from

FGF-1)

2 × 10−4 /hr (guess)

p80 , matrix production constant 3.75 × 10−13(g/mm3)/((Nc/mm3) hr)[144], in sil-

ico

p81 , matrix degradation constant 3.75 × 10−13(g/mm3)/((Nc/mm3) hr) [144], in sil-

ico

p6, nutrient uptake constant by stem cells 1.5 × 10−14Nm/(Nc hr) [195], mathematical model

p7, nutrient uptake constant by chondro-

cytes

1.5 × 10−14Nm/(Nc hr) [195], mathematical model

p800 , FGF-1 matrix deposition rate 0 - 1 (guess)

Ctotal,max0 , maximum total cell density 106 Nc/mm3 (assuming 10µm cell diameter)

CS,max0 , maximum stem cell density 0− 106 Nc/mm3

CC,max0 , maximum chondrocyte density 0− 106 Nc/mm3

mmax, maximum matrix density 10−4 g/mm3 [7], mathematical model

C
(0)
S , initial stem cell density 2.5× 105 Nc/mm3 (based on 106 cells in

20mm x 20mm x 10µm volume)

C
(0)
C , initial cartilage cell density 102 Nc/mm3 (10−2% of total cell density)

CS0max
, threshold stem cell density Ctotal,max0/2 Nc/mm3 (guess)
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CS0min
, threshold stem cell density 90% of CS0max

(guess)

m1, matrix density 10−5 g/mm3 (assumed mmax/10)[119], mathemati-

cal model

m2, matrix density 10−5 g/mm3 (assumed mmax/10)[119], mathemati-

cal model

m3, initial matrix density 10−8 g/mm3 (assumed mmax/104)[119], mathemat-

ical model

N0, initial nutrient concentration (2.85 − 9.5) × 10−11 Nm/mm3 [195], mathematical

model

ginit, initial FGF-1 concentration 10−12 g/mm3 [7], mathematical model

binit, initial BMP-2 concentration 10−12g/mm3 [7], mathematical model

n0, threshold nutrient concentration 2.3× 10−11 Nm/mm3 [195], mathematical model

n1, critical nutrient concentration 9.5× 10−12 Nm/mm3 (assumed N0/10)

α, threshold stem cell density 1010 /(g/mm3) (guess)

reduction factor

g0, FGF-1 reference concentration 10−10 g/mm3 [7], mathematical model

b0, BMP-2 reference concentration 10−10 g/mm3 [7], mathematical model

γ, FGF-1 flux coefficient 10−2 mm/hr (guess)

χ, BMP-2 flux coefficient 10−2 mm/hr (guess)

Table 3.1: Estimated values of dimensional parameters. In the above, NC represents number
of cells and Nm is number of moles.
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We non-dimensionalise Eqs. (3.1)- (3.8) by introducing the following dimensionless variables

based on characteristic quantities for each variable.

x̄ = x/d, t̄ = t(p80Ctotal,max0/mmax), (C̄S , C̄C) = (CS , CC)/Ctotal,max0 ,

m̄ = m/mmax, n̄ = n/N0, ḡ = g/g0, b̄ = b/b0

(3.9)

where the overbars represent dimensionless quantities. The characteristic quantities used

to measure the spatial variable, x, cell densities, matrix density and nutrient and growth

factor concentrations are the defect thickness, d, the reference maximum total cell density,

Ctotal,max0, the maximum matrix density, mmax, the initial nutrient concentration, N0 and

reference growth factor concentrations, g0 and b0, respectively. We choose to measure time,

t, based on the matrix production time scale, mmax/(p80Ctotal,max0). Using the parameter

values in Table 3.1, we estimate this time scale to be approximately 11 days. Henceforth, a

unit of time corresponds to approximately 11 days. For each variable a sensitivity analysis

was undertaken by increasing and decreasing their tabulated values given in Table 3.2 and

investigating the effect on matrix production.
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The dimensionless equations using the above non-dimensionalisation are:

∂C̄S
∂t̄

=
∂

∂x̄

(
D̄S(m̄)

∂C̄S
∂x̄

)
+ p̄1

(
m̄,

C̄S
C̄S,max(m̄)

) n̄

n̄+ n̄0
C̄SH(n̄− n̄1)

− p̄2C̄SH(C̄S − C̄S0(b̄))− p̄3C̄SH(n̄1 − n̄), (3.10a)

∂C̄C
∂t̄

=
∂

∂x̄

(
D̄C(m̄)

∂C̄C
∂x̄

)
+ p̄4

(
m̄, ḡ,

C̄C
C̄C,max(m̄)

) n̄

n̄+ n̄0
C̄CH(n̄− n̄1)

+ p̄2C̄SH(C̄S − C̄S0(b̄))− p̄5C̄CH(n̄1 − n̄), (3.10b)

∂n̄

∂t̄
= D̄n

∂2n̄

∂x̄2
− n̄

n̄+ n̄0
(p̄6C̄S + p̄7C̄C), (3.10c)

∂m̄

∂t̄
= D̄m

∂2m̄

∂x̄2
+ p̄8(m̄, ḡ)

n̄

n̄+ n̄0
C̄C , (3.10d)

∂ḡ

∂t̄
= D̄g

∂2ḡ

∂x̄2
+ p̄9C̄S − p̄11ḡ, (3.10e)

∂b̄

∂t̄
= D̄b

∂2b̄

∂x̄2
+ p̄12C̄C − p̄13b̄, (3.10f)

where

p̄1

(
m̄,

C̄S
C̄S,max(m̄)

)
= Ā(m̄)

(
1− C̄S

C̄S,max(m̄)

)
, Ā(m̄) = p̄10

m̄

m̄2 + m̄2
2

,

p̄4

(
m̄, ḡ,

C̄C
C̄C,max(m̄)

)
= B̄(m̄, ḡ)

(
1− C̄C

C̄C,max(m̄)

)
, B̄(m̄, ḡ) = p̄40

m̄

m̄2 + m̄2
2

+ p̄400

ḡ

ḡ + 1
,

C̄S,max(m̄) = C̄S,max0(1− m̄), C̄C,max(m̄) = C̄C,max0(1− m̄),

C̄S,max0 + C̄C,max0 = 1, p̄8(m̄, ḡ) = (1− p̄81m̄)(1 + ¯p800

ḡ

ḡ + 1
),

D̄S(m̄) = D̄S0

m̄

m̄2 + m̄2
1

, D̄C(m̄) = D̄C0

m̄

m̄2 + m̄2
1

,

C̄S0(b̄) = (C̄S0,max − C̄S0,min)e−ᾱb̄ + C̄S0,min .

(3.11)
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The non-dimensional boundary and initial conditions are:

−D̄S(m̄)
∂C̄S
∂x̄

= −D̄C(m̄)
∂C̄C
∂x̄

= −D̄n
∂n̄

∂x̄
= −D̄m

∂m̄

∂x̄
= −D̄g

∂ḡ

∂x̄
= −D̄b

∂b̄

∂x̄
= 0, (3.12a)

(at x̄ = 0),

−D̄S(m̄)
∂C̄S
∂x̄

= −D̄C(m̄)
∂C̄C
∂x̄

= −D̄m
∂m̄

∂x̄
= 0, n̄ = 1, −D̄g

∂ḡ

∂x̄
= γ̄ḡ, −D̄b

∂b̄

∂x̄
= χ̄b̄,

(3.12b)

(at x̄ = 1),

C̄S = C̄
(0)
S h̄(x̄), C̄C = C̄

(0)
C h̄(x̄), n̄ = 1, m̄ = m̄3, ḡ = ḡinit, b̄ = b̄init, (3.12c)

(at t̄ = 0).
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The dimensionless parameters and their estimated values are provided in Table 3.2.

dimensionless parameters estimated value

stem cell migration (or diffusion) con-

stant, D̄S0 = DS0/(p80Ctotal,max0d
2)

10−3 - 10−2

chondrocyte migration (or diffusion) con-

stant, D̄C0 = DC0/(p80Ctotal,max0d
2)

10−3

nutrient diffusion coefficient, D̄n =

Dnmmax/(p80Ctotal,max0d
2)

(1− 3)× 102

matrix diffusion coefficient, D̄m =

Dm/(p80Ctotal,max0d
2)

10−3-10−2

FGF-1 diffusion coefficient, D̄g =

Dgmmax/(p80Ctotal,max0d
2)

1.14

BMP-2 diffusion coefficient, D̄b =

Dbmmax/(p80Ctotal,max0d
2)

1.14

stem cell proliferation constant, p̄10 =

p10/(p80Ctotal,max0)

12

stem cell differentiation rate, p̄2 =

p2mmax/(p80Ctotal,max0)

1

stem cell death rate, p̄3 =

p3mmax/(p80Ctotal,max0)

1

chondrocyte proliferation constant, p̄40 =

p40/(p80Ctotal,max0)

0.012

chondrocyte death rate, p̄5 =

p5mmax/(p80Ctotal,max0)

1
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FGF-1 production constant, p̄9 =

p9mmax/(p80g0)

26.67

FGF-1 degradation rate, p̄11 =

p11mmax/(p80Ctotal,max0)

15.4

BMP-2 production constant, p̄12 =

p12mmax/(p80b0)

26.67

BMP-2 degradation rate, p̄13 =

p13mmax/(p80Ctotal,max0)

15.4

chondrocyte proliferation rate (from FGF-

1), p̄400 = p400mmax/(p80Ctotal,max0)

0.012

matrix degradation constant, p̄81 =

p81mmax/p80

1

nutrient uptake constant by stem cells,

p̄6 = p6mmax/(p80N0)

104

nutrient uptake constant by chondrocytes,

p̄7 = p7mmax/(p80N0)

104

FGF-1 matrix deposition rate, ¯p800 0 - 1

threshold nutrient concentration, n̄0 =

n0/N0

0.24-0.81

critical nutrient concentration, n̄1 =

n1/N0

0.1

threshold stem cell density, C̄S0max
=

CS0max
/Ctotal,max0

0.35
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threshold stem cell density, C̄S0min
=

CS0min
/Ctotal,max0

0.315

initial stem cell density, C̄
(0)
S =

C
(0)
S /Ctotal,max0

0.25

initial chondrocyte density, C̄
(0)
C =

C
(0)
C /Ctotal,max0

10−4

maximum stem cell density, C̄S,max0 =

CS,max0/Ctotal,max0

0.6

maximum chondrocyte density,

C̄C,max0 = CC,max0/Ctotal,max0

0.4

matrix density, m̄1 = m1/mmax 10−1

matrix density, m̄2 = m2/mmax 10−1

initial matrix density, m̄3 = m3/mmax 10−4

initial FGF-1 concentration, ḡinit =

ginit/g0

10−2

initial BMP-2 concentration, b̄init =

binit/b0

10−2

FGF-1 flux coefficient, γ̄ =

γ/(p80Ctotal,max0d/mmax)

1

BMP-2 flux coefficient, χ̄ =

χ/(p80Ctotal,max0d/mmax)

1

threshold stem cell density reduction fac-

tor, ᾱ = αb0

100

Table 3.2: Estimated values of dimensionless parameters.
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3.3 Results and parameter sensitivity analysis

3.3.1 Methods

We use a second order accurate finite difference discretisation scheme to discretise the spatial

variable x in Eqs. (3.10)-(3.12), keeping the time derivative t continuous. The resulting or-

dinary differential equations are solved in MATLAB (Release 2013a, The MathWorks, Inc.,

Natick, Massachusetts, United States) using the stiff ODE solver ode15s. Table 3.2 provides

the non-dimensional parameter values.

3.3.2 Numerical results

We first consider the case where the defect is only seeded with stem cells and there are no

growth factors present. These results will be used as a baseline case to compare with the case

which includes the influence of growth factors. We re-run these simulations from Lutianov

et al. [119], where a flux of mesenchymal stem cells entering from the bottom of the defect,

thought to be sourced by the surrounding defect, was considered. Here, we omit this flux,

as clinical guidelines state the underlying subchondral bone of a chondral defect is to be left

intact, meaning we would not necessarily observe this flux [15].

Initially, stem cells are seeded close to the subchondral bone side of the defect (x = 0), and

the nutrient concentration is uniform (Panel 1 in Fig. 3.3). The nutrient we consider in

our model is oxygen, assumed to be diffusing in from the surrounding synovium of the joint.

We also assume a small density of chondrocytes and matrix (C̄
(0)
C = m̄3 = 10−4) uniformly

distributed across the defect in order to activate the cell and matrix evolution. Figs. 3.3 and

3.4 show the evolution of the stem cell density, CS (×106 cells/mm3), chondrocyte density, CC
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(×106 cells/mm3), matrix density, m (×10−4 g/mm3), and nutrient concentration, n (×10−11

moles/mm3), for time ranging between 2 to 18 months. Over the first few days (not shown

here) the initial seeding of stem cells start to proliferate by taking up nutrients resulting in a

gradual decline of nutrients near x = 0. The stem cells are also observed to slowly diffuse away

from this end. Up until 2 months the stem cells have not yet proliferated enough to exceed

their differentiation threshold value (C̄S0 = 0.35). As a result, there are no chondrocytes

formed from stem cell differentiation and hence no matrix deposition. From approximately 2

months onwards, the stem cells have now exceeded their threshold value near x = 0 and we

observe rapid formation of chondrocytes which in turn increases the matrix deposition at a

rapid rate (Panel 2 in Fig. 3.3). We observe the formation of two fronts in the stem cell and

chondrocyte densities which gradually migrate up the defect where a higher concentration

of nutrients is available (Panel 3 in Fig. 3.3). The stem cell density front migrates faster

than the chondrocyte front owing to its higher diffusion coefficient [144]. We also observe

that where the nutrient concentration surpasses its critical value there is a peak in stem cells,

and as a result a peak in chondrocyte density (Panels 2 and 3 in Fig. 3.3). The peak in

chondrocytes is also due to the stem cells exceeding their differentiation threshold. Over the

course of the first few months, we clearly observe an increase in matrix levels (Panels 2 and 3

in Fig. 3.3). At later times (4 months and beyond), an increase in matrix density is observed

near the upper end of the defect due to this increase in chondrocyte formation observed from

the peak in stem cells. This is enabled by the large amount of nutrients available (Panel 1

in Fig. 3.4). From approximately 9 months onwards matrix production continues gradually

filling up the entire defect from the upper end down (Panels 2 and 3 in figure 3.4).

We now consider the influence of growth factors FGF-1 and BMP-2 on the evolution of

the cell and matrix densities. We have an initial seeding of stem cells at the bottom of

the defect with a small concentration of both the growth factors (ḡinit = b̄init = 10−2),
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Figure 3.3: Evolution of cell and matrix densities, and nutrient concentration at times, t =
0 days, 2 months, 3 months. x = 0 in the figure represents the location of the base of the
defect, x = 1 represents the surface of articular cartilage.
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Figure 3.4: Evolution of cell and matrix densities, and nutrient concentration at times, t =
6, 9, 18 months. x = 0 in the figure represents the location of the base of the defect, x = 1
represents the surface of articular cartilage.
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and chondrocytes and matrix (C̄
(0)
C = m̄3 = 10−4) pre-existing uniformly within the defect

(Panel 1 in Fig. 3.5). Similar to the early time behaviour observed in the previous case, the

stem cells start to proliferate with a slow decline of nutrients in the first few days. These

proliferating stem cells produce FGF-1 which gradually increases in concentration near the

bottom of the defect. This has a minor influence on chondrocyte proliferation, though. The

initial seeding of chondrocytes, however, produce sufficient BMP-2 which reduces the stem

cell density threshold for differentiation into chondrocytes at an earlier time compared to the

previous case. This resultant increase in the production of chondrocytes through stem cell

differentiation in turn speeds up the matrix production process. This increase in chondrocyte

and matrix density at early time (t = 2 months) is clearly observed in Panel 2 of Fig. 3.5 (also

see Figs. 3.7(b, c) for comparison with the case when no growth factors are present). Also,

at this time point we already observe a diffusion front in the stem cell density starting to

form (Panel 2 in Fig. 3.5; also see Fig. 3.7(a) for comparison with the case when no growth

factors are present). The growth factor concentrations are much higher near the bottom

of the defect owing to the higher density of stem cells and chondrocytes there (Panel 2 in

Fig. 3.5). The relative abundance of BMP-2 here, in particular, further lowers the threshold

stem cell density to its minimum value, C̄S0min
, which increases the chondrocyte density

(compare the chondrocyte densities in Panel 2 in Figs. 3.3, 3.5). From 2 months onwards,

we observe the two fronts in the stem cell and chondrocyte density to gradually migrate up

the defect where a higher concentration of nutrients are available (Panel 3 in Fig. 3.5 shows

the evolution at t = 3 months). We note that these fronts are slightly ahead compared to

those from the previous results (Panel 3 in Fig. 3.3) at this time point. This is due to the

diffusion fronts forming earlier for this case as described above. Additionally, there is a larger

volume of matrix in the defect at time points between two and three months (see Panels 2

and 3 in Fig. 3.5; also see Fig. 3.7(c) for comparison with the case when no growth factors
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are present). The evolution past six months shown in Panel 1 of Fig. 3.6 is similar to the

previous set of results, albeit with slightly higher levels of matrix at comparable time points.

This might be due to the FGF-1 growth factor concentration enhancing the chondrocyte

proliferation resulting in additional matrix. We note here that there is no contribution from

stem cell differentiation since the stem cell density has fallen well below its minimum threshold

density, C̄S0min
= 0.315, for differentiation into chondrocytes. For time twelve months and

beyond, the matrix formation continues until the defect eventually fills up with matrix (see

Panels 2 and 3 in Fig. 3.6).

We now highlight the differences at early time observed in the cell and matrix densities in

the two sets of simulations above. We pick a representative time point at t = 2 months to

depict this. We will also look at cases where either FGF-1 or BMP-2 alone are included

to determine which growth factor has a stronger influence, if at all, on the system. In Fig.

3.7(a) we observe that the stem cell density near the bottom of the defect is lower when

growth factors are included. This suggests that stem cell differentiation has occurred earlier

for this case due to the lowering of the threshold density. The higher level of stem cell density

for the case when growth factors are absent implies delay in stem cell differentiation due to

the threshold density not being exceeded. Looking at the chondrocyte levels in Fig. 3.7(b)

we observe that including growth factors results in a slightly higher chondrocyte density

near the bottom of the defect compared to that without growth factors. These additional

chondrocytes are produced by stem cell differentiation which occurs earlier in the presence of

growth factors. This increase in chondrocyte density results in a significantly larger amount

of matrix being formed compared to that without growth factors (Fig. 3.7(c)). Moreover,

there is no discernible difference in the cell and matrix densities when comparing the cases

where both growth factors are included to that where BMP-2 alone is included. This indicates

that BMP-2 alone has a much more significant influence on the system than FGF-1 alone



77

0 0.5 1

defect thickness, x (x 2mm)

0

0.2

0.4

0.6

0.8

1

1.2

B
a

s
e

 o
f 

d
e

fe
c
t 

time = 0 days

0 0.5 1

defect thickness, x (x 2mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 2 months

m

n

Cc

Cs

FGF-1

BMP-2

0 0.5 1

defect thickness, x (x 2mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 3 months

Figure 3.5: Evolution of cell and matrix densities, and nutrient and growth factor concentra-
tions at times, t = 0 days, 2 months, 3 months. x = 0 in the figure represents the location of
the base of the defect, x = 1 represents the surface of articular cartilage.
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Figure 3.6: Evolution of cell and matrix densities, and nutrient and growth factor concentra-
tions at times, t = 6, 9, 18 months. x = 0 in the figure represents the location of the base of
the defect, x = 1 represents the surface of articular cartilage.
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at least at an early time point. This is mainly due to the lowering of the threshold density

for stem cell differentiation into chondrocytes. However, at a later time point this influence

gradually decreases as the stem cell density falls well below its minimum threshold density

for differentiation. Past 4 months the system then evolves similarly to that without growth

factors.
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To further highlight the effects of FGF-1 and BMP-2 on the system, we show comparisons

of the overall densities of chondrocytes, CC , mesenchymal stem cells, CS and extracellular

matrix (ECM), m, with and without the effects of growth factors over 24 months.

These results allow us to quantify the percentage difference between the cell and matrix types,

with and without the effects of growth factors, enabling us to quantify our specific research

question posed in the Introduction section. This gives us an indication of how considering

these growth factors in a co-culture will impact matrix deposition.

Figure 3.8(a) shows overall matrix densities between 1 month and 2 years in time incre-

ments of 1 month. From this figure it is clear the main difference in matrix densities is at

early times, with effects seeming to subside after around 4-5 months. At time 2 months we

have a 65% increase in matrix density when growth factors are included, declining to 34%

increase at 4 months. From 4 months onwards the percentage change of matrix density is

still greater with growth factors, but decreases in magnitude.

Figure 3.8(b) shows the difference in chondrocyte levels within the defect up to 24 months.

Chondrocyte proliferation and MSC differentiation into chondrocytes are mechanisms both

effected by the growth factors, meaning we expect to see a pronounced increase in this cell

type in the defect during healing. At time 2 months we see a 66% increase in chondrocyte

levels, declining to only a 19% increase at time 4 months. The main increase in overall chon-

drocyte densities is primarily observable up to 4 months and subsides thereafter.

Figure 3.8(c) shows MSC densities within the defect over 2 years. The stem cell differ-

entiation into chondrocytes mechanism is directly affected by BMP-2, meaning we expect to

see lower MSC levels in the defect at times that growth factors are most effective. At times
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1-3 months we see a slight increase in overall MSC levels, but Fig. 3.7(a) shows a diffusion

front of MSCs forming sooner than without growth factors at 2 months due to the effects

of FGF-1 and BMP-2. This indicates that MSC differentiation has been initiated sooner.

Additionally, at this time chondrocyte densities are markedly higher than without growth

factors (Figure 3.7(b)), meaning more BMP-2 is being produced. This implies evolution of

MSCs is accelerated due to the effects of the growth factors during this time frame. At time

4 months we see a 13% decrease in MSC density, which is due to BMP-2 effects increasing

due to increased chondrocyte densities around this time. After 4 months a consistent trend

of lower MSCs is observed in the defect for the case with growth factors.

These results indicate and validate that the timeframe for FGF-1 and BMP-2 effects to

be significant is at early times, primarily up until 4 months. The effects of growth factors

subside thereafter, as demonstrated by the similarity between Figs. 3.4 and 3.6. The experi-

ments of Wu et al.[184] are in vitro, and therefore performed over short periods of time. This

therefore corroborates the effects they observe. It is likely the effects of FGF-1 and BMP-2

decline due to other limiting factors in the model such as nutrient concentration and motility

of cells (Figs. 3.5 and 3.6).

Convergence analysis

A convergence analysis has been performed in space, x, with results showing the numerical

scheme is reliable. For the simulations shown above the numerical scheme is performed over

n = 100 grid points. Increasing n by a factor of 10 results in a slower runtime in the ODE15s

solver, with the solution path unchanged. Convergence in time has also been explored, with

a steady state obtained where the constituents of the regenerated defect remain full (at 1),
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with the cartilage filling the entirety of the defect.

3.3.3 Sensitivity of parameters and initial conditions

The model is used to simulate a variety of parameter values and initial conditions. A sensi-

tivity analysis will help in pinpointing those parameters that the system is sensitive to, which

could indicate biological significance. In addition, a parameter whose value has been approx-

imated and not deemed to be sensitive to change, then indicates that this approximate value

is a good representation of that parameter value. Here, we only consider the sensitivity of the

model to variations in the FGF-1 and BMP-2 parameters and initial conditions. These are

described briefly in Table 3.3 and the ones which most influenced model results are discussed

in detail below. The sensitivity to the other parameters and initial conditions are similar to

that discussed in Lutianov et al. [119] and we refer the reader to Table 3 in this chapter.



83

Figure 3.8: Total densitites integrated over the thickness of the defect of (a) matrix, m, (b)
chondrocytes, CC , MSCs, CS , as a function of the time, in months, from 1-24 months for
simulations with (orange) and without (blue) growth factors. x = 0 in the figure represents
the location of the base of the defect, x = 1 represents the surface of articular cartilage.



84

Parameters Sensitivity description

Initial FGF-1 concentration,

ḡinit

Increasing ḡinit results in a small increase in chondrocyte pro-

liferation and matrix deposition at very early times; there-

after no change is observable.

Initial BMP-2 concentration,

b̄init

Increasing b̄init has no effect on the system since it degrades

quickly before it has the chance to take effect; it starts being

produced again when a sufficient level of chondrocyte density

is reached to counteract its degradation.

FGF-1 production constant, p̄9 Increasing p̄9 results in a minor increase in chondrocyte pro-

liferation and matrix levels at early time; decreasing p̄9 de-

creases matrix levels marginally at early time; no noticeable

difference thereafter.

BMP-2 production con-

stant, p̄12

see details in text.

FGF-1 degradation rate, p̄11 Increasing/decreasing p̄11 has no significant change to cell

density levels and evolution characteristics.

BMP-2 degradation rate, p̄13 see details in text.

FGF-1/BMP-2 diffusion coeffi-

cient, Dg,b

Increasing Dg,b have no significant change to cell density lev-

els and evolution characteristics.

FGF-1/BMP-2 flux coefficient,

γ̄, χ̄

Increasing/decreasing γ̄, χ̄ have no significant change to cell

density levels and evolution characteristics.
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FGF-1 matrix deposition rate,

p̄800

Increasing p̄800 up to 1 has minor effects to overall matrix

levels. We see higher matrix levels primarily at the bottom

of the defect indicating main effect at early time. The general

evolution remains unchanged and earlier healing time is not

achieved.

minimum threshold stem

cell density, C̄S0min

see details in text.

threshold stem cell density

reduction factor, ᾱ

see details in text.

stem cell differentiation rate, p̄2 Variations (including assumed dependency on BMP-2 con-

centration) only resulted in minor differences in cell and

matrix densities and accelerated growth; general evolution

characteristics remain unchanged.

Table 3.3: Sensitivity of parameters. Those highlighted in bold are further described in the
text.
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We described earlier that the increased levels of chondrocyte and matrix densities observed

at early time in the presence of growth factors was primarily due to the reduction of the

threshold stem cell density for differentiation into chondrocytes (Figs. 3.7(a− c)). We have

further investigated variations in the parameters we found that this reduction was most sen-

sitive to the BMP-2 growth factor production constant, p̄12, the BMP-2 degradation rate,

p̄13, the minimum threshold stem cell density, C̄S0min
, and the threshold stem cell density

reduction factor, ᾱ (last function, Eq. 3.11).
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Figure 3.9: Comparison of (a) stem cell, (b) chondrocyte and (c) matrix densities at t =2
months when varying the BMP-2 growth factor production constant, p̄12 (darker solid lines),
the BMP-2 degradation rate, p̄13 (dashed lines), the minimum threshold stem cell density,
C̄S0min

(dotted lines), and the threshold stem cell density reduction factor, ᾱ (lighter solid
lines) independently from their base values (dot-dashed lines). See text for parameter values
used. x = 0 in the figure represents the location of the base of the defect, x = 1 represents
the surface of articular cartilage.
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Figure 3.9(a, b, c) show the stem cell, chondrocyte and matrix density, respectively, at time

t =2 months by varying p̄12,13, C̄S0min
and ᾱ independently from their base values. In the

simulations shown, p̄12 = 267 (10 fold increase from its base value), p̄13 = 0.154 (100 fold

decrease from its base value), C̄S0min
= 0.28 (reduces C̄S0 by 20% in comparison to its base

value which imposes a 10% reduction) and ᾱ = 1 (100 fold decrease from its base value).

Increasing p̄12 and decreasing p̄13 and C̄S0min
resulted in stem cell differentiation to occur

much earlier in comparison to their base values (Fig. 3.9(a)). Moreover, stem cell differenti-

ation was most delayed when α was decreased. The chondrocyte density levels appeared less

sensitive to variations in these parameters (Fig. 3.9(b)). The diffusion of chondrocytes away

from the defect was observed slightly earlier when p̄12 was increased, and p̄13 and C̄S0min
were

decreased compared to the base values and when α was decreased. This was a consequence of

the stem cell differentiation occurring earlier when these parameters were varied. The matrix

density levels shown in Fig. 3.9(c) show slightly enhanced levels compared to the base value

and when α was decreased. This was again due to stem cell differentiation into chondrocytes

occurring early and subsequently producing more matrix.

An alternative method to implement the effect of BMP-2 on stem cell differentiation is to

vary the stem cell differentiation rate, p̄2 with the BMP-2 concentration, while keeping the

threshold stem cell density, C̄S0 fixed. As detailed in Table 3.3, we found no significant influ-

ence of this on the system and the model results appeared much less sensitive to variations

in p̄2 than to the stem cell density threshold variation considered in this work.

The sensitivity analysis indicates the values we have approximated, are also not extremely

sensitive to change, hence a good representation of that parameter value. Identifying the
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sensitive parameters from the sensitivity analysis could provide important information for in

vitro studies, indicating which mechanisms need to be focused on or manipulated experimen-

tally to produce a desired effect, such as increased cell and/or matrix densities.
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3.4 Summary & Conclusions

In this chapter have extended the model proposed by Lutianov et al. [119] to consider the

influence of two growth factors, BMP-2 and FGF-1 on the regeneration of a cartilage defect.

These two growth factors serve as examples that embody the type of interactions that can oc-

cur between mesenchymal stem cells and chondrocytes, which would typically affect stem cell

and chondrocyte proliferation, differentiation and matrix production. The interactions in the

model are those hypothesised by Wu et al. [184], which they formulated on the basis of their

and others’ experimental data. Our simulations show that the interactions from the growth

factors enhance matrix production at early times. This is consistent with in vitro results of

Wu et al. [184], who’s findings show increased GAG (glycosaminoglycan) levels in co-culture

pellets of mesenchymal stem cells and chondrocytes up to 4 weeks after culture, indicative of

increased matrix deposition. Of course, unlike the co-culture experiments which start with

a mixture of stem cells and chondrocytes, our initial conditions represented implantation of

only stem cells. However, once stem cells differentiated into chondrocytes in our model, they

displayed the same stem cell-chondrocyte interaction observed in the co-culture experiments

with similar trophic effects [184].

The consideration of growth factors and their mediating influence on cell-to-cell interactions

is an important step towards looking at more complex models such as implantations of a

mixture of cells. The work of Wu et al. [184] shows how inserting mixtures of stem cells and

chondrocytes together into a defect can promote matrix deposition, and therefore a faster

healing time due to the trophic effects growth factors such as BMP-2 and FGF-1 have on the

system. This is the topic of Chapter 4.



Chapter 4

Mathematical model of chondral

defect regeneration after cell

therapy – the influence of cell

co-implantation

In this chapter, we further use the mathematical model, developed in Chapter 3, to explore

the hypothesis that the pattern of cartilage matrix production over time in a cartilage defect

into which a mixture of chondrocytes and MSCs was implanted, depends on the chondro-

cyte:MSC ratio and that an optimal ratio maximising matrix production exists. Like chapter

3, we will use the observations of Wu et al.[184] from an in vitro experimental model to model

the growth factor mediated interaction between chondrocytes and MSCs to obtain short-term

results at specific chondrocyte:MSC ratios[184]. As in Chapter 3, the various rate constants

in the mathematical model will be based on in vitro or in vivo data where possible, otherwise

91
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an assumption will be made. For relevant parameters, sensitivity analyses will be performed

to determine the influence of the parameter value on the model outcomes. The role of the

mathematical model in this Chapter is to determine if an optimal chondrocyte:MSC ratio to

maximize cartilage matrix production over time exists, and to what extent it may speed up

cartilage defect healing.

Chapter 3 describes in detail the modelling choices of the growth factors with details of non-

dimensionalisation and parameter choices, hence we simply state the relevant equations in

this chapter. We present the results of the model and compare several different implantation

ratios to see if an optimal ratio can be identified and demonstrate the differences between

low and high concentrations of each cell type. Following on from this, we compare the matrix

densities of our co-implantation procedures at various times to those corresponding to ACI

and ASI, as shown in Chapter 3 [21] and in [119]. Finally, we summarise the findings of this

work, with main discussion located in Chapter 6.

4.1 Introducing the problem

As is now widely recognised, the implantation of MSCs into a chondral defect does not

only contribute to the repair process via their differentiation into chondrocytes but also via

their secretion of growth factors and cytokines, termed as their ”trophic” effect [23, 41].

Work by Wu et al. [184] identifies two growth factors, FGF-1 and BMP-2, as particularly

important during cartilage regeneration. These two growth factors were identified when

investigating the effect of co-cultures of MSCs and chondrocytes on cartilage formation [184].

They are released by MSCs and chondrocytes and mediate MSC-to-chondrocyte interaction,

enhancing chondrocyte proliferation and mesenchymal stem cell chondrogenesis (see Fig. 3
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for a schematic of this cell-to-cell interaction in Chapter 3 & [21]). Their observations were

modelled mathematically in Chapter 3, which studied the effects of these growth factors after

MSC implantation (ASI) into the defect [21]. Our simulations showed that matrix formation

following ASI was enhanced at early times when cell-to-cell interactions mediated by these

growth factors were taken into account. This was mainly due to the presence of BMP-2,

resulting in increased formation of chondrocytes via increased chondrocyte proliferation and

MSC chondrogenesis, and hence enhancing early matrix production in comparison to the case

when no growth factors are present. At later time points no differences were found.

Several in vitro studies have suggested that co-culturing a mixture of MSCs and chondro-

cytes increases matrix formation [9, 42, 41, 115]. In these mixtures, the chondrocytes could

immediately start forming cartilage and trophic effects due to the growth factors released in

the system would boost this further [184]. However, these in vitro studies are by necessity

short-term studies and it is therefore not clear how these differences develop in the longer

term and if they are maintained. To our knowledge, the only in vivo study used a rat model

and found no difference in quality of cartilage defect repair 12 weeks after implanting scaffolds

with either a 90:10 MSC:chondrocyte mixture or pure chondrocytes but did not study other

time points [35].

In this chapter we aim to explore the longer term patterns over time of cartilage defect healing

following implantation of mixtures of MSCs and chondrocytes at various ratios, and investi-

gate the differences between them. The plan of this chapter is as follows. In the section 4.2

Mathematical model, we state the model equations, boundary and initial conditions. Next,

4.3 Results shows the results of simulations for five co-implantation ratios and their compar-

ison with respect to matrix density levels over healing time. Results showing sensitivity to

variations in co-implantation ratios are also considered here, in particular, comparisons are
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made with 100% stem cells (ASI) and 100% chondrocytes (ACI) implantations. Finally, sec-

tion 4.4 Summary & discussion explores the implications of the model results on co-culture

cell therapy and future work. We refer the reader to Chapter 3 [21] where full details of

non-dimensionalisation and a sensitivity analysis of the model has been conducted, which

will not be shown here.

4.2 Mathematical model

Our mathematical model follows the same formulation as in Chapter 3 [21] with the initial

cell implantation profile changed to accommodate a varying ratio of stem cells and chondro-

cytes. We only state the dimensionless equations, and boundary and initial conditions here.

For more information on the formulation and non-dimensionalisation of these equations and

assumptions made, the reader is referred to Chapter 3 [21] and Lutianov et al. [119].

We consider a cartilage defect with a small depth to diameter ratio (see Fig. 3.1) which

enables us to simplify to a one-dimensional problem where cell growth is modelled along the

defect depth x only, with x = 0 at the base of the defect. The variables in our model are:

the stem cell density CS , the chondrocyte density CC , the matrix density m, the nutrient

concentration n, the FGF-1 concentration g and the BMP-2 concentration b. Cell density is

measured in number of cells per unit volume, matrix density and growth factor concentration

are measured as mass per unit volume and nutrient concentration is measured in number of

moles per unit volume.
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Following the non-dimensionalisation given in Chapter 3, the dimensionless equations (over-

bars omitted), boundary and initial conditions for the evolution of the cell and matrix den-

sities and nutrient concentration in time, t, and space, x are given by:

∂CS
∂t

=
∂

∂x

(
DS(m)

∂CS
∂x

)
+ p1

(
m,

CS
CS,max(m)

) n

n+ n0
CSH(n− n1)

− p2CSH(CS − CS0(b))− p3CSH(n1 − n), (4.1a)

∂CC
∂t

=
∂

∂x

(
DC(m)

∂CC
∂x

)
+ p4

(
m, g,

CC
CC,max(m)

) n

n+ n0
CCH(n− n1)

+ p2CSH(CS − CS0(b))− p5CCH(n1 − n), (4.1b)

∂n

∂t
= Dn

∂2n

∂x2
− n

n+ n0
(p6CS + p7CC), (4.1c)

∂m

∂t
= Dm

∂2m

∂x2
+ p8(m, g)

n

n+ n0
CC , (4.1d)

∂g

∂t
= Dg

∂2g

∂x2
+ p9CS − p11g, (4.1e)

∂b

∂t
= Db

∂2b

∂x2
+ p12CC − p13b, (4.1f)

where

p1

(
m,

CS
CS,max(m)

)
= A(m)

(
1− CS

CS,max(m)

)
, A(m) = p10

m

m2 +m2
2

,

p4

(
m, g,

CC
CC,max(m)

)
= B(m)

(
1− CC

CC,max(m)

)
, B(m) = p40

m

m2 +m2
2

+ p400

g

g + 1
,

CS,max(m) = CS,max0(1−m), CC,max(m) = CC,max0(1−m),

CS,max0 + CC,max0 = 1, p8(m, g) = (1− p81m)(1 + p800

g

g + 1
),

DS(m) = DS0

m

m2 +m2
1

, DC(m) = DC0

m

m2 +m2
1

,

CS0(b) = (CS0,max − CS0,min)e−αb + CS0,min .

(4.2)

The estimated values of the parameters in dimensional form and the dimensionless parameters
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are provided in the Chapter 3 (Tables 3.1 and 3.2) and Campbell et al. [21].

The non-dimensional boundary and initial conditions are:

−DS(m)
∂CS
∂x

= −DC(m)
∂CC
∂x

= −Dn
∂n

∂x
= −Dm

∂m

∂x
= −Dg

∂g

∂x
= −Db

∂b

∂x
= 0, (4.3a)

(at x = 0),

−DS(m)
∂CS
∂x

= −DC(m)
∂CC
∂x

= −Dm
∂m

∂x
= 0, n = 1, −Dg

∂g

∂x
= γg, −Db

∂b

∂x
= χb,

(4.3b)

(at x = 1),

CS = (1− pc)C
(0)
S h(x), CC = pcC

(0)
C h(x), n = 1, m = m3, g = ginit, b = binit,

(4.3c)

(at t = 0).

with γ and χ representing the flux of growth factors leaving the top of the defect into the

synovial fluid.

The new initial conditions representing the different co-culture ratios of stem cells and chon-

drocytes are highlighted in bold in Eq. (4.3). Here, C
(0)
S and C

(0)
C are the initial stem cell and

chondrocyte densities, h(x) is the initial profile and pc (0 ≤ pc ≤ 1) represents the proportion

of chondrocytes implanted in the defect (e.g. a 35% chondrocyte proportion means pc = 0.35,

a mixture consisting of 65% stem cells and 35% chondrocytes at t = 0).

We used a second order accurate finite difference scheme to discretise the spatial deriva-

tives in x over 100 grid points in Eqs. 4.1-4.3, keeping the time derivative t continuous.

The resulting ordinary differential equations were solved in MATLAB (Release 2013a, The

MathWorks Inc., Natick, Massachusetts, United States) using the stiff ODE solver ode15s.

The dimensionless parameter values used in our simulations are given in Table 3.2.
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The initial stem cell and chondrocyte density spatial profile is CS(x, 0) = C
(0)
S (1 − pc)[1 −

tanh(A(x− x0))]/2 and CC(x, 0) = C
(0)
C pc[1 − tanh(A(x− x0))]/2, with A = 104 and x0 =

0.1. Dimensionally, this is equivalent to a combined chondrocyte and stem cell density of

2.5×105 cells/mm3, restricted to an area of thickness 200µmm near x = 0, and zero elsewhere.

We also assumed a small density of matrix (m3 = 10−4), FGF-1 (g = ginit) and BMP-2

(b = binit) uniformly distributed across the defect.

The general evolution characteristics of the cell and matrix densities, nutrient and growth

factor concentrations using this model are described in Chapter 3 of this thesis [21, 119] and

hence are not repeated in detail here. The main focus of our simulations is to vary the initial

stem cell and chondrocyte implantation densities through the parameter pc, keeping the other

parameters fixed.

We simulate cartilage repair following implantation of five mixtures, namely pc = 0.1 (90%

stem cells and 10% chondrocytes, hereafter referred to as 90:10), pc = 0.3 (70% stem cells

and 30% chondrocytes, hereafter referred to as 70:30), pc = 0.5 (50% stem cells and 50%

chondrocytes, hereafter referred to as 50:50), pc = 0.7 (30% stem cells and 70% chondrocytes,

hereafter referred to as 30:70) and pc = 0.9 (10% stem cells and 90% chondrocytes, hereafter

referred to as 10:90).
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4.3 Results

4.3.1 Numerical results

Co-implantation of 90% stem cells and 10% chondrocytes
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Figure 4.1: Evolution of cell and matrix densities, and nutrient concentration at times
t =0, 11 and 22 days following co-implantation of 90% stem cells and 10% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.2: Evolution of cell and matrix densities, and nutrient concentration at times
t =1, 3 and 6 months following co-implantation of 90% stem cells and 10% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.3: Evolution of cell and matrix densities, and nutrient concentration at times t =9,
12 and 24 months following co-implantation of 90% stem cells and 10% chondrocytes. x = 0
in the figure represents the location of the base of the defect, x = 1 represents the surface of
articular cartilage.

We first show the simulations corresponding to pc = 0.1 (90% stem cells and 10% chon-

drocytes; 90:10). Panels 2 and 3 in Fig. 4.1 show the evolution at t = 11 and 22 days,

respectively. Matrix production near x = 0 is seen after only a few days, mainly due to a

rapid increase in chondrocyte density (almost 10 times the initial number within 11 days;

see Panel 2 in Fig. 4.1). This early matrix production is of comparable magnitude to that

produced for pc = 1.0 (implantation of 100% chondrocytes; see Panel 2 in Fig. 2 of Lutianov

et al. [119]), but using a far smaller number of chondrocytes and occurs much earlier than for

pc = 0 (implantation of 100% stem cells), which requires 2 months to achieve similar matrix

levels (Fig. 3.5 in Chapter 3 also see Fig. 4.18 below).

Over the course of the first few months, chondrocyte density is generally larger in the co-

implantation case compared to the 100% stem cell and 100% chondrocyte implantation cases

(compare Fig. 4.2 with Fig. 3.5 in Chapter 3 and Fig. 3 in Lutianov et al. [119]). This larger

chondrocyte density comes with increased matrix production but also with increased uptake

of nutrients. The latter results in a drop of chondrocyte density towards the bottom of the
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defect once the nutrient concentration falls below the minimum threshold level n1 = 10−1),

increasing chondrocyte death and slowing down chondrocyte proliferation. The net result

is a slowing down of matrix production at the bottom of the defect. On the other hand,

chondrocyte density continues to grow at the top of the defect due to the local abundance of

nutrients there, resulting in a continued increase in matrix density near the top of the defect

(see Panels 2 and 3 in Fig. 4.2).

At later times (Fig. 4.3), matrix deposition slows down and the defect fills up in 18-24

months. This time scale is similar to the two single cell type implantation cases (Fig. 4 in

Lutianov et al. [119] and Fig. 3.6 in Chapter 3).
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Co-implantation of 70% stem cells and 30% chondrocytes

0 0.5 1

defect thickness, x (x 2mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 11 days

0 0.5 1

defect thickness, x (x 2mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 22 days

0 0.5 1

defect thickness, x (x 2mm)

0

0.2

0.4

0.6

0.8

1
B

a
s
e

 o
f 

d
e

fe
c
t

time = 0 days

m

n

Cc

Cs

Figure 4.4: Evolution of cell and matrix densities, and nutrient concentration at times
t =0, 11 and 22 days following co-implantation of 70% stem cells and 30% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.5: Evolution of cell and matrix densities, and nutrient concentration at times
t =1, 3 and 6 months following co-implantation of 70% stem cells and 30% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.6: Evolution of cell and matrix densities, and nutrient concentration at times t =9,
12 and 24 months following co-implantation of 70% stem cells and 30% chondrocytes. x = 0
in the figure represents the location of the base of the defect, x = 1 represents the surface of
articular cartilage.

Next we show simulations of pc = 0.3 corresponding to 70% stem cells 30% chondrocytes

(70:30). Figures 4.4-4.6 show the evolution of the cell and matrix densities and nutrient

concentration for time ranging between 11 days and 24 months. Similar to the 90:10 case

(Figs. 4.1-4.3) we see enhanced matrix production at early time points with the nutrient

concentration falling below the critical condition, n1 = 10−1, as early as 11 days at the

bottom of the defect. This large consumption of nutrients is due to cell proliferation and

MSC differentiation, which is enhanced due to FGF-1 and BMP-2 [21, 184]. This decreases

chondrocyte proliferation at the bottom of the defect, meaning diffusion of cells to higher

concentrations of nutrients will be the main driver of defect healing. As time continues, we

see the general evolutionary characteristics of the simulations remain similar to our 90:10

case, albeit with slightly higher matrix levels due to the higher proportion of chondrocytes

inserted into the defect. The defect is observed to fill-up with new cartilage within 18-24

months, which is in line with our previous results (Chapter 3, [21]).
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Co-implantation of 50% stem cells and 50% chondrocytes
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Figure 4.7: Evolution of cell and matrix densities, and nutrient concentration at times
t =0, 11 and 22 days following co-implantation of 50% stem cells and 50% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.8: Evolution of cell and matrix densities, and nutrient concentration at times
t =1, 3 and 6 months following co-implantation of 50% stem cells and 50% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.



104

0 0.5 1

defect thickness, x (x 2mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 9 months

0 0.5 1

defect thickness, x (x 2mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 12 months

0 0.5 1

defect thickness, x (x 2mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time = 24 months

m

n

Cc

Cs

Figure 4.9: Evolution of cell and matrix densities, and nutrient concentration at times t =9,
12 and 24 months following co-implantation of 50% stem cells and 50% chondrocytes. x = 0
in the figure represents the location of the base of the defect, x = 1 represents the surface of
articular cartilage.

We next show the simulations corresponding to pc = 0.5 (50% stem cells and 50% chondro-

cytes; 50:50). Figures 4.7-4.9 show the evolution of the cell and matrix densities and nutrient

concentration for this case at early and late time points. The evolution characteristics are

identical to the 90:10 and 70:30 cases, except that the overall matrix density is slightly higher,

particularly at earlier times (compare Panel 2 Fig. 4.7 and Fig. 4.1). This is a consequence of

the larger proportion of implanted chondrocytes and the subsequent increase in chondrocyte

density due to a combination of growth factor enhanced proliferation and stem cell differen-

tiation. However, at later time points the increased nutrition demand from the larger overall

cell density causes the nutrient concentration close to the bottom of the defect to fall below

the minimum threshold level n1 = 10−1, in turn slowing down cell proliferation and matrix

production rates. Thus, the matrix density at later times is very similar to the 90:10 and

70:30 cases (compare Fig. 4.8 with Fig. 4.2 and Fig. 4.5).
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Co-implantation of 30% stem cells and 70% chondrocytes
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Figure 4.10: Evolution of cell and matrix densities, and nutrient concentration at times
t =0, 11 and 22 days following co-implantation of 30% stem cells and 70% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.11: Evolution of cell and matrix densities, and nutrient concentration at times
t =1, 3 and 6 months following co-implantation of 30% stem cells and 70% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.12: Evolution of cell and matrix densities, and nutrient concentration at times t =9,
12 and 24 months following co-implantation of 30% stem cells and 70% chondrocytes. x = 0
in the figure represents the location of the base of the defect, x = 1 represents the surface of
articular cartilage.

Figures 4.10-4.12 show cell and matrix densities, and nutrient concentration for pc = 0.7

simulations corresponding to 30% stem cells 70% chondrocytes (30:70). Here we observe

high levels of matrix at early times. As with the other cases, nutrients are a limiting factor

on healing, falling below the critical concentration and switching off cell proliferation by 11

days. MSCs appear to begin diffusing towards the top of the defect sooner in this case when

compared with the 90:10 case (Fig. 4.1), for instance, likely to be due to higher matrix

density allowing for cell motility. Once cell diffusion to the top of the defect has begun, we

observe similar trends to the previous cases (Figs. 4.2, 4.5, 4.8). By 9 months (Fig. 4.12)

matrix densities are similar to those of our previous cases (Figs. 4.3, 4.6, 4.9), indicating the

differences we see at early times are not maintained as time continues. This could be due to

limited nutrient concentration, which is consistently low during the evolution.
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Co-implantation of 10% stem cells and 90% chondrocytes
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Figure 4.13: Evolution of cell and matrix densities, and nutrient concentration at times
t =0, 11 and 22 days following co-implantation of 10% stem cells and 90% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.14: Evolution of cell and matrix densities, and nutrient concentration at times
t =1, 3 and 6 months following co-implantation of 10% stem cells and 90% chondrocytes.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.
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Figure 4.15: Evolution of cell and matrix densities, and nutrient concentration at times t =9,
12 and 24 months following co-implantation of 10% stem cells and 90% chondrocytes. x = 0
in the figure represents the location of the base of the defect, x = 1 represents the surface of
articular cartilage.

We finally show the results for a 10% MSC and 90% chondrocyte mixture corresponding to

pc = 0.9 (10:90) (Figures 4.13, 4.14, 4.15). Here we have the highest proportion of chon-

drocytes inserted into the defect, and as such have the highest matrix levels at early times.

This is likely due to increased matrix formation primarily occurring at early times during

our simulations, when nutrients are more readily available in the defect. This means a higher

implanted chondrocyte density, as demonstrated here, could be desirable to increase matrix

levels. Despite this, as with our previous co-implantation cases, increased matrix deposition

appears to slow at later times, with nutrient concentration and cell diffusion being the main

regulatory factors of healing.

Next, we make a comparison between the five co-implantation cases with ACI and ASI to

identify both spatial and temporal differences in matrix and cell densities.
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4.3.2 Comparison of matrix density of co-implantation, ACI and ASI at

early times
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Figure 4.16: Comparison of matrix density profiles for all cases at times t = 11 days and 1
month. x = 0 in the figure represents the location of the base of the defect, x = 1 represents
the surface of articular cartilage.
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Figure 4.17: Comparison of matrix density profiles for all cases at times t = 3 and 6 months.
x = 0 in the figure represents the location of the base of the defect, x = 1 represents the
surface of articular cartilage.

Figures 4.16 and 4.17 compare matrix densities at early times for five co-implantation cases

with ACI and ASI.
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Up to 1 month, the 100% chondrocyte case (0:100) has the largest amount of matrix (Fig.

4.16). Although at 11 days the chondrocyte density in the 90:10 case is close to that of other

co-implantation cases containing higher chondrocyte densities, and even higher than in the

0:100 case (compare Figs. 4.1, 4.4, 4.7, 4.10, 4.13 and Fig 2 in Lutianov et al. [119]), the

additional nutrient demands of the stem cells brings the nutrient concentration below the

minimum threshold value, resulting in matrix densities much lower than the 0:100 case (Fig.

4.16). In the 100:0 case, the stem cells have not yet differentiated into chondrocytes at these

early time points and hence no matrix at all is produced (Fig. 4.16).

The 10:90 case has the highest levels of matrix at 3 months (Panel 1 in Fig. 4.17), consistent

with the observations in Figures 4.13, 4.14, 4.15. The five co-implantation cases produce

more matrix than the 0:100 case, despite the 0:100 case having the largest matrix density at

earlier times and the highest implantation of chondrocytes. The 100:0 implantation, relevant

to ASI, still has the lowest matrix levels, indicating that the implantation of mesenchymal

stem cells alone delays healing initially (Panel 1 in Fig. 4.17).

These findings highlight the importance of early matrix deposition, as it is clear at late

times the differences we observe in matrix levels between our co-implantation cases are more

moderate (Figs. 4.3, 4.6 4.9, 4.12, 4.15, Panel 2 in 4.17). At late times our simulations are

more likely to be constrained by low nutrient concentrations, therefore slowing the rate of

healing down. At early times more nutrients are available within the defect, primarily at the

top, where formation of cartilage is most notable in our ASI and co-implantation cases. We

find our ACI case forms matrix primarily at the bottom of the defect as nutrient levels never

become very low here, unlike for our other cases, meaning cells are not forced to diffuse to

areas of higher nutrient concentration to continue proliferating (Fig. 4.17). Chondrocytes

also have a lower cell motility rate in comparison to MSCs, meaning diffusion to the top of
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the defect will be slower.

Comparing mean cell and matrix densities versus time for co-implantation, ACI

and ASI

Here we compare the mean matrix, chondrocyte and MSC densities over a period of 24

months for 4 cases: 0:100 (ACI), 100:0 (ASI), and 2 co-implantation strategies, 90:10 and

10:90. We choose to focus on 90:10 and 10:90 as they represent our two most extreme co-

implantation cases, with all other results, i.e 70:30, 50:50 and 30:70, lying within the bounds

of these two sets of results (see Figs. 4.16 and 4.17). The two single-cell implantation cases

are investigated in Lutianov et al. [119] and Chapter 3 of this thesis [21].

In Figure. 4.18(a), at 1 month, the mean matrix density produced is largest for the 0:100

case (blue). This is not only because this case has the largest concentration of chondrocytes

directly producing matrix from the beginning, but also because only chondrocytes are seeded

in the defect. The co-implantation cases also have a population of stem cells competing for

nutrients, thus reducing the average matrix production by the chondrocytes. At 2 months the

100:0 (yellow) case has produced barely any matrix due to MSCs having to first differentiate

into chondrocytes before matrix deposition can begin. Also at this time, our co-implantation

cases (90:10 grey, 10:90 orange) have already surpassed the matrix levels of 0:100 despite

containing less implanted chondrocytes. This is due to growth factors being released by the

cell-to-cell interaction of the MSCs and chondrocytes (Chapter 3 [21]) and the balance of the

effects of cell proliferation and nutrient levels. In our model MSCs have a high demand for

nutrients to support their high proliferation rate and their differentiation into chondrocytes.

In the 90:10 case the large concentration of MSCs therefore consume a large amount of

nutrients, leaving less for the chondrocytes to produce matrix. On the other hand, in the

10:90 case the MSC density is lower and therefore these cells consume less nutrients, leaving
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Figure 4.18: Mean densitites of (a) matrix, m, (b) chondrocytes, CC , (c) MSCs, CS , as a
function of the time, in months, from 1-24 months for 0:100 (ACI, blue), 10:90 (orange),
90:10 (grey) and 100:0 (ASI, yellow). x = 0 in the figure represents the location of the base
of the defect, x = 1 represents the surface of articular cartilage.
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more nutrients for the chondrocytes to proliferate and deposit matrix. This difference is

mainly observable at early times.

At 3 months the mean matrix density for 90:10 (grey) case is 136% more than in the 0:100 case

(blue), and an even higher percentage difference when compared with the 100:0 case (yellow).

This marked increase in matrix density is due to the effects of the growth factors [21]. We

see a higher percentage difference when compared to 100:0 due to lower mean chondrocyte

density at this time compared to 90:10 and 0:100 (see Fig. 4.18(b) for the mean chondrocyte

density comparison between the co-implantation cases and ACI and ASI). Beyond 3 months

this increase in mean matrix levels is sustained for the co-implantation cases with an 80%

increase at 12 months when compared with 0:100 for our 90:10 case. The percentage differ-

ence is smaller when compared with the 100:0 case, with a 5.5% increase at 12 months. 12-24

months we see the co-implantation cases maintain the highest mean matrix levels, which is

an accumulation of the differences in matrix levels at early times.

In Fig. 4.18(b) we compare the mean chondrocyte densities for the 10:90 (orange), 90:10

(grey) and 100:0 (yellow) cases. We do not show the evolution of the mean cell density of

the 0:100 case since it is more localised to the bottom of the defect and therefore not a good

comparison for mean cell levels. We see at 1 month that the 10:90 case (orange) has the high-

est levels of chondrocytes, but despite this matrix deposition is slow initially due to nutrient

levels falling below the critical condition, n1 = 10−1 (Fig. 4.8). This effect is also observable

in the 90:10 case (orange). At 3 months chondrocyte levels have increased dramatically in

our co-implantation cases, indicating MSC differentiation has been initiated, thus leading to

these cases having the highest matrix density (Fig 4.18(a)).
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In Fig. 4.18(c) we compare the mean MSC densities for the 10:90 (grey) and 90:10 (orange)

co-implantation and 100:0 (yellow) cases. The 0:100 contains no MSCs. At 1 month the 90:10

case has the highest density of MSCs, despite the 100:0 case having the highest implantation

of MSCs. In the 10:90 and 90:10 cases cell-to-cell interaction releases growth factors almost

immediately, meaning chondrocyte proliferation and MSC differentiation is enhanced [184,

21]. This is likely to be the cause of the marked increase in MSC levels in the defect at this

time.
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4.4 Summary & Conclusions

This chapter aimed to develop a mathematical model to explore the longer term patterns over

time of cartilage defect healing following implantation of mixtures of MSCs and chondrocytes

at various ratio’s, and investigate the differences between them. Firstly, our simulations

suggest that co-implanting MSCs and chondrocytes will increase matrix deposition within

the first half year of healing when compared with 100% mesenchymal stem cell (ASI) or 100%

chondrocyte (ACI) implantation therapies, indicating a chondral defect could fill with new

cartilage at earlier times when a co-culture procedure is the chosen treatment. Although 10:90

appears to have the highest matrix density at early times, clinically a co-implantation ratio

that uses less chondrocytes is desirable if the aim would be to develop a single-stage autologous

chondrocyte implantation procedure [9]. Opting for the lower proportion of chondrocytes in

these co-implantation therapies could mean sufficient chondrocytes can be isolated from the

cartilage harvest obtained during arthroscopy for a successful co-implantation procedure [175].

This alleviates the need for expansion of cells in vitro if the fresh chondrocytes are combined

with allogeneic stem cells, allowing cells to be harvested and inserted into the defect region

during one procedure [44]. Alternatively, the fresh chondrocytes can be mixed with fresh

bone marrow, which despite the lower total cell number has been suggested to be clinically

effective [163].

Current cell implantation methods such as ACI and ASI have their drawbacks. Autologous

Chondrocyte Implantation results in a very slow and steady fill of matrix in the defect, where

nutrients are rarely low with healing taking closer to 24 months. Articular Stem Cell Implan-

tation has an exceedingly slow start with matrix only being deposited after around 2 months

due to MSCs first having to differentiate into chondrocytes before healing can begin. Despite

its slow start, ASI does however fill the defect with new cartilage well within the 18-24 month
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time frame, exceeding matrix levels of ACI from around 5 months onwards. Motivation for a

new, better procedure is clear, with both current procedures having their own disadvantages

[21, 191]. Combining both MSCs and chondrocytes to create a new cell therapy is hoped to

result in good matrix deposition at earlier times, as with ACI, and good intermediate matrix

deposition, as with ASI, which our model has achieved.



Chapter 5

Mathematical model of

osteochondral defect regeneration

after cell therapy

In this chapter, we develop a mathematical model to explore the hypothesis that the repair of

osteochondral defects uses the process of endochondral ossification seen in the growth plate.

This hypothesis is based on the findings of Lydon et al. [120], who observed in an in vivo

ovine experimental model that osteochondral defect regeneration is driven by endochondral

ossification. However, the mathematical model specifically explores the hypothesis that the

PTHrP-Ihh feedback loop identified in the growth plate [103] can also regulate endochondral

defect healing. We will use the in vivo experimental results from Lydon et al. to compare the

general pattern of cartilage and bone formation between our mathematical model and the

repair process in vivo at various time points, in particular if the mathematical model captures

the observed key processes of osteochondral defect healing, i.e. cartilage fill, calcification and

bone production. As in Chapters 3 & 4, the various rate constants in the mathematical model

117
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will be based on in vitro or in vivo data where possible, otherwise an assumption will be made.

For relevant parameters, sensitivity analyses will be performed to determine the influence of

the parameter value on the model outcomes. The specific role of the mathematical model is

to address the hypothesis that PTHrP production in the surface layer of cartilage is a key

determinant of cartilage thickness in the repaired defect.

Firstly, we summarise the clinical problem osteochondral defects pose, giving details of the

proposed healing mechanism and growth factors PTHrP and Ihh, and detail the plan of the

chapter. Then, we formulate the model, giving details of modelling and parameter choices

along with non-dimensionalisation. Next we present the results of the model, whilst also

conducting a sensitivity analysis, highlighting the important mechanisms within the model

and validating our parameter choices and approximations. Finally, we briefly summarise the

findings of this work, with main discussion located in Chapter 6.

5.1 Introducing the problem

General understanding of osteochondral defect healing is of important clinical significance,

with little experimental data in humans available and reliable treatment strategies lacking.

Once a joint afflicted with an osteochondral defect is osteoarthritic, surgical intervention is

problematic and treatment options are limited [70]. Some treatment options for osteochon-

dral defects include Autologous Chondrocyte Implantation (ACI), Osteochondral Autograft

Transplantation (OATS), microfracture, with others [16, 36, 43]. Of these, only ACI and

OATS are able to achieve the hyaline-type cartilage needed when regenerating chondral or

osteochondral tissue, and are the treatments most used in clinical practice, with ACI deter-

mined to be an effective treatment strategy for large knee lesions due to the durability of the

regenerated tissue [12, 16, 40].
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Lydon et al recently demonstrated osteochondral defects in ovine models healing via endo-

chondral ossification [120]. The findings of Lydon et al show healing begins with cartilage

formation first occurring along the edges of the defect, filling from the sides inwards and

upwards until the defect fills and forms a cartilage model. Once this process has completed,

chondrocytes undergo hypertrophy and ossification takes place, with a layer of cartilage left

remaining along the top of the defect. Other earlier studies support this hypothesis, such

as those by Gotterbarm et al using the Gottingen mini-pig model (GMP) that show defects

located in the trochlear groove of the knee heal via endochondral ossification [73, 86]. Shapiro

et al also observed an endochondral ossification-like process occurring from the base of os-

teochondral defects in rabbit models, where hypertrophic chondrocytes were observed to be

exhibiting behaviour akin to an endochondral process [161].

As detailed in Chapter 2, transcription factor Ihh (Indian Hedgehog) and growth factor

PTHrP (Parathyroid hormone-related Protein) have an important mediatory role during the

process of endochondral ossification. Indian hedgehog (Ihh) stimulates chondrocyte prolif-

eration, along with chondrocyte and osteoblast differentiation [103]. Indian hedgehog is se-

creted when chondrocytes are exiting their proliferative state to undergo hypertrophy, whereas

parathyroid hormone-related protein (PTHrP) is secreted by chondrocytes at the articular

surface [84, 193]. PTHrP keeps chondrocytes in their proliferative state, which inhibits the

production of Ihh and chondrocyte hypertrophy, forming a negative feedback loop [173]. Ad-

ditionally, an external regulator to initiate chondrocyte hypertrophy, indicating the initiation

of the endochondral ossification process, has been reported in various works. Kerkhofs et al.

[94] explore the regulatory effects controlling endochondral ossification within the growth

plate, and identify a sequential process where the PTHrP-Ihh feedback loop takes effect once
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an external regulator initiates hypertrophy. Geris et al. [66] include a critical cartilage den-

sity in their bio-regulatory fracture healing model to initiate cartilage calcification based on

earlier observations by Einhorn [50], where cartilage mineralisation is proposed to occur in

the abundance of cartilage, akin to a critical density being achieved. Another example is by

Carlier et al. [24], where in their computational fracture healing model a critical cartilage

density is reached before endochondral ossification can occur, similar to [66]. Kozhemyak-

ina et al. [100] describes how chondrocytes convert from a proliferative to a hypertrophic

state within the growth plate, where this process is thought to be regulated by C-type na-

triuretic peptide (CNP) (and also its antagonistic feedback with FGF-18) that is produced

by pre-hypertrophic and proliferative chondrocytes. The hypotheses we discuss above are

perhaps regulated by differing factors, whether it be an abundance of cartilage matrix or a

critical growth factor level, but the result remains the same; an external regulator outside

the PTHrP-Ihh loop initiates the conversion of proliferation to hypertrophy in chondrocytes.

In our model, we decide to use a critical cartilage density.

The focus of our work is to formulate a mathematical model to describe the osteochondral

defect healing process after undergoing Autologous Chondrocyte Implantation (ACI). With

this model, we aim to encapsulate the main characteristics of healing as described in the

literature by focusing on the endochondral ossification healing pathway, and explore the im-

portance of the above signalling pathway within the healing process. In Chapters 3 and 4

mathematical models were formulated to explore the processes involved in chondral defect

healing after cell therapy. Lutianov et al. [119] successfully simulated cartilage regeneration

following Autologous Chondrocyte Implantation and Articular Stem Cell Implantation, an

ACI-like therapy where mesenchymal stem cells are implanted in the place of chondrocytes.

The simulations compared the two cell therapies to demonstrate how they differed during
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healing, with their conclusions stating there was no difference in overall healing time, but

successfully highlighted differences in cell behaviour and healing evolution. Following on

from this work, we incorporated the effects of growth factors to this model and simulated the

implantation of chondrocytes and mesenchymal stem cells in a co-implantation cell therapy

procedure [22, 21]. This work built on the in vitro experiments by Wu et al. [184] and high-

lighted the importance of growth factors released by cell-to-cell interactions within chondral

healing between mesenchymal stem cells and chondrocytes, and how the co-implantation of

these two cell types had a trophic effect on healing at early times. Despite these effects, we

found no difference in overall healing time.

Current mathematical models of osteochondral defects are primarily concerned with vari-

ous aspects of mechanical influence, with work exploring the properties of relevant scaffolds

used in defect repair [92] and the mechanical influence of mesenchymal stem cell differenti-

ation within a defect [91]. Another model was formulated to predict the effect of location

of osteochondral defects within knees that are arthritic, using a finite element modelling ap-

proach [150]. Though these models explore some aspects of the healing process, this work will

produce a novel mathematical model to depict the key mechanisms of osteochondral defect

healing including endochondral ossification.

The plan of this chapter is as follows. In section 5.2 §Mathematical model we describe the basic

model and the assumptions made, the boundary and initial conditions used, estimates of the

parameter values and the scalings used to non-dimensionalise the equations. The results of

our simulations are discussed in section 5.3 §Results and sensitivity analysis, where a thorough

sensitivity analysis will be undertaken to validate our parameters and highlight those most
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sensitive to change within the model. Finally, in section 5.4 §Discussion & conclusions, we

explore the implications of the model, its limitations, and future work.

5.2 Mathematical model

A typical osteochondral defect has a small aspect thickness depth to length ratio. This

enables us to simplify to a one-dimensional problem where we model cell growth along the

defect thickness only, shown as the x-direction in Fig. 5.1.

x

bone bone
cartilagecartilage

bone
cartilage

osteochondral defect

cells

Figure 5.1: Schematic of a cross-section of the osteochondral defect. After debridement of
the defect, cells such as chondrocytes or mesenchymal stem cells are seeded along the defect
walls.

The variables in our model are: the chondrocyte density, CC (cells/mm3), the mature (or hy-

pertrophied) chondrocyte density, CH (cells/mm3), the osteoblast density, CB (cells/mm3),

the total matrix density, m (g/mm3), which consists of the cartilage matrix density, mC

(g/mm3), the bone matrix density, mB (g/mm3), and the calcified cartilage density, mCa

(g/mm3), the nutrient concentration, n (moles/mm3), the hypertrophy-inducing growth fac-

tor concentration, gHI (g/mm3), the hypertrophy-suppressing growth factor concentration,

gHS (g/mm3) and the hypertrophy modulating concentration (g/mm3), gHM . Our model

assumes a healing osteochondral defect can be populated by three cell types, namely chondro-

cytes, hypertrophied chondrocytes and osteoblasts, which each produce their specific matrix:
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cartilage, calcified cartilage or bone. Depending on cell type, the cells are able to migrate

non-directed (random) and depending on cell type proliferate via the uptake of nutrients, dif-

ferentiate, undergo hypertrophy and deposit matrix via nutrient uptake. In order to explore

our central hypothesis that the PTHrP-Ihh feedback loop is important in endochondral ossi-

fication also controls the healing of osteochondral defects, we include a particular mechanism

representing the growth factors in this feedback loop and their stimulatory and suppressive

influence on chondrocyte hypertrophy. We do not include the biomechanical and other bio-

chemical effects discussed in Chapter 2, which are known to influence bone resorption and

remodelling as well as patterns of endochondral ossification, even though they may also relate

to the repair process we are modelling. We also do not explicitly include chemotaxis (directed

motility). As with the model formulated in Chapter 3, the motility of cells (assumed to occur

through diffusion) is modelled proportional to the nutrient concentration, with cell prolifera-

tion and differentiation ceasing to occur when nutrient levels are low, meaning cell motility is

the driving force of evolution at these times, migrating towards locations of higher nutrient

concentration.

We now develop a mathematical model for the evolution of each species in time, t, and space,

x, where x is measured along the thickness of the defect (see Figure 5.1). Much of the model

formulation follows from our previous chapters and other models of chondral defect regener-

ation [21, 22, 119].

We focus here on the cartilage-to-calcified cartilage-to-bone formulation (endochondral ossifi-

cation) pathway and the role of growth factors mediating this. To achieve a sequential healing

process, we allow for processes described to occur during osteochondral defect repair to be
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regulated by certain factors: For example, we will allow our osteochondral defect to first fill

entirely with cartilage, therefore forming the cartilage model, before chondrocyte hypertro-

phy and eventual conversion into bone can occur [24, 66]. Factors that regulate these stages

are growth and transcription factors, such as PTHrP and Ihh, represented in the model by

gHI , gHM , gHS .

Figure 5.2: Schematic of a growth factor feedback loop akin to PTHrP and Ihh, modelled
as inducing, modulating and suppressing growth factors. Black arrows indicate inducing,
maroon lines represent inhibiting. Cc and Ch represent chondrocytes and hypertrophic chon-
drocytes, respectively.

Here we use gHI to represent the growth factor that regulates hypertrophy. Once hyper-

trophic chondrocytes are being produced modulating growth factor is released, gHM , that

acts as an intermediate step within the signalling pathway; this growth factor inhibits our

inducing growth factor, gHI , but also produces suppressing growth factor, gHS , that inhibits

the hypertrophy, representing effects similar to PTHrP suppressing hypertrophy by keeping

chondrocytes proliferating [94].

Additionally, we include a critical cartilage density, mCcrit , acting as an external regulator
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that allows chondrocytes to switch from a proliferative to a hypertrophic state whilst also

initiating the conversion of cartilage to calcified matrix and the endochondral ossification

process. Once mCcrit is achieved, taken in our model to be 95% of mCmax , cartilage can

begin conversion into calcified matrix which is subsequently remodelled to bone as seen in

bone fracture healing [24, 66]. This conversion of cartilage to calcified matrix can occur at

locations where mC reaches mCcrit , allowing chondrocytes to convert from a proliferative to

a hypertrophic state.

The mechanisms we include in our model are detailed below. We do not include the biome-

chanical and biochemical effects discussed in Chapter 2 of this thesis. We do not explicitly

include chemotaxis in the nutrient field.

Chondrocytes can proliferate by uptake of nutrients, they can migrate and can undergo

hypertrophy. Based on these processes, the rate of change of chondrocyte density is modelled

as

∂CC
∂t

=
∂

∂x

(
DCC

(m)
∂CC
∂x

)
+ p5

(
m,

CC
CC,max(m)

)
CC

n

n+ n0
H (n− n1)

− p6CCH (gHI − gHI0)H (gHS0 − gHS)− p7CcH (n1 − n) ,

(5.1)

The first term on the right of Eq. (5.1) represents random chondrocyte migration, modelled

as a diffusion process, with an effective chondrocyte random motility coefficient, DCC
. This

coefficient is assumed to depend on the total matrix density, m, where m = mC +mB +mCa.

This is based on the argument that cells can only migrate by attaching to a substrate (in

this case, matrix). We use a density-weighted formula for the effective chondrocyte diffusion
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coefficient, DCC
, based on the diffusivity through cartilage, DCC,C

, calcified cartilage, DCC,Ca
,

and bone matrix, DCC,B
, using a mixtures rule, analogous to the overall resistance of resistors

in parallel in an electrical circuit. We follow [147] and [7] in choosing expressions for DCC,C
,

DCC,Ca
and DCC,B

.

1

DCC
(m)

=
(mC

m

)α 1

DCC,C
(mC)

+
(mB

m

)α 1

DCC,B
(mB)

+
(mCa

m

)α 1

DCC,Ca
(mCa)

, α ≥ 2,

DCC,C
(mC) = DCC,C0

mC

m2
C +m2

C,1

, DCC,B
(mB) = DCC,B0

mB

m2
B +m2

B,1

,

DCC,Ca
(mCa) = DCC,Ca0

mCa

m2
Ca +m2

Ca,1

(5.2)

where (DCC,C0
, DCC,B0

, DCC,Ca0
) are reference diffusion ratios of chondrocyte through carti-

lage, bone and calcified cartilage, respectively, and (mC,1,mB,1,mCa,1) are reference matrix

densities.

The exponent α ≥ 2 is chosen so that we mimic the low motility of cells for the limiting cases

when there is no cartilage (or bone) present and for large cartilage (or bone) matrix densities.

The second term on the right of Eq. (5.1) represents chondrocyte proliferation.

Cell proliferation is assumed to be proportional to the chondrocyte density and the nutrient

concentration. This process is assumed to start only when the nutrient concentration ex-

ceeds a critical value, n1 (or, alternatively, cell proliferation is switched-off when the nutrient

concentration falls below this critical value). This is modelled by the Heaviside function,

H(n − n1), which takes the unit value when n > n1 and zero otherwise. The chondrocyte

proliferation rate is given by p5. The proliferation rate is assumed to depend on both the



127

chondrocyte and total matrix densities. We choose

p5

(
m,

CC
CC,max(m)

)
= p5,m

(
1− CC

CC,max(m)

)
,

1

p5,m(m)
=

(mCtot

m

)α 1

p5,C(mCtot)
+
(mB

m

)α 1

p5,B(mB)
, α ≥ 2,

p5,C(mCtot) = p5,C0

mCtot

m2
Ctot

+m2
C,2

, p5,B(mB) = p5,B0

mB

m2
B +m2

B,2

,

CC,max(m) = CC,max0

(
1− m

mmax

)
,

(5.3)

The dependence of p5 on the total matrix density is represented by p5,m(m). A density-

weighted formula (similar to the effective cell diffusion coefficient) is used to model the effec-

tive proliferation rate based on cell proliferation rate in the presence of cartilage (represented

by p5,C) and bone (represented by p5,B). The dependence of (p5,C , p5,B) on the matrix density

(mCtot ,mB) are chosen so that (p5,C , p5,B) = 0 when (mCtot ,mB) = 0, (p5,C , p5,B) → 0 for

large (mCtot ,mB) and (p5,C , p5,B) attain a maximum at some intermediate matrix density,

(mCtot ,mB) = (mC,2,mB,2). The coefficients, p5,C0 , p5,B0 , represent chondrocyte proliferation

rates in the presence of cartilage and bone, respectively. We assume that p5,C depends on the

total cartilage matrix density, mCtot = mC +mCa and not on the cartilage type, i.e., whether

regular or calcified cartilage. The dependence of p5 on the chondrocyte density is assumed

to follow a logistic growth model with the proliferation rate decreasing as the chondrocyte

density approaches its maximum value, CC,max. This maximum chondrocyte density is as-

sumed to decrease linearly with total matrix density, m, because the presence of matrix will

limit the space for cells. CC,max0 is a reference maximum chondrocyte density.

The third term on the right of Eq. (5.1) models chondrocyte hypertrophy. This is assumed

to be proportional to the chondrocyte density and is regulated by the hypertrophy-inducing

and suppressing growth factors, gHI and gHS , respectively. The maturation rate is p6, and

is assumed constant. The dependence on these growth factor concentrations is modelled
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using the Heaviside function, H(gHI − gHI0) and H(gHS0 − gHS), where gHI0 and gHS0 are

a threshold hypertrophy-inducing and suppressing growth factor concentration, respectively.

The first Heaviside function promotes hypertrophy once the hypertrophy-inducing growth

factor concentration exceeds its threshold value, gHI0 , and the second suppresses hypertrophy

once the hypertrophy-suppressing growth factor concentration exceeds its threshold value,

gHS0 .

The last term in Eq. (5.1) represents cell death due to lack of adequate nutrients. This process

starts when the nutrient concentration falls below the critical value, n1, and is modelled using

the Heaviside function, H(n1−n), which takes the unit value when n < n1 and zero otherwise.

The cell death rate, p7, is assumed constant.

The rate of change of mature hypertrophic chondrocyte density is written as

∂CH
∂t

=
∂

∂x

(
DCH

(m)
∂CH
∂x

)
− p8CH + p6CCH (gHI − gHI0)H (gHS0 − gHS) , (5.4)

where DCH
is the migration (diffusion) coefficient and p8 is the death rate. We use similar

expressions as in Eqs. (5.3) for the diffusion coefficient DCH
through cartilage and bone,

given by

1

DCH
(m)

=
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m

)α 1

DCH,C
(mC)

+
(mB

m

)α 1

DCH,B
(mB)

+
(mCa

m

)α 1

DCH,Ca
(mCa)

, α ≥ 2,

DCH,C
(mC) = DCH,C0

mC

m2
C +m2

C,1

, DCH,B
(mB) = DCH,B0

mB

m2
B +m2

B,1

,

DCH,Ca
(mCa) = DCH,Ca0

mCa

m2
Ca +m2

Ca,1

,

(5.5)

where DCH,C0
, DCH,B0

, DCH,Ca0
are reference diffusion ratios of hypertrophic chondrocytes
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through cartilage, bone and calcified cartilage, respectively,

The last term in Eq. (5.4) models the formation of hypertrophic chondrocytes modulated by

the hypertrophy-inducing and suppressing growth factor concentrations.

The rate of change of osteoblast density is written as

∂CB
∂t

=
∂

∂x

(
DCB

(m)
∂CB
∂x

)
+ p9

(
m,

CB
CB,max(m)

)
CB

n

n+ n0
H (n− n1)

− p10CBH (n1 − n) ,

(5.6)

where DCB
is the osteoblast migration (diffusion) coefficient, p9 is the osteoblast proliferation

rate and p10 is the osteoblast death rate. We use similar expressions as in Eqs. (5.3,5.5) for

the matrix-dependent osteoblast diffusion and proliferation ratio, given by:
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,

CB,max(m) = CB,max0

(
1− m
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)
,

(5.7)

where DCB,C0
, DCB,B0

, DCB,Ca0
are reference osteoblast migration rates through cartilage,

bone and calcified cartilage, respectively, and p9,C0 , p9,B0 are reference osteoblast prolifer-

ation rates in the presence of cartilage and bone, respectively. The maximum osteoblast
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density, CB,max, is assumed to decrease linearly with total matrix density, m. CB,max0 is

a reference maximum osteoblast density. We choose the reference maximum normal and

mature chondrocyte and osteoblast densities, CC,max0 , CH,max0 , CB,max0 , respectively, such

that CC,max0 + CH,max0 + CB,max0 = Ctotal,max0 , where Ctotal,max0 is a reference maximum

total cell density. Hence, using the expressions for CC,max and CB,max in Eqs. (5.3,5.7) gives,

(CC,max + CB,max)(m) = (Ctotal,max0 − CH,max0)(1−m/mmax).

The rate of change of cartilage matrix density is

∂mC

∂t
= DmC

∂2mC

∂x2
+ p11(mC)

n

n+ n0
CC − p12(mC)CH , (5.8)

where DmC is the cartilage matrix diffusion coefficient (assumed constant), p11 is the cartilage

matrix synthesis rate and p12 is the rate of localized cartilage matrix degradation. We choose

p11(mC) = p110 − p111mC , (5.9)

where p110 is a cartilage matrix production rate and p111 is its degradation rate. This assumes

that the cartilage matrix synthesis rate decreases linearly with increasing cartilage matrix

density [7, 147].

As described in the beginning of this section, the conversion of cartilage to calcified matrix

can occur at locations where mC reaches mCcrit , taken in our model to be 95% of mCmax .

The last term in Eq. (5.8) models localized degradation of cartilage matrix to form calcified

matrix and is assumed to be proportional to the hypertrophied chondrocyte density. We
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choose

p12(mC) = p120mC , (5.10)

where p120 is a cartilage matrix degradation rate. This assumes that the degradation is

proportional to the cartilage matrix density. We allow cartilage degradation to occur once

m̄C has reached the critical density, mCcrit , and to cease when mCa and mB have reached

maximum matrix density.

The rate of change of calcified cartilage matrix density is given by

∂mCa

∂t
= p12(mC)CH − p20mCaCB. (5.11)

The first term on the right of Eq. (5.11) describes the formation of calcified cartilage as

the cartilage matrix degrades in the presence of hypertrophic chondrocytes.The second term

describes degradation of calcified cartilage matrix and is assumed to be proportional to its

density and the osteoblast cell density and p20 the degradation rate. Here, we do not dis-

tinguish between osteoblasts and osteoclasts which are responsible for converting calcified

cartilage into bone.

The rate of change of bone matrix density is

∂mB

∂t
= DmB

∂2mB

∂x2
+ p13(mB)

n

n+ n0
CB + p20mCaCB, (5.12)

where DmB is the bone matrix diffusion coefficient (assumed constant) and p13 is the bone

matrix synthesis rate. We choose

p13(mB) = p130 − p131mB, (5.13)
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where p130 is a bone matrix production rate and p131 is its degradation rate. The last term

in Eq. (5.12) models bone matrix formation from calcified cartilage matrix.

The rate of change of hypertrophy-inducing growth factor concentration is modelled as

∂gHI
∂t

= DgHI

∂2gHI
∂x2

− p24gHM − p25gHI , (5.14)

where DgHI is the hypertrophy-inducing growth factor diffusion coefficient (assumed con-

stant), p24 is rate of degradation via hypertrophy-modulating growth factor (second term

in the right of Eq 5.14) and is assumed proportional to the hypertrophy-modulating growth

factor concentration, and p25 is the rate of degradation (assumed constant).

The rate of change of hypertrophy-suppressing growth factor concentration is modelled as

∂gHS
∂t

= DgHS

∂2gHS
∂x2

+ p15gHM − p22gHS , (5.15)

where DgHS is the hypertrophy-suppressing growth factor diffusion coefficient (assumed con-

stant), p15 and p21 represents its production rate and p22 is the degradation rate (assumed

constant). The second term in Eq. (5.15) models the production of hypertrophy-suppressing

growth factor from chondrocytes and is hence assumed to be proportional to the chondrocyte

density. We assume here that this growth factor is produced only by the chondrocytes at the

top of the defect (x = d). The third term models the production of hypertrophy-suppressing

growth factor by the hypertrophy-modulating growth factor. The fourth term represents the

degradation of this growth factor (assumed to be proportional to the hypertrophy-modulating

growth factor concentration).
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The rate of change of hypertrophy-modulating growth factor concentration is modelled as

∂gHM
∂t

= DgHM

∂2gHM
∂x2

+ CH − p23gHM , (5.16)

where DgHM is the hypertrophy-modulating growth factor diffusion coefficient (assumed con-

stant), and p23 represents the degradation rate (assumed constant). The production of

hypertrophy-modulating growth factor is assumed to be proportional to the hypertrophied

chondrocyte density.

Finally, the rate of change of nutrient concentration is modelled as

∂n

∂t
= Dn

∂2n

∂x2
− n

n+ n0
(p17CC + p18CB + p19CH) , (5.17)

where Dn is the nutrient diffusion coefficient (assumed constant), p17, p18 and p19 represent

the nutrient uptake rate by chondrocytes, osteoblasts and mature chondrocytes, respectively

(assumed constant).

5.2.1 Boundary conditions

We need to specify two boundary conditions for each species (except mCa, which does not

require spatial boundary conditions). These are specified at either end of the defect domain.

We choose x = 0 at the bottom (subchondral bone interface) and x = d (normal cartilage

interface) at its upper end. The boundary conditions chosen at x = 0 are:

−DCC
(m)

∂CC
∂x

= −DCH
(m)

∂CH
∂x

= −DmC

∂mC

∂x
= −DmB

∂mB

∂x
= 0,

CB = CB0 , n = N0, gHI = gHI1 , gHS = gHM = 0.
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The first four boundary conditions represent no flux of chondrocytes, hypertrophied chon-

drocytes, cartilage matrix and osteoblasts from the subchondral bone. We assume that a

reservoir of osteoblasts, with uniform cell density, CB0 , and nutrients, with uniform concen-

tration, N0, are always available at this end, represented by the fourth and fifth boundary

conditions, respectively. The last three boundary conditions represent a constant supply of

hypertrophy-inducing growth factor, with uniform concentration, gHI1 , and no hypertrophy-

suppressing or modulating growth factor, respectively, at this end.

At x = d, we impose:

−DCC
(m)

∂CC
∂x

= −DCB
(m)

∂CB
∂x

= −DCH
(m)

∂CH
∂x

= −DmC

∂mC

∂x
= −DmB

∂mB

∂x
= 0,

n = N1, gHI = gHI2 , −DgHS

∂gHS
∂x

= γgHS , gHM = 0.

(5.18)

The first five boundary conditions represent no flux of chondrocytes, osteoblasts, hypertro-

phied chondrocytes and matrix, respectively, from the normal cartilage interface. We assume

that a reservoir of nutrients with uniform concentration, N1, is always available at this end. A

constant supply of hypertrophy-inducing growth factor, with uniform concentration, gHI2 is

available at this boundary. We allow the hypertrophy-suppressing growth factor to permeate

(or diffuse) in through this boundary, represented by the eighth boundary condition, with the

diffusive flux proportional to the growth factor concentration, and constant of proportional-

ity γ (assumed constant). There is no hypertrophy-modulating growth factor at the upper

boundary.

5.2.2 Initial conditions

We need to prescribe profiles for each species at time t = 0. We are interested in the Au-

tologous Chondrocyte Implantation (ACI) scenario. Initially, chondrocytes (and osteoblasts)
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are seeded into a nutrient-filled defect with a small amount of matrix present. The initial

conditions chosen for this case are:

CC = C
(0)
C h(x), CB = CB0h1(x), CH = 0, n = N0 − (N0 −N1)

x

d
, mC = mC,3, mB = mB,3,

mCa = 0, gHI = gHI1 − (gHI1 − gHI2)
x

d
, gHS = gHM = 0.

(5.19)

Here, C
(0)
C , C

(0)
B , h(x) and h1(x) are an initial chondrocyte and osteoblast density and their

specified spatial profiles, respectively.

There are several parameters appearing in the model. Their estimated values and the refer-

ences from which they are obtained are provided in Table 5.1. All approximated parameters

are disclosed in the table and references are given where available.
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dimensional parameters estimated value, source type

defect thickness, d 3-5 mm (1-2 mm cartilage, 2-3 mm bone) (guess)

maximum chondrocyte migration (or dif-

fusion) coefficient in cartilage, DCC,C

3.6 × 10−4 mm2/hr [144], in silico

maximum chondrocyte migration (or dif-

fusion) coefficient in bone, DCC,B

3.6 × 10−4 mm2/hr (assumed same as DCC,C
)

maximum chondrocyte migration (or dif-

fusion) coefficient in calcified cartilage,

DCC,Ca

3.6 × 10−4 mm2/hr (assumed same as DCC,C
)

maximum mature chondrocyte migra-

tion (or diffusion) coefficient in cartilage,

DCH,C

10−5 mm2/hr (guess)

maximum mature chondrocyte migration

(or diffusion) coefficient in bone, DCH,B

10−5 mm2/hr (assumed same as DCH,C
)

maximum mature chondrocyte migration

(or diffusion) coefficient in calcified carti-

lage, DCH,Ca

10−5 mm2/hr (assumed same as DCH,C
)

maximum osteoblast migration (or diffu-

sion) coefficient in cartilage, DCB,C

10−6 - 10−5 mm2/hr (guess)

maximum osteoblast migration (or diffu-

sion) coefficient in bone, DCB,B

10−4 - 10−3 mm2/hr (guess)
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maximum osteoblast migration (or dif-

fusion) coefficient in calcified cartilage,

DCB,Ca

10−4 - 10−3 mm2/hr (guess)

chondrocyte migration (or diffusion) coef-

ficient, DCC,C0
= 2mC,1DCC,C

7.2 × 10−9 (mm2/hr) (g/mm3) (assuming mC,1 =

10−5 g/mm3 )

chondrocyte migration (or diffusion) coef-

ficient, DCC,B0
= 2mB,1DCC,B

7.2 × 10−9 (mm2/hr) (g/mm3) (assuming mB,1 =

10−5 g/mm3 )

chondrocyte migration (or diffusion) coef-

ficient, DCC,Ca0
= 2mCa,1DCC,Ca

7.2 × 10−9 (mm2/hr) (g/mm3) (assuming mCa,1 =

10−5 g/mm3 )

mature chondrocyte migration (or diffu-

sion) coefficient, DCH,C0
= 2mC,1DCH,C

10−10 (mm2/hr) (g/mm3) (assuming mC,1 = 10−5

g/mm3 )

mature chondrocyte migration (or diffu-

sion) coefficient, DCH,B0
= 2mB,1DCH,B

10−10 (mm2/hr) (g/mm3) (assuming mB,1 = 10−5

g/mm3 )

mature chondrocyte migration (or

diffusion) coefficient, DCH,Ca0
=

2mCa,1DCH,Ca

10−10 (mm2/hr) (g/mm3) (assuming mCa,1 = 10−5

g/mm3 )

osteoblast migration (or diffusion) coeffi-

cient, DCB,C0
= 2mC,1DCB,C

10−11 - 10−10 (mm2/hr) (g/mm3) (assuming

mC,1 = 10−5 g/mm3 )

osteoblast migration (or diffusion) coeffi-

cient, DCB,B0
= 2mB,1DCB,B

10−9 (mm2/hr) (g/mm3) (assuming mB,1 = 10−5

g/mm3 )

osteoblast migration (or diffusion) coeffi-

cient, DCB,Ca0
= 2mCa,1DCB,Ca

10−9 (mm2/hr) (g/mm3) (assuming mCa,1 = 10−5

g/mm3 )

nutrient diffusion coefficient, Dn 4.6 mm2/hr [195], mathematical model

cartilage matrix diffusion coefficient, DmC 0 - 2.5 × 10−5 mm2/hr [144], in silico
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bone matrix diffusion coefficient, DmB 0 - 10−6 mm2/hr (guess)

hypertrophy-inducing growth factor diffu-

sion coefficient, DgHI

0.8 mm2/hr [181], in vitro, in vivo

hypertrophy-suppressing growth factor

diffusion coefficient, DgHS

0.18 mm2/hr [54], mathematical model, in vivo

hypertrophy-modulating growth factor

diffusion coefficient, DgHM

0.18 mm2/hr [54], mathematical model, in vivo

maximum chondrocyte proliferation rate

in cartilage, p5,C

2 × 10−4/hr (guess)

maximum chondrocyte proliferation rate

in bone, p5,B

2 × 10−4/hr (assumed same as p5,C)

chondrocyte proliferation rate, p5C,0 =

2mC,2p5,C

4 × 10−9 g/mm3/hr (assuming mC,2 = 10−5

g/mm3 )

chondrocyte proliferation rate, p5B,0 =

2mB,2p5,B

4 × 10−9 g/mm3/hr (assuming mB,2 = 10−5

g/mm3 )

chondrocyte hypertrophic differentiation

rate, p6

2 × 10−2/hr [182], in vivo

chondrocyte death rate, p7 3.75 × 10−3/hr (guess)

mature chondrocyte death rate, p8 6 × 10−3/hr [182], in vivo

maximum osteoblast proliferation rate in

cartilage, p9,C

(10−3-10−2)/hr (guess)

maximum osteoblast proliferation rate in

bone, p9,B

(10−3-10−2)/hr (assumed same as p9,C)
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osteoblast proliferation rate, p9,C0 =

2mC,2p9,C

2 × (10−8-10−7) g/mm3/hr (assuming mC,2 = 10−5

g/mm3 )

osteoblast proliferation rate, p9,B0 =

2mB,2p9,B

2 × (10−8-10−7) g/mm3/hr (assuming mB,2 = 10−5

g/mm3 )

osteoblast death rate, p10 10−3/hr (guess)

cartilage matrix production rate, p110 3.75 × 10−13(g/mm3)/((Nc/mm3) hr)[144], in sil-

ico

cartilage matrix degradation rate, p111 3.75 × 10−9/((Nc/mm3) hr) [144], in silico

cartilage matrix degradation rate, p120 4 × 10−5 /((Nc/mm3) hr) [182], in vivo

bone matrix production rate, p130 5 × 10−12 (g/mm3)/((Nc/mm3) hr)

bone matrix degradation rate, p131 10−12/((Nc/mm3) hr) (guess)

hypertrophy-suppressing growth factor

production rate, p15

10−24Nm/(Nc hr) [64], mathematical model

nutrient uptake rate by chondrocytes, p17 1.5 × 10−14Nm/(Nc hr) [195], mathematical model

nutrient uptake rate by osteoblasts, p18 1.5 × 10−14Nm/(Nc hr) (assumed same as p16, p17)

nutrient uptake rate by mature chondro-

cytes, p19

1.5 × 10−14Nm/(Nc hr) (assumed same as p16, p17)

calcified cartilage matrix degradation

rate, p20

8 × (10−3-10−2)/((Nc/mm3) hr) [7], mathematical

model

hypertrophy-modulating growth factor 0− 5.8× 10−2 (based on 0-12hr half-life)

degradation rate, p23

hypertrophy-suppressing growth factor

degradation rate, p22

4/hr (assuming half-life 10 minutes) [7], mathemat-

ical model
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hypertrophy-modulating growth factor

degradation rate, p24

4/hr (assuming half-life 10 minutes) [7], mathemat-

ical model

maximum total cell density, Ctotal,max0 106 Nc/mm3 (assuming 10µm cell diameter)

maximum chondrocyte density, CC,max0 0− 106 Nc/mm3

maximum mature chondrocyte density,

CH,max0

0− 106 Nc/mm3

maximum osteoblast density, CB,max0 0− 106 Nc/mm3

maximum cartilage matrix density,

mC,max

10−4 g/mm3 [7], mathematical model

maximum bone matrix density, mB,max (1− 2)× 10−3 g/mm3 (guess)

maximum calcified cartilage matrix den-

sity, mCa,max

(1− 2)× 10−3 g/mm3 (assumed same as mB,max)

maximum matrix density, mmax =

mC,max +mB,max +mCa,max

(2.1− 4.1)× 10−3 g/mm3

maximum total cartilage matrix density,

mCtot,max = mC,max +mCa,max

(1.1− 2.1)× 10−3 g/mm3

critical cartilage matrix density, mC,crit 0.95× 10−4 g/mm3 (assumed 95% of mC,max)

initial chondrocyte cell density, C
(0)
C 2.5 × 105 Nc/mm3 (based on 106 cells in 20mm x

20mm x 10µm volume)

matrix density, mC,1 10−5 g/mm3 (assumed mmax/100)

matrix density, mC,2 10−5 g/mm3 (assumed mmax/100)

matrix density, mCa,1 10−5 g/mm3 (assumed mmax/100)

matrix density, mB,1 10−5 g/mm3 (assumed mmax/100)

matrix density, mB,2 10−5 g/mm3 (assumed mmax/100)



141

initial cartilage/bone matrix density,

mC,3,mB,3

10−8 g/mm3 (assumed mmax/105)

initial nutrient concentration, N1 (2.85 - 9.5) × 10−11 Nm/mm3 (3-10% oxygen ten-

sion - [195], mathematical model)

initial nutrient concentration, N0 9.5 × 10−11 Nm/mm3 [95], human

threshold nutrient concentration, n0 2.3× 10−11 Nm/mm3 [195], mathematical model

critical nutrient concentration, n1 9.5× 10−12 Nm/mm3 (assumed N0/10)

threshold hypertrophy-inducing growth

factor concentration, gHI0

(0.5− 1)× 10−15 Nm/mm3

threshold hypertrophy-suppressing

growth factor concentration, gHS0

(0.5− 1)× 10−15 Nm/mm3

initial hypertrophy-inducing growth fac-

tor concentration, gHI1

2× 10−15 Nm/mm3

initial hypertrophy-inducing growth fac-

tor concentration, gHI2

2× 10−15 Nm/mm3

initial osteoblast cell density, CB(0) 9 × 103 Nc/mm3 [126], human

rate of hypertrophy-suppressing growth

factor leaving top boundary, γ

0 (no flux) - ∞ (zero concentration)

Table 5.1: Estimated values of dimensional parameters. In the above, NC represents number
of cells and Nm is number of moles.
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5.2.3 Non-dimensionalisation

We nondimensionalise introducing the following dimensionless variables based on character-

istic quantities for each variable:

x̄ = x/d, t̄ = t(p110Ctotal,max0/mC,max), (C̄C , C̄H , C̄B) = (CC , CH , CB)/Ctotal,max0 ,

(m̄, m̄C , m̄Ca, m̄B, m̄Ctot) = (m/mmax,mC/mC,max,mCa/mCa,max,mB/mB,max,mCtot/mCtotal,max),

n̄ = n/N1, ḡHI = gHI/gHI1 , ḡHM = gHM
(
p110/(p23mC,max)

)
,

ḡHS = gHS
(
p2

110Ctotal,max0/(p21p23m
2
C,max)

)
,

(5.20)

where the overbars represent dimensionless quantities. The characteristic quantities used

to measure the spatial variable, x, cell densities, matrix densities, nutrient concentration

and the hypertrophy-inducing growth factor concentration are the defect thickness, d, the

reference maximum total cell density, Ctotal,max0 , the maximum cartilage and bone matrix

densities, mC,max, mCa,max, mB,max, respectively, the total matrix density, mmax = mC,max+

mCa,max +mB,max, the total cartilage matrix density, mCtotal,max = mC,max +mCa,max, the

initial nutrient concentration at x = d, N1, and the initial hypertrophy-inducing growth

factor concentration at x = 0, gHI1 , respectively. We choose to measure time, t, based

on the cartilage matrix production time scale, mC,max/(p110Ctotal,max0). Using the param-

eter values in Table 5.1, we estimate this time scale to be approximately 11 days. Hence-

forth, a unit of time corresponds to approximately 11 days. We choose to measure the

hypertrophy-modulating growth factor concentration based on it’s production by hyper-

trophic chondrocytes, namely, p22mC,max/p110 and the hypertrophy-suppressing growth fac-

tor concentration based on it’s production by hypertrophy-modulating growth factor, namely,

p21p23m
2
C,max/(p

2
110
Ctotal,max0).
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Using the above dimensionless variables, the non-dimensional equations can be written as

∂C̄C
∂t̄

=
∂

∂x̄

(
D̄CC

(m̄)
∂C̄C
∂x̄

)
+ p̄5

(
m̄,

C̄C
C̄C,max(m̄)

)
n̄

n̄+ n̄0
C̄CH(n̄− n̄1) (5.21a)

− p̄6C̄CH(ḡHI − ḡHI0)H(ḡHS0 − ḡHS)− p̄7C̄CH(n̄1 − n̄), (5.21b)

∂C̄H
∂t̄

=
∂

∂x̄

(
D̄CH

(m̄)
∂C̄H
∂x̄

)
+ p̄6C̄CH(ḡHI − ḡHI0)H(ḡHS0 − ḡHS)− p̄8C̄H , (5.21c)

∂C̄B
∂t̄

=
∂

∂x̄

(
D̄CB

(m̄)
∂C̄B
∂x̄

)
+ p̄9

(
m̄,

C̄B
C̄B,max(m̄)

)
n̄

n̄+ n̄0
C̄BH(n̄− n̄1) (5.21d)

− p̄10C̄BH(n̄1 − n̄),

∂m̄C

∂t̄
= D̄mC

∂2m̄C

∂x̄2
+ p̄11(m̄)

n̄

n̄+ n̄0
C̄C − p̄12(m̄C)C̄H , (5.21e)

∂m̄Ca

∂t̄
=

1

Γ
p̄12(m̄C)C̄H − p̄20m̄CaC̄B, (5.21f)

∂m̄B

∂t̄
= D̄mB

∂2m̄B

∂x̄2
+ p̄13(m̄)

n̄

n̄+ n̄0
C̄B + p̄20

mCa,max

mB,max
m̄CaC̄B, (5.21g)

∂ḡHI
∂t̄

= D̄gHI

∂2ḡHI
∂x̄2

− p̄24ḡHM − p̄25ḡHI , (5.21h)

∂ḡHS
∂t̄

= D̄gHS

∂2ḡHS
∂x̄2

+ ḡHM − p̄22ḡHS , (5.21i)

∂ḡHM
∂t̄

= D̄gHM

∂2ḡHM
∂x̄2

+ C̄H − p̄23ḡHM , (5.21j)

∂n̄

∂t̄
= D̄n

∂2n̄

∂x̄2
− n̄

n̄+ n̄0

(
p̄16C̄S + p̄17C̄C + p̄18C̄B + p̄19C̄H

)
, (5.21k)
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where

p̄5

(
m̄,

C̄C
C̄C,max(m̄)

)
= p̄5,m(m̄)

(
1− C̄C

C̄C,max(m̄)

)
, C̄C,max(m̄) = C̄C,max0(1− m̄),

1

p̄5,m(m̄)
= (β + ε)α

(m̄Ctotal

m̄

)α 1

p̄5,C(m̄Ctotal
)

+ ηα
(m̄B

m̄

)α 1

p̄5,B(m̄B)
, α ≥ 2,

p̄5,C(m̄Ctotal
) = p̄5,C0

m̄Ctotal

m̄2
Ctotal

+ m̄2
C,2

, p̄5,B(m̄B) = p̄5,B0

m̄B

m̄2
B + m̄2

B,2

,

p̄9

(
m̄,

C̄B
C̄B,max(m̄)

)
= p̄9,m(m̄)

(
1− C̄B

C̄B,max(m̄)

)
, C̄B,max(m̄) = C̄B,max0(1− m̄),

1

p̄9,m(m̄)
= (β + ε)α

(m̄Ctotal

m̄

)α 1

p̄9,C(m̄Ctotal
)

+ ηα
(m̄B

m̄

)α 1

p̄9,B(m̄B)
, α ≥ 2,

p̄9,C(m̄Ctotal
) = p̄9,C0

m̄Ctotal

m̄2
Ctotal

+ m̄2
C,2

, p̄9,B(m̄B) = p̄9,B0

m̄B

m̄2
B + m̄2

B,2

,

p̄11(m̄C) = 1− p̄111m̄C , p̄12(m̄C) = p̄120m̄C , p̄13(m̄B) = p̄130 − p̄131m̄B,

D̄CC,C
(m̄C) = D̄CC,C0

m̄C

m̄2
C + m̄2

C,1

, D̄CC,B
(m̄B) = D̄CC,B0

m̄B

m̄2
B + m̄2

B,1

,

D̄CC,Ca
(m̄Ca) = D̄CC,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

,

1

D̄CH
(m̄)

= βα
(m̄C

m̄

)α 1

D̄CH,C
(m̄C)

+ ηα
(m̄B

m̄

)α 1

D̄CH,B
(m̄B)

+ εα
(m̄Ca

m̄

)α 1

D̄CH,Ca
(m̄Ca)

,

D̄CH,C
(m̄C) = D̄CH,C0

m̄C

m̄2
C + m̄2

C,1

, D̄CH,B
(m̄B) = D̄CH,B0

m̄B

m̄2
B + m̄2

B,1

,

D̄CH,Ca
(m̄Ca) = D̄CH,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

,

1

D̄CB
(m̄)

= βα
(m̄C

m̄

)α 1

D̄CB,C
(m̄C)

+ ηα
(m̄B

m̄

)α 1

D̄CB,B
(m̄B)

+ εα
(m̄Ca

m̄

)α 1

D̄CB,Ca
(m̄Ca)

,

D̄CB,C
(m̄C) = D̄CB,C0

m̄C

m̄2
C + m̄2

C,1

, D̄CB,B
(m̄B) = D̄CB,B0

m̄B

m̄2
B + m̄2

B,1

,

D̄CB,Ca
(m̄Ca) = D̄CB,Ca0

m̄Ca

m̄2
Ca + m̄2

Ca,1

,

C̄C,max0 + C̄B,max0 = 1− C̄H,max0 .

(5.22)
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The non-dimensional boundary and initial conditions are

− D̄CC
(m̄)

∂C̄C
∂x̄

= −D̄CH
(m̄)

∂C̄H
∂x̄

= −D̄mC

∂m̄C

∂x̄
= −D̄mB

∂m̄B

∂x̄
= 0, (5.23a)

C̄B = C̄B0 , n̄ = N̄0, ḡHI = 1, ḡHS = 0, ḡHM = 0, at x̄ = 0,

− D̄CC
(m̄)

∂C̄C
∂x̄

= −D̄CH
(m̄)

∂C̄H
∂x̄

= −D̄CB
(m̄)

∂C̄C
∂x̄

= −D̄mC

∂m̄C

∂x̄
= −D̄mB

∂m̄B

∂x̄
= 0,

(5.23b)

n̄ = 1, ḡHI = ḡHI2 , −D̄gHS

∂ḡHS
∂x̄

= γ̄ḡHS , ḡHM = 0, at x̄ = 1,

C̄C = C̄
(0)
C h̄(x̄), C̄B = C̄B0 h̄1(x̄), C̄H = 0, (5.23c)

n̄ = N̄0 − (N̄0 − 1)x̄, m̄C = m̄C,3, m̄B = m̄B,3, m̄Ca = 0,

ḡHI = 1− (1− ḡHI2)x̄, ḡHS = ḡHM = 0, at t̄ = 0, (5.23d)
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dimensionless parameters estimated value

chondrocyte migration (or diffusion) coefficient

D̄CC,C0
= DCC,C0

/(p110Ctotal,max0d
2)

10−3

chondrocyte migration (or diffusion) coefficient

D̄CC,B0
= DCC,B0

/(p110Ctotal,max0d
2γ)

10−3

chondrocyte migration (or diffusion) coefficient

D̄CC,Ca0
= DCC,Ca0

/(p110Ctotal,max0d
2Γ)

10−3

hypertrophied chondrocyte migration (or diffusion) co-

efficient D̄CH,C0
= DCH,C0

/(p110Ctotal,max0d
2)

10−5

hypertrophied chondrocyte migration (or diffusion) co-

efficient D̄CH,B0
= DCH,B0

/(p110Ctotal,max0d
2γ)

10−5

hypertrophied chondrocyte migration (or diffusion) co-

efficient D̄CH,Ca0
= DCH,Ca0

/(p110Ctotal,max0d
2Γ)

10−5

osteoblast migration (or diffusion) coefficient D̄CB,C0
=

DCB,C0
/(p110Ctotal,max0d

2)

10−6

osteoblast migration (or diffusion) coefficient D̄CB,B0
=

DCB,B0
/(p110Ctotal,max0d

2γ)

10−4

osteoblast migration (or diffusion) coefficient D̄CB,Ca0
=

DCB,Ca0
/(p110Ctotal,max0d

2Γ)

10−4

cartilage matrix diffusion coefficient D̄mC =

DmCmC,max/(p110Ctotal,max0d
2)

0 - 10−3

bone matrix diffusion coefficient D̄mB =

DmBmC,max/(p110Ctotal,max0d
2)

0 - 10−5
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nutrient diffusion coefficient D̄n =

DnmC,max/(p110Ctotal,max0d
2)

100

hypertrophy-inducing growth factor diffusion coefficient

D̄gHI = DgHImC,max/(p110Ctotal,max0d
2)

2

hypertrophy-suppressing growth factor diffusion coeffi-

cient D̄gHS = DgHSmC,max/(p110Ctotal,max0d
2)

0.5

hypertrophy-modulating growth factor diffusion coeffi-

cient D̄gHM = DgHMmC,max/(p110Ctotal,max0d
2)

0.5

chondrocyte proliferation rate p̄5,C0 =

p5,C0/(p110Ctotal,max0/τ)

10−3

chondrocyte proliferation rate p̄5,B0 =

p5,B0/(p110Ctotal,max0γ)

10−3

chondrocyte hypertrophic differentiation rate p̄6 =

p6mC,max/(p110Ctotal,max0)

0.1

chondrocyte death rate p̄7 = p7mC,max/(p110Ctotal,max0) 1

hypertrophied chondrocyte death rate p̄8 =

p8mC,max/(p110Ctotal,max0)

3× 10−2

osteoblast proliferation rate p̄9,C0 =

p9,C0/(p110Ctotal,max0/τ)

10−3

osteoblast proliferation rate p̄9,B0 =

p9,B0/(p110Ctotal,max0γ)

10−3

osteoblast death rate p̄10 = p10mC,max/(p110Ctotal,max0) 0.2

cartilage matrix degradation rate p̄111 =

p111mC,max/p110

1
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cartilage matrix degradation rate p̄120 =

p120mC,max/p110

3×101

bone matrix production rate p̄130 = p130/(p110γ) 3×10−2

bone matrix degradation rate p̄131 = p131mC,max/p110 10−3

nutrient uptake rate by chondrocytes p̄17 =

p17mC,max/(p110N1)

104

nutrient uptake rate by osteoblasts p̄18 =

p18mC,max/(p110N1)

104

nutrient uptake rate by hypertrophied chondrocytes

p̄19 = p19mC,max/(p110N1)

104

calcified cartilage matrix degradation rate p̄20 =

p20mC,max/p110

10−1

hypertrophy-suppressing growth factor production rate

p̄15 = p15p110Ctotal,max0/(p21p23mC,max)

10

hypertrophy-suppressing growth factor degradation rate

p̄22 = p22mC,max)/(p110Ctotal,max0)

0

hypertrophy-modulating growth factor degradation rate

p̄24 = p24mC,max)/(p110Ctotal,max0)

1

hypertrophy-modulating growth factor degradation rate

p̄23

0

hypertrophy-suppressing growth factor degradation rate

p̄21

1

maximum mature chondrocyte density C̄H,max0 =

CH,max0/Ctotal,max0

0-1
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maximum osteoblast density C̄B,max0 =

CB,max0/Ctotal,max0

0-1

initial chondrocyte density C̄
(0)
C = C

(0)
C /Ctotal,max0 0.25

initial nutrient concentration N̄0 = N0/N1 1-3

threshold nutrient concentration n̄0 = n0/N1 0.24-0.81

critical nutrient concentration n̄1 = n1/N1 0.1

critical matrix density m̄C,crit = mC,crit/mC,max 0.95

matrix density m̄C,1 = mC,1/mC,max 0.1

matrix density m̄Ca,1 = mCa,1/mCa,max 0.1

matrix density m̄C,2 = mC,2/mCtot,max 0.1

matrix density m̄B,1 = mB,1/mB,max 10−2

matrix density m̄B,2 = mB,2/mB,max 10−2

initial cartilage matrix density m̄C,3 = mC,3/mC,max 10−5

initial bone matrix density m̄B,3 = mB,3/mB,max 10−5

threshold hypertrophy-inducing growth factor concen-

tration ḡHI0 = gHI0/gHI1

0.5

threshold hypertrophy-suppressing growth factor con-

centration ḡHS0 = gHS0p110/(p15mC,max)

2-4

initial hypertrophy-inducing growth factor concentra-

tion ḡHI2 = gHI2/gHI1

1

initial osteoblast cell density C̄B0 = CB0/Ctotal,max0 10−2

maximum cartilage matrix density β = mC,max/mmax 0.04

maximum bone matrix density η = mB,max/mmax 0.48

exponent α 2
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Table 5.2: Estimated values of dimensionless parameters.

5.3 Results and parameter sensitivity analysis

5.3.1 Methods

We use a second order accurate finite difference discretisation scheme to discretise the spa-

tial variable x in Eqs. (5.21)-(5.23), keeping the time derivative t continuous. The re-

sulting ordinary differential equations are solved in MATLAB (Release 2013a, The Math-

Works, Inc., Natick, Massachusetts, United States) using the stiff ODE solver ode15s. The

dimensionless parameters and their estimated values are provided in Table 5.2. The ini-

tial chondrocyte cell density spatial profile is C̄C(x, 0) = C̄
(0)
C [1 − tanh(A(x̄− x̄0))]/2, with

A = 104 and x̄0 = 0.1. Additionally, the initial bone cell density spatial profile is C̄B(x, 0) =

C̄
(0)
B [1− tanh(A(x̄− x̄1))]/2, with A = 104 and x̄1 = 10−3.

We simulate the evolution of chondrocytes, CC , hypertrophied chondrocytes, CH , bone cells,

CB, cartilage matrix, mC , calcified matrix, mCa, bone matrix, mB, and nutrients, n, along

with growth factors (not shown here). Initially we have a population of chondrocytes, C̄C(0) ,

implanted at the bottom of the defect at the subchondral bone interface (x = 0), correspond-

ing to an ACI procedure [21, 22, 119]. We also include a small density of bone cells, C̄B(0) ,

assumed already present in the defect.

5.3.2 Numerical results

Figs 5.3-5.5 show the evolution of osteochondral defect healing following an ACI procedure,

for times ranging between 1 month and 36 months.
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Figure 5.3: Evolution of cell and matrix densities, and nutrient concentration at times t =0
days, 1 month and 3 months following implantation of chondrocytes. x = 0 in the figure
represents the location of the base of the defect, x = 1 represents the surface of articular
cartilage.
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Figure 5.4: Evolution of cell and matrix densities, and nutrient concentration at times t =6,
12 and 18 months following implantation of chondrocytes. x = 0 in the figure represents the
location of the base of the defect, x = 1 represents the surface of articular cartilage.
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Figure 5.5: Evolution of cell and matrix densities, and nutrient concentration at times t =24,
36 and 48 months following implantation of chondrocytes. x = 0 in the figure represents the
location of the base of the defect, x = 1 represents the surface of articular cartilage.

As early as 1 month chondrocytes produce cartilage matrix and migrate towards the top

of the defect, limited by low diffusivity through the cartilage matrix and low chondrocyte

proliferation (p̄5c0 = 0.012 [119]). By 3 months cartilage matrix continues to form towards

the top, having covered over half of the defect depth. The results replicate those from our

earlier chondral healing studies [119], except that cartilage is deposited at a much faster rate

due to higher availability of nutrients [119].

At 6 months, cartilage matrix is steadily filling from the base of the defect. As time continues

to 12 months, we can see that the defect continues to fill, with new cartilage matrix having

now reached the top of the defect and a density close to the maximum at the bottom (Fig

5.4, Panel 2). The critical cartilage density is attained at the bottom of the defect at t =

18 months, beyond which chondrocytes here start to hypertrophy enabling cartilage matrix

to be converted into calcified matrix (Fig 5.4, Panel 3). We observe that cartilage matrix at

the bottom of the defect has been converted entirely into calcified matrix (yellow), and bone
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matrix (red).

At 24 months chondrocytes higher up in the defect are undergoing hypertrophy and converting

cartilage matrix into calcified matrix. The bottom of the defect is now completely filled

with bone, with a middle calcified zone and a top layer of cartilage that has not yet fully

formed across the top of the defect. Now that bone matrix has been formed in the defect,

osteoblast cells migrate within this matrix towards the top of the defect, further enhancing the

production of bone. At 36 months we observe that the bottom half of the defect is completely

filled with bone. In the mid-zone of the defect endochondral ossification continues to occur,

with cartilage being remodelled into calcified matrix, to be converted into bone in the region

where bone cells are present. At the top of the defect there is a section of cartilage that

has not calcified due to a flux of hypertrophy-suppressing growth factor permeating in from

the top of the defect. In this zone, chondrocyte hypertrophy is suppressed, and consequently

endochondral ossification does not occur. At 36 months the defect is almost entirely full of

matrix, whether bone, calcified or cartilage. As time progresses to 48 months the defect is now

entirely filled with bone and cartilage matrix, with a thin calcified matrix layer in-between.

Convergence analysis

A convergence analysis has been performed in space, x, as within Chapter 3, with results

showing the numerical scheme is reliable. For the simulations shown above the numerical

scheme is performed over n = 100 grid points. Increasing n by a factor of 10 results in a

slower runtime in the ODE15s solver, with the solution path unchanged. Convergence in time

has also been explored, with a steady state obtained where the constituents of the regenerated

defect remain full (at 1), with the cartilage layer remaining at the top and bone below.
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5.3.3 Sensitivity of parameters and initial conditions

The model has several parameters, and its solution could be particularly sensitive to some

changes, potentially indicating their biological significance. In addition, some parameter

values were approximated because their exact value could not be found. If the solution is

not sensitive to change in value of these parameters, then the approximate value is a good

representation of that parameter. Here we will present a sensitivity analysis on parameters

deemed to be significant to the model, based on extensive simulations varying each parameter

while keeping the others fixed. This allows us to focus specifically on the sensitivity of any

parameters related to growth factors, hypertrophied chondrocytes, and the critical cartilage

density, m̄Ccrit , triggering endochondral ossification. We focus on these parameters due to

their significant role in the regulation of the stages associated with endochondral ossification

and subsequent bone production, and overall defect healing.
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Parameters Sensitivity description

Hypertrophy-suppressing

growth factor diffusion

coefficient, D̄gHS

See details in text.

Hypertrophy-suppressing

growth factor degradation

rate, p̄22

Increasing p̄22 by a factor or 10 at t=36 months results in

increased m̄B and also increased levels of C̄H , with a clear

trade-off visible between C̄C and C̄H . There appears to be

lower levels of m̄Ca due to increased conversion of m̄Ca to

m̄B. At t=48 months the entire defect is filled with bone

and calcified matrix, indicating the defect will fill entirely

with bone due to high suppressing growth factor degrada-

tion. Decreasing p̄22 by a factor of 100 significantly impacts

chondrocyte hypertrophy, with no C̄H visible in the defect

and cartilage remaining full with no conversion to m̄Ca. This

is due to extremely high levels of ḡHS in the defect as there

is no degradation, suppressing the entire endochondral ossi-

fication process.

Hypertrophy-inducing growth

factor degradation rate, p̄25

Increasing or decreasing p̄25 resulted in no significant change

in simulations, indicating our boundary condition of ḡHI = 1

at x = 0 is high enough to induce hypertrophy, as ḡHI0 is

smaller than 1 and ḡHI is always high at the base of the

defect, where calcification is initiated.
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Hypertrophy-modulating

growth factor degradation

rate, p̄23

Increasing p̄23 to 0.1 and 1 from 0 resulted in marginally

higher m̄Ca levels at t=18 months and minimal differences

in simulations thereafter. p̄23 = 1 increases chondrocyte hy-

pertrophy noticeably, with a clear conversion of C̄C to C̄H

at the base of the defect. p̄23 = 0.1 has a more subtle effect,

with a small increase in m̄Ca at the base of the defect at this

time point.

Hypertrophied chondrocyte pro-

duction rate, p̄6

Increasing p̄6, the hypertrophied chondrocyte production

rate, by a factor of 100 resulted in little difference at t=2

years or thereafter, with a visible increase in m̄Ca due to

higher C̄H , but as healing evolution is primarily dictated by

cell migration and matrix production, cartilage is not de-

graded sooner nor bone formed faster. Decreasing p̄6 by a

factor of 100 results in slower endochondral ossification evi-

dent by less m̄Ca, less cartilage degradation and less bone at

t=2 years. This effect slows down the progression of healing

within the defect thereafter.
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Hypertrophied chondrocyte

degradation rate, p̄8

Increasing p̄8 by a factor of 10 results in slightly higher bone

density at the base by t=24 months, with m̄Ca produced

towards the top of the defect faster. This will be due to

C̄H reducing faster, meaning ḡHM and ḡHS levels are lower,

meaning ḡHI is higher and able to induce hypertrophy in

more chondrocytes towards the top of the defect, allowing

conversion of calcified cartilage to occur here. At 3 years

there is cartilage remaining in the defect where bone should

be produced due to low C̄H levels, resulting in less conver-

sion of m̄C to m̄Ca. Decreasing p̄8 results in lower m̄B at the

bottom of the defect and a higher localised concentration of

m̄Ca, with a higher peak observed between bone and carti-

lage matrix populations. There is also a larger concentration

of m̄Ca at the bottom of the defect and a larger concentration

of chondrocytes.

Bone cell proliferation rate, p̄9 Decreasing p̄9 results in marginally lower bone matrix at 24

months, though effects of direct bone production are minimal

due to p̄130 & p̄131 having low values as the model primarily

focuses on the endochondral ossification pathway. Increasing

p̄9 significantly increases the bone cell population, though

bone matrix does not increase as m̄B is bounded by m̄Bmax ,

meaning m̄B cannot surpass 1.
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Calcified matrix production rate

(from cartilage), p̄12

Increasing p̄12 by a factor of 10 leads to a sharp increase

in m̄Ca production and m̄C degradation at t=2 years, while

bone production remains relatively unchanged, with only a

minor increase observed at the base of the defect. Decreasing

p̄12 leads to very low m̄Ca levels, with less cartilage degra-

dation. As the m̄Ca conversion to m̄B pathway is unaffected

by varying p̄12, bone levels remain fairly consistent despite

m̄Ca levels varying greatly.

Bone matrix production rate

(from calcified matrix), p̄20

Increasing p̄20 enhances bone production, resulting in lower

m̄Ca, as bone remodelling is increased. Decreasing p̄20 re-

sulted in higher m̄Ca and lower bone matrix levels as remod-

elling is decreased as a result of lower bone matrix produc-

tion.

Hypertrophy-inducing growth

factor critical concentration,

ḡHI0

Increasing ḡHI0 by a factor of 10 results in no m̄Ca produc-

tion at t=18 months. This indicates chondrocyte hypertro-

phy has been stopped due to ḡHI0 being significantly greater

than ḡHI . Increasing ḡHI0 inhibits C̄H production which is

the expected effect. Decreasing ḡHI0 does not alter simula-

tions, which is expected as the threshold of unchanged ḡHI0

is relatively low, so lowering it further will not have a signif-

icant impact on the outcome of the model.

Hypertrophy-suppressing

growth factor critical con-

centration, ḡHS0

See details in text.
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Critical cartilage density,

m̄Ccrit

See details in text.

Table 5.3: Sensitivity of parameters. Those highlighted in bold are further described in the
text.
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Figure 5.6: Sensitivity of hypertrophy-suppressing growth factor diffusion coefficient, DgHS

at t=48 months, following implantation of chondrocytes, with Panel 1 decreased DgHS , Panel
2 normal DgHS and Panel 3 increased DgHS . x = 0 in the figure represents the location of
the base of the defect, x = 1 represents the surface of articular cartilage.

Decreasing D̄gHS by a factor of 100 decreases the layer of cartilage remaining at the top of the

defect. At 4 years the defect is almost entirely either bone or calcified matrix, with calcified

matrix having reached the top of the defect. This suggests that the hypertrophy-suppressing

growth factor is no longer inhibiting endochondral ossification due to not being able to diffuse

further into the defect (Fig. 5.6, Panel 1). Conversely, the defect is entirely cartilage when

D̄gHS is increased by a factor of 100, suppressing the entire endochondral ossification process,

resulting in purely chondral healing (Fig. 5.6, Panel 3).

Decreasing the suppressing growth factor threshold concentration, ḡHS0 , to 10−4 slowed car-

tilage degradation at 3 years, and hence decreased m̄Ca and m̄B production (Fig. 5.7, Panel

1). Decreasing ḡHS0 is expected to suppress chondrocyte hypertrophy, hence slowing down

cartilage degradation to calcified cartilage and bone production.

Increasing ḡHS0 activates hypertrophy much sooner, explaining the sudden jump in m̄Ca pro-
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duction and increase in C̄H (Fig. 5.7, Panel 3). The increase of ḡHS0 to 1 leads to triggering

this pathway much sooner, meaning there is no suppression, resulting in chondrocyte hyper-

trophy occurring sooner.
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Figure 5.7: Sensitivity of hypertrophy-suppressing growth factor critical concentration, ḡHS0

at t=3 years, following implantation of chondrocytes, with Panel 1 decreased ḡHS0 , Panel 2
normal ḡHS0 and Panel 3 increased ḡHS0 . x = 0 in the figure represents the location of the
base of the defect, x = 1 represents the surface of articular cartilage.

Increasing ḡHS0 to 1 increased m̄Ca production, with higher levels of chondrocyte hypertro-

phy at the bottom of the defect with a visible replacement of C̄C with C̄H observable (Fig.

5.7, Panel 3).
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Decreasing the critical cartilage density, mCcrit , from 95% to 80% to activate chondrocyte

hypertrophy results in early calcified matrix and bone formation, but does not significantly

impact healing time.
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Figure 5.8: Sensitivity of the critical cartilage density at t=6 months, following implantation
of chondrocytes, with Panel 1 normal critical cartilage density (95%) and Panel 2 decreased
critical cartilage density (10%). x = 0 in the figure represents the location of the base of the
defect, x = 1 represents the surface of articular cartilage.

Decreasing the critical density mCcrit to 10%, however, results in no initial cartilage fill of the

defect as expected to occur from description in the literature, with chondrocytes undergoing

hypertrophy as soon as ḡHI levels are high enough and ḡHS levels are low enough (Fig. 5.8

Panel 2, shown at 6 months). Bone formation begins almost immediately and chondrocyte

proliferation is suppressed as CC proliferation in bone matrix, p̄5b0 , is lower than in cartilage

matrix, p̄5c0 . Additionally, chondrocyte migration in bone matrix, D̄CB0
is lower than in

cartilage matrix. This significantly decreases healing evolution, indicating the initial cartilage

formation stage we have included in our model is required to achieve the sequential type of

healing process described by [120].
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5.4 Summary & conclusions

We have constructed a one-dimensional mathematical model to depict the various processes

occurring during osteochondral defect healing after autologous chondrocyte implantation

(ACI). Our model has successfully simulated healing via endochondral ossification, the pro-

cess of an initial fill of cartilage remodelling into bone, whilst also successfully achieving the

layer of cartilage remaining at the top of the defect.

The model reproduces several healing characteristics seen in animal models and clinical stud-

ies. Lydon et al. [120] first observe cartilage formation to occur along the edges of the defect,

with cartilage then filling the defect inwards and upwards from the base. Endochondral

ossification is also observed to first occur at the base of the defect, with bone formation

continuing upwards towards the top of the defect, which our model achieves. Our results

indicate the osteochondral defect fills with regenerative tissue, comprised of bone, calcified

matrix and cartilage matrix, by 2 years, which other treatment strategies of osteochondral

defects indicates to be a reasonable time-scale [18].



Chapter 6

Discussion

The main achievements of the work undertaken in this thesis have been the formulation

of mathematical models of cartilage and bone defect regeneration after cell implantation.

Specifically, the inclusion of growth factors and a co-implantation procedure for chondral

defect regeneration, and a novel mathematical model for osteochondral defect regeneration

under the assumption these defects heal via endochondral ossification. These models have

successfully simulated chondral and osteochondral defect regeneration characteristics as de-

scribed in the literature. Here we discuss the findings of chapters 3, 4 and 5, detailing the

implications of the models and how the work undertaken in this thesis can be continued with.

6.1 Summary and conclusions

6.1.1 Chapter 3

The primary aim of this chapter was to formulate a mathematical model of cartilage re-

generation following cell implantation, focusing on the effects of growth factors to see if a

164
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trophic effect on the system can be replicated as shown in vitro [184]. Chondrocytes and

mesenchymal stem cells are implanted into chondral defects in the hope to promote cartilage

regeneration. MSCs are inserted to differentiate into chondrocytes, leading to a cell implan-

tation scenario where we have 2 populations of cells (chondrocytes and MSCs) in the defect

at any one time. The interaction between MSCs and chondrocytes is well documented in

the literature, with studies hypothesising a trophic effect observed as a result of their co-

implantation into chondral defects, thought to be due to the release of growth factors such as

FGF-1 and BMP-2 [184]. The aim of this chapter was to include the effects of these growth

factors on a pre-existing mathematical model of cartilage regeneration, where an articular

stem cell implantation (ASI) procedure is undertaken, where MSCs are inserted into a chon-

dral defect [119]. The inclusion of these growth factors was to recreate the hypothesised

trophic effect observed at early times in vitro [184].

The model considered two cell types, mesenchymal stem cells and chondrocytes, and as a

result studied the actions of the two growth factors within these bounds. However, it is im-

portant to acknowledge that these growth factors probably also play a role within cartilage

defect regeneration beyond these two cell types. Aside from promoting chondrogenic differ-

entiation of MSCs, BMP-2 can also cause chondrocytes to undergo hypertrophy and lead to

endochondral bone formation. FGF-1, along with other members of the fibroblast growth

factor family, is thought to enhance collagen I expression resulting in fibro-cartilage formation

during the chondral healing process. It is thought that when FGF-1 and BMP-2 are both

present during the regeneration process, chondrocyte hypertrophy and fibro-cartilage forma-

tion is not observed in the defect, indicating that FGF-1 suppresses chondrocyte hypertrophy

and BMP-2 inhibits the formation of fibro-cartilage [184]. These functions indicate that both

growth factors are involved in adverse aspects of the healing process that we did not consider
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in this model, specifically chondrocyte hypertrophy and endochondral ossification. In further

work, we could extend our model to study these effects. However, chondrocyte hypertrophy

and endochondral bone formation have not been flagged as adverse effects after autologous

stem cell or chondrocyte implantation to treat chondral defects, suggesting that with respect

to the clinical application of these therapies our model may be considered representative [141].

Our model allowed us to investigate the influence of either growth factor, independent of the

other. This allowed us to determine the sensitivity of the MSC-chondrocyte interaction to

either FGF-1, BMP-2 or both. The results obtained when including only BMP-2 were very

similar to those including both FGF-1 and BMP-2, with cases both showing clearly increased

matrix production at early time points. On the other hand, for the case where only FGF-1

was included the matrix density levels at early times were increased only marginally when

compared to the baseline case of no growth factors. This suggests that BMP-2 dominates

the interaction and that the main positive effect of a co-implantation of the two cell types is

due to enhanced chondrogenesis.

Our model found that the influence of chondrocytes on stem cell differentiation through the

release of BMP-2 affected the result more than the influence of stem cells on chondrocyte

proliferation via FGF-1. This may be related to the effects of nutrient concentration in our

model, which did influence chondrocyte proliferation but did not directly influence stem cell

differentiation, though a knock on effect would be expected from nutrient’s limiting effect on

stem cell proliferation, but we would not expect this effect to be significant in our simulations

due to a 100% MSC cell seeding. The lack of influence of FGF-1 could potentially indicate the

initial growth factor concentration and rates we have obtained from the literature are con-
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tentious, but our sensitivity analysis indicates these parameters are not sensitive to change.

This allows us to make the assumption our parameters are within a realistic biological range

of which FGF-1 is effective. In our model, low nutrient concentration (hypoxia) reduced or,

if below the threshold nutrient concentration, completely stopped chondrocyte proliferation.

We think this may explain why the effects of FGF-1 were relatively small, as in all of our

simulations the nutrient concentration seems to be the main limiting factor of cartilage re-

generation. The nutrient concentration in our model influences chondrocyte proliferation and

has been demonstrated experimentally [196]. In contrast, stem cell differentiation was not

affected by nutrient concentration in our model, and as a result a low nutrient concentration

did not constrain the effects of BMP-2. We are not aware of experimental studies address-

ing adverse effects of nutrition on mesenchymal stem cell differentiation into chondrocytes,

but one study extensively addressed this issue related to osteoblast differentiation [65]. This

study concluded that during 3D micromass culture, a scenario comparable to the one in our

model, osteoblast differentiation was not affected by nutrition but was a function of cell-cell

contacts and cell-cell communication, exactly the mechanism we included in our model.

The influence of BMP-2 on stem cell differentiation was implemented through a lowering of

the threshold stem cell density CS0 as a function of BMP-2 concentration. An alternative

implementation would be through the stem cell differentiation rate, in a manner similar to

our implementation of the influence of FGF-1 on chondrocyte proliferation. We compared

both approaches in a sensitivity study and found no clear differences between them. In our

sensitivity analysis we found p12, p13, CS0min
, and α to be the most sensitive parameters in

our model, which is discussed in detail in the section on 3.3.2 Sensitivity of parameters and

initial conditions. Despite a handful of our variables being approximated, our sensitivity

indicates these parameters are not significantly sensitive to change, indicating our values are
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a good representation of the parameter values we needed for the model but could not find

data for.

Our model used two specific growth factors, BMP-2 and FGF-1, to investigate the inter-

actions between mesenchymal stem cells and chondrocytes during cartilage repair following

a cell implantation procedure. However, we should stress that our results are not limited

to these two. We see these two growth factors as examples of how such interactions could

occur. For instance, some experiments have found evidence that the influence from chondro-

cytes on stem cell differentiation acts via direct cell-cell contact instead of through soluble

factors, or that other growth factors might be involved [184]. A similar situation exists in

relation to the influence of stem cells on chondrocyte proliferation. Nevertheless, whatever

the precise mechanism through which the interaction occurs, the main aspect will always

be that chondrocytes influence stem cell differentiation and stem cells influence chondrocyte

proliferation. Although our model may therefore not capture all details of this mechanism,

it captures the essence of the interaction between the two cell types and we believe its broad

conclusions are still relevant if specific details of the growth factors involved may be fallacious.

The model proposed in this chapter enables us to better understand the underlying mecha-

nisms taking place during chondral healing when we consider the effects of growth factors.

This model can be used as an informative tool for clinicians and experimentalists alike, giving

insight into the effects of the growth factors FGF-1 and BMP-2 on chondrocyte proliferation

and mesenchymal stem cell differentiation. This work provides insight regarding the clinical

significance of the mechanisms involved in the FGF-1-BMP-2 feedback loop without requiring

experimentation, also enabling us to identify with ease the most effective growth factor in our
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model. Our sensitivity analysis demonstrates increasing FGF-1 and BMP-2 will have minor

effect due to limiting factors such as nutrient concentration and growth factor degradation.

Our results also provide verification for experimental work already undertaken [184].

6.1.2 Chapter 4

In this chapter we continue with the model formulated in Chapter 3, and alter the implan-

tation ratio to simulate a co-implantation procedure, where MSCs and chondrocytes are

implanted into a chondral defect after they have been cultured together in vitro. The aims of

this procedure is to alleviate the need for chondrocyte harvest when a cell implantation pro-

cedure is undertaken to heal a chondral defect, which is often problematic due to low volumes

of chondrocytes in the human body and tendency for site morbidity. Culturing with MSCs

means less chondrocytes are required for implantation, with the implanted MSCs intended

to differentiate into chondrocytes to make-up cell numbers. Additionally, this approach is

hypothesised to regenerate cartilage on a better time-scale due to high cell-to-cell interaction

releasing growth factors, with the aim of this chapter to replicate this effect specifically [184].

Our model enabled us to compare matrix densities following co-implantation of MSCs and

chondrocytes at various ratios, visualising not only the cartilage matrix density distribution

at any time point, but also investigating how the concentrations of MSCs, chondrocytes and

nutrients change within the defect in response to different co-implantation ratios. The five

ratios we focused on were 90% MCSs plus 10% chondrocytes, 70% MSCs plus 30% chon-

drocytes, 50% MSCs plus 50% chondrocytes, 30% MSCs plus 70% chondrocytes and 10%

MSCs plus 90% chondrocytes, with 90:10 and 50:50 having been or are being investigated

clinically [44, 154]. We compared these to autologous chondrocyte implantation (ACI, 100%
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chondrocytes) and articular stem cell implantation (ASI, 100% MSCs). When comparing

co-implantation scenarios with the ACI and ASI results from previous work and Chapter 3

[119, 21], it is clear that a mixture of MSCs and chondrocytes delivers the desired effect of in-

creased matrix deposition, as hypothesised in the literature [78] and in previous experiments

[184]. This effect is especially significant during the first few months following cell implanta-

tion, but from around six months onwards the differences, especially with ASI, become small.

As time progresses, the 0:100 case continues to produce matrix at a steady rate, but the 100:0

and co-implantation cases soon surpass these levels. Figure 4.18(a) shows how total matrix

levels of 100:0 (ASI), 90:10, 10:90 and 0:100 (ACI) simulations compare at over a period of 2

years. At early time there is a monotonic increase in the total matrix density with the 0:100

case having the highest density, 100:0 having produced almost no matrix at all, and the co-

implantation cases having almost similar intermediate levels of matrix. This indicates that at

early time chondrocyte proliferation balanced with adequate nutrient availability is the main

identifiable mechanism responsible for the formation of new cartilage in our model. As time

progresses, 0:100 continues to produce matrix at a steady rate, but 100:0 and co-implantation

cases soon surpass these levels. Beyond 6 months there is a non-monotonic increase in the

total matrix density with a peak in matrix levels in the co-implantation cases, and the 100:0

case still producing the lowest level of matrix. Although we cannot say with any certainty

that the maximum matrix density is obtained precisely for the 10:90 or 90:10 case, there is

a definite optimal ratio of stem cells and chondrocytes that can produce maximum matrix

at intermediate times. This indicates that at these times cell differentiation and diffusion

are the dominant mechanisms driving new cartilage formation. From six months onwards,

we found little difference in the distribution of cell types and cartilage matrix between the

five co-implantation cases and implanting only stem cells. This suggests that implanting a

cell population that includes stem cells will lead to a stable solution path, regardless of the
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exact proportion of stem cells. Although co-implantation of chondrocytes and stem cells led

to more matrix deposition at earlier time points, this difference was not maintained and by

12 months the difference in matrix production between the five cases was very small. Sim-

ilar small differences have been found between 1-year biopsies obtained in human trials of

co-implanted cells, stem cells or chondrocytes [44, 141]. Nevertheless, the larger matrix de-

position at earlier time may give advantages with respect to the rehabilitation, which could

be faster if matrix is formed earlier. This alone could be an important clinical advance in the

treatment of articular cartilage damage.

Figure 4.18 shows the overall cell and matrix densities for Articular Stem Cell Implanta-

tion (ASI, 100:0), Autologous Chondrocyte Implantation (ACI, 0:100) and 10:90 and 90:10

mesenchymal stem cell and chondrocyte co-implantation cell therapy. It is clear from these

results that a co-implantation of mesenchymal stem cells and chondrocytes enhances healing,

most notably within the first 12 months, due to the effects of growth factors and the more

efficient utilisation of nutrients between the 2 cell types. We find that ASI initiates healing at

a slower rate due to no implanted chondrocytes, meaning cells must first uptake large concen-

trations of nutrients before healing can be initiated [21]. ACI typically starts well, with good

levels of matrix in the defect within the first few months, but the rate of matrix deposition

is extremely steady and achieves the slowest healing time [119]. Our co-implantation cases

begin matrix deposition almost immediately, initiated by the implanted chondrocytes, leav-

ing the remaining MSC population to proliferate and differentiate. This leads to the highest

chondrocyte, MSC and matrix densities at 3 months, despite our other 2 therapies having

higher densities of each cell type implanted into the defect.
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These results indicate that nutrient availability within the defect and cell motility is highly

important. When nutrients fall below the critical condition in our model, cells must diffuse to

areas of higher nutrient concentrations to continue proliferation and differentiation. Despite

ACI never having low nutrient levels (Lutianov et al. [119]), it does not achieve fast healing,

typically taking 24 months to fill the defect with new cartilage. This is due to chondrocytes

diffusing slower than MSCs, meaning the ASI procedure, despite having a very slow start,

can achieve a good rate of healing as time continues as cells are able to diffuse to higher

concentrations of nutrients at a faster rate, and also are able to proliferate quicker. Our

co-implantation cases are able to deposit matrix well at early times, due to implanted chon-

drocytes, and at late times, due to MSCs, meaning a co-implantation cell therapy embodies

the good qualities of both procedures, and even results in enhanced matrix deposition due to

FGF-1 and BMP-2 being released via cell-to-cell interaction [21].

A mixture of stem cells and chondrocytes produces more consistent levels of matrix due to

the balance of nutrient used between the two cell types and the release of important growth

factors that influence chondrocyte proliferation and stem cell differentiation. In our model,

this effect is partly due to the cell-cell interactions between MSCs and chondrocytes, releasing

growth factors such as FGF-1 and BMP-2 that cause an increase in matrix deposition from

increased chondrocyte proliferation and enhanced chondrogenesis (see also Wu et al. [184]).

Additionally, the increase of matrix deposition and chondrocyte density at early times for our

co-implantation cases is in part due to the lower proliferation rate of chondrocytes, allowing

more nutrients to be available in the defect for MSC proliferation and differentiation.

An important assumption in our model concerns the role of chondrogenesis, the differentia-
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tion of stem cells into chondrocytes. Our results suggest that stem cell differentiation plays

an important part in increasing the number of chondrocytes, and eventually the extracellular

matrix, due to large quantities of chondrocytes, comparable to our 50:50 case, being present

in the defect when 90% MSCs are implanted. Most in vitro co-culture studies suggest that

the more important contribution from the stem cells is their positive effect on chondrocyte

proliferation whereas their differentiation into chondrocytes is less important [41].

6.1.3 Chapter 5

In this chapter we formulate a mathematical model of osteochondral defect regeneration af-

ter chondrocyte implantation that simulates key processes occurring during the repair of an

osteochondral defect after autologous chondrocyte implantation (ACI). Our model achieved

this by simulating the key stages of natural cartilage healing as observed in a large animal

experiment [120], namely the process of an initial fill of the defect by cartilage, followed by

a process of endochondral ossification starting at the bottom of the defect that resulted in

bone formation at this location, eventually leaving a layer of articular cartilage remaining

at the top of the defect separated from the bone by a thin layer of calcified cartilage. Our

model thus gives an answer to the question how an osteochondral defect, which is treated by

injecting a solution containing chondrocytes under a patch covering the defect, can heal such

that both bone and cartilage are reconstituted.

In formulating our mathematical model, we made extensive use of the insights from a series of

experiments based around an ovine model of natural osteochondral defect healing in skeletally

mature animals [120]. We did so for two main reasons. Firstly, a sheep is a relatively large

animal with a knee anatomy comparable to that of humans, which makes the animal model
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closer to the clinical situation than for instance murine or laprine models [1] [30]. Secondly,

Lydon et al. [120] analysed 5 separate time points (1-2 weeks, 4-8 weeks, 8-12 weeks, 18 weeks

and 26 weeks). Such a detailed study of a healing process over time is not uncommon when

conducted using small animals (see Shapiro et al. 1993 [161] or Anraku et al. 2008 [4]) but

is unique when conducted in large animals. Of course, we realise that the process by which

a freshly created osteochondral defect heals naturally is not necessarily the same as that

by which a clinical osteochondral defect in humans, treated using autologous chondrocytes,

heals. Nevertheless, key stages observed during the natural healing process of osteochondral

defects are also seen following chondrocyte implantation. Filling of the complete defect by

cartilage or cartilage-like tissue before bone starts to form at the bottom of the defect has

been observed in large-animal experiments (i.e. Munirah et al. 2007 [136] and Jurgens et al.

2013 [87]). After one year, osteochondral defects up to 1 cm deep in humans and treated

with ACI demonstrate new bone formation at the bottom and a layer of mature (hyaline) or

immature cartilage at the top [10].

Our chondral defect healing models (Chapters 3 and 4) simulate the filling of a defect with

cartilage, but do not simulate the conversion of cartilage into bone at the bottom of the defect.

Lydon et al. [120] observed that this process occurs via endochondral ossification, similar to

the process observed during bone formation in the growth plate or during fracture healing.

The objective of this work was therefore to primarily focus on the endochondral ossification

process. In this process, cartilage converts into bone via chondrocyte hypertrophy, where the

hypertrophic chondrocytes form a primary spongiosa which is then invaded and remodelled

by osteoblasts and osteoclasts [120]. Crucially, not all chondrocytes hypertrophy and form

primary spongiosa; a layer of hyaline cartilage is left in the top section of the defect, forming

articular cartilage.
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In our mathematical model we approached this by concentrating on key regulatory pathways

that control chondrocyte hypertrophy during growth. Specifically, we concentrated on factors

that initiate the process and other factors that suppress the process. The process is known to

be initiated by systemic factors (hormones) and locally produced growth factors [121]. The

hypertrophy-inducing factor in our model represents the systemic factors, a potent example

of which is PTHrP [121]. We modelled these systemic factors as a flux coming in from the

top and bottom of the defect. We assumed that this hypertrophy-inducing systemic factor

would have to reach a threshold value before initiating hypertrophy. The local factors were

represented in our model as a critical or threshold cartilage density, below which hypertro-

phy is not initiated. This implementation of local factors is similar to that used in models

of endochondral ossification during fracture healing [24, 66]. We chose the critical density

to be around 95% fill, but also investigated other values in our sensitivity analysis. Both

critical values would need to be reached before chondrocyte hypertrophy was initiated. In

our model, the process was dominated by the local factor (critical cartilage density): once

this density was reached, chondrocytes started to hypertrophy and produce calcified matrix

from the cartilage model. This would also halt local chondrocyte proliferation and cartilage

matrix formation.

Further regulation of hypertrophy, once initiated, was represented in our model to replicate

the Ihh-PTHrP pathway [103]. The Ihh-PTHrP pathway is not only a key regulator of chon-

drocyte hypertrophy, but also important in relation to the question why bone forms in the

bottom section but not the top section of an osteochondral defect. PTHrP, a suppressor of

hypertrophy, is produced only by chondrocytes in the superficial zone of cartilage, possibly



176

related to local mechanical loading [28, 84, 103]. Its production is stimulated by Ihh, which

is produced by pre-hypertrophic chondrocytes. In our model, we called Ihh a hypertrophy-

modulating growth factor and assumed it would be produced by hypertrophic chondrocytes.

To simulate the production of PTHrP by superficial chondrocytes, we modelled a flux of

hypertrophy-suppressing growth factor that permeated from the upper layer of the defect.

Due to its low diffusion coefficient, this growth factor only penetrated the top few grid points

of the simulated defect. The effects of PTHrP at the top of the defect regulated the remain-

ing cartilage layer. The hypertrophic chondrocytes would produce calcified matrix, which

then was converted to bone by osteoblasts and osteoclasts, simply referred to as ’bone cells’

in our model. Finally, we assumed the underlying bone at the base of the defect and the

surrounding synovial fluid at the top of the defect to provide nutrients within the model.

This was unlike our previous chondral healing model, where subchondral bone is left intact

during debridement of a chondral defect and no flux of nutrient from the base was allowed.

In combination, this relatively simplistic approach captivates the key mechanisms driving os-

teochondral healing after ACI via an endochondral ossification-like process. It is noteworthy

to mention our model would not be valid for deep osteochondral defects where a bone-plug

may be a more appropriate treatment strategy, as opposed to cell therapy alone as we have

modelled here [43]. However, bone defects up to 1 cm in depth can be treated using cell

therapy alone [10]. Data from the German Cartilage Registry suggest that using cell therapy

alone for osteochondral defects is indeed common practice; over 60% of defects in this registry

are osteochondral defects, but only 1 in 9 ACI cases use bone graft augmentation [142].

During the initial phase of regeneration, a purely chondral healing mechanism took place.

The results corresponded to our chondral defect healing model (Chapters 3 and 4), with

slightly improved matrix formation due to a higher concentration of nutrients available from
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the base of the defect. In our models of chondral defect healing a lack of nutrients constrained

cell proliferation and matrix deposition. By 1-year cartilage half-filled the defect, with low-

density cartilage matrix at the top of the defect and a high-density matrix covering the base.

By 18 months the critical cartilage density required for initiation of chondrocyte hypertrophy

was reached at the defect base, initiating the conversion of cartilage to calcified matrix by

hypertrophic chondrocytes and formation of bone. As time continued, cartilage continued

to be converted into calcified matrix with bone subsequently being produced, progressing

upwards to the top. This simulated pattern of conversion followed the formation of bone

and cartilage as found by Lydon et al. et al [120]. By 2 years the layer of cartilage that

would remain at the top of the defect became more evident, with bone entirely covering the

base of the defect and cartilage degradation to calcified matrix occurring in the midsection.

This trend continued until at 48 months the defect was entirely filled with new bone, aside

from a section of calcified matrix and a thin layer of cartilage remaining along the top of

the defect. The thickness of this layer was regulated by the hypertrophy-suppressing growth

factor which was produced by the chondrocytes at the top of the defect. This was based

off observations by Jiang et al. 2008 [84], that shows PTHrP suppresses hypertrophy and is

produced by chondrocytes in the superficial zone. Mechanical loading is also thought to be

important in the regulation of PTHrP expression, and is something we do not consider here

[28].

The assumptions we made in this model do simplify the biological process occurring during os-

teochondral healing, potentially limiting conclusions we can draw from this work. Important

factors we do not consider in our model include biochemical and biomechanical influences (as

detailed in Chapter 2), which play a key role in cell differentiation, matrix synthesis and cell

proliferation, among other important mechanisms within osteochondral defect regeneration



178

[106]. Mechanical loading is also thought to influence the patterns of endochondral ossifica-

tion, specifically in the formation of long bones [183]. We also excluded the effects of other

local growth factors, with FGFs and BMPs thought to play an important role in the endo-

chondral ossification process [103]. Additionally, we considered our critical cartilage density,

mCcrit , as the local hypertrophy-initiating factor, following earlier work [24, 66]. However, a

biologically more appropriate method of modelling the local factor might be through a locally

produced growth factor. A specific candidate would be C-type natriuretic peptide (CNP),

which is produced by chondrocytes and is thought to have a critical concentration above

which hypertrophy is initiated [100]. Effectively, our model used cartilage density as a proxy

for CNP concentration and although modelling CNP separately might affect the results, the

change is most likely minor.

Lydon et al describes initial cartilage formation occurring at the top edges of the defect ad-

jacent to damaged cartilage [120]. The reason cartilage first forms here is unknown, but this

could possibly be due to chondrocytes attaching preferentially to damaged cartilage rather

than bone. In our 1-dimensional model we had to omit this preferential attachment to top

edges of the defect because these edges were not represented. This simplification meant we

also did not include the invasion of cells from the defect walls. In addition, when an osteo-

chondral defect is created, damaged blood vessels nested within bone at the site of the defect

are damaged. These damaged vessels produce blood which coagulates and forms a fibrous

clot within the defect. This fibrous clot will act as a nutrient source at the beginning of

regeneration, as well as acting as a scaffold for cells to travel along. These functions of a clot

were not explicitly modelled in our work, and neither was clot formation.
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Finally, we did not consider mesenchymal stem cells to be present in this model, despite

their well-documented role in osteochondral defect healing [122, 53, 68]. Lutianov et al. [119]

explore the effects of autologous chondrocyte implantation (ACI) and articular stem cell

implantation (ASI) in chondral defects, which are surgical procedures where either chondro-

cytes or MSCs are inserted into a defect with the hope to promote healing. In this work,

despite MSCs achieving higher cartilage formation at early time, overall healing time did

not significantly change [119]. In Chapters 3 & 4 of this thesis we explored the effects of

growth factors on the chondral healing process, and also how a co-implantation of MSCs

and chondrocytes could promote an earlier healing time [21, 22]. Our work demonstrated

that within the first year an enhanced rate of healing was observed when a co-implantation

procedure was carried out, with an increase of up to 136% at 3 months when compared with

ACI cartilage healing alone, but despite this, an earlier healing time was not achieved; the

conclusion of this work was that a co-implantation procedure could have benefits by allowing

a patient to become mobile sooner after surgery. The consideration of MSCs in our model

could lead to MSC differentiation into chondrocytes or osteoblasts and having trophic effects,

requiring extra assumptions around the control of their differentiation into osteoblasts and

the mutual effect of osteoblasts and MSCs. However, based on our models of co-implanting

MSCs and chondrocytes, it is doubtful whether the effects on the amount of cartilage for-

mation would be large. Alternatively, MSCs may influence the healing environment via an

alternative mechanism by their production of paracrine factors, such as transforming growth

factor−β (TGF−β), insulin-like growth factor−1 (IGF−1), and vascular endothelial growth

factor (VEGF), among others. Depending on the physiological conditions they are exposed

to, MSCs may secrete biologically active molecules that influence tissue and cell regeneration

and survival, and gene expression [59, 113]. It is thought MSCs may be most effective within

tissue regeneration via their paracrine signalling, not their direct contribution to extracellular
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matrix production via differentiation to osteoblasts and chondrocytes. Based on the findings

in Chapters 3 and 4, and the paracrine effect MSCs may contribute to the healing envi-

ronment we have not currently considered, we think it is instructive to start the modelling

process by including only chondrocytes and osteoblasts.

In future work, the inclusion of the modulatory effects of MSCs via their paracrine signalling

would more accurately simulate the cell environment. Other growth factors could also be

considered, such as FGF-1 and BMP-2, produced by the chondrocyte-MSC interaction as

shown in Chapters 3 &4.

6.2 Future work

The work undertaken in this thesis can be refined to give even more realistic regeneration

scenarios. Specifically, by combining the principles behind the refinements made to the car-

tilage healing model in chapters 3 and 4 with the osteochondral defect regeneration model

formulated in Chapter 5, a model of osteochondral defect regeneration that includes the me-

diatory and direct effects of the inclusion of MSCs, the effects of important factors, along

with the regulatory effects of mechanics by the inclusion of the critical cartilage density that

initiates chondrocyte hypertrophy, leading to endochondral ossification, could be formulated.

More refinements such as the inclusion of other important growth factors not yet considered,

other treatment strategies such as the implantation of collagen/glycosaminoglycan scaffolds,

and the effects of the mechanical environment can also be considered.

The work in Chapter 3 is refined further in Chapter 4, so we will treat these chapters as
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a singular model that can be extended in unison. The inclusion of BMP-2 and FGF-1 are

thought to also potentially induce undesirable healing mechanisms such as endochondral os-

sification and chondrocyte hypertrophy; these are effects we do not consider these growth

factors to contribute to in our chondral healing model. Including these potentially occur-

ring mechanisms would result in a more refined healing scenario, where these adverse effects

on chondral healing could be explored, but it is suggested in the literature these effects are

rarely reported, as explained in 6.1.1, indicating the mechanism we currently consider for

chondral regeneration is a sufficient representation [141, 184]. Other mixtures of MSCs and

chondrocytes could be investigated to find an ’optimal’ MSC/chondrocyte ratio, where nutri-

ent constraints are minimised and matrix deposition maximised. Our criterion for suggesting

an optimal co-implantation ratio is based on mean matrix densities. However, other criteria

could also be used to determine an optimal ratio. Some justification of our current criteria

are clinical data comparing MRI imaging and clinical outcome (McCarthy et al.[127]). The

signal intensity is a measure of mean matrix density, and thus our chosen measure will give

a clinically relevant comparison. However, other parameters such as the required time for

cartilage matrix to fill the defect and the required time to achieve a threshold density at the

surface might also be appropriate. The spatial distribution of matrix might also be relevant,

as seen in Figs 4.16 and 4.17. However, our results suggest that this may be difficult to

translate in a criterion. The comparison between MRI and clinical outcome suggests that the

articular surface of the repair tissue may be most important [127], which would suggest that

the repairs including stem cells, which form denser matrix at the defect surface, might be

better. However, the distribution of matrix density is less homogeneous for these cases, and

poor matrix homogeneity is associated with poorer clinical outcome [127]. The limitations

of our model dictate that all simulations are subject to nutrient concentration constraints,

typically meaning an optimal split of MSCs and chondrocytes is not at all obvious; this
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would require further investigation. This effect of nutrient concentration impacting the over-

all healing process has been hypothesised in our previous model as well as similar work [196],

with this co-implantation model now corroborating this hypothesis further. Availability of

cell types, overall cost and efficacy of the procedure are factors that would also have to be

considered when considering an optimal MSC-chondrocyte co-implantation ratio.

In chapter 5, the model proposed for osteochondral defect regeneration is 1-dimensional, i.e.

spatial variation is assumed to occur along the thickness of the defect alone. This is a strin-

gent assumption, as many osteochondral defects are deep as well as thick; a 2-dimensional

modelling approach here would be more refined. Disregarding other dimensions could result

in healing evolution occurring in other directions that the current model would struggle to

capture. In addition to this, the effects of the mechanical environment on osteochondral defect

regeneration is likely to be significant, with various studies demonstrating this [49, 125]. The

mechanical effect on endochondral ossification is also well-established, which is the underly-

ing healing mechanism we assume to be occurring during osteochondral defect regeneration.

It is likely the mechanical environment stimulates the release of various growth factors, en-

hances cell proliferation, initiates cell differentiation, and influences many other important

mechanisms in the healing process. We do, however, consider a critical cartilage density for

the initiation of chondrocyte hypertrophy and cartilage calcification, which is likely to be

regulated by the mechanical environment [24], along with the expression of endochondral-

suppressing growth factors located at the top of the defect, thought to be released by the

chondrocytes adjacent to damaged cartilage. Additionally, we do not consider an initial

population of MSCs, which would be present in the defect within the fibrous clot [49]. It

is assumed MSCs would differentiate into chondrocytes, where a chondral healing mecha-

nism would then continue to take place before chondrocytes exit their proliferative state and
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undergo hypertrophy, regulated by a critical cartilage density. We neglect their inclusion

initially to give a simpler initial modelling scenario. Furthermore, the works in Chapters 3 &

4 demonstrate little difference between the consideration of either chondrocytes or MSCs for

cartilage regeneration, indicating any differences observed based on the inclusion of MSCs

would be at early times before calcification and endochondral ossification has been initiated,

which is the main area of interest in Chapter 5. To refine this model further, an initial

population of MSCs should be considered, along with the implantation of chondrocytes we

consider, and with the effects of FGF-1 and BMP-2 we consider in Chapters 3 & 4. This

would likely lead to a slightly quicker initial cartilage fill time, and would be a better rep-

resentation of the osteochondral healing process after chondrocyte implantation. The higher

density of implanted cells would not likely have a significant impact on healing time though,

as demonstrated in Lutianov et al. [119], where doubling the implantation of chondrocytes in

an ACI procedure or MSCs in an ASI procedure did not impact overall healing time; increased

cell levels utilise more nutrients which in-turn constrains the cell environment by decreasing

cell proliferation. However, in the osteochondral defect healing scenario the reported effects

could differ as nutrient concentration is typically less constrained, so is something that could

be explored in more detail. Additionally, the consideration of other growth factors involved

in the PTHrP-Ihh feedback loop would lead to a more refined growth factor inclusion; it is

thought FGF-18 and CNP (C-type natriuretic peptide), which form an antagonistic signalling

pathway, are involved in the regulation of proliferative and pre-hypertrophic chondrocyte cell

numbers, ensuring Ihh production and chondrocyte hypertrophy when PTHrP is distant

enough [100]. Furthermore, the inclusion of a biphasic collagen/glycosaminoglycan scaffold

containing FGF-18, specifically recombinant human FGF-18, in osteochondral defect repair

in ovine models is reported to result in improved chondrogenesis, reduced fibrocartilage pro-

duction and a better quality of the regenerated cartilage tissue when compared with empty
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defects, empty scaffolds and scaffolds containing BMP-7 [67]. rhFGF-18 is also reported to

improve microfracture treated chondral defects, again resulting in more hyaline-like and less

fibrocartilage regenerated tissue, demonstrating increased FGF-18 expression enhances chon-

dral regeneration [151], a stage of healing our model has demonstrated is highly important

to successful osteochondral defect regeneration. Collagen/GAG scaffolds containing FGF-18,

along with other treatment strategies using collagen scaffolds seeded with various cell types

and growth factors [68, 153, 158, 159], could be the topic of further work with this model of

osteochondral defect regeneration.

6.3 Final thoughts

The work undertaken in this thesis replicates chondral or osteochondral regeneration under

the same assumptions; relevant cell types are implanted or pre-exist in the defect, proliferate

to appropriate cell numbers, potentially differentiate, undergo hypertrophy, or begin deposit-

ing ECM for repair. Cartilage regeneration is the main mechanism behind both chondral and

osteochondral defect healing, with the sensitivity analysis in Chapter 5 successfully show-

ing osteochondral defect regeneration is unsuccessful unless an initial cartilage healing phase

takes place, where chondrocytes are purely proliferative and do not undergo hypertrophy

until a critical cartilage density has been achieved. The regenerated cartilage then acts as a

model for calcification and bone deposition to take place via endochondral ossification.

The ideas explored within this thesis demonstrate the importance of understanding the un-

derlying mechanisms behind healing of the bone-cartilage unit, the effect growth factors have

on this healing process, and how better treatment strategies can be formulated to treat defects
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of cartilage and bone. It has been demonstrated in this chapter how future work combining

the principles explored in Chapters 3, 4 & 5 could result in a refined mathematical model

of osteochondral defect regeneration, where an initial population of MSCs is considered and

their mediatory or direct healing effects could be explored. Additionally, this refined model

could be used to explore other popular treatment strategies of osteochondral defect regener-

ation, such as those that utilise collagen scaffolds [25, 35, 137, 153].



Chapter 7

Glossary

• Autologous: Where tissues or cells are taken from the same individual.

• Apoptosis: Programmed cell death occurring during an organism’s development.

• Angiogenesis: The production of new blood vessels.

• Avascular: Indicating lack of blood vessels/supply.

• Chondrocyte: A cartilage cell that produces cartilage matrix.

• Chondroclast: A large cell that drives calcified cartilage resorption.

• Chondrogenesis: The process of cartilage formation from mesenchyme tissue.
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• Differentiation: The process of one cell type changing to another, typically from a

less specialised cell type (i.e. mesenchymal stem cell) to a more specialised cell type

(i.e. chondrocyte, osteoblast).

• Endochondral: Situated within cartilage.

• Extracellular matrix: The structural support where cells are embedded, comprised

of various collagens and proteins. It is found in connective tissues such as cartilage and

bone.

• Hypertrophy: Enlargement of cells resulting in an increase in tissue size.

• Mesenchymal stem cell: A cell that is able to differentiate into a variety of cell types,

such as chondrocytes and osteoblasts.

• Mesenchyme: An embryonic tissue that is a precursor of connective and skeletal tis-

sues.

• Osteoblast: A cell that produces bone.

• Osteoclast: A large bone cell that assists bone growth and healing by absorbing bone.
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• Osteocyte: An osteoblast that has become embedded in bone matrix.

• Perichondrium: An irregular dense connective tissue found surrounding cartilage in

bones of the developing skeleton. This material is not found in cartilage in the joints.

• Proliferation: Rapid reproduction of a cell.

• Substrate: A material upon which an organism, such as a cell population, lives and

proliferates.
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