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Abstract

Background: We investigated the impact of varying contrast medium (CM) densities and x-ray tube potentials on
contrast enhancement (CE), image quality and radiation dose in thoracic computed tomography (CT) using two
different scanning techniques.

Methods: Seven plastic tubes containing seven different CM densities ranging from of 0 to 600 HU were positioned
inside a commercial chest phantom with padding, representing three different patient sizes. Helical scans of the
phantom in single-source mode were obtained with varying tube potentials from 70 to 140 kVp. A constant volume CT
dose index (CTDIvol) depending on phantom size and automatic dose modulation was tested. CE (HU) and image
quality (contrast-to-noise ratio, CNR) were measured for all combinations of CM density and tube potential. A reference
threshold of CE and kVp was defined as ≥ 200 HU and 120 kVp.

Results: For the medium-sized phantom, with a specific CE of 100–600 HU, the diagnostic CE (200 HU) at 70 kVp
was ~ 90% higher than at 120 kVp, for both scan techniques (p < 0.001). Changes in CM density/specific HU
together with lower kVp resulted in significantly higher CE and CNR (p < 0.001). When changing only the kVp, no
statistically significant differences were observed in CE or CNR (p ≥ 0.094), using both dose modulation and
constant CTDIvol.

Conclusions: For thoracic CT, diagnostic CE (≥ 200 HU) and maintained CNR were achieved by using lower CM
density in combination with lower tube potential (< 120 kVp), independently of phantom size.
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Background
Computed tomography (CT) enables detailed evaluation
of the vascular system by obtaining contrast-enhanced
scans. In thoracic CT, numerous vascular conditions such
as aneurysms, haemorrhage, dissection and malformations
require the administration of iodinated contrast medium

(CM) to improve differentiation between normal anatomy
and pathology [1–3]. Even though contrast-enhanced CT
has become an important diagnostic tool, challenges still
exist regarding exposure to ionising radiation and the use
of iodinated CM. Exposure to ionising radiation is known
to be carcinogenic and associated with an additional risk
of cancer [4–6]. Thus, CT scanning must always be con-
sidered in accordance with the ALARA principle (as low
as reasonably achievable) as regarding the radiation dose
[4]. Patients with impaired renal function are especially at
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risk of developing post-contrast acute kidney injury
caused by iodinated CM. Since the impact of both CM
volume and renal CM concentration is still under debate,
it is essential to reduce the risks through CM optimisation
[7–9].
The degree of contrast enhancement (CE) is an import-

ant factor when determining the diagnostic image quality
of a CT examination. This is particularly important when
evaluating small structures such as the coronary arteries
[10] or evaluating the presence of metastatic disease in
lung parenchyma [11]. Three different factors have been
shown to influence CE: acquisition parameters, patient
physiology, and CM-related factors [12, 13]. Most import-
ant is the iodine delivery rate (i.e., the amount of iodine
delivered per second) and the total iodine dose adminis-
tered to the patient. For thoracic CT, high iodine concen-
trations (300mg I/mL and above) have routinely been
administered to achieve diagnostic levels of CE, but a
higher iodine concentration itself does not result in a
higher attenuation level when iodine delivery rate and
total iodine dose are kept constant [3, 10, 14].
Multi-detector CT scanners enable large volume cov-

erages in a short time. Using high pitch in combination
with wider detector ranges and shorter rotation time al-
lows image acquisition at peak arterial CE before venous
circulation impacts resultant image quality. This allows
for more effective identification of hyper-vascular tu-
mours [15]. However, fast scanning restricts the CM vol-
ume and consequently the x-ray photon absorption.
Alternatively, increasing iodine delivery rate may permit
a reduction in CM volume and CM concentration, while
maintaining diagnostic CE. A high iodine concentration
is routinely used in CT angiography, to achieve opacifi-
cation of around 250–300 HU in the thoracic aorta, and
300–350 HU in the coronary arteries [3, 10, 12, 13]. The
target opacification required for routine chest CT is typ-
ically lower (150–200 HU for thoracic vessels), but often
depends on preferences of the supervising radiologist [3,
16, 17].
Automatic tube voltage assistance techniques facilitate

radiation dose reduction and improved visualisation of
arteries. This is achieved by lowering the tube potential
throughout the scan towards the k-shell energy level of
iodine (33.2 keV), thereby increasing photoelectric effect
[14, 18–20]. Scanning with a low tube potential and
higher injection rate can allow a reduction of iodine con-
centration [13, 21] with the benefit of decreased contrast
viscosity and a reduced risk of post-contrast acute kid-
ney injury [10, 22]. This method has been reported to
reduce the radiation and iodine dose by between 40–
45% and 56–74%, respectively, without loss of image
quality [23–27].
Many studies have investigated the feasibility of

“double-low” techniques which combine low tube

voltage with low CM densities/volume and/or CM con-
centration for aortic, coronary and pulmonary CT angi-
ography. These studies have repeatedly proved “double-
low” techniques to be beneficial by significantly reducing
the iodine load and radiation dose [25, 28, 29]. However,
to our knowledge, there is little known about the impact
of CM densities/volume and varied tube potentials spe-
cifically for thoracic CT examinations. The aim of this
study was to investigate the impact of variations in CM
densities/volume for different tube potentials on contrast
enhancement (CE), overall image quality and radiation
dose in thoracic CT examinations.

Methods
Scan technique and phantom setup
Seven drinking straws (0.8 cm in diameter, 24 cm in
length), containing mixtures of saline solution and iodin-
ated CM, were used to simulate blood vessels. Straws
were placed in a circular pattern peripherally in the lung
of a commercial anthropomorphic chest phantom (N1
Lungman, Kyoto Kagaku Co., Tokyo, Japan) (Fig. 1a).
The phantom has been described by Afadzi and col-
leagues [30] and Gomi et al. [31] and has been also re-
ported in other studies [32, 33]. Three phantom sizes
were used. A set of anterior and posterior plates or “fat
jackets” were added to simulate a large phantom (26 ×
31 cm), the anterior plate was removed to simulate a
medium phantom (23 × 31 cm), as illustrated in Fig. 1a,
and no external plates were used for the small-sized
phantom (20 × 27 cm).
A series of CT scans were performed using a General

Electric Revolution CT scanner (GE Healthcare, Wauke-
sha, WI, USA). Phantoms were scanned at 70, 80, 100,
120, and 140 kVp at 0.5 s/rotation. Due to restrictions in
tube output when employing a short acquisition-time
and low tube potentials, the rotation time was increased
to 1 s/rotation when scanning the medium phantom at
70 kVp and scanning the large phantom at 70 and 80
kVp. A total of 30 CT acquisitions were performed with
the scan parameters stated in Table 1. The first 15 ac-
quisitions were acquired with automatic dose modula-
tion. The following 15 acquisitions were scanned with a
fixed mean volume CT dose index (CTDIvol) of 7 mGy
(small phantom), 10 mGy (medium phantom), and 17
mGy (large phantom), maintaining a near constant level
of tube output per rotation. For the large phantom, only
13 mGy was achieved for the 70 kVp tube potential due
to tube current limitations.

Assessment of contrast enhancement
Iodinated CM of 350mg I/mL (Omnipaque, Iohexol,
General Electric Healthcare, Oslo, Norway) was diluted
in saline. When mixing the two components, equal
amounts of saline were extracted, and CM was added to
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the prefilled 100 mL bottles of saline. At 120 kVp, 1.2
mL CM resulted in enhancement of 100 HU. Assuming
a proportional relationship between CM and HU, the
amount of CM necessary to obtain different CE levels
was calculated (Table 2). For simplicity, in the “Results”
and “Discussion” sections, iodine concentrations/iodine
density will only be referred to as HU values (a specific
HU) as established in Table 2.

Image quality assessment
Image analyses were performed using the ImageJ soft-
ware [34]. The ROIs were manually traced, and for each
scan, a region of interest of 18.3 mm2 was placed in five
slices (with 1 cm spacing) in each of the seven straws
containing CM. The same approach was used to meas-
ure noise outside the lungs in the chest wall, in five

slices (Fig. 1b). Measurements were repeated 35 times
(5 × 7) for each scan and for the different tube potentials
(70–140 kVp) and phantom sizes making a total of 600
circular regions of interest (Fig. 1). Image quality was
assessed by calculating contrast-to-noise ratio (CNR)
[35]. This study refers to enhancement of 200 HU and
120 kVp [3] as reference level. Images with CE ≥ 200 HU
were considered diagnostically acceptable for thoracic
CT scans [3, 13, 17, 36, 37].

Dose assessment
The CTDIvol reported on the scanner after exposure
was noted for each scan. The hospital CT quality assur-
ance programme was carried out twice in 2018 and once
in December 2019, by CT physicists. Measured CTDI in
air was on all the three occasions within 10% from the

Fig. 1 a Kyoto Kaguka Lungman Phantom (medium size) displaying the seven straws. b A single computed tomography (CT) image acquired
using the phantom. This image includes the seven straws containing different iodine densities, resulting in specific HU values at 120 kVp when
using a constant volume CT dose index

Table 1 Details of the contrast medium specifics

Phantom
size

Scan parameter
tube voltage:

Constant CTDI Dose modulation

70 kVp 80 kVp 100 kVp 120 kVp 140 kVp 70 kVp 80 kVp 100 kV 120 kV 140 kV

Large Rotation time (s) 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

mAs (range 80–500) 500 395 405 250 170 499 499 464 372 282

CTDIvol (mGy) 13.17 16.6 16.68 16.6 16.43 6.59 10.11 14.79 16.6 17.59

Medium Rotation time (s) 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

mAs (range 80–500) 380 475 240 150 105 499 499 322 244 178

CTDIvol (mGy) 10 9.98 9.89 9.96 10.15 6.09 8.14 8.98 10 11.6

Small Rotation time (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

mAs (range 80–500) 500 330 170 105 70 484 630 219 106 123

CTDIvol (mGy) 6.59 6.93 7.00 6.97 6.77 4.67 5.18 5.73 7.05 8.75

CTDIvol Volume computed tomography dose index. Scan technique: constant CTDIvol and dose modulation (SmartmA) using conventional, iterative
reconstruction. Additional parameters: scan mode, helical; detector collimation, 80 × 0.625; pitch, 0.5; scan field of view, 50 cm; display field of view, 36 cm;
reconstructed slice thickness, 2.5 mm; reconstruction kernel, standard; iterative reconstruction, adaptive statistical iterative reconstruction, ASIR-V 50%; noise
index14.5 (scans with dose modulation)
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vendor’s technical specification, and according to the in-
stitutions’ protocol for quality assurance, CTDIvol is
then assumed to be within similar acceptance.

Statistical analysis
Analysis was performed using SPSS Version 26 (IBM
Inc, Armonk, NY, USA). Data was presented as mean ±
standard deviation, minimum and maximum values. The
non-parametric Kruskal-Wallis analysis of variance by
ranks was also used to compare the difference in object-
ive image quality. The p values < 0.05 were considered
as statistically significant.

Results
CE assessment
The mean diagnostic CE was higher for all CM densities
and all three phantom sizes at lower tube potentials
(70–100 kVp) when compared to the reference tube volt-
age of 120 kVp (Fig. 2). The diagnostic CE at 70 kVp and
80 kVp was 91% and 59% higher, respectively, when
compared to acquisitions at 120 kVp. This was seen for
both acquisitions using dose modulation, and for those
with a constant CTDIvol for the reference CM density at
200 HU (Fig. 2). Our results show that using lower CM
densities/specific HU at lower tube potentials (e.g., 70
kVp) will result in higher diagnostic CE compared to ac-
quisitions at 120 kVp (Fig. 2). These differences were
statistically significant (p < 0.001). There was no signifi-
cant difference in the measured CE between phantom
sizes (p ≥ 0.494).

Image quality assessment
For the medium-sized phantom, at the reference level
(120 kVp, 200 HU), CNR started at 30 and 23 for the im-
ages obtained at constant CTDIvol and dose modulation,
respectively, (Fig. 3). At the lowest tube voltage of 70
kVp, our results showed an increase in the CNR of 80%
for the 200-HU CE using dose modulation, compared to
the reference at 120 kVp. When using constant CTDIvol,
our results showed that CNR was higher (96%) for 200

HU CE at 70 kVp versus 120 kVp. The higher CNR at
lower tube voltages was seen for all measurements car-
ried out in this study, independently of the scan tech-
nique and phantom size (Fig. 3).
Changes following lower CM density/specific HU, re-

sulted in significantly higher CE and CNR (p < 0.001).
However, when changing the tube potential, no signifi-
cant differences (for the same CM density/specific HU)
were observed in CE or CNR (p > 0.094). Again, this was
seen for both dose modulation and for a constant CTDI-
vol (Figs. 2 and 3).

Radiation dose
For scans with constant CTDIvol, the radiation dose was
7, 10, and 17mGy for small, medium and large phan-
toms across the various tube potentials (Table 1). How-
ever, for the large phantom, the CTDIvol was 13 instead
of 17 when scanning with 70 kVp due to technical limi-
tations of the CT scanner. The radiation dose, when
dose modulation was applied for the medium-sized
phantom, showed a reduction of 10%, 19%, and 39% for
100 kVp, 80 kVp, and 70 kVp, respectively when com-
pared to the reference tube voltage (120 kVp) (Table 1).
For the large phantom, the radiation dose decreased
with 11%, 39%, and 60% at 100 kVp, 80 kVp, and 70 kVp.
Correspondingly, a dose reduction of 19%, 27%, and 34%
was observed for the small phantom, across the respect-
ive tube potentials. Note that due to tube output limita-
tions, the mAs was cut at a certain level for the large
phantom at 70 and 80 kVp and the medium phantom at
70 kVp, resulting in lower doses than expected.

Discussion
In this study, the impact of varying CM densities at dif-
ferent tube potentials on the overall image quality and
diagnostic CE for thoracic CT was investigated. Our re-
sults show that increasing CM densities leads to signifi-
cantly higher diagnostic CE and image quality (CNR).
While a reduction in tube potential was shown to in-
crease CE and CNR, these differences were not statisti-
cally significant, regardless of employed scan technique
or patient size.
The clear benefits of low-kV protocols have been a

favoured topic, with resulting radiation and CM dose
savings between 40 and 60% reported, when reducing
tube potential from 120 to 80 kVp [23–27]. Further dose
savings and improved image quality have been reported,
when combining low kV and optimised injection proto-
cols which would reduce CM volume or concentration
[14, 28, 36, 38]. The latter is demonstrated in the present
phantom-based study. Reducing the tube voltage from
120 to 70 kVp for reference diagnostic CE of 200 HU re-
sulted in increases in CNR of up to 80% and 96% using
dose modulation and constant CTDIvol, respectively, in

Table 2 Details of the computed tomography scanning
parameters

Iodine densities
(mg I/mL → HU)

CM volume
(350mg I/mL)

Mixing ratio
(CM: Saline solution)

0 → 0 0 mL 0:1

2.1 → 50 0.6 mL 1:165

4.2 → 100 1.2 mL 1:82

8.4 → 200 2.4 mL 1:41

12.6 → 300 3.6 mL 1:27

18.2 → 400 5.2 mL 1:18

26.6 → 600 7.6 mL 1:12

CM Contrast medium
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the medium phantom size. When lowering the tube po-
tential, there is a debate regarding which approach is op-
timal for lowering the CM dose. Fleischmann et al. [14]
have reported moderate iodine concentrations (300 mg
I/mL) to be superior to higher CM concentrations (400
mg I/mL) for a constant iodine delivery rate when using
70 kVp to achieve sufficient CE over 300 HU [14]. The
“double-low” approach has been favoured by several
earlier studies [14, 28, 38–40] because of resultant lower
effective doses and iodine doses with comparable image
quality. According to the literature, a CE ≥ 200 HU in
the thoracic region is clinically acceptable [3, 13]. For a

routine chest CT, 60–70mL of 350–370 mg I/mL CM
has been suggested to be acceptable to achieve a CE of
150–200 HU [3].
The results of our study, despite investigating the im-

pact of CM density on enhancement instead of CM con-
centration used in other studies, confirm the same
tendency as reported in the study by Sun et al. [28].
They suggested greater potential for lowering the iodine
load even in obese patients by 27%, scanning with 100
kVp instead of 120 kVp. Our investigation has reported
a 50% reduction of CM density (medium phantom size)
for the same diagnostic CE (200 HU) and CNR, by

Fig. 2 Measured contrast enhancement (CE) values as a result of employed specific HU values between 0 and 600 HU at 70–140 kVp when using
dose modulation (a, b and c) and constant volume computed tomography dose index (CTDIvol) (d, e and f) for the three different phantom
sizes. The horizontal line displays the reference diagnostic enhancement level of ≥ 200 HU
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reducing tube potential from 120 to 70 kVp, using dose
modulation as shown in Figs. 2 and 3. Our findings are
also in agreement with the 51% CM density reduction
reported by Thor et al. [27]. However, larger patient
sizes as demonstrated in our study (see Fig. 3) may be a
limitation with regards to the required tube output
needed to achieve comparable CNR levels when using
higher kVp values. Van Hamersvelt et al. [26] have
shown a similar 40–60% iodine reduction, without loss
of image quality using dual source and dual energy CT.
In our study, a single source and single energy CT
protocol was employed.

The CNR is primarily affected by CM signal and image
noise, broadly becoming the most appropriate measure
for investigating iodine-enhanced vessels and structures
[27, 40]. When increasing contrast enhancement, by
lowering photon energy towards the k-shell electron
binding energy of iodine, more noise is accepted [41]. As
shown in Fig. 3, the CNR increased from 22.6 to 40.8,
approximately 80%, for the medium-sized phantom,
when tube potential was reduced from 120 to 70 kVp
(see Fig. 3). CNR (22.6 to 40.8) increased by 55.4% when
using a fixed CTDIvol, inherently improving the image
quality (see Fig. 3). However, these differences in CNR

Fig. 3 Mean contrast-to-noise values measured for the specific HU between 0 and 600 HU at tube potentials between 70–140 kVp when using
dose modulation (a, b and c) and a constant volume computed tomography dose index (CTDIvol) (d, e and f) for the three different phantom
sizes. The horizontal line displays the diagnostic contrast enhancement level ≥ 200 HU
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were not statistically significant, when using both scan
techniques (p < 0.094). Patient size nevertheless has a
great impact on image noise as photon penetration de-
creases in larger patients and a higher x-ray beam energy
is required to achieve the same noise level [36, 39]. In
our study, the image quality remained diagnostically ac-
ceptable independent of phantom size.
The CNR values resulting in a diagnostic CE ≥ 200

HU were above 23 and 30, with and without dose modu-
lation, for the medium-sized phantom (Fig. 3). When
compared to constant CTDIvol, dose modulation con-
tinuously reduces the tube current to patient/phantom
attenuation profile, while maintaining a given noise
index. This may cause an effective dose reduction of
53% according to Kok et al. [24] which supports our ob-
servation with only a slight change in CNR using dose
modulation compared to constant CTDIvol (Fig. 3).
There are several limitations in our study. This was

a phantom study, thus, no anatomical noise or arte-
facts caused by breathing and pulsation were present
in the images. Furthermore, for the fixed parameter
settings, the CTDIvol was lower for the 70 and 80
kVp levels for the large phantom due to technical
limitations. Still, the systematic evaluation of different
CM concentrations in the different phantom sizes for
different scan techniques and dose levels would not
be possible to obtain in a clinical setting due to pa-
tient radiation dose issues. Thus, performing a phan-
tom study as the first step of systematic evaluation
prior to a clinical study is needed to fully assess dif-
ferent scan techniques and available parameter set-
tings. Each ROI placed inside the plastic straws and
the chest wall was separated by air, influencing the
calculation of objective image quality. No assessment
of subjective image quality was conducted in this
study. Therefore, to fully assess and validate the findings
in this study, clinical studies including both objective and
subjective image quality evaluation are needed to confirm
our findings in routine clinical care. However, our results
show that increased CE at lower tube voltages can be
employed in clinical practice.
In conclusion, this study demonstrated that the

combination of lower CM densities (specific HU)
combined with lower tube potentials (e.g., 70 kVp) re-
sulted in improved CE enhancement (~ 90% higher),
and maintained image quality (80% higher CNR) in
chest CT when compared to acquisitions at 120 kVp.
Using double-low method in thoracic CT examina-
tions, CM density can be reduced by approximately
50% while maintaining CNR. Our findings were inde-
pendent of scan technique and phantom size. To fully
assess the potential of reduced CM densities for lower
kVp in chest CT, clinical validation of the results
from this study are needed.
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