BOUNDARY LAYER COLLAPSES
DESCRIBED BY THE
TWO-DIMENSIONAL INTERMEDIATE
LONG-WAVE EQUATION

Joseph O. Oloo!?
&
Victor I. Shrira!

1 School of Computing and Mathematics, Keele University,
ST5 5BG Staffordshire, United Kingdom
2 The Catholic University of Eastern Africa, P.O Box 62157
00200, Nairobi, Kenya.

j.o.oloo@keele.ac.uk

v.i.shrira@keele.ac.uk

September 9, 2020

Abstract

We study the nonlinear dynamics of localized perturbations of a confined generic
boundary-layer shear flow in the framework of the essentially two-dimensional gener-
alization of the intermediate long-wave equation (2d-ILW). The 2d-ILW equation was
originally derived to describe nonlinear evolution of the boundary layer perturbations
in a fluid confined between two parallel planes. The distance between the planes is
characterized by a dimensionless parameter D. In the limit of large and small D,
the 2d-ILW equation respectively tends to the 2d Benjamin-Ono and 2d Zakharov-
Kuznetsov equations. We show that the localized initial perturbations of any given
shape collapse, i.e., blow up in finite time and form a point singularity, if the Hamilto-
nian is negative, which occurs if the perturbation amplitude exceeds a certain thresh-
old specific for each particular shape of the initial perturbation. For the axisymmetric
Gaussian and Lorentzian initial perturbations of amplitude a and width o, we derive
explicit nonlinear neutral stability curves that separate the domains of perturbation
collapse and decay on the plane (a, o) for various values of D. The amplitude threshold



a increases as D and o decrease and tends to infinity at D — 0. The 2d-ILW equation
also admits steady axisymmetric solitary wave solutions whose Hamiltonian is always
negative; they collapse for all D except D = 0, they have no amplitude threshold. But
the equation itself has not been proved for small D. Direct numerical simulations of
the 2d-ILW equation with Gaussian and Lorentzian initial conditions show that initial
perturbations with an amplitude exceeding the found threshold collapse in a self-similar
manner, while perturbations with a below-threshold amplitude decay.



1 Introduction

Boundary layers are ubiquitous in nature and in the engineering context. Understanding
the evolution of boundary layers perturbations is crucial for controlling the laminar-turbulent
transition. The huge literature on this topic accumulated over more than a century is mostly
concerned with studies of linear instabilities, i.e., situations where infinitesimal perturbations
grow and the role of nonlinearity is primarily in modifying this growth (see, e.g.,[1]).

Here, we focus on nonlinear growth of weakly decaying modes. The basic model we
consider is the 2d intermediate long-wave equation (2d-ILW), which was derived in [2], (see
Egs. 35,36,52). This equation is a member of a broader family of two-dimensional nonlinear
evolution equations derived in [2], and it describes the evolution of weakly nonlinear long-
wave perturbations of a generic boundary layer in a homogeneous fluid confined between
two parallel planes for a wide range of Reynolds numbers. Its one dimensional version was
derived by Joseph in [3] and independently in [4] for long waves in stratified inviscid fluid
of finite depth in situations where the stratification is confined to a thin layer. It has an
infinite number of integrals of motions and has soliton and multi-soliton solutions (see, e.g.,
[5],16], [7]). The equation has a dimensionless parameter D characterizing the overall depth
of the fluid. In the limits of large and small D, it respectively reduces to the integrable
Benjamin-Ono and Korteweg-de Vries equations.

In contrast to its well studied 1d reduction, the 2d-ILW equation has never been studied,
beyond numerically finding its localized 2d axisymmetric solitary wave solutions in [2]. In the
linear limit, solutions of the 2d-ILW equation are superpositions of harmonic waves satisfying
a dispersion relation between the frequency w and wave vector k = {k,, k,},

w = —k,|k| coth(|k|D),

where D is the dimensionless distance between two parallel plates confining the boundary
layer. It is easy to see that as D — oo this relation reduces to the dispersion relation
of the linearized 2d Benjamin-Ono equation, i.e., w = —k,|k| in [§] . In the opposite
limit D — 0, we obtain w = —k,(1/D — D|k|*), which (after a Galilean transformation)
corresponds to the dispersion relation of the linearized 2d Zakharov-Kuznetsov (ZK) equation
[9]. Correspondingly, the 2d-ILW equation reduces to the 2d Benjamin-Ono equation for
large D and after the same Galilean transformation to the 2d-ZK equation for small D.

In 1995, Dyachenko and Kusnetsov showed [10] that the essentially 2d Benjamin-Ono
equation obtained by one of us in 1989 [8] describes collapses of initially localized 2d pertur-
bations. Also in 1995, Pelinovsky and Shrira [11] using the Whitham’s adiabatic approach
obtained an explicit description of the collapse in the framework of the 2d Benjamin-Ono
equation [II]. In contrast, solitary wave solutions of the 2d-ZK equation localized in two
dimensions are considered stable and noncollapsing [12]. Here, we consider the open question
of what is the result of the evolution of initially localized perturbations in the framework
of the 2d-ILW equation. Can this equation describe collapses, and if yes, then under what
conditions?

This paper is organized as follows. In section §2, we set up the physical model of a generic
confined boundary layer and explain the assumptions underlying the asymptotic derivation of



the 2d-ILW equation. In section §3, we describe its basic properties. In section §4 following
[10], we argue that collapses in the 2d-ILW equation occur whenever the Hamiltonian is
negative and unbounded and based on this find the explicit domains of collapse and decay
in the parameter space for Gaussian and Lorentzian initial perturbations. In section §5,
we describe the numerical simulation of the 2d-ILW equation and present an example of
collapse. This example demonstrates the self-similar character of the collapse in the 2d-ILW
equation. We also compare the direct numerical simulations of the 2d-ILW equation with
the analytic self-similar solution and show that the results agree well. Finally, in section §6,
we summarize our results and discuss the main open questions.

2 The Model

2.1 Boundary layer between two parallel planes

We consider a typical unidirectional shear flow in a boundary layer confined between two
parallel planes separated by a distance D. In the Cartesian frame with the origin at the
upper boundary with z, 0 < z < D, directed downwards with z and y directed streamwise
and spanwise, respectively (Fig. The directions are labeled vertical and horizontal only for
convenience. Without loss of generality, we assume the unperturbed unidirectional boundary
layer velocity U(z) is adjacent to the top boundary and localized with characteristic thickness
d < D. We also assume that the flow profile U(z) has no inflection points. In this setting,
the nonlinear evolution of long-wave perturbations with comparable scales in the z and y
directions is described by the 2d-ILW equation derived from the Navier—Stokes equations in
21,

AT - alAAx - ﬁlé’[Ax] = O’ (1)

where A(z,y,7) is the amplitude of the streamwise velocity component of the perturbation,
7 is the slow time, a; = U’(0), f; = U?(0)/U’(0) and the integral operator G[¢] is,

~
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where r = {z,y}, k = |k| = (k? + kg)l/z. We note that the streamwise perturbation of
velocity u(x,y, z,t) in the leading order is expressed in terms of the amplitude A(x,y,t) as

u(x,y, z,t) = — (f(z,y,2) * A(z,y,7)) - U'(2),

1 [ [sinhk(ez+ D)| (igmy
S k1)) g
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where f* g is the convolution in the r space and € < 1 is the small parameter of nonlinearity
defined as the ratio of the maximum streamwise velocity of the perturbation to the maximum
velocity of the basic flow. Other velocity components can also be expressed in terms of
A(z,y,7) (see [2] for details).

o0



U2

Z:D;

V4

Figure 1: Qualitative form of the geometry of a typical confined boundary-layer profile with
the shear localized in a thin boundary layer of thickness d and confined by a second boundary
at a distance D: just for definiteness, the boundary layer is shown for a fluid flow with a
free boundary. For the typical situations with no slip boundary (e.g., wind tunnels), this
picture is obtained after a Galilean transformation: U(0) should be set to zero, and U(D)
then becomes the free stream velocity.

Re-scaling the variables by setting d = 1, we bring the 2d-ILW equation to a form
containing a single dimensionless parameter D in the kernel of G given by

N

This form of the 2d-ILW equation is the mathematical basis of our study.

3 Basic properties of the 2d-ILW equation

The 1d-ILW equation is a well-studied weakly nonlinear pseudodifferential equation govern-
ing the evolution of long internal waves in a stratified fluid of finite depth (see, e.g., [3],
[4]). In contrast, the 2d-ILW equation has not been studied beyond a brief analysis of its



steady-state solutions in [2] where it was found that the 2d-ILW equation has axisymmetric
solitary wave solutions. For waves propagating in an arbitrary direction, 2d-ILW equation
(3) reduces to the 1d-ILW equation and, as is known, has an infinite set of integrals of mo-
tion, multisoliton solutions, and other properties typical of integrable systems (see, e.g., [3],
[6]. [7, [13]).

A notable feature of the 1d-ILW equation is that in the shallow-water limit (i.e., as
D — 0), it passes into the classical Korteweg—de Vries equation, while in the deep-water
limit (D — o00), it reduces to the Benjamin-Ono equation. Similarly, the 2d-ILW equation
reduces to the 2d Benjamin-Ono equation in the limit £D > 1. It is easy to see that in the
opposite limit kD < 1, the leading terms of the Taylor expansion of the function k coth (kD)
in the kernel of G have the form %(1 + @), and G consequently becomes the 2d Laplace
operator A = 97, 4 07,. Hence, for kD < 1 the 2d-ILW equation tends to the 2d-ZK
equation, which was obtained for describing low-frequency ion—acoustic waves in magnetized
plasma [9], but was later found to arise in many other physical contexts [14],[15], [16], [17]
and [I8]. We note that strictly speaking, it is not legitimate to consider the 2d-ILW equation
in the ZK limit. Although the equation itself does admit such a consideration and indeed
reduces to the ZK equation, the asymptotic procedure used to derive the 2d-ILW equation
breaks down for small D.

We can write 2d-ILW equation in the Hamiltonian form as

. 1 OH
A= Al — —A?| = 0,— 4
. @FH 2} Oasr (4)
where the Hamiltonian H has two constituents I; and I5,
1 1 A
H=3h- 612, I = /AG[A] dr, I = /A3 dr, (dr = dady). (5)

In addition to the Hamiltonian, 2d-ILW equation conserves the streamwise and spanwise
components of the “momentum” P and the mass flux M,

//Adedy, Pyzl//Agbydxdy, M://Adxdy. (6)

where (¢, = A). The way these integrals depend on the perturbation parameters allows
inferring the existence of collapses for certain initial conditions and describing the domain
of collapsing initial conditions for particular chosen classes of initial conditions in the next
section.

4 Collapses in the 2d-ILW equation: Domain of col-
lapses in the parameter space

4.1 Domain of collapses in the a — o space in the generic case

Dyachenko and Kusnetsov showed the existence of collapses in the 2d Benjamin—-Ono equa-
tion [10], which is a particular limit of the 2d-ILW equation. Here, we extend their approach
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to the 2d-ILW equation.

The plane soliton solution of the 2d-ILW equation is stable in the framework of the 1d-
ILW equation but is unstable under transverse modulations in the 2d-ILW equation that we
study. In contrast to the 2d Benjamin—Ono equation, for which the transverse stability of
plane wave solutions was thoroughly studied in [19], [20], we here skip this part of the analysis
because the transverse instability of the plane soliton is obviously manifested in numerical
simulations of the 2d-ILW equation and we initially know the scaling of the instability growth
rate.

The key result of Dyachenko and Kusnetsov is that the existence of collapses is related
to the unboundedness of the Hamiltonian from below as the streamwise momentum P, is
kept constant [I0]. For any chosen localized initial conditions, a sufficient condition for the
collapse to occur is that the Hamiltonian must be negative. The reasoning in [10] is entirely
applicable in the case of the 2d-ILW equation. Using direct numerical simulations of the
2d-ILW equation (which we describe below), we verify that this criterion indeed predicts the
occurrence of collapse. Moreover, this criterion allows obtaining a good initial idea how the
fate (i.e., collapse or decay) of an initial perturbation depends on its parameters. To outline
these dependences, we examine a few simple distributions, Gaussian and Lorentzian pulses,

A _ —(2244?) /202 A _ a '
G(x7 y) ae ) L(x7 y) 1 + 4(1;2/0_2 + y2/02) (7)

These initial perturbations are fully characterized by just two parameters: the amplitude a
and characteristic half-width o, which we call the width for brevity.

It is easy to see that in the Hamiltonian H given by , both its constituent integrals,
the dispersion I; and the nonlinear I, can be expressed in terms of amplitude a and the
perturbation width o. Rescaling the variables

~ z ~ Yy ~ o~ (#2452 1
Z o’ Yy o’ (l’,y) (IA, AG € ) AL 1 +4(i’2 —|—g]2)

we re-write our integrals as,
Il = CL2O'I~1, jl == //AG[A] di‘dg, ]2 == (130'2I~2, jg == //Agdi’dg,

where I; depends implicitly on o via the integral operator kernel coth (%) and I, is a
constant that is evaluated analytically or numerically. For the Gaussian initial conditions,
I, = %7?. The integral I; cannot be evaluated analytically and is treated numerically for the
whole range of D and o.

If the dispersion and nonlinear contributions in the Hamiltonian exactly balance, i.e.,
31, — I, = 0, then the Hamiltonian vanishes and thus yields a nonlinear “neutral curve”

separating the domains of collapse and decay on the plane (a, o),

a’0(31, — acly) = 0. (8)



The relation between the amplitude threshold a,, and perturbation width o prescribed by
Eq. is, i
31

amr(0) = =—. (9)

[2 g
To better understand this relation, we expand coth (%) for 0 > 1 and ¢ < 1. Retaining
the first two terms in the Maclaurin series of coth s, with s = % < 1 we obtain, %—i— %s — eeene
Similarly, for short waves ¢ < 1, i.e., for s > 1, coths ~ 1 with an exponentially small

discrepancy (see, e.g., [21]).

4.2 Domain of collapses in the ZK limit

We note that the transition from the 2d-ILW equation to the 2d-ZK equation is not entirely
smooth, because in the leading order, we have a large constant translation term 1/s, which
can be eliminated by switching to the moving coordinate frame. Writing the equation in the
Hamiltonian form, we scale the integrals of motion using parameters of the initial conditions,
the amplitude a and width o. It is hence easy to see that the Hamiltonian H in the ZK limit
consists of three terms (the constant translational term I3, the dispersion term, I, and the
nonlinear term /5 ), which can be expressed in terms of the amplitude a and perturbation
width o,

]3 = 3@20'2j3/D, j3 = //A2 di‘dﬂ,
I, = Dd?ly, L_//AQMMM@

I, = a0, g://m@@.

We recall that in the ZK limit, the dispersion operator G in the Fourier space is k% =
|k|? = k2 + k? The factor I3 is evaluated analytically or numerically; for the Gaussian initial
conditions, its exact value is 7. The integral I, is treated numerically and yields a constant.

If the dispersion and nonlinear contributions in the Hamiltonian exactly balance, i.e.,
I3 + Iy — I, = 0, then the Hamiltonian vanishes and thus yields a nonlinear neutral curve
separating the domains of collapse and decay on the plane (a, o),

2j B B
a® (3UD >+ DI, — a0212> = 0. (10)

Therefore, in the long-wave limit, the nonlinear neutral curve specifying the amplitude

threshold ay,, (o) corresponding to the ZK equation tends to a constant independent of

o, . .
31 DI
D[g 0'2[2
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We note that asymptotic expression for the threshold amplitude corresponding to the
2d-ZK equation agrees well with the expression obtained from the 2d-ILW equation (see Eq.
@D) Therefore, the amplitude threshold in this particular limit depends primarily on D (it
tends to infinity as 1/D as D — 0), while the dependence on the width ¢ vanishes. In the
o > 1 limit, the amplitude threshold ceases to depend on o.
In the opposite limit (o < D), the neutral curve is the hyperbola,
Qthyr = ?1—[1 (12)
20
We obtained the neutral curves for the intermediate values of D by evaluating [; and I
numerically for axisymmetric Gaussian and Lorentzian initial pulses. Plots of the results are
shown in Fig. . Perturbations with a and ¢ above the neutral curve invariably collapse,
and those with a and ¢ below the curve decay. We note that the curves for the Gaussian and
Lorentzian initial conditions are very similar; the quantitative discrepancy is rather small.

We emphasize two features of these plots:

1. the amplitude threshold increases monotonically as D decreases and tends to infinity
as D tends to zero, and

2. for any D # 0, the amplitude threshold increases monotonically as o decreases.

In the limit of small D corresponding to the ZK equation, the threshold amplitude stops
depending on ¢ and tends to a large O(1/D) constant. Because the 2d-ILW equation was
derived under a weak-nonlinearity assumption, a substantial portion of the collapse domain
for small D is outside the applicability domain of the equation. We note that here we
considered whether a given initial perturbation lump of amplitude a and width ¢ would
collapse assuming that a and o are independent. The conclusion is that the threshold
amplitude tends to zero as the width tends to infinity. But if we allow o to depend on
a, then at first glance, we obtain a different picture. For example, if we choose the lump
solitary wave solutions reported in [2], as our initial condition, then their Hamiltonian is
always negative, and all such initial conditions hence collapse for any initial amplitude.
Hence, there is no amplitude threshold for this class of initial perturbations. In fact, there is
no contradiction with the conclusions obtained for initial distributions with a simple shape:
the picture merely becomes somewhat distorted if ¢ = o(a). For the lump solitons in [2],
as ¢ — 0o as a — 0, i.e., for infinitely long initial perturbations of whatever shape, the
amplitude threshold tends to zero.

5 Self-similar solution and numerical simulation of col-
lapses

5.1 Self-similar solution

It is natural to expect a self-similar behaviour of the solution in the vicinity of the singularity.
A self-similar solution of the 2d Benjamin—-Ono equation was proposed in [10]. In this section,
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we show that the same logic applies to the 2d-ILW equation and find a self-similar solution
of ().

We consider the spatial and temporal dependence of a collapsing perturbation in a certain
vicinity of the blowup singularity occurring at = = 7o {zo,yo}. We introduce the time 7 to
the singularity and the distances & = x — ¢, ¥ = y — yo to singularity. We seek a self-similar
solution of the form

Alr,7) =79(€), €= (13)
Substituting this ansatz in the 2d-ILW equation of form and ensuring that the equation
remains invariant, we can easily show that A = —% and p = % Therefore,
u(r,7) =7"1%(€), €=7""r (14)
where g(&€) is given by,
9.9 Glg) = 0.

2 2

We have thus obtained an explicit self-similar solution of the 2d-ILW equation predicting
the singularity 1/4/79 — 7 in time and the shrinking spatial distribution given by g(&). Its
width tends to zero as /79 — 7. This is the self-similar solution of the 2d Benjamin—-Ono
equation obtained in [I0] (up to a typo in the time-dependence exponent there). Although
our equation for g specifying the shape of the distribution has a simpler form (because we
integrated our equation once), it has the same solution.

Hence, we obtain the same self-similar solution for an essentially different equation be-
cause the asymptotic forms of the two different equations coincide near the singularity. Here,
the shrinking spatial scale of the solution implies an infinite increase of the dominant wave
numbers and hence kD — oo. Therefore, in the 2d-ILW equation, the vicinity of the sin-
gularity is always (for D # 0) governed by the 2d Benjamin-Ono equation. The possible
existence of other interesting self-similar regimes for the 2d-ILW equation corresponding to
intermediate asymptotic forms not yet identified remains open.

In our numerical experiments, we also considered the axisymmetric “ground solitons”
of 2d-ILW found in [2] as the initial conditions. The Hamiltonian for such distributions
is negative, they hence collapse, and there is no amplitude threshold. This holds for any
D #0. As D — 0 the 2d-ILW ground soliton becomes the 2d-ZK ground soliton. Although
the Hamiltonian of the ground soliton remains negative, the Hamiltonian becomes bounded
in the 2d-ZK limit (see [12],[22]), which suggests that the 2d-ZK ground soliton is stable.
There are several numerical studies of the 2d-ZK equation where its ground solitons were
used as the initial conditions and were found to be stable (see, e.g., [23]).

We do not discuss the 2d-ZK equation further here, because the 2d-ILW equation, as
mentioned, becomes inapplicable in this limit.

5.2 Numerical Simulation

To simulate the 2d-ILW equation numerically for localized initial perturbations, we use the
pseudospectral method (see, e.g., [24],]25]). This method with periodic boundary conditions
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uses efficient fast Fourier transform routines to handle dependences on x and y and the
classic fourth-order Runge—Kutta method for the time evolution.

In our context, it was found to be optimal to use a large rectangular box of length 2567
and width 647. This choice provides sufficient domain for the spatial decay of the simu-
lated localized perturbations and also allows the perturbation sufficient time to move in the
streamwise direction during the evolution. To resolve the rapidly growing, increasingly local-
ized amplitudes, we used 4096 x 1024 grid points. We numerically solved 2d-ILW equation
in the moving coordinate frame. It is convenient to present our evolution equation in
the flux-conservation form A, + F, = 0, where the flux F = —G[A] + $A?. The integral

operator G [ A] was treated in the Fourier space, and the nonlinear terms were considered
in the physical space on collocation points with the “two-third de-aliasing rule” [[24]. The
accuracy of the simulations was controlled by ensuring that the integrals of motion and
(@ remain constant with an error not exceeding 1074

5.3 Evolution scenarios

After obtaining nonlinear neutral curves separating the collapse and decay domains in sec-
tion §4 we verified the findings by numerical simulations of the evolution of axisymmetric
Gaussian pulse initial conditions . Choosing the initial perturbations slightly above and
slightly below a curve, we confirmed that the initial perturbations with amplitudes exceeding
the threshold indeed collapse, i.e., such perturbations evolve into a short-lived pattern that
tends to a localized self-similar solution with a point singularity. Initial conditions below
the threshold decay, although a temporary transient growth, sometimes substantial, can also
occur.

In Figures (3)) and (4)), we illustrate a typical evolution of a collapsing pulse for a localized
initial condition. A typical time dependence of a collapsing pulse amplitude simulated for
an axisymmetric Gaussian initial condition and D = 4 is shown in Figure . We note that
the amplitude increases slowly for most of its evolution and the abrupt growth occurs just
immediately before the singularity. This figure also gives a good idea of how surprisingly well
self-similar solution of the 2d Benjamin-Ono equation captures the evolution governed
by the 2d-ILW equation. A complementary view of the evolution is shown in Figure (4)),
with a sequence of snapshots of a collapsing pulse

Here, we emphasize two notable features. Although the initial condition is perfectly
axisymmetric, the emerging pattern is not: at the pedestal, the pulse radiates in two dis-
tinguished directions, and the resulting pattern resembles “hair-pin” or “lambda” vortices
routinely observed in wind tunnels (see, e.g.,[26]). The top of the pulse evolves in an ax-
isymmetric self-similar manner tending to a point singularity at the end. Asymmetric initial
conditions also have these properties.
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6 Concluding remarks

Using the methodology in [I0], we have shown that in the framework of the 2d-ILW
equation, localized initial perturbations with negative values of the Hamiltonian H collapse
for all non-zero values of parameter ID. That is, we showed that a wide class of initial
conditions evolves into growing coherent patterns resembling “hairpin vortices” and “spikes”
often seen in aerodynamic tunnels [26]. These patterns collapse (blow up in a finite time) in
a self-similar manner, forming a point singularity.

We demonstrated this scenario by numerically simulating the 2d-ILW equation. Using the
criterion H = 0, which we verified numerically, we delineated the collapse and decay domains
in the space of the parameters a,0 and D. For axisymmetric Gaussian and Lorentzian
initial distributions, the results were qualitatively similar and numerically close and can
be summarized as follows. For large D, the amplitude threshold a;,,. as a function of the
horizontal scale of the initial distribution o is described by a hyperbola: a,,. = const/o.
Any decrease of D raises the threshold. For small D (the 2d-ILW equation tends to the ZK
equation), the threshold stops depending on ¢ and tends to infinity as 1/D.

At first glance, we have a large domain on the plane (a, o) where the initial perturbations
collapse for each value of D, but for the collapses to be physically relevant, the applicability
of the 2d-ILW equation itself, which is based on a weak-nonlinearity assumption, must be
ensured. For this, the initial amplitudes of the perturbations must be sufficiently small.
Obviously, the weakly nonlinear description always becomes inapplicable closer to the point
of collapse, but if the initial amplitudes of collapsing perturbations are small, then we could
faithfully describe a considerable part of the perturbation evolution with the 2d-ILW equa-
tion. One of our main conclusions is that physically relevant collapses are possible only for
relatively large D and o because the threshold for small values of D and o is too high for
any part of the evolution leading to collapse to be weakly nonlinear. We also recall that the
derivation of the 2d-ILW equation itself breaks down for small D.

Our work raises a number of open questions. At present, we do not have a rigorous
mathematical proof of collapses; the issue is being studied by mathematicians working on
the existence of solutions of nonlinear evolution equations. The 2d-ILW equation that we
examined is just a particular case of a more general family derived in [2]. It has now be-
come clear how to generalize these evolution equations further to describe more complicated
hydrodynamic situations (accounting for the presence of density stratification, 3d boundary
layers, and a different range of Reynolds numbers), and the conditions for collapses to occur
in these situations are being investigated. We note that the 2d-ILW equation is derived for
a particular range of the Reynolds numbers: Re 2 < e < Re*i, where ¢ is the nonlinearity
parameter defined as the ratio of the maximum streamwise velocity of the perturbation to
the maximum velocity of the basic flow. If Re = O(¢72), which is not rare, then the viscosity
modifies the evolution equation, and a Rayleigh-type friction term is added to the 2d-ILW
equation that we examined here. To our knowledge, there are no mathematical tools (other
than direct numerical simulations) for the evolution equation with such a friction that would
allow predicting the occurrence of collapses.
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The 2d-ILW equation is a weakly nonlinear asymptotic model. We do not know the
eventual outcome of the found collapses in the full Navier-Stokes equations. There are
several plausible options. The collapses might lead to formation of coherent strongly non-
linear patterns that might be long-lived. Most likely, the collapses cause a transition to
turbulence. The role of the collapses in the bigger picture of boundary-layer instabilities
and laminar—turbulent transitions remains the biggest open question. Resolving these out-
standing questions will provide new insights into the physical mechanisms of boundary-layer
instabilities and laminar—turbulent transitions.
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