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Abstract

Emerging evidence indicates that a strong relationship exists between brain regenerative

therapies and nutrition. Early life nutrition plays an important role during embryonic brain

development, and there are clear consequences to an imbalance in nutritional factors on

both the production and survival of mature neuronal populations and the infant’s risk of dis-

eases in later life. Our research and that of others suggest that vitamins play a fundamental

role in the formation of neurons and their survival. There is a growing body of evidence that

nicotinamide, the water-soluble amide form of vitamin B3, is implicated in the conversion of

pluripotent stem cells to clinically relevant cells for regenerative therapies. This study investi-

gated the ability of nicotinamide to promote the development of mature catecholaminergic

neuronal populations (associated with Parkinson’s disease) from mouse embryonic stem

cells, as well as investigating the underlying mechanisms of nicotinamide’s action. Nicotin-

amide selectively enhanced the production of tyrosine hydroxylase-expressing neurons and

serotonergic neurons from mouse embryonic stem cell cultures (Sox1GFP knock-in 46C

cell line). A 5-Ethynyl-2´-deoxyuridine (EdU) assay ascertained that nicotinamide, when

added in the initial phase, reduced cell proliferation. Nicotinamide drove tyrosine hydroxy-

lase-expressing neuron differentiation as effectively as an established cocktail of signalling

factors, reducing the proliferation of neural progenitors and accelerating neuronal matura-

tion, neurite outgrowth and neurotransmitter expression. These novel findings show that nic-

otinamide enhanced and enriched catecholaminergic differentiation and inhibited cell

proliferation by directing cell cycle arrest in mouse embryonic stem cell cultures, thus driving

a critical neural proliferation-to-differentiation switch from neural progenitors to neurons.

Further research into the role of vitamin metabolites in embryogenesis will significantly

advance cell-based regenerative medicine, and help realize their role as crucial develop-

mental signalling molecules in brain development.
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Introduction

There is a wealth of evidence indicating that diet and nutrition play a key role during sensitive

windows of brain development, when early organizational processes such as differentiation

and maturation of specific neuronal pathways are underway [1–3]. Each step of neuronal dif-

ferentiation, including neural progenitor differentiation, neuronal fate specification, matura-

tion and survival of developing neurons is highly regulated by extrinsic and intrinsic factors

[4]; with a lack of or an excess of nutritional elements leading to abnormalities in brain devel-

opment [5–7].

Pluripotent stem cells provide an important in vitro model system to investigate early events

during human development and the therapeutic use of stem cells is a promising approach to

combat neurodegenerative processes in the brain, e.g. the replacement of midbrain dopamine

neurons in Parkinson’s disease (PD) [8] or serotonergic neurons in neuropsychiatric disorders

[9]. However, successful exploitation of stem cell derivatives requires the ability to restrict

stem cell proliferation linked to tumour formation, and to direct differentiation of stem cell

candidates to higher and purer yields of desired cell phenotypes [10]. The dopaminergic neu-

rons of the nigro-striatal system that are affected in PD, and the serotonergic neurons that

project to cortical regions and which are affected in neuropsychiatric disorders, develop in

close proximity to the ventral midbrain [11]. Therefore, early neurogenesis of these specific

neuronal subtypes may be influenced by similar patterning signals. While a number of these

signalling pathways have already been identified (e.g. Lmx1a [12], Pitx3 [13], Nurr [14]), it is

likely that there are as yet undiscovered factors that modulate the fate of specific midbrain neu-

ronal cell populations during development.

The developing brain is metabolically highly active, and changes in metabolism are known

to influence neuronal development [15]. Nicotinamide, the amide form of vitamin B3 (niacin),

is a key molecule whose levels are tightly governed by cellular metabolism, and is a key factor

in the metabolic pathway to produce nicotinamide adenine dinucleotide (NAD+), which is

known to be essential for energy production in the cell [16]. Optimal NAD levels are critical in

preventing impaired neuronal metabolism due to mitochondrial dysfunction. An NAD-defi-

ciency is a likely key-event in the pathogenesis of PD [6]. Thus, restoring NAD levels through

supplementation with precursors such as nicotinamide has the capacity to improve mitochon-

drial function, prevent NAD deficiency and promote neuroprotection and neuronal develop-

ment in neuronal populations [5, 7, 17–19]. In this context, nicotinamide has been used to

promote differentiation of pluripotent cells under a wide variety of culture conditions [20–26].

A previous study in our laboratory demonstrated the benefits of applying nicotinamide as a

differentiation agent to aid the conversion of stem cells to mature GABAergic neurons [18].

Findings from this work and published literature [27–29] imply that this bioactive nutrient

may also function as a catecholaminergic differentiation signal implicated in the development

or maintenance of basal ganglia circuitry.

Interestingly, it has been hypothesized that a modern Western diet containing high levels of

nicotinamide and vitamin supplements may promote mitochondrial stress and subsequent

neuronal apoptosis in dopaminergic neuronal populations, leading to PD. [5, 6]. In support of

this theory, excess nicotinamide administered postnatally to mice caused a reduction in dopa-

mine in the hypothalamus, potentially through SIRT 1 inhibition, which also plays a key role

in regulating tyrosine hydroxylase expression in vitro [30, 31]. Furthermore, previous work in

our group demonstrated that 20 mM nicotinamide induced cytotoxic effects on stem cell-

derived cultures within 3 days of application [7], whereas these cultures responded positively

to supplementation with nicotinamide within a dose range of 5 to 10 mM in vitro [18], imply-

ing that vitamin levels need to be tightly controlled to maintain normal neuronal functioning.

PLOS ONE Nicotinamide enhances generation of specific neuron subtypes from mouse embryonic stem cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0233477 September 14, 2020 2 / 17

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0233477


On the contrary, Pellagra is nutritional disorder caused by a severe tryptophan/niacin defi-

ciency which leads to a range of symptoms including dermatitis, diarrhoea, dementia and

depression, also common in Parkinsonism [16, 32]. In other neurological disorders, alterations

in nicotinamide have also been implicated in Alzheimer’s disease and Huntington’s disease

(reviewed in [33]).

The aim of the current study was to investigate whether nicotinamide, within a defined

dose range, was able to influence the differentiation of embryonic stem cells into mature cate-

cholaminergic neuron subtypes. Nicotinamide was applied to differentiating mouse embry-

onic stem cells (mESC; Sox1GFP knock-in 46C cell line [34]) during their conversion towards

a neural fate. Cells were assessed for changes in their proliferation, differentiation and matura-

tion; using immunocytochemistry and morphometric analysis methods. This study also

focused on elucidating the mechanism(s) mediating neural specification by nicotinamide—

that is, induction of cell-cycle exit and/or selective apoptosis in non-neural populations. Here

we show that nicotinamide, at a specific dose and exposure time, caused an accelerated passage

of pluripotent cells through lineage specification and further to non-dividing mature catechol-

aminergic neural phenotypes. This places nicotinamide as an affordable and effective signal-

ling factor for efficiently deriving enriched catecholamine neurons, and marks this bioactive

molecule as worthy of further investigation to clarify its role in normal brain development.

Materials and methods

All reagents used in this study were from Sigma, UK unless specified otherwise.

Embryonic stem cell culture

The mESC line 46C (a kind gift from Professor Meng Li, Cardiff University, UK) carrying a

green fluorescent protein knock-in reporter targeted to the Sox1 promoter (transiently

expressed during the neural progenitor stage) was used throughout this study. mESCs were

cultured in Glasgow Modified Eagles Medium (Invitrogen, UK) with the addition of 10% FCS,

0.1 M β-mercaptoethanol, 1 mM L-glutamine, 10 mM non-essential amino acids, 100 mM

sodium pyruvate and 100 U/ml leukaemia inhibitory factor. Undifferentiated cells were rou-

tinely passaged every two days, re-plating at a density of 1 x 106 cells/cm2. mESCs were main-

tained on 0.1% gelatin-coated tissue culture plastic at 37˚C in a 5% CO2 incubator.

Neural differentiation

Monolayer neural differentiation was based on a previous protocol [13]. For neural induction,

undifferentiated mESCs were plated at a density of 9 x 104 cells/cm2 in wells of a 0.1% gelatin-

coated 6-well dish (day 0) in N2B27 serum-free medium: DMEM/F12 (Invitrogen), Neuroba-

sal media (Invitrogen), 0.5% N2 (Fisher Scientific, Loughborough, UK), 1% B27 (Fisher Scien-

tific), 2 mM L-glutamine and 0.1 μM β-mercaptoethanol. Medium was refreshed every other

day. On day 7, 3 x 104 cells were replated in 30 μl microdrops of N2B27 medium on 13 mm

glass coverslips (Fisher Scientific) pre-treated with poly-L-lysine (PLL) (10 μg/ml) and laminin

(2 μg/ml) in 24-well plates. After 4–6 h incubation, the wells were supplemented with N2B27

medium, refreshed every other day until day 14. Cells were treated with nicotinamide (10

mM) when medium was refreshed, between days 0 and 7, and assays were performed on days

7 and 14. Control groups were not treated with nicotinamide.

The differentiation potential of the nicotinamide combined with key inductive tyrosine

hydroxylase neuron signalling factors was also examined at day 14. Undifferentiated cells were

cultured as monolayers in N2B27 medium in the presence of nicotinamide (10 mM) between

days 0 and 7, and Shh (200 ng/ml; R&D systems, Abingdon, UK) and FGF8b ((100 ng/ml;
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PeproTech, London, UK) were added to cultures between days 5 and 9, which spans the peak

of neurogenesis (i.e. Sox1+ neural progenitor cell production is at its peak).

Viability assay

A CountessTM automated cell counter was used to determine total cell counts and viability of

mESCs. For a typical cell count, 10 μl cell suspensions was mixed with 10 μl 0.4% trypan blue

stain, and 10 μl was added into a chamber. The image was focussed, and viable and non-viable

cells were counted. Three counts per sample were averaged and cell viability was calculated as

a percentage of the total number of cells.

Apoptosis assay

The Click-iT1 TUNEL Alexa Fluor1 imaging assay (Invitrogen, Paisley, UK) was employed

to assay nuclear DNA fragmentation by catalytically integrating fluorescein-12-dUTP at 3

´-OH DNA ends, using the enzyme Terminal Deoxynucleotidyl Transferase (TdT) to generate

TdT-mediated dUTP Nick-End Labelling.

Monolayer adherent cells were fixed in 4% PFA for 15 min at 4˚C then permeabilized with

0.2% Triton X-100 in PBS for 5 min. Cells were rinsed, then the TdT reaction buffer was

added to each coverslip for 10 min at RT. The coverslips were incubated for 60 min at 37˚C in

100 μl TdT reaction cocktail, avoiding exposure to light, then rinsed with 3% BSA. A Click-

iT1 reaction cocktail (100 μl) was added to each coverslip for 30 min at RT, protected from

light, then the cells were rinsed. To perform dual labelling, the cells were blocked and permea-

bilized with 0.02% Triton X-100 and 5% NGS for 1 h. Immunocytochemistry with fluorescent

antibodies was then performed as detailed below. TUNEL was combined with examination of

cell nuclei integrity, and assessments of cellular morphology were performed using fluores-

cence and phase contrast microscopy. Apoptotic cells were identified as TUNEL-positive and

exhibiting a pyknotic nucleus.

Cell proliferation assay

To determine the proliferative effect of nicotinamide, a ClickiT1 EdU (5-ethynl-2’-deoxyuri-

dine) cell proliferation assay (Invitrogen, Paisley, UK) was used, in accordance with the manu-

facturer’s instructions. Adherent monolayer cells were pulse labelled with EdU (10 μM) for 1 h

prior to cell fixation. Standard PFA fixation (4% formaldehyde) and detergent permeabiliza-

tion (0.5% Triton X-100) were then performed to facilitate access of the detection reagent to

DNA. For EdU detection, a Click-iT1 reaction cocktail was prepared and applied to the cells

for 30 min. The cells were rinsed with 3% bovine serum albumin (BSA) in PBS, followed by

PBS. To investigate whether nicotinamide had elicited an effect on the proliferation of undif-

ferentiated mESCs, or differentiated neurons, dual labelling of cultured cells with EdU and pri-

mary antibodies was undertaken. Co-labelling of EdU with native Sox1GFP-expression was

used to identify progenitor cells that had undergone mitosis.

Immunofluorescence staining

Differentiated cells were fixed with 4% paraformaldehyde (PFA) for 20 min at 4˚C. Fixed cells

were washed three times with Tris buffered saline (TBS). Non-specific binding was blocked

and the cells were permeabilized with 0.02% Triton X-100 and 5% normal goat serum (NGS)

(PAA, The Cell Culture Company, Somerset, UK), for 1 h at room temperature (RT). Primary

antibodies diluted in 1% NGS blocking buffer were added to the cultured cells overnight at

4˚C (Oct4, 1:100, Santa Cruz; β-III-tubulin 1:500, Covance; TH, 1:1000, Chemicon; Serotonin,
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1:500, Abcam). Negative primary controls consisted of cells treated with blocking buffer with-

out the addition of primary antibodies. On the next day, three TBS washes were applied to the

cells followed by incubation with Alexa Fluor secondary antibodies, (Cheshire Sciences, UK)

diluted to 1:300 in 1% NGS blocking buffer, for 2 h at RT. Cultures were washed three times

with TBS. Coverslips were mounted onto microscope slides using Vectashield hardset mount-

ing medium containing 4’, 6-diamidino-2-phenylindole (DAPI) (Vector Labs, Peterborough,

UK) to counterstain cell nuclei, before visualisation the following day.

Cell quantification

Cell samples were visualised using fluorescence microscopy (Nikon Eclipse 80i microscope;

Nikon UK Limited, Kingston upon Thames, UK) and images acquired using a Hamamatsu

ORCA camera (Hamamatsu Photonics UK Limited, Welwyn Garden City, UK). NIS-Elements

imaging software, version BR 3.2 (Nikon UK Limited) was used to manually quantify positive

antibody labelling in DAPI-stained cultures. Independent experiments were replicated at least

three times, except in Figs 3D, 3F and 4G. Three to four coverslips per group were counted

within an experiment. Specific cell populations were analysed by capturing six to eight random

fields per coverslip. Clusters containing dense populations of neural progenitor and neuronal

cells were excluded from data collection, since these cell networks were not countable.

Cell morphology analysis

Neuronal cells were photographed from eight to ten random fields per coverslip from three

independent experiments using a high-power objective lens (i.e. x 40 lens). Neuronal cells

within cell clusters were omitted from morphometric analysis. Four morphological parameters

were investigated: 1) measurement of neurotransmitter content within neuronal cell bodies

(soma) using Fluorescence Intensity measures (see below); 2) number of primary neurite

branches; 3) length of the longest neurite (μm), and 4) total neurite extent (μm). Neuronal pro-

cesses greater than two cell diameters in length were considered as true neurites and neurites

of labelled cells were manually traced using the ImageJ plug-in NeuronJ (version 1.4.2; NIH).

Neurite length was defined as the distance from the soma to the tip of the longest primary

neurite and the combined lengths of all neurites per cell were designated as total neurite

length.

Fluorescence intensity measures

Fluorescence Intensity (FI) measures were obtained at day 14 to determine levels of protein

expression of specific neuronal populations derived from Sox1GFP mESCs, using ImageJ

image analysis software (version 1.45s; NIH). Cell samples were captured at fixed exposure set-

tings using a Hamamatsu ORCA camera with NIS Elements imaging software. Cells located

within clusters were excluded from the FI analyses. FI values were evaluated by converting

each colour image to grayscale and calibrating images using an optical density step tablet. FI

readings were then corrected for the background fluorescence.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 5.00 (GraphPad Software

Inc., La Jolla, California, USA). Data plotted on graphs is expressed as mean ± standard error

of the mean (SEM). Unpaired two-tailed t-tests were used to compare data from cultures

treated with 10mM nicotinamide versus control cultures. A level of p<0.05 was used as the

limit for statistical significance.
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Results

Nicotinamide promotes TH-expressing neurons and serotonin neuron

differentiation from ESCs, in the absence of exogenous inductive molecules

The effects of nicotinamide on the Sox1GFP knock-in 46C mESC line were investigated. In all

experiments, undifferentiated cells were treated with 10 mM nicotinamide between days 0 and

7, and the cells were further differentiated up to 14 days. Nicotinamide (10 mM) elicited a sig-

nificant increase in the percentage of βIII-tubulin-expressing neurons measured at 14 days of

culture (t = 8.7; p<0.0001; 29.8 ± 1.6% in nicotinamide treated vs. 12.7 ± 1.0% in untreated

conditions (Fig 1A, 1B and 1C)).

Factor-free neural differentiation of Sox1GFP mESCs (without inductive signalling mole-

cules or exogenous growth factors), produced low numbers of TH-expressing neurons per cul-

ture, as revealed by TH immunocytofluorescence. Nicotinamide treatment elicited a

significant increase in the percentage of TH+ immunoreactive neurons within the whole cell

population in comparison to control cultures (t = 6.1; p<0.001; 4.2 ± 0.5% in nicotinamide

treated vs. 0.6 ± 0.3% in untreated conditions (Fig 1D)).

In addition, 10 mM nicotinamide treatment induced almost a three-fold increase in the

percentage of neurons that were double-labelled for βIII-tubulin and TH (t = 13.89; p<0.001;

20.0 ± 0.9% in nicotinamide treated vs. 7.5 ± 0.2% in untreated conditions; (Fig 1E).

In separate cultures, addition of 10 mM nicotinamide also induced an increased proportion

of serotonergic neurons within the total DAPI+ cell population (t = 5.3; p<0.001; 5.0 ± 0.6% in

nicotinamide treated vs. 0.7 ± 0.3% in untreated conditions; Fig 1F, 1G and 1H). Cultures

exposed to 10 mM nicotinamide contained a significantly greater proportion of neurons that

were double-labelled for βIII-tubulin and 5-HT (t = 5.1; p<0.001; 36.1 ± 3.6% in nicotinamide

treated vs. 9.2 ± 3.1% in untreated conditions; Fig 1I).

Taken together, these experiments indicate that in in vitro mESC cultures induced with a

period of early exposure to nicotinamide there was both an enhanced yield and an enrichment

of TH-expressing and 5-HT-expressing neurons.

Nicotinamide increases the maturation and complexity of TH-expressing

neurons

Next, the effect of nicotinamide on neuron development and maturation was investigated in

mESC-derived TH-expressing neuron populations. Image analyses indicated that for TH-

expressing cells, the average primary neurite length was notably longer in 10 mM nicotinamide

conditions than controls (Fig 2A and 2B).

Cultures treated with 10 mM nicotinamide also contained TH-expressing neurons with a

significantly increased total length of all neurites (t = 5.9; p<0.01; 197.9 μm ± 11.6% in nicotin-

amide treated vs. 118.8 μm ± 7.1% in untreated conditions; Fig 2D). The numbers of neurites

per neuron were not changed (t = 0.3; n.s; 2.0 ± 0.1 in nicotinamide treated vs. 1.9 ± 0.1 in

untreated conditions).

Grouping the data into the proportion of TH-expressing neurons with short (� 60 μm),

medium (60–120 μm) and long (� 120 μm) primary neurite processes, confirmed that the pro-

portion of 46C-derived TH-expressing cells displaying “long” primary neurite outgrowths

were significantly increased in cultures exposed to 10 mM nicotinamide (t = 4.0; p<0.05), con-

comitant with a significant decrease in the proportion of “shorter” TH+ primary neurites

(t = 6.5; p<0.01; Fig 2E).

In addition, at 14 DIV there was a substantial increase in the number of TH-expressing

cells displaying higher levels of TH fluorescence in nicotinamide-treated cultures compared
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with control conditions (Fig 2C). A histogram plot of TH immunofluorescence intensity indi-

cated a shift from 0.1–0.2 units of intensity in the majority of TH-expressing neurons cultured

in control conditions, to 0.3–0.6 units of intensity in the majority of TH-expressing neurons

from nicotinamide treated cultures (Fig 2F), suggestive of increased levels of TH protein in the

nicotinamide-treated cultures.

Therefore, following exposure to nicotinamide between days 0 and 7, mESC-derived TH-

expressing neurons appeared to be more mature at day 14; they possessed longer primary

neurites, they had an increased total length of neurites, and increased levels of the TH protein.

Early nicotinamide treatment reduces total live cell numbers, but does not

induce apoptosis or alter cell viability in monolayer cultures

Administration of 10 mM nicotinamide from day 0 to 7 of differentiation caused a significant

reduction in the total number of cells by day 7 (Fig 3A, 3B and 3D), when compared to control

conditions (t = 3.6; p<0.05; 4.33x105 ± 3.50x105 cells in nicotinamide treated vs. 2.83x106 ±
4.77x105, in control conditions). However, nicotinamide did not affect culture viability at this

Fig 1. Nicotinamide promotes tyrosine hydroxylase-expressing neuron and serotonergic neuron differentiation from mESCs in the absence of

exogenous inductive molecules. Nicotinamide added to cultures between days 0 and 7 significantly increased the percentage of βIII-tubulin-expressing

neurons (A-C). Early nicotinamide supplementation elicted a significant increase in the percentage of tyrosine hydroxylase-expressing (A-B) neurons and

serotonergic (F-G) neurons at day 14; both as a proportion of total cells (E, I) and as a proportion of βIII-tubulin-expressing neurons (D, H). Scale bar 50 μm

applies to all images. ���p<0.001, ����p<0.0001.

https://doi.org/10.1371/journal.pone.0233477.g001

Fig 2. Nicotinamide enhances neuronal maturation in tyrosine hydroxylase-expressing neurons populations. The proportion of 46C-derived cells

displaying “short” primary processes was significantly decreased at day 14, in cultures exposed to 10 mM nicotinamide between days 0 and 7,

concomitant with an obvious increased trend towards “longer” neurite processes, compared with controls (A-B, D-E). At day 14, cells showed intense

TH immunoreactivity (yellow arrows) or less strong TH expression (white arrow) (C). Addition of nicotinamide enhanced the number of neurons

expressing strong TH immunofluorescence (F). Scale bars = 50 μm. ��p<0.01, �p<0.05.

https://doi.org/10.1371/journal.pone.0233477.g002
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time-point (t = 1.3; n.s.; 81.5 ± 0.5% live cells in nicotinamide treated vs. 87.0 ± 3.2% in control

conditions (Fig 3F).

These parameters were also addressed in cultures treated with nicotinamide from day 0–7

that were further differentiated up to a total of 14 days. There was a decrease in absolute cell

numbers in the nicotinamide-treated cultures (t = 1.6; n.s.; 9.44x104 ± 2.80x104 in nicotin-

amide treated vs. 2.20x105± 7.52x104 in control conditions; Fig 3E), in agreement with previ-

ous findings [8]. Similar to the situation on day 7, early nicotinamide administration did not

alter the viability of cells by day 14 (t = 0.4; n.s.; 76.3 ± 3.8% viable cells in nicotinamide treated

vs. 72.0 ± 9.8% in control conditions; Fig 3G).

The effect of nicotinamide on cell survival/death was further investigated using a TUNEL

apoptosis assay, in combination with a morphological analysis of pyknotic cell nuclei

Fig 3. Nicotinamide does not induce apoptosis or alter cell viability in monolayer cultures. Monolayer cultures were exposed to nicotinamide between days 0 and 7,

and viability assessed in terms of both total and percentage viable cells at days 7 and 14 of differentiation (A-G). Nicotinamide did not elicit any significant differences in

the percentage of viable cells remaining in the cultures at days 7 and 14 (D-E). Nicotinamide administered during the first 7 days of differentiation induced a reduction

in live cell numbers at 14 DIV, without evidence of toxicity (F-G). The percentages of apoptotic cell populations were not significantly altered by early nicotinamide

treatment in adherent monolayer cultures on days 7 and 14, respectively. Scale bars = 50 μm. �p<0.05.

https://doi.org/10.1371/journal.pone.0233477.g003
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(condensed or fragmenting morphologies) within the total cell population per microscopic

field, at 7 and 14 days respectively (Fig 3C).

Nicotinamide addition during the early stages of differentiation did not significantly alter

the percentage of apoptotic cells present on day 7, relative to untreated groups (t = 0.5, n.s.;

15.8 ± 2.1% in nicotinamide treated vs. 14.4 ± 1.4% in control conditions; Fig 3H). Similarly,

on day 14, the percentage of nuclei exhibiting pyknosis and TUNEL staining did not signifi-

cantly differ from control cultures (t = 0.1, n.s.; 11.3 ± 1.4% in nicotinamide treated vs.

11.5 ± 0.4% in control conditions; Fig 3I).

Early nicotinamide administration halts proliferation of Sox1GFP-

expressing neural progenitor cells

Due to differences in total cell number, the percentage of proliferating cells in cultures treated

with nicotinamide from day 0–7 was compared with untreated controls. Cultures received

Fig 4. Early nicotinamide administration halts proliferation of Sox1GFP derived neural progenitor cells. A reduction in cell proliferation was observed in 10 mM

nicotinamide-treated cultures versus control groups (A-B). There was no significant difference in the percentage of strongly labelled EdU+ cells in cultures treated with

nicotinamide from day 0–7, in comparison to untreated groups (C). Scale bar = 50 μm for main images and 60 μm for inserts. Arrows indicate cells expressing strong

EdU labelling (yellow) and weaker EdU labelling (white). Nicotinamide treatment caused a slight reduction in the percent of Oct4-expressing cells by day 7, but did not

alter the percent of EdU-labelled cells within this population (D). Nicotinamide treatment significantly reduced the percentage of GFP-expressing cells, concomitant

with a decrease in the percent of EdU-labelled cells in the Sox1GFP-positive population (E, F). Nicotinamide treatment significantly enhanced neuron-specific βIII-

tubulin-expressing cells, without altering the percentage of EdU-labelled cells within the neuronal population (G). Scale bar 100 μm applies to all low magnification

images. ���p<0.001, ��p<0.01, �p<0.05—comparing 10 mM nicotinamide treatment to the equivalent control conditions.

https://doi.org/10.1371/journal.pone.0233477.g004
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5-ethynyl-2’-deoxyuridine (EdU) for 1 h prior to cell fixation at the end of the 7 day culture

period to determine the numbers of actively dividing cells after partial differentiation. This

pulse-labelling experiment revealed that 61% of cells in cultures that had been differentiated

without nicotinamide showed positive EdU uptake, whereas only 29% of cells in the cultures

containing nicotinamide were labelled with EdU on day 7 (t = 10.6, p<0.001; 28.7 ± 2.9% in

nicotinamide treated vs. 60.7 ± 0.9% in control conditions; Fig 4A and 4B).

Nicotinamide has been previously found to accelerate neural fate commitment and in turn,

neuronal maturation during early development [18]. Therefore, the second aim of the prolifer-

ation study was to determine whether nicotinamide was directing cells to exit the cell cycle at

an earlier time point than in untreated cultures. For this reason, we classified EdU-labelled

cells as having either strong or weak incorporation of EdU in their nuclei. NIS-image software

was used to characterize the labelled cells as exhibiting expression levels predominantly within

either the intensity range of 240–260 units (“strong expression”), or at levels of 140–160 units

(“weak expression”). The percentage of EdU-labelled cells in nicotinamide-treated cultures

that exhibited “strong” expression levels was slightly reduced, but did not significantly differ

from control cultures (t = 1.4, n.s.; 11.3 ± 3.6% in nicotinamide treated cultures vs. 17.4 ± 2.2%

in control conditions; Fig 4C).

To gain further insights into the effects of nicotinamide on the cell cycle, the uptake of EdU

was measured within specific cell populations (Oct4, Sox1GFP or βIII-tubulin-expressing

cells) in control and treatment cultures. Addition of 10 mM nicotinamide between days 0 and

7 had no effect on the proportion of Oct4+ cells, (t = 1.0, n.s.; 16.9 ± 5.9% in nicotinamide

treated cultures vs. 23.6 ± 3.3% in control conditions; Fig 4D); or the percent of EdU labelled

cells within the Oct4+ population (t = 0.5, n.s.; 9.2 ± 4.0% in nicotinamide treated cultures vs.

11.5 ± 1.8% in control conditions).

In contrast, proliferation was significantly reduced in neural precursor cells after treatment

with nicotinamide. The percentage of GFP+ cells was significantly decreased by day 7 (t = 3.8;

p<0.05; 9.7 ± 6.4% in nicotinamide treated cultures vs. 33.6 ± 0.3% in control conditions; Fig

4E and 4F). Similarly, the proportion of precursor cells co-localising Sox1GFP+ expression

and EdU-labelling was significantly lower following nicotinamide treatment (t = 4.8, p<0.01;

3.0 ± 2.0% in nicotinamide treated cultures vs. 13.2 ± 0.6% in control conditions).

There was no detectable difference in the proportion of cells that co-localised EdU and

βIII-tubulin between treated and untreated cultures (t = 0.2, n.s.; 0.8 ± 0.1% in nicotinamide

treated cultures vs. 0.9 ± 0.1% in control conditions; Fig 4G).

Nicotinamide and exogenous inductive factors act synergistically to

enhance TH-expressing neuron differentiation from Sox1GFP mESCs

Nicotinamide treatment was then applied to a more advanced stem cell differentiation proto-

col with addition of the ventralizing factors Shh and FGF8 [35]. Mouse ESCs were differenti-

ated for up to a total of 14 days in a monolayer culture. Early supplementation with 10 mM

nicotinamide (day 0–7) in addition to exogenous factors led to a significant increase in the per-

centage of TH-expressing immunoreactive neurons within the whole cell population (t = 11.1;

p<0.001; 12.7 ± 0.4% in nicotinamide treated vs. 6.2 ± 0.4% in control cultures with exogenous

factors but no nicotinamide; Fig 5). Under these culture conditions, individual βIII-tubulin

expressing neurons were not quantified manually due to the high density of βIII-tubulin+ neu-

ronal networks, making it impossible to quantify the number of TH+ cells as a proportion of

total neurons. Nor was it possible to determine if there had been a specific enrichment of TH-

expressing neurons within the total neuron population.
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Discussion

The developing brain is influenced by genetic and environmental factors. There is a rapidly

growing body of evidence that bioactive external signalling molecules such as vitamins exert a

strong influence on neural development [18, 36]; and an imbalance in their supply may con-

tribute to a range of neurodevelopmental or neurological disorders later in life [33, 37].

Our previous work showed that nicotinamide could act as a morphogen to both enhance

and accelerate the neural specification of mouse embryonic stem cells into neural progenitors,

and subsequently as neurons [7, 18]. The addition of nicotinamide to differentiating stem cells

significantly elevated the numbers of neurons and GABAergic neurons generated in vitro,

although the proportion of total neurons that were GABAergic was similar for both nicotin-

amide-treated and non-treated cultures, suggesting that nicotinamide was not acting selec-

tively to enhance numbers of GABAergic neurons [18]. This current study aimed to

investigate whether nicotinamide might play a role in the specification of catecholamine neu-

rons from mouse embryonic stem cells in vitro. In addition, the mechanism of action of nico-

tinamide in driving the neural and neuronal specification of stem cells was explored.

The results presented here reveal that 10 mM nicotinamide acted as a powerful morphogen

to induce the differentiation of both TH-expressing and serotonin-expressing neurons from

mouse embryonic stem cells. Nicotinamide’s mechanism of action was mediated through cell

cycle exit rather than the selective apoptosis of non-neuronal cells. In addition, nicotinamide

Fig 5. Nicotinamide and exogenous inductive factors act synergistically to enhance the production of TH-

expressing cells from mESCs. The addition of exogenous factors to differentiating mESCs enhanced the production of

dopamine neurons (A,B—white bars). Supplementation with nicotinamide induced similar TH neuron numbers as

supplementation with exogenous factors; and both treatments together produced an additive effect to further increase

TH neuron numbers (B—grey bars). Scale bar = 50 μm for all images. ���p<0.001- comparing 10 mM nicotinamide to

0 mM conditions.

https://doi.org/10.1371/journal.pone.0233477.g005
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alone was sufficient to increase numbers of TH-expressing neurons from mouse ESCs to simi-

lar levels to those obtained using more complex signalling cascades, making this molecule an

attractive, simple and cheap alternative for stem cell differentiation protocols.

The ESC monolayer differentiation method was chosen for this study as catecholaminergic

neurons can readily be derived from Sox1GFP+ populations using this method [34], making it

an ideal system with which to study the effects of nicotinamide. Furthermore, the monolayer

cultures facilitated direct visualisation of the morphological changes of the ESCs during the

course of their differentiation, allowing for the robust identification of any effects elicited by

nicotinamide.

Addition of nicotinamide from days 0–7 in the 14-day differentiation protocol induced a

significantly higher proportion of neurons expressing either TH or 5-HT. Thus, under serum-

free and factor-free differentiation conditions, the enhanced differentiation of both TH-

expressing and 5-HT-expressing neurons was due specifically to nicotinamide’s action on dif-

ferentiating stem cells. Critically, unlike in our previous work that showed no specific

enhancement of GABAergic neuronal differentiation [18]; in the present study, nicotinamide

enriched the proportion of total neurons that were either TH-positive or 5-HT-positive, i.e.

this effect was subtype-specific. The fate of dopaminergic neurons has previously been shown

to occur early in the conversion of ESCs into neurons, at or before the expression of Sox1 in

neural progenitors [11]. This could explain why nicotinamide caused a selective enhancement

of TH and 5-HT-expressing neurons in differentiated cultures, by influencing the fate of pro-

genitors during early neural conversion.

Both TH and 5-HT-expressing neurons represent neuronal populations generated by simi-

lar ventralization signals originating from around the boundary of the midbrain and hindbrain

[38]. Therefore, the similar effects seen with in vitro differentiation of TH and 5-HT-express-

ing neurons mimic the differentiation pathways occurring during normal development in
vivo. Nicotinamide appears to be important in directing both TH and 5-HT expression in neu-

rons, suggesting that it is acting before the period when specific neuronal fates are being deter-

mined. Future work should investigate the combination of nicotinamide with Shh, FGF8 and

noggin (a known agonist of bone morphogenic protein (BMP) and important for development

of serotonergic neurons), which may lead to increased yields of serotonergic neurons derived

from stem cells in vitro. Indeed, transplants of both dopamine and serotonin neurons have

been advocated for individuals with Parkinson’s to ameliorate the motor and the non-motor

symptoms as recent evidence indicates that the numbers of serotonin neurons decline in PD

patients despite their receiving dopamine neuron grafts [39].

Importantly, the percentage of TH+ neurons generated in nicotinamide-treated cultures in

this study (20%) approached the number shown previously to be generated in the presence of

the ventralizing signals: sonic hedgehog (Shh) and fibroblast growth factor 8 (FGF8) (~28%)

[11, 40]. This suggests that nicotinamide may have a similar potency to these well-established

inductive signalling factors, thereby offering a cheap and simple alternative in differentiation

protocols. Further, in the current study, a combination of all three factors: nicotinamide, Shh

and FGF8, had an additive effect, more than doubling the yield of TH+ neurons. It is reason-

able to conclude that nicotinamide may function synergistically with protein signalling mole-

cules such as Shh and FGF8 during neural specification, to direct differentiating neural

progenitors to adopt a dopamine cell fate, thus advocating the use of nicotinamide as a supple-

mentary factor for current stem cell differentiation protocols.

The results presented here indicate that treatment with nicotinamide early in the differenti-

ation of embryonic stem cells promoted neurite elongation in TH+ cells and the intensity of

TH expression is in line with previous research examining other neuronal subtypes [18], thus

suggesting an important role for nicotinamide in the maturation of TH-expressing neurons.
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We also observed an increased expression of the TH fluorescence in neurons derived from nic-

otinamide-treated mESCs. This elevated TH expression could imply that there is increased

metabolic activity of the enzyme responsible for the production of the neurotransmitter dopa-

mine, suggestive of increased maturation of the TH-positive neurons. In this regard, NADH is

integral to the production of tetrahydrobiopterin, a co-factor necessary for tyrosine hydroxy-

lase [29], the rate-limiting enzyme in catecholamine biosynthesis, also deficient in PD. Simi-

larly, nicotinamide has been shown to elevate the expression of neurotransmitter within

mESC-derived GABAergic neurons [18].

Consistent with our previously published data [7], nicotinamide did not affect cell viability

at 7 and 14 DIV. Data from the current study suggest that whilst the N2B27 medium supports

a level of continued proliferation of NPCs in cultures at day 7 of differentiation, exposure to

nicotinamide during days 0–7 promotes the exit of NPCs from the cell cycle. Similar to the

role of the vitamin A derivative, retinoic acid in neural development [41], this points to an

important role for nicotinamide in the suppression of Sox1-positive precursor proliferation,

promoting the transition from neural progenitors to neurons.

The results from the TUNEL assay indicated that the reduction in cell number in the pres-

ence of nicotinamide did not result from cell death in the cultures. This study investigated the

action of nicotinamide within a dose range of 5–10 mM, previously shown not to cause toxicity

in differentiating stem cell cultures [7]. In support of this bioactive molecule acting to protect

cells from death, nicotinamide is a naturally occurring inhibitor of the enzyme poly(ADP-

ribose) polymerase-1 (PARP1) and application of nicotinamide has been shown to increase

the efficiency of neuralization of human embryonic stem cells by rescuing neural progenitors

from parthanatic cell death concomitant with an observed reduction in PARP1 activity [42].

Conversely, EdU incorporation experiments indicated that a significantly lower number of

Sox1 positive NPCs were dividing on day 7 in the presence of nicotinamide. EdU expression

indicated that labeled cells had exited the cell cycle immediately after incorporating EdU in S-

phase. Since the vast majority of βIII-tubulin-expressing neurons were rarely double-labelled

for EdU, it is reasonable to conclude that many of the differentiated neurons were already

postmitotic at day 7 when EdU was applied to the nicotinamide-treated cultures.

Findings presented in this study indicate that nicotinamide could be applied to current stem

cell differentiation protocols to provide more purified and mature neural populations towards

future cell-based therapies. It is important to consider that nicotinamide’s ability to accelerate

neuronal maturation may lead to increased sensitivity of cells to damage during the transplanta-

tion process, and therefore differentiating cells may need to be obtained at an earlier timepoint.

However, the use of early-differentiated cells may in fact enhance survival and efficacy of the

neurons that undergo the cell transplant process and would lower production costs.

Conclusions

This study demonstrates that the small bioactive vitamin metabolite nicotinamide significantly

enhances the differentiation of stem cells into TH- and 5-HT-expressing neurons. Nicotin-

amide’s strong influence on the development of the specific neuronal subtypes of catechol-

amine neurons suggests that it plays a critical role in phenotype-specific neuronal

differentiation. It would be important to determine whether and how this vitamin derivative is

an essential dietary component for normal brain development. The positive influence of nico-

tinamide in both the acceleration of differentiation and neuronal maturation is critically

important, in the drive to increase the efficient production of subtype-specific neurons for the

treatment of neurodegenerative conditions such as Parkinson’s disease as well as in neuropsy-

chiatric disorders.
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24. Vaca P, Berná G, Araujo R, Carneiro EM, Bedoya FJ, Soria B, et al. Nicotinamide induces differentiation

of embryonic stem cells into insulin-secreting cells. Experimental cell research. 2008; 314(5):969–74.
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