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Abstract
Clinical prediction models (CPMs) can predict clinically relevant outcomes or
events. Typically, prognostic CPMs are derived to predict the risk of a single
future outcome. However, there are many medical applications where two or
more outcomes are of interest, meaning this should be more widely reflected
in CPMs so they can accurately estimate the joint risk of multiple outcomes
simultaneously. A potentially naïve approach to multi-outcome risk prediction
is to derive a CPM for each outcome separately, then multiply the predicted
risks. This approach is only valid if the outcomes are conditionally indepen-
dent given the covariates, and it fails to exploit the potential relationships
between the outcomes. This paper outlines several approaches that could be
used to develop CPMs for multiple binary outcomes. We consider four meth-
ods, ranging in complexity and conditional independence assumptions: namely,
probabilistic classifier chain, multinomial logistic regression, multivariate logis-
tic regression, and a Bayesian probit model. These are compared with methods
that rely on conditional independence: separate univariate CPMs and stacked
regression. Employing a simulation study and real-world example, we illus-
trate that CPMs for joint risk prediction of multiple outcomes should only
be derived using methods that model the residual correlation between out-
comes. In such a situation, our results suggest that probabilistic classifica-
tion chains, multinomial logistic regression or the Bayesian probit model are
all appropriate choices. We call into question the development of CPMs for
each outcome in isolation when multiple correlated or structurally related out-
comes are of interest and recommend more multivariate approaches to risk
prediction.
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1 INTRODUCTION

Clinical prediction models (CPMs) aim to predict the probability that clinically relevant outcomes are present (diagnostic
prediction) or will occur in the future (prognostic prediction) for an individual, given information known about them at
the time of prediction.1-3 CPMs are predominately derived in a multivariable regression framework (eg, logistic regression
for binary outcomes), which combine estimated associations between multiple predictors (risk or prognostic factors) and
an outcome of interest.

Generally, different CPMs are developed in isolation, where each model considers only a single outcome. However,
there are many medical applications where two or more outcomes are of interest. As such, this should be more widely
reflected in CPMs so they can accurately estimate the joint risk of multiple outcomes simultaneously.4,5 For example,
clinical teams consider mortality, morbidity, and quality of life in their decision-making for performing cardiovascular
surgery, but surgical risk models (which are widely considered integral to surgical practice) are usually developed to pre-
dict single outcomes.6,7 Another motivating example is in predicting likely outcomes during and after pregnancy, which
often requires a multivariate perspective.8 As a final motivating example, individuals are increasingly developing mul-
tiple diseases over their lifetime (ie, multimorbidity), but the plethora of CPMs developed to predict risks of common
noncommunicable diseases such as cardiovascular disease,9 types of cancer,10 and chronic kidney disease11 are usually
developed in isolation. In each of these motivating examples, a multivariate (multiple outcome) approach to prediction
is required for any CPM to be of maximum clinical value. For instance, within the multimorbidity example, managing
patients with multimorbidity is not the same as managing each disease separately because of treatment side-effects, tol-
erances, and interactions. Hence, for CPMs to assist in multimorbidity resource planning and management, one needs to
be able to estimate the (joint) risk of different combinations of conditions co-occurring,12,13 which is only possible from
taking a multivariate approach to prediction.

A naïve approach to estimating joint risk of multiple outcomes is to multiply the predicted risks from the univariate
CPMs of each outcome. However, this approach will only lead to reliable estimates of the joint risk if the outcomes are
conditionally independent given the covariates. Additionally, it fails to exploit the potential relationships between the
outcomes, which could improve inference.14,15 A common alternative approach is to create a composite outcome (defined
as occurrence of any of the individual outcomes); for example, the definition of major adverse cardiovascular events.16

While this approach simplifies the modeling, it makes it problematic to estimate marginal risks of each outcome separately
(or different combinations of the outcomes co-occurring), and leads to a loss of important information.

Regression approaches that would allow multiple outcomes to be modeled simultaneously have a long history in
the statistical literature.14,15,17,18 Additionally, some prediction models have used multistate models to predict the risk of
patients moving between different states (of diseases/conditions/pathways) pertaining to a combination of different out-
comes through time and accounting for competing risks.19-21 Similarly, problems in text classification and annotation have
spawned machine learning techniques based on multilabel classification/learning.22,23 These include binary relevance,24

ensemble of classifier chains,25 multilabel decision trees22 and multilabel neural networks.26

Nonetheless, multiple outcome prediction methods are rarely utilized within the predictive modeling field,4 and the
effects of ignoring dependency between outcomes on predictive performance has received little attention.5,27 In this study,
we propose a variety of approaches for developing prognostic CPMs for multiple binary outcomes and compare their
performance through a simulation study and real-world example. We consider estimation of both marginal and joint
probabilities of outcomes and compare each method’s ability to estimate these under different scenarios.

The remainder of the paper is structured as follows: in Section 2 we outline notation and present current univariate
approaches to developing CPMs (ie, those that rely on conditional independence); we provide an overview of several
methods to develop prognostic CPMs for multiple binary outcomes in Section 3; in Section 4 we describe the design and
results of a simulation study comparing the methods, while in Section 5 we apply the methods to a real-world critical care
example; finally, in Section 6 we discuss our findings and present directions for future work.

2 PREDICTION APPROACHES UNDER CONDITIONAL INDEPENDENCE

2.1 Notation and preliminaries

In all notations, we denote random variables with capital letters and observations of the random variable with corre-
sponding lowercase letters. Throughout, we assume that the modeler has access to individual participant data (IPD) on a
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population of interest. The IPD includes N independent observations of P predictor variables, arranged in an N ×P matrix
X= (X1, … , XP), with the (i, p)th element of X denoted as xi,p. Additionally, each observation within the IPD has a set of
K unique (but potentially related) binary outcomes, which we denote as Y i1, … , Y iK , where Y ij = 1 if observation i had
the jth outcome event, with Y ij = 0 otherwise. We assume that occurrence of one outcome does not preclude the occur-
rence of any of the others (eg, excluding death). For ease of exposition we describe each of the methods in the case where
K = 2, but extensions to K > 2 follow naturally.

Unless otherwise stated, each of the methods described below (in Sections 2 and 3) are fitted using maximum likeli-
hood estimation (MLE), and we assume that a suitable CPM development strategy is employed,1,2,28 which may include
adjustment for overfitting. For example, many of the methods described below could equally be fit using penalized
regression, such as LASSO or fitting through Bayesian inference with penalizing priors, to help minimize overfitting.2,29-32

2.2 Univariate CPMs

The naïve approach to estimating joint risk of developing multiple outcomes is to develop a univariate CPM for each
outcome separately, for example, using logistic regression. Specifically, we have that

P(Yij = 1|Xi) = [1 + exp(−(𝛽0,j + Xi𝜷 j))]−1, (1)

for j= 1, … , K, where 𝛽0,j is the intercept and 𝜷 j = (𝛽1,j, … , 𝛽P,j) is a vector of coefficients, which represent the conditional
prognostic effects of the predictors on the jth outcome. Here, 𝛽0, j +X i𝜷 j is referred to as the linear predictor for individual
i.

At the time of making a prediction for a new individual with covariates X∗
i , the marginal predicted risk for the jth out-

come is P(Yij = 1|X∗
i ), while the joint probability P(Yi1 = 1, … ,YiK = 1|X∗

i ) is
∏K

j=1 P(Yij = 1|X∗
i ), meaning the approach

relies on conditional independence of the outcomes to be valid.

2.3 Stacked regression

One way to extend the univariate approach is based on the stacked regression literature,32,33 which allows the model
for one of the outcomes to exploit the information (ie, predictor-outcome associations) contained within the other out-
come models, thereby improving marginal risk prediction. This approach can also be used in a setting where there are
existing univariate CPMs available in the literature.32,34,35 Stacked regression is a two-stage approach to model fitting,
whereby individual CPMs are fit to each outcome independently using the IPD (or obtained from the literature), the linear
predictors of which are then used in a second stage as covariates in a stacked regression model for each outcome.

Specifically, with K = 2, in the first stage we have that f̂1(X) = 𝛽01 + X𝜷1 and f̂2(X) = 𝛽02 + X𝜷2 (each estimated using
unpenalized MLE of Equation (1), or obtained from the literature32,34,35). Then, in the second stage, we fit the following
models in the IPD:

P(Yi1 = 1|Xi) =

[
1 + exp

(
−

(
𝜂0,1 + 𝜂1,1 f̂1(Xi) + 𝜂2,1 f̂2(Xi) +

P∑
p=1

𝛿p,1xi,p

))]−1

, (2)

and

P(Yi2 = 1|Xi) =

[
1 + exp

(
−

(
𝜂0,2 + 𝜂1,2 f̂1(Xi) + 𝜂2,2 f̂2(Xi) +

P∑
p=1

𝛿p,2xi,p

))]−1

. (3)

The unknown parameters 𝜂1,1, 𝜂2,1, 𝜂1,2, 𝜂2,2, 𝛿p,1 and 𝛿p,2, in Equations (2) and (3) are estimated by maximizing a
lasso penalized likelihood,36 as previously described.32 A penalized likelihood is recommended here to help handle the
highly colinear covariates in Equations (2) and (3), and to perform predictor selection for the final summations in these
equations. The final summations in Equations (2) and (3) allow the individual predictor effects to differ dependent on the
inclusion of f̂1(Xi) and f̂2(Xi) in each model.
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At the time of prediction, the predicted marginal risks for the jth outcome for a new individual with covariates X∗
i ,

are obtained by calculating f̂1(X∗
i ) and f̂2(X∗

i ), using the models obtained in the first stage, and then inserting these into
the appropriate stacked regression model from the second stage (ie, Equations (2) or (3)). We consider this approach
since it is a previously proposed alternative to univariate CPMs, but note that the joint probabilities for all outcomes,
P(Y i1 = 1, … , Y iK = 1| Xi) is still computed as

∏K
j=1 P(Yij = 1|Xi).

3 PREDICTION APPROACHES ACCOUNTING FOR CONDITIONAL
DEPENDENCE

In this section, we describe four approaches that can readily be applied to real-world data that relax the conditional
independence assumption to enable joint outcome risk estimation. In all the approaches, we allow for differences in the
predictors for each of the outcomes since some elements of 𝜷 j could be estimated (or fixed) to be zero.

3.1 Probabilistic classifier chains

If the risks of multiple outcomes are related to each other (after conditioning on the covariates), then one approach
to modeling dependence is to condition sequentially on each outcome. Consider the (randomly indexed) sequence
of outcomes Y i1, … , Y iK , then one can relax the conditional independence assumption by conditioning on Y i1,
… , Y ij− 1 when predicting Y ij instead of only the covariates. Since the order of the indexing (of Y i1, … , Y iK) will
affect inference, an iterative approach is used, whereby all the permutations of the ordering of Y i1, … , Y iK are
considered. As K increases, so too does the number of “permutations”; here, one could pick a random sample of
permutations, rather than fitting models on all K! permutations—this resembles the ensembles of classifier chains
approach.25,33

Specifically, where K = 2, the first “permutation” (denoted by a superscript (1)) is such that

P(Yi1 = 1|Xi) = 𝜋
(1)
i1 = [1 + exp(−(𝛽(1)0,1 + Xi𝜷

(1)
1 ))]−1

P(Yi2 = 1|Xi,Yi1) = 𝜋
(1)
i2 = [1 + exp(−(𝛽(1)0,2 + Xi𝜷

(1)
2 + 𝛾

(1)
1 Yi1))]−1,

while the second “permutation” (denoted by a superscript (2)) is such that

P(Yi2 = 1|Xi) = 𝜋
(2)
i2 = [1 + exp(−(𝛽(2)0,2 + Xi𝜷

(2)
2 ))]−1

P(Yi1 = 1|Xi,Yi2) = 𝜋
(2)
i1 = [1 + exp(−(𝛽(2)0,1 + Xi𝜷

(2)
1 + 𝛾

(2)
2 Yi2))]−1.

All models are fitted separately using MLE (ie, the models in the first “permutation” are fitted independently of the
models in the second “permutation”). This approach is based on ensemble probabilistic classification chains from the
multilabel classification literature.25,37

Importantly, the conditioning on “preceding” outcomes allows us to derive analytical expressions for the joint proba-
bilities using Bayes’ rule and by taking an average ensemble across the permutation models. For example, with K = 2 we
have the following (omitting the conditions on X i for notational brevity):

P(Yi1 = 1,Yi2 = 1) = 1
2
[P(Yi2 = 1|Yi1 = 1)P(Yi1 = 1) + P(Yi1 = 1|Yi2 = 1)P(Yi2 = 1)]

= 1
2
[𝜋(1)

i2 𝜋
(1)
i1 + 𝜋

(2)
i1 𝜋

(2)
i2 ],

P(Yi1 = 1,Yi2 = 0) = 1
2
[P(Yi2 = 0|Yi1 = 1)P(Yi1 = 1) + P(Yi1 = 1|Yi2 = 0)P(Yi2 = 0)],

P(Yi1 = 0,Yi2 = 1) = 1
2
[P(Yi2 = 1|Yi1 = 0)P(Yi1 = 0) + P(Yi1 = 0|Yi2 = 1)P(Yi2 = 1)],

P(Yi1 = 0,Yi2 = 0) = 1
2
[P(Yi2 = 0|Yi1 = 0)P(Yi1 = 0) + P(Yi1 = 0|Yi2 = 0)P(Yi2 = 0)],

from which one can calculate the associated marginal probabilities of P(Y i1 = 1| X i) and P(Y i2 = 1| X i).
When predicting for a new individual (where clearly their outcomes are unknown), one would use the derived models

to calculate the joint probabilities for all possible outcome combinations Y ij ∈ {0, 1} for j = 1, … , K, which by definition
sum to one.
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3.2 Multinomial logistic regression

A second approach to modeling outcome dependence, which allows calculation of the predicted risk of different combi-
nations of Y ij ∈ {0, 1} for j = 1, … , K, is to use multinomial logistic regression, where the 2K combinations are each treated
as a nominal outcome category. For example, with two outcomes (K = 2), we fit the following models:

log
(

P(Yi1 = 1,Yi2 = 1)
P(Yi1 = 0,Yi2 = 0)

)
= 𝛽0,1 + Xi𝜷1.

log
(

P(Yi1 = 1,Yi2 = 0)
P(Yi1 = 0,Yi2 = 0)

)
= 𝛽0,2 + Xi𝜷2.

log
(

P(Yi1 = 0,Yi2 = 1)
P(Yi1 = 0,Yi2 = 0)

)
= 𝛽0,3 + Xi𝜷3.

These models are estimated using iterative procedures to find numerical optimization of the parameters; practically,
such models can be fit using R with the package nnet.38

At the time of prediction for a new individual with covariates X∗
i , we use the fact that the probabilities must sum to

one, to allow us to explicitly obtain each joint probability. For the case with K = 2 we have

P(Yi1 = 1,Yi2 = 1|X∗
i ) =

exp(𝛽0,1 + X∗
i 𝜷1)

1 +
3∑

k=1
exp(𝛽0,k + X∗

i 𝜷k)
,

P(Yi1 = 1,Yi2 = 0|X∗
i ) =

exp(𝛽0,2 + X∗
i 𝜷2)

1 +
3∑

k=1
exp(𝛽0,k + X∗

i 𝜷k)
,

P(Yi1 = 0,Yi2 = 1|X∗
i ) =

exp(𝛽0,3 + X∗
i 𝜷3)

1 +
3∑

k=1
exp(𝛽0,k + X∗

i 𝜷k)
,

P(Yi1 = 0,Yi2 = 0|X∗
i ) =

1

1 +
3∑

k=1
exp(𝛽0,k + X∗

i 𝜷k)
.

3.3 Multivariate logistic regression

Our third approach, which has previously been described in the context of modeling correlated binary outcomes, makes
explicit use of a multivariate logistic distribution.39 For ease of exposition, we again describe the case when K = 2 and
readers refer to the literature for the more general case.39 Explicitly, we use the bivariate logistic distribution proposed by
Gumbel40 to set

P(Yi1 = 1,Yi2 = 1|Xi) = Fi1Fi2 + 𝜌
√

Fi1Si1Fi2Si2

where Fij = P(Y ij = 1| X i) for j = 1, 2 (as defined in Equation (1)) and Sij = 1−Fij. Here, 𝜌 estimates the residual correlation
between the outcomes. Similarly, we have the following:

P(Yi1 = 1,Yi2 = 0|Xi) = Fi1Si2 − 𝜌
√

Fi1Si1Fi2Si2,

P(Yi1 = 0,Yi2 = 1|Xi) = Si1Fi2 − 𝜌
√

Fi1Si1Fi2Si2,

P(Yi1 = 0,Yi2 = 0|Xi) = Si1Si2 + 𝜌
√

Fi1Si1Fi2Si2.

We maximize the following (unpenaliszd) log-likelihood to estimate the parameters 𝜷1, 𝜷2 and 𝜌:
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l(𝜷1, 𝜷2, 𝜌) =
N∑

i=1
yi1yi2 log(p11i) + yi1(1 − yi2) log(p10i) + (1 − yi1)yi2 log(p01i) + (1 − yi1)(1 − yi2) log(p00i),

where pabi = P(Y i1 = a, Y i2 = b| X i). There are no closed-form solutions to maximize the derivatives of this log-likelihood
and so numerical optimization is required. At the time of prediction, the joint and marginal probabilities of each outcome
can be obtained directly for each new individual.

Of note is that the residual correlation parameter, 𝜌, is constrained by the marginal probabilities, and cannot therefore
take values in the full [−1, 1] range39; previous studies have shown this to impact the degrees of dependency between the
outcomes that the approach can handle.41,42

3.4 Multivariate Bayesian probit CPM

Our final approach follows naturally from the case of modeling multiple continuous outcomes through multivariate linear
regression.15 Limiting again to the case for K = 2 for ease of exposition, let Zi1 and Zi2 denote two latent variables for each
outcome, such that

Yij =

{
1 if Zij > 0,
0 if Zij ≤ 0

where Zij = 𝛽0,j +Xi𝜷 j + 𝜖ij. Dependency between the outcomes is induced by assuming a joint distribution on 𝜖ij for j = 1,
2. Given the benefits of specifying dependency through a multivariate normal distribution, we propose to fit a multivariate
probit model on Y , by assuming (

𝜖i1

𝜖i2

)
∼ N

((
0
0

)
,

(
1 𝜌12

𝜌12 1

))
,

where we take a common variance of one for model identifiability reasons.43,44 We propose to fit this model using Bayesian
inference, since parameter estimation can be obtained naturally using MCMC methods (which is necessary for K > 2). In
this study we set the prior distributions to 𝜌12 ∼Unif(−1, 1) and(

𝜷1

𝜷2

)
∼ N

((
0
0

)
,

(
𝚺1 𝚺1𝚺2

𝚺1𝚺2 𝚺2

))
,

where 𝚺1𝚺2 = 0 and 𝚺j = diag(10), for j = 1, 2. In most medical applications, it might be more appropriate to set
𝜌12 ∼Unif(0, 1), since the correlation would usually be positive (or could be constructed to be such through transformation
of the outcomes prior to modeling).45

At time of prediction for a new individual with covariates X∗
i , estimates of P(Yi1 = 1,Yi2 = 1|X∗

i ) can be obtained
through the cumulative distribution function of the bivariate standard normal distribution, Φ, as Φ(X∗

i 𝜷1,X∗
i 𝜷2, 𝜌12). Sim-

ilarly, estimates of P(Yi1 = 1,Yi2 = 0|X∗
i ) and P(Yi1 = 0,Yi2 = 1|X∗

i ) can be obtained through Φ(X∗
i 𝜷1,−X∗

i 𝜷2,−𝜌12) and
Φ(−X∗

i 𝜷1,X∗
i 𝜷2,−𝜌12), respectively.

In this study, we implemented this model using JAGS (Just Another Gibbs Sampler), using the R package rjags.46 We
took 10 000 posterior samples of each parameter and summaried them over the final 5000 samples (ie, 5000 burn-in).

4 SIMULATION STUDY

4.1 Aim

We designed a simulation study to investigate the effects on predictive performance of developing CPMs that model
multiple outcomes using the aforementioned approaches, compared with modeling each outcome separately through
univariate analyses. We designed and report the simulation in line with best practice.47
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4.2 Data-generating mechanisms

Throughout all simulations we assume that we have an IPD that includes 5000 individuals, on which one is interested
in developing CPMs for two binary outcomes of interest. The IPD includes two continuous covariates that we generate
as X1 ∼N(0, 1) and X2 ∼N(0, 1). Additionally, each observation within the IPD has two (potentially dependent) binary
outcomes, Y 1 and Y 2, which we simulate according to established methods.48,49 Specifically, we generated the binary
outcomes such that the marginal probabilities satisfied

P(Yi1 = 1|Xi) = [1 + exp(−(𝛽01 + 𝛽11Xi1 + 𝛽21Xi2))]−1,

P(Yi2 = 1|Xi) = [1 + exp(−(𝛽02 + 𝛽12Xi1 + 𝛽22Xi2))]−1,

where we fixed 𝜷1 = (𝛽01, 𝛽11, 𝛽21) = (−1, log(2), 0) and 𝜷2 = (𝛽02, 𝛽12, 𝛽22) = (−1.5,0, log(3)), meaning that X1 and X2
only predicted Y 1 and Y 2, respectively. These coefficient values give (marginal) outcome proportions of 29% and 23%
for Y 1 and Y 2, respectively. We also considered a sensitivity analysis where 𝛽01 was set to −3 and 𝛽02 was set to −3.5,
which results in lower (marginal) outcome proportions of 6% and 5% for Y 1 and Y 2, respectively. Dependency between
the outcomes was induced (while satisfying the above marginal probabilities) by generating two latent variables Zi1 and
Zi2, from a multivariate standard normal distribution, with correlation 𝜌. We then applied a probability transform such
that 𝜖i1 = logit(Φ(Zi1)) and 𝜖i2 = logit(Φ(Zi2)), where logit(.) is the inverse logistic function, and Φ(.) is the cumulative
distribution function of the standard normal distribution. The two binary outcomes were then generated such that

Yij = I(𝜖ij ≤ (𝛽0j + 𝛽1jXi1 + 𝛽2jXi2)); j = 1, 2,

with I(.) being the indicator function. Within this data generating process, 𝜌 controls the level of dependence (after con-
ditioning on the covariates) between the two outcomes; the outcomes are conditionally independent when 𝜌 = 0. Hence,
𝜌 was varied across simulation scenarios through values of {0, 0.25, 0.50, 0.75, 0.95}. Note that for 𝜌> 0 the correlation
between Y 1 and Y 2 is less than 𝜌 due to the nonlinear probability transform applied to Z1 and Z2 (eg, Reference50).

Finally, to test the predictive performance of all the analysis methods (outlined below), we generated an indepen-
dent set of 10 000 observations, to serve as a validation set. This was generated using the exact same data-generating
mechanisms as the IPD.

4.3 Methods considered

Within each generated IPD set, we fit the following analysis models using MLE or MCMC, as appropriate: (i) two inde-
pendent CPMs, one for each outcome (Section 2.2), (ii) stacked regression (Section 2.3), (iii) probabilistic classification
chains (Section 3.1), (iv) multinomial logistic regression (Section 3.2), (v) multivariate logistic regression (Section 3.3),
and (vi) multivariate Bayesian probit (Section 3.4). All analysis models included both X1 and X2 (ie, no variable selection).

4.4 Target predictions

The main target outputs/predictions of interest were the predicted marginal probabilities P(Y 1i = 1) and P(Y 2i = 1), along
with the predicted joint probability of both outcomes co-occurring: P(Y 1i = 1, Y 2i = 1) where the conditionals on X1 and
X2 have been omitted for brevity. As secondary outputs, we also consider P(Y 1i = 1, Y 2i = 0), and P(Y 1i = 0, Y 2i = 1), in
order to evaluate each methods ability to predict all combinations of joint risk. Details of how each method estimates
these joint and marginal probabilities were described in Sections 2 and 3.

4.5 Performance measures

The data-generating mechanisms were repeated across 100 iterations for each simulation scenarios (ie, for all values of 𝜌).
We used the validation sets, generated separately in each iteration, to assess the CPMs in terms of calibration (agreement



8 MARTIN et al.

𝝆 Corr(Y 1, Y 2) P(Y 1 = 1, Y 2 = 1) P(Y 1 = 1, Y 2 = 0) P(Y 1 = 0, Y 2 = 1)

0 0.000 0.065 0.222 0.162

0.25 0.111 0.086 0.201 0.142

0.50 0.234 0.110 0.178 0.118

0.75 0.371 0.136 0.152 0.092

0.95 0.503 0.161 0.127 0.067

T A B L E 1 Empirical
results of the correlation
between Y 1 and Y 2 for each
value of ρ in the simulation,
along with the observed joint
outcome event rates for the
main simulation

between the expected event rate and the observed event rate, across the full risk range), discrimination (ability of the
model to separate cases from controls) and mean squared error (MSE) of the predicted risks compared with the “true”
(data-generating) risks. The methods to estimate these differ across marginal or joint risk evaluation, as follows:

For marginal risk performance, we calculate the MSE as n−1 ∑n
i=1 (𝜋i − 𝜋i)2, where n = 10 000 in the validation set,

𝜋i is the data-generating (marginal) risk for observation i and 𝜋i is the corresponding estimated risk from each model.
Calibration was quantified with the calibration-in-the-large (ideal value 0) and slope (ideal value 1), which was estimated
by fitting a logistic regression model in the validation set for each observed marginal outcome and with the logit of the
estimated marginal risk (from each model) as the only covariate; this covariate was used as an offset for estimation of
calibration-in-the-large.51 The discrimination of all models at predicting marginal risk was estimated with the area under
the receiver operating characteristic curve.

For joint risk performance, we follow the methods documented previously.5,52-55 The MSE was defined across the
multivariate outcomes (ie, across each joint-outcome-combination: {Y 1 = 1, Y 2 = 1}, {Y 1 = 1, Y 2i = 0}, {Y 1 = 0, Y 2 = 1} and
{Y 1 = 0, Y 2 = 0}) as n−1 ∑4

k=1
∑n

i=1 (𝜋i,k − 𝜋i,k)2, where n = 10 000 in the validation set, 𝜋i,k is the data-generating risk for
observation i and joint-outcome-combination k, with 𝜋i,k being the corresponding estimated risk from each model.5 The
calibration of the joint outcomes was estimated using multinomial methods, as previously described in detail52,53 (see
supplementary methods in Appendix S1). Discrimination of the models at predicting joint risk was assessed using the
polytomous discrimination index (PDI), where we report both overall PDI and joint-outcome-combination-specific PDIs
(see Van Calster et al54,55 for details). All performance measures were averaged across the 100 iterations and associated
95% confidence intervals (CIs) calculated.

4.6 Software

The simulation was implemented in R version 4.0.2,56 along with the following packages: tidyverse,57 pROC,58 rjags,46

coda,59 pbivnorm,60 glmnet,61 VGAM,62-64 and nnet.38 The code was written by the lead author and is available on GitHub
at https://github.com/GlenMartin31/Multivariate-Binary-CPMs.

4.7 Simulation results

We here present the simulation results for the case where the marginal outcome proportions were 29% and 23% for Y 1
and Y 2, respectively. Quantitatively similar results were found for the sensitivity analysis where the marginal outcome
proportions were lowered to 6% and 5% for Y 1 and Y 2, respectively (simulation results available through the GitHub page).

Table 1 shows the empirical relationships between 𝜌 and the correlation between the binary outcomes. The observed
joint probability of both outcomes (averaged across all iterations) ranged from 6.5% for 𝜌 = 0 to 16.1% for 𝜌 = 0.95. A
similar table for the sensitivity simulation (lower marginal outcome proportions of 6% and 5% for Y 1 and Y 2, respectively)
is given in Table S1.

When 𝜌 = 0, all models returned estimates of the overall joint probabilities that were calibrated well with observed
probabilities in the validation data (Figure 1). However, as 𝜌 increased, the calibration-in-the-large for P(Y 1i = 1, Y 2i = 1)
increased above 0 for univariate CPMs and stacked regression, indicating that these models (which ignore conditional
dependency of the outcomes) underestimate the joint risk. In contrast, for all methods that account for dependence
in the outcomes (ie, probabilistic classification chains, multinomial logistic regression, multivariate logistic regres-
sion and multivariate Bayesian probit regression), the calibration-in-the-large were consistently close to 0. However,

https://github.com/GlenMartin31/Multivariate-Binary-CPMs
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F I G U R E 1 Calibration-in-the-large for each model across all simulation scenarios, upon validation. Bars represent the 95% confidence
interval for the calibration-in-the-large across simulation iterations. Each column of plots corresponds to a value of 𝜌, while each row of plots
is a joint outcome as follows: P11 denotes P(Y 1i = 1, Y 2i = 1), P10 denotes P(Y 1i = 1, Y 2i = 0), and P01 denotes P(Y 1i = 0, Y 2i = 1). The dashed
horizontal lines show the reference value for the calibration-in-the-large of 0. The models are as follows and as described in the methods
section: Univariate, two independent clinical prediction models; SR, stacked regression; PCC, probabilistic classification chains; MLR,
multinomial logistic regression; MLM, multivariate logistic model; MPM, multivariate Bayesian probit model

for higher values of 𝜌, the calibration-in-the-large deviated from 0 for multivariate logistic regression, especially when
estimating P(Y 1i = 0, Y 2i = 1); this is expected, as discussed in Section 3.3. In terms of marginal outcome risk, the
calibration-in-the-large was sufficiently close to 0 for all methods across all values of 𝜌, indicating the overall expected
marginal event rates matched the observed marginal event rates for all methods, as expected (Figure S1).

Similar findings were observed for the calibration slope for both the joint outcome risk (Figure 2) and marginal out-
come risk (Figure S2). Specifically, predicted risks for each outcome were well calibrated for the two observed marginal
probabilities for all models (Figure S2). For the joint outcome probabilities, only probabilistic classification chains, multi-
nomial logistic regression and multivariate Bayesian probit regression (ie, the methods that account for dependence in
the outcomes across the full range of 𝜌) had a calibration slope close to 1 for increasing 𝜌 (Figure 2). Multivariate logistic
regression was miscalibrated for predicting P(Y 1i = 0, Y 2i = 1) for 𝜌> 0.5. The naïve approaches had calibration slope esti-
mates below one when the outcomes where positively correlated, implying that the difference between the lowest joint
risk and the highest joint risk was too extreme.

For discrimination, upon validation as 𝜌 increased, the overall PDI for predicting joint outcomes was higher for
probabilistic classification chains, multinomial logistic regression, and multivariate Bayesian probit regression CPMs,
compared with univariate CPMs or stacked regression. Differences between the methods that account for dependence in
the outcomes were modest, except for the multivariate logistic model (Figure 3, Figure S3). The discriminative ability of
each method to predict the marginal outcomes were similar (Figure S4).
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F I G U R E 2 Calibration slope for each model across all simulation scenarios, upon validation. Bars represent the 95% confidence
interval for the calibration slope across simulation iterations. Each column of plots corresponds to a value of 𝜌, while each row of plots is a
joint outcome as follows: P11 denotes P(Y 1i = 1, Y 2i = 1), P10 denotes P(Y 1i = 1, Y 2i = 0), and P01 denotes P(Y 1i = 0, Y 2i = 1). The dashed
horizontal lines show the reference value for the calibration slope of 1. The models are as follows and as described in the methods section:
Univariate, two independent clinical prediction models; SR, stacked regression; PCC, probabilistic classification chains; MLR, multinomial
logistic regression; MLM, multivariate logistic model; MPM, multivariate Bayesian probit model

Finally, the MSE showed that all the methods consistently estimated the risks of the marginal outcomes (Figure S5),
but the CPMs developed using probabilistic classification chains, multinomial logistic regression and multivariate
Bayesian probit regression had much lower (ie, better) MSE for the joint outcome risks as 𝜌 increased, compared with the
methods that ignored the conditional dependency of the outcomes or multivariate logistic regression (Figure 4).

5 EMPIRICAL STUDY

5.1 Data source, study population, and outcomes

Data were obtained from the Medical Information Mart for Intensive Care III (MIMIC-III), which contains freely available
and de-identified critical care data from the Beth Israel Deaconess Medical Center in Boston, Massachusetts, between
2001 and 2012.65

For the purposes of this empirical study of the methods, we considered the prediction of a binary indication of acute
kidney injury (AKI) occurring within 48 hours after an ICU admission, and a binary indication of a total length of stay
(LOS) on ICU of over 5 days. AKI is the most common cause of organ dysfunction in critically ill adults, and long LOS
outcome captures overall ICU severity66; therefore, while this example is for illustrative purposes only, this could be of
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F I G U R E 3 Overall polytomous discrimination index (PDI) for each model across all simulation scenarios, upon validation. Bars
represent the 95% confidence interval for the PDI across simulation iterations. Each column of plots corresponds to a value of 𝜌. Note random
performance on the PDI scale is 0.25 with four joint-outcome combinations (ie, P11, P10, P01, and P00). The models are as follows and as
described in the methods section: Univariate, two independent clinical prediction models; SR, stacked regression; PCC, probabilistic
classification chains; MLR, multinomial logistic regression; MLM, multivariate logistic model; MPM, multivariate Bayesian probit model

clinical interest in the context of ICU by aiding in early intervention to minimize risks of AKI and associated long LOS,
both of which are important from a patient treatment and resource planning perspective.66

In this study, we defined an ICU admission to be any admission that lasted at least 24 hours, and we took the end of day
1 on ICU as our prediction time (the time point at which a prediction is made); hence, the AKI outcome was determined
at the end of day 3. Ideally, LOS should be analyzed as a continuous or count outcome, but we considered LOS as binary
here for illustrative purposes.

We extracted a cohort of patients over 18 years of age from the MIMIC-III database who were admitted to ICU for
any cause for at least 24 hours. We extracted information on patients’ age, gender, ethnicity, type of admission, and vital
signs and lab results over the first 24 hours of each ICU admission (summarized as minimum, mean, and maximum
values).

To define AKI, we extracted the maximum creatinine value for each patient collected between 24 and 72 hours after
initial ICU admission. AKI was defined as present (coded as 1) if the maximum creatinine within 48 hours after the
prediction time was either: (i) more than 1.5 times the minimum day 1 creatinine value, or (ii) over 0.3 mg/dL greater
than the minimum day 1 creatinine value; AKI was coded 0 (absent) otherwise. This definition follows published clinical
guidance.67

We excluded any ICU admission with indication of reduced kidney function within the first 24 hours, by exclud-
ing those with an estimated glomerular filtration rate GFR (eGFR) less than 60 mL/min/1.73 m2 at baseline. The eGFR
was calculated by the MDRD study equation,68 using each patient’s minimum creatinine value within the first 24 hours.
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F I G U R E 4 Multivariate mean squared error (MSE) of joint risk estimation, for each model across all simulation scenarios (lower is
better), upon validation. Bars represent the 95% confidence interval for the MSE across simulation iterations. Each column of plots
corresponds to a value of 𝜌. The models are as follows and as described in the methods section: Univariate, two independent clinical
prediction models; SR, stacked regression; PCC, probabilistic classification chains; MLR, multinomial logistic regression; MLM, multivariate
logistic model; MPM, multivariate Bayesian probit model

Patients with missing outcomes or who died within the hospitalization of their ICU stay were also excluded. We only
included a patient’s first ICU admission for a given hospitalization.

We developed CPMs on the extracted cohort using the methods outlined in Sections 2 and 3 with the aim of estimating
the marginal and joint probabilities of AKI and total ICU LOS ≥ 5 days. All the models included identical predictors
(Table S2), and therefore differed only in their estimation processes. To emphasize, the purpose was not to derive a new
CPM for use in clinical practice, but rather to illustrate and apply the proposed analytical methods using real-world clinical
data. We evaluated each of the models in terms of their respective calibration and discrimination metrics, using the same
techniques as described in Section 4.5. The large sample size means that overfitting was not a concern28; nonetheless, we
report predictive performance in a random hold-out sample (30%), simply to have some unused data to check the models
in, rather than relying on development data alone (noting that split-sample method is not preferred in practice1-3).

Missing data in any predictor variables was imputed using multiple imputation, where we generated 20 imputed
datasets.69 The imputation models included all of the covariates, plus the two outcomes.70 Within each imputed dataset,
the CPMs were developed using each analytical method, which were then applied to the hold-out test samples to estimate
the calibration and discrimination of each model. Performance metrics upon validation were then pooled across the
imputations using Rubin’s rules.69

All data extraction was performed using an SQL script written by the lead author (which is available on Github: https://
github.com/GlenMartin31/Multivariate-Binary-CPMs). Analysis was performed using R version 4.0.2,56 along with the
packages stated in Section 4.6.

https://github.com/GlenMartin31/Multivariate-Binary-CPMs
https://github.com/GlenMartin31/Multivariate-Binary-CPMs
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5.2 Empirical study results

A total of 24 459 ICU admissions were included in the analysis; Table 2 presents an overview of a baseline summary of the
whole cohort extracted from the MIMIC-III database. The correlation between the outcomes was 0.08, with an observed
joint probability of both outcomes being 4.46%. The marginal probability of long LOS was 20.3% and for AKI was 16.1%.

Table 3 shows the calibration and discrimination (in the hold-out sample) for each method in terms of estimat-
ing the joint outcome risks. As with the simulation study, methods that account for dependence in the outcomes
(ie, probabilistic classification chains, multinomial logistic regression, multivariate logistic regression and multivariate
Bayesian probit regression) were well calibrated for all outcomes, with calibration-in-the-large and calibration slope
close to 0 and 1, respectively. The models that do not account for outcome dependency significantly under-predicted
the joint outcome risk, with a calibration-in-the-large over 0, although the 95% CI for the calibration slope spanned
1. A flexible nominal calibration plot52,53 for the joint outcome performance is given in Figure 5, which shows the
overall underestimation of the joint outcome proportion (ie, P(ICU > 5i = 1, AKIi = 1)) for the univariate and stacked
regression models; in contrast the calibration plot for multinomial logistic regression and multivariate Bayesian pro-
bit regression show good calibration, which is supported by the calibration-in-the-large and calibration slope estimates
(Table 3). All models had similar discrimination, both in terms of joint-outcome-combination specific PDI (Table 3)
and overall PDI (Figure S6). These results align with those from the simulation study; here, we have an observed cor-
relation in the outcomes of 0.08, which approximately corresponds to the simulation scenario where 𝜌 = 0.25 (see
Table 1).

6 DISCUSSION

This study presents four methods for developing CPMs that respect the dependence between multiple clinical outcomes.
As expected, only the methods that condition on each outcome (probabilistic classification chains and multinomial
logistic regression) or model the correlation explicitly (multivariate logistic regression and multivariate Bayesian probit
regression) provide reliable estimates of joint risks. All methods had similar predictive performance in terms of predict-
ing the marginal risks of each outcome. Our results suggest that probabilistic classification chains, multinomial logistic
regression or the multivariate probit model might be the most appropriate choice for developing multivariate CPMs for
multiple binary outcomes.

There has been little previous research published on developing CPMs that aim to predict multiple outcomes simul-
taneously. Most CPMs have been developed for individual or composite outcomes. However, many medical contexts
demand a multivariate approach to prediction. An example of such a context is multi-morbidity, which is becoming an
increasing priority for health services around the world. Traditional approaches to do this in multi-morbidity (eg, Charlson
Comorbidity Index71) involve rudimentary metrics, assigning crude weights to different conditions that cannot predict the
co-occurrence of outcomes. There are many other clinical examples where a multivariate approach to prediction would
be warranted. This study shows that accurate prediction of joint outcome risks is only achieved by developing CPMs that
account for dependence in the outcomes. Models that do not account for outcome dependence underestimate the joint
outcome risks.

While the findings of this study are intuitive from a statistical perspective, CPMs are usually not developed in a multi-
variate manner.4,14,17,18 As such, the findings from this study have implications for multi-outcome risk prediction, which
is becoming an increasing priority. Advantageously, all the methods proposed can be implemented using standard sta-
tistical software (although multivariate logistic regression and multivariate Bayesian probit regression do require user
coding), meaning they could be readily applied to develop real-world CPMs for multi-outcome prediction. Of note is that
as the number of outcomes under consideration increases, the computational demand of fitting the models also increases.
Indeed, as the number of outcomes increases, the size of the parameter space for probabilistic classification chains, multi-
nomial logistic regression and the multivariate probit model increases rapidly, albeit to a less extent for multinomial
logistic regression (Table S3).

Nonetheless, we note that all CPMs are developed with a particular prediction task in mind, and as such not all CPMs
will aim—or indeed need—to accurately estimate joint risks of multiple outcomes. This study shows that all approaches
accurately predicted the risks of each outcome individually, meaning the models in Section 3 are still useful at predicting
marginal risk. It is important to emphasize that the methods that utilize data from multiple outcomes can also leverage the
information contained across outcomes, with the associated advantages that this brings. For example, such advantages
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T A B L E 2 Baseline summary of the patient demographics, characteristics and lab/vital results over the first 24 hours of an
intensive care unit (ICU) admission, for the whole cohort

Characteristic Summary Missing data, n (% of cohort)

N 24 459

Demographics

Age, mean (min, max) 60.92 (18.02, 99.28) 0 (0%)

Age group, n (%) 0 (0%)

<30 1406 (5.75%)

30-40 1534 (6.27%)

40-50 3091 (12.6%)

50-60 4958 (20.3%)

60-70 5522 (22.6%)

70-80 4616 (18.9%)

>80 3332 (13.6%)

Male, n (%) 14 438 (59.0%) 0 (0%)

Admission type, n (%) 0 (0%)

Elective 4627 (18.9%)

Urgent 609 (2.49%)

Emergency 19 223 (78.6%)

Ethnicity, n (%) 2665 (10.9%)

White 17 637 (72.1%)

Asian 593 (2.42%)

Black 1998 (8.17%)

Hispanic 867 (3.54%)

Other 709 (2.90%)

Lab tests – Summary over first 24 hours on ICU

Mean bicarbonate, mean (min, max) 24.4 (8.00, 51.5) 123 (0.50%)

Mean creatinine, mean (min, max) 0.82 (0.10, 4.73) 0 (0%)

Mean chloride, mean (min, max) 105.2 (64.5, 142.0) 85 (0.35%)

Mean hemoglobin, mean (min, max) 11.1 (3.33, 19.9) 59 (0.24%)

Mean platelet count, mean (min, max) 224.6 (7.50, 1646.2) 84 (0.34%)

Mean potassium, mean (min, max) 4.09 (2.30, 8.70) 2 (0.01%)

Mean partial thromboplastin time, mean (min, max) 35.3 (14.4, 150.0) 2596 (10.6%)

Mean international normalized ratio, mean (min, max) 1.37 (0.50, 18.2) 2537 (10.4%)

Mean prothrombin time, mean (min, max) 14.9 (8.00, 131.1 2542 (10.4%)

Mean white blood cell count, mean (min, max) 11.8 (0.10, 247.9) 137 (0.56%)

Vital signs—summary over first 24 hours on ICU

Mean heart rate, mean (min, max) 86.2 (31.2, 155.0) 203 (0.83%)

Mean systolic blood pressure, mean (min, max) 119.0 (74.1, 203.0) 220 (0.90%)

Mean diastolic blood pressure, mean (min, max) 61.9 (27.4, 127.0) 220 (0.90%)

Mean respiration rate, mean (min, max) 18.5 (8.00, 41.8) 225 (0.92%)

Mean temperature (Celsius), mean (min, max) 36.9 (32.6, 39.8) 703 (2.87%)

(Continues)
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T A B L E 2 (Continued)

Characteristic Summary Missing data, n (% of cohort)

Mean oxygen saturation, mean (min, max) 97.5 (73.5, 100.0) 211 (0.86%)

Mean glucose, mean (min, max) 135.8 (52.0, 661.8) 299 (1.22%)

Outcomes

Total ICU Length of Stay ≥ 5 days, n (%) 4957 (20.3%) 0 (0%)

Acute Kidney Injury by day 3 on ICU, n (%) 3930 (16.1%) 0 (0%)

T A B L E 3 Internal validation (hold-out sample) calibration-in-the-large, calibration slope and polytomous
discrimination index (PDI) performance results for each model in the MIMIC-III dataset. For the outcome
column, P11 denotes P(ICU > 5i = 1, AKIi = 1), P10 denotes P(ICU > 5i = 1, AKIi = 0), and P01 denotes
P(ICU > 5i = 0, AKIi = 1)

Model Outcome
Calibration-in-the-large
(95% CI)

Calibration Slope
(95% CI) Outcome-specific PDI (min, max)*

Univariate P11 0.23(0.11, 0.35) 0.94(0.8, 1.08) 0.42(0.42, 0.43)

Univariate P10 −0.15(−0.21, −0.08) 0.98(0.84, 1.13) 0.38(0.38, 0.39)

Univariate P01 −0.09(−0.17, −0.01) 0.98(0.88, 1.09) 0.42(0.42, 0.42)

SR P11 0.23(0.11, 0.35) 0.98(0.83, 1.13) 0.42(0.42, 0.43)

SR P10 −0.15(−0.21, −0.08) 1.03(0.87, 1.18) 0.38(0.38, 0.39)

SR P01 −0.09(−0.17, −0.01) 1.02(0.91, 1.13) 0.42(0.42, 0.42)

PCC P11 −0.07(−0.19, 0.05) 1(0.85, 1.16) 0.42(0.42, 0.43)

PCC P10 −0.05(−0.12, 0.01) 0.98(0.83, 1.12) 0.39(0.39, 0.4)

PCC P01 0.03(−0.04, 0.11) 0.96(0.86, 1.07) 0.43(0.42, 0.43)

MLR P11 −0.06(−0.19, 0.06) 0.91(0.77, 1.04) 0.44(0.44, 0.44)

MLR P10 −0.05(−0.12, 0.02) 1(0.86, 1.13) 0.42(0.41, 0.42)

MLR P01 0.03(−0.05, 0.1) 1(0.9, 1.11) 0.45(0.45, 0.45)

MLM P11 −0.04(−0.16, 0.08) 1.08(0.91, 1.24) 0.42(0.42, 0.43)

MLM P10 −0.07(−0.13, 0) 0.96(0.82, 1.11) 0.39(0.38, 0.39)

MLM P01 0.01(−0.07, 0.09) 0.95(0.85, 1.06) 0.42(0.42, 0.43)

MPM P11 −0.07(−0.2, 0.07) 1.06(0.89, 1.22) 0.42(0.42, 0.43)

MPM P10 −0.06(−0.13, 0.02) 1(0.85, 1.15) 0.39(0.39, 0.39)

MPM P01 0.03(−0.05, 0.11) 0.98(0.87, 1.09) 0.43(0.42, 0.43)

Abbreviations: MLM, multivariate logistic model; MPM, multivariate Bayesian probit model; MLR, multinomial logistic
regression; PCC, probabilistic classification chains; SR, stacked regression; Univariate, two independent clinical prediction
models.
aA depiction of the overall PDI is given in Appendix S1; min/max values for the PDI are taken across the 20 multiple imputed
datasets.

have been widely shown in the multivariate IPD meta-analysis literature,72 the literature on joint modeling,73,74 and also
in cross-sectional data of correlated binary outcomes.14,17,18

Here we focus on predicting binary outcomes, but continuous, ordinal and time-to-event outcomes are also commonly
required from CPMs.3 While most of the methods described in this paper generalize naturally to predicting continuous
outcomes, further consideration will be required for ordinal and time-to-event data. Explicitly, for time-to-event, one
should account for competing risks (eg, death), especially in cases where outcomes might occur over several years. Multi-
state survival models present a way of doing this,19 and have been used to develop CPMs to predict risk of moving between
disease/condition/pathway states (eg, 20). However, the use of multistate models to develop CPMs for multimorbidity
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F I G U R E 5 Internal validation (hold-out sample) flexible (nonparametric) nominal calibration plot fitted with vector splines on the
linear predictors for each model in the MIMIC-III dataset. For illustration, this is taken from the 20th imputed dataset (similar results in the
other imputed datasets). The scatter of points in each plot arises due to the multivariate nature of the plots; the lines are smoothing splines to
show average shape of the calibration plot. P11 denotes P(ICU > 5i = 1, AKIi = 1), P10 denotes P(ICU > 5i = 1, AKIi = 0), and P01 denotes
P(ICU > 5i = 0, AKIi = 1). The models are as follows and as described in the methods section: Univariate, two independent clinical prediction
models; SR, stacked regression; PCC, probabilistic classification chains; MLR, multinomial logistic regression; MLM, multivariate logistic
model; MPM, multivariate Bayesian probit model [Color figure can be viewed at wileyonlinelibrary.com]

prediction is not commonplace and would require methodological developments due to combinatorial complexities aris-
ing by the number of states (ie, outcome combinations). As such, further research is required to extend the approaches
in this paper to consider time-to-event CPMs through a multistate and competing risk framework; some of the methods
outlined here might provide a foundation to doing this.

Similarly, a patient’s care pathway comprises a mixture of outcome “types”; thus, it would be advantageous if the
methods to develop CPMs for multiple outcomes could handle this heterogeneity. For example, one might need to predict
continuous (eg, blood test), binary (eg, procedural complication), and time-to-event (eg, time-to-readmission) outcomes
simultaneously. While stacked regression provides a natural way of doing this by operating on the linear predictor scale
(Section 2.3), this method relies on conditional independence so cannot estimate joint outcome risks. In contrast, the
multivariate probit model has been used to model continuous and binary outcomes simultaneously by correlating the
error terms of a linear model with the latent error term for the binary outcome.18,75 The use of copula methods within
the multivariate probit model might be one way to generalize this approach to work for any pair of outcome types.76

Further research is warranted to explore this, and to consider the extension of the other methods to handle different
outcomes.

http://wileyonlinelibrary.com
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6.1 Limitations

Several limitations should be considered for this study. First, we have only considered binary outcomes where the occur-
rence of one outcome does not prevent the occurrence of the others. In practice, competing risks will need to be accounted
for and the biases incurred by failing to consider this were not explored here. Second, we only generated two predictors in
the simulation study; we acknowledge that most CPMs include more than two covariates, but one could regard the two
simulated predictors as summaries of several variables. Similarly, neither the simulation nor the critical care example con-
sidered variable selection. Variable selection might be especially important where different predictors are associated with
different outcomes, or where the direction of the association of a given predictor differs across outcomes. Considering
variable selection and heterogeneity in associations should be considered for future work. Third, we only considered case
studies and simulations with large sample sizes; therefore, further research is needed to explore the concepts of this paper
in settings where overfitting might be a concern (eg, penalization).28 Fourth, the simulations and real-world example only
considered two outcomes, and computational cost of all methods might increase if aiming to predict more outcomes simul-
taneously; future work should explore this directly. Finally, we only considered methods embedded within a regression
framework, and we acknowledge that we have not considered machine learning, classification-based approaches, such
as multilabel neural networks.26 Nonetheless, interpretable, machine learning multivariate CPMs are a grand challenge.

6.2 Conclusion

This paper reports four approaches that can advance CPMs beyond the current disconnected prediction of single condi-
tions to combinatorial approaches that reflect the real-world challenge of multiple-outcome health care. Any CPM that
aims to predict joint risk of multiple outcomes should only be based on methods that explicitly model the correlation
structure. In such a situation, our results suggest that probabilistic classification chains, multinomial logistic regression
or the multivariate probit model might be the most appropriate choice. Approaches that model outcome dependency
more accurately reflect real-world health care and benefit from the well-known advantages to inference that analyzing
multiple outcomes simultaneously offers.
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