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Abstract vi

Abstract

The physical mechanisms of why an orderly laminar flow suddenly becomes turbulent

are still poorly understood, despite more than a century of incessant efforts. The

thesis puts forward a radically new approach to understanding of the fundamental

challenge of bypass laminar-turbulent transition. In contrast to the overwhelming

majority of other transition studies concerned primarily with linear instabilities, here

the focus is on finite amplitude three-dimensional (3d) longwave perturbations of

boundary layer which are weakly decaying in the linear approximation.

The principal novelty is in simultaneous account of viscous decay, three-dimensionality

and nonlinearity. To describe analytically the dynamics of such perturbations Witham

type pseudo-differential nonlinear evolution equations have been derived and exam-

ined. The equations are derived asymptotically in the distinguished limit: nonlinear-

ity, dispersion and viscous decay (shown to be described by the Rayleigh friction type

term) are assumed to be in balance. The two models describe the 3d perturbations in

generic semi-infinite uniform boundary layers for unidirectional flows in homogeneous

and weakly stratified fluids (the equation for the homogeneous case is the essentially

two-dimensional Benjamin-Ono equation modified by the account of the Rayleigh

friction term), while the third one examines the effect of confined boundary layer in

homogeneous fluids.

The key feature of the derived models is that they support collapse, i.e. a specific blow

up with formation of a point singularity in finite time. Self-similar solutions describing

behaviour of the solution in the neighbourhood of singularity have been derived for

all three models. The phase space of these models is simply organised: there are

two attractors corresponding to the unperturbed linearly stable boundary layer and

the singularity. The boundary in the space of the initial conditions separating the

regimes of collapse and decay has been examined analytically and numerically. For

the situations where the Rayleigh friction is negligible, the systems are Hamiltonian

and an analytical criterion of vanishing of the Hamiltonian specifies the boundary

between the regimes. For other situations the boundary is found by direct numerical

simulations of the evolution equations.



The overall conclusion is that neither the Rayleigh friction, nor stratification or effect

of a second boundary prevent collapse from happening, nor they change the pertur-

bation amplitude time dependence in the vicinity of the singularity, however, these

factors do affect the evolution and can strongly increase the amplitude threshold of

collapse, often beyond the range of validity of weakly nonlinear models. Thus, within

the framework of the derived weakly nonlinear models a broad class of initial condi-

tions tends to form a singularity, in the process of evolution the emerging patterns

strongly resemble the 3d coherent structures observed in the wind tunnel boundary

layers.
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Chapter 1

Introduction

1.1 Background: An overview of studies of bound-

ary layers (BLs) in homogeneous and stratified

flows in the context of laminar-turbulent tran-

sition

1.1.1 3d patterns in laminar-turbulent transition in bound-

ary layers

1.1.1.1 Linear models

The problem of laminar-turbulent flow transition in the boundary layers is a clas-

sical problem that has been a subject of intense research efforts for more than a

century. In attempt to unravel the features observed during transition a variety of

approaches have been tried, including theoretical, numerical and experimental. De-

spite the huge corpus of literature and efforts dedicated to the problem of transition

1
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our comprehension of the problem is still very far from being complete. In attempt

to understand or explain the physical features observed during transition correctly

or to predict the onset of transition accurately a sound knowledge of the individual

physical parameters is needed. The overwhelming majority of studies concerned with

boundary layer transition so far have been centred on linear stability analysis aimed

at finding small amplitude perturbations which grow exponentially. For the plane

parallel flows this has been carried out largely using Orr-Sommerfield equation. A

comprehensive review of linear stability analysis of shear flows is available in a vari-

ety of textbooks and reviews [e.g.Schmid and Henningson [2001] , Drazin and Reid

[2004], Wu [2019], Schmid [2007], Criminale et al. [2018]]. In recent years attention

has shifted to the so called nonlinear extension of non-modal theory, i.e., consists of

finding the disturbance to the flow state of a given amplitude that experiences the

largest energy growth at a certain time later [e.g. Kerswell [2018]]. However, we do

not take the linear theory of stability, it is irrelevant for our study, and, therefore, we

do not discuss it here.

1.1.1.2 The aim and the main idea of the work

The primary aim of the thesis is to put forward a new approach. In contrast to the

overwhelming majority of studies concerned with linearly unstable perturbations, the

focus of this work is on the three dimensional (3d) linearly decaying perturbations.

We develop a weakly nonlinear theory of three dimensional linearly decaying pertur-

bations in boundary layers. By means of systematic asymptotic expansions we derive

new Whitham type pseudo-differential evolution equations taking into account vis-

cous dissipation, weak stratification and confinement of boundary layers. We analyse

these new evolution equations analytically and numerically. We find that the main

feature of the evolution of 3d perturbations is that those which satisfy a certain cri-

terion tend to collapse, i.e. form a point singularity of infinite amplitude in finite

time. We show that collapses occur in all cases and the main effect of accounting

for finite Reynolds numbers and weak stratification is not in preventing collapses

but in raising the amplitude threshold of blow-ups. We examine these collapses as a

plausible physical mechanism of bypass laminar-turbulent transition and generation
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of 3d coherent patterns, whereby the usual existence/absence of linear instability is

immaterial and the transition is purely governed by a nonlinear mechanism resulting

into finite time singularity or ‘blow-up’. The underpinning mechanism of collapses is

self-focusing well studied in nonlinear optics (e.g. Zakharov and Kuznetsov [2012]).

1.1.1.3 Alternative models of blow-up in boundary layers

There are other mechanism of bypass laminar-turbulent transition in the boundary

layers that have been thoroughly studied theoretically, numerically and experimen-

tally. Apart from our model which we will discuss in detail later, we mention four

other models describing the mechanisms resulting in finite time blow-up and con-

sidered in the context laminar-turbulent transition. These models were developed

more than two decades ago by Craik [1971], Hall and Smith [1991] and Stewart and

Smith [1992]. The models of Smith and his co-workers, Philip Hall and his co-workers

consider interactive boundary layer (IBL) theory for large Reynolds number.

The pioneering work of boundary layer transition involving resonant triad interaction

or nonlinear instability was put forward in a weakly nonlinear analytical model by

Craik [1971]. Craik [1971] considered triad resonant interactions between Tollmien-

Schlichting (TS) waves and a pair of oblique subharmonic waves with the same

streamwise celerity as the TS wave and the wavelengths twice that of the streamwise

TS wave. Resonant triads of this type share the same critical layer, which plays the

key role in this mechanism. In particular, Craik [1971] showed that the amplitudes

of interacting harmonics become infinite in finite time. Although the collapses which

are central to our work also lead to infinite amplitudes in finite time, there are three

important differences: (i) in contrast to Craik’s model where singularities occur only

in time domain the collapses result in point singularities both in space and time;

(ii) the harmonic perturbations considered by Craik are strongly dispersive, which

means that the wavelengths of perturbations are comparable to the boundary layer

thickness, while in the models we consider below the perturbations are long compared

to the boundary layer thickness; (iii) in the Craik’s model the shared critical layer
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is crucial, while in our model of collapse, in what we are presenting now, it plays no

role whatsoever.

Experimental results of Kachanov and his co-workers [Kachanov et al. [1977]; Kachanov

and Levchenko [1984]], Saric and co-workers (Saric et al. [1981]); Thomas and Saric

[1981]) added a lot of weight to the Craik’s idea; the formation of Craik’s triads and

associated growth of subharmonics were indeed observed in unsteady boundary layers

just prior to the transition.

Hall and Smith [1991] studied strongly nonlinear vortex-wave interactions (VWI)

in the boundary layer transition at high Reynolds numbers. Their model is based

on interactions between strongly nonlinear longitudinal vortices and the TS waves,

hence the mean flow profile is completely different from its original undisturbed state.

Stewart and Smith [1992] considered laminar-turbulent transition of boundary layer

flows through a mechanism of vortex-wave interaction (VWI). This model is under

the umbrella of mechanisms known as self-sustaining processes and transition to

turbulence. In these models of Stewart and Smith [1992], Hall and Smith [1991],

quasi-two dimensional T-S waves of high frequency and slow amplitude modulations

are considered. The nonlinear viscous sublayer generates a streamwise vortex which

in turn modifies the T-S waves. In our model, the motions we are concerned with,

are long perturbations which are not the TS waves, the dynamics in the viscous

sub-layer is ensured to be linear and has negligible contribution into the evolution of

perturbations.

On generalising the Craik [1971] model of explosive resonant triads by including

asymmetric coupled triads, Metcalfe [2013] developed a theoretical weakly nonlinear

3d model for moderate Reynolds numbers. It was found that for coupled triads the

blow-up amplitude thresholds could be quite low for subcritical Reynolds numbers,

which suggests a possibility of a role for this mechanism in bypass transition. In con-

trast to the triads studied by Smith and Stewart [1987] the interaction coefficients of

the coupled triads were shown to be complex, it is this property of interaction coeffi-

cients which enables the amplitude of interacting harmonics to blow up. The purely

imaginary coefficients of resonant-triads in Smith and Stewart [1987] is explained by
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the different parameter range of validity, the Smith and Stewart [1987] model has

been derived in the limit of very high Reynolds numbers.

1.1.1.4 Brief description of Kachanov (1989, 1990 and 1992) wind tunnel

experimental observations in transitional boundary layers

The discovery of a particular class of coherent structures (CS) in boundary layers later

shown to be solitary wave solutions of the Benjamin-Ono equations (BO solitons) is

linked to the pioneer experiments carried by Borodulin and Kachanov [1989] in the

wind tunnel. Borodulin and Kachanov [1989] found that the spikes they observed

at the early stage of boundary layer exhibit properties of a soliton. This phemenon

was investigated in more detail (Borodulin and Kachanov [1990] and Borodulin and

Kachanov [1992]); for a comprehensive description of the CS soliton properties of

both the initial and late stages of transition see sections §6.3 and §6.4 of the review

by Kachanov [1994]. The specific properties of coherent structures (3d patterns)

as observed at later stages of their development are also discussed in Borodulin and

Kachanov [1990] and Borodulin and Kachanov [1992], and in section §6.4 of Kachanov

[1994] ( or a sample of snapshot of a typical 3d pattern see figure 2.1 of Chapter 2

). In the process of laminar-turbulent transition in boundary layers a number of

features emerge both at the early and late stages of the transition. During the early

stages of the transition when the basic flow is still two-dimensional, these structures

(spikes observed in experiments) were found to be essentially two-dimensional and

well described by asymptotic theory of one-dimensional Benjamin-Ono equation(BO

equation) as was first noted by Ryzhov [1990]. Kachanov et al. [1993] carried out a

direct quantitative comparison of his experimental observations with the theoretical

model of the BO equation in Ryzhov [1990] and found a good agreement. More im-

portantly, during the early stages of the transition, the spikes appear to be planar and

very robust (see Kachanov et al. [1993]). The solitons propagate downstream main-

taining their form without dispersing, which is in contrast with behaviour of linear

wave packets. These solitons were found to decay very slowly, which clearly indicates

that nonlinearity plays a fundamental role in their evolution (Doorley and Smith

[1992], Smith [1992]). At the intermediate/late stages of boundary layer transition
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three-dimensional coherent structures emerge [see e.g., experiments in Borodulin and

Kachanov [1990], theory and experiments in Kachanov et al. [1993], and a review

paper in Kachanov [1994]]. Kachanov suggests that these features are deterministic

and well ordered, not stochastic/random, therefore, could well modelled by a deter-

ministic asymptotic theory. The main features of spike behaviour at later stages of

its three-dimensional development are comprehensively discussed in ( Borodulin and

Kachanov [1990] ). In the review paper of Kachanov [1994], it is noted that the

theoretical model developed in Kachanov et al. [1993] can not yet describe the three-

dimensional pattern described in the experiments ( Borodulin and Kachanov [1990]

). Kachanov remarked that all attempts to develop a three-dimensional asymptotic

theoretical model to describe late stage 3d coherent structures were unsuccessful, the

only promising 3d model was that of Shrira (1989) which had faithfully captured

some qualitative features of the CS; the axisymmetric solitary wave solution of the

Shrira equation obtained by Abramyan et al. [1992] showed a strong resemblance of

the observed CS. Our study aims at this gap.

We intend to extend the model of Shrira (1989, 1998, 2005) to a more common no-

slip boundary. Our intention is not to perform direct quantitative comparison with

the Kachanov observations of the three-dimensional CS recorded at an intermediate

stage of the transition, since these experimental works were carried out in non-parallel

boundary layers. The model we consider at the first phase of this work is confined

to the plane parallel flows, which does not allow for a quantitative comparison with

the observations in inhomogeneous boundary layers.

1.1.1.5 Modelling of 3d coherent patterns

Asymptotic nonlinear model of the one-dimensional Benjamin-Ono equation was pro-

posed by Ryzhov [1990] to explain the the 2d patterns observed at the early stages

of transition. A qualitative agreement of properties of the Benjamin-Ono (BO) soli-

ton solution with those of experimentally observed spikes was found, in particular,

the spectrum of these Benjamin-Ono solutions was found to be close to that ob-

served experimentally [Kachanov [1987] & Kachanov et al. [1985]]. Kachanov et al.
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[1993] compared quantitatively the properties of the observed spikes with those of

the Benjamin-Ono solitons and found a good agreement. However, at later stages the

coherent structures (CS) become essentially three-dimensional (Kachanov [1994]). In

his review of (1994) Kachanov noted that the attempts to generalise nonlinear asymp-

totic theory to 3d solitons propagating in the boundary layer were unsuccessful. This

work, in particular, is aimed at this gap.

To our knowledge the first model suitable for describing 3d coherent structures (CS)

is an anisotropic two-dimensional generalisation of the Benjamin-Ono equation (2d-

BO) which was originally derived as a model of vorticity waves in the upper ocean

(Shrira [1989]). The dependence on the third (cross-boundary) coordinate to leading

order splits off and is given by an explicit solution of the corresponding boundary

value problem (long-wave limit Rayleigh equation). In qualitative agreement with

the wind tunnel observations (Kachanov [1994]) the 2d-BO planar wave solutions

(both streamwise and oblique) were found to be unstable with respect to transverse

perturbations (Pelinovsky and Stepanyants [1994], Gaidashev and Zhdanov [2004]).

Abramyan et al. [1992] found numerically 3d stationary solitary wave solution of the

2d-BO that resembling 3d CS observed in wind tunnel by Borodulin and Kachanov

[1990] and Borodulin and Kachanov [1992]. However, this 3d stationary solitary wave

solution also proved to be unstable. A major step towards understanding the 3d CS

in boundary layers was made by D’yachenko and Kuznetsov [1995] who showed the

possibility of collapses within the framework of the 2d-BO equation. The collapsing

solutions of the 2d-BO equation also resemble 3d CS observed in the tunnels. Peli-

novsky and Shrira [1995] found explicit collapse transformation describing evolution

of transverse instability of the initially planar solitary wave. The asymptotic pro-

cedure employed by Shrira [1989] for the derivation of the 2d-BO equation diverged

in the critical layer, where the spanwise velocity component of the perturbation and

the first order correction to the streamwise component of the perturbation velocity

become singular. In (Voronovich et al. [1998]) a generalisation of the 2d-BO equation

was derived which extends the evolution equation to the situations where fluid out-

side the boundary is arbitrarily stratified and the boundary layer is confined between
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two parallel boundaries. The perturbation evolution and emergence of 3d CS within

the framework of this new very rich equation have not been examined.

In Shrira et al. [2005] a closely related problem of transition in the free surface

wind-induced accelerating boundary layer was examined, where both experimental

and theoretical aspects of the transition were investigated. It was found that for

the wind induced boundary layer shear flow there are no linear instabilities and the

transition occurring in the observations is an example of bypass transition. The

observations in the wind-wave facility in Shrira et al. [2005] have shown that the

perturbations that emerge out of the primordial noise have the horizontal scales long

compared to the boundary layer thickness, then they are growing very gradually

becoming more nonlinear, then suddenly, a strongly localized instability occurs. This

instability leads to the immediate breakdown of the laminar boundary layer and

formation of strongly localized 3d turbulent spots (Shrira et al. [2005]). The most

important aspect of this transition mechanism is that it does not require any universal

critical Reynolds number for the transition as compared to the classical scenario of

linear instability. To summarize the experimental findings, three salient features

emerged: Firstly, the observed perturbations have small but finite amplitude, and

they are long compared to the boundary layer thickness. The streamwise component

of velocity perturbation far exceeds that of the transverse and vertical velocity scales.

During the process of evolution the perturbation grows, manifests signs of nonlinear

steepening and then suddenly collapses to form turbulent spots. The collapse is

strongly localized. Following these observations, a plausible theoretical model of

laminar-turbulent transition was put forward. The model differs from the 2d-BO

equation by account of explicit dissipation in the boundary layer and due to weakly

non-parallel effects which seems to explain qualitatively the salient features observed

in the experiment, i.e the dynamics of 3d perturbations, their instability and strongly

localised collapse. The main missing gap of the Shrira et al. [2005] model was its

validity for the more common no-slip boundary condition, here we aim at addressing

this issue.
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1.1.1.6 3d coherent patterns in this work

In this work we extend the earlier works (Shrira [1989], Voronovich et al. [1998]

and Shrira et al. [2005]) and apply systematic asymptotic methods to derive novel

two-dimensional nonlinear evolution equations accounting for a stronger dissipation,

weak stratification and confinement of the boundary layer. These new equations are

analysed analytically and numerically.

In all cases the asymptotic derivation begins with a linear boundary value problem in

the form of long wave limit of the Rayleigh equation to the leading order. The next

order additive corrections to its leading order solution yield weak dispersion of two

different kinds, nonlinearity, viscosity and stratification; all being in balance. The in-

terplay of all these factors results in non-trivial two-dimensional (2d) Whitham type

nonlinear pseudo-differential evolution equations which enable us to model dynam-

ics of a broad class of boundary layers. To get insight into the dynamics governed

by the derived evolution equations we apply both the analytical approaches devel-

oped for studies of collapses in other physical contexts (Zakharov and Kuznetsov

[2012]) along with direct numerical simulation based upon pseudo-spectral method

with fourth order Runge-Kutta time-stepping [e.g. Orszag [1969], Fornberg [1998],

Kopriva [2009]].

1.1.2 Collapses in plasmas, nonlinear optics and boundary

layers

1.1.2.1 The notion of collapse. Wave collapses in plasmas and hydrody-

namics

The notion of collapse was introduced nearly half a century ago in the context of

nonlinear wave systems by Zakharov to describe the behaviour of Langmuir waves

in plasmas (see Zakharov et al. [1972], Kuznetsov [1996]). The idea of collapses as

a generic scenario of singularity formation in finite time proposed by Zakharov has

been widely applied in various physical contexts involving nonlinear dispersive waves.
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To our knowledge all analytical results and the overwhelming majority of numerical

studies of collapses are confined to Hamiltonian systems.

The specific type of blow-up singularity that arises in nonlinear wave systems is

largely dependent on the physical model. Historically, the first and most studied is the

case of self-focusing of light governed by the nonlinear Schrödinger (NLS) equation;

the light intensity tends to infinity as the focus is approached (Bergé [1998]).

In physics the term “wave collapses” is used for describing the formation of partic-

ular type of point singularities in the solutions of evolution equations governing the

dynamics of nonlinear waveforms. The nonlinearity of the evolution equation is the

necessary, but not sufficient element for the occurrence of collapses. The collapsing

solutions can occur only for certain classes of initial data and exist only during a

finite time interval, until the instant at which they lose their initial smoothness and

become singular. Wave collapses are of special interest in physics because in conser-

vative systems they provide one of the most effective mechanism for transfer of energy

into small scales and localising it in small spots(see e.g.,Kuznetsov [1996], Zakharov

and Kuznetsov [2012]). Knowing a priori about the existence of collapse in a system

under consideration is therefore very important. It also enables us to predict how the

specific features of the singularity depend on the initial conditions. For the Hamilto-

nian systems, the sufficient condition of collapse is that the Hamiltonian unbounded

from below is negative (H < 0), which means that the nonlinear localizing effects

dominate over the wave dispersion. For the non-Hamiltonian systems, with which we

are primarily concerned with in this work, at present there is no theory enabling one

a priori predict the outcome of the evolution for any given initial conditions.

In various fields of applied mathematics and physics there are a number of nonlinear

wave models that exhibit collapses. We briefly overview the most relevant ones.

1.1.2.2 Collapse in the ‘Nonlinear Schrödinger Equation’ (NLS)

The Vlasov-Petrishchev-Talanov (V-P-T) criterion of wave collapse within the frame-

work of two- and three-dimensional nonlinear Schrödinger equation(NLS), found in
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1971, is the first example of wave collapse which precedes the term collapse itself.

This was the first rigorous result for nonlinear systems with dispersion, which showed

the possibility of formation of a wave-field singularity in finite time, despite the pres-

ence of the linear dispersion of waves, the effect precluding the formation of point

singularities in the linear optics.

The nonlinear Schrödinger equation written in terms of dimensionless variable ψ has

the form

iψt + ∆ψ + |ψ|2ψ = 0, (1.1)

where the subscript t denotes a partial derivative with respect to time, while ∆ is

the two- or three-dimensional Laplacian operator. In nonlinear optics, the 2d and 3d

NLS equations describe the stationary self-focusing of light in a medium with the Kerr

nonlinearity [e.g. Kuznetsov [2003]]. Here we consider only the the 2d case. Here the

wave function ψ is the envelope of the field of a quasi-monochromatic electromagnetic

wave, the time t has the meaning of the coordinate along the direction of light beam

propagation, while the second term describes diffraction of the beam in the transverse

direction.

On multiplying the NLS equation by r2, where r = |r|, r = (x, y) and integrating it

with respect to spatial variables, after some algebra, it is possible to get the following

exact relationship for the second derivative with respect to time of the quantity

〈r2〉 = N−1
∫
r2|ψ|2dr,

d2

dt2

∫
r2|ψ|2dr = 8H, (1.2)

where

N =

∫
|ψ|2dr,

is an integral of motion, often called the total number of the quasi-particles, and H

is the Hamiltonian, another integral of motion given by

H =

∫
|∇ψ|2dr − 1

2

∫
|ψ|4dr ≡ I1 − I2. (1.3)

The Hamiltonian H is an integral of motion which is a sum of two constituents I1 and

I2 corresponding to the dispersion and nonlinearity contributions respectively. The
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relationship (1.2) is often called the virial theorem since the quantity N〈r2〉 can be

interpreted as the angular momentum [e.g. Kuznetsov [1996]]. In classical mechanics,

the simplest way of deriving the virial theorem, i.e the relationship between the

average kinetic energy and potential energy, is to calculate the second time derivative

of the total angular momentum of the whole system. Since the Hamiltonian H is a

conserved quantity, integration of equation (1.2) two times yields the relationship

∫
r2|ψ|2dr = 4Ht2 + C1t+ C2, (1.4)

where C1 and C2 are arbitrary constants of integration. The V-P-T criterion follows

immediately from (1.4). The quantity 〈r2〉 interpreted as the mean square size of the

field distribution is positive by definition. However, it is easy to see that in case of

negative Hamiltonian (H < 0) and arbitrary constants C1 and C2 the mean square

size 〈r2〉 crosses zero in finite time, which indicates that the solution exists only up

to this moment. Since N is conserved (N =
∫
|ψ|2dr), the vanishing of 〈r2〉 suggests

that the field |ψ| becomes infinite at this moment.

In addition to the V-P-T criterion of collapse which is specific for the NLS equation,

there also exists an important much more general sufficient criterion for collapse which

requires the Hamiltonian H to be negative and unbounded from below. We elaborate

this point below. Assuming that there are solitary wave type steady solutions ψs(x)

in the appropriately shifted frame, consider a scaling transformation

ψs(x) = α̃−D̃/2ψs(x/α̃).

This transformation preserves the number of particles N . The Hamiltonian can be

presented as a sum of dispersive and nonlinear contributions, I1 and I2, i.e.

H = I1 + I2.

Examining dependence of the Hamiltonian H as function of the scaling parameter α̃,

more specifically examining the boundness/unboundness of H from below as α̃→ 0,
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we easily get explicit expression for H(α̃),

H(α̃) =
1

2

(
I1

α̃2
− I2

α̃D̃

)
. (1.5)

The unboundness of H(α̃) from below indicates the possibility of collapse. This

possibility depends on the dimension of space D̃; for the NLS the collapses are possible

when the dimension D̃ ≥ 2. There is a general observation that with increase in D̃

the role of nonlinearity increases.

When D̃ = 1, the NLS Hamiltonian H is bounded from below, it realises its minimum

which corresponds to a stable planar soliton. In the two-dimensional situations,

I1 = I2, hence, H = 0 for the entire soliton family. For D̃ = 3, H(α̃) has a maximum

instead of a minimum (saddle point) which suggests the instability of the soliton.

It is easy to see that for D̃ = 3 in equation (1.5), H(α̃) turns out to be unbounded

function as the characteristic scale of the collapsing domain α̃→ 0, which is one of the

collapse criteria [Kuznetsov and Musher [1986]]. Therefore, for the unboundedness of

Hamiltonian from below (H < 0), the characteristic size α̃ of the collapsing domain

behaves as α̃ ∼ (t0− t)1/2 where t0 is the finite time singularity and 1
2

is the exponent

of the collapse. It is important to note that 2d NLS equation is regarded as the

critical NLS case: the dispersion integral I1 and nonlinear integral I2 terms in the

Hamiltonian behaves similarly under the scaling transformation with characteristic

scale α̃ of the collapsing domain.

1.1.2.3 Collapse in boundary layers governed by the 2d-BO model (Shrira’s

model)

Strong/critical collapse behaviour occurs not only for the NLS equation chosen here

as an example of collapse. In the context of boundary layers it has been shown by

D’yachenko and Kuznetsov [1995] that the two-dimensional Benjamin-Ono equation

(2d-BO) describing the nonlinear evolution of longwave 3d perturbations can be cast
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in the Hamiltonian form

ut =
∂

∂x
k̂u− 6uux =

∂

∂x

δH

δu
, (1.6)

with the Hamiltonian

H =
1

2

∫
uk̂udr−

∫
u3dr =

1

2
I1 − I2. (1.7)

In the context of the current discussion, the 2d-BO belongs to the class of ‘crit-

ical models’. Equation (1.6) is the anisotropic two-dimensional generalisation of

Benjamin-Ono equation derived by Shrira [1989] in the context of upper ocean with

shear localised in the upper thin boundary layer and infinite bottom layer. Here

k̂ is the integral operator whose Fourier transform is the modulus |k| =
√
k2
x + k2

y.

The 2d-BO is an asymptotic model describing the motions of longwave perturba-

tions in boundary layers at large Reynolds numbers Re−1/2 ≤ ε ≤ Re−1/4. Equation

(1.6) conserves four integrals of motion: mass, two components momentum and the

Hamiltonian. Under the scaling transformation similar to that used for the NLS

equation,

ψ → α̃−D̃/2ψ(r/α̃),

where D̃ = 1, 2 leads to the following dependencies of the Hamiltonian H on the

scaling parameter α̃ (the characteristic scale of the collapsing domain),

H(a) =
1

2

I1

α̃
− I2

α̃D̃/2
. (1.8)

Therefore it follows clearly that 2d-BO model as α̃ → 0 becomes critical when D̃ =

2. For the case when D̃ = 1, the equation reduces to the classical Benjamin-Ono

equation for which it is well known that the Hamiltonian is bounded from below and

the soliton realises its minimum corresponding to the Benjamin-Ono soliton. The

solitary wave solution of Benjamin-Ono equation for travelling waves u = us(x−V t)

is well known to be of the Lorentz pulse form,

us =
V

1 + V 2x2
, V > 0. (1.9)
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It has been shown that the plane BO soliton is unstable with respect to transverse

perturbations[see D’yachenko and Kuznetsov [1995], Pelinovsky and Stepanyants

[1994]]. In the longwave limit the instability growth rate of the BO plane soliton

is (D’yachenko and Kuznetsov [1994], Pelinovsky and Stepanyants [1994]), Gaida-

shev and Zhdanov [2004],

γ̄2 =
k2
yV

2

2
> 0.

For the 2d-BO the Hamiltonian is unbounded for the states with negative energy.

D’yachenko and Kuznetsov [1995] showed that indeed in the 2d-BO model collapse

occurs for H < 0 and the collapsing solution tends to axially symmetric distribution

as t→ t0, where t0 is the time of singularity.

1.2 Open questions

Despite more than a century of intensive research involving numerous theoretical and

experimental studies of boundary layer transition in shear flows, a number of basic

questions still remain open which we attempt to address in this thesis.

1. At present there is no consistent weakly nonlinear model able to describe non-

linear dynamics of 3d longwave perturbations in boundary layers with a more

common ‘no-slip’ condition at the boundary. There is no model for 3d longwave

perturbations accounting for finite Reynolds numbers.

2. How does account of dissipation affect boundary layer collapses? It is not known

whether dissipation in the boundary layer can prevent collapses from occurring.

If collapses can occur, how does the dissipation affect the character of singularity

and the manifold of initial conditions resulting in collapse? At present all

theoretical results on collapses were obtained for Hamiltonian systems.

3. In what respects the nonlinear dynamics of 3d longwave perturbations in bound-

ary layers confined between two planes differs from that in the semi-infinite

boundary layers? The effects of boundary layer confinement have not been

studied.
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4. At present there is no consistent weakly nonlinear model for 3d longwave per-

turbations in weakly stratified boundary layers. Nothing is known about their

nonlinear dynamics. How does account of stratification affect collapses?

1.3 Structure of the thesis

The overview of the studies and open questions concerned with nonlinear dynamics of

3d longwave perturbations in boundary layers with the focus on collapses presented

in this Chapter 1 is followed by three chapters devoted to various aspects of boundary

layer dynamics, Conclusions and Discussion.

In Chapter 2 we revisit the derivation of the weakly nonlinear model for 3d long-

wave perturbations in homogeneous boundary layers extending the derivation to

lower Reynolds numbers and the no-slip boundary layers. We show that the de-

rived pseudo-differential generalisation of the 2d-BO equation is equally valid for the

no-slip and constant stress boundary conditions. We investigate the properties of

the new nonlinear evolution equation with and without the Rayleigh friction term

describing the dissipation. We examine occurrence of collapses and, in particular,

how the explicit account of dissipation affects collapses. We show that the account

of dissipation doesn’t change the type of the singularity, but raises the amplitude

threshold.

In Chapter 3 we examine the effect of the boundary layer confinement for the case

of homogeneous boundary layer. We investigate collapse in confined boundary layer

within the framework of the ‘2d Intermediate long-wave equation’ (2d-ILW). The 2d-

ILW was originally derived by Voronovich et al. [1998], yet only its solitary stationary

solution were found. We show that collapses still can occur in the boundary layers

confined between two parallel planes and find the character of the singularity. We

investigate how the manifold of the initial conditions ending up in collapse depends

on the distance between the planes.
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Chapter 4 extends the analysis to weakly stratified boundary layers for which we

derive a novel nonlinear evolution equation. The model is a generalisation of the 2d-

BO equation with the Rayleigh friction term, it has two dispersion terms. We examine

under what conditions collapses can occur and the character of the singularity.

The Conclusions summarising the main results of the work are given in Chapter 5.

A discussion of the findings, the new questions the work generates and an outline of

further studies are given in the Chapter 5. In the Appendix A, B and we provide

details of the derivations of the nonlinear evolution equation from the Navier-stokes

equation.



Chapter 2

Collapses of linearly decaying

three-dimensional perturbations in

homogeneous boundary layers

2.1 Introduction

High Reynolds number boundary layers are ubiquitous in nature and engineering

contexts. The remarkable progress in understanding of boundary layer instabilities

and laminar-turbulent transition accumulated over one hundred years has been sum-

marised in many books and reviews (e.g. Drazin and Reid [2004],Schmid and Hen-

ningson [2001], Schmid [2007], Kerswell [2018], Criminale et al. [2018], Wu [2019],

Kachanov [1994]). To say that the issue is well studied would be an understatement.

However, the question about the physical mechanisms of the laminar-turbulent tran-

sition continues to be debated. One of the least understood aspects of the transition

is the emergence of three-dimensional localized coherent patterns often observed in

wind tunnel experiments and their role in the transition. An example of such pat-

terns taken from from (Kachanov 1994) is reproduced here. This study is aimed at

18
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Figure 2.1: Localised coherent structures in boundary layer observed in wind
tunnel experiments by Kachanov (1994). Two instantaneous span-wise cross-
sections at two downstream positions x1 and x2 of the streamwise velocity of a
localised disturbance at a distance y = ys from the boundary. Where x1 = 500mm,
x2 = 650mm and ys = 1.0mm.

describing a scenario of evolution of three-dimensional localised coherent patterns

in generic boundary layers and modelling of their subsequent blow up within the

framework of a weakly nonlinear asymptotic model.

Although the ideas underpinning this work are not entirely new and their origins

could be traced as far as nearly fifty years back, to the best of our knowledge, in the

context of transition in boundary layers they have not been consistently developed

and presented; here we aim at this gap. The line of thought we pursue and briefly

review below represents a departure from the conventional theoretical approaches to

laminar-turbulent transition in the following main aspects.

First, our approach is not constrained by considering the linearly unstable modes.
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Linear instabilities play no role in our consideration. Here we are primarily inter-

ested in nonlinear instabilities of linearly decaying modes which lead to a finite time

‘explosive’ growth of perturbations, more specifically, we are interested in blow ups

resulting (within the framework of weakly nonlinear models) in point singularities

both in space and time. Such scenarios of evolution common in nonlinear optics and

plasmas are referred to as ‘collapses’ (e.g. Zakharov and Kuznetsov [2012]). In the

context of high Reynolds number boundary layers we argue that the collapses, if they

occur, would develop much faster than the possible linear instabilities. Of course,

such a comparison is not entirely like-for-like, in contrast to linear instabilities the

collapses have an amplitude threshold and the rate of the perturbation amplitude

growth depends on amplitude and varies with time.

The perturbations we consider are often referred to as ‘vorticity waves’, since,

indeed, in many respects they behave as waves with restoring force provided by

the non-uniformity of background vorticity of the mean flow. We will use this term

throughout the chapter. In linear setting a boundary layer shear flow supports specific

long-wave modes which behave as a weakly dispersive weakly decaying wave (e.g.

Shrira and Sazonov [2001]). Not only the terminology, but a significant part of

the conceptual and mathematical framework of nonlinear wave theory used in other

branches of applied mathematics and physics is applicable here.

To elucidate the specificity of boundary layer collapses which are the focus of

the study, we first mention a few other mechanisms of blow up in boundary lay-

ers. Strongly nonlinear wave-vortex interactions between longitudinal vortices and

the quasi-two dimensional Tollmien-Schlichting(TS) waves at high Reynolds num-

bers are viewed as a possible mechanism of the boundary layer transition (Hall and

Smith [1991], Stewart and Smith [1992]). Such interactions do lead to blow up, but

in contrast to the model we consider here, require pre-existing strongly nonlinear

longitudinal vortices and, thus, are outside the realm of weakly nonlinear theory.

A totally different class of blow ups in boundary layers is exemplified by explosive

resonant triad interactions of oblique perturbations first discovered by Craik [1971].

This line of research was further elaborated in Usher et al. [1975], Craik [1988],
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Craik [2001], Metcalfe [2013]. In contrast to nonlinear wave-vortex interactions, in

this scenario there is no need in preexisting longitudinal vortices. Similarly to the

scenario we consider, the Tollmien-Schlichting instability is of little significance. The

main qualitative difference between the Craik-type blow up and the collapses we

focus upon is that the former is described in terms of evolving Fourier harmonics, the

singularity is in time, but not in space, while in the collapse scenario the evolution

is considered in the x-space and results in a point singularity in both space and

time. The Craik-type explosive resonant interactions occur for strongly dispersive,

hence, relatively short, perturbations, while here we focus upon perturbations long

compared to the boundary layer thickness. Yet another important difference between

the explosive resonant interactions and the collapses we focus upon in this work is

in the role played by the dynamics in the critical layer: for the explosive resonant

interactions the processes in the critical layer play the crucial role, in contrast, the

critical layer dynamics has no role in the scenarios of collapses we consider. The

study by Reutov [1995] aimed at describing 3d patterns in the boundary layer at

very large Reynolds numbers puts forward a model based on the two-dimensional

Benjamin-Ono equation coupled with nonlinear critical layer exhibiting instabilities.

Since in the chosen regime the critical layer dynamics is essentially nonlinear it is

difficult to advance analytically, but under some extra assumptions Reutov (1995)

was able find explosive triads. This places this work somewhere in between the Craik

inspired studies of explosive interactions where the role of the critical layer is central,

but the dynamics in the critical layer is still linear and the approach with linear

viscous critical layer pursued here.

In contrast to the overwhelming majority of studies of boundary-layer insta-

bilities strongly influenced by an extended interpretation of the Squire’s theorem,

here we are considering nonlinear evolution of essentially three-dimensional (3d) non-

monochromatic perturbations of comparable streamwise and spanwise scales. Along

with the already mentioned weak dispersion due to long-wave character of the per-

turbations, the essential three-dimensionality and nonlinearity are the key elements

of the new conceptual picture. The main physical mechanism leading to collapses
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- the self-focussing, was known in nonlinear optics and plasmas since the mid six-

ties (see e.g. review Zakharov and Kuznetsov [2012]), however its appropriation and

adaptation in the context of boundary layers proved to be not straightforward.

To our knowledge the consideration of essentially 3d longwave perturbations in

the boundary layers was originated by Shrira [1989] in the context of upper ocean.

To describe weakly nonlinear evolution of such perturbations in the horizontally uni-

form boundary layer adjacent to the ocean surface the two-dimensional generalisa-

tion of the Benjamin-Ono (2d-BO) equation was derived. The key assumptions in

the asymptotic derivation are the smallness of nonlinearity characterised by a non-

linearity parameter ε (ε� 1) and the balancing weakness of dispersion due to O(ε)

smallness of the characteristic wave number compared to the inverse of the boundary

layer thickness. A perturbation of comparable streamwise and spanwise scales rep-

resents a broadband packet of vorticity waves. In the absence of instability such a

packet is dispersing and slowly decaying. The ‘Dissipative 2d-Benjamin-Ono’ evolu-

tion equation we derive and examine in this work represents a “distinguished limit”:

it simultaneously balances weak nonlinearity, weak dispersion and dissipation de-

scribed by the Rayleigh friction type term. The dependence of the perturbations

on the cross-boundary coordinate z splits-off and is determined, to leading order

in ε, by the corresponding linear boundary value problem. For a range of higher

Reynolds numbers we specify below the dissipative effects become negligible and

the evolution equation reduces to the well studied two-dimensional Benjamin-Ono

(2d-BO) equation. In the non-dissipative limit the equation, i.e. 2d-BO, was found

to possess axially symmetric steady solitary wave solutions obtained numerically

Abramyan et al. [1992]. Although this equation was originally derived for the free

surface flows under the ‘rigid-lid’ approximation, it was intuitively clear that the

derivation could be extended for generic boundary layers with the more common ‘no-

slip’ boundary condition. Kachanov (1994) noted that the growing three-dimensional

coherent patterns observed in wind tunnels during the laminar-turbulent transition

strongly resemble these solutions. Pelinovsky and Stepanyants [1994] analytically

examined transverse instabilities of the cnoidal plane wave solutions of the 2d-BO

equation and showed that all plane wave solutions, including the solitary waves, are
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unstable with respect to long-wave transverse perturbations, while Gaidashev and

Zhdanov [2004] further extended the stability analysis with respect to transverse

perturbations. In the crucial development D’yachenko and Kuznetsov [1995] showed

that within the framework of the 2d-BO equation collapses of initially localized two-

dimensional perturbations can occur. Throughout the chapter we employ the notion

of collapse widely used in physics to refer to a blow-up resulting in a point singularity

(e.g. Zakharov and Kuznetsov [2012]). Pelinovsky and Shrira [1995] derived explicit

description of the collapse in the 2d-BO equation employing Whitham’s adiabatic

approach. The asymptotic model resulting in the 2d-BO equation was extended in

Voronovich et al. [1998] by considering a confined boundary layer and by taking

into account density stratification outside the boundary layer. In this context the

same asymptotic scheme yields a novel family of the evolution equations for confined

boundary layers, this family turns into the essentially two-dimensional “intermedi-

ate long-wave equation” in the absence of stratification and the 2d-BO equation in

the limit of unconfined boundary layer and zero stratification. The collapses in the

confined boundary layers within the framework of the two-dimensional intermediate

long-wave equation were examined in (Oloo and Shrira [2020]), this work will be

reproduced in the next chapter of this thesis with minor modifications.

In the original derivation of the 2d-BO equation carried out in Shrira [1989] for

the ideal fluid the asymptotic expansion proved to be nonuniform: the higher order

terms diverge in the critical layer. At a hand waving level it was argued that the

account of viscosity eliminates the singularities. In Shrira et al. [2005] a generalisation

of the 2d-BO equation was derived to model laminar-turbulent transition in the

accelerating Falkner-Skan boundary layer; on its basis numerical simulations of the

perturbation evolution were carried out and experimental observations of the laminar-

turbulent transition in the wind-driven steady boundary layer were presented and

discussed.

The mosaic of the listed results doesn’t easily add up into a coherent picture. The

crucial missing bit is the lack of proof of the uniformity of the asymptotic expansion

for the boundary layers with no-slip boundary. Here we outline a way an expansion

uniform everywhere could be derived, but do not pursue this route further, instead,
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we confine our consideration to the quasi-planar perturbations. For the latter the

singularities disappear in the required order of asymptotic expansion. The second

major outstanding issue is the role of viscous effects in the occurrence of collapses.

The account of large but finite Reynolds number effects in a long-wave evolution

equation is straightforward (Zhuk and Ryzhov [1982],Ryzhov [1990]), but so far it

has not been done for 3d perturbations with no-slip boundary conditions. At present

it is not clear in what range of Reynolds’ numbers the boundary layer collapses occur

and under what conditions. Without clarifying this point it is not possible to discuss

the possible place of collapses in the laminar turbulent transition. This study aims

at addressing these key gaps. The main question we want to address is whether the

account of strong dissipation changes qualitatively the nonlinear dynamics of long-

wave 3d perturbations in homogeneous boundary layer. The specific open questions

we aim at clarifying are:

1. Can the evolution of 3d localised finite amplitude longwave perturbations in

homogeneous boundary layers be captured by a single nonlinear evolution equa-

tion with nonlinearity, dispersion and dissipation in balance.

2. Within the framework of the 2d-BO what are the boundaries delineating the

manifolds of the initial conditions ending up in collapse?

3. Are collapses possible when the dissipation is explicitly taken into account?

What is the role of viscous effects in the occurrence of collapses? How does

finite Reynolds number affect the manifolds of the initial conditions ending up

in collapse and the character of the singularity?

The layout of the chapter addressing these questions is as follows. In section

§2.2 we formulate the problem for a generic horizontally uniform boundary layer,

introduce the small parameters, scaling, and asymptotic expansion for the bulk of

the boundary layer. In §2.3 we derive the evolution equation in the distinguished

limit: we balance nonlinearity, dispersion and dissipation. Under the adopted scaling

the longwave perturbations of boundary layer can be fully characterised by a single
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scalar function - the amplitude A(x, y, τ) of the streamwise and spanwise coordinates

x, y and “slow time” τ . We show that its evolution is governed by the equation

Aτ + AAx − K̂[Ax] + γ̃ A = 0, (2.1)

where the coefficient γ̃ in the dissipative term γ̃ A is proportional to the ratio of

the basic flow vorticity curvature at the boundary and the Reynolds number, the

dispersion operator K̂ is two-dimensional,

K̂[ϕ(k)] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
|k|ϕ(r1)e(ik(r−r1))dkdr1,

and k = (kx, ky), k = |k| .The dependence of the perturbations on the cross-

boundary coordinate z splits-off: it is determined by the corresponding linear bound-

ary value problem – the Orr-Sommerfeld equation with the standard boundary con-

ditions, to leading order in ε it is solved explicitly.

The divergence of the asymptotic scheme in the critical layer could be dealt with

in two different ways: (i) a detailed asymptotic analysis of the dynamics in the criti-

cal layer can be carried out, which requires a dedicated study, or , (ii) the difficulty

can be circumvented by confining the consideration to the quasi-planar perturba-

tions. Here we choose and stick to the second option. Although here the validity

of the asymptotic scheme has been proven only for quasi-planar perturbations, the

evolution equations we derive are examined for arbitrary perturbations. In §2.4 we

consider collapses within the framework of the derived evolution equation in the range

of Reynolds numbers where the dissipative term in the evolution equation can be ne-

glected and the equation reduces to the well studied 2d-BO equation. In this regime

there exist a simple analytical criterion specifying the initial perturbations which in-

evitably collapse. By analysing this criterion we find the amplitude threshold for a

few simple initial distributions and get an idea of the overall picture. By numerical

simulations of the evolution equation we verify that indeed all perturbations of the

chosen shape with the amplitudes exceeding the threshold collapse, while the pertur-

bations with the amplitudes below the threshold decay. In between these two worlds
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is also a subclass of the decaying regime characterised by transient growth. In §2.5 we

explore the evolution of lumps focussing on the effect of the dissipative term. For this

range of Reynolds numbers there is no analytical theory and whether collapses could

exist and if, yes, under what conditions was unknown. By examining numerically the

dissipative 2d-BO equation we show that the account of the dissipative term strongly

affects the lump evolution. The dissipative term does not prevent the collapse, but

it might raise the threshold quite considerably, often beyond the domain of validity

of our weakly nonlinear model. In the concluding §2.6 we summarize our findings.

2.2 The Model, Assumptions, Scaling and Asymp-

totic Scheme

2.2.1 Model Formulation

We consider evolution of three-dimensional localised finite-amplitude perturba-

tions of a steady boundary layer shear flow U adjacent to an infinite flat boundary.

The motion is governed by the Navier-Stokes equations for incompressible fluid of

constant density ρ. In the Cartesian frame with the fluid in the half space z > 0 and

with x and y directed streamwise and spanwise, respectively, the equations take the

form

Dtu+ wU ′ + px/ρ = −(u · ∇)u+ ν/ρ∇2u (2.2a)

Dtv + py/ρ = −(u · ∇)v + ν/ρ∇2v (2.2b)

Dtw + pz/ρ = −(u · ∇)w + ν/ρ∇2w (2.2c)

∇ · u = 0. (2.2d)

where U = (U(z), 0, 0) is the basic boundary layer flow, u = (q, w) = (u, v, w) and

p are, respectively, the velocity and pressure perturbations, ν is fluid viscosity, Dt =

∂t+U∂x is the material derivative. The prime denotes the derivatives with respect to

z. We impose no particular restrictions on U(z) apart from the assumption that the
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flow is plane parallel (in this work we exclude consideration of non-parallel effects

and three-dimensional boundary layers). In contrast to the original derivations in

(Shrira [1989], Voronovich et al. [1998]), we do not require the profile U(z) to have

no inflection points.

The boundary conditions for the perturbations u at z = 0 are of two main types:

1. The “constant stress” conditions typical of environmental free surface-type

flows,

w(z = 0) = 0,
∂u

∂z

∣∣∣
z=0

=
∂v

∂z

∣∣∣
z=0

= 0. (2.3)

2. The more common “no-slip” conditions imply

u(z = 0) = 0. (2.4)

The boundary condition at infinity is that of vanishing perturbation velocity, it is

the same for both types of the boundary layers

u→ 0, as z →∞. (2.5)

We complete the formulation of our initial problem by specifying the perturbation

velocity field at the initial moment, u(x, 0). We are primarily interested in localised

initial perturbations

u(x, 0)→ 0, as x, y →∞. (2.6)

The Navier-Stokes equations (2.2) with the initial and boundary conditions (2.4, 2.5)

or (2.3, 2.5) differing only the boundary condition at the surface z = 0 constitute the

mathematical formulation of the problem.

The conventions for the “no-slip” and free-surface type “constant stress” bound-

aries differ. Usually, for the constant stress case the maximum of U(z) is at the surface

z = 0 with U(z) vanishing as z → ∞, while for the no-slip case, U is vanishing at

z = 0 and tends to a finite “free stream velocity” U∞ as z → ∞. Mathematically

these conventions are equally legitimate, one can switch from one to another by a
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Figure 2.2: Sketch of geometry of a generic boundary layer profile with the shear
localised in a thin layer of thickness d. (a) A typical free surface boundary layer
with the maximum of velocity is attained at the surface Umax = U(0). (b) Sketch
of a boundary layer with a no-slip boundary. U(∞) is the free stream velocity.

galilean transformation, for example, setting U(0) zero for a free surface type flow

sketched in figure (2.2a) makes it undistinguishing from a typical no-slip boundary

layer sketched in figure (2.2b). We assume the boundary layer profile U(z) to be

given, but do not specify it.

2.2.2 Scaling

We begin by specifying the scaling. The basic flow U(z) has a characteristic

velocity we denote as V0. For the free-surface type boundary layers we choose it as

the speed at the boundary U(0), while for the no-slip case the natural choice for

V0 is the free-stream velocity, U∞. For the time being we assume the characteristic

streamwise and spanwise scales of perturbations to be comparable and denote as L,

while as the cross-boundary scale we choose the boundary layer thickness d. Here we

are considering long perturbations with L� d. We non-dimensionalise the dependent

variables as follows:

ũ =
u

V0

, ṽ =
v

V0

, w̃ =
w

V0

, x̃ =
x

L
, ỹ =

y

L
, z̃ =

z

d
, Ũ =

U

V0

,
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t̃ =
V0

L
t, p̃ =

p

ρV 2
0

.

where quantities with tildes denote non-dimensional variables. To proceed, we first es-

timate the magnitudes of the perturbation from the basic governing equations ((2.2)).

To this end we first write the incompressibility equation in non-dimensional form

omitting the tildes. Then the magnitude of the vertical velocity perturbation [w ]

expressed in terms of the magnitudes of the horizontal components [ q ],

[w ] =
d

L
[ q ]. (2.7)

The momentum equation (2.2a) yields the characteristic time scale,

[ t ] =
L

V0

. (2.8)

The viscosity is small but finite, it is supposed to affect, but not to dominate, the

dynamics of perturbations of chosen scales inside the boundary layer at the timescale

comparable to that of nonlinear effects.

After some algebra, upon eliminating pressure from the Navier-Stokes equations

((2.2)), we get a single nonlinear equation for vertical velocity perturbation w (see

Appendix B for detail),

D2
t ∂

2
zz w − U ′′Dt ∂xw = N +

(
d

L
Re

)−1

Dt∂
4
zzzzw, (2.9)

where the horizontal gradient operators ∇⊥ = (∂x, ∂y) and ∇2
⊥ = ∂2

xx + ∂2
yy, while

N =
[ q ]

V0

Dt ∂z∇⊥[(u∇)q]−
(
d

L

)2

D2
t ∇2

⊥w −
(
d

L

)2
[ q ]

V0

Dt∇2
⊥(u∇)w,

The Reynolds number Re should be sufficiently large,

Re−1 =
ν

ρV0d
∼ d

L

[ q ]

V0

.

Note, that the equation is closed only in the linear approximation and just the leading-

order viscous term is retained.
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Thus, in the most general formulation of the problem, there are three indepen-

dent non-dimensional parameters specifying respectively the smallness of nonlinearity

([ q ]/V0 = ε � 1, dispersion (d/L = εD � 1) and dissipative effects (Re−1 � 1).

Aiming to describe dynamics of three-dimensional perturbations in the boundary

layer taking into account nonlinearity, dispersion and viscous effects in the distin-

guished limit we set

ε =
[ q ]

V0

� 1, εD =
d

L
= O(ε), Re−1 ∼ d

L

[ q ]

V0

= O(ε2). (2.10)

This key assumption enables us to proceed with deriving the evolution equation (2.1)

employing an asymptotic expansion in terms of a single small parameter and uniquely

determines the scaling of dependent variables in the boundary layer. It is important

to re-iterate at this point that the distinguished limit we consider here is applicable

to a large variety of situations in boundary layer transition. In particular, we are

aiming at critical Reynolds numbers of about Re = 500 − 1000. The characteristic

velocity V0 is O(1), it depends on the specific type of the flow under consideration.

The kinematic viscosity ν for air and water are, 1.5×10−5m2s−1 and 1.0×10−6m2s−1

respectively. In Kachanov wind tunnel experimental data the boundary layer thick-

ness δ could vary from 0.7mm-38.0mm while the free stream velocity, U∞ is 9.18ms−1.

The dimensionless boundary layer thickness d = 1.

2.2.3 Asymptotic expansion

To rationalise the specific choice of asymptotic expansion in powers of ε we will

adopt, consider first the linearised inviscid reduction of the Navier-Sokes equations

(2.2). It is straightforward to express pressure p, the streamwise and transverse

perturbation velocities, u and v, in terms of vertical velocity w,

∂zDtu = −[Dt∂z(wU
′)− ∂x(D2

tw)] (2.11a)

∂zDtv = ∂y(Dtw) (2.11b)

∂zp = Dtw. (2.11c)
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Noting that under adopted assumption specifying the wavelength scale of the per-

turbations in terms of the nonlinearity, εD = O(ε), we have

∂x ∼ ∂y ∼ O(ε), ∂z ∼ O(1).

Since in our scaling U ∼ O(1), it is easy to see that to leading order the material

derivative Dt = (U − c)∂x ∼ O(ε), where c is yet unspecified phase velocity of

long-wave perturbations. By virtue of our definition of ε (ε = [u]/V0), u ∼ O(ε).

Therefore, upon omitting the higher order terms, the relations ((2.11)), reduce to,

(U − c)∂xu = −wU ′︸︷︷︸
O(ε2)

, =⇒ w ∼ O(ε2) (2.12a)

∂z[(U − c)v] = ∂y(U − c)w︸ ︷︷ ︸
O(ε3)

, =⇒ v ∼ O(ε3) (2.12b)

∂zp = (U − c)∂xw︸ ︷︷ ︸
O(ε3)

, =⇒ p ∼ O(ε3). (2.12c)

Thus, assuming the streamwise perturbation velocity u to be O(ε) and setting εD =

d
L

= O(ε) uniquely dictates the scaling (2.12) of all other dependent variables inside

the boundary layer. Taking into account the nonlinear and viscous terms neglected

in this analysis, does not affect the found scaling. Therefore, we adopt the following

asymptotic expansion,

u = U(z) + εu1 + ε2u2 + ε3u3 + ... (2.13a)

w = ε2w2 + ε3w3 + ε4w4 + ... (2.13b)

v = ε3v3 + ε4v4 + ... (2.13c)

p = ε3p3 + ε4p4 + ... (2.13d)

where ui, vi, wi, pi are O(1) functions of x, y, z, t.

The scaling (2.13) will be employed inside the boundary layer, outside the bound-

ary layer and in the immediate vicinity of the boundary, in the viscous sublayer, the

scaling is different and will be specified in the next section.
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Figure 2.3: Sketch of triple deck structure illustrating three different regions of
the boundary layer. The first region adjacent to the boundary is the viscous sub-
layer where viscosity dominates, the second middle region is the main deck where
viscosity, nonlinearity and dispersion are all balanced while the third semi-infinite
region is the outer flow region where the flow is irrotational and its speed is equal
to the mean flow.

2.3 Derivation of the nonlinear evolution equation

2.3.1 Preliminary consideration. Layout of the triple-deck

scheme

In this section we derive the nonlinear evolution equation (2.1) for longwave

three-dimensional perturbations employing a variation of ‘triple deck’ asymptotic

approach (e.g. Van Dyke [1975], Sobey [2000], Timoshin [2016], Ruban [2017]). The
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asymptotic scheme for large Reynolds numbers in the triple-deck context was inde-

pendently invented by Stewartson [1969], Neiland [1969] and Messiter [1970] in their

studies on trailing edge flow and supersonic separation. A few years later, Smith

[1979] and Zhuk and Ryzhov [1980] extended the theory for hydrodynamic stability

problems. As is common for this approach, we distinguish three domains in z, often

called decks, with different balance between the terms in (2.9). The domains are

sketched in figure 2.3. Following the convention the bulk of the boundary layer is

referred to as the ‘main deck’ or ‘middle deck’, where we balance nonlinearity, disper-

sion and viscous effects and employ the asymptotic expansion (2.13). Immediately

adjacent to the boundary lies much thinner viscous sub-layer or the ‘first deck’, where

viscous terms are dominant, while the nonlinearity is negligible to leading order. The

semi-infinite domain outside the boundary layer, where both viscous and nonlinear

terms are negligible and the flow is potential, is often referred to as the ‘outer flow’

or the ‘third deck’. We adopt this terminology introduced by Stewartson [1969]. In

contrast to the triple deck convention we do not scale our variables in terms of powers

of inverse Reynolds number, in our context we prefer to use the scaling in powers of

ε. The derivation largely follows that in (Shrira [1989], and Voronovich et al. [1998]),

with three key differences:

1. The case of no-slip boundary conditions is incorporated into consideration.

2. The viscous terms are included into the balance inside the main deck.

3. No assumption regarding the absence of inflection points in the mean flow U(z)

employed in (Shrira [1989], Voronovich et al. [1998]) is required.

We begin with analysis of the motion in the main deck.

2.3.2 Inside the boundary layer. The main deck

The scaling (2.13) based upon the distinguished limit which balances nonlin-

earity, weak dispersion and viscosity, provides the basis of our asymptotic analysis

inside the main deck. On substituting the already adopted relations between the
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small parameters εD = ε and introducing re-scaled Reynolds number denoted as Re∗,

Re∗ = Re ε2, into equation (2.9), we make the scaling of each term more explicit,

D2
t ∂

2
zz w−U ′′Dt ∂xw = εDt ∂z NL+

ε

Re
Dt∂

4
zzzzw−ε2D2

t ∇2
⊥w−ε3Dt∇2

⊥((u∇)w),

(2.14)

where Re∗ = ε2Re is the re-scaled Reynolds number, ∇⊥ = (∂x, ∂y),

NL = [∂x(u∂xu+ v∂yu+ w∂zu) + ∂y(u∂xv + v∂yv + w∂zv)],

= [ε∂x(ε
3u∂xu+ ε5v∂yu+ ε3w∂zu) + ε∂y(ε

5u∂xv + ε7v∂yv + ε5w∂zv)]

= ε4[u∂xu+ w∂zu] + ε6[∂x(v∂yu) + ∂y(u∂xv + w∂zv + ε2v∂yv)].

Although the streamwise and spanwise scales are assumed to be comparable, ac-

cording to (2.13) the spanwise velocity is two orders of magnitude smaller, which

enables us to split the nonlinear term NL into two parts and neglect the O(ε6), O(ε7)

and O(ε8) terms. The term ε3Dt∇2
⊥((u∇)w) in the right-hand-side of (2.14) will

also be neglected in our further analysis. Upon these simplifications, recalling that

w = O(ε2), we re-write equation (2.14) explicitly pulling out ε,

D2
t ∂

2
zz w − U ′′Dt ∂xw︸ ︷︷ ︸

terms ofO(ε4)

= ε5Dt ∂z ∂x[u∂xu+w∂zu]+
ε5

Re
Dt∂

4
zzzzw−ε6D2

t ∇2
⊥w. (2.15)

Since v = O(ε3) and u = O(ε1), it is easy to see that by virtue of the continuity equa-

tion: ∂xu = −∂zw + O(ε4). To solve equation (2.15) we adopt a moving coordinate

frame and introduce fast and slow non-dimensional independent variables,

Z1 = εz̃ =
1

L
z, τ = ε

V0

L
t, x̃ =

x− ct
L

, ỹ =
y

L
, z̃ =

z

d
, c̃ =

c

V0

,

(2.16)

where c is the speed of the long waves which will be specified later and the tildes

denote non-dimensional quantities. Upon the introduction of the slow-spatial variable

Z1 and slow time τ , the material derivative D2
t and ∂2

zz in terms of the tilde variables



Chapter 2. Collapses of linearly decaying 3d perturbations in boundary layers 35

take the form,

D2
t =

V 2
0

L2
[(Ũ− c̃)∂x̃+ε∂τ ]

2 =
V 2

0

L2
D̃2
t ∼ ε2D̃2

t , ∂2
zz =

1

d2
(∂z̃+ε∂Z1)

2 =
1

d2
∂2
z̃z̃ ∼ ∂2

z̃z̃,

From this moment we operate only with non-dimensional variables and omit tildes.

The equation for the z− component of velocity w (2.15) reduces to

D2
t ∂

2
zzw − U ′′Dt∂xw = εDt∂z∂x[u∂xu+ w∂zu] +

ε

Re
Dt∂

4
zzzzw − ε2D2

t∇2
⊥w, (2.17)

where

Dt = (U − c)∂x + ε∂τ , ∂z = ∂z + ε∂Z1 . (2.18)

We assume the mean flow U(z) to be entirely localised in the boundary layer and,

correspondingly, to depend only on the fast scale z. The situations with U having

also dependence on the slow scale are of interest and can be easily incorporated into

the scheme, but are not considered here.

Here, for the time being, for both the free-surface-type flows with the constant

stress boundary conditions and the flows with the no-slip conditions we impose only

the no-flux condition at z = 0. We will deal with the true boundary conditions at the

boundary in §2.3.4. We also require vanishing of velocity as Z1 →∞. In addition, we

introduce ‘inner boundary conditions’, by requiring matching at the outer boundary

of the boundary layer, that is,

w(z = 0) = 0; w(z →∞) = const = w(Z1 → 0), w(Z1 →∞)→ 0. (2.19)

We will seek an asymptotic solution to the boundary value problem (2.17), (2.18)

and (2.19) employing power series in ε (2.13). On finding the solution to (2.17) for

w at a desired order in ε, we find u, v and p with the corresponding accuracy from

the basic equations, where we have set ρ = 1,
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Dtu+ wU ′ + px = −ε(u · ∇)u+
ε

Re
u′′ (2.20a)

Dtv + py = −ε(u · ∇)v +
ε

Re
v′′ (2.20b)

∂xu+ ∂yv + ∂zw = 0. (2.20c)

The solutions for u, v and p, accurate to the corresponding order in ε, are further

used for the derivation of the next order terms for w; the cycle is repeated as many

times as necessary.

At the first step, on substituting (2.13) into equation (2.17) and setting ε = 0,

we see that in the leading order nonlinearity and viscous dissipation drop out. Taking

into account (2.18) we obtain for the leading term in the expansion of w, which is

w2, the longwave limit of the Rayleigh equation,

(U − c)∂xx[(U − c)w′′2 − U ′′w2] = 0, (2.21)

where derivatives with respect to the fast variable z are denoted by primes. The key

point of the scheme is, that, as it can be easily seen from (2.21), to leading order the

x, y and z dependencies can be separated. Assuming the disturbance to be localized

in the streamwise direction, the general solution to the Rayleigh equation (2.21) is

convenient to present in the form,

w2 = (f(x, y, Z1) ∗ ∂xA(x, y, τ)) · (U(z)− c), (2.22)

where ∗ designates the convolution of two functions

ϕ ∗ ψ =

∫ +∞

−∞

∫ +∞

−∞
ϕ(x̂, ŷ)ψ(x− x̂, y − ŷ)dx̂dŷ.

Here, as it will be made obvious at the next step a few lines below, A(x, y, τ) is the

amplitude of the x-component of velocity perturbation, while the arbitrary function

f(x, y, Z1) in (2.22) is the general representation of a function of (x, y, Z1) localized or

periodic in (x, y). The fundamental properties of the convolution presentation (2.22)

become more transparent on taking the Fourier transform of solution (2.22). The
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standard way of representing a function of (x, y, Z1, τ) is to decompose it into a set

of spatial orthogonal functions with time-dependent amplitudes. We chose Fourier

transform in (x, y) and a particular function f specifying each Fourier mode that

depends on the slow cross-boundary spatial variable Z1. The specific dependence on

the slow spatial scale f(Z1) will be found below.

The adopted no-flux boundary condition w2(z = 0) = 0 specifies the eigenvalue

c,

c = U |z=0 = U(0). (2.23)

The mode we are considering is a ‘vorticity wave’. To leading order its speed is

the the mean flow velocity at z = 0, i.e. c0 = U(0). Recall that for the typical free

surface flows U(0) attains its maximal value and equals zero for the flows with no-slip

boundary, hence, (c0 = U(0) = 0). The speed of vorticity waves corresponding to

either of these two types of boundary conditions is henceforth denoted by a constant

U0. In any case, it plays no role in further analysis since its only significance is in

specifying the reference frame, it will be removed by the galilean transformation at

the next step. The slow function f(Z1) will be specified later.

To proceed further, we first find the other components of perturbation wave field

from equation (2.20) employing the asymptotic expansion (2.13). Substituting the

leading order solution (2.22) for w2 into (2.20) we get the other components of the

perturbation field,

u1 = −U ′(f ∗ A), (2.24a)

v2 = 0, (2.24b)

p2 = 0. (2.24c)

Thus, we have found that ∂zp2 = 0. This implies that to leading order pressure

does not depend on z, i.e. p = ε2p2(x, y, τ). Here we briefly demonstrate why the

horizontal variation of pressure equal to zero for the case of the no-slip boundary

condition within the framework of linearised Euler equations. Let us consider x and

y components of the linearised momentum equation which follow from from equations
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(2.20a) and (2.20b). If we substitute u = v = w = 0 at z = 0 dictated by the no-slip

condition on the boundary into the equations (2.20a) and (2.20b), it is easy to see

that the z−independent pressure must vanish, since px = py = 0.

Note that (2.24a) clarifies the physical sense of amplitude A, it is indeed, up to

a factor −U ′, amplitude of the x-component of perturbation velocity. The above

relations show that to leading order the motion is extremely simple: the particles

of the vorticity wave motion oscillate, mainly, in the streamwise direction, while the

cross-boundary and, especially, spanwise velocities and pressure perturbations are

much smaller in the adopted long-wave approximation. This extraordinary feature is

specific for long vorticity waves (see Voronovich et al. [1998]). Such a simplicity of the

motion of interest in the leading order is the key element enabling for a remarkably

simple description of nonlinear dynamics of perturbations which we will discuss below.

Substituting expressions (2.22) for w2 and (2.24a) for u1 into (2.17) we get an equation

for w3,

w′′3 −
U ′′

U − c
w3 = −M U ′′

U − c
+

P

Re

U ′′′′

U − c
− T [(U − c)2]′

U − c
+R

[(U ′)2 − (U − c)U ′′]′

U − c
,

(2.25)

where,

M = (f ∗ Aτ ), P = (f ∗ A), T = (fZ1 ∗ Ax), R = (f ∗ A)(f ∗ Ax),

the subscripts x and τ stand for the corresponding derivatives. Upon solving the

inhomogeneous Rayleigh equation (2.25) employing solutions to the homogeneous

equation found at the previous, the general solution to (2.25) can be written as,

w3 = M − T (U − c)
∫ ∞
z

dξ +B(U − c)
∫ ∞
z

dξ

(U − c)2

+
P

Re
(U − c)

∫ ∞
z

[
U ′′′

(U − c)2

]
dξ −RU ′, (2.26)

where, B is an arbitrary constant specifying the “amplitude” of the second solution

to the homogeneous Rayleigh equation in the longwave limit (2.21). To eliminate

singularity in the integrals in (2.26), we chose B in such a way that the equation for
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w3 takes the form,

w3 = M−T (U−c)
∫ ∞
z

[
1− Y

(U − c)2

]
dξ+

P

Re
(U−c)

∫ ∞
z

[
U ′′′

(U − c)2

]
dξ−RU ′,

(2.27)

where Y is an integration constant which is redefined differently for the no-slip and

rigid lid boundaries. For the no-slip boundary c = U(0) = 0, Y is chosen as,

Y = lim
z→∞

(U)2 = U2|z=∞ = U2
∞ = constant. (2.28)

For the free-surface type boundary layers we choose the constant of integration Y as,

Y = lim
z→0

(U − c)2 = c2 = U2|z=0 = U(0)2 = constant. (2.29)

In both cases the constants of integration are equal to the maximal velocity of the

basic flow squared, it is therefore convenient to treat these constants as equal and

denote them as U2
max. We remind that under the adopted convention for the no-

slip case U(0) = 0 and U ′ > 0, while for the free surface type boundary layers:

U(0) = Umax and U ′ < 0.

To evaluate the singular integrals in (2.27) we assume that near the boundary z = 0

we expand U − c as U ′(0)z = U ′0z. Upon applying the no-flux boundary condition at

the boundary, w|z=0,Z1=0 = 0, to equation (2.27), after some algebra, we get equation

for the amplitude A containing so far unspecified function f(Z1) of the slow cross-

boundary variable Z1,

(f(0) ∗ Aτ )− U ′(0) (f(0) ∗ A)(f(0) ∗ Ax) +

(
U2

0

U ′(0)

)
(fZ1(0) ∗ Ax)

+
1

Re

(
U ′′′(0)

U ′(0)

)
(f(0) ∗ A) = 0 (2.30)

where f(0) ≡ f(x, y, Z1 = 0).
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2.3.3 The outer flow

To specify the dependence of the solution (2.22) and (2.27) on the slow variable

Z1, first we need to proceed to the next order in ε in our main equation (2.17) for w2.

Employing the same asymptotic procedure and using (2.22) and (2.27) we express

u, v, p in terms of amplitude A,

u2 = −U2
max(fZ1 ∗ ∇−2

⊥ Axx)(U − c)
−1 + (fZ1 ∗ A)U ′

∫ ∞
z

[1− U2
max(U − c)−2]dξ

+
1

2
(f ∗ A)2U ′′ − P̄U ′

Re

∫ ∞
z

(
U ′′′

(U − c)2

)
dξ − P̄

Re

U ′′′

(U − c)
(2.31)

v3 = −U2
max(fZ1 ∗ ∇−2

⊥ Axy)(U − c)
−1 (2.32)

p3 = U2
max (fZ1 ∗ ∇−2

⊥ Axx) (2.33)

where P̄ = (f ∗ ∂−1
x A) and Y is given by expression (2.28).

We now consider the next order term for the cross-boundary velocity, w4. After

some algebra it can be brought to the form,

∂x[(U − c)w′′4 − U ′′w4] = R1, (2.34)

where,

R1 = −(fZ1Z1 ∗ Axx)(U − c)2 − (f ∗ ∇2
⊥Axx)(U − c)2 + F (x, y, τ, z, Z1),

The term F (x, y, τ, z, Z1) is given by a bulky expression which tends to zero as z →∞

faster than |z|−1. In contrast, for an arbitrary function of f(x, y, Z1) the first two

terms on the right-hand side of equation (2.34) do not vanish as z →∞. As a result,

the integration of (2.34) yields secular growth of w4 as z →∞, which does not allow

the matching condition w(z → ∞, Z1) → const to be satisfied. Therefore, we put

these secular terms to zero, which gives us an equation determining the dependence

of the unspecified yet function f on the slow variable Z1,

(fZ1Z1 ∗ Axx) + (f ∗ ∇2
⊥Axx) = 0. (2.35)
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The equation is complemented by the boundary condition at infinity

w(Z1 →∞) = 0. (2.36)

To find f(Z1) we perform the Fourier transform with respect to x, y in the boundary

problem (2.35) and (2.36). Making the Fourier transform of the convolution and

omitting the amplitude A, we get the boundary value problem,

∂2
Z1Z1

f̂(k)− k2f̂(k) = 0, (2.37)

with the boundary conditions,

f̂(k)|Z1→∞ = 0, f̂(k)|Z1=0 = 1. (2.38)

Here f̂(k, Z1) is the Fourier transform of f(x, y, Z1)

f(x, y, Z1) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
f̂(kx, ky, Z1)e(i(kxx+kyy))dkxdky, (2.39)

and k = |k|, k2 = k2
x+k2

y. The boundary condition f̂(k)|Z1=0 = 1 has been introduced

for convenience to normalize the motion in the outer deck f̂(kx, ky, Z1) near the

boundary. As one could anticipate, the motion in the outer layer is potential and

satisfies the Laplace equation (2.37). Hence, the boundary value problem (2.37),

(2.38) is easily solvable. Its solution satisfying the boundary condition (2.38) has the

form

f̂(k, Z1) = e−kZ1 . (2.40)

Next we designate ∂Z1 f̂(k, 0) ≡ Q(kx, ky) and take into account that at the boundary

f̂(0) = δ(x)δ(y). The solution to equation (2.37) yields the kernel of the integral

operator Q(k) = −|k| = −k in the long wave limit. Substituting these notations into

(2.30), we obtain nonlinear evolution equation for the amplitude of three-dimensional

long-wave boundary layer perturbations in the distinguished limit,

Aτ − α1AAx − β1 K̂[Ax] + γ A = 0, (2.41)



Chapter 2. Collapses of linearly decaying 3d perturbations in boundary layers 42

where α1 = U ′(0), β1 =
U2
0

U ′(0)
, γ = 1

Re
U ′′′(0)
U ′(0)

, and the dispersion operators K̂ in the

integral form reads

K̂[ϕ(k)] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
|k|ϕ(r1)e(ik(r−r1))dkdr1. (2.42)

The evolution equation (2.41) differs from the 2d-BO only by the explicit account

of viscous dissipation, which contributes into the evolution equation the Rayleigh

friction type term γ A. The coefficients α1 and β1 of (2.41) will be removed by

rescaling in the next section to obtain the final evolution equation that will form the

framework of our further study.

At this point it is appropriate to summarise the scalings and behaviour of all com-

ponents of the perturbation field inside and outside of the boundary layer, i.e. in the

main deck and the outer layer. Recall that inside the the bulk of the boundary layer

according to (2.13), (2.24)

u ∼ ε, w ∼ ε2, v ∼ ε3, p ∼ ε3.

At the outer periphery of the boundary layer we have

u ∼ ε2, w ∼ ε2, v ∼ ε3, p ∼ ε3.

Note that although the basic flow shear vanishes and u ∼ w, the potential flow

remains essentially 2d: v ∼ ε3 � u, w. The O(ε2) perturbations of velocity produce

O(ε3) variations of pressure. In the outer layer the pressure perturbations and all

components of velocity decay exponentially as e−kZ1 .

To check whether this picture, although entirely self-consistent, is not an artefact

of the adopted scaling assumptions we considered the simplest piece-wise inviscid

model of boundary layer: a constant vorticity layer of thickness d confined between

the boundary and potential flow. In the linear setting this model could be solved

exactly without any a priori scaling hypotheses. Then assuming the perturbations

to be longwave, i.e. setting kd = ε, upon expanding the exact solutions in powers of

ε we recover the results obtained by means of the asymptotic expansion.
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2.3.4 Viscous sub-layer

In this section we outline how a uniformly valid asymptotic expansion could be ob-

tained.

2.3.4.1 Divergence of the asymptotic expansion and Tollmien’s rescaling

Consider more closely behaviour of the main deck solutions u2 and v3 of (2.31)

and (2.32) as z → 0. Near the boundary as z → 0, we apply Taylor series to expand

(U − c) ≈ U ′(0) z to obtain,

u2 = −U
2
max

U ′(0)
(fZ1 ∗ ∇−2

⊥ Axx)
1

z
+
U2
max

U ′(0)
(fZ1 ∗ A)

1

z
+

1

2
(f ∗ A)2U ′′(0), (2.43)

v3 = −U
2
max

U ′(0)
(fZ1 ∗ ∇−2

⊥ Axy)
1

z
, (2.44)

Let us take a closer look at the divergence of the streamwise velocity u2 of (2.43)

and try to carry out some algebra to simplify the first two terms on the RHS with

singularities at z = 0. To this end we transform them into Fourier space i.e,

−U
2
max

U ′(0)

k2
x

k2
x + k2

y

(f̂Z1 · Â)
1

z
+
U2
max

U ′(0)
(f̂Z1 · Â)

1

z
=
U2
max

U ′(0)

[
k2
x + k2

y − k2
x

k2
x + k2

y

]
(f̂Z1 · Â)

1

z
,

=
U2
max

U ′(0)

[
k2
y

k2
x + k2

y

]
(f̂Z1 · Â)

1

z
, (2.45)

Substituting the simplified form of the singular terms of equation (2.45) and taking

into account their inverse Fourier transform we obtain a more compact form of the

expression u2,

u2 =
U2
max

U ′(0)
(fZ1(0) ∗ ∇−2

⊥ Ayy)
1

z
+

1

2
(f ∗ A)2U ′′(0), (2.46)
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It is easy to see that uniformity of the asymptotic expansion employed in the previous

section breaks down as z → 0. Indeed, according to (2.46) and (2.44) velocity com-

ponents u2 and v3 diverge as 1/z, unless spanwise dependence of amplitude vanishes,

u2 ∼ 1/z, v3 ∼ 1/z. (2.47)

The cause of this singularity is the critical layer that coincides with the fluid boundary

in the long-wave limit. It is obvious that in the generic case the scaling (2.13)

adopted for the main deck is invalid near the boundary. A quick fix is to confine our

consideration to quasi-planar perturbations, i.e. assume Ay � Ax. Then the singular

terms in the expressions for u2 and v3 given by (2.46) and (2.44) drop into the next

order.

In principle, it is also possible to derive a uniformly valid asymptotic solution for

generic perturbations as well. Here we just outline how to do this. To get uni-

formly valid asymptotic expansion we have to apply singular perturbation technique:

to re-scale the variables appropriately and solve the Navier-Stokes equations in the

region immediately adjacent to the boundary and then match the resulting inner

solution with the outer solutions already obtained for the main deck. By choosing

the scaling we choose different regimes with different balances and, correspondingly,

different thicknesses of this region. For example, Reutov [1995] considered nonlinear

critical layer where nonlinearity is dominant. In this scenario relevant for very high

Reynolds numbers the dynamics of the critical layer is very complicated and does not

allow straightforward analytic treatment. Here, we focus upon the opposite limit, the

regime where viscosity is dominant, while nonlinearity in the critical layer is negligi-

ble. Our approach has its roots in the insight by Tollmien [see Tollmien et al. [1931]]

that at the critical layer both the fourth order derivative term and the second order

derivative term in the Orr-Sommerfeld equation are dominant, that is,

wiv = ikxRe(U − c)w′′.

Assuming kx ∼ O(1) Tollmien showed that after a re-scaling of the length scale and

the Taylor series expansion of the mean flow U(z) in the vicinity of the critical layer
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using:

χ =
(z − zc)

δ
, δ = (ikxReU

′(zc))
−1/3, U(z)− c ∼ U ′(zc)(z − zc), as z → zc,

the Orr-Sommerfeld equation reduces to

d4w

dχ4
− χd

2w

dχ2
= 0.

Solution of this equation satisfying the arbitrary boundary conditions can be ex-

pressed in terms of the well known Airy functions and their integrals (see, Drazin

and Reid [2004]). The known drawback of the Tollmien’s solutions, as pointed out

by Drazin [2002], is that the characteristic critical layer thickness δ ∼ Re−1/3 proves

large compared to the overall thickness of the boundary layer δBL, which contra-

dicts the basic assumption δ � δBL. For example, for the Blasius boundary layer

δBL ∼ Re−1/2.

Here, we do not encounter this difficulty if we pursue the Tollmien idea, since we are

concerned only with motions with O(ε) small wavenumbers. In this section, following

(Voronovich et al. [1998]), we exploit the fact that we consider only long perturbations

with O(ε) wavenumbers and include into the scaling of the critical layer thickness δ

the ε smallness of wavenumbers (ε� 1):

δ = (εReU ′0)−1/3 ∼ ε1/3 (U ′0 = U ′|z=0),

which ensures that δ is small compared to the O(1) overall thickness of the boundary

layer δBL. For further consideration it is crucially important that

1� δ � ε, (2.48)

which means that the thickness of viscous critical layer we are considering far exceeds

the thickness of nonlinear critical layer, while it is small compared to the boundary

layer thickness.
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2.3.4.2 Re-scaling. Inner variable

To proceed with the study of the perturbation dynamics inside the viscous critical

layer we re-scale our variables as follows,

ξ =
z

δ
; T = U ′0τ ; U − c = δ U ′0 ξ + o(δ)

u = U ′0û; v =
ε

δ
U ′0v̂; w = δ U ′0ŵ, p = ε(U ′0)2p̂, (2.49)

In terms of the new variables after some algebra, equations for w and the comple-

mentary Navier-Stokes equations for other components of velocity take the form,

ξ (U ′0)2 ∂x ∂
2
ξξ ŵ +

ε

δ
(U ′0)2 ∂T ∂

2
ξξŵ =

ε

δ
(U ′0)2 ∂ξ ∂x [û ∂x û+ ŵ ∂ξû]

+
(εRe)−1

δ3
(U ′0) ∂4

ξξξξ ŵ (2.50a)

(U ′0)2 ξ ∂x û+
ε

δ
(U ′0)2 ∂T û+ (U ′0)2 ŵ +

ε

δ
(U ′0)2 p̂x =

− ε

δ
(U ′0)2 [û ∂x û+

ε

δ
v̂ ∂y û+ ŵ ∂ξ û] +

(εRe)−1

δ3
U ′0 ∂

2
ξξ û (2.50b)

ξ (U ′0)2 ∂x v̂ + (U ′0)2 ε

δ
∂T v̂ + (U ′0)2 p̂y =

− (U ′0)2 [
ε

δ
û ∂x v̂ + (

ε

δ
)2 v̂ ∂y v̂ +

ε

δ
ŵ ∂ξ v̂] +

(εRe)−1

δ3
U ′0 ∂

2
ξξ v̂ (2.50c)

U ′0 ûx +
ε

δ
U ′0 v̂y + U ′0 ŵξ = 0 (2.50d)

Eliminating U ′0 and substituting δ = (εU ′0 Re)−1/3, while retaining only the leading

order O(1) terms and ε/δ correction terms, equation (2.50) can be written as,

(∂2
ξξ − ξ∂x)ŵ′′ =

ε

δ
( ∂T ŵ

′′ − ∂ξ∂x(ûûx + ŵûξ)) (2.51a)

(∂2
ξξ − ξ∂x)û = ŵ +

ε

δ
(∂T û+ p̂x + ûûx + ŵûξ) (2.51b)
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(∂2
ξξ − ξ∂x)v̂ = p̂y +

ε

δ
(∂T v̂ + ûv̂x + ŵv̂ξ) (2.51c)

ûx + ŵξ = −ε
δ
v̂y, (2.51d)

where ŵ′′ = ∂2
ξξŵ.

The next step we do not pursue here is to find solution to (2.51) in the form

of asymptotic power series in ε/δ rather than ε, subject to the appropriate bound-

ary conditions. At the boundary the solutions should satisfy either constant stress

conditions,

ŵ|ξ=0 = 0, û′|ξ=0 = v̂′|ξ=0 = 0, (2.52)

or, the no-slip conditions

u|ξ=0 = v|ξ=0 = 0. (2.53)

These solutions should not exhibit any singularities in the critical layer. They have

to be matched with the main deck solution at ξ →∞. Hence, the resulting matched

asymptotic expansion will be uniformly valid.

2.3.5 Conclusions

The main result of this section is the nonlinear evolution equation (2.41) for long

three-dimensional perturbations in semi-infinite boundary layers with explicit account

of viscous effects. The equation is universal in the sense that the specific profile of

the boundary layer is immaterial. The rudimentary specificity of the boundary layer

retained in the coefficients in (2.41) can be further reduced by re-scaling the variables

τ1 = τ U ′(0), d =
U0

U ′(0)
, x1 = x/d, A1 = −1

d
A, (2.54)

and setting d = 1, which yields (with the subscripts dropped)

Aτ + AAx − K̂[Ax] + γ̃ A = 0, (2.55)
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the dispersion operators K̂ remains the same,

K̂[ϕ(k)] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
|k|ϕ(r1)e(ik(r−r1))dkdr1, (2.56)

where, k = |k|. Although at the moment we have proved the uniform validity of the

expansion only for kx � ky we will examine the evolution equation for the arbitrary

scales of kx and ky. The only remaining coefficient,

γ̃ =
1

ε2Re

U ′′′(0)

(U ′(0))2
,

showing the importance of the Rayleigh friction type term compared to the nonlinear

one in the evolution equation. The magnitude of the friction term is proportional to

the ratio of the curvature of vorticity at the boundary and the Reynolds number. In

the adopted normalisation it is also proportional to ε−2, i.e. the inverse square of the

nonlinearity or dispersion parameter. We stress that both the Reynolds number and

the curvature of vorticity at the boundary are equally important.

We re-iterate that the evolution equation (2.55) is equally valid both for the

boundary layers with no-slip and constant stress conditions at the boundary.

The nonlinear evolution equation (2.55) provides the framework for studying col-

lapses of three-dimensional perturbations and, in particular, the role of the Rayleigh

friction in §2.4 and §2.5.

2.4 Collapses in the 2d Benjamin-Ono equation

In this section we examine collapses of three-dimensional localised perturbations,

lumps, within the framework of equation (2.55) with γ̃ = 0. The reduction of (2.55)

to the 2d-BO equation is justified for larger Reynolds numbers, Re� ε−2 and for the

situations with sufficiently small curvature of vorticity at the boundary U ′′′(0). Note

that for the Blasius boundary layers U ′′′(0) vanishes (e.g. Schlichting and Gersten

[2016]).
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The layout of the section is as follows. We begin in 2.4.1 with an overview

of relevant earlier works. In 2.4.2 we discuss some basic properties of the 2d-BO

equation and introduce a notion of ‘neutral curves’ and ‘neutral surfaces’ for collapses-

the separatices delineating the manifolds of initial conditions which in the course of

evolution collapse from those which decay. In 2.4.3, on examining the sufficient

criterion for collapse for a few simple initial distributions, we attempt at making a

rough general picture of collapses in the 2d-BO equation. Numerical simulation of

collapse of laterally stretched initial pulse and its comparison with the self-similar

solution is the subject of 2.4.4.

2.4.1 Overview of earlier studies

The one dimensional Benjamin-Ono equation (hereinafter BO) is one of the few

celebrated universal weakly nonlinear long-wave evolution equation which emerge in

various physical contexts, it was originally derived in the context of long internal

waves in deep stratified fluid with a thin layer with stronger stratification Benjamin

[1967], Davis and Acrivos [1967] and Ono [1975]. The BO equation is integrable,

possesses both multi-soliton and multi-periodic wave solution and conserves an infi-

nite set of integrals of motion and other properties typical of integrable systems (e.g.,

Case [1978],Case [1979], Ablowitz and Segur [1981],Matsuno [1984]). Obviously, by

neglecting transverse variability of the perturbations we see that the BO equation

describes nonlinear evolution of one dimensional perturbations in generic boundary

layers, which has been known for long time (e.g. Zhuk and Ryzhov [1982],Ryzhov

[1990], Kachanov et al. [1993]).

In our context the following point is the most relevant: usually, a localised

initial pulse of ‘right’ polarity generates a number n of the BO solitons provided

the integral over the area of the perturbation exceeds n times the area of a single

soliton which does not depend on the soliton amplitude, although, counter intuitively,

emergence of solitons out of continuous spectrum might be also possible for the BO

equation (Pelinovsky and Sulem [1998]). The BO solitons are very robust in the
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one-dimensional setting. A weakly two-dimensional generalisation of the Benjamin-

Ono equation was derived in Ablowitz and Segur [1980] for waves in isotropic media,

leading to a Kadomtsev-Petviashvili type extension with a similar pattern of longwave

transverse instability in case of positive dispersion ( Kadomtsev and Petviashvili

[1970], Kadomtsev [2001]). The anisotropic essentially-two-dimensional Benjamin-

Ono equation(2d-BO) derived by Shrira [1989] is the subject of this section – the

evolution equation (2.55) with γ̃ = 0.

First we overview the results of the studies of 2d-BO equation which are most

relevant for the current work. An obvious class of its exact solutions - all steady

and unsteady oblique plane wave solutions of the one-dimensional Benjamin-Ono.

However, such solutions proved to be unstable to long transverse perturbations Peli-

novsky and Stepanyants [1994]. In particular, for instability of plane solitary waves

the maximal growth rates are ∼ ε2a2 (here ε is used to denote the smallness of

the magnitude of amplitude, therefore it has no links with small parameters used

in this thesis), while the range of unstable transverse wavenumbers is between zero

and the O(εa) cut-off wavenumber, where a is the O(1) solitary wave amplitude. A

more detailed analysis of this instability was carried out in Gaidashev and Zhdanov

[2004]. Abramyan et al. [1992] found that the 2d-BO equation possesses axially sym-

metric stationary solitary wave solutions. In that work the attention was focussed

on the ‘zero mode’ or ‘ground mode’ solitary waves, which decay monotonically as

x2 + y2 →∞, although solutions with oscillatory decay also exist. These stationary

solutions proved to be unstable. D’yachenko and Kuznetsov [1995] were the first to

show that the 2d-BO equation describes collapses: localised perturbations collapse

provided the nonlinearity is stronger than dispersion. It has also been shown that

the equation also possesses self-similar solutions which describe emergence of axially

symmetric singularity in finite time. An explicit description of the collapse evolving

as a result of transverse instability of plane solitary waves was derived employing

Whitham’s adiabatic approach in Pelinovsky and Shrira [1995].

The sufficient condition of collapse for any chosen initial condition is that the

Hamiltonian should be negative (D’yachenko and Kuznetsov [1995], Zakharov and

Kuznetsov [2012]). However, the integral condition of negativity of the Hamiltonian is
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implicit, a priori it is not obvious what initial perturbations collapse and what decay.

For a chosen shape of the perturbation there is a threshold in amplitude above which

the perturbation collapses. In this section we will find dependence of the threshold

on the parameters of the perturbation and outline the range of parameters where the

threshold does not exceed the limitations imposed by the weakly nonlinear nature of

the equation.

2.4.2 Basic properties and ‘neutral curves’

The 2d-BO equation (2.1) when γ̃ = 0 can be written in the Hamiltonian form

as follows (D’yachenko and Kuznetsov [1995]),

Aτ = ∂x

[
K̂A− 1

2
A2

]
= ∂x

δH

δA
, (2.57)

where the Hamiltonian H is made of two constituent integrals I1 and I2, which

describe respectively dispersion and nonlinearity,

H =
1

2
I1−

1

6
I2, I1 =

∫
AK̂[A] dxdy, I2 =

∫
A3 dxdy, (dr ≡ dxdy). (2.58)

Besides the Hamiltonian, the 2d-BO equation (2.1) conserves three other integrals

of motion: the streamwise and spanwise components of the ‘momentum’ P and the

mass flux M ,

Px =
1

2

∫ ∫
A2 dxdy, Py =

1

2

∫ ∫
Aφy dxdy, (φx ≡ A), M =

∫ ∫
A dxdy.

(2.59)

The way these integrals depend on parameters of the perturbations enables us to infer

the existence of collapses for certain initial conditions and to outline the manifolds

of collapsing initial conditions for a few particular a priori chosen classes of initial

conditions.
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2.4.3 Domains of collapses in parameter space

Here, we apply the sufficient condition of collapse, H < 0, to find separatri-

ces delineating the domains of collapse (‘supercritical region’) and domains of de-

cay(‘subcritical region’) in the parameter space. Stretching the analogy with the

linear hydrodynamic stability studies we will refer to the curves or surfaces where

the Hamiltonian vanishes as nonlinear neutral curves/surfaces. By means of direct

numerical simulations of the 2d-BO equation (which we describe below) we verify

that this criterion indeed predicts the emergence of collapse or decay of initial per-

turbations. Applying this criterion to a few simple asymmetric distributions enables

us to get a good a priori idea how the fate (i.e. collapse or decay) of an initial per-

turbation depends on its parameters. To outline these dependencies we first examine

a few simple asymmetric distributions: the Gaussian and Lorentzian pulses,

AG(x, y) = ae
−
(
x2

2σ2x
+ y2

2σ2y

)
, AL(x, y) =

a

1 + 4(x2/σ2
x + y2/σ2

y)
. (2.60)

These initial perturbations are fully characterized by just three parameters: ampli-

tude a and characteristic half-widths σx and σy, which we will refer to as the ‘widths’

for brevity.

It is easy to see that in the Hamiltonian H given by (2.58), both its constituent

integrals, the dispersion one, I1, and the nonlinear one, I2, can be expressed in terms

of the perturbation initial amplitude a and perturbation widths σx and σy. On re-

scaling the variables,

x̃ =
x

σx
, ỹ =

y

σy
, A(x̃, ỹ) = aA,

(
AG = e−(x̃2+ỹ2)/2, AL =

1

1 + 4(x̃2 + ỹ2)

)

we re-write our integrals as,

I1 = α a2σxĨ1, Ĩ1 =

∫ ∫
A K̂ [A] dx̃dỹ, I2 = α a3σ2

xĨ2, Ĩ2 =

∫ ∫
A3dx̃dỹ,

where Ĩ1 depends implicitly on the ratio α through the kernel of the integral operator,
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K̂. In the Fourier space K̂ =
(
k̃2
x + 1

α2 k̃
2
y

)1/2

, where, α = σy/σx. The ‘nonlinear inte-

gral’ Ĩ2 is a constant which is evaluated analytically or numerically; for the Gaussian

initial conditions Ĩ2 = 2
3
π. The ‘dispersion integral’ Ĩ1 cannot be evaluated analyti-

cally and is dealt with numerically. It is easy to see that I1 depends on σx linearly,

while I2 has quadratic dependence on σx. The parameter α is the ratio of spanwise

half-width σy to that of streamwise half-width σx. From now on, we will drop the

subscript and denote σx by σ and proceed to finding nonlinear neutral curves/surfaces

in terms of amplitude a, width σ and aspect ratio α.

Recall that the Hamiltonian vanishes when 3 I1 − I2 = 0, which thus yields

nonlinear ‘neutral surfaces’ separating the domains of collapse and decay in the a−

σ − α space,

a2σ(3 Ĩ1 − aσĨ2) = 0. (2.61)

It proved to be convenient to present the results of such an analysis as cross-sections

with fixed values of α. Then the relationship between the amplitude threshold athr

and perturbation width σ prescribed by equation (2.61) for constant values of α is

hyperbola. This amplitude threshold depends implicitly on the ratio α through in-

tegral Ĩ1. A set of cross-sections for different values of asymmetry parameter α for

the Gaussian and the Lorentzian initial conditions is shown in figure 2.4. The figure

illustrates several salient features of the separatrices in the a − σ plane. For every

value of the asymmetry parameter α the cross-sections are hyperbola. The initial

pulses with a, σ above the curve collapse. For larger σ the threshold decreases for

any asymmetry. Since the main mechanism of the collapse is self-focussing asymme-

try quite noticeably affects the threshold: as expected, the threshold decreases for

the pulses stretched in the spanwise direction (α > 1), it increases for the or the

pulses stretched in the streamwise direction (α < 1). For the evolution to be weakly

nonlinear and to allow for a substantial growth, the initial amplitude should be suf-

ficiently small. Quite arbitrarily we have chosen this threshold to be 0.1, pulses of

amplitudes below this value could grow up to, say, 0.3 remaining weakly nonlinear.

The neutral curves for the Gaussian and Lorentzian initial pulses are qualitatively

very similar. However, quantitatively, the Gaussian pulses for moderate values of σ
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have a noticeably smaller threshold. The comparison of the neutral curves for the

Gaussian and Lorentzian initial pulses suggests that their behaviour is robust and at

the qualitative level we can generalise and to expect to see the same salient features:

a decrease of the amplitude threshold for collapse with the increase of both spatial

scales, crucially, athr → 0 as σ or α tend to infinity. Recall that for the plane wave

soliton solutions of the 2d-BO equation of any amplitude H = 0 and, hence these

solutions are at the boundary of the domain of collapsing initial conditions even for

vanishingly small amplitudes. The transverse instabilities of plane solitons are known

to be possible for any amplitude of the solitary waves (Pelinovsky and Stepanyants

[1994]), Gaidashev and Zhdanov [2004]), although the instability growth rate is pro-

portional to the soliton amplitude and, hence, tends to zero as the amplitude tends to

zero. This instability is known to end up in collapse (Pelinovsky and Shrira [1995]).

To complement the overall picture of the manifolds of initial conditions resulting

in collapse, we note that for the axially symmetric solitary wave solutions found in

(Abramyan et al. [1992]) the Hamiltonian is always negative. The fact that in contrast

to the Gaussian and Lorentzian pulses for these solitary waves there is no amplitude

threshold does not contradict our overall qualitative picture that for collapse to hap-

pen for a small amplitude perturbation the spatial scale of the perturbation should

be very large, since the width of the axially symmetric solitary waves tends to infinity

as their amplitude tends to zero.

2.4.4 Collapse and self-similarity: example of simulation

2.4.4.1 Self-similar solution

Consider the spatial and temporal dependence of a collapsing perturbation in a

certain vicinity of the blow-up singularity assumed to be occurring at r = r0 {x0, y0}.

Introduce time to singularity τ̌ = τ0 − τ and distance to singularity x̌ = x− x0, y̌ =

y − y0. There is a self-similar solution in the form

A(r, τ̌) = τ̌−
1
2 g(ξ̌), ξ̌ =

ř

τ̌
1
2

. (2.62)
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Figure 2.4: Cross-sections of ‘neutral surfaces’ separating the domains of collapse
and decay for different degree values of ( α = 0.125, 0.25, 0.5, 1.0, 2.0, 4.0) for: (a)
the Gaussian and (b) the Lorentzian initial conditions. For any chosen α the initial
pulses with a, σ in the domain above the corresponding curve collapse, those in in
the domain below - decay. The threshold decreases for the pulses stretched in the
spanwise direction (α > 1), it increases for the pulses stretched in the streamwise
direction (α < 1).

where g(ξ̌) is specified by the equation,

ξ̌g

2
+
g2

2
+ K̂[ g ] = 0. (2.63)

This is (up to a typo in the time dependence exponent in (D’yachenko and Kuznetsov

[1995] ) a known self-similar solution of the 2d-BO equation which predicts the

1/
√
τ0 − τ singularity in time and the shrinking spatial distribution given by g(ξ̌), its

width shrinks as
√
τ0 − τ . Our equation for g specifying the shape of the distribution

has a simpler form than its counterpart in (D’yachenko and Kuznetsov [1995]), since

we integrated our equation once.

2.4.4.2 Numerical simulation

To simulate numerically the 2d-BO equation for localized initial perturbations

we use the pseudo-spectral method (e.g. Orszag [1969], Kopriva [2009]). The pseudo-

spectral method with periodic boundary conditions uses efficient fast Fourier trans-

form (FFT) routines in handling dependencies on x and y, while for the time evolution

the classic fourth order Runge-Kutta method is employed.
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In our context it was found to be optimal to use a rectangular box of length

512π and width 128π. This choice provides sufficient domain for the spatial decay

of the localized perturbations we were simulating and also to allow the perturbation

sufficient time to move in the streamwise direction during the evolution. To resolve

the rapidly growing and increasingly localized amplitude distribution we used 4096×

1024 grid points. It is convenient to present our evolution equation in the flux-

conservation form,

Aτ + Fx = 0

where the flux F = −K̂[A] + 1
2
A2 . The integral operator K̂[A] was dealt with

in the Fourier space, while nonlinear terms were considered in the physical space

on collocation points with the ‘two-third de-aliasing rule’ (e.g.Orszag [1969]). The

accuracy of the simulations was controlled by ensuring that the integrals of motion

(2.59) remain constant with the error not exceeding O(10−4).

Here, let us briefly demonstrate how we compute the amplitude A(x, y, τ) using

two-dimensional de-aliased pseudo-spectral method. We start with a more general

nonlinear evolution equation for three-dimensional perturbation accounting for both

stratification due to β̃2 and dissipation, γ̃, which is expressed as,

∂A

∂τ
= F (A)x + β̃2Ĝ2(Ax)− γ̃A, (2.64)

where,

F (A) = K̂[A]− 1

2
A2, β̃2 =

N2
0

2ε2(U ′(0))2
, γ̃ =

1

ε2Re

U ′′′(0)

(U ′(0))2
,

while K̂ and Ĝ are integral operators of dispersion. In the Fourier space,

K̂ = |k| = k = (k2
x + k2

y)
1/2

and Ĝ2 =
k2y
k2x

. If Â(k) = fft(A(x)) is the fast Fourier transform of A with k = (kx, ky)

the evolution equation in spectral space is

∂Â

∂τ
= F1(Â) + β̃2ikxĜ2(Â), (2.65)
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where F1(Â) = ikx

(
(kÂ− 1

2
fft

(
[ifft(Â)]2

)
)
)
− γ̃Â. The fourth order time step

classical Runge-Kutta (RK4) method which uses four approximations to the slope is

employed to handle F1(Â), while the Crank-Nicolson (C-N) method is applied in the

expression for the dispersion term due to stratification. Thus,

Ân+1 − Ân

∆τ
=

1

6

(
K1 + 2K2 + 2K3 +K4

)
︸ ︷︷ ︸

RK4

+
1

2
iβ̃2

k2

kx

(
Ân + Ân+1

)
︸ ︷︷ ︸

C−N

, (2.66)

where,

K1 = F1( Ân ), K2 = F1

(
Ân +

∆τ

2
K1

)
, K3 = F1

(
Ân +

∆τ

2
K2

)
,

K4 = F1(Ân +∆τK3).

Here the superscript is the time step index. It is easy to see that the RHS of equation

(2.65) splits into two components: the C − N term which is very straightforward

to compute and the first term due to the classical fourth order Runge-Kutta RK4

method. With de-aliasing, a resolution of Nx × Ny corresponds in practice to the

representation

A(x, y, τ) =

Nx/3−1∑
kx=−Nx/3

Ny/3−1∑
ky=−Ny/3

Âkxky(τ)ei(ᾱkxx+kyy),

where, ᾱ = Ly/Lx, k = (ᾱkx, ky), Â00 = 0 and a mask is employed so that Âkxky = 0

for wave-numbers outside a specified domain
∑

. The calculations obtained here have

ᾱ = 1/4 and Nx = Ny so the specified domain for wave-numbers is a circle of radius

Nx/3, i.e
∑

= {(kx, ky) : k2
x + k2

y ≤ (Nx/3)2} is used. The system is solved in a

double periodic domain of [0, Lx] × [0, Ly], where Lx is the streamwise length while

Ly is the transverse length of the computational box.

After some algebra we re-arrange equation (2.66) to obtain,

(
1− 1

2
i∆τβ̃2

k2

kx

)
Ân+1 =

(
1 +

1

2
i∆τβ̃2

k2

kx

)
Ân +

1

6
∆τ
(
K1 + 2K2 + 2K3 +K4

)
,
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To this end, it is easy to see that the expression for the amplitude in Fourier space

at any time interval n valid on the collocation grid points is

Ân+1 =
(1 + η)Ân + 1

6
∆τ
(
K1 + 2K2 + 2K3 +K4

)
(1− η)

. (2.67)

where

β̃2 =
N2

0

2ε2(U ′(0))2
, η =

1

2
i∆τβ̃2

k2

kx
, , γ̃ =

1

ε2Re

U ′′′(0)

(U ′(0))2
,

For our simulations we adopted a time step (∆τ) that is regulated by the absolute

value of the maximum amplitude at each instance. This is because the amplitude

of the wave might grow very rapidly with time, therefore, for large values of the

amplitudes the time steps become much smaller. More specifically, our time steps

are given by,

∆τ =
Cdx

||u||∞
,

where C is the Courant-Fredricks-Lewy condition (CFL) for numerical stability, which

can be varied depending on the context. For example. for the most of the simulations

it has been chosen to be 1.0 × 10−3, which is less than one for the purposes of

numerical stability; ||u||∞ is the maximum absolute value of the amplitude at each

time step. The grid size dx = dy = Lx/Nx = Ly/Ny ≈ 0.19, therefore our time steps

is approximately of order 10−5 or less depending on the maximum of the amplitude

at each time interval. It is easy to see that if the amplitude becomes order 1 the time

step gets smaller hence the longer time for the simulations. For the homogeneous

boundary layer which we examine in this current Chapter, we set the term due to

stratification to be zero, i.e. β̃2 = 0.

2.4.4.3 Evolution scenarios

On obtaining in 2.4.3 the boundaries separating the domains of the initial con-

ditions resulting in collapse or decay, we verified the findings by numerical simula-

tions of the evolution of symmetric and asymmetric Gaussian pulse initial conditions

(2.60). By choosing the initial perturbations slightly above and slightly below the
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Figure 2.5: Example of time evolution of the amplitude of a collapsing laterally
stretched pulse with α = 2. Blue solid line: simulated evolution of the amplitude of
a collapsing pulse with the asymmetric Gaussian initial condition (a = 0.1353, σx =
25, σy = 50, γ̃ = 0). Red dashed line: the self-similar solution (3.17)

hyperbola, we confirmed that, indeed, the initial perturbations with the amplitudes

exceeding the threshold collapse, that is, such perturbations evolve into a coherent

pattern which tends to a localized self-similar solution with a point singularity. The

initial conditions with amplitude below the threshold decay, although, for the initial

conditions close to the threshold surface, a temporary transient growth, sometimes

substantial, can also occur. We do not illustrate it here.

We illustrate a typical collapse scenario by providing snapshots 2.6 based upon

our simulations of the evolution of a collapsing pulse for a localized asymmetric

initial conditions. The initial condition is a laterally stretched Gaussian pulse α = 2

corresponding to σx = 25, σy = 50, a = 0.1353. Here, we highlight two features.

Although the initial condition is a smooth well confined lump, the emerging pattern

shown in figure [2.8] is not: at the pedestal, the pulse radiates at two distinguished

directions; the resulting pattern resembles ‘hair-pin’ or ‘lambda’ vortices routinely
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Figure 2.6: Snapshots showing the evolution of the amplitude A(x, y, t) of a col-
lapsing laterally stretched (α = 2) pulse taken at the start of evolution(t = 0) and
finally at t=100 of the maximal amplitude at four-different moments. The simu-
lation is for supercritical asymmetric Gaussian initial condition (a = 0.1353, σx =
25, σy = 50, γ̃ = 0).
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Figure 2.7: Single contours showing the evolution of the A = 0.95Amaximal cross-
sections of a collapsing laterally stretched pulse (α = 2) taken at seven different
moments of evolution. The initial condition is the supercritical laterally stretched
Gaussian pulse with the parameters: a = 0.1353, σx = 25, σy = 50, γ̃ = 0.
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Figure 2.8: Evolution of the amplitude cross-sections of a collapsing laterally
stretched pulse (α = 2) taken at six-different moments showing hair-pin or lambda
vortices. The initial conditions are the same as in figure 2.7.

observed in the wind tunnels (e.g. Kachanov [1994]). The top of the pulse evolves in

an axially symmetric self-similar manner tending to a point singularity at the end.

The tendency of a collapsing pulse to become axially symmetric near its top is

further illustrated by figure (2.7) and (2.8) showing vanishing of initial asymmetry at

the level of 0.95 of the maximum for the same initially laterally stretched pulse. Figure

(2.7) also demonstrates the tendency of an initially well localised pulse which radiates

in two directions then accelerates in the streamwise direction before its eventual

collapse. Figure (2.5) shows the simulated time dependence of a collapsing pulse

amplitude for the same example along with the self-similar solution (2.62). Note

that for a considerable part of the pulse evolution the amplitude grows slowly, the

sharp growth occurs just immediately prior to the singularity. The figure also gives

an idea how well the self-similar solution (2.62) captures the evolution.
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2.5 Collapses in the evolution equation with the

Rayleigh friction term (γ̃ 6= 0)

The aim of this section is a preliminary analysis of equation (2.55),

Aτ + AAx − K̂[Ax] + γ̃ A = 0, (2.68)

derived in 2.3. The only difference of this equation from the 2d-BO equation examined

in the previous section is in the the Rayleigh friction term γ̃ A. Recall that the

expression for the coefficient γ̃

γ̃ =
1

ε2Re

U ′′′(0)

(U ′(0))2
,

that is magnitude is determined by the product of two factors: the first being the

ratio of curvature of vorticity at the boundary and the Reynolds number, the second

is the inverse of the nonlinearity parameter squared. For generic boundary layers we

consider in this section γ̃ 6= 0. The evolution equation (2.41) has not been studied and

there are no readily available analytical techniques. A nearly obvious but nevertheless

crucial observation is that the same self-similar ansatz

A(r, τ̌) = τ̌−
1
2 g(ξ̌), ξ̌ =

ř

τ̌
1
2

. (2.69)

where g(ξ̌) being specified by the equation,

ξ̌g

2
+
g2

2
+ K̂[ g ] = 0.

provides a solution to equation (2.41) in a certain vicinity of the singularity. The

relative contribution of the Rayleigh friction term decays as τ̌ 1. Recall that τ̌ = 0 at

the moment of collapse.

Thus, in principle, the evolution (2.41) describes collapses. Figure 2.10 shows the

time dependence of the amplitude of a collapsing lump with nonzero Rayleigh friction

superimposed on the plot of the self-similar solution. As a reference, the figure also



Chapter 2. Collapses of linearly decaying 3d perturbations in boundary layers 63

0 500 1000 1500 2000 2500

Time(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
m

pl
itu

de
(a

)

Figure 2.9: Example of time evolution of the amplitude of a collapsing laterally
stretched pulse with α = 2. Solid blue line: simulated evolution of the amplitude of
a collapsing pulse with the asymmetric Gaussian initial condition (a = 0.1800, σx =
25, σy = 50, γ̃ = 4.0× 10−4). Red solid line: the self-similar solution (3.17)

provides the time dependence of the amplitude of a collapsing lump with the same

initial conditions for γ̃ = 0 and half the value of γ̃ used for the solid blue curve

we compared with the self-similar solution. In a quite substantial neigbourhood of

the singularity the amplitude evolution is extremely well captured by the self-similar

solution. Thus, we’ve established the character of the singularity by showing that is

not affected by nonzero γ̃.

The key outstanding question is what initial conditions result in collapse for

each value of γ̃. In contrast to the 2d-BO equation, for the evolution equation (2.41)

there are no readily available mathematical tools to predict a priori the occurrence of

collapse for a given initial condition. The aim of this section is by means of numerical

simulations of equation (2.41) to get a rough idea of the effect the Rayleigh friction

term on the domain of collapses in the space of parameters of initial perturbations.

The account of viscous effects in the evolution equation makes it non-conservative
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Figure 2.10: Example of time evolution of the amplitude of a collapsing laterally
stretched pulse with α = 2. Solid blue line: simulated evolution of the amplitude of
a collapsing pulse with the asymmetric Gaussian initial condition (a = 0.1800, σx =
25, σy = 50, γ̃ = 0(blue dashed line), γ̃ = 2.0 × 10−4(black dotted line), γ̃ = 4.0 ×
10−4. Red dashed line: the self-similar solution (3.17)

and destroys the integrals of motion (2.59), (2.58). However, it is easy to see that the

mass flux M =
∫
Adxdy and x−component of momentum Px =

∫
A2dxdy specified

by (2.59) decay exponentially,

M(τ) = M0e−γ̃τ , Px(τ) = P 0
xe
−2 γ̃τ . (2.70)

For simulations we employ the same code based on the pseudo-spectral method as in

2.4. In order to control the accuracy of the simulations of equation (2.68) we ensure

that at any moment in time the numerical values of the integrals M and Px agree

with (2.70) with an error not exceeding 10−4.

For a range of γ̃ we carried out a number of simulations for initially axisymmetric

Gaussian perturbations of different amplitudes and widths. The results of the simu-

lations are presented in figure 2.11, where dependence of the amplitude threshold athr
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Figure 2.11: Example of stability curves for the amplitude threshold athr against
small values of dissipation γ̃ ranging from O(10−4) − O(10−3) for axisymmetric
Gaussian initial condition of σ = 12.5, σ = 25.0, σ = 50.0.

on γ̃ is plotted for several values of width σ. The most striking result is the observa-

tion that for the range of widths with σ = 101 − 102 only a surprisingly small values

of γ̃ ( γ̃ ∼ 10−3) prove to be of interest in our context. In this range of γ̃ the Rayleigh

friction term causes an order one increase of the amplitude threshold athr, while for

the values of γ̃ as small as ∼ 10−2 the amplitude threshold goes out of the range of

weak nonlinearity. In this sense, even a weak dissipation can prevent collapses by

raising the threshold beyond the range of applicability of our weakly nonlinear model.

The amplitude threshold for collapse to occur decreases with increase of σ. However,

in contrast to the 2d-BO equation it does not tend to zero as σ →∞. The physical

reason of the striking effect of small γ̃ and “anomalous” behaviour of lumps at small

amplitudes is the same: as figure 2.9 and its analogue for γ̃ = 0 (2.5) show, a collaps-

ing lump goes through a substantial period of very weak growth during which even

a weak decay can arrest the growth and thus prevent the collapse from happening.

In the 2d-BO equation the overall picture of evolution was nearly “black-and-white”:
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the initial pulses either grew and collapsed or decayed, the manifold of “decaying”

initial conditions exhibiting a transient growth was insignificant. In contrast to the

2d-BO case, the account of the Rayleigh friction significantly widens the manifold of

the initial conditions exhibiting a transient growth and eventually decaying.

An insight into the physics of the observed phenomenology might be obtained

by recalling that the physical mechanism of the collapses is the usual self-focussing

and that the maximal growth rate for the transverse instability of plane solitary wave

within the 2d-BO equation is ∼ ε2a2 (Pelinovsky and Stepanyants [1994]). For this

instability to occur within the framework of (2.41) the necessary condition would be

for the growth rate to exceed the decay rate γ̃. This reasoning suggests existence

of a threshold in amplitude below which even the instability, which is the necessary

first stage of collapse, is not possible. For the amplitudes exceeding this threshold

the transient growth scenarios might occur. The thresholds curves shown in figure

(2.11) are above this transient growth domain threshold; they delineate the manifold

of collapsing initial conditions.

2.6 Conclusions and discussion

Here we briefly summarise the results of the work of the current chapter and

discuss the new questions it generates. The chapter presents an asymptotic model

describing blow up of linearly decaying 3d long-wave perturbations in a generic semi-

infinite boundary-layer flow. The model is a two-dimensional generalisation of the

Benjamin-Ono equation with the Rayleigh-type dissipation. The Rayleigh-type dis-

sipation is found to be proportional to the product of of the inverse nonlinearity

parameter and the ratio of the curvature of the basic flow vorticity at the bound-

ary and the Reynolds number. The model is derived in a unified way for both the

‘no-slip’ and ‘constant-stress’ boundary conditions in the distinguished limit with

nonlinearity, dispersion and dissipation being in balance. We stress that in con-

trast to other studies of blow up in boundary layers the model is self-contained: the

evolution equation describes dynamics of a single longwave mode which is weakly
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decaying in linear setting. Under the adopted scaling the dynamics in the critical

layer is dominated by viscosity, crucially, to leading order the critical layer does not

affect the processes in the bulk of the boundary layer, at least for laterally stretched

perturbations. The linear viscous character of the critical layer is ensured by the in-

equality ε � Re−
1
6 . The derivation largely follows earlier derivations (Shrira [1989],

Voronovich et al. [1998]), with three important differences. First, the derivation has

been extended to the boundary layers with the no-slip boundary conditions. Second,

the range of possible Reynolds numbers was considerably extended towards lower val-

ues, down to Re ∼ ε−2. Third, the restriction which excluded the flow profiles with

inflection points employed in the earlier derivations was lifted. The rationale behind

this restriction was to exclude the possibility of linear inflectional instability which

in principle might interfere with the nonlinear dynamics we are studying. However,

a closer look at the now available results on linear instabilities in boundary layers

Healey [2017] enabled us to lift the restrictions. Although the profiles with inflection

points points can be indeed unstable, these inflectional instabilities are long-wave

instabilities with the maximal growth rates O(ε3) and, thus, the processes with the

O(ε−2) timescales resulting in collapses we focus upon develop much faster than the

possible instabilities. This justifies our a priori disregard of the instabilities in the

distinguished limit when the dispersion is balanced by nonlinearity. If the initial

perturbations are much weaker they might go first through a stage of exponential

growth until the balance is reached.

Along with the derivation of the model the work in this chapter also presents a

preliminary analysis of nonlinear dynamics boundary layer perturbations within its

framework. We show that an initial ‘lump’ of a given shape collapses, i.e. blows up

forming a point singularity in finite time, provided its initial amplitude exceeds a

certain threshold. The threshold is specific for each particular initial shape, vorticity

curvature at the boundary and the Reynolds number. The initial perturbations ex-

ceeding the threshold collapse in a self-similar manner, the found axially symmetric

self-similar solution captures very well the behaviour of the perturbation in a vicinity

of singularity. The perturbations with the amplitudes below the threshold - decay,

although a substantial transient growth is possible for the initial perturbations close
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to the threshold. Upon finding the boundaries of the manifolds of collapsing initial

conditions for a few classes of simple initial conditions we were able to extrapolate

the results to get an idea of the overall picture. For the situations with negligible dis-

sipation we benefit from having analytical sufficient condition in integral form which

we analyse. There are just two main parameters of the initial perturbations: the

amplitude and maximal width. On the amplitude-width plane the domain of collaps-

ing initial conditions is confined by a hyperbola from below; the threshold amplitude

decreases as inverse width of the perturbation and for very wide perturbations tends

to zero. In the context of collapses of special interest is a class of axially-symmetric

initial perturbations which are stationary solutions stationary solutions of the 2d-BO

equation (Abramyan et al. [1992]), sometimes referred to as the ‘ground solitons’; in

the absence of dissipation such initial conditions always collapse, there is no thresh-

old.

Unexpectedly, the conditions of collapse proved to be very sensitive to dissipa-

tion. The account of even small dissipation might raise the amplitude threshold quite

substantially, often beyond the range of weakly nonlinear theory. This implies that,

as long as the main focus is on collapses, the attention should be confined to the

situations with small Rayleigh friction, since otherwise collapses occur only outside

the domain of weakly nonlinear regimes and validity of the evolution equation. The

smallness of the relevant values of viscosity hints at a possibility of an analytic per-

turbation approach, however, exploring such a possibility requires a dedicated work.

The unexpectedly strong sensitivity of the evolution to small Rayleigh friction can

be explained by the combination of a large duration of evolution and a cumulative

character of the dissipation action. In the simulations with small Rayleigh friction

we found that a broader range of initial conditions exhibits a transient growth, which

might also be a route to transition, however we didn’t pursue this line further, since

a dedicated study is required. Note, that for the flows with zero curvature at the

boundary the dissipation drops to the next order, such flows require a different scal-

ing and the resulting evolution equation will have a qualitatively different dissipation

term. This particular class of situations (which includes Blasius boundary layer)

requires a special consideration and will be examined elsewhere.
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Our main conclusion is that the collapses we considered might be a plausible

mechanism of three-dimensional patterns observed in boundary-layer transition and

play an important yet to be established role in by-pass laminar-turbulent transition.

The work gives rise to a lot of questions to which we currently do not have

answers. The main outstanding question concerned with the role of the modelled

collapses in the bigger picture of transition splits into a number of more specific

ones. In particular, our evolution equation is a weakly nonlinear asymptotic model,

currently we do not know the eventual outcome of the found collapses in the full

Navier-Stokes equations. Most likely, the collapses cause localised transition to tur-

bulence. However, we cannot exclude the possibility that under certain circumstances

collapses might lead to formation of long-lived coherent strongly nonlinear patterns.

A dedicated direct numerical simulation study is in progress to clarify this issue.

All collapsing perturbations tend to axially symmetric self-similar distributions,

which resemble the coherent patterns observed in wind tunnels. At the foot of these

patterns they, as can be seen in the snapshots of the numerical simulation (2.6), also

exhibit features typical of lambda vortices routinely observed in wind tunnels at cer-

tain stage of laminar turbulent transition (e.g. Kachanov [1994]). Is this resemblance

just a coincidence or the model does capture elements of essential physics of the phe-

nomenon? Although the model does predict emergence of 3d patterns resembling

those observed in the tunnel by Kachanov [1994] (see figure 2.1), at the moment we

could claim only a rough qualitative agreement. The validity of the model has been

proved only for laterally stretched perturbations.

Our study leaves aside the question on how the initial perturbation was produced

which we took as given. There are many possible scenarios, in particular, there is

a room for usual linear long-wave instabilities to play, for example, as a result of

inflectional long-wave instability plane wave perturbations propagating streamwise

might emerge and grow until the nonlinearity becomes strong enough to balance

dispersion, then, at first the plane Benjamin-Ono solitons are likely to emerge, the

latter are transversally unstable; under the right conditions this instability leads

to their collapse (Pelinovsky and Shrira [1995]). We understand all the phases of
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this scenario, but here we just mention it, its elaboration goes beyond the scope

of this work. Initial perturbations leading to collapses can be also generated by

perturbations of the boundary. We assumed the boundary to be flat, but the model

could be easily extended to take into account long-wave perturbations (steady or

unsteady) of the boundary. It would be interesting to examine what perturbations

of the boundary trigger collapses, but this should be a subject of a dedicated work.

Let us very briefly discuss the limitations of the model and how the model can be

extended. The main limitation, apart from the already mentioned weak nonlinearity

constraint, is the total neglect of nonparallel effects. It is relatively straightforward

to incorporate weakly non-parallel effects into the employed asymptotic scheme. This

has been done in (Shrira et al. [2005]) for free surface boundary layer in water with the

main effect being an additional Rayleigh friction term, this term has been included

into an effective dissipation. The approach can be extended for the no-slip boundary

conditions as well, where we expect qualitatively similar effect; but at present this

remains to be done.

The present work was confined to the simplest generic boundary layer. It is also

possible to extend the developed approach to other types of boundary layers, which

will be carried in the next chapters.



Chapter 3

Collapses in a confined boundary

layer as described by the

two-dimensional ‘intermediate

long-wave equation’

The chapter is based on the results of a study published in the Springer Journal of

Theoretical and Mathematical Physics (Oloo & Shrira, 2020), the work is reproduced

here with minor modifications.

3.1 Introduction

In the previous chapter we confined our study of nonlinear dynamics 3d longwave

perturbations in boundary layers to semi-infinite boundary layers. The flows confined

between two parallel plates are ubiquitous in nature and engineering context. Under-

standing the dynamics of confined boundary layers is crucial for controlling bypass

laminar-turbulent transition. Very little is known about the effects of the boundary

layer confinement on occurrence of collapses of 3d longwave perturbations. Here, in

71
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continuation of the line of Chapter 2 we focus on nonlinear growth of 3d linearly

decaying perturbations.

The basic model we consider is the ‘2d Intermediate long-wave equation’ (2d-

ILW), which was derived in Voronovich et al. [1998], see Eqs. (35,36,52). This equa-

tion is a member of a broader family of two-dimensional nonlinear evolution equations

derived in Voronovich et al. [1998], the 2d-ILW equation describes evolution of weakly

nonlinear long wave perturbations of a generic boundary layer in homogeneous fluid

confined between two parallel planes separated by a distance D(D � d) for a wide

range of the Reynolds numbers. Its derivation is straightforward. In the previous

chapter section §2.3.3 we showed that the slow motion outside the boundary layer

is governed by the following equation specifying function f dependence on the slow

variable Z1,

∂2
Z1Z1

f̂(k)− k2f̂(k) = 0, (k = |k|), (3.1)

where f̂(k, Z1) is the Fourier transform of f(x, y, Z1). For the semi-infinite boundary

layers examined in the previous chapter we employed the boundary conditions of

vanishing at infinity, f̂(k)|Z1→∞ = 0, while here we require vanishing of f̂(k, Z1) at

Z1 = D, hence,

f̂(k)|Z1=D = 0, f̂(k)|Z1=0 = 1. (3.2)

Its solution satisfying the boundary condition (3.2) has the form

f̂(k, Z1) = sinh k(Z1 +D)/ sinh (kD). (3.3)

This solution yields the modified kernel Q(k) of the integral operator describing

dispersion, instead of Q(k) = k for semi-infinite boundary layers, we now get

Q(k) = k/ tanh kD, (k = |k|, k2 = k2
x + k2

y). (3.4)

The procedure is nearly identical to that of the previous chapter yields the nonlinear

evolution equation which we refer to as ‘2d Intermediate long-wave equation’ (2d-

ILW). We will be examining the 2d-ILW equation in this chapter. Since in this

chapter we focus on elucidating the effects of the boundary layer confinement, we
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neglect the Rayleigh friction term which is the same as in the previous chapter and

leads to qualitatively similar effects.

One dimensional version of the 2d-ILW equation, known as the Intermediate

long-wave equation (ILW) or Joseph equation, was derived independently in Joseph

[1977] and in T. Kubota and Dobbs [1978] for long waves in stratified inviscid fluid

of finite depth, for the situations when the stratification is confined to a thin layer.

It has an infinite number of integrals of motions and has soliton and multi-soliton

solutions (e.g. Joseph and Egri [1978],Matsuno [1979], Chen and Lee [1979]). The

equation has a non-dimensional parameter D characterizing the overall depth of the

fluid. In the limit of large and small D it reduces, respectively, to the integrable

Benjamin-Ono and Korteweg-de Vries equations.

In contrast to its well studied 1d reduction, the 2d-ILW equation has never

been studied, apart from finding numerically its localized 2d axially-symmetric soli-

tary wave solutions in Voronovich et al. [1998]. In the linear limit the solutions of

the 2d-ILW equation are a superposition of harmonic waves satisfying the following

dispersion relation linking the frequency ω and wavevector k{kx, ky},

ω = −kx|k| coth(|k|D),

where D is the dimensionless distance between two parallel planes confining the

boundary layer. It is easy to see that as D → ∞, this relation reduces to the

dispersion relation of the linearized 2d Benjamin-Ono equation, i.e. ω = −kx|k|,

Shrira [1989]. In the opposite limit, D → 0, we get ω = −kx(1/D − D|k|2), which

(after the Galilean transformation) corresponds to that of the linearized 2d Zakharov-

Kuznetsov equation Zakharov and Kuznetsov [1974]. Correspondingly, the 2d-ILW

equation reduces to the 2d Benjamin-Ono equation for large D, and, after the same

Galilean transformation, to the 2d Zakharov-Kuznetsov (ZK) equation for small D.

D’yachenko and Kuznetsov [1995] showed that the essentially 2d Benjamin-

Ono equation derived by Shrira (1989) describes collapses of initially localized two-

dimensional perturbations. Pelinovsky and Shrira [1995] derived explicit description

of the collapse in the 2d Benjamin-Ono equation employing Whitham’s adiabatic
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approach. In contrast, the localized in two dimensions solitary wave solutions of the

2d-ZK equation are considered to be stable Zakharov and Kuznetsov [2012]. Here, we

consider the open question of what is the result of the evolution of initially localized

perturbations in the framework of the 2d-ILW equation.The specific open questions

we aim at clarifying are:

1. What is the outcome of the evolution of initially localized 3d long-wave pertur-

bations within framework of the 2d-ILW equation?

2. Can the 2d-ILW equation describe collapses, and if yes, then under what con-

ditions, and what type of singularity one could expect?

The Chapter is organized as follows. Section §3.2 sets up the physical model

of a generic confined boundary layer and explains the assumptions underpinning the

asymptotic derivation of the 2d-ILW equation. §3.3 describes its basic properties.

In §3.4, following D’yachenko and Kuznetsov [1995], we argue that collapses in the

2d-ILW equation occur whenever the Hamiltonian is negative and unbounded, on this

basis we explicitly find the domains of collapses and decay in the parameter space for

the Gaussian and Lorentzian initial perturbations. In §3.5 we describe our numerical

simulation of the 2d-ILW equation and provide an example of numerical simulation

of collapse. This example demonstrates the self-similar character of the collapse in

2d-ILW equation. We also compare the direct numerical simulations within the 2d-

ILW equation with the analytical self-similar solution and show very good agreement,

the vicinity of collapse is asymptotically described by the self-similar solution of the

2d-BO equation. In the final section, §3.6, we summarize our results.

3.2 The Model

3.2.1 Boundary layer between two parallel planes

We consider a generic unidirectional boundary layer shear flow confined between two

parallel planes separated by a distance D. In the Cartesian frame with the origin at
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Figure 3.1: Sketch of geometry of a generic confined boundary layer profile with
the shear localized in a thin boundary layer of thickness d and confined by a second
boundary set at distance D. For certainty only, the sketch shows the boundary
layer in free surface water flows. For the boundary layers typical of situations with
no slip boundary (e.g. wind tunnels) sketch holds after the Galilean transformation:
U(0) should be set to zero, while U(D) becomes the free stream velocity.

the upper boundary with z, 0 ≤ z ≤ D, directed downwards with x and y directed

streamwise and spanwise, respectively (Fig 3.1). The labeling of directions as vertical

or horizontal is adopted for convenience only. Without loss of generality, we assume

the unperturbed unidirectional boundary layer velocity U(z) to be adjacent to the top

boundary and localized with characteristic thickness d, (d � D). It is also assumed

that the flow profile U(z) has no inflection points. In this setting the nonlinear

evolution of long-wave perturbations having comparable scales in x an y is described

by the 2d ILW equation derived in Voronovich et al. [1998] from the Navier-Stokes

equations,

Aτ − α1AAx − β1Ĝ[Ax] = 0, (3.5)

where A(x, y, τ) is the amplitude of the streamwise velocity component of the per-

turbation, τ is slow time, α1 = U ′(0), β1 = U2(0)/U ′(0) and the integral operator
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Ĝ[ψ] is,

Ĝ[ψ(r)] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
k coth (kD)ψ(r1)e(ik(r−r1))dkdr1, (r = {x, y}), (3.6)

where k = |k| = (k2
x + k2

y)
1/2. Note the specific way the streamwise perturbation

velocity u(x, y, z, t) is expressed in terms of the amplitude A(x, y, t): to leading order,

u(x, y, z, t) = − (f(x, y, z) ∗ A(x, y, τ)) · U ′(z),

f(x, y, z) =
1

4π2

∫ ∞
∞

[
sinh k (εz +D)

sinh (kD)

]
e(−ikr))dk,

where f ∗ g is the convolution in the r space and ε � 1 is the small parameter of

nonlinearity, defined as the ratio of the maximal streamwise velocity of the pertur-

bation to the maximal velocity of the basic flow. Other components of velocity could

be also expressed in terms of A(x, y, τ) (for details, see Voronovich et al. [1998]).

On re-scaling the variables by setting d = 1, we cast the 2d-ILW equation into

the form which contains a single nondimensional parameter D in the kernel of the

operator Ĝ, specified by (3.6),

Aτ + AAx − Ĝ[Ax] = 0. (3.7)

This form of the 2d ILW equation provides the mathematical framework of the present

study.

3.3 Basic properties of the 2d-ILW equation

The 1d-ILW equation is a well studied weakly nonlinear pseudo-differential equation

which governs the evolution of long internal waves in a stratified fluid of finite depth

(e.g. Joseph [1977], T. Kubota and Dobbs [1978]). In contrast, the 2d-ILW equation

has not been studied, apart from a brief analysis in passing in Voronovich et al.

[1998] of its steady state solutions, it was found that the 2d-ILW equation has axially

symmetric solitary wave solutions. For waves propagating in any chosen direction
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the 2-d ILW equation (3.7) reduces to the one-dimensional ILW equation and was

shown to have an infinite set of integrals of motion, multi-soliton solutions and other

properties typical of integrable systems (e.g. Joseph and Egri [1978], Chen and Lee

[1979], Matsuno [1979], Ablowitz and Segur [1981]).

The notable feature of the 1d-ILW equation is that in the shallow water limit (i.e.

when D → 0), it tends to the classical Korteweg-de Vries equation, while at the deep

water limit (D → ∞), it reduces to the Benjamin-Ono equation. Similarly, the 2d-

ILW, with k ≡ |k| = (k2
x + k2

y)
1/2 in the operator Ĝ, reduces to the 2d Benjamin-Ono

equation in the limit kD � 1. In the opposite limit, kD � 1, it is easy to see that the

leading terms of the Taylor expansion of the kernel k coth (kD) are 1
D

(1+ k2D2

3
), which

reduces the integral operator Ĝ to the 2d Laplace operator ∆ = ∂2
xx + ∂2

yy; hence, for

kD � 1 the 2d-ILW tends to the 2d-ZK equation. The ZK equation was originally

derived to describe low frequency ion-acoustic waves in magnetized plasma Zakharov

and Kuznetsov [1974], but later was found to occur in many other physical contexts

Melkonian and Maslowe [1989], Nozaki [1981], Petviashvili [1980], Toh et al. [1989]

and Gottwald [2003]. Note that, strictly speaking, it is not legitimate to consider

the 2d-ILW equation in the ZK limit, although the equation itself does allow such

a consideration and indeed reduces to the ZK equation, the asymptotic procedure

employed in the derivation of the 2d-ILW equation breaks down for small D.

We can write the 2d-ILW equation (3.7) in the Hamiltonian form as follows,

Aτ = ∂x

[
Ĝ[A]− 1

2
A2

]
= ∂x

δH

δA
, (3.8)

where the Hamiltonian H is made of two constituents I1 and I2,

H =
1

2
I1 −

1

6
I2, I1 =

∫
AĜ[A] dr, I2 =

∫
A3 dr, (dr ≡ dxdy). (3.9)

Besides the Hamiltonian, the 2d-ILW equation (3.7) conserves the streamwise and

spanwise components of the ‘momentum’ P and the mass flux M ,
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Px =
1

2

∫ ∫
A2 dxdy, Py =

1

2

∫ ∫
Aφy dxdy, (φx ≡ A), M =

∫ ∫
A dxdy.

(3.10)

The way these integrals depend on parameters of the perturbations enables us in

the next section to infer the existence of collapses for certain initial conditions and

to outline the domain of collapsing initial conditions for particular a priori chosen

classes of initial conditions.

3.4 Collapses in the 2d-Intermediate long-wave equa-

tion. Domain of collapses in the parameter

space

3.4.1 Domain of collapses in the a − σ space in the generic

case

The existence of collapses in the 2d Benjamin-Ono equation, which is a particular

limit of the 2d-ILW equation, has been shown by Dyachenko & Kusnetsov (1995). The

conditions of collapse within the framework of the 2d-BO equation were thoroughly

examined in the previous section 2.4. Here, we extend this approach to the 2d-ILW

equation.

The plane soliton solution of the 2d-ILW equation is stable within the framework

of the 1d-ILW equation, but is unstable with respect to transverse modulations within

the 2d-ILW equation we are studying here. In contrast to the 2d Benjamin-Ono

equation, for which the transverse stability of plane wave solutions was thoroughly

studied in Pelinovsky and Stepanyants [1994], Gaidashev and Zhdanov [2004] there

was no dedicated analysis of transverse instabilities for the 2d-ILW equation. Here

we skip this element of analysis, since the plane soliton transverse instability clearly
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manifests itself in numerical simulations of the 2d-ILW equation and we know a priori

the scaling of the instability growth rate.

The key finding by Dyachenko & Kusnetsov (1995) is that the existence of col-

lapses is linked with the unboundedness of the Hamiltonian from below as the am-

plitude of the perturbation increases. For any chosen localized initial conditions the

necessary and sufficient condition for the collapse to occur is that the Hamiltonian

has to be negative. The reasoning of D’yachenko and Kuznetsov [1995] is applicable

to the case of the 2d-ILW equation in its entirety. By means of direct numerical

simulations of the 2d-ILW equation (which we describe below) we verify that this

criterion indeed predicts the emergence of collapse. Moreover, this criterion enables

us to get a good a priori idea how the fate (i.e. collapse or decay) of an initial

perturbation depends on its parameters. To outline these dependencies we examine

a few simple axisymmetric distributions: the Gaussian and Lorentzian pulses,

AG(x, y) = ae−(x2+y2)/2σ2

, AL(x, y) =
a

1 + 4(x2/σ2 + y2/σ2)
. (3.11)

These initial perturbations are fully characterized by just two parameters: amplitude

a and characteristic half-width σ, which we will refer to as the ‘width’ for brevity.

It is easy to see that in the Hamiltonian H given by (3.9), both its constituent

integrals, the dispersion one, I1, and the nonlinear one, I2, can be expressed in terms

of amplitude a and perturbation width σ. On re-scaling the variables,

x̃ =
x

σ
, ỹ =

y

σ
, A(x̃, ỹ) = aA,

(
AG = e−(x̃2+ỹ2)/2, AL =

1

1 + 4(x̃2 + ỹ2)

)

we re-write our integrals as,

I1 = a2σĨ1, Ĩ1 =

∫ ∫
A Ĝ [A] dx̃dỹ, I2 = a3σ2Ĩ2, Ĩ2 =

∫ ∫
A3dx̃dỹ,

where Ĩ1 depends implicitly on σ through the kernel of the integral operator, coth (kD
σ

),

while Ĩ2 is a constant that is evaluated analytically or numerically; for the Gaussian

initial conditions Ĩ2 = 2
3
π. The integral Ĩ1 cannot be evaluated analytically and is

dealt with numerically for the whole range of D and σ.
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If the dispersion and nonlinear contributions in the Hamiltonian are in exact

balance, i.e. 3 I1 − I2 = 0, the Hamiltonian vanishes, and thus yields a nonlinear

‘neutral curve’ separating the domains of collapse and decay on the a− σ plane,

a2σ(3 Ĩ1 − aσĨ2) = 0. (3.12)

The relationship between the amplitude threshold athr and perturbation width σ

prescribed by equation (3.12) reads,

athr(σ) =
3 Ĩ1

Ĩ2 σ
. (3.13)

To better understand this relationship we expand coth (kD
σ

) for σ � 1 and σ � 1.

By retaining the first two terms in the Laurent series of coth s, when s = kD
σ
� 1 we

find, 1
s

+ 1
3
s− ..... Similarly, for short waves, σ � 1, i.e. when s� 1, coth s ≈ 1 with

exponentially small discrepancy (e.g. Abramowitz and Stegun [1964]).

3.4.2 Domain of collapses in the ZK limit

Note that the transition from 2d-ILW equation to 2d-ZK is not entirely smooth,

since to leading order we have large constant translation term 1/s, which can be

eliminated by switching to the moving coordinate frame. By writing the equation in

the Hamiltonian form we scale the integrals of motion using parameters of the initial

conditions, the amplitude a and width σ. Thus, it is easy to see that the Hamiltonian

H in the ZK limit consists of three terms (the constant translational term I3, the

dispersion one, I4, and the nonlinear one, I2 ) which can be expressed in terms of

amplitude a and width of the perturbation σ,

I3 = 3 a2σ2Ĩ3/D, Ĩ3 =

∫ ∫
A2 dx̃dỹ,

I4 = Da2Ĩ4, Ĩ4 =

∫ ∫
A Ĝ1 [A] dx̃dỹ,

I2 = a3σ2Ĩ2, Ĩ2 =

∫ ∫
A3dx̃dỹ.
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Recall that in the ZK limit the dispersion operator Ĝ1 in the Fourier space is k2 ≡

|k|2 = k2
x+k2

y. The factor Ĩ3 is evaluated analytically or numerically; for the Gaussian

initial conditions its exact value is π. The integral Ĩ4 is dealt with numerically,

yielding a constant.

If the dispersion and nonlinear contributions in the Hamiltonian are in exact

balance, i.e. I3 + I4 − I2 = 0, the Hamiltonian vanishes, which yields a nonlinear

‘neutral curve’ separating the domains of collapse and decay on a− σ plane,

a2

(
3σ2Ĩ3

D
+DĨ4 − aσ2Ĩ2

)
= 0. (3.14)

Thus, in the long-wave limit the nonlinear neutral curve specifying the amplitude

threshold athr(σ) corresponding to the Z-K equation tends to a constant independent

of σ,

athr =
3 Ĩ3

D Ĩ2

+
DĨ4

σ2Ĩ2

. (3.15)

Note that the asymptotic expression of the threshold amplitude equation (3.15) cor-

responding to 2d-ZK equation was found to be in good agreement with that obtained

from the 2d-ILW given by equation (3.12). Therefore the amplitude threshold in this

particular limit depends primarily on D (it tends to infinity as 1/D as D → 0), while

the dependence on the width σ is vanishing. In the limit of σ � 1 the amplitude

threshold ceases to depend on σ.

In the opposite limit (σ � D), the neutral curve is the hyperbola,

athr =
3 Î1

Î2 σ
. (3.16)

We obtained the neutral curves for the intermediate values of D by evaluating

integrals I1 and I2 numerically for the axisymmetric Gaussian and Lorentzian initial

pulses. Plots of the results are shown in figure (3.2). Perturbations with a and σ

above the neutral curve invariably collapse, those with a, σ below the curve – decay.

Note that the curves for the Gaussian and Lorentzian initial conditions are very
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similar; the quantitative discrepancy is rather small. We emphasize two features of

these plots:

1. The amplitude threshold monotonically raises with the decrease of D and tends

to infinity as D tends to zero, and

2. For any non-zero D the amplitude threshold monotonically raises with the

decrease of σ.

In the limit of small D corresponding to the ZK equation, the threshold ampli-

tude ceases to depend on σ and tends to a large O(1/D) constant. Since the 2d-ILW

equation was derived assuming weak nonlinearity, for small D a considerable portion

of the ‘collapse domain’ is beyond the range of validity of the equation. Note that

here we considered whether a given initial perturbation lump of amplitude a and

width σ would collapse assuming a and σ to be independent. The conclusion is that

the threshold amplitude tends to zero as the width tends to infinity. However, if we

allow σ to depend on a, we get, at a first glance, a different picture. For example

if we choose the lump solitary wave solutions reported in Voronovich et al. [1998] as

our initial condition, then their Hamiltonian is always negative, hence, all such ini-

tial conditions collapse, whatever the initial amplitude. Thus, for this class of initial

perturbations there is no amplitude threshold. In fact, there is no contradiction with

the conclusions obtained for simple shape initial distributions, just when σ = σ(a),

the picture becomes somewhat distorted: for the lump solitons of Voronovich et al.

[1998], σ → ∞ as a → 0. That is, for the infinitely long initial perturbations of

whatever shape the amplitude threshold tends to zero.
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Figure 3.2: ‘Neutral curves’ separating the domains of collapse and decay for
different values of D ( D = 0.1, 0.5, 1, 2, 3, 5) for: (a) the Gaussian and (b) the
Lorentzian initial conditions.
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3.5 Self-similar solution and numerical simulation

of collapses

3.5.1 Self-similar solution

It is natural to expect a self-similar behaviour of the solution in the vicinity of the

singularity. In D’yachenko and Kuznetsov [1995] a self-similar solution of the 2d

Benjamin-Ono was put forward. In this section we show that the same logic applies

to the 2d-ILW equation and find the self-similar solution of (3.5).

We consider the spatial and temporal dependence of collapsing perturbation in

a certain vicinity of the blow-up singularity occurring at r = r0 {x0, y0}. Introduce

time to singularity τ̌ and distance to singularity x̌ = x− x0, y̌ = y− y0. We look for

a self-similar solution in the form

A(r, τ̌) = τ̌λg(ξ), ξ =
r

τ̌µ
. (3.17)

On substituting ansatz (3.17) into the 2d-ILW in the form (3.7) and ensuring the

equation remains invariant, it is easy to show that λ = −1
2

and µ = 1
2
. Thus,

u(r, τ̌) = τ̌−
1
2 g(ξ), ξ =

r

τ̌
1
2

, (3.18)

where g(ξ) is specified by the equation,

ξg

2
+
g2

2
+ Ĝ[ g ] = 0.

We have thus obtained an explicit self-similar solution of the 2d-ILW equation

which predicts the 1/
√
τ0 − τ singularity in time and the shrinking spatial distribution

given by g(ξ), its width tends to zero as
√
τ0 − τ . This is (up to a typo in the time

dependence exponent in D’yachenko and Kuznetsov [1995] ) the self-similar solution

of the 2d Benjamin-Ono equation obtained in D’yachenko and Kuznetsov [1995]. Our

equation for g specifying the shape of the distribution has a simpler form, since we

integrated our equation once.
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Hence, we obtained the same self-similar solution for an essentially different

equation because the asymptotics of two different equations coincide near the singu-

larity. Here, the shrinking spatial scale of the solution implies infinite growth of the

dominant wave numbers and, hence, kD → ∞. Thus, in the 2d-ILW equation the

vicinity of the singularity is always (for non-zero D) governed by the 2d Benjamin-

Ono equation. We leave open the question whether there might exist other interesting

self-similar regimes for the 2d-ILW equation corresponding to an unidentified yet in-

termediate asymptotics.

In our numerical experiments we also considered the axisymmetric ‘ground soli-

tons’ of 2d-ILW found in Voronovich et al. [1998] as the initial conditions, the Hamil-

tonian for such distributions is negative, hence they collapse and there is no threshold

in amplitude. This holds for any non-zero D. When D → 0 the 2d-ILW ground

soliton morphs into that of the 2d-ZK. Although the Hamiltonian of the ground soli-

ton remains negative, the unboundness of the Hamiltonian disappears in the 2d-ZK

limit(see Zakharov and Kuznetsov [2012],Kuznetsov [2018]), which suggests that the

2d-ZK ground soliton is stable. There is a number of numerical studies of the 2d-ZK

equation, where its ground solitons were used as the initial conditions and found to

be stable (e.g Jorge et al. [2005]).

We do not discuss the 2d-ZK equation further here, because the 2d-ILW equation,

as mentioned, becomes inapplicable in this limit.

3.5.2 Numerical simulation

To simulate numerically the 2d-ILW equation for localized initial perturbations we

use the pseudo-spectral method (see e.g.,Orszag [1969],Kopriva [2009]). The pseudo-

spectral method with periodic boundary conditions uses efficient fast Fourier trans-

form (FFT) routines in handling dependencies on x and y, while for the time evolution

the classic fourth order Runge-Kutta method is employed.

In our context, it was found to be optimal to use large rectangular box of length

256π and width 64π. We re-iterate that the choice of our box size for the simulation
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here is different from the previous analysis because the initial condition is axisym-

metric i.e., in this case, σx = σy = σ. This choice provides sufficient domain for

the spatial decay of the localized perturbations we were simulating and also to allow

the perturbation sufficient time to move along the streamwise direction during the

evolution. To resolve the rapidly growing and increasingly localized amplitudes we

used 4096×1024 grid points. We were solving numerically the 2d-ILW equation (3.7)

in the moving coordinate frame. It is convenient to present our evolution equation

in the flux-conservation form,

Aτ + Fx = 0.

where the flux F = −Ĝ[A] + 1
2
A2 . The integral operator Ĝ[A] was dealt with in

the Fourier space, while nonlinear terms were considered in the physical space on

collocation points with the ‘two-third de-aliasing rule’ Orszag [1969]. The accuracy

of the simulations was controlled by ensuring that the integrals of motion (3.9, 3.10)

remain constant with the error not exceeding O(10−4).

3.5.3 Evolution scenarios

On obtaining in §3.4 nonlinear neutral curves separating the domain of collapse and

decay, we verified the findings by numerical simulations of the evolution of axially

symmetric Gaussian pulse initial conditions (3.11). By choosing the initial pertur-

bations slightly above and slightly below the curve, we confirmed that, indeed, the

initial perturbations with the amplitudes exceeding the threshold collapse, that is,

such perturbations evolve into a short-lived pattern which tends to a localized self-

similar solution with a point singularity. The ‘subcritical’ initial conditions decay,

although a temporary transient growth, sometimes substantial, can also occur.

In figures (3.4) and (3.3), we illustrate a typical evolution of a collapsing pulse

for a localized initial condition. Figure (3.3) shows the typical time dependence of a

collapsing pulse amplitude simulated for the axisymmetric Gaussian initial condition

and D = 4. Note that for most of its evolution the amplitude grows slowly, the sharp

growth occurs just immediately prior to the singularity. The figure also gives a good
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Figure 3.3: Example of time evolution of the amplitude of a collapsing pulse with
finite D. Blue dashed line: simulated evolution of the amplitude of a collapsing
pulse with the Gaussian initial condition (a = 1.1340, σ = 25) for D = 4. Red solid
line: the self-similar solution (3.18) for D =∞.

idea how surprisingly well the self-similar solution (3.18) of the 2d Benjamin-Ono

equation captures the evolution governed by the 2d ILW equation. A complementary

view of the evolution is provided by Figure (3.4), which shows a sequence of snapshots

of a collapsing pulse.

Here, we emphasize two notable features. Although the initial condition is per-

fectly axially symmetric, the emerging pattern on figure 3.5 is not: at the pedestal,

the pulse radiates at two distinguished directions; the resulting pattern resembles

‘hair-pin’ or ‘lambda’ vortices routinely observed in the wind tunnels (e.g.Kachanov

[1994]). The top of the pulse evolves in an axially symmetric self-similar manner

tending to a point singularity at the end. Asymmetric initial conditions also have

these properties.
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Figures 2.8 and 3.5 are showing the evolution of the perturbation cross-sections for

the semi-infinite 2.8 and confined cases. At the initial moment (t=0) the perturbation

is the same axially symmetric gaussian lump. A quick comparison enables us to make

the following qualitative observations. The same well-confined initial lump is laterally

dispersing quite differently. In both cases, during the evolution, we see a sequence

of different patterns which at the foot of the perturbation resemble hairpin vortices

usually observed in wind tunnel experiments during the laminar-turbulent transition.

In the confined case these patterns are more pronounced. In contrast, in both cases,

the top part of the perturbations becomes more and more symmetric as the perturba-

tion approaches the collapse. As expected near the collapse when nonlinear localizing

effects dominate over dispersion, all the patterns evolve into a well-localized axially

symmetric shape before their eventual collapse. We could summarise the differences

by saying that confinement of the boundary layer strongly affects the cross-section

evolution, it results in the emergence of quite complicated patterns at the foot of

collapsing lumps. In contrast, the self-similar evolution near the singularity remains

qualitatively similar, the pulses tend to become axially symmetric.
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(a) t=1 (b) t=30

(c) t=60 (d) t=100

Figure 3.4: Example of evolution of A(x, y, t) for a collapsing pulse with the
Gaussian initial distribution for the initial conditions and parameters of Figure 3.3
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Figure 3.5: Evolution of the amplitude cross-sections of a collapsing pulse with
Gaussian initial distribution taken at six-different moments showing hair-pin or
lambda vortices. The initial conditions are the same as in figure 3.4.

3.6 Conclusions

In this chapter we examined collapses in a confined homogeneous boundary layer as

described by 2d-ILW equation. This equation is a member of a broader family of

two-dimensional nonlinear evolution equations derived in Voronovich et al. [1998],

the 2d-ILW equation describes evolution of weakly nonlinear long-wave perturba-

tions of a generic boundary layer in homogeneous fluid confined between two parallel

planes separated by a distance D(D � d) for a wide range of the Reynolds numbers.

In contrast to its well studied 1d reduction, the 2d-ILW equation has never been

studied, apart from finding numerically its localized 2d axially-symmetric solitary

wave solutions in Voronovich et al. [1998]. In this section based on our analytical

and numerical examination of collapses of 3d perturbations in 2d-ILW equation we

summarise our findings.

1. We have shown using the methodology of D’yachenko and Kuznetsov [1995],

that within the framework of the 2d-ILW equation the localized initial per-

turbations with negative values of the Hamiltonian H collapse for all non-zero

values of parameter D. That is, we showed that a wide class of initial condi-

tions evolves into growing coherent patterns resembling ‘hairpin vortices’ and
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‘spikes’ often observed in aerodynamic tunnels Kachanov [1994]. These pat-

terns collapse (blow up in finite time) in a self-similar manner, forming a point

singularity.

2. We examined this scenario of collapse by numerically simulating the 2d-ILW

equation. By using the criterion H = 0, which we verified numerically, we

delineated the domains of collapse and decay in the a, σ,D parameter space.

For axially symmetric Gaussian and Lorentzian initial distributions the results

proved to be qualitatively similar and numerically close and can be summa-

rized as follows. For large D the amplitude threshold athr as a function of

the horizontal scale of the initial distribution σ is prescribed by a hyperbola:

athr = const/σ. Any decrease of D raises the threshold. For small D, when

the 2d ILW equation tends to the Zakharov-Kuznetsov equation, the threshold

ceases to depend on σ and tends to infinity as 1/D.

3. Our main conclusion is that physically relevant collapses are possible only for

relatively large D and σ, because the threshold for small values of D and σ is

too high for any part of the evolution leading to collapse to be weakly nonlinear.

We also recall that the derivation of the 2d-ILW equation itself breaks down

for small D.

4. The initial conditions for the solitary waves has no amplitude threshold. For

example if we choose the lump solitary wave solutions reported in Voronovich

et al. [1998] as our initial condition, then their Hamiltonian is always negative,

hence, all such initial conditions collapse, whatever the initial amplitude. Thus,

for this class of initial perturbations there is no amplitude threshold. In fact,

there is no contradiction with the conclusions obtained for simple shape initial

distributions, just when σ = σ(a), the picture becomes somewhat distorted: for

the lump solitons of Voronovich et al. [1998], σ →∞ as a→ 0. That is, for the

infinitely long initial perturbations of whatever shape the amplitude threshold

tends to zero.



Chapter 4

Nonlinear dynamics of

three-dimensional(3d) long-wave

perturbations in weakly stratified

boundary layers

4.1 Introduction

In the previous chapters nonlinear dynamics of linearly decaying 3d long-wave per-

turbations in a generic unidirectional boundary layer flow has been examined. The

main results are the novel Whitham-type evolution equations which under certain

conditions predict collapse of initial 3d perturbations. The boundary layers are often

stratified both in nature, e.g. surface and bottom boundary layers in the ocean (the

surface boundary layer becomes stratified because of the direct solar heating and

interaction with atmosphere [see Miropol’Sky [2001], Komen et al. [1996], Soloviev

and Lukas [2013]], gets buoyancy because of air bubble entrainment from breaking

92
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wind-wave, while the bottom layer becomes stratified through entrainment of sedi-

ments) and atmosphere (there is a density stratification in the atmospheric boundary

layer), there are many examples of stratified flows in the engineering context. In this

chapter we examine a generic weakly stratified semi-infinite boundary layer leaving

aside the issue of links of this model to specific geophysical and engineering contexts.

To our knowledge there was no studies of weakly stratified boundary layers with the

small Richardson numbers (Ri). Physically in the context of hydrodynamic stability,

Richardson number is a ratio between the square of buoyancy force (N2(z)) to the

square of shear ((U ′)2). Often the flows with the Richardson number less than 1/4

are considered to be linearly unstable, although this condition is just the necessary

condition for the linear instability and not sufficient [see e.g., Miles [1961], Howard

[1961]]. In our consideration the linear instabilities play no role in virtue of the same

arguments as in the case of homogeneous boundary layers: the growth rates of long-

wave perturbations are too small compared to the time scales of nonlinear dynamics

we are focussing upon.

The main question we want to address is whether the account of weak stratification

changes qualitatively the nonlinear dynamics of 3d long-wave perturbations. The

specific open questions we aim at clarifying are:

1. Can the effect of weak stratification on boundary layer 3d long-wave dynamics

be captured by a single evolution equation?

2. Is the boundary layer collapse found for the homogeneous flow sufficiently ro-

bust to survive in the presence of weak stratification?

3. If the collapses are possible, in what ways do they differ from the collapses in

the homogeneous boundary layer? What is the role of the stratification?

To address these questions, in this chapter we derive a novel 2d nonlinear evolution

equation which is essentially two-dimensional Whitham type equation with explicit

account of stratification in the boundary layer. We also take into account the viscous

linear decay and examine its role in the evolution of perturbations. By numerical

simulations of the derived equation we show that an initial localised perturbation
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of any given shape collapses, blows up forming a point singularity in finite time,

provided its initial amplitude exceeds a certain threshold specific for each particular

initial shape and the stratification. The initial perturbations exceeding the threshold

collapses, while the perturbations with the amplitudes below the threshold - decay.

Such collapses might be a plausible mechanisms of laminar-turbulent transition. We

find that indeed the collapses occur much faster than linear instabilities in stratified

flows when Richardson number is less than 1/4. Linear stability of stratified shear

flows has been studied for many years, primarily in the inviscid setting, and is sum-

marised in many monographs and reviews [see. e.g., Howard and Maslowe [1973],

Turner [1979], LeBlond and Mysak [1981], Carpenter et al. [2011]]

4.1.1 Linear stability of waves in stratified shear flows

The interplay between shear and buoyancy force plays a key role in the dynamics of

a multitude of boundary layers including near-surface layer of the ocean. The shear

effect creates a destabilizing effect, while the buoyancy tends to stabilize the distur-

bance created by the shear effect. The most fundamental basic model to examine

the effects of buoyancy is a stratified, plane parallel shear flow which is a classical

problem of hydrodynamics (see, for example, Drazin and Reid [2004]).

Numerous linear inviscid models have been thoroughly studied with the focus on the

possibility of unstable modes in stratified shear flows (e.g. Turner [1979], Carpenter

et al. [2010] Carpenter et al. [2011]). Among the most studied models of stratification

are two layer models flows of different densities and shear profiles, these models

revealed the existence of unstable modes either through Kelvin-Helmholtz instability

or Holmboe instability (H-I and KH-I)[see Holmboe [1962], Drazin and Reid [2004],

Carpenter et al. [2011]].

4.1.1.1 Introduction to linear stability and Taylor-Goldstein equation

In the context of geophysical fluid dynamic, shear instability is known to be important

for understanding the physics underpinning transition to turbulence and mixing in
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the atmospheric and oceanic boundary layers. Since oceanic and atmospheric flows

are generally density stratified, the instability process often involves the interplay of

shear and density stratification. The first step towards the study of a stratified shear

flow is to perform a linear stability analysis to determine whether small perturbations

applied to the flow will grow in time. This has been carried out in many contexts

primarily using the well known Taylor-Goldstein equation that was derived as an

extension of the Rayleigh equation to incorporate variations in density. There are

well known three types of linear instabilities in the inviscid stratified shear flows:

Kelvin-Helmholtz (KH) (in its nonlinear stage it produces overturning billows through

vorticity-vorticity interaction), Holmboe (H) instability results from the interaction

of a vorticity and a gravity wave and Taylor-Caulfield (T-C) for two interacting

internal gravity waves. A general classification of the unstable interactions in inviscid

stratified shear flows was given in [e.g Caulfield [1994], Carpenter et al. [2010]] in

terms of three fundamental mechanisms: (i) the Kelvin-Helmholtz (KH) interaction of

two vorticity waves, (ii) the Holmboe (H) interaction of an internal gravity wave and a

vorticity wave, and (iii) the Taylor-Caulfield (TC) interaction of two internal gravity

waves. The most common analytical tool used to investigate the linear stability

is the normal mode approach. The equations of motion (the Navier-Stokes or Euler

equations) are first linearized around a plane parallel shear flow, and after performing

the Fourier transform with respect to the streamwise and spanwise spatial variables

and imposing appropriate boundary conditions, analysis of stability reduces to the

analysis of the resulting boundary value problem. Since the equations are linear the

evolution of every harmonic could be studied separately. By means of the normal

mode approach, one can determine the phase velocity c = cr + ici of the internal

waves, together with their growth rates (stable, unstable and neutral modes). The

real part cr represents the phase speed of the perturbation, while a positive imaginary

component ci indicates an exponential growth in time, with a growth rate given by the

imaginary component of the complex frequency ωi = kci. The biggest shortcoming

of linear stability analysis is that it is only valid when the perturbations are very

small. When the amplitudes become larger, the nonlinear effects can accumulate and

become dominant; this case goes beyond the domain of applicability of linear theory.
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It is therefore very important and reasonable to begin the analysis of parallel flows

with the linear analysis in order to understand the nature of the modes that are likely

to grow or become neutral in case of a disturbance. In inviscid stratified shear flows,

the main equation that describes the normal modes for linear stability is the Taylor-

Goldstein equation with the appropriate boundary conditions. In our study, we will

focus primarily on the stably stratified shear flow, meaning that the density variation

with depth is considered and the Boussinesq approximation can be applied. The

original form of Taylor-Goldstein equation was first derived in 1931 independently

by Taylor and Goldstein [Craik [1988]] in the context studies of stability of stratified

shear flows; it is the same form that is still being used today. The Taylor-Goldstein

(TG) equation is derived from the linearized Euler equations, under the assumptions

of inviscid, Boussinesq fluid; the equation for the vertical structure is linearized about

vertical profiles of horizontal velocity and density representing the basic state. Two

boundary conditions supplementing the TG equation yield the TG boundary value

problem. The normal mode analysis to the TG boundary value problem has revealed

its properties in terms of stable, unstable and neutral modes of the internal waves in a

stratified shear flow. The coefficients of the equation have a singularity at the critical

value z = zc, where the horizontal value of the phase speed c = U(zc), this makes

the TG boundary value problem singular. The TG equation is not easy to handle

analytically, asymptotically and numerically for arbitrary profiles of stratification

and shear. Very few analytical solutions exist, primarily, for special circumstances

with piece-wise and constant profiles of shear and stratification. Previous studies

have shown that the use of Frobenius expansion [e.g. LeBlond and Mysak [1981];

Sutherland [2010]; Massel [2015]] in solving the TG boundary value problem reveals

the behavior of its solutions near the critical value zc. It has been shown that for

inviscid plane-parallel flows the Richardson number Ri

Ri =
N2

(U ′)2
. (4.1)

where N2 is the buoyancy (Brunt–Väisälä) frequency squared and U ′ is the basic flow

shear, is the key parameter controlling the stability of the normal modes in stratified

shear flows. When Ri > 1
4

for all z the flow remains stable, while if Ri < 1
4

for for
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some z, the flow might become unstable. When Ri = 0, the scenario is somewhat

complicated since we could have neutral modes belonging to continuous spectrum and

to the discrete spectrum. When there are discrete neutral modes we will necessarily

have also unstable modes. We also do have unstable modes for Ri = 0 when the shear

has inflection points (see the Rayleigh criterion). Hence the TG BVP can be used

to predict the dispersion relation and the structure of the internal waves in inviscid

stratified shear flows for stable, unstable and neutral solutions.

We conclude our brief overview of linear stability of stratified flows by pointing to the

outstanding questions relevant for our study. To our knowledge there are practically

no studies of the viscous weakly stratified flows with small Richardson numbers, the

only exception we are aware of is the work by Danyi [2018]. In particular, there was

no attempt of obtaining asymptotic expansion in small wave numbers to extend the

results established for the zero Richardson number Healey [2017]. In principle, it is

straightforward, since the weak stratification enters into the boundary value problem

as a regular perturbation. However such an analysis would be quite involved and

is beyond the scope of the present study. For our purposes it would be sufficient

to know that the growth rates of longwave perturbations with wavenumbers O(ε)

remains to be O(ε3) as in the case of homogeneous flows. Although we do not have

the rigorous proof, there are strong arguments that this is the case: the account of

weak stratification acts as a regular perturbations and is expected to decrease the

growth rate.

4.1.2 Long nonlinear waves in stratified shear flows

To our knowledge there are very few works on the study of the effect of shear on soli-

tary waves taking into account both stratification and shear effects in the boundary

layer. The pioneering work was conducted by Maslowe and Redekopp [1980]. They

considered the propagation of solitary waves in the presence of shear within a thin

strongly stratified boundary layer and weak stratification outside the infinite bottom

layer. Nonlinear internal waves propagating along a shallow thermocline above a

weakly stratified deep lower layer may radiate internal waves into the lower layer,
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thereby damping the nonlinear waves. This problem was formulated by Maslowe

and Redekopp [1980], who derived the inhomogeneous Benjamin-Ono equation and

found adiabatic solutions for the decay rate of the solitary waves of the homogeneous

equation. For a comprehensive review of observation and laboratory experiment on

long nonlinear internal solitary waves with a sole focus on KdV models [see Helfrich

and Melville [2006]]. The scenario is quite distinct to the work in this chapter in the

following respects:

1. The Maslowe & Redekopp (1980) stratification was assumed to be strong (Ri '

1). Here we focus on the situations with Ri� 1.

2. The viscous effects were ignored, in our consideration their account is crucial.

3. Maslowe & Redekopp (1980) assumed weak stratification outside the boundary

layer; we assume none.

4. Their model was concerned with propagation of one-dimensional (1d) perturba-

tion. Here we consider essentially two-dimensional (2d) model with comparable

streamwise and span-wise scales.

Taking into account these factors becomes apparent in comparing laboratory mea-

surements and the simplest two-layer inviscid KdV models. In such cases the Reynolds

numbers may be considered large but finite that viscous boundary-layer effects (in-

cluding the interface) can be formulated to modify the evolution equation, with sat-

isfactory results when compared with experimental measurements.

4.2 The Model, Assumptions, Scaling and Asymp-

totic scheme

4.2.1 Model Formulation

We consider the evolution of three-dimensional localised finite-amplitude perturba-

tions of a steady unidirectional boundary layer shear flow U adjacent to an infinite
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flat boundary. Inside the thin boundary layer we have a weakly decaying stratifica-

tion N2(z) that is localised in the main boundary layer. The motion is governed by

the Standard Navier-Stokes equations for incompressible fluid of variable density ρ,

ρ = ρ0(z) + ρ̄(x, y, z, t); |ρ̄| � ρ0, mass conservation equation and incompressibility

equation. In this section the notation ρ0 represents equilibrium density or reference

density that depends only on the fast vertical scale z while ρ̄ is the perturbation

density of the fluid that depends on both streamwise and spanwise coordinates x, y

and vertical coordinate z as well as time t. In the Cartesian frame with the fluid in

the half space z > 0 and with x and y directed streamwise and spanwise, respectively,

the equations take the form,

ρ0[Dtu+ wU ′] + px = −ρ̄[Dtu+ wU ′]− ρ0(u · ∇)u− ρ̄(u · ∇)u+ ν∇2u (4.2a)

ρ0Dtv + py = −ρ̄Dtv − ρ0(u · ∇)v − ρ̄(u · ∇)v + ν∇2v (4.2b)

ρ0Dtw + pz + ρ̄g = −ρ̄Dtw − ρ0(u · ∇)w − ρ̄(u · ∇)w + ν∇2w (4.2c)

Dtρ̄+ wρ′0 = K∇2ρ̄− (u∇)ρ̄ (4.2d)

∇ · u = 0. (4.2e)

where U = (U(z), 0, 0) is the basic flow, u = (q, w) = (u, v, w) and p are, re-

spectively, the velocity and pressure perturbations, Dt = ∂t + U∂x is the material

derivative. ρ0 is the equilibrium density in equation (4.2), ρ̄ is perturbation density.

The notation ∇2 = ∂2
xx + ∂2

yy + ∂2
zz stands for the three-dimensional Laplacian oper-

ator. The gravitational acceleration g is a constant, ν is the fluid viscosity, while K

is the mass diffusivity coefficient, which is the driving force for diffusion.

The prime denotes the derivatives with respect to z. We impose no particular re-

strictions on U (z) apart from the assumption that the flow is plane parallel (in this

work we exclude consideration of non-parallel effects and three-dimensional bound-

ary layers). In contrast to the original derivations in (Shrira [1989], Voronovich et al.

[1998]), we do not require the profile U(z) to have no inflection points. The boundary

conditions for the perturbations u at z = 0 are of two main types:
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1. The “no-flux” (“rigid lid”) conditions typical of environmental flows,

w(z = 0) = 0, (4.3)

complemented by the constant stress condition

u′(z = 0) = v′(z = 0) = 0. (4.4)

2. The more common “no-slip” conditions imply

u(z = 0) = 0. (4.5)

The boundary condition at infinity is that of vanishing perturbation velocity, it is

the same for both types of the boundary layers

u→ 0, as z →∞. (4.6)

We complete the formulation of our initial problem by specifying the perturbation

velocity field at the initial moment, u(x, 0). We are primarily interested in localised

initial perturbations

u(x, 0)→ 0, as x, y →∞. (4.7)

The Navier-Stokes equations (4.2) with the initial and boundary conditions (4.5,

4.6) or (4.3, 4.4, 4.6) differing only in the boundary condition at the surface z = 0

constitute the mathematical formulation of the problem.

The conventions for the “no-slip” and “no-flux” boundaries differ. Usually, for the

no-flux case the maximum of U(z) is at the surface z = 0 with U(z) vanishing as

z → ∞, while for the no-slip case, U is vanishing at z = 0 and tends to a finite

“free stream velocity” U∞ as z →∞. Mathematically these conventions are equally

legitimate, one can switch from one to another by a galilean transformation, as is

illustrated by figure (4.1). We assume the boundary layer profile U(z) to be given,

but do not specify it until an illustrative example is needed.



Chapter 4. Collapses(Blow-up) in weakly stratified boundary layers 101

x

y

z

z = 0

z = d

N0 U(0)

N(z)
U(z)

x

y

z

z = 0

z = d

N0 U
�

N(z) U(z)

(a) (b)

Figure 4.1: Sketch of geometry of a generic boundary layer profile with the
shear and stratification localised in a thin layer of thickness d. (a) A typical free
surface boundary layer with the maximum of velocity is attained at the surface
Umax = U(0). (b) Sketch of a boundary layer with a no-slip boundary. U∞ is the
free stream velocity. N0 is a typical value of the buoyancy frequency taken at the
boundary

4.2.2 Scaling

We begin by specifying the scaling. The basic flow U(z) has a characteristic velocity

we denote as V0. N0 is a typical value of the buoyancy frequency taken at the

boundary. For the no-flux/constant stress boundary layers we choose it as the speed

at the boundary U(0), while for the no-slip case the natural choice for V0 is U∞. The

characteristic streamwise and spanwise scales of perturbations we denote as L, while

as the cross-boundary scale we choose the boundary layer thickness d. Here we are

considering long perturbations with L � d. We non-dimensionalise the dependent

variables as follows:

ũ =
u

V0

, ṽ =
v

V0

, w̃ =
w

V0

, x̃ =
x

L
, ỹ =

y

L
, z̃ =

z

d
, Ũ =

U

V0

, t̃ =
V0

L
t,

Ñ =
N

N0

, p̃ =
p

ρ0V 2
0

, ρ̃ =
ρ

ρ0

. (4.8)

where quantities with tildes denote non-dimensional variables. To proceed, we first es-

timate the magnitudes of the perturbation from the basic governing equations ((4.2)).

To this end we first write the incompressibility equation in non-dimensional form
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omitting the tildes. Then the magnitude of the vertical velocity perturbation [w ]

expressed in terms of the magnitudes of the horizontal components [ q ],

[w ] =
d

L
[ q ]. (4.9)

The momentum equation (4.2a) yields the characteristic time scale,

[ t ] =
L

V0

. (4.10)

Next we multiply mass conservation equation (4.2d) by gravitational acceleration g

and divide by the reference density ρ0, and substitute N2 = − g
ρ0

∂ρ0
∂z

for buoyancy

frequency using Boussinesq approximation to get the expression below,

g Dt

(
ρ̄

ρ0

)
− wN2(z) = g

K

ρ0

∇2ρ̄− g

ρ0

(u∇)ρ̄, (4.11)

To proceed we express (4.11) in dimensionless form and substitute equation (4.9) and

(4.10), re-arrange to get the expression of typical density perturbation magnitude

[
ρ̄

ρ0

]
=
N2

0d

g

[ q ]

V0

, (4.12)

In the derivation, we will employ the Boussinesq approximation, whereby, if not mul-

tiplied by g, the terms in the equations due to the equilibrium density ρ0 variations

are negligibly small. This approximation is valid in oceanic and atmospheric applica-

tions where density variations are small. The Boussinesq approximation holds under

the assumptions

N2
0

g/d
� [ q ]

V0

, (4.13)

This condition allows us to drop small nonlinear buoyancy terms. Stratification is

considered to be localised in the boundary layer. The viscosity is small but finite, it

is supposed to affect, but not to dominate, the dynamics of perturbations of chosen
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scales inside the boundary layer at the timescale comparable to that of nonlinear

effects.

After some algebra, upon eliminating pressure from the equations (4.2), we get a

single nonlinear equation for the vertical velocity perturbation w,

D2
t ∂

2
zz w−U ′′Dt ∂xw = N −

(
N0 d

V0

)2

N2∇2
⊥w+

(
d

L
Re

)−1

Dt ∂
4
zzzzw+M. (4.14)

where the horizontal gradient operators ∇⊥ = (∂x, ∂y) and ∇2
⊥ = ∂2

xx + ∂2
yy while,

N =
[ q ]

V0

Dt ∂z∇⊥[(u∇)q]−
(
d

L

)2

D2
t ∇2

⊥w −
(
d

L

)2
[ q ]

V0

Dt∇2
⊥(u∇)w,

M =

(
N0 d

V0

)2
[ q ]

V0

∇2
⊥(u∇)ρ̄+ Sc

(
N0 d

V0

)2
[ q ]

V0

∇2
⊥ρ̄
′′, Re =

ρ0V0d

ν
,

The dimensionless parameter, Sc is the Schmidt number defined as the ratio of the

kinematic viscosity and mass diffusivity,

Sc =
K

V0 d
,

For more detailed derivation of equation (4.14) refer to Appendix ??. Note, that

the equation is closed only in the linear approximation and just the leading order

viscous term and the leading order density diffusion term are retained. We re-iterate

here that the diffusion of density (mass) contribution with a dimensionless number

Sc ∼ O(1) as the coefficient, will be shown to be negligible in our asymptotic analysis

since density is a ‘passive scaler’. It will be dropped after the specification of small

parameters. This will enable us to justify why the two terms of equation (4.14)

denoted by M are negligibly small in our analysis.

Thus, in the most general formulation of the problem, there are four independent non-

dimensional parameters specifying respectively the smallness of nonlinearity ([ q ]/V0 =

ε � 1, dispersion (d/L = εD � 1), stratification (
√
εb = N0 d

V0
� 1) and dissipative

effects (Re−1 � 1). Aiming to describe dynamics of three-dimensional perturbations

in the boundary layer taking into account nonlinearity, dispersion, stratification and
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viscous effects in the distinguished limit we set

ε =
[ q ]

V0

� 1, εD =
d

L
= O(ε),

√
εb =

N0 d

V0

� 1, Re−1 ∼ d

L

[ q ]

V0

= O(ε2).

(4.15)

This key assumption enables us to proceed with deriving the evolution equation

employing an asymptotic expansion in terms of the single small parameter ε and

uniquely determines the scaling of dependent variables in the boundary layer.

4.2.3 Asymptotic expansion

To rationalise the specific choice of the asymptotic expansion in powers of ε we will

adopt, we use the scales derived in the previous Chapter 2 of the thesis for pressure

p, streamwise and spanwise velocities u, v, vertical velocity w (see Eqs. (2.13)) and

in addition derive the scaling of density from the linearised inviscid reduction of the

Navier-Stokes equation. First, it is straightforward to express perturbation density

in terms of vertical velocity w from the linearised equation (4.11) according to,

gDt

(
ρ̄

ρ0

)
= N2w, =⇒ g(U − c)∂xρ̄ = ρ0︸︷︷︸

O(1)

N2w︸︷︷︸
O(ε3)

, ρ̄ ∼ O(ε2). (4.16)

Therefore, we adopt the following asymptotic expansion,

u = U(z) + εu1 + ε2u2 + ε3u3 + ... (4.17a)

w = ε2w2 + ε3w3 + ε4w4 + ... (4.17b)

v = ε3v3 + ε4v4 + ... (4.17c)

p = ε3p3 + ε4p4 + ... (4.17d)

ρ̄ = ε2ρ̄2 + ε3ρ̄3 + ... (4.17e)

where ui, vi, wi, pi and ρ̄i are O(1) functions of x, y, z, t.
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The scaling (4.17) will be employed inside the boundary layer, outside the boundary

layer and in the immediate vicinity of the boundary, in the viscous sub-layer, the

scaling is different and will be specified in the next section.

4.3 Derivation of the nonlinear evolution equation

In this section we derive the nonlinear evolution equation for longwave three-dimensional

perturbations employing ‘triple deck’ asymptotic approach (see e.g., Ruban [2017] ,

Sobey [2000]). As is common for this approach, we distinguish three domains in z,

often called decks, with different balance between the terms in (4.14). The domains

are sketched in figure (2.3) [ see Chapter 2 for detail ]. In contrast to the triple

deck convention we do not scale our variable in terms of powers of inverse Reynolds

number, in our context we prefer to use the scaling in powers of ε. The derivation

largely follows that in (Shrira [1989], and Voronovich et al. [1998]), with three major

differences:

1. The presence of weak stratification in the boundary layer (main deck) is taken

into account;

2. The case of the ‘no-slip’ boundary conditions is incorporated into consideration;

3. No assumption regarding the absence of inflection points is required.

We begin with analysis of the motion in the main deck.

4.3.1 Inside the boundary layer. The main deck

The scaling ((4.17)) based upon the distinguished limit which balances nonlinearity,

weak dispersion, stratification and viscosity, provides the basis of our asymptotic

analysis inside the main deck. On substituting the already adopted relations between

the small parameters εD = εb = ε and introducing re-scaled Reynolds number denoted
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as Re∗, Re∗ = ε2Re, into equation (4.14), we make the scaling of each term more

explicit,

D2
t ∂

2
zz w−U ′′Dt ∂xw = εDt ∂zNL−εN2∇2

⊥w+
ε

Re
Dtw

iv−ε2D2
t ∇2

⊥w+M1, (4.18)

where ∇⊥ = (∂x, ∂y), w
iv ≡ ∂4

zzzzw,

M1 = ε2∇2
⊥(u∇)ρ̄+ ε2Sc∇2

⊥ρ̄
′′ − ε3Dt∇2

⊥(u∇)w,

and,

NL = [∂x(u∂xu+ v∂yu+ w∂zu) + ∂y(u∂xv + v∂yv + w∂zv)],

= [ε∂x(ε
3u∂xu+ ε5v∂yu+ ε3w∂zu) + ε∂y(ε

5u∂xv + ε7v∂yv + ε5w∂zv)]

= ε4[∂x(u∂xu+ w∂zu)] + ε6[∂x(v∂yu) + ∂y(u∂xv + w∂zv + ε2v∂yv)].

Although the streamwise and spanwise scales are assumed to be comparable, accord-

ing to ((4.17)) the spanwise velocity is two orders of magnitude smaller, which enables

us to split the nonlinear term NL into three parts and neglect the O(ε6), O(ε7) and

O(ε8) terms. The extra small terms ε2∇2
⊥(u∇)ρ̄, ε2Sc∇2

⊥ρ̄
′′ and ε3Dt∇2

⊥((u∇)w),

on the right-hand-side of (4.18) corresponds to O(ε7) and above will also be ne-

glected in our further analysis. Upon these simplifications, recalling that w = O(ε2),

we re-write equation (4.18) explicitly pulling out ε,

D2
t ∂

2
zz w − U ′′Dt ∂xw︸ ︷︷ ︸

terms ofO(ε4)

= ε5Dt ∂z ∂x[u∂xu+ w∂zu]− ε5N2∇2
⊥w + ...

+
ε5

Re
Dtw

iv − ε6D2
t ∇2

⊥w. (4.19)

Since v = O(ε3) and u = O(ε1), it is easy to see that by virtue of the continuity

equation: ∂xu = −∂zw + O(ε4). To solve equation (4.19) we adopt a moving coor-

dinate frame and use standard multiple-scale method by introducing fast and slow

non-dimensional independent variables,
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Z1 = εz̃ =
1

L
z, τ = ε

V0

L
t, x̃ =

x− ct
L

, ỹ =
y

L
, z̃ =

z

d
, c̃ =

c

V0

(4.20)

where c is the speed of the long waves which will be specified later and the tildes

denote non-dimensional quantities. Upon the introduction of the slow-spatial variable

Z1 and slow time τ , it is easy to see that the material derivative D2
t and ∂2

zz in terms

of the tilde variables takes the form,

D2
t =

V 2
0

L2
[(Ũ− c̃)∂x̃+ε∂τ ]

2 =
V 2

0

L2
D̃2
t ∼ ε2D̃2

t , ∂2
zz =

1

d2
(∂z̃+ε∂Z1)

2 =
1

d2
∂2
z̃z̃ ∼ ∂2

z̃z̃,

From this moment we operate only with non-dimensional variables and omit tildes.

The equation for the z− component of velocity w (4.19) reduces to

D2
t ∂

2
zzw − U ′′Dt∂xw = εDt∂z∂x[u∂xu+ w∂zu]− εN2∇2

⊥w +
ε

Re
Dtw

′′′′ − ε2D2
t∇2
⊥w,

(4.21)

where

Dt = (U − c)∂x + ε∂τ , ∂z = ∂z + ε∂Z1 . (4.22)

We assume the mean flow U(z) and stratification N(z) to be entirely localised in the

boundary layer and, correspondingly, to depend only on the fast scale z. The situa-

tions with U , N having also dependence on the slow scale can be easily incorporated

into the scheme, but are not considered here.

Here, for the time being, for both the free-surface-type flows with the no-flux bound-

ary conditions and the flows with the no-slip conditions we impose the no-flux con-

dition at z = 0. We will deal with the true boundary conditions at the boundary

in section §4.3.3. We also require vanishing of velocity as Z1 → ∞. In addition,

we introduce ‘inner boundary conditions’, the condition of matching at the outer

boundary of the boundary layer. Thus,

w(z = 0) = 0; w(z →∞) = const = w(Z1 → 0), w(Z1 →∞)→ 0. (4.23)

We will seek an asymptotic solution to the boundary value problem (4.21), (4.22)
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and (4.23) employing power series in ε (4.17). On finding the solution to (4.21) for

w at a certain order in ε, we find u, v and p with the corresponding accuracy from

the basic equations,

Dtu+ wU ′ + px = −ε(u · ∇)u+
ε

Re
u′′ (4.24a)

Dtv + py = −ε(u · ∇)v +
ε

Re
v′′ (4.24b)

gDt

(
ρ̄

ρ0

)
= N2w + g

K

ρ0

∇2ρ̄− g

ρ0

(u∇)ρ̄ (4.24c)

∂xu+ ∂yv + ∂zw = 0 (4.24d)

It is important to re-iterate here, that from the density equation (4.24c) the variations

of ρ̄ feels the effect of velocity w but its leading order term containing buoyancy N2

only enters the equation for the velocity field w given by equation (4.21), while the

terms containing derivative and horizontal gradients of ρ̄ drops out. Therefore ρ̄

is a “passive scalar”. It is one of the key simplifications: the equation for ρ̄ splits

out. The solutions for u, v and p, accurate to a corresponding order in ε, are further

used for the derivation of the next order terms for w, the cycle is repeated as many

times as necessary. At the first step we get the following. On substituting (4.17)

into equation (4.21) and setting ε = 0, we see that in the leading order nonlinearity,

buoyancy/stratification, and viscous dissipation drop out. Taking into account (4.22)

we obtain for w2 the longwave limit of the Rayleigh equation,

(U − c)∂xx[(U − c)w′′2 − U ′′w2] = 0, (4.25)

where derivative with respect to the fast variable z are denoted by primes. It can be

easily seen from (4.25) that the x and z dependencies can be separated. Assuming

that the disturbance to be localized in the streamwise direction, similar to the Section

2 the general solution to equation (4.25) is convenient to present in the form,

w2 = (f(x, y, Z1) ∗ ∂xA(x, y, τ)) · (U(z)− c), (4.26)
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where ∗ designates the convolution of two functions

ϕ ∗ ψ =

∫ +∞

−∞

∫ +∞

−∞
ϕ(x̂, ŷ)ψ(x− x̂, y − ŷ)dx̂dŷ.

The analysis follows the same line as in chapter 2 of this thesis (see section 2.3.2).

Here, as it will be made explicit at the next step a few lines below, A(x, y, τ) is the

amplitude of the x-component of velocity perturbation, while the arbitrary function

f(x, y, Z1) in (4.26) is the general representation of a function of (x, y, Z1, τ) localized

or periodic in (x, y). The fundamental properties of the presentation (4.26) become

more transparent on making Fourier transform of the solution (4.26). The standard

way of representing a function of (x, y, Z1, τ) is to decompose it into a set of spatial

orthogonal functions with time-dependent amplitudes. We chose Fourier in (x, y)

and a particular function f specifying each Fourier mode that depends on the slow

cross-boundary spatial variable Z1. The specific dependence on the slow spatial scale

f(Z1) will be found below.

The boundary condition w2(z = 0) = 0 specifies the eigenvalue c,

c = U |z=0. (4.27)

The mode we are considering is to leading order a vorticity wave, modified in the

next orders by stratification and viscosity. To leading order its speed is the mean flow

velocity at z = 0, which is its maximal value for the typical ‘no-flux, constant stress’

flows and zero for the no-slip ones. In any case, it plays no role in our further analysis

since its only significance is in specifying the reference frame, it will be removed by

the galilean transformation at the next step. The slow function f(Z1) will be specified

later.

To proceed further, we first find the other components of perturbation wave field

from equation (4.24) taking into account the asymptotic expansion of (4.17),
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Substituting the leading order solution for w2 into (4.24) we get the other components

of the perturbation field,

u1 = −U ′(f ∗ A), (4.28a)

v2 = 0, (4.28b)

p2 = 0. (4.28c)

Note that (4.28a) clarifies the physical sense of amplitude A, it is indeed, up to

a factor −U ′, amplitude of the x-component of perturbation velocity. The above

relations show that to leading order the motion is extremely simple: the particles

of the vorticity wave motion oscillate, mainly, in the streamwise direction, while the

cross-boundary and, especially, spanwise velocities and pressure perturbations are

much smaller in the adopted long-wave approximation. This extraordinary feature is

specific for long vorticity waves (see Voronovich et al. [1998]). Such a simplicity of the

motion of interest in the leading order is the key element enabling for a remarkably

simple description of nonlinear dynamics of vorticity waves which we will discuss

below.

Substituting into (4.21) the expressions (4.26) for w2 and (4.28a) for u1 we get an

equation for w3,

w′′3 −
U ′′

U − c
w3 = −M U ′′

U − c
+

P

Re

U ′′′′

U − c
−Q k̃2 N

2(z)

U − c

− T [(U − c)2]′

U − c
+R

[(U ′)2 − (U − c)U ′′]′

U − c
, (4.29)

where,

M = (f ∗ Aτ ), P = (f ∗ A), Q = (f ∗ Ax), T = (fZ1 ∗ Ax),

R = (f ∗ A)(f ∗ Ax), k̃2 =
k2
x + k2

y

k2
x

(4.30)
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The subscripts x and τ stand for the corresponding derivatives. The buoyancy fre-

quency N2(z) is localised in the boundary layer. The specific dependence N2(z) is

arbitrary, the only requirement is

N2(z) → 0, as z →∞. (4.31)

while at the boundary if z = 0 the buoyancy frequency N(z = 0) = N0 is maximum.

The general solution to equation (4.29) can be written as,

w3 = M − T (U − c)
∫ ∞
z

dξ +B(U − c)
∫ ∞
z

dξ

(U − c)2

+
P

Re
(U − c)

∫ ∞
z

[
U ′′′

(U − c)2

]
dξ −Q k̃2 (U − c)

∫ ∞
z

[
S(ξ)

(U − c)2

]
dξ −RU ′. (4.32)

where ξ is a dummy variable of integration while the integral S(z) yields the contri-

bution from stratification,

S(z) =

∫ ∞
z

N2(z)dξ. (4.33)

B is an arbitrary constant specifying the “amplitude” of the second homogeneous

solution to the Rayleigh equation in the longwave limit. To eliminate singularity in

the integrals in (4.32), we chose B in such a way that the equation for w3 takes the

form,

w3 = M − T (U − c)
∫ ∞
z

[1− Y (U − c)−2]dξ +
P

Re
(U − c)

∫ ∞
z

[
U ′′′

(U − c)2

]
dξ...

−Q k̃2 (U − c)
∫ ∞
z

[
S(z)

(U − c)2

]
dξ −RU ′ (4.34)

where integration constant Y has been chosen to be the same for both types of the

boundary conditions. For the no-slip boundary U(0) = 0, it is chosen as,

Y = lim
z→0

(U − c)2 = c2 = U2|z=∞ = U2
∞ = U2

0 , N(z)|z→∞ = 0, (4.35)

where U∞ = U0 is free stream velocity for the “no-slip” boundary.
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For free surface or “no-flux” boundary the constant is chosen as,

Y = lim
z→∞

(U − c)2 = c2 = U2
0 . (4.36)

Next we proceed with the derivation of the evolution equation valid for both “no-

slip” and “no-flux” boundaries. To evaluate the singular integrals above in (4.34)

we assume that near the boundary z = 0 we can expand U − c as U ′(0)z = U ′0z

and U ′′′ ≈ U ′′′(0) 6= 0. It is important to note that for Blasius flow profiles the

third derivative of the mean flow taken at the surface vanishes, i.e. U ′′′(0) = 0,

but for pressure driven flows described by Falkner-Skan profiles we obtain a nonzero

constant [see e.g Schlichting and Gersten [2016]]. Upon applying the condition at

the boundary, w|z=0,Z1=0 = 0, to equation (4.34), after some algebra, we get an

equation for the amplitude A containing so far unspecified function f(Z1) of the slow

cross-boundary variable Z1,

(f(0) ∗ Aτ )− U ′(0)

((
f(0) ∗ A

)(
f(0) ∗ Ax

))
+

(
U2

0

U ′(0)

) (
fZ1(0) ∗ Ax

)
...

− k̃2

(
N2

0 d

2U ′(0)

) (
f(0) ∗ Ax

)
+

1

Re

(
U ′′′(0)

U ′(0)

) (
f(0) ∗ A

)
= 0 (4.37)

where f(0) ≡ f(x, y, Z1 = 0).

4.3.2 The outer flow

To specify the dependence of the solution (4.26) and (4.34) on the slow variable

Z1, first we need to proceed to the next order in ε in equation (4.21) for w2. The

procedure is nearly identical to that of Chapter 2. Following the same asymptotic

procedure and using (4.26) and (4.34) we express u, v, p in terms of amplitude A,

u2 = −Y (fZ1 ∗ ∇−2
⊥ Axx)(U − c)

−1 + (fZ1 ∗ A)U ′
∫ ∞
z

[
1− Y (U − c)−2

]
dξ
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+
1

2
(f ∗ A)2U ′′ + Ĝ2[P ]

S(z)

U − c
+ Ĝ2[P ]U ′

∫ ∞
z

(
S(z)

(U − c)2

)
dξ

− P̄U ′

Re

∫ ∞
z

(
U ′′′

(U − c)2

)
dξ − P̄

Re

U ′′′

(U − c)
, (4.38)

v3 = −Y (fZ1 ∗ ∇−2
⊥ Axy)(U − c)

−1 + Ĝ3[(f ∗ A)]S(z) (U − c)−1, (4.39)

p3 = Y (fZ1 ∗ ∇−2
⊥ Axx)− Ĝ2[(f ∗ A)]S(z), (4.40)

where Ĝ2 and Ĝ3 are integral operators, while P̄ = (f ∗ ∂−1
x A). In Fourier space the

integral operator Ĝ2 = k̃2 and Ĝ3 = k̂k̃2, where, k̂ = ky
kx

, P ,Y ,k̃2 and S(z) are given

by the expressions (4.30) and (4.33).

Now consider the next order term for the cross-boundary velocity, w4. After some

algebra it can be brought to the form,

∂x[(U − c)w′′4 − U ′′w4] = −(fZ1Z1 ∗ Axx)(U − c)2

− (f ∗ ∇2
⊥Axx)(U − c)2 + F (x, y, τ, z, Z1), (4.41)

where F (x, y, τ, z, Z1) given by a bulky expression tends to zero faster as z → ∞

than |z|−1. In contrast, for an arbitrary function of f(x, y, Z1) the first two terms on

the right-hand side of equation (4.41) do not tend to zero as z →∞. As a result, the

integration of (4.41) yields secular growth of the correction w4 as z →∞, which does

not allow the matching condition w(z → ∞, Z1) → const to be satisfied. We put

these secular terms to zero, which gives us an equation determining the dependence

of the unspecified yet function f on the slow variable Z1,

(fZ1Z1 ∗ Axx) + (f ∗ ∇2
⊥Axx) = 0. (4.42)
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The equation is complemented by the boundary condition at infinity

w(Z1 →∞) = 0. (4.43)

To find f(Z1) we perform the Fourier transform with respect to x, y in the boundary

problem (4.42) and (4.43). Making the Fourier transform of the convolution and

omitting the amplitude A, we get the boundary value problem,

∂2
Z1Z1

f̂(k)− k2f̂(k) = 0, (4.44)

with the boundary conditions,

f̂(k)|Z1→∞ = 0, f̂(k)|Z1=0 = 1. (4.45)

Here f̂(k, Z1) is the Fourier transform of f(x, y, Z1)

f(x, y, Z1) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
f̂(kx, ky, Z1)e(i(kxx+kyy))dkxdky, (4.46)

and k = |k|, k2 = k2
x+k2

y. The boundary condition f̂(k)|Z1=0 = 1 has been introduced

for convenience to normalize the motion in the outer deck f̂(kx, ky, Z1) near the

boundary. As one could anticipate, the motion in the outer layer is potential and

satisfies the Laplace equation (4.44). Hence, the boundary value problem (4.44),

(4.45) is easily solvable. Its solution satisfying the boundary condition (4.45) has the

form

f̂(k, Z1) = e−kZ1 Z1 →∞. (4.47)

Next we designate ∂Z1 f̂(k, 0) ≡ Q(kx, ky) and take into account that at the boundary

f̂(0) = δ(x)δ(y). The solution to equation (4.44) readily yields the kernel of the

integral operator Q(k) = −k in the long wave limit. Substituting these notations into

(4.37), we obtain nonlinear evolution equation for the amplitude of three-dimensional

long-wave boundary layer perturbations in the distinguished limit,

Aτ − α1AAx − β1 Ĝ1[Ax]− β2 Ĝ2 [Ax] + γ A = 0 (4.48)
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where α1 = U ′(0), β1 =
U2
0

U ′(0)
, γ = 1

Re
U ′′′(0)
U ′(0)

, β2 =
N2

0 d

2U ′
0
, and the dispersion operators

Ĝ1 and Ĝ2 in the integral form reads

Ĝ1[ϕ(k)] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
|k|ϕ(r1)e(ik(r−r1))dkdr1, (4.49)

Ĝ2[ψ(k)] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

k2

k2
x

ψ(r1)e(ik(r−r1))dkdr1 (4.50)

where, k = |k| =
√
k2
x + k2

y and k2 = k2
x + k2

y. The explicit account of viscous

dissipation and weak stratification yields both the Rayleigh friction type term and a

second dispersion term of buoyancy effect in the evolution equation. Coefficients α1

and β1 of (4.48) can be removed by rescaling in the next section to obtain the final

evolution equation that will form the framework of our study.

4.3.3 Viscous sub-layer

4.3.3.1 Divergence of the asymptotic expansion and Tollmien’s rescaling

Consider more closely behaviour of the main deck solutions u2 and v3 of (4.38) and

(4.39) as z → 0. Near the boundary as z → 0, we apply Taylor series to expand

(U − c) ≈ U ′(0) z to obtain,

u2 = −U
2
max

U ′(0)
(fZ1 ∗ ∇−2

⊥ Axx)
1

z
+
U2
max

U ′(0)
(fZ1 ∗ A)

1

z
+

1

2
(f ∗ A)2U ′′(0), (4.51)

v3 = −U
2
max

U ′(0)
(fZ1 ∗ ∇−2

⊥ Axy)
1

z
+ Ĝ3(f ∗ A)

N2
0 d

2U ′0

1

z
, (4.52)

First it is important to note that the last four terms due to stratification and viscosity

of equation (4.38) all cancel each other, hence we recover the same form of the singular

streamwise perturbation velocity equation (2.43) of the homogeneous case as z → 0

obtained in Chapter 2. In contrast to the streamwise perturbation velocity u2, the

spanwise component yields a new extra singular term due to stratification N0.

On substituting the simplified form of the singular terms of equation 4.51 (the same

form of simplification as in chapter two) and taking into account their inverse Fourier
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transform we obtain the ultimate simplification of the expression for u2,

u2 =
U2
max

U ′(0)
(fZ1(0) ∗ ∇−2

⊥ Ayy)
1

z
+

1

2
(f ∗ A)2U ′′(0). (4.53)

It is easy to see that uniformity of the asymptotic expansion employed in the previous

section breaks down as z → 0. Indeed, according to (4.53) and (4.52) velocity com-

ponents u2 and v3 diverge as 1/z, unless spanwise dependence of amplitude vanishes,

u2 ∼ 1/z, v3 ∼ 1/z. (4.54)

The cause of this singularity is the critical layer that coincides with the boundary in

the long-wave limit. It is obvious that in the generic case the scaling (4.17) adopted

for the main deck is invalid near the boundary. As outlined in Chapter 2, a quick fix

is to confine our consideration to quasi-planar perturbations, i.e. assume Ay � Ax.

Then the singular terms in the expressions for u2 and v3 given by equations (4.53)

and (4.52) drop into the next order.

In principle, it is also possible to derive a uniformly valid asymptotic solution for

generic perturbations as well. Here we just outline how to do this. To get rid of

the singularities we have to re-scale the variables appropriately and solve the Navier-

Stokes equations in the region immediately adjacent to the boundary and then match

them with the solutions already obtained for the main deck. By choosing the scaling

we choose different regimes and, correspondingly, different thicknesses of this region.

To our knowledge there was no studies of critical layer dynamics for weakly stratified

flows. Here, we follow the analysis of Chapter 2 and focus upon the regime where

viscosity is dominant, while nonlinearity is negligible. Here, as in Chapter 2, and

(Voronovich et al. [1998]), before that, we scale the critical layer thickness δ as:

δ = (εReU ′0)−1/3 ∼ ε1/3 (U ′0 = U ′|z=0),
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which ensures that δ is small compared to the O(1) overall thickness of the boundary

layer δBL. For further consideration it is crucially important that

1� δ � ε. (4.55)

which means that the thickness of viscous critical layer we are considering far exceeds

the thickness of nonlinear critical layer, while it is small compared to the boundary

layer thickness.

4.3.3.2 Re-scaling. Inner variable

To proceed with the study of the perturbation dynamics inside the viscous critical

layer we re-scale our variables as follows,

ξ =
z

δ
; T = U ′0τ ; U − c = δ U ′0 ξ + o(δ); N2 = (U ′0)2 N̂2,

u = U ′0û; v =
ε

δ
U ′0v̂; w = δ U ′0ŵ; p = ε(U ′0)2p̂, (4.56)

In terms of the new variables after some algebra, equations for w and the comple-

mentary Navier-Stokes equations for other components of velocity take the form,

ξ2 (U ′0)3 ∂2
xx ∂

2
ξξ ŵ + 2

ε

δ
ξ (U ′0)3 ∂2

xT ∂
2
ξξŵ =

ε

δ
ξ (U ′0)3 ∂ξ ∂

2
xx

[
û ∂x û+ ŵ ∂ξû

]
− ε (U ′0)3∇2

⊥ N̂
2 ŵ +

(εRe)−1

δ3
(U ′0)2 ∂x ξ ∂

4
ξξξξ ŵ (4.57a)

(U ′0)2 ξ ∂x û+
ε

δ
(U ′0)2 ∂T û+ (U ′0)2 ŵ +

ε

δ
(U ′0)2 p̂x =

− ε

δ
(U ′0)2

[
û ∂x û+

ε

δ
v̂ ∂y û+ ŵ ∂ξ û

]
+

(εRe)−1

δ3
U ′0 ∂

2
ξξ û (4.57b)
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ξ (U ′0)2 ∂x v̂ + (U ′0)2 ε

δ
∂T v̂ + (U ′0)2 p̂y =

− (U ′0)2

[
ε

δ
û ∂x v̂ + (

ε

δ
)2 v̂ ∂y v̂ +

ε

δ
ŵ ∂ξ v̂

]
+

(εRe)−1

δ3
U ′0 ∂

2
ξξ v̂ (4.57c)

U ′0 ûx +
ε

δ
U ′0 v̂y + U ′0 ŵξ = 0 (4.57d)

It easy to see that the only difference in the rescaled equations above compared to

those in chapter 2 is the appearance O(ε) stratification term in equation (4.57a).

Eliminating U ′0 and substituting δ = (εU ′0 Re)−1/3, while retaining only the leading

order O(1) terms and ε/δ correction terms, equation (4.57) can be written as,

(∂2
ξξ − ξ∂x)ŵ′′ =

ε

δ
( 2 ∂T ŵ

′′ − ∂ξ∂x(ûûx + ŵûξ)) (4.58a)

(∂2
ξξ − ξ∂x)û = ŵ +

ε

δ
(∂T û+ p̂x + ûûx + ŵûξ) (4.58b)

(∂2
ξξ − ξ∂x)v̂ = p̂y +

ε

δ
(∂T v̂ + ûv̂x + ŵv̂ξ) (4.58c)

ûx + ŵξ = −ε
δ
v̂y, (4.58d)

where ŵ′′ = ∂2
ξξŵ.

The key point is, that the buoyancy term N̂2, which is of order ε, proved to be

negligible in the critical layer. We re-iterate that these governing equations (4.58)

are identical to their counterparts for the homogeneous flows in Chapter 2. The

next step which we do not pursue here is to find solution to equation (4.58) in the

form of asymptotic power series in ε/δ rather than ε, subject to the appropriate

boundary conditions. At the boundary the solutions should satisfy either constant

stress conditions,

ŵ|ξ=0 = 0, û′|ξ=0 = v̂′|ξ=0 = 0, (4.59)

or, no-slip conditions

u|ξ=0 = v|ξ=0 = 0. (4.60)

These solutions should not exhibit any singularities in the viscous sub-layer. They

have to be matched with the main deck solution at ξ → ∞. Hence, the resulting
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matched asymptotic expansion will be uniformly valid.

4.3.4 Conclusions

The main result of this section is the nonlinear evolution equation (4.48) for long

three-dimensional perturbations in semi-infinite boundary layers with explicit account

of both stratification and viscous effects. The equation is universal in the sense

that the specific profile of the boundary layer is immaterial. The specificity of the

boundary layer retained in the coefficients in (4.48) can be further reduced by re-

scaling the variables

τ1 = τ U ′(0), d =
U0

U ′(0)
, x1 = x/d, A1 = −1

d
A, (4.61)

which yields (with the subscripts dropped) while setting d = 1,

Aτ + AAx − Ĝ1[Ax]− β̃2 Ĝ2[Ax] + γ̃ A = 0, (4.62)

the dispersion operators Ĝ1 and Ĝ2 remains the same,

Ĝ1[ϕ(k)] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
|k|ϕ(r1)e(−ik(r−r1))dkdr1, (4.63)

Ĝ2[ψ(k)] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

k2

k2
x

ψ(r1)e(−ik(r−r1))dkdr1 (4.64)

where, k = |k| and k2 = k2
x + k2

y. The only remaining two coefficients are,

β̃2 =
N2

0

2ε2 (U ′0)2
, γ̃ =

1

ε2Re

U ′′′0

(U ′0)2
,

showing the importance of both stratification due to buoyancy and the Rayleigh

friction type term compared to the nonlinear one in the evolution equation. The

magnitude of the stratification is weak and proportional to the ratio of buoyancy

force to inertia also known as the Richardson number Ri = N2
0/U

′2
0 , while the magni-

tude of the Rayleigh friction term is proportional to the ratio the vorticity curvature

at the boundary and the Reynolds number. Miles’ theorem states that the necessary
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condition for linear stability of ideal stratified flow is given by Ri = N2/U ′2 ≥ 1/4

everywhere in the flow. Mile’s sufficient condition for linear stability has a simple

physical interpretation. The Richardson’s number Ri represents the ratio of buoy-

ancy to inertia (shear), therefore the theorem effectively states that if the stabilizing

influence of stratification dominates the destabilizing influence of nonlinear terms,

then the flow is stable. When Ri < 1/4 then the flow might become linearly un-

stable. We re-iterate, that in our context linear instabilities play no role since the

nonlinear mechanism resulting to collapse we consider develop much faster than lin-

ear instability. The nonlinear evolution equation (4.62) provides the framework for

studying collapses of three-dimensional perturbations and, in particular, the role of

the stratification β̃2 6= 0 in 4.4 and the role of Rayleigh friction term γ̃ 6= 0 in §4.5

4.4 Collapses in weakly stratified boundary layers

without the Rayleigh friction

In this section we examine collapses of three-dimensional localised perturbations,

lumps, within the framework of equation (4.62) with γ̃ = 0. The reduction of (4.62)

to the new 2d nonlinear evolution equation is justified for larger Reynolds numbers,

Re � ε−2 and for the situations with sufficiently small curvature of vorticity at

the boundary U ′′′(0)
(U ′(0))2

. Note that for the Blasius boundary layers U ′′′(0)
(U ′(0))2

= 0 [see

Schlichting and Gersten [2016]].

The layout of the section is as follows. We begin in §4.4.1 with an overview of

relevant earlier works. In §4.4.2 we discuss some basic properties of the new 2d

nonlinear evolution equation containing an extra new dispersion term due to weak

stratification and introduce a notion of ‘neutral curves’ and ‘neutral surfaces’ for

collapses - the separatices delineating the manifolds of initial conditions which in

the course of evolution collapse from those which decay. In §4.4.3 on examining the

sufficient criterion for collapse for a few simple initial distributions we attempt at

making a general picture of collapses in the new 2d evolution equation. The presence

of extra dispersion modifies the evolution of the three-dimensional perturbation hence
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raises the threshold of blow-up. Numerical simulation of collapse and its comparison

with the self-similar solution is the subject of §4.4.4.

4.4.1 Overview of earlier studies

In this section we discuss briefly what is known about the new 2d nonlinear evolution

equation that has been derived and its numerical solution is the subject of discussion

in the next section. The equation we are referring to is (4.62) when γ̃ = 0.

Aτ + AAx − Ĝ1[Ax]− β̃2 Ĝ2[Ax] = 0, (4.65)

The new 2d nonlinear evolution equation (4.65) is an extension of the 2d-BO equation

derived by Shrira 1989, Voronovich et.al. 1998. To our knowledge equation (4.65) is

new and has not been studied. In this work we incorporated stratification inside the

boundary layer resulting in a new dispersion term with an integral dispersion opera-

tor Ĝ2. In Fourier space the integral operator Ĝ2 =
k2y
k2x

. It is important to stress that

the derivation of equation (4.62) does not assume paraxial approximation, the small-

ness of (ky/kx), as it does in the Kadomtsev-Petviashvilli equation [see Kadomtsev

and Petviashvili [1970]]. The general properties of the low frequency modes (vorticity

waves) we are interested in and were earlier considered by Shrira 1989 in the context

of the upper ocean, is that the transverse components of the velocity fluctuation v are

much smaller in comparison with the longitudinal one u. When transverse wavenum-

ber is much less than that of the streamwise wavenumber i.e ky � kx, the new 2d

nonlinear evolution equation reduces to the well known one-dimensional Benjamin

Ono equation(BO). The one dimensional Benjamin-Ono equation (hereinafter BO)

is one of the few celebrated universal weakly nonlinear long-wave evolution equation

which emerge in various physical contexts, it was originally derived in the context of

long internal waves in deep stratified fluid with a thin layer with stronger stratification

Benjamin [1967], Davis and Acrivos [1967] and Ono [1975]. The BO equation is inte-

grable, possesses both multi-soliton and multi-periodic wave solution and conserves

an infinite set of integrals of motion and other properties typical of integrable systems



Chapter 4. Collapses(Blow-up) in weakly stratified boundary layers 122

(e.g., Case [1978],Case [1979], Ablowitz and Segur [1981],Matsuno [1984]).The soli-

tons are very robust in the one-dimensional setting. A weakly two-dimensional gener-

alisation of the Benjamin-Ono equation was derived in Ablowitz and Segur [1980] for

waves in isotropic media, leading to a Kadomtsev-Petviashvili type extension with a

similar pattern of longwave transverse instability in case of positive dispersion [see

Kadomtsev and Petviashvili [1970],Kadomtsev [2001]]. The anisotropic essentially-

two-dimensional Benjamin-Ono equation(2d-BO) first derived by Shrira [1989] has

been comprehensively studied and the results presented in Chapter 2 of this thesis,

that is, the evolution equation (4.65) with β̃2 = 0. We apply a similar approach to

investigate the nonlinear stability of equation (4.65), it can also be expressed in the

Hamiltonian form. Next we overview the results of the studies of 2d-BO equation

which is a special limit of (4.65) without explicit account of stratification (β̃2 = 0).

An obvious class of its exact solutions - all steady and unsteady oblique plane wave

solutions of the one-dimensional Benjamin-Ono. However, such solutions proved to

be unstable to long transverse perturbations Pelinovsky and Stepanyants [1994]. In

particular, for instability of plane solitary waves the maximal growth rates are ∼ V 2,

while the range of unstable transverse wavenumbers is between zero and the O(V )

cut-off wavenumber, where V is the solitary wave speed in the frame of reference

moving with the speed of long waves. A more detailed analysis of this instability was

carried out in Gaidashev and Zhdanov [2004]. Abramyan et al. [1992] found that the

2d-BO equation possesses steady axially symmetric solitary wave solutions. In that

work the attention was focussed on the ‘zero mode’ or ‘ground mode’ solitary waves,

which decay monotonically as x2 +y2 →∞, although solutions with oscillatory decay

also exist. These steady solutions proved to be unstable. D’yachenko and Kuznetsov

[1995] were the first to show that the 2d-BO equation describes collapses: localised

perturbations collapse provided the nonlinearity is stronger than dispersion. It has

also been shown that the equation also possesses self-similar solutions which describe

emergence of axially symmetric singularity in finite time. An explicit description of

the collapse evolving as a result of transverse instability of plane solitary waves was

derived employing Whitham’s adiabatic approach in Pelinovsky and Shrira [1995].
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The sufficient condition of collapse for any chosen initial condition is that the Hamil-

tonian should be negative ( Zakharov and Kuznetsov [2012]). However, the integral

condition of negativity of the Hamiltonian is implicit, a priori it is not obvious what

initial perturbations collapse and what decay. For any chosen shape of the pertur-

bation there is a threshold in amplitude above which the perturbation collapse. In

this section we will find dependence of the threshold on the parameters of the per-

turbation and outline the range of parameters where the threshold does not exceed

the limitations imposed by the weakly nonlinear nature of the equation.

4.4.2 Basic properties and ‘neutral curves’

By extending the results of (D’yachenko and Kuznetsov [1995]) the new 2d nonlinear

evolution equation (4.65) can be written in the Hamiltonian form as follows,

Aτ = ∂x

[
Ĝ1[A] + β̃2 Ĝ2[A]− 1

2
A2

]
= ∂x

δH

δA
, (4.66)

where the Hamiltonian H is made of three constituent integrals I1, I2 and I3, de-

scribing respectively dispersion and nonlinearity,

H =
1

2
I1 +

β̃2

2
I2 −

1

6
I3, (4.67)

where,

I1 =

∫
AĜ1[A] dxdy, I2 =

∫
AĜ2[A] dxdy, I3 =

∫
A3 dxdy, (dr ≡ dxdy).

Besides the Hamiltonian, the new 2d nonlinear evolution equation (4.65) conserves

three other integrals of motion: the streamwise and spanwise components of the

‘momentum’ P and the mass flux M ,

Px =
1

2

∫ ∫
A2 dxdy, Py =

1

2

∫ ∫
Aφy dxdy, (φx ≡ A), M =

∫ ∫
A dxdy.

(4.68)
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The way these integrals depend on parameters of the perturbations enables us to infer

the existence of collapses for certain initial conditions and to outline the manifolds of

collapsing initial conditions for particular a priori chosen classes of initial conditions.

4.4.3 Domains of collapses in parameter space

Here, we apply the sufficient condition of collapse, H < 0, to find separatrices de-

lineating the domains of collapse (supercritical region) and domains of decay (sub-

critical region) in the parameter space. We will refer to the curves or surfaces where

the Hamiltonian vanishes as nonlinear neutral curves/surfaces. By means of direct

numerical simulations of the new 2d nonlinear evolution equation (4.65) (which we

describe below) we verify that this criterion indeed predicts the emergence of collapse

or decay of initial perturbations. Applying this criterion to a few simple asymmetric

distributions enables us to get a good a priori idea how the outcome of the evolution

(i.e. collapse or decay) of an initial perturbation depends on its parameters. To

outline these dependencies we first examine a few simple asymmetric distributions:

the Gaussian and Lorentzian pulses,

AG(x, y) = ae
−
(
x2

2σ2x
+ y2

2σ2y

)
, AL(x, y) =

a

1 + 4(x2/σ2
x + y2/σ2

y)
. (4.69)

These initial perturbations are fully characterized by just three parameters: ampli-

tude a and characteristic half-widths σx and σy, which we will refer to as the ‘widths’

for brevity.

It is easy to see that in the Hamiltonian H given by (4.67), its constituent integrals,

the dispersion ones, I1, I2 and the nonlinear one, I3, can be expressed in terms of the

perturbation initial amplitude a and perturbation widths σx and σy. On re-scaling

the variables,

x̃ =
x

σx
, ỹ =

y

σy
, A(x̃, ỹ) = aA,

(
AG = e−(x̃2+ỹ2)/2, AL =

1

1 + 4(x̃2 + ỹ2)

)
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we re-write our integrals as,

I1 = αa2σxĨ1, Ĩ1 =

∫ ∫
A Ĝ1 [A] dx̃dỹ, I2 = αa2σ2

xĨ2, Ĩ2 =

∫ ∫
A Ĝ2 [A] dx̃dỹ,

I3 = αa3σ2
xĨ3, Ĩ3 =

∫ ∫
A3dx̃dỹ, α =

σy
σx
,

where the first and second integrals Ĩ1, Ĩ2 depends implicitly on the ratio α through

the kernel of the integral operator, Ĝ1 and Ĝ2. In the Fourier space Ĝ1 =
(
k2
x + 1

α2k
2
y

)1/2

while Ĝ2 = 1
α2

k2y
k2x

. The third integral Ĩ3 is a constant which is evaluated analytically

or numerically; for the Gaussian initial conditions Ĩ2 = 2
3
π. The dispersion integrals

Ĩ1 and Ĩ2 cannot be evaluated analytically and is dealt with numerically. It is easy to

see that I1 depends on σx linearly, while I2 and I3 both have quadratic dependence on

σx. The parameter α is the ratio of spanwise half-width σy to that of the streamwise

half-width σx. From now on, we will drop the subscript and denote σx by σ and

proceed to finding nonlinear neutral curves/surfaces in terms of amplitude a, width

σ and aspect ratio α, for each value of the stratification parameter that is specified

by β̃2.

Recall that the Hamiltonian vanishes when 3 I1 + 3 β̃2I2 − I3 = 0, which thus yields

nonlinear ‘neutral surfaces’ separating the domains of collapse and decay in the a−

σ − β̃2 space,

a2σ(3 Ĩ1 + 3 β̃2 σĨ2 − aσĨ3) = 0. (4.70)

It proved to be convenient to present the results of such an analysis as cross-sections

with fixed values of asymmetry parameter α and stratification parameter β̃2. Then

the relationship between the amplitude threshold athr and perturbation width σ pre-

scribed by equation (4.70) for constant values of α and β̃2 is hyperbola.

athr =
3 Ĩ1

σ Ĩ3

+
3 β̃2Ĩ2

Ĩ3

, (4.71)

This amplitude threshold depends on both the stratification β̃2 and asymmetry pa-

rameter α. A set of cross-sections for different values of asymmetry parameter α

(i.e., α = 0.25, 0.5, 1.0, 1.5, 2.0, 4.0, 8.0) and stratification β̃2 (β̃2 = 0.005) for the
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Figure 4.2: ‘Neutral curves’ separating the domains of collapse and decay for
different values of α ( α = 0.25, 0.5, 1, 1.5, 2, 4, 8) and β̃2 = 0.005 for: (a) the
Gaussian and (b) the Lorentzian initial conditions.
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Gaussian and the Lorentzian initial conditions are shown in figure 4.2. The figure

illustrates several salient features of the separatrices in the a − σ plane. For every

value of the stratification parameter β̃2 the cross-sections are hyperbola. The role

of the stratification is to raise the threshold of the nonlinear neutral curve, while α

lowers the threshold of blow-up. The initial pulses with a, σ above the curve col-

lapse. For larger σ the threshold decreases slowly for any asymmetric Gaussian or

Lorentzian pulses. The slow decay of the hyperbola is attributed to how stratifica-

tion weakens the decay of these long perturbations. Since the main mechanism of

the collapse is self-focussing asymmetry quite noticeably affects the threshold: as

expected, the threshold decreases for the pulses stretched in the spanwise direction

(α > 1), it increases for the pulses stretched in the streamwise direction (α < 1).

For the evolution to be weakly nonlinear and to allow for a substantial growth, the

initial amplitude should be sufficiently small. The neutral curves for the Gaussian

and Lorentzian initial pulses are qualitatively very similar. However, quantitatively,

the Gaussian pulses for moderate values of σ have a noticeably smaller threshold.

The comparison of the neutral curves for the Gaussian and Lorentzian initial pulses

suggests that their behaviour is robust and at the qualitative level we can generalise

and to expect to see the same salient features: a decrease of the amplitude threshold

for collapse with the increase of both spatial scales, crucially, athr → 0 as σ or α tend

to infinity. Recall that for the plane wave soliton solutions of the 2d-BO equation of

any amplitude H = 0 and, hence these solutions are at the boundary of the domain

of collapsing initial conditions even for vanishingly small amplitudes. The transverse

instabilities of plane solitons within the framework of the 2d-BO equation are known

to be possible for any amplitude of the solitary waves (Pelinovsky and Stepanyants

[1994]), Gaidashev and Zhdanov [2004]), although the instability growth rate is pro-

portional to the soliton amplitude and, hence, tends to zero as the amplitude tends

to zero. Within the framework of the 2d-BO equation this instability is known to

end up in collapse (Pelinovsky and Shrira [1995]), at present we don’t have analytic

results for the transverse instability of planar solitons for the equation accounting for

weak stratification (4.65).
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4.4.4 Collapse and self-similarity within the framework of

the 2d nonlinear evolution equation for weakly strat-

ified boundary layers: self-similar solution and exam-

ples of simulation

In this section we find the self-similar solution of (4.65) describing formation of

the blow up singularity and outline the numerical procedure used to investigate the

collapse in the 2d nonlinear evolution equation with explicit account of weak strat-

ification. First we demonstrate that the evolution equation (4.65) has self-similar

solution which captures the behaviour of the perturbation amplitude in the vicinity

of the singularity at time τ0 and space (x0, y0).

4.4.4.1 Self-similar solution

Consider the spatial and temporal dependence of a collapsing perturbation in a cer-

tain vicinity of the blow-up singularity occurring at r = r0 {x0, y0}. Introduce time

to singularity τ̌ and distance to singularity x̌ = x − x0, y̌ = y − y0. There is a

self-similar solution in the form

A(r, τ̌) = τ̌−
1
2h(ξ̌), ξ̌ =

ř

τ̌
1
2

. (4.72)

where h(ξ̌) is specified by the equation,

1

2
ξ̌h′′ + (h′2 + hh′′)− Ĝ1[h′′]− β2h

′′ = 0 (4.73)

This self-similar solution for the stratified equation is similar to a known self-similar

solution of the 2d-BO equation which predicts the 1/
√
τ0 − τ singularity in time and

the shrinking spatial distribution given by h(ξ̌), its width shrinks as
√
τ0 − τ . Our

equation for the spatial scale h specifying the shape of the distribution has a much

more complicated form than its counterpart for the 2d-BO derived in 2.4.4.1.
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4.4.4.2 Numerical simulation

To simulate numerically the 2d equation (4.65) for localized initial perturbations

we use the same pseudo-spectral method as in Chapter 2. As in Chapter 2, the

employed pseudo-spectral method with periodic boundary conditions uses efficient

fast Fourier transform (FFT) routines in handling dependencies on x and y, while for

the time evolution the classic fourth order Runge-Kutta method is employed, hence

the temporal accuracy is fourth order.

In our context it was found to be optimal to use a rectangular box of length 512π

and width 128π. This choice provides sufficient domain for the spatial decay of

the localized perturbations we were simulating and also to allow the perturbation

sufficient time to move in the streamwise direction during the evolution. To resolve

the rapidly growing and increasingly localized amplitude distribution we used 4096×

1024 grid points. It is convenient to present our evolution equation in the flux-

conservation form,

Aτ + Fx = 0

where the flux F = −Ĝ1[A]−β̃2Ĝ2[A]+ 1
2
A2 . The integral operators Ĝ1[A] and Ĝ2[A]

are dealt with in the Fourier space, while nonlinear terms were considered in the

physical space on collocation points with the ‘two-third de-aliasing rule’ (e.g.Orszag

[1969]). The accuracy of the simulations was controlled by ensuring that the integrals

of motion (4.68) remain constant with the error not exceeding O(10−4).

4.4.4.3 Evolution scenarios

Our simulations suggest that the phase space of the evolution equation of (4.65) is

organised very simply: there are just two attractors corresponding to basic flow and

the point singularity, there are no nontrivial long-lived states. On obtaining in §4.4.3

the boundaries separating the domains of the initial conditions resulting in collapse or

decay, we verified the findings by numerical simulations of the evolution of symmetric

and asymmetric Gaussian pulse initial conditions (4.69). By choosing the initial

perturbations slightly above and slightly below the hyperbola, we confirmed that,
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Figure 4.3: Example of time evolution of the amplitude of a collapsing later-
ally stretched pulse with α = 2. Blue dashed line: simulated evolution of the
amplitude of a collapsing pulse with the asymmetric Gaussian initial condition
(a = 0.3159, β̃2 = 0.005, σx = 25, σy = 50, γ̃ = 0). Red solid line: the self-similar
solution (4.72)

indeed, the initial perturbations with the amplitudes exceeding the threshold collapse,

that is, such perturbations evolve into a short-lived pattern which tends to a localized

self-similar solution with a point singularity. The initial conditions with amplitude

below the threshold decay, although, for the initial conditions close to the threshold

surface, a temporary transient growth, sometimes substantial, can also occur. We

do not illustrate it here. Figure (4.3) shows the simulated time dependence of a

collapsing pulse amplitude for the same example along with the self-similar solution

(4.72). Note that during the most of the pulse evolution the amplitude grows very

slowly, the sharp growth occurs just immediately prior to the singularity. The figure

also gives an idea how well the self-similar solution (4.72) captures the evolution. The

fact that evolution of any supercritical localised perturbation tends to the self-similar

solution, it not only proves the existence of singularity, it also shows that the universal

character of the singularity captured by the analytical solution (4.72). We illustrate
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a typical collapse scenario by providing snapshots of amplitude cross-sections based

upon our simulations of the evolution of a collapsing pulse for a localized asymmetric

initial conditions. The initial condition is a laterally stretched Gaussian pulse α = 2

corresponding to σx = 25, σy = 50, a = 0.3159, β̃2 = 0.005, γ̃ = 0. Here, we highlight

two features. Although the initial condition is a smooth well confined lump, the

emerging pattern shown on figure (4.5) is not : at the pedestal, the pulse radiates at

two distinguished directions; the resulting pattern resembles ‘hair-pin’ or ‘lambda’

vortices routinely observed in the wind tunnels (e.g. Kachanov [1994]). The top

of the pulse evolves in an axially symmetric self-similar manner tending to a point

singularity at the end. We also provide a sequence of snapshots of amplitude evolution

at four different moments on figure 4.4.

Figures 2.8 and 4.4 are showing the evolution of the perturbation cross-sections for

homogeneous 2.8 and stratified cases. At the initial moment (t=0) the perturba-

tion is the same axially symmetric gaussian lump. A quick comparison enables us to

make the following qualitative observations. The same well-confined initial lump is

laterally dispersing quite differently. In both cases, during the evolution, we see a

sequence of different patterns which at the foot of the perturbation resemble hairpin

vortices usually observed in wind tunnel experiments during the laminar-turbulent

transition. In the stratified case these patterns are much more pronounced and have

a more complicated form. In contrast, in both cases, the top part of the perturbations

becomes more and more symmetric as the perturbation approaches the collapse. As

expected near the collapse when nonlinear localizing effects dominate over disper-

sion, all the patterns evolve into a well-localized axially symmetric shape before their

eventual collapse. We could summarise the differences by saying that cross-section

evolution is strongly dependent on stratification, stratification results in the emer-

gence of quite complicated patterns at the foot of collapsing lumps. In contrast, the

self-similar evolution near the singularity remains qualitatively similar.
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Figure 4.4: Snapshots showing the evolution of the amplitude A(x, y, t) of
a collapsing laterally stretched (α = 2) pulse taken at the start of evolution
(t = 0) and finally at t=100 of the maximal amplitude at four-different mo-
ments. The simulation is for supercritical asymmetric Gaussian initial condition
(a = 0.3159, σx = 25, σy = 50, γ̃ = 0).
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Figure 4.5: Evolution of the cross-section of a collapsing laterally stretched
pulse α = 2 taken at the start of evolution(t = 0) and finally at t=95 of the
maximal amplitude at six-different moments showing hair-pin or lambda vor-
tices. The simulation is for supercritical asymmetric Gaussian initial condition
(a = 0.3159, σx = 25, σy = 50, β̃2 = 0.005, γ̃ = 0).
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4.5 Collapses with the account of the Rayleigh

friction term (γ̃ 6= 0)

The aim of this section is a preliminary analysis of equation (4.62),

Aτ + AAx − Ĝ1[Ax]− β̃2 Ĝ2[Ax] + γ̃ A = 0, (4.74)

The evolution equation (4.62) has not been studied before. First, it is easy to see that

the new 2d evolution equation (4.74) with explicit account of Rayleigh friction term

differs from its homogeneous counterpart equation (2.55) only by the presence of the

second dispersion term with coefficient β̃2 resulting from the account for stratification.

The main open questions are:

1. How is the phase space of this equation organised?

2. Are there collapses? If yes, in what respect do they differ from their counter-

parts without the Rayleigh friction and stratification?

3. In what range of the dissipation parameter γ̃ the collapse might occur and how

does the amplitude threshold depend on γ̃?

Our limited amount of simulations strongly suggests that the phase space of the

evolution equation (4.74) is qualitatively similar to that of the models without the

stratification and the Rayleigh friction: any initial perturbation evolves either to the

unperturbed state or collapses forming a point singularity. Although at a first glance

there are no analytical tools for studying (4.74) we have shown that the self-similar

solution (4.72) obtained in the limit γ̃ = 0 perfectly captures the character of the

singularity when γ̃ 6= 0. An increase in γ̃ raises the threshold for the collapse to occur

and increases the duration of the evolution. The second dispersion due to stratifica-

tion has a qualitatively similar effect. The threshold proved to be extremely sensitive

to small variations of γ̃, the threshold grows sharply with increase of γ̃ and might go

beyond the range of validity of weakly nonlinear theory. A comprehensive mapping
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Figure 4.6: Example of time evolution of the amplitude of a collapsing later-
ally stretched pulse with α = 2. Blue dashed line: simulated evolution of the
amplitude of a collapsing pulse with the asymmetric Gaussian initial condition
(a = 0.3600, σx = 25, σy = 50, β̃2 = 5.0× 10−3, γ̃ = 1.0× 10−3). Red solid line: the
self-similar solution (4.72)

of the collapsing initial conditions requires a dedicated study and goes beyond the

scope of present work.

4.6 Conclusions

In this Chapter we extended the approach introduced in Chapter 2 for homoge-

neous boundary layer, and derived a novel 2d nonlinear evolution equation which is

essentially two-dimensional Whitham type equation with explicit account of strati-

fication in the boundary layer. We also took into account the viscous linear decay

and examined its role in the evolution of 3d perturbations. In this section based

on our analytical and numerical examination of collapses of 3d perturbations in new
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Figure 4.7: Example of time evolution of the amplitude of a collapsing lat-
erally stretched pulse with α = 2. Magenta line: simulated evolution of the
amplitude of a collapsing pulse with the asymmetric Gaussian initial condition
(a = 0.3600, σx = 25, σy = 50, β̃2 = 5.0 × 10−3, γ̃ = 0 : (Black solid line), γ̃ =
5.0 × 10−4 : (Blue dashed line), γ̃ = 1.0 × 10−3. Red solid line: the self-similar
solution (4.72)

two-dimensional weakly stratified and strong dissipation equation we summarise our

findings.

1. A novel model describing dynamics of 3d longwave perturbations in generic

weakly stratified semi-infinite boundary layers for finite Reynolds numbers has

been derived by a systematic asymptotic procedure. The model represents

a 2d Whitham type pseudo-differential nonlinear evolution equation obtained

in the distinguished limit where the nonlinearity, two types of dispersion and

dissipation described by the Rayleigh friction term are all in balance.

2. It has been shown that within the framework of the model the initial pertur-

bations either collapse, i.e. blow up forming a point singularity or decay. An

analytical self-similar solution describing behaviour of the collapsing solutions
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has been derived. By means numerical simulations it has been found that the

collapsing perturbations tend to the obtained self-similar solutions and, hence,

have analytically described singularity.

3. It has been found that stratification and the Rayleigh friction terms do not

arrest the collapse, but they raise the amplitude of initial perturbations required

for collapse to occur and increase the duration of evolution. The dependence

of the amplitude threshold on the parameters has been examined.



Chapter 5

Conclusions and Discussion

5.1 The main conclusions

1. By means of a systematic asymptotic procedure a family of novel weakly non-

linear self-contained models describing dynamics of 3d long-wave perturbations

in generic boundary layers has been derived in the distinguished limit assuming

balance of the nonlinearity, dispersion and dissipation. Each model represents

a 2d pseudo-differential evolution equation for the amplitude A(x, y) of a sin-

gle longwave mode which is weakly decaying in the linear setting, while the

dependence on the cross-boundary coordinate z is provided by an explicit so-

lution of the corresponding boundary-value problem. The new equations are

generalisations of the two-dimensional Benjamin-Ono (2d-BO) equation with

the Rayleigh-type dissipation. They cover the situations of semi-infinite and

confined boundary layers, both homogeneous and weakly stratified boundary

layers and are equally valid for the no-slip and constant stress conditions at the

boundary. The employed asymptotic expansions have been shown to be uni-

formly valid for perturbations strongly laterally stretched, i.e. for the pertur-

bations with |Ay| � |Ax|. For the perturbations with |Ax| ∼ |Ay| the question

137
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of validity of the derived equations remains open, nevertheless the equations

have been thoroughly examined for the whole range of parameters.

2. The derived models are valid for a wide range of the Reynolds numbers, the

account of the finite Reynolds number leads to the Rayleigh-type dissipation

in the evolution equation. In all models considered so far the Rayleigh-type

dissipation is proportional to the ratio of the curvature of the basic flow vor-

ticity at the boundary and product of the Reynolds number and nonlinearity

parameter squared. A key parameter γ̃ characterising the relative magnitude

of the dissipative and nonlinear terms has been identified.

3. It has been shown that the novel evolution equations admit collapses occurring

for a broad class of initial conditions. The phase space of the evolution equations

is found to be very simply organised: there are two attractors corresponding

to the unperturbed basic flow and the blow-up singularity. An initial ‘lump’

of a given shape collapses, i.e. blows up forming a point singularity in finite

time, provided its initial amplitude exceeds a certain threshold. This threshold

is specific for each particular initial shape and the value of parameter γ̃. The

initial perturbations exceeding the threshold collapse in a self-similar manner,

the derived axially symmetric self-similar solution captures very well the be-

haviour of the perturbation in a substantial neighbourhood of the singularity.

The perturbations with the amplitudes below the threshold - decay, although a

substantial transient growth is possible for the initial perturbations close to the

threshold. To find the boundary in parameter space between the domains of

collapse and decay an analytical sufficient condition in integral form was used

for the not uncommon situations with zero γ̃. On the amplitude-width plane the

domain of collapsing initial conditions is found to be confined by a hyperbola

from below; the threshold amplitude decreases as inverse width of the perturba-

tion and for very wide perturbations tends to zero. For the asymmetric initial

perturbations the boundary is more complicated but exhibits the same trends.

Collapses in dissipative evolution equations have not been studied before and

there are no suitable mathematical tools. By numerical simulation of the evolv-

ing perturbations and by constructing an analytical self-similar solution it has
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been shown that the explicit account of dissipation in the evolution equation

does not preclude the occurrence of singularity, it does not alter the character

of the singularity either, but it considerably increases the time needed for the

singularity to emerge and raises the amplitude threshold, sometimes beyond

the range of applicability of weakly nonlinear theory.

4. The examined collapses provide a robust mechanism for growth of 3d patterns

resembling the 3d coherent structures often observed in wind tunnels at inter-

mediate stages of transition. The collapses might be considered as a plausible

candidate for the key role in scenarios of by-pass laminar-turbulent transition

in generic boundary layers.

5.2 Discussion

To put our results into context, here we briefly discuss a broader picture, the new

questions they generate, and the directions of further research which we view as the

most promising.

The work gives rise to a lot of questions to which we currently do not have

answers. The main outstanding question is concerned with the role of the modelled

collapses in the bigger picture of transition, this main question splits into a multi-

tude of more specific ones. In particular, our evolution equations are an element of a

weakly nonlinear asymptotic model, currently we do not know the eventual outcome

of the collapses occurring within the framework of the model when the solution goes

beyond the limit of applicability of the the model. In other words, what happens in

the full Navier-Stokes equations? Most likely, the collapses cause localised transition

to turbulence. However, we cannot exclude the possibility that under certain circum-

stances collapses might lead to formation of long-lived 3d coherent strongly nonlinear

patterns. A dedicated direct numerical simulation study is in progress to clarify this

crucial issue.

All collapsing perturbations tend to axially symmetric self-similar distributions,

which resemble the coherent patterns observed in wind tunnels. At the foot of these
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patterns they, as can be seen in the cross-sections of the numerical simulation (2.8),

also exhibit features typical of lambda vortices routinely observed in wind tunnels

at an intermediate stage of laminar turbulent transition (e.g. Kachanov [1994]). Is

this resemblance just a coincidence or the model does capture elements of essential

physics of the phenomenon?

Although the model does predict emergence of 3d patterns resembling those

observed in the wind tunnels, at the moment we could claim only a rough qualitative

agreement. For a quantitative comparison the model has to be extended to take into

account non-parallel effects. The work in this direction is currently in progress, we

return to this point below.

Our study leaves aside the question on how the initial perturbation might be

produced, which we took as given. There are many possible scenarios, in particu-

lar, there is a room for usual linear long-wave instabilities to play, for example, as

a result of inflectional long-wave instability plane wave perturbations propagating

streamwise might emerge and grow until the nonlinearity becomes strong enough

to balance dispersion, then, at first the plane Benjamin-Ono solitons are likely to

emerge, the latter are transversally unstable; under the right conditions this instabil-

ity leads to their collapse (Pelinovsky and Shrira [1995]). In the similar vein the TS

waves might produce first the plane Benjamin-Ono solitons (Kachanov et al. [1993]).

Currently we understand all the phases of this scenario, but its elaboration requires

a dedicated work. Initial perturbations leading to collapses can be also generated by

perturbations of the boundary. We assumed the boundary to be flat, but the model

could be easily extended to take into account long-wave perturbations (steady or

unsteady) of the boundary. It would be interesting to examine what perturbations

of the boundary trigger collapses, but this should be a subject of a dedicated work.

Let us very briefly discuss the limitations of the model and how the model can be

extended. The main limitation, apart from the already mentioned weak nonlinearity

constraint, is the total neglect of nonparallel effects. This is not an inherent difficulty

of the approach, it is our conscious choice to keep the derivation simple. It seems to be

relatively straightforward to incorporate weakly non-parallel effects into the employed
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asymptotic scheme. This has been done in (Shrira et al. [2005]) for free surface

boundary layer in water with the main effect being an additional Rayleigh friction

term, this term has been included into an effective dissipation. The approach can be

extended for the no-slip boundary conditions as well, where we expect qualitatively

similar effect; but at present this remains to be done.

The present work was confined to the simplest generic boundary layer with

unidirectional shear flow. It is also possible to extend the developed approach to

other types of boundary layers. Now it has become clear how to generalise the

derived evolution equations to describe more complicated hydrodynamic situations

accounting for the 3d boundary layers and compliant boundaries. The fluid outside

the boundary layer was assumed homogeneous and stagnant, these assumptions can

be relaxed or totally lifted. The occurrence of collapses in these situations is currently

being investigated.

We did not attempt a quantitative comparison with data for the coherent struc-

tures observed by Kachanov (1994). However, we mention that our simulations for the

3d perturbations in all the boundary layers we considered agrees qualitatively with

the observed 3d coherent patterns. This qualitative agreements seems encouraging,

but might prove to be just a coincidence. A detailed comparison with observations is

needed, which requires a dedicated work. The role of the collapses in the bigger pic-

ture of the boundary-layer instabilities and laminar-turbulent transition remains the

biggest open question. Resolving these outstanding questions will provide a new in-

sight into physical mechanisms of boundary layer instabilities and laminar-turbulent

transition.

Yet another seemingly possible direction of extension of the present study is

concerned with turbulent boundary layers. Adopting the Boussinesq hypothesis one

can reduce the description of the turbulent shear flow to that of a laminar one with

an eddy viscosity. Within the framework of this approach the only difference in

the mathematical formulation of the problem is that the eddy viscosity becomes

a function of the cross-boundary coordinate. Correspondingly, the derivation of the

evolution equations remains the same. The difficulty to be dealt with is the behaviour
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of the asymptotic expansion in the critical layer. If the solution in the critical layer

remains regular for the case of the coordinate dependent viscosity, which is likely,

but remains to be worked through, then the approach could be easily extended to

turbulent boundary layers and employed to explain bursts observed, in particular, in

atmospheric boundary layer.



Appendix A

Details of the derivation of the

nonlinear evolution equation for

homogeneous boundary layer with

explicit account of viscous effects

In this section we elaborate in detail how the viscous effects are dealt with in the

procedure of deriving the nonlinear evolution equation for homogeneous boundary

layer. The governing equations are the standard Navier-Stokes equations,

ρ[Dtu+ wU ′] + px = −ρ(u · ∇)u+ ν∇2u (A.1a)

ρDtv + py = −ρ(u · ∇)v + ν∇2v (A.1b)

ρDtw + pz + ρg = −ρ(u · ∇)w + ν∇2w (A.1c)

∇ · u = 0. (A.1d)

where density ρ is assumed to be constant, ν is the fluid viscosity and Dt is the

material derivative, Dt = ∂t+U∂x. The notation∇2 = ∂2
xx+∂2

yy+∂2
zz = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

is used for the three-dimensional Laplace operator. The gravitational acceleration g is

also a constant. The equation (A.1) differ from the Euler equations by the presence of
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the viscous term ν∇2u. To eliminate the pressure term from the set of the equations

(A.1) to obtain a single nonlinear equation for vertical velocity perturbation w closed

in linear approximation requires some algebra.

To proceed, we first divide both sides of equation (A.1c) by ρ and take the derivative

of both sides with respect to material derivative Dt,

1

ρ
Dtpz = −D2

tw −Dt(u∇)w +
ν

ρ
Dt∇2w, (A.2)

Next we divide (A.1b) and (A.1a) by ρ, take the partial derivative with respect to z,

followed by taking its material derivative Dt, to obtain,

Dt[∂zDtv] +
1

ρ
∂yDtpz = −Dt∂z(u∇)v +

ν

ρ
Dt∂z∇2v, (A.3)

Dt[∂zDtu] +Dt∂z(wU
′) +

1

ρ
∂xDtpz = −Dt∂z(u∇)u+

ν

ρ
Dt∂z∇2u. (A.4)

The next step is to take partial derivative of equation (A.4) with respect to x and

partial derivative of equation (A.3) with respect to y, which yields,

Dt[∂zDtux] +Dt∂z(wxU
′) + ∂2

xx

(
1

ρ
Dtpz

)
= −Dt∂z∂x(u∇)u+

ν

ρ
Dt∂z∇2ux, (A.5)

Dt[∂zDtvy] + ∂2
yy

(
1

ρ
Dtpz

)
= −Dt∂z∂y(u∇)v +

ν

ρ
Dt∂z∇2vy. (A.6)

To proceed to the next step we sum up equations (A.4) and (A.6) to obtain,

Dt[∂zDt(ux + vy)] +Dt∂z(wxU
′) + (∂2

xx + ∂2
yy)

[
1

ρ
Dtpz

]
=

−Dt∂z[∂x(u∇)u+ ∂y(u∇)v] +
ν

ρ
Dt∂z∇2(ux + vy). (A.7)

Next we substitute equation (A.2) into (A.7) to replace the term containing pressure,

Dt[∂zDt(ux + vy)] +Dt∂z(wxU
′) + (∂2

xx + ∂2
yy)

[
−D2

tw −Dt(u∇)w +
ν

ρ
Dt∇2w

]
=

−Dt∂z[∂x(u∇)u+ ∂y(u∇)v] +
ν

ρ
Dt∂z∇2(ux + vy), (A.8)
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To carry out further simplification on the first and last term of equation (A.8), we

substitute incompressibility equation (A.1d) by making use of the following,

ux + vy = −wz

,

∂zDt(ux + vy) = ∂zDt(−wz) = −[∂t + U∂x]wzz − U ′∂xwz = −Dtwzz − U ′∂xwz

,
ν

ρ
Dt∂z∇2(ux + vy) = −ν

ρ
Dt∂z∇2wz ≡ −

ν

ρ
Dtwzzzz −

ν

ρ
Dt∇2

⊥wzz

Substituting the above expressions into equation (A.8) we obtain,

D2
twzz − U ′′Dt∂xw = −D2

t∇2
⊥w −Dt∇2

⊥(u∇)w +
ν

ρ
Dt∇4

⊥w︸ ︷︷ ︸
e.s.t

+
ν

ρ
Dt∇2

⊥wzz︸ ︷︷ ︸
e.s.t

+Dt∂z[∂x(u∇)u+ ∂y(u∇)v] +
ν

ρ
Dt∇2

⊥wzz︸ ︷︷ ︸
e.s.t

+
ν

ρ
Dtwzzzz︸ ︷︷ ︸

dominant viscous term

. (A.9)

Finally dropping the marked extra small viscous terms, while retaining only the

leading order viscosity term we obtain the following nonlinear equation closed in

linear approximation,

D2
twzz−U ′′Dt∂xw = Dt∂z[∂x(u∇)u+∂y(u∇)v]−D2

t∇2
⊥w−Dt∇2

⊥(u∇)w+
ν

ρ
Dtwzzzz,

(A.10)

where we use the notation ∇2
⊥ = ∂2

xx + ∂2
yy. The next step is to non-dimensionalise

the nonlinear equation (A.10) to make explicit the order of magnitude of each term.

To this end we substitute dimensionless variables tilde quantities of equation (4.8)

into equation (A.10) to obtain,

Dt = ∂t + U∂x =
V0

L

[
∂t̃ + Ũ∂x̃

]
=
V0

L
D̃t, D2

t =
V 2

0

L2

[
∂t̃ + Ũ∂x̃

]2

=
V 2

0

L2
D̃2
t ,

D2
twzz =

V 3
0

L2d2
D̃2
t w̃zz, U ′′Dt∂xw =

V 3
0

L2d2
Ũ ′′D̃t∂x̃w̃, D2

t∇2
⊥w =

V 3
0

L4
D̃2
t ∇̃2
⊥w̃,
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Dt∂z[∂x(u∇)u+ ∂y(u∇)v] =
V 2

0

L2d2
[ q ]Dt∂z[∂x̃(u∇) ũ+ ∂ỹ(u∇) ṽ],

Dt∇2
⊥(u∇)w =

V 2
0

L2
[ q ] D̃t∇̃2

⊥(u∇)w̃,
ν

ρ
Dtwzzzz =

ν

ρ

V 2
0

Ld4
D̃tw̃z̃z̃z̃z̃.

Substituting the above re-scaled tilde variables into equation (A.10) and upon car-

rying out some algebra, we obtain a single dimensionless equation closed in linear

approximation which retains only the leading order viscous term,

D2
t ∂

2
zz w − U ′′Dt ∂xw = N +

(
d

L
Re

)−1

Dt∂
4
zzzzw, (A.11)

where we dropped the tildes and Re stands for the Reynolds number defined as

Re =
ρV0d

ν
=
V0d

µ̃
, µ̃ =

ν

ρ
, =⇒ Re−1 =

µ̃

V0d
∼ d

L

[ q ]

V0

.

The expression for the nonlinear term is

N =
[ q ]

V0

Dt ∂z∇⊥[(u∇)q]−

[(
d

L

)2
]
D2
t ∇2

⊥w −
(
d

L

)2
[ q ]

V0

Dt∇2
⊥((u∇)w).

Equation (A.11) is closed in linear approximation, on complementing it by the appro-

priate boundary conditions on the boundary and at infinity we arrive at the boundary

value problem (2.9) which we examine in Chapter 2 .



Appendix B

Details of the derivation of the

evolution equation for weakly

stratified boundary layer with

explicit account of viscous and

diffusive effects

The two-dimensional Benjamin-Ono (2d-BO) equation was originally derived by

Shrira [1989] for homogeneous shear layer flows in the context of the upper ocean

dynamics. An extension of the derivation carried out in Voronovich et al. [1998]

considered a more realistic model relevant to geophysical applications with arbitrary

density stratification outside the boundary layer. The model also took into account

the viscous effect, however the density diffusivity was neglected. Here we justify this

neglect by showing that the inclusion of density diffusivity characterised by the diffu-

sivity coefficient K is inconsequential, since it drops out due to smallness the relevant

term.

Here we consider a situation where density stratification confined in the boundary

layer is weak, but plays a key role in the boundary layer dynamics, while the account
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of density diffusion enters the main equation as a small perturbation that drops

out, since under adopted scaling the density perturbation is a “passive scalar”. The

dynamics of the finite-amplitude perturbations under consideration is governed by

the Navier-Stokes, the mass conservation, and the incompressibility equations

ρ0[Dtu+ wU ′] + px = −ρ̄[Dtu+ wU ′]− ρ0(u · ∇)u− ρ̄(u · ∇)u+ ν∇2u, (B.1a)

ρ0Dtv + py = −ρ̄Dtv − ρ0(u · ∇)v − ρ̄(u · ∇)v + ν∇2v, (B.1b)

ρ0Dtw + pz + ρ̄g = −ρ̄Dtw − ρ0(u · ∇)w − ρ̄(u · ∇)w + ν∇2w, (B.1c)

Dtρ̄+ wρ′0 = K∇2ρ̄− (u∇)ρ̄ (B.1d)

∇ · u = 0, (B.1e)

where ρ0 is the equilibrium density, ρ̄ is the perturbation density, while Dt = ∂t+U∂x

is the material derivative. We use the short-hand notation for the three-dimensional

Laplacian operator, ∇2 = ∂2
xx + ∂2

yy + ∂2
zz, g is constant gravity acceleration, whereas

K is the diffusivity coefficient.

The text below presents details of the algebra needed to exclude pressure term from

the set of the equations (B.1) to obtain a single nonlinear equation for vertical velocity

w closed in the linear approximation.

To proceed let us first re-write the density equation (B.1d) into the form below

gDt

[
ρ̄

ρ0

]
= N2w + g

K

ρ0

∇2ρ̄− g

ρ0

(u∇)ρ̄, (B.2)

where N2(z) = −gρ′0/ρ0 is the buoyancy frequency squared. Note that the assumed

smallness of vertical variations of ρ0 has been utilised. Next we divide both sides of

(B.2) by the gravitational constant g to obtain,

Dt

[
ρ̄

ρ0

]
=
N2w

g
+
K

ρ0

∇2ρ̄− 1

ρ0

(u∇)ρ̄. (B.3)

To find the magnitude of the ratio of perturbation density ρ̄ to that of the equilibrium

density ρ0 we employ equation (B.3). To proceed we express (B.3) in dimensionless
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form and substitute equation (4.9) into (4.10), then assuming the buoyancy term to

be dominant we get to leading order the expression of typical density perturbation

magnitude in terms of horizontal velocity q,

[
ρ̄

ρ0

]
=
N2

0d

g

[ q ]

V0

. (B.4)

We employ the well-known Boussinesq approximation, whereby, if not multiplied by

g, the terms in the equations due to the variations of density are negligibly small, or,

N2
0 d

g
� 1. This approximation is valid for the overwhelming majority of oceanic and

atmospheric applications. In our context the stratification is so weak that a much

stronger inequality holds
N2

0

g/d
� [ q ]

V0

∼ ε. (B.5)

This inequality justifies our neglect of nonlinear buoyancy terms. It is easy to see

that in virtue of (B.5), there is a remarkable simplification of the density equation

(B.2): the three terms on the RHS only enter into the z momentum equation through

a single term of buoyancy consisting of the product of gravitational acceleration and

perturbation density gρ̄.

To proceed, first we divide both sides of equation (B.1c) by ρ0, while taking the

material derivative Dt,

1

ρ0

Dtpz + gDt

[
ρ̄

ρ0

]
= −D2

tw −Dt(u∇)w +
ν

ρ0

Dt∇2w. (B.6)

Next we substitute the density equation (B.2) into equation (B.6) to find an expres-

sion for pressure,

1

ρ0

Dtpz = −
[
N2w + g

K

ρ0

∇2ρ̄− g

ρ0

(u∇)ρ̄

]
−D2

tw −Dt(u∇)w +
ν

ρ0

Dt∇2w, (B.7)

To this end we divide (B.1b) and (B.1a) by ρ0, take the partial derivative with respect

to z, then take the material derivative Dt to obtain the two closed expressions for

the streamwise and spanwise velocities respectively,

Dt[∂zDtv] +
1

ρ0

∂yDtpz = −Dt∂z(u∇)v +
ν

ρ0

Dt∂z∇2v, (B.8)
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Dt[∂zDtu] +Dt∂z(wU
′) +

1

ρ0

∂xDtpz = −Dt∂z(u∇)u+
ν

ρ0

Dt∂z∇2u. (B.9)

The next step is to take partial derivative of equation (B.9) with respect to x and

partial derivative of equation (B.8) with respect to y respectively to obtain,

Dt[∂zDtux]+Dt∂z(wxU
′)+∂2

xx

(
1

ρ0

Dtpz

)
= −Dt∂z∂x(u∇)u+

ν

ρ0

Dt∂z∇2ux, (B.10)

Dt[∂zDtvy] + ∂2
yy

(
1

ρ0

Dtpz

)
= −Dt∂z∂y(u∇)v +

ν

ρ0

Dt∂z∇2vy, (B.11)

To proceed to the next step we add equations (B.10) and (B.11), which yields,

Dt[∂zDt(ux + vy)] +Dt∂z(wxU
′) + (∂2

xx + ∂2
yy)

[
1

ρ0

Dtpz

]
=

−Dt∂z[∂x(u∇)u+ ∂y(u∇)v] +
ν

ρ0

Dt∂z∇2(ux + vy). (B.12)

The next step is to eliminate the pressure by substituting equation (B.7) into (B.12),

Dt[∂zDt(ux + vy)] +Dt∂z(wxU
′) =

− (∂2
xx + ∂2

yy)

[
−
(
N2w + g

K

ρ0

∇2ρ̄− g

ρ0

(u∇)ρ̄

)
−D2

tw −Dt(u∇)w +
ν

ρ0

Dt∇2w

]
−Dt∂z[∂x(u∇)u+ ∂y(u∇)v] +

ν

ρ0

Dt∂z∇2(ux + vy). (B.13)

To carry out further simplification of the first and last term of equation (B.13), we

split the density diffusion term into parts responsible for the horizontal and vertical

diffusion respectively, thereafter employ the incompressibility equation (B.1e) ,

ux + vy = −wz,

we immediately obtain

∂zDt(ux + vy) = ∂zDt(−wz) = −[∂t + U∂x]wzz − U ′∂xwz = −Dtwzz − U ′∂xwz,

ν

ρ0

Dt∂z∇2(ux + vy) = − ν

ρ0

Dt∂z∇2wz ≡ −
ν

ρ0

Dtwzzzz −
ν

ρ0

Dt∇2
⊥wzz.
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On substituting the above expressions into equation (B.13) we obtain,

D2
twzz − U ′′Dt∂xw = −D2

t∇2
⊥w −Dt∇2

⊥(u∇)w +
ν

ρ0

Dt∇4
⊥w︸ ︷︷ ︸

e.s.t

+
ν

ρ0

Dt∇2
⊥wzz︸ ︷︷ ︸

e.s.t

−∇2
⊥N

2w − gK
ρ0

∇4
⊥ρ̄︸ ︷︷ ︸

e.s.t

−gK
ρ0

∇2
⊥ρ̄
′′ +

g

ρ0

∇2
⊥(u∇)ρ̄

+Dt∂z[∂x(u∇)u+ ∂y(u∇)v] +
ν

ρ0

Dt∇2
⊥wzz︸ ︷︷ ︸

e.s.t

+
ν

ρ0

Dtwzzzz︸ ︷︷ ︸
dominant viscous term

, (B.14)

Finally, on substituting equation (B.4) for the magnitude density ratio into (B.14)

and retaining only the leading order viscous term after non-dimensionalisation we

obtain a relatively compact expression for the boundary value problem formulated in

terms of vertical velocity

D2
t ∂

2
zz w−U ′′Dt ∂xw = N +M−

(
N0 d

V0

)2

N2∇2
⊥w+

(
d

L
Re

)−1

Dt∂
4
zzzzw. (B.15)

where,

N =
[ q ]

V0

Dt ∂z∇⊥[(u∇)q]−

[(
d

L

)2
]
D2
t ∇2

⊥w −
(
d

L

)2
[ q ]

V0

Dt∇2
⊥(u∇)w,

M =

(
N0 d

V0

)2
[ q ]

V0

∇2
⊥(u∇)ρ̄+ Sc

(
N0 d

V0

)2
[ q ]

V0

∇2
⊥ρ̄
′′,

where the dimensionless parameter, Sc is the Schmidt number given by,

Sc =
K

V0 d
.

Equation (B.15) is closed in linear approximation, on complementing it by the appro-

priate boundary conditions on the boundary and at infinity we arrive at the boundary

value problem (4.14) which we examine in Chapter 4.
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