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Abstract

Visual short-term memory (vSTM) is often measured via continuous-report
tasks whereby participants are presented with stimuli that vary along a
continuous dimension (e.g., colour) with the goal of memorising the stimulus
features. At test, participants are probed to recall the feature value of one
of the memoranda in a continuous manner (e.g., by clicking on a colour
wheel). The angular deviation between the participant response and the true
feature value provides an estimate of recall precision. Two prominent models
of performance on such tasks are the two- and three-component mixture
models (Bays et al., 2009; Zhang & Luck, 2008). Both models decompose
participant responses into probabilistic mixtures of: (1) responses to the true
target value based on a noisy memory representation; (2) random guessing
when memory fails. In addition, the three-component model proposes (3)
responses to a non-target feature value (i.e., binding errors). Here we report
the development of mixtur, an open-source package written for the statistical
programming language R that facilitates the fitting of the 2- and 3-component
mixture models to continuous report data. We also conduct simulations
to develop recommendations for researchers on trial numbers, set-sizes and
memoranda similarity, as well as parameter recovery and model recovery. In
the Discussion, we discuss how mixtur can be used to fit the slots and the
slots-plus-averaging models, as well as how mixtur can be extended to fit
explanatory models of visual short-term memory. It is our hope that mixtur
will lower the barrier of entry for utilising mixture modelling.
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Visual short-term memory (vSTM) refers to the system involved with the storage of
visual information over brief periods of time (Phillips, 1974). While the duration of iconic
memory lasts on the order of milliseconds (Rensink, 2014; Sperling, 1960), vSTM stores
information for considerably longer periods of time (on the order of seconds), and can also
withstand the effects of masking and shifts of spatial location (Hollingworth, Richard, &
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Luck, 2008; Phillips, 1974).

Understanding the nature of vSTM and its limitations is important as vSTM is
the interface between sensory visual perception and higher order cognitive processes, such
as attention (e.g., Awh & Jonides, 2001). To assess vSTM performance, two prominent
methods are typically employed: The change detection task (see e.g., Luck & Vogel, 1997;
Pashler, 1988; Phillips, 1974; Phillips & Baddeley, 1971; Purdy, Eimann, & Cross Jr.,
1980; Vogel, Woodman, & Luck, 2001) and the continuous report task (Bays, Catalao, &
Husain, 2009; Wilken & Ma, 2004). Whilst the change detection task can be analysed using
(relatively) simple signal detection methods, analysis of continuous report tasks relies on
fitting probabilistic mixture models to participant data. The fitting of such models can
be challenging to implement for researchers with limited programming and model fitting
experience.

The purpose of the current paper is to present mixtur: A package written in the
statistical programming language R that allows users with minimal programming experience
to implement the two-component mixture model of Zhang and Luck (2008) and the three-
component mixture model of Bays et al. (2009). The package allows users to fit the models
to participant data, but also allows for the simulation of artificial data from these models.
The mixtur package provides utility functions for analysing and plotting behavioural data
together with the model outcomes.

The structure of the paper is as follows. We first briefly describe the continuous report
task, before presenting an overview of the two-component model of Zhang and Luck (2008)
and the three-component model of Bays et al. (2009). We then present mixtur. We begin
by providing an overview of all of the main functions in the package: We show how to
generate model-free summary statistics of behavioural data, how to fit the mixture models
to behavioural data (including formal model comparison techniques), how to plot fits of the
models to behavioural data, and how to simulate data from the models. In a final section,
we present a series of simulations with the aim of exploring the performance of the mixture
models (e.g., parameter recovery, parameter- and model-mimicry) as well as informing
experimental design considerations (e.g., number of trials to use in an experiment). In the
discussion, we describe how mixtur can also be used to fit the slots and slots-plus-averaging
models described by Zhang and Luck (2008), and how mixtur can be extended in future
work to fit other models of visual short-term memory.

We are grateful to Ed D. J. Berry who assisted with the package development. We are also grateful to
Paul Bays for making the MatLab code for the 3-component model publicly available under General Public
Licence (Version 2.0) at https://www.paulbays.com/toolbox/index.php, and for providing the permission for
the code to be modified and translated.

The authors made the following contributions. James A. Grange: Conceptualization, Investigation,
Methodology, Software, Visualisation, Writing (Original Draft Preparation), Writing (Review & Editing);
Stuart B. Moore: Conceptualization, Writing (Original Draft Preparation), Writing (Review & Editing).

Correspondence concerning this article should be addressed to James A. Grange, School of Psychology,
Dorothy Hodgkin Building, Keele University, Keele, ST5 5BG, United Kingdom. E-mail: grange.jim@gmail.c
om

mailto:grange.jim@gmail.com
mailto:grange.jim@gmail.com


MIXTUR: MODELLING VSTM 3

Continuous Report Task

Unlike change detection tasks where a binary change/no-change judgement is provided,
the continuous report task—popularised by Wilken and Ma (2004) but introduced by
Prinzmetal, Amiri, Allen, and Edwards (1998)—is thought to provide a continuous estimate
of the precision of the internal memory representations of presented items. In one version
of the continuous report task (see for example Figure 1) participants are presented with
a stimulus display consisting of several coloured squares with the task of remembering
the colours. After a variable retention interval, a probe display is then presented where
the location of a specific item presented on the initial display is probed. The task of the
participant is to recall and report the colour of the probed item by clicking on a colour wheel.
By calculating the angular deviation between the participant’s response and the true value
of the target, researchers can estimate the precision of the participant’s memory for this
item: If memory for the target’s feature value is excellent, their response will be very close
to the true target value (i.e., there will be minimal angular deviation); if however memory
for the target’s feature value is poor, their response will be further away from the true target
value (i.e., angular deviation will be high); on some trials, they may even just be guessing.

Figure 1 . A schematic overview of a typical continuous report visual short-term memory

task. R = Response value from participant. T = Target value.

Thus the error distributions of participant responses are thought to provide some
information as to the precision of the internal memory representation, and can therefore
be used to probe the nature of vSTM and its capacity limitations. For example, in their



MIXTUR: MODELLING VSTM 4

Experiments 7–9, Wilken and Ma (2004) used the continuous report task (using coloured
stimuli in Experiment 7, and spatial frequency and Gabor patches in Experiments 8–9)
and explored the effect of stimulus set-size (N = 2, 4, 6, and 8) on memory precision.
Error distributions in these experiments showed that the precision of participant responses
decreased as set-size increased (see also Bays et al., 2009), an observation they used as an
argument against vSTM having a fixed capacity: If vSTM has a fixed capacity, it would
be expected that until capacity is reached, the recall accuracy of probed items should be
excellent (because all presented items will have been stored with high precision); once
capacity is reached, although the items receiving a slot will still be stored with high precision,
the probability of a non-stored item being probed increases, which leads to more noise in
the response distributions due to increased guessing rates.

Mixture Models

Responses in the continuous report task are thought to consist of a mixture of
different modes of responding: For example, in one account it is thought that on some
trials, participants are making their response based on an internal (but noisy) memory
representation of the true target value; on other trials, this memory may fail (either due to
recall failure or failure to encode the stimulus due to capacity limitations) and the participant
merely guesses their response (e.g., Zhang & Luck, 2008). In an extension of this account, on
some trials participants may also incorrectly report one of the non-probed target’s feature
values (e.g., Bays et al., 2009). Researchers have therefore developed mixture models to
quantify these different processes from behavioural data (however, see Schurgin, Wixted, &
Brady, 2020 for an alternative interpretation of response error distributions in the continuous
report task). Below we discuss two successful mixture models—the two-component model of
Zhang and Luck (2008) and the three-component model of Bays et al. (2009)—that have
been used widely to explore vSTM.

Zhang & Luck (2008)

In the two-component model of Zhang and Luck (2008), responses in the continuous
report task are a probabilistic mixture of two processes: (1) responses based on a noisy
internal representation of the target’s feature value, and (2) random guessing. It is assumed
that if a representation of the colour of the target item is held in memory, the reported
colour value will have a propensity to be located close to the actual target value. This can
be modelled as a von Mises distribution (a normal distribution for circular data) centered on
the true target value with a standard deviation representing the precision of the participant’s
internal representation (i.e., higher standard deviation provides poorer precision). When no
representation is stored (or it is inaccessible) then no information about the colour of the
probed item will be available to the participant, resulting in a random guess (which—by
definition—can occur anywhere on the circle).

Formally, the two-component mixture model is given by

p(θ̂) = (1 − pu)φκ(θ̂ − θ) + pu
1

2π , (1)
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where θ̂ is the participant’s response value (in radians), θ is the true target colour value (in
radians), and pu is the probability of giving a uniform response which captures guessing.
From this, the probability of providing a target response—pt—is therefore given as 1 − pu.
φκ represents the probability density of the von Mises distribution with mean zero and
concentration parameter κ. Concentration parameter κ (kappa) is a measure of dispersion,
with higher values reflecting more precise memory representations (see Figure 2 for examples
of how probability density changes with different concentration parameters κ).
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Figure 2 . Probability density functions of different values of the von Mises concentration

parameter κ Higher values reflect more precise memory representations.

When manipulating set size, Zhang and Luck (2008) (Experiment 1) found that the
parameter reflecting the probability of making a target response—pt—was approximately
twice as high at set sizes of three when compared to set sizes of six, with no significant
change in memory precision κ. The authors took this as evidence in support of a slots model:
the view that a fixed and small number of item representations can be stored in memory
slots with a high degree of precision. Once these slots are full (i.e., at larger set sizes),
additional items are not stored at all, and if one of these non-stored items are probed at
test, the participant will resort to guessing. We will return to the slots model in the General
Discussion.

Bays et al. (2009)

Accurate performance in the continuous report task does not only require accurate
memory for the feature value of the target item; the participant also needs an accurate
memory for which feature value was associated with which item in the stimulus display. That
is, at encoding participants must bind together information regarding the target’s location
as well as the target’s feature value. At test, then, errors in responding could occur due to
incorrectly retrieving (with noise) a stored non-target feature value. Responses according to
this three-component model are a probabilistic mixture of (1) responses based on a noisy
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internal representation of the target’s feature value; (2) responses to a non-target feature
value; and (3) random guessing.

Formally, the three-component model is given by

p(θ̂) = (1 − pu − pn)φκ(θ̂ − θ) + pu
1

2π + pn
1
n

x∑
i

φκ(θ̂ − θ∗
i ) (2)

where pu and κ are as in the two-component model. The new parameter is pn, the probability
of making a response based on a non-target feature value, with θ∗

i (θ∗
1, θ

∗
2, θ

∗
3, ...) representing

the feature values of the non-targets x (therefore pt = 1 − pu − pn). It is important to
note that non-target feature values are stored with the same precision as the target feature
value (i.e., κ is the same for target and non-target feature values) because at encoding the
participant does not yet know which item will be probed.

Bays et al. (2009) used the three-component model in an experiment that manipulated
set size (N = 1, 2, 4, and 6). The modelling showed that increasing set size resulted in
significantly poorer estimates of the precision of responses and increased the frequency of
non-target responses. It is theoretically important to note that Bays et al. (2009) found
a reduction in precision even at set sizes of two, which is well below any putative vSTM
capacity limit. Instead, this favours a resource model (e.g., Bays & Husain, 2008; Frick,
1988) whereby memory resources are evenly distributed across all items in the display; at
larger set sizes, each item receives fewer resources leading to poorer memory.1

Overview of mixtur

We developed mixtur to reduce the burden on researchers wishing to apply mixture
modelling to continuous report data. mixtur allows users to fit both the two-component
and three-component models to their data. The package allows the models to be fitted
across different experimental conditions, including the common manipulation of set-size as
well as bespoke conditions. The fit routines will return the best-fitting parameters for each
participant and each condition (if specified), allowing researchers to apply their preferred
inferential analysis technique.2 The package will produce publication-ready plots of both
behavioural data as well as plots of the model fit. The mixtur package also allows users to
simulate artificial data from each model. We believe that the ability to simulate data from a
model is important to explore the models in detail, as well as to help inform experimental
and/or analytical design considerations (for example to calculate statistical power). In later
sections of this paper we utilise these simulation functions to explore various aspects of the
models as well as establishing experiment design recommendations.

1It is important to note that the assumption of equal distribution of resources across all items in the
display as stated by Bays et al. (2009) is not true of all mixture models, such as the variable precision model
of van den Berg, Shin, Chou, George, and Ma (2012).

2Note that mixtur does not do the analysis for the user. We decided against including this as a feature in
the package so that the software remains agnostic as to the best way to analyse data (i.e., to remain neutral
in the Bayes vs. frequentist debate).
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Note that we are aware of a software package MemToolbox that also implements the
two- and three-component mixture models (as well as allowing modelling of data from the
change detection task; Suchow, Brady, Fougnie, & Alvarez, 2013). The mixture models are
also implemented in code made available to supplement Bays et al. (2009) and van den Berg,
Awh, and Ma (2014).3 However, these materials are written for the proprietary software
MatLab. While many researchers have access to MatLab via institutional subscriptions, the
same cannot be said for independent researchers and newer/smaller institutions without
the means to supply such a subscription. Whilst there are free alternatives to MatLab
(for example Octave, Eaton, Bateman, Hauberg, & Wehbring, 2019), there are a number
of MatLab functions which have not yet been implemented, thus limiting the scope of its
analytical ability. MemToolBox currently requires one of these unavailable functions, meaning
that the toolbox (at present) can only be run using MatLab. In contrast, mixtur has been
written for R, a free statistical programming language. This enables everyone, regardless of
circumstance, to implement mixture modelling in their research.

Using mixtur

In this section we provide a comprehensive overview of how to use mixtur, providing
code examples for each step. mixtur is written in R (Version 4.0.2; R Core Team, 2020)4, a
free statistical programming language. To download R visit https://www.r-project.org/. In
addition, we recommend downloading and installing R-Studio, which provides a free user
interface for R https://rstudio.com/.

The mixtur package itself is hosted on the Comprehensive R Archive Network
(“CRAN”). To install (and then load) the package from CRAN, run the following lines of
code:
install.packages("mixtur")
library(mixtur)

The main user-facing functions available in mixtur are listed in Table 1. Users can
view a help file for each function (which also include examples of the function’s usage) by
typing help(FUN) into the R console, replacing FUN with the function name.

mixtur ships with example data sets to allow the user to familiarise themselves with
the package. All of the data sets—including a brief description of each—are listed in Table
2 and are publicly available.5 Users can load a particular data set by using the R function
data() and can glimpse the first few rows of the data file using the head() function:

3These are available at https://www.paulbays.com/toolbox/index.php and https://www.cns.nyu.edu/ma
lab/resources.html respectively.

4We, furthermore, used the R-packages dplyr (Version 1.0.6; Hadley Wickham et al., 2021), forcats (Version
0.5.0; Wickham, 2020), ggplot2 (Version 3.3.3; Wickham, 2016), gridExtra (Version 2.3; Auguie, 2017), here
(Version 1.0.1; Müller, 2017), kableExtra (Version 1.2.1; Zhu, 2020), papaja (Version 0.1.0.9997; Aust & Barth,
2020), purrr (Version 0.3.4; Henry & Wickham, 2020), RColorBrewer (Version 1.1.2; Neuwirth, 2014), readr
(Version 1.3.1; Wickham, Hester, & Francois, 2018), stringr (Version 1.4.0; Hadley Wickham, 2019), tibble
(Version 3.1.1; Müller & Wickham, 2021), tidyr (Version 1.1.3; Hadley Wickham, 2021), tidyverse (Version
1.3.0; Hadley Wickham, Averick, et al., 2019), and tinylabels (Version 0.1.0; Barth, 2020).

5The data from Bays et al. (2009) are publicly available at https://osf.io/c2yx5/, and the Berry, Allen,
Waterman, and Logie (2019) data are available at https://osf.io/59c4g/.

https://www.r-project.org/
https://rstudio.com/
https://www.paulbays.com/toolbox/index.php
https://www.cns.nyu.edu/malab/resources.html
https://www.cns.nyu.edu/malab/resources.html
https://osf.io/c2yx5/
https://osf.io/59c4g/
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Table 1

A list of all of the main functions provided by the mixtur package. For more information

about these functions, see the help files.

Function Description
get_summary_statistics Returns participant-level, model-free, summary statistics of

response error distributions.
plot_summary_statistic Produces a plot of the means of chosen summary statistic of

response error distributions.
plot_error Produces a plot of the response error distribution.
fit_mixtur Fits the mixtur models to behavioural data.
plot_model_fit Plots estimates of the model fit to observed response error

distributions.
plot_model_parameters Produces a plot of the means of the best-fitting model

parameters.
simulate_mixtur Simulates data from the mixtur models.

data(bays2009_sample)
head(bays2009_sample)

## id response target non_target_1 non_target_2 non_target_3
## 1 1 -2.186 -0.002 -2.989 2.648 2.262
## 2 1 -1.980 -2.498 -1.861 -1.340 -0.309
## 3 1 -0.177 -2.088 -2.845 -3.102 -0.371
## 4 1 1.342 1.334 2.844 1.007 -0.599
## 5 1 -1.644 -2.224 3.129 2.936 1.295
## 6 1 1.219 1.253 2.886 -0.924 -1.035

Data structures in mixtur. mixtur has some flexibility in the data structures it
can deal with, but you need to tell mixtur some things about your data so it can work with
it. The data should be in long format, where rows indicate separate trials, and columns
indicate trial and participant information (i.e., “tidy data”; Wickham, 2014). Typically the
data should have the columns listed in Table 3, but note that the columns do not necessarily
need these names as they can be set within function calls (see examples later).

Model-Free Summary Statistics

Before discussing how to fit the mixture models, we first present how to use mixtur
to obtain and then visualise model-free summary statistics—specifically, the mean absolute
error, resultant vector length, precision, and bias—of the behavioural data (for an excellent
overview of circular data analysis, see Cremers & Klugkist, 2018). Mean absolute error
provides the circular mean of the absolute deviation between the response value and the
true target value, with values closer to zero representing more accurate responding. The
resultant vector length is an estimate of variability in responding which can vary between
zero and one. A resultant vector length of one means all responses matched a single value
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Table 2

Description of data sets shipped with the mixtur package. The Data column indicates the

name of the data variable in the package.

Data Description
bays2009_full The full data set from Bays et al. (2009) including data

from 12 participants (coded in the id column). The data
includes set size manipulations (1, 2, 4, and 6 items) plus a
manipulation of duration of the sample array presentation
(100ms, 500ms, and 2,000ms). The response, target, and
non-target values are in radians (-pi to pi).

bays2009_sample A sample of data taken from the full data from Bays et al.
(2009). This data just consists of set sizes of 4 and sample
array duration of 500ms. This sample data is provided if the
user wishes to interact with a simpler data structure. The
response, target, and non-target values are in radians (-pi to
pi).

berry_2019 The full data set from Berry et al. (2019) including data
from 30 participants (coded in the id column). The
experiment always had a set size of three. There was an
additional manipulation (coded in the condition column)
indicating whether the task was completed under single-task
or dual-task conditions. Note that the data has the
response, target, and non-target values in degrees in the
range -180 to 180.

(i.e., no variability in responding) and a resultant vector length of zero means all responses
were spread around the circle. Following Bays et al. (2009), the function also provides an
estimate of response precision; this is calculated as the reciprocal of the standard deviation
for circular data, subtracting from this the value expected by chance. The function also
provides an estimate of response bias, which is the circular mean of the angular deviation
between a participant’s response and the location of the true target value. Bias values close
to zero indicate no clockwise or anti-clockwise bias in responses.

The function to obtain summary statistics takes the arguments presented in Table
4. We provide these arguments here in full because many other functions in mixtur share
these arguments. In the following example, we take the full data from Bays et al. (2009)
which is included in the mixtur package, and obtain summary statistics as a function of
set-size (which included set sizes of 1, 2, 4, and 6 items). Note that we need to tell mixtur
the name of the column that includes information relating to the set-size of each trial:
summary <- get_summary_statistics(data = bays2009_full,

unit = "radians",
id_var = "id",
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Table 3

Variables (as columns) expected by mixtur in data sets. The Name column shows the default

names for the columns accepted by mixtur.

Name Description
id A column indicating the participant numbers / identifiers.
response A column providing the participant’s response for each trial.

This can either be in degrees (i.e., 1-360), degrees limited to
the range 1-180 (i.e., if the experiment uses bar
orientations), or radians (typically in the range 0-2pi, but
could also be -pi to pi.

target A column providing the target value. This will be used by
the package to calculate response error (i.e., the deviation
between the response value and the true target value). This
should be in the same units as the response data.

non_target If the experiment has set sizes greater than one, the data
should include a column that provides the non-target values
(one column for each non-target). If there is more than one
non-target (i.e., set sizes greater than 2), each column name
should begin with a common term (e.g., the “non_target”
term is common to the non-target columns “non_target_1”,
“non_target_2” etc.).

set_size A column indicating the current trial’s set size (i.e., number
of items to remember during the encoding phase), if your
experiment manipulated this.

condition A column indicating the current trial’s condition if your
experiment had an additional manipulation (for example the
duration of the sample array presentation, as in the Bays et
al. [2009] data).

response_var = "response",
target_var = "target",
set_size_var = "set_size",
condition_var = NULL)

## id set_size mean_absolute_error resultant_vector_length precision bias
## 1 1 1 0.188 0.973 3.816 -0.023
## 2 1 2 0.273 0.934 2.266 -0.042
## 3 1 4 0.581 0.656 0.657 -0.005
## 4 1 6 0.681 0.590 0.543 0.003
## 5 2 1 0.206 0.945 2.529 0.034
## 6 2 2 0.347 0.825 1.181 0.002



MIXTUR: MODELLING VSTM 11

Table 4

Arguments that can be passed to the get_summary_statistics() function.

Name Description
data A data frame containing the data that is to be plotted. See

the data structure section for how this should be formatted.
unit A character variable indicating the unit of measurement in

the data. mixtur accepts units in degrees (1-360),
degrees_180 capped at 180 (1-180), and radians (either
0-2pi or -pi to pi). Defaults to “degrees”.

id_var A character variable indicating the column name that codes
for participant identification. Defaults to “id”.

response_var A character variable indicating the column name that codes
for participants’ responses. Defaults to “response”.

target_var A character variable indicating the column name that codes
for the target value. Defaults to “target”.

set_size_var If set size was manipulated, a character variable indicating
the column name that codes for the set size. Defaults to
NULL.

condition_var If an additional condition was manipulated, a character
indicating the column name that codes for this condition.
Defaults to NULL.

Plotting

Users can obtain publication-ready plots of the model-free summary statistics, as
well as a plot of the response error distribution. For plots containing multiple set-sizes
and experimental conditions, the colour palette of the plots can be set via the palette
argument using the palettes provided in the RColorBrewer package (Neuwirth, 2014), which
is installed and loaded when mixtur is loaded. To see the names of all available colour
palettes, type display.brewer.all() into the R console. By default, mixtur utilises the
“Dark2” palette which is colour-blind friendly. Additionally, if the user wants the data
underlying these plots, this can be achieved by setting the return_data argument in the
respective functions to TRUE; the returned data is formatted in such a way that it is ready
for inferential analysis.

Plotting model-free summary statistics. Each of the model-free summary statis-
tics can be plotted using the plot_summary_statistic() function. The user must select
which summary statistic to plot (using the statistic argument). By default, the plotting
function returns a plot of the requested summary statistic averaged across participants,
together with error bars denoting one standard error around the mean (i.e., +/- 1 SE). The
user can also plot by set-size and/or an additional condition if this structure is present
in the data. As an example, the following code plots response precision as a function of
set size from the full data set of Bays et al. (2009). The plot also includes the additional
manipulation of duration of the sample array presentation (with three levels: 100ms, 500ms,
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and 2,000ms); this is set by the condition argument. The resulting plot can be seen in Figure
3.
plot_summary_statistic(data = bays2009_full,

statistic = "precision",
unit = "radians",
id_var = "id",
response_var = "response",
target_var = "target",
set_size_var = "set_size",
condition_var = "duration",
return_data = FALSE)
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Figure 3 . Plot of the mean response precision in the Bays et al. (2009) data, plotted as a

function of set size (each plot is a different set size, with levels 1, 2, 4, and 6). Error bars

denote +/- 1 standard error around the mean.

Plotting response error. Response error refers to the angular deviation between
a participant’s response and the location of the true target value (i.e., where the participant
should have responded). By default, the plotting function returns the probability density of
response error averaged across participants, together with error bars denoting one standard
error around the mean (i.e., +/- 1 SE). The user can also plot by set-size and/or an additional
condition if this structure is present in the data. In the following code, we plot response
error as a function of set size and duration from the Bays et al. (2009) data. The resulting
plot can be seen in Figure 4.
plot_error(data = bays2009_full,

unit = "radians",
id_var = "id",
response_var = "response",
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target_var = "target",
set_size_var = "set_size",
condition_var = "duration",
return_data = FALSE)

Modelling

The main reason for developing the mixtur package was to assist researchers who wish
to fit mixture models to participant data. The mixtur package can fit both the 2-component
mixture model of Zhang and Luck (2008) and the 3-component mixture model of Bays et
al. (2009), as well as the slots and slots-plus-averaging models of Zhang and Luck (2008),
which we return to in the General Discussion. The models are fit to trial-level data via
maximum likelihood estimation of the key parameters (see Equations 1 and 2) using the
Nelder-Mead gradient descent algorithm to minimise the negative log-likelihood. Multiple
starting values are used for each parameter to avoid local minima. Specifically, a grid of all
permutations of the following paramater values are used as starting points: κ – 1, 10, 100; pu
(and pn if fitting the 3-component model) – 0.01, 0.1, 0.4. The model recovery simulations
reported later show this fit routine has acceptable accuracy.

The models can be fit via the fit_mixtur() function. The arguments to pass to this
function are similar to other functions previously discussed (see the help files by typing
help(fit_mixtur) into the R console) with the addition of the model argument; the user
should inform mixtur whether the two-component model (model = "2_component") or
three-component model (model = "3_component") should be fit to the data. By setting
the additional argument return_fit = TRUE, the fit routine will return the log-likelihood
of model fit (which can be useful for formal model comparison; see later section).

To fit the model to individual participant data, the user should inform mixtur which
column in the data set codes for participant identification (via the id argument). As with
the plotting functions, users can inform mixtur whether there was a set-size manipulation
and/or an additional condition manipulation; if so, by passing the column names to the
respective arguments the package will fit the model to these independent variables.

Two-component model. The parameters estimated when fitting the two-
component model are κ (kappa, the concentration parameter of the von Mises distribution)
and pu (the probability of a uniform response); the probability of a target response (pt)
is calculated as 1 − pu. The following code shows how to fit the two-component model
to data from Bays et al. (2009), fitting the model to individual participant data and the
set-size manipulation (and ignoring the duration manipulation). The function returns the
best-fitting parameters per participant per set-size. Note that in this example (in contrast
to the previous examples), it is best to save the results of the function call to a variable so
that it can be accessed later (here we save the function results to the variable model_fit_2 ):
model_fit_2 <- fit_mixtur(data = bays2009_full,

model = "2_component",
unit = "radians",
id_var = "id",
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Figure 4 . Probability density plots of participant-averaged response error (in radians) in

the Bays et al. (2009) data, plotted as a function of set size (each plot is a different set size,

with levels 1, 2, 4, and 6) and an additional condition manipulation of duration. Error bars

denote +/- 1 standard error around the mean.
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response_var = "response",
target_var = "target",
set_size_var = "set_size",
condition_var = NULL)

head(model_fit_2)

## id kappa p_t p_u set_size
## 1 1 18.358 1.000 0.000 1
## 2 2 16.359 0.983 0.017 1
## 3 3 15.692 1.000 0.000 1
## 4 4 26.955 0.986 0.014 1
## 5 5 13.831 0.976 0.024 1
## 6 6 27.090 0.985 0.015 1

Three-component model. The three-component model extends the two-
component model by also taking into account binding errors (often called “swap errors”)
whereby participants make an erroneous response to one of the non-cued non items held
in memory. The parameters estimated when fitting the three-component model are κ (the
concentration parameter of the von Mises distribution), pu (the probability of a uniform
response); and pn (the probability of a non-target response). The probability of a target
response, pt, is calculated as 1 − pn − pu.

To fit the three-component model to the Bays et al. (2009) data (again modelling
individual participant data and the set-size manipulation) users just need to alter the model
argument:
model_fit_3 <- fit_mixtur(data = bays2009_full,

model = "3_component",
unit = "radians",
id_var = "id",
response_var = "response",
target_var = "target",
non_target_var = "non_target",
set_size_var = "set_size",
condition_var = NULL)

head(model_fit_3)

## id kappa p_t p_n p_u set_size
## 1 1 18.358 1.000 0 0.000 1
## 2 2 16.359 0.983 0 0.017 1
## 3 3 15.692 1.000 0 0.000 1
## 4 4 26.955 0.986 0 0.014 1
## 5 5 13.831 0.976 0 0.024 1
## 6 6 27.090 0.985 0 0.015 1

If the user wishes to obtain details of the fit routine, users can set the additional
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argument return_fit = TRUE. In addition to the best-fitting parameters, the function will
also return the log-likelihood value, and the number of trials used in the fit routine. The
function will also return Akiake’s Information Criterion (AIC) and Bayesian Information
Criterion (BIC), which are estimators of prediction quality penalised by the number of model
parameters. AIC and BIC can thus be used for model comparison (for both metrics, lower
values suggest a superior model). AIC is given by

AIC = −2L̂L+ 2p (3)

where LL refers to the log-likelihood of model fit and p represents the number of free
parameters (p = 2 & 3 in the 2-component and 3-component model respectively). The
model with the lowest AIC value is to be preferred. mixtur also provides a version of AIC
corrected for small trial numbers, given by

AICc = −2L̂L+ 2p
(

n

n− p− 1

)
(4)

BIC is given by

BIC = −2L̂L+ pln(n) (5)

where LL and p are as in the AIC, ln is the natural logarithm and n is the number of trials
used in the LL estimate.

Plotting model fit. mixtur provides utility functions to assist the researcher in
plotting model outcomes; users can plot goodness-of-fit of the model to the data, and plot
participant-averaged estimates of the best-fitting parameters. Whilst the model fitting
functions will return the best-fitting parameters per participant (and per set-size and/or
condition, if requested), it is recommended to check the goodness-of-fit of the model to the
participant data. The function plot_model_fit() in mixtur will plot the model-predicted
response error against the participant-averaged data.6 We pass to this function the variable
containing the participant data, and the variable containing the model fit results (other
arguments are similar to previous functions), as well as stating which model was used to fit
the data. In the following example, we plot the fit of the 3-component model to the Bays et
al. (2009) data by set size, which produces Figure 5:
plot_model_fit(participant_data = bays2009_full,

model_fit = model_fit_3,
model = "3_component",
unit = "radians",

6See Appendix A for a sample script that can be used if the user wishes to plot the model fit per participant
to see if any individual participant’s data was not well fit by the model.
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Figure 5 . Goodness-of-fit probability density plots of model predictions of response error

(shown by the solid line) and participant-averaged data (points). Error bars denote +/- 1

standard error around the mean. Each plot shows a different set size (with levels 1, 2, 4,

and 6).

The plot_model_parameters() function can be used to plot the average parameter
values across participants for each set-size and condition (if manipulated) by passing to it
the variable containing the model fit information and the model that was fit to the data
(Figure 6). As with previous plotting functions, the user can set return_data = TRUE to
obtain the data underlying the plot.
plot_model_parameters(model_fit = model_fit_3,

model = "3_component",
id_var = "id",
set_size_var = "set_size",
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condition_var = NULL,
return_data = FALSE)
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Figure 6 . Participant-averaged estimates of best-fitting parameters from the 3-component

model to the Bays et al. (2009) data, plotted as a function of set size. Error bars denote +/-

1 standard error around the mean.

Simulating

As well as fitting models to participant data, mixtur can also be used to simulate
artificial data from both the 2-component and 3-component models. The critical function—
simulate_mixtur()—needs to be passed as arguments the name of the model to simulate
from, the parameters to use in the simulation, as well as the number of trials and the set
size to use in the simulation. If simulating from the 2-component model, values for κ and pu
need to be provided; if simulating from the 3-component model, a value for pn must also be
provided.

In the following example, we simulate 5,000 trials from the 2-component model with a
set-size of 4, κ = 15 and pu = 0.25. The simulation returns (in radians) the target feature
value, the simulated response from the model, and the non-target feature values. These
non-target feature values do not influence the simulated data from the 2-component model,
but do influence responses for the 3-component (the degree to which is set by the p_n
argument when simulating from this model).
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simulated_data <- simulate_mixtur(n_trials = 5000,
model = "2_component",
kappa = 15,
p_u = 0.25,
set_size = 4)

head(simulated_data)

## id set_size target response non_target_1 non_target_2 non_target_3
## 1 1 4 0.157 -0.178 0.541 1.222 -2.025
## 2 1 4 -3.054 2.866 2.670 -0.454 0.890
## 3 1 4 2.112 1.803 -1.833 -0.209 2.478
## 4 1 4 -2.601 -2.342 -1.606 2.531 -0.681
## 5 1 4 0.140 0.387 -2.391 2.182 -1.990
## 6 1 4 1.344 1.635 -0.611 2.740 -0.244

If the user wishes to simulate multiple set-sizes at once, a vector of set sizes can be
passed to the set-size argument; however, if choosing this option, the user must also provide
a vector of matching length to each model parameter argument to use for each set size. For
example, the following code simulates data from the 2-component model for set sizes of 1, 2,
4 and 6, with pu increasing with set size:
simulated_data <- simulate_mixtur(n_trials = 5000,

model = "2_component",
kappa = c(15, 15, 15, 15),
p_u = c(0.01, 0.05, 0.1, 0.25),
set_size = c(1, 2, 4, 6))

head(simulated_data)

## id set_size target response non_target_1 non_target_2 non_target_3
## 1 1 1 1.955 1.659 NA NA NA
## 2 1 1 -0.611 -0.848 NA NA NA
## 3 1 6 -0.890 -0.869 -1.466 1.955 -3.107
## 4 1 6 -1.344 -1.037 -2.094 -0.768 2.059
## 5 1 6 -1.658 -1.963 0.279 -2.810 2.705
## 6 1 2 1.850 1.632 -2.426 NA NA
## non_target_4 non_target_5
## 1 NA NA
## 2 NA NA
## 3 0.070 0.855
## 4 -2.985 0.908
## 5 3.089 -0.349
## 6 NA NA
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Simulations

In this section, we present the result of simulations conducted to assess some funda-
mental properties of the model and the fitting procedure to establish recommendations for
the design of experiments that wish to utilise these mixture models.

Simulation 1: Parameter Recovery

In the first simulation, we were interested in the accuracy of the fitting routine in
estimating model parameters. To explore this issue, we conducted a parameter recovery
simulation, whereby we simulate data from synthetic participants with known parameter
values, and then fit the model to these synthetic participants; if model fitting is accurate, the
fitting routine should recover the parameters used to generate the data. In this simulation,
we also explored the effect of the number of trials on the accuracy of parameter recovery to
establish recommendations for researchers designing experiments to assess these parameters
in participants.

We simulated the 2-component and 3-component model separately. For each simulation,
we generated data from 500 synthetic participants; each synthetic participant’s data set
consisted of N simulated trials, where N varied across simulations with the levels 20, 50,
100, 200, 500, and 1,000. The parameters used to simulate each participant’s data were
randomly generated from a uniform distribution for each model parameter covering a range
of plausible values. For the 2-component model, the range of possible parameter values was
κ = 1–16 and pu = 0.00–0.40; for the 3-component model it was κ = 1–16, pu = 0.00–0.40,
and pn = 0.00–0.14.

To assess the quality of parameter recovery, we calculated the product-moment
correlation between generated and recovered parameter values. Following White, Servant,
and Logan (2018), parameter recovery was considered poor if r < .5, fair if .5 < r < .75,
good if .75 < r < .9, and excellent for r > .9. The results of the simulation can be seen in
Figure 7, and the correlation values in Appendix B.

For the 2-component model, parameter recovery was good with as few as 50 trials
(rκ = .82, rpu = .84); for excellent recovery, 200 trials were required for κ, and 500 trials were
required for pu. For the 3-component model, 200 trials were required before all parameters
were recovered to a good level (rκ = .93, rpu = .86, rpn = .88). The results of this simulation
suggest that at least 200 trials are required (per set-size) for good-to-excellent parameter
estimation.

Simulation 2: Parameter Trade-Offs

In the next simulation, we were interested in exploring whether model parameters
trade-off against each other during the fit routine. That is, if we systematically vary one
parameter across a range of values when generating simulated data and hold all other model
parameters constant, then the fit routine should show a selective change in the parameter
that was varied and no change in the constant parameters. If we find that non-varied
parameters also change during the fit-routine, this would suggest that there is some degree
of trade-off in the model parameters.
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Figure 7 . Results of parameter recovery simulations for the 2-component model parameters

(rows 1 and 2) and the 3-component model parameters (rows 3-5). Points represent the

best-fitting parameter values (y-axis) plotted against generating parameter values (x-axis) for

500 simulated participants. Column titles show the number of trials used in each simulation.

The diagonal line represents perfect correspondence between generated and fitted parameter

values.
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We explored this in another parameter recovery study; the 2-component and 3-
component model were explored in separate simulations. For each model we conducted a
separate parameter recovery simulation per model parameter where we systematically varied
that parameter whilst holding other parameters at a default constant value; 50 parameter
values were explored for the varying parameter. The default parameter values7 were κ =
8 and pu = 0.10 for the 2-component model, and κ = 8, pu = 0.10, and pn = 0.15 for the
3-component model. When varied, 50 equally-spaced parameter values were selected from
the following ranges: κ = 4–12; pu = 0.05–0.80; and pn = 0.05–0.80. For each combination
of parameter values, 500 trials were simulated. The relevant model was then fit to this data
set, and the best-fitting parameters were compared against the generating parameter values.
This process was repeated 500 times for each combination of parameter value.
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Figure 8 . Results of the parameter recovery of the 2-component model in Simulation 2.

Points represent the mean of 500 simulations for each combination of parameter value (error

bars denote 95% confidence intervals). The solid line represents perfect correspondence

between generated and fitted parameter values.

The results for the 2-component model can be seen in Figure 8. The first row shows
parameter recovery estimates for κ and pu when κ was systematically varied. The second
row shows parameter recovery estimates for κ and pu when pu was systematically varied.

7Note that we explored other default parameter values to make sure our findings were robust to our choice
of starting values. These additional analyses were qualitively similar to that reported here.
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The solid line shows the generating parameter value in each plot. As can be seen in the top
row of Figure 8, when κ was systematically varied, the parameter recovery correctly showed
a corresponding and selective increase in the κ parameter; had pu varied as κ was varied
this would suggest a degree of parameter trade-off. This however was not observed. There
was also little evidence for parameter trade-offs when pu was systematically varied (lower
row of Figure 8).

However, when pu was varied to values larger than 0.6, the accuracy of estimating
the κ parameter became less stable. The mean absolute deviation of parameter estimates
from the generating value of 8 was below 0.898 when pu was below the 60th percentile of all
pu values explored (equating to pu=.46), but increased above 1.22 when pu was above the
70th percentile (equating to pu=.54). This suggests that when high degrees of guessing are
present in the data set, estimation of κ becomes less accurate.

The picture was similar for the results of the 3-component model, as seen in Figure
9. When κ was varied (top row), variation in recovered parameter values was limited to κ,
where recovery was excellent; neither pn nor pu systematically varied. Likewise, variation in
recovered parameter values was limited to pn when pn was varied (middle row), and variation
in recovered values was limited to to pu when pu was varied (middle row). However, we
observed the same pattern as for the 2-component model: The mean absolute deviation
of parameter estimates from the generating value of 8 was below 0.94 when pu was below
the 50th percentile of all pu values explored (equating to pu=.39), but increased above 1.10
when pu was above the 60th percentile (equating to pu=.46).

Simulation 3: Model Recovery

Simulations 1–2 together suggest that parameter recovery of both the 2-component
and 3-component model is very good. In Simulation 3, we were interested in exploring the
extent to which the models mimic each other. As the 3-component model is an extension of
the 2-component model, it can fit any data set equally as well as the 2-component model
(for example, when the pn parameter is set at zero, it behaves identically to the 2-component
model). Theoretically this additional flexibility is thought essential to account for binding (or
swap) errors, where on some trials participants erroneously recall the feature value of one of
the non-probed targets (Bays et al., 2009). As the additional flexibility of the 3-component
model is a theoretical stance, some researchers may be interested in assessing whether the
2-component or 3-component model best accounts for empirical data. The earlier section
describing model fitting outlined how mixtur is able to conduct model competition using
Akiake’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), both of
which jointly account for goodness-of-fit and model complexity.

However, if researchers are engaged in a program of work formally comparing the fits
of the 2-component and 3-component model, it would be important to know the extent to
which the two models mimic each other. That is, if the 2-component model were the “true”
generating process in participant data, the 2-component model should win the formal model
competition (likewise if the “true” generating process were the 3-component model, this
model should win the formal model comparison).

We explored this question via a model recovery simulation: We simulated data from a
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Figure 9 . Results of the parameter recovery of the 3-component model in Simulation 2.

Points represent the mean of 500 simulations for each combination of parameter value (error

bars denote 95% confidence intervals). The solid line represents perfect correspondence

between generated and fitted parameter values.
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“true” model (e.g., both the 2-component model and the 3-component model, in separate
simulations), and then conducted formal model comparison on this data set by fitting both
the 2-component and the 3-component model using both AIC and BIC. Repeating this
process many times, we were then able to quantify the percentage of fits where the true
generating model was accurately recovered.

For each model, we simulated 1000 data sets, with each data set comprising 500 trials.
To each data set, we then fit both the 2-component and 3-component model to the data.
We then calculated the difference in AIC between the 2-component model and 3-component
model fit (where AICdifference = AIC2component − AIC3component), and did the same for
BIC, with values above zero indicating a better fit for the 3-component model and values
below zero indicating a better fit for the 2-component model. Figure 10 shows histograms of
the AIC and BIC difference scores across these simulations.

As can be seen, when the 2-component model was the true generating model, both
the AIC and BIC were able to correctly recover this model in the majority of simulations.
The 2-component model was correctly recovered in 92.8% of the simulations via AIC, and
99.7% of the simulations via BIC. When the 3-component model was the true generating
model, AIC recovered the correct model in 87.8% of the simulations, and BIC recovered the
correct model in 77.6% of the simulations. Although both AIC and BIC correctly recovered
the generating models in the majority of simulations, AIC performed (on average) better
than BIC, likely due to BIC’s over-penalisation of model complexity, a result also reported
by Donkin, Nosfsky, Gold, and Shiffrin (2015) and van den Berg et al. (2014) using similar
mixture models.

Simulation 4: Effect of Set Size

In Simulation 4 we explored the effect of stimulus display set size on the ability of
the models to accurately recover true generating parameters. The mathematics of the 3-
component model takes into account the feature values of non-probed items when calculating
the proportion of binding errors (captured by the pn parameter) so it is plausible that the
number of items presented to participants might influence the accuracy of estimating this
(and other) parameters.

All of the simulations reported so far were conducted using the default set-size in
the simulate_mixtur() function of 4. These simulations have shown that—with a good
number of trials—the model parameters can be accurately recovered. In Simulation 4, we
varied the set size used in simulating artificial data, exploring set size values of 2, 3, 4, 6,
and 8. As the 2-component model does not consider non-probed items in its mathematics,
we did not include this model in the simulations.

We simulated 500 trials for each level of set size from the 3-component model; the
generating parameter values were randomly selected using the same process as in Simulation
1. We then fit the 3-component model to the simulated data and stored the best-fitting
parameter values. This process was then repeated for 500 simulations. The recovered
parameter values are plotted against the generated values as a function of set size in Figure
11. As with Simulation 1, we calculated product-moment correlations to assess adequacy of
parameter recovery, which are reported in Appendix B.
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Figure 10 . Histograms of the AIC and BIC difference scores for the model recovery

simulation (Simulation 3). The upper row shows the AIC and BIC difference scores when

the 2-component model was the true generating model. The lower row shows the AIC and

BIC difference scores when the 3-component model was the true generating model. Values

greater than zero (marked by the vertical line in each plot) indicate a better fit for the

3-component model, and values below zero a better fit for the 2-component model.
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Figure 11 . Results of parameter recovery simulations for the parameters of the 3-component

model as a function of the set-size of stimulus display (i.e., number of memoranda). Points

represent the best-fitting parameter values (y-axis) plotted against generating parameter

values (x-axis) for 500 simulated participants. Column titles show the set-size (i.e., number

of memoranda) used in each simulation. The diagonal line represents perfect correspondence

between generated and fitted parameter values.

As can be seen in the upper row of Figure 11, recover of κ was excellent throughout
all set sizes (all rs > .95). Although the parameter recovery for parameters pu and pn was
always good (i.e., all r > .75, there was a slight decline in parameter recovery adequacy
with increasing set size for both pu (r = .933 at set size 2, r = .850 at set size 8) and pn
(r = .972 at set size 2, r = .842 at set size 8).

Simulation 5: Memoranda Similarity

In Simulation 5 we explored the effect of the distance in feature space between
memoranda on parameter recovery adequacy. In continuous report studies, researchers often
put constraints on the minimum difference between memoranda to ensure participants can
discriminate between memoranda. For example, colours may be randomly selected from a
(360 degree) colour wheel with the constraint that each stimulus feature value must be at
least 40 degrees away from any other feature value. Whilst this is useful for enhancing the
discriminability of memoranda, it is unclear whether the spacing of non-probed item feature
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values impacts the ability of the 3-component model to differentiate between pn errors and
pu errors, leading to a mis-specification of errors (and inaccurate parameter estimates).
That is, whilst some minimum degree of separation is good for participants to discriminate
between items, does this value affect the accuracy of the model’s parameter estimation?

We explored this question in a parameter recovery simulation with a set size of 4.
Differences between each feature value across each of the 4 items on each trial was fixed
at a particular value: Either 5, 10, 15, 20, 30, or 40 degrees difference. For example, with
a difference of 5 degrees, the feature values could be 17, 22, 27, and 32 degrees. For each
level of separation explored, 500 trials were simulated (by randomly selecting generating
parameters using the same process as in Simulation 1) and the model was fit to this data
set. This process was repeated 500 times. Note that as the 2-component model does not
consider non-probed feature values, we only simulated the 3-component model.
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Figure 12 . Results of the memoranda similarity simulation for the 3-component model. In

all plots, the points represent the mean recovered parameter values across 500 simulations for

each level of degree separation. Error bars denote 95% confidence intervals. The horizontal

line in each plot represents each parameter’s true generating value. A: Recovery results for

κ. B: Recovery results for pu. C: Recovery results for pn.

The results of the simulation can be seen in Figure 12. As can be seen, across a
the whole range of memorandum similarity explored, parameter recovery was excellent
for both κ and pu (minimum r=.914). However, for pn, parameter recovery was only fair
(r=.673) for a separation of 5 degrees, and good (r=.883) for a separation of 10 degrees,
becoming excellent (r=.906) with 15 degrees of separation. Together, these results suggest
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that—whilst some degree of separation is advised to ensure participants can discriminate
between memoranda—the minimum value chosen for item similarity does not impact on
parameter estimation quality for κ or pu, but at least 15 degrees of separation is required to
estimate pn to an excellent level.

General Discussion

The application of mixture modelling to continuous report visual short-term memory
data has advanced theorising of vSTM and its capacity limitations (Bays et al., 2009; Zhang
& Luck, 2008). mixtur provides the researcher with a set of utility functions that aid
the design, analysis, and modelling of continuous report visual short-term memory studies
using the 2-component and 3-component models. In addition to providing a comprehensive
overview of how to use mixtur, we also conducted simulation studies to develop some clear
recommendations for researchers wishing to apply these models to their data. We outline
these below.

Design Recommendations

In Simulation 1 we found that for the 2-component model parameter recovery for κ and
pu was good with as few as 50 trials, but 200 trials were required for κ’s recovery to become
excellent, and 500 for pu. For the 3-component model, 200 trials were required for very good
parameter recovery. Given these outcomes, we recommend that at least 200 trials should be
used per cell of the experimental design (i.e., per set-size and/or experimental condition).
Oberauer et al. (2017) demonstrated via simulations using the 2- and 3-component models
(as well as the interference model of Oberauer & Lin, 2017) that low trial numbers can
be compensated for by larger participant sample sizes when using hierarchical Bayesian
modelling methods, leading to improved parameter estimation. These methods are, however,
not currently implemented in mixtur.

In Simulation 2 we showed that generally the parameters did not trade-off against
each other (i.e., systematic variation of one parameter led to selective changes in estimates
of just that parameter). However, when pu was varied above around 0.5, accurate recovery
of the concentration parameter κ became unstable; this was true for both the 2-component
model and 3-component model. Thus our recommendation is that researchers should be
cautious about interpreting κ for a participant whose pu parameter is above 0.5. One might
even consider using pu > 0.5 as an a priori exclusion rule for participant data. Other studies
have highlighted poor recovery of precision parameters when guessing rates are high. For
example, Sutterer and Awh (2016) conducted a simulation wherein data was generated based
on the two-component model of Zhang and Luck (2008). The authors observed a systematic
over-estimation of precision when the probability an item was held in memory was below 40%
(i.e., pu greater than 0.6). However, our recovery of the two-component model found increased
variability in κ when pu was greater than 0.6 rather than a systematic over-estimation. It is
also important to note that the Bayesian hierarchical approach demonstrated by Oberauer
et al. (2017) minimises this estimation bias.

The competitive model recovery simulation (Simulation 3) showed that when the data
was generated by the 2-component model, generally this model would fit the data better
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than the 3-component model, and when the data was generated by the 3-component model,
generally this model would fit the data better than the 2-component model. This suggests
that these models can be used to determine with some accuracy whether the data were
generated by a 2-component process (i.e., a mixture of responses to the target value plus
random guessing) or a 3-component process (i.e., a mixture of responses to the target value,
responses to non-target values, and random guessing). There is a limit, though, on how
much “better” the 2-component model can ever fit the data compared to the 3-component
model even when it is the true generating process. This is because the 3-component model
can always fit data at least as well as the 2-component model because when pn is set to zero,
the 3-component model becomes the 2-component model. Therefore, according to Equation
(3), in cases where both models fit the data equally well, the deciding factor is the model
complexity; according to Equation (3), then, when fit is identical (e.g., if LL is factored out
of the equation) the AIC difference becomes:

AICdifference =AIC2−component −AIC3−component

=2k2−component − 2k3−component)
=(2 ∗ 2) − (2 ∗ 3)
= − 2

(6)

Thus, the maximum AIC difference that can ever be achieved in support of the
2-component model—even when it is the “true” generating model—is an AIC difference
of -2. A similar outcome is true for the BIC statistic, where—–given a fixed number of
trials—the maximum BIC difference in support of the 2-component model is a constant value.
In contrast, because the 3-component model can fit data much better than the 2-component
model when it is the true generating model, there is no upper limit on the AIC or BIC
difference in model fit. Thus researchers should keep this asymmetry in mind if engaging
with model competition studies.

Slots Models

The main motivation for mixtur was to provide an implementation of the popular 2-
and 3-component mixture models. These models are so-called measurement models in the
sense that they quantify key parameters of interest to explain response error (i.e., memory
precision, guessing etc.). However, the models do not provide an explanation for these
errors. This provides some flexibility as to the type of experimental data that mixtur can
be used for. For example, versions of these mixture models have also been used to explore
accessibility and precision of episodic memory representations (Berens, Richards, & Horner,
2020; Richter, Cooper, Bays, & Simons, 2016).

Explanatory models on the other hand do provide mechanistic explanations for observed
errors. mixtur can be extended to accommodate such models. Indeed, two explanatory
models—the slots model and the slots-plus-averaging models of Zhang and Luck (2008)—are
already implemented in mixtur. The slots model assumes that visual short-term memory
consists of a fixed number of slots; each slot can store one item in the display with high
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resolution. However, if set-size is larger than the number of slots, some items in the display
will not be encoded, and if one of these non-encoded items are probed at test the participant
will resort to guessing. In this model, the number of slots is given by parameter K, and the
precision of the representation of items stored in the slots is given by parameter κ (kappa).
This is a re-parameterisation of the two-component model, providing an explanation for
the guessing rate (i.e., K) rather than statistically estimating its consequences (i.e., pu).
An extension to the slots model is the slots-plus-averaging model. This model is similar
to the slots model in that it is assumed vSTM consists of a fixed number of slots (again
given by K). However, when K is larger than the set-size, items can be stored in more
than one slot (until all slots are full); at test, the average value in each slot is available for
report. This leads to better memory for items that are stored in multiple slots. This model
provides a good account of the set-size effect (decreasing precision with increasing set-size).
We provide a full overview of how to fit and simulate these models in Appendix C; we also
repeat the design simulations using these models (the outcome of which do not alter our
recommendations in this section).

Future Directions

Although the slots and slots-plus-averaging models are implemented in mixtur, there
are others that are currently not implemented that could be the source of future developments
of mixtur. One example is the non-parametric version of the 3-component model developed
in Bays (2016): Whilst the models discussed in the current paper assume noise in vSTM
representations is captured by a von Mises distribution, the model presented by Bays
(2016) does not require this assumption. Bays (2016) revealed that by relaxing this strong
assumption, the non-parametric model discovered that estimates of the frequency of binding
errors (i.e., pn) are much more frequent than suggested by the parametric models provided in
mixtur. In the neural resource model of Bays (2014; see also Schneegans, Taylor, and Bays,
2020), feature values are encoded into vSTM via activity in simulated neural population
codes, with separate neurons tuned to prefer particular feature values; errors at recall are
explained by the noise associated with these population codes.

Another model is the interference model of Oberauer and Lin (2017). The model
explains vSTM errors as arising from interference in memory from three sources: (1) location-
based cuing triggering activation of non-target feature values; (2) residual activation from
non-target feature values presented at encoding; and (3) random guessing. The interference
model appears a very promising model as it builds on the successes of interference models in
explaining errors in verbal working memory (e.g., Oberauer, Lewandowsky, Farrell, Jarrold,
& Greaves, 2012), thus providing a unifying account of memory.

Models wherein precision is variable across items and trials (see for example van
den Berg et al., 2012), have been shown to better account for data obtained from delayed
estimation tasks (as well as change localisation) compared to slot models. Indeed, in a
factorial comparison of multiple models of vSTM, van den Berg et al. (2014) showed that
the underlying nature of precision was variable across both items and trials, as opposed
to being fixed (e.g., Zhang & Luck, 2008) or equal (Wilken & Ma, 2004), with increasing
set sizes resulting in reductions of precision. However, this comparison also revealed that a
model wherein the number of items remembered is fixed or Poisson-distributed performs
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better than a model wherein all items are remembered. While this may suggest a slot model
may be best suited to account for vSTM performance, van den Berg et al. showed that
the number of remembered items is underestimated by models assuming a fixed number of
remembered items. The authors highlight that such models do not account for variability or
non-target responses, meaning that responses provided on the basis of a low-precision or
non-target representation are erroneously considered as items not held in memory by these
models. As such, a variable precision model wherein the number of remembered items is
fixed or Poisson-distributed appears to be a more appropriate model than a simple fixed
precision slot model.

A further model that could be implemented in the mixtur package is the target
confusability competition (TCC) model by Schurgin et al. (2020), which proposes that errors
in the continuous report task do not arise from a mixture of different memory states (e.g.,
noisy memory response or guessing), but rather arise naturally from the psychophysical
similarity (and hence, potential confusability) of stimuli used in continuous report tasks
(e.g., colours on a colour wheel). The model assumes that responses are based on a noisy
familiarity signal, with colours close to the true target feature value receiving high levels of
familiarity (and hence, an increased probability of being chosen as the response); however,
the strength of familirity falls exponentially as distance from the target value increases,
meaning values further from the target value receive less familiarity and hence are associated
with a reduced probability of being selected. The model has been shown to parsimoniously
account for performance across a wide array of manipulations (e.g., set size, sample duration)
and stimulus spaces (e.g., colours and faces). At present, however, the TCC model does not
account for binding errors, which appear prevalent in continuous report tasks (Bays et al.,
2009; Oberauer & Lin, 2017) as implemented in the three-component mixture model.

Conclusion

We hope that mixtur will be a useful and accessible tool for anyone who wishes to
apply mixture modelling to their research, specifically those who have minimal programming
knowledge or limited/no access to proprietary software. Furthermore, we hope that the
recommendations discussed above will not only assist those currently utilising mixture
modelling, but also provide a good basis for anyone who may wish to do so in the future.

Open Practices Statement

The source code for mixtur is hosted at the first author’s GitHub site https://github
.com/JimGrange/mixtur where users can also post bug reports. The code and associated
data for the simulations can be found at https://osf.io/yn9sf/.

https://github.com/JimGrange/mixtur
https://github.com/JimGrange/mixtur
https://osf.io/yn9sf/
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Appendix A - Plotting Individual Participant’s Model Fit

# load the participant data
data <- bays2009_full

# get a list of unique participants in the data set
# we will create a separate plot to each of these participants' data
id_list <- unique(data$id)

# loop over each participant in the list
for(i in 1:length(id_list)){

# get this individual's data set
individual_data <- data %>%

filter(id == id_list[i])

# fit the model to this participant's data
individual_fit <- fit_mixtur(data = individual_data,

components = 3,
unit = "radians",
id_var = NULL,
response_var = "response",
target_var = "target",
non_target_var = "non_target",
set_size_var = "set_size",
condition_var = NULL)

# plot the model fit to this participant's data, saving the result as a
# variable
individual_plot <- plot_model_fit(participant_data = individual_data,

model_fit = individual_fit,
unit = "radians",
id_var = "id",
response_var = "response",
target_var = "target",
set_size_var = "set_size",
condition_var = NULL)

# save the plot itself. Note that this saves it as a pdf file, and you
# may need to change the width and height variables to suit your desired
# aesthetics
ggsave(filename = paste("individual_plot_",

id_list[i],
".pdf",
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sep = ""),
plot = individual_plot,
device = "pdf",
width = 8,
height = 8,
units = "in")

}
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Appendix B - Simulation Statistics

Simulation 1: Parameter recovery

Table 5

Product-moment correlation coefficients for the parameter recovery of the 2-component and

3-component model simulation as a function of the number of trials.

Model & Parameter 20 50 100 200 500 1000

2-Component (kappa) .321 .822 .896 .960 .983 .992
2-Component (p_u) .608 .844 .877 .871 .946 .975
3-Component (kappa) -.036 .488 .796 .928 .972 .984
3-Component (p_u) .449 .566 .679 .862 .899 .916
3-Component (p_n) .576 .660 .779 .879 .938 .961

Simulation 4: Set size

Table 6

Product-moment correlation coefficients for the parameter recovery of the 2-component and

3-component model simulation as a function of set size.

Model & Parameter 2 3 4 6 8

3-Component (kappa) .975 .976 .962 .963 .953
3-Component (p_u) .933 .900 .883 .817 .850
3-Component (p_n) .972 .957 .938 .866 .842

Simulation 5: Memoranda similarity

Table 7

Product-moment correlation coefficients for the parameter recovery of the 3-component model

simulation as a function of the angular distance between items.

Model & Parameter 5 10 15 20 30 40

3-Component (kappa) .975 .962 .965 .966 .959 .962
3-Component (p_u) .966 .938 .946 .947 .946 .914
3-Component (p_n) .673 .883 .906 .923 .964 .964
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Appendix C - Slot Models

In this section we describe the slots and slots-plus-averaging models as well as how
to fit and simulate these models in mixtur. We then conduct various design simulations
mirroring those in the main body of the article.

Overview of Models

Slots model. As described in the main body of the paper, the parameters for both
the slots and slots-plus-averaging models are the number of slots (given by parameter K)
and the precision of memory representations (given by parameter κ). If the current set size
(given by N) is lower than or equal to capacity K, then all items are remembered and the
participant’s response (θ̂) is modelled as a von Mises distribution centered on the true target
value (θ),

p(θ̂) = φκ(θ̂ − θ). (7)

However, when the set size N exceeds capacity K, the probed target will not always
have been memorised by the participant. In such a case, the probed target is encoded with
probability K

N ; if a non-encoded item is probed then the participant will resort to guessing
(which therefore occurs with probability 1 − K

N ). The participant’s response is therefore a
mixture distribution of noisy responses to the true target value and guessing,

p(θ̂) = K

N
φκ(θ̂ − θ) +

(
1 − K

N

) 1
2π , (8)

Slots-plus-averaging model. In the slots-plus-averaging model, items can be
stored in multiple slots if capacity allows. At test, items stored in multiple slots are reported
by using average of the stored representations (which reduces noise and therefore increases
the accuracy of the response). When N is greater than capacity K, no item is stored in
more than one slot, and responses are therefore a mixture of noisy responses to the true
target value and guessing (as with the slots model),

p(θ̂) = K

N
φκ1(θ̂ − θ) +

(
1 − K

N

) 1
2π , (9)

where κ1 is the precision of items stored in a single slot. When capacity K is greater
than N , at least one of the items will be stored in more than one slot (with probability
KmodN

N . These items are therefore stored with higher precision (which we denote here as
κhigh) than items stored in a single slot (which we denote here as κlow). Responses are
therefore a mixture distribution given by

p(θ̂) = K mod N
N

φκhigh(θ̂ − θ) +
(

1 − K mod N
N

)
φκlow(θ̂ − θ). (10)
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Fitting & Simulating the Models

Although not essential for the model fitting procedure, both the slots model and the
slots-plus-averaging model are best formed when the data has multiple set sizes. Unlike the
components models, the slots models are fit to multiple set sizes at once with a single set of
parameters.

To fit the models to data, the same fit_mixtur() function is used, placing either
"slots" or "slots_averaging" in the model argument,
# fit the model
slots_fit <- fit_mixtur(data = bays2009_full,

model = "slots",
unit = "radians",
id_var = "id",
response_var = "response",
target_var = "target",
set_size_var = "set_size",
condition_var = NULL)

# show the fit
head(slots_fit)

## id K kappa
## 1 1 1.960 12.124
## 2 2 1.788 9.577
## 3 3 3.840 7.066
## 4 4 3.535 11.017
## 5 5 1.640 9.163
## 6 6 1.969 17.308

Likewise, to simulate data from either of the slots models, again the
simulate_mixtur() function is used, placing either "slots" or "slots_averaging" in
the model argument, but now the arguments K and kappa must be used. In addition, a
vector of set sizes to use should be passed in the set_size argument.
# simulate the model
slots_sim <- simulate_mixtur(n_trials = 500,

model = "slots_averaging",
kappa = 8.2,
K = 3,
set_size = c(2, 4, 6, 8))

# show the resulting data
head(slots_sim)

The quality of the fit to data and the mean paramater values can be visualised using
the plot_model_fit() and plot_model_parameters() function respectively, again passing
the correct model to the model argument.
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Design Simulations

In this section we repeat the simulations reported in the main body of the paper, but
using the slots and slots-plus-averaging models.

Parameter Recovery. This simulation repeats Simulation 1 from the main paper.
We again simulated 500 synthetic participants, where the number of trials, N, used to
simulate each participant varied across simulations (with the levels 20, 50, 100, 200, 500, and
1000). The parameters used to generate each participant’s data were randomly generated
from a uniform distribution for each model parameter: κ (kappa) from 1-16 and K from 1-6.
The results of the parameter recovery are shown in Figure 13, and the correlation coefficients
of the recovery are in Table 8.

Table 8

Product-moment correlation coefficients for the parameter recovery simulation as a function

of the number of trials.

Model & Parameter 20 50 100 200 500 1000

Slots (kappa) .158 .466 .916 .954 .976 .991
Slots (K) .723 .896 .900 .949 .984 .994
Slots_Averaging (kappa) .280 .448 .724 .930 .971 .982
Slots_Averaging (K) .764 .829 .898 .938 .960 .987

As can be seen, parameter recovery of K was very poor for both the slots and the
slots-plus-averaging model below 100 trials, whilst kappa was recovered well with as few as
50 trials. Both K and kappa were recoverd to an excellent level with just 100 trials for the
slots model, 200 trials were required for both parameters to be receovered to an excellent
level for the slots-plus-averaging model.

Parameter Trade-Off. This simulation mirrored Simulation 2 in the main paper.
We systematically varied a single parameter across 50 levels whilst keeping the other
parameter at a fixed level, and observed whether the parameter recovery shows a selective
change in the varied parameter. 500 simulations were used for each level of parameter
variation, with 500 trials being generated per simulation. For both the slots and the slots-
plus-averaging models, the default model parameters were kappa = 8 and K = 3. kappa
was varied between 4-12, and K was varied between 1-5. The results of the simulation are
shown in Figure 14. As can be seen in this Figure, there was no evidence of a trade-off in
model parameters between the varied parameter and the constant parameter. Thus the fit
routine correctly identifies selective changes to individual parameters.

Model Recovery. This simulation mirrored Simulation 3 in the main paper. We
simulated data from a “true” model (either the slots or the slots-plus-averaging model, in
separate simulations), and then fit both models to the same data set to see whether the true
generating model fits the data better than the other model. For each model, we simulated
1,000 data sets with 500 trials in each data set. The parameters used to generate each data
set were randomly selected from a uniform distribution (kappa was between 1-16, and K
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Figure 13 . Results of parameter recovery simulations for the slots model parameters (rows 1

and 2) and the slots-plus-averaging parameters (rows 3 and 4). Points represent the best-

fitting parameter values (y-axis) plotted against generating parameter values (x-axis) for

500 simulated participants. Column titles show the number of trials used in each simulation.

The diagonal line represents perfect correspondence between generated and fitted parameter

values.



MIXTUR: MODELLING VSTM 44

4

6

8

10

12

4 6 8 10 12
Generating Value (kappa)

R
ec

ov
er

ed
 V

al
ue

 (
ka

pp
a)

kappa

Slots Model − Varying Kappa

2.0

2.5

3.0

3.5

4.0

4 6 8 10 12
Generating Value (kappa)

R
ec

ov
er

ed
 V

al
ue

 (
K

)

K

6

7

8

9

10

1 2 3 4 5
Generating Value (K)

R
ec

ov
er

ed
 V

al
ue

 (
ka

pp
a)

kappa

Slots Model − Varying K

1

2

3

4

5

1 2 3 4 5
Generating Value (K)

R
ec

ov
er

ed
 V

al
ue

 (
K

)

K

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
Generating Value (kappa)

R
ec

ov
er

ed
 V

al
ue

 (
ka

pp
a)

kappa

Slots Averaging Model − Varying Kappa

2.0

2.5

3.0

3.5

4.0

4 6 8 10 12
Generating Value (kappa)

R
ec

ov
er

ed
 V

al
ue

 (
K

)

K

6

7

8

9

10

1 2 3 4 5
Generating Value (K)

R
ec

ov
er

ed
 V

al
ue

 (
ka

pp
a)

kappa

Slots Averaging Model − Varying K

1

2

3

4

5

1 2 3 4 5
Generating Value (K)

R
ec

ov
er

ed
 V

al
ue

 (
K

)

K

Figure 14 . Results of the parameter recovery of the 2-component model in Simulation 3.

Points represent the mean of 500 simulations for each combination of parameter value (error

bars denote 95% confidence intervals). The solid line represents perfect correspondence

between generated and fitted parameter values.
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was between 2-6; note that when K equals one, the slots-plus-averaging model is identical to
the slots model, so this value was not allowed). The frequency distributions of the difference
in AIC and BIC scores are shown in Figure 15.

As can be seen, when the slots model was the true generating model, both the AIC
and BIC were able to correctly recover this model in the majority of simulations. The slots
model was correctly recovered in 88.9% of the simulations via both AIC and BIC. When the
slots-plus-averaging model was the true generating model, both AIC and BIC recovered the
correct model 85.5% of the time. Thus, model recovery is generally very good.

Effect of Set Size. This simulation mirrored Simulation 4 in the main paper. As
the slots and slots-plus-averaging model parameters account for performance across multiple
set sizes, it is important to understand whether parameter estimation quality changes with
the number of set sizes used in an experiment. We therefore explored parameter recovery
quality across set sizes of 2, 3, 4, 6 and 8. Unlike the simulations reported in the main paper,
set size here refers to the maximum set size in the simulated data, and data were therefore
generated using set sizes from 1:N. For example, for a set-size of 4, data were simulated from
an experiment presenting set sizes of 1, 2, 3, and 4.

For each set size, we simulated 500 trials with model parameters randomly generated.
We then fit the generating model back to the simulated data, and compared the recovered
parameter values with the generating parameter values. This process was the repeated 500
times.

Table 9

Product-moment correlation coefficients for the parameter recovery of the 2-component and

3-component model simulation as a function of set size.

Model & Parameter 2 3 4 6 8

Slots (kappa) .990 .988 .989 .985 .985
Slots (K) .184 .379 .769 .980 .991
Slots_Averaging (kappa) .714 .870 .958 .979 .979
Slots_Averaging (K) .443 .747 .895 .969 .980

The results of the simulation are shown in Figure 16 and the product-moment correla-
tion coefficients are shown in Table 9. As can be seen, for both models recovery of kappa
was generally good/excellent with a set size of just 2. However, K required more set size
variations in order to be recovered well. For both models, a set size of 4 was required to
recover K to a good level, and 6 was needed for an excellent level. (We did not explore a set
size of 5, so this may well have produced excellent recovery.) The results of this simulation
suggest that multiple set sizes should be used in an experiment wishing to fit the slots and
the slots-plus-averaging model to estimate capacity K accurately. This is not a surprising
outcome; capacity cannot be established if just one value for set size is used.
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Figure 15 . Histograms of the AIC and BIC difference scores for the model recovery simulation.

The upper row shows the AIC and BIC difference scores when the slots model was the

true generating model. The lower row shows the AIC and BIC difference scores when the

slots-plus-averaging model was the true generating model. Values greater than zero (marked

by the vertical line in each plot) indicate a better fit for the slots-plus-averaging model, and

values below zero a better fit for the slots model.
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Figure 16 . Results of parameter recovery simulations for the parameters of the 3-component

model as a function of the set-size of stimulus display (i.e., number of memoranda). Points

represent the best-fitting parameter values (y-axis) plotted against generating parameter

values (x-axis) for 500 simulated participants. Column titles show the set-size (i.e., number

of memoranda) used in each simulation. The diagonal line represents perfect correspondence

between generated and fitted parameter values.
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Slots-Plus-Resources Model

The slots-plus-resources model (Zhang & Luck, 2008) assumes that vSTM contains
a fixed number of slots. The main difference with this model compared to the slots and
slots-plus-averaging models is that a memory resource can be variably allocated to each slot.
The amount of resource allocated to each slot therefore determines the precision with which
representations within each slot are retained in memory: A slot receiving minimal resource
will contain a low precision representation, whereas a slot receiving substantial resource will
contain a high precision representation. However, Zhang and Luck (2008) provided evidence
to rule out the existence of such a model. By presenting a mask 110ms after stimulus
presentation in a delayed estimation task, Zhang and Luck showed that the probability
that an item was represented in memory was reduced, but the precision of representations
that were stored in memory remained stable. The authors state that this provides evidence
in support of the view that an “all-or-none” step is required to generate robust internal
representations of a fixed resolution. This model is therefore not implemented in mixtur.
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