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Markotić, A.; Režić-Mužinić, N.;
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Abstract: The adhesion of cancer cells to vascular endothelium is a critical process in hematogenous
metastasis and might be similar to the recruitment of leukocytes at the site of inflammation. It is
mediated by E-selectin and its ligands, of which the most stereospecific is a glycoconjugate sialyl
Lewis x (CD15s), which may be expressed as an oligosaccharide branch of the CD44 glycoprotein,
as well as a self-contained glycosphingolipid. It is also known that increased sialylation of glyco-
conjugates is a feature of malignant cells. The aim of the study was to analyse the effect of a novel
thieno[2,3-b]pyridine, compound 1, in MDA-MB-231 triple-negative breast cancer cells (TNBCs) upon
CD15s and CD44 expression in different cell subpopulations using flow cytometry. CD15s expression
was compared between mesenchymal-like cancer stem cells (CSC, CD44+CD24−), epithelial cells
without CD44 (CD44−CD24+ and CD44−CD24−), and CD44+CD24+ cells that exhibit mesenchymal
and epithelial features. In addition, expression of CD44 in CD15s+CSC and CD15s−CSC was deter-
mined. Compound 1 significantly decreased the percentage of CD15s+CSC, CD15s+CD44+CD24+,
and CD15s+CD44− subpopulations, as well as the expression of CD15s in CD44+CD24+ and CD44−

cells, and therefore shows potential as a treatment for TNBC.

Keywords: triple-negative breast cancer; thieno[2,3-b]pyridine; CD15s glycosphingolipid; CD15s
glycoprotein; CD44; CD24

1. Introduction

The adhesion of cancer cells to vascular endothelium is critical to hematogenous
metastasis. It is hypothesised that the shear-resistant adhesion of cancer cells is similar
to leukocyte recruitment at the site of inflammation, which is known to be mediated by
endothelial (E) selectin and its ligands [1]. Due to E-selectin expression on bone marrow
microvascular endothelium [2], it is frequently the site of cancer metastasis [3]. The most
stereospecific E-selectin ligand is a glycoconjugate sialyl Lewis x (CD15s). Increased
sialylation of glycoconjugates is a feature of malignant cells [4]. Characterisation of glycans
expressed in breast cancers, using a panel of antibodies, revealed that BT-20 cells express
CD15s as a glycoprotein, while glycosphingolipid CD15s is a functional E-selectin ligand
of MDA-MB-468 cells [5]. In the case of CD15s glycoprotein, [NeuAc-Gal-(Fuc)-GlcNAc]
terminal tetrasaccharide is linked to the CD44 transmembrane glycoprotein [6]. CD44
variant isoform 4 (CD44v4) is a major glycoprotein decorated with CD15s moieties in
metastatic MDA-MB-231 cells [7], whilst more recent research from Shirure et al., using
protease treatment, proved that glycosphingolipid CD15s in breast cancer cells is the
E-selectin ligand, and there is the potential this could be targeted to prevent metastasis [5].
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A critical factor in the malignant breast cancer state is intratumoural cellular hetero-
geneity, which is also a factor for persistent tumour growth, metastasis, and therapeutic
resistance [8]. Conventional chemotherapy preferentially targets proliferating cells which
can leave behind resistant stem-like cells, which can cause recurrence [9]. Within the
TNBC cell lines BT-549 and Hs 578T, there are three different subpopulations [10]: (1) the
CD44+CD24− cells characterise the breast cancer stem mesenchymal-like phenotype (can-
cer stem cells, CSC), (2) the CD44−CD24+ cells are associated with epithelial cells and are
largely present in distant metastases [11], and (3) the CD44+CD24+ cells with mesenchymal
and epithelial features are plastic and able to self-renew [12]. Due to the different signalling
pathways in epithelial and mesenchymal cancer stem populations, they respond differently
to treatments. Dual inhibition of epithelial and mesenchymal CSC would therefore seem
essential for the effective treatment of TNBC [13].

The family of anticancer thieno[2,3-b]pyridines was discovered by virtual screening
against the phosphoinositide specific-phospholipase C-γ2 target, and it was soon estab-
lished that they were effective against many different cancer cell lines [14]. This is due to
the many cancer-related biological targets that the thieno[2,3-b]pyridines modulate [15].

Recently, we have described glycosphingolipid expression in breast cancer stem cells
after novel thieno[2,3-b]pyridine anticancer compound treatment [16] with six gangliosides
(GM3, GD3, GM2, GalNacGM1b, IV3Neu5Ac-nLc4Cer, and IV6Neu5Ac-nLc4Cer) and
three neutral GSLs (Gg3Cer, Gb4Cer, and nLc4Cer) being examined. In this study, we
analysed the effect of the same compound treatment in MDA-MB-231 TNBC upon CD15s
and CD44 expression in different breast cancer subpopulations. Recently, performing the
3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, we obtained
60% survived MDA-MB-231 cells after treatment with 2 µM of compound 1 (Figure 1)
during 48 h [16].

Therefore, in this study, we used 2 µM of compound 1 and expected that it would
not kill all of the cells and be effective upon CD15s expression. A 48 h treatment period
was chosen since it is a long enough time to influence cell processes but short enough to
yield a sufficient number of survived cells [17]. CD15s expression was compared among
mesenchymal-like cancer stem cells (CSC, CD44+CD24−), epithelial cells without CD44
(CD44−CD24+ and CD44−CD24−), and CD44+CD24+ cells that exhibit mesenchymal and
epithelial features. In addition, the expression of CD44 in CSC CD15s+ and CD15s− cells
was determined.
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Figure 1. The molecular structure of the anticancer compound 1, the anticancer thieno[2,3-b]pyridine
derivative.

2. Results

Compound 1 was prepared in three steps from 1,3-cyclohexanedione 2 using our
previously reported method (Scheme 1) [18–20]. With the aim of ascertaining whether the
cytotoxic effect of compound 1 had an impact on the expression of CD15s in CSC (defined
as CD44+CD24− subpopulation), CD44+CD24+, and CD44− (defined as CD44−CD24+ and
CD44−CD24− subpopulation), we compared the percentages and number of events (a
number that corresponds to the number of cells acquired and detected by flow cytometer)
within each subpopulation after treatment with compound 1 in relation to untreated cells.
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was obtained upon treatment with compound 1, whilst the number of CD15s+ events was 
tenfold lower (p-value < 0.001) in treated CSC, compared to untreated ones (Figure 3, Table 
1). 

Scheme 1. Synthesis of compound 1. Reagents and conditions: (i) dimethylformamide dimethyl
acetal, DMF, 24 h; (ii) cyanothioacetamide, NaH, dimethylformamide, 24 h, 82% (over 2 steps); (iii)
2-bromo-N-(3-chloro-2-methylphenyl)acetamide, sodium carbonate, ethanol, 24 h, 28%.

Initially, the expressions of CD15s and CD44 were studied. Expression of CD15s
and CD44 per cell is represented with geometric mean fluorescence intensity (GMI) of
fluorochromes eFluor 660 and FITC, respectively. The percentage of the cells that are
CD15s+ is an interesting parameter but has less impact when compared to GMI. In the
case of CD15s, GMI reflects the quantity and/or activity of different glycosyltransferases
involved in CD15s synthesis.

Different subpopulations, concerning their CD44 and CD24 expression, were gated as
shown in Figure 2.
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Figure 2. Gating strategy. Notes: representative dot plot of gating CD44+CD24− (gate R200),
CD44+CD24+ (gate R201), CD44− (CD44−CD24+ and CD44−CD24−, gates R202 and R203, respec-
tively) subpopulations.

2.1. Compound 1 Decreased the Percentage and Number of Events of CD15s+ CSC

A statistically significant decrease (p-value < 0.01) in the percentage of CD15s+ CSC
was obtained upon treatment with compound 1, whilst the number of CD15s+ events
was tenfold lower (p-value < 0.001) in treated CSC, compared to untreated ones (Figure 3,
Table 1).

Table 1. Percentage and events of CD15s in CSC after treatment with compound 1.

CSC

Control 1 p-Value

% CD15s+ 92.83 ± 3.21 74.15 ± 2.21 0.0012

Events CD15s+ 11,585 ± 977 1263 ± 107 0.00005
Notes: Data are expressed as a mean from experiment performed in triplicate ± SD. Abbreviations: CSC, cancer
stem cells.
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2.2. Compound 1 Decreased the Percentage and Number of Events of CD15s+CD44− Subpopulation

Treatment with compound 1 resulted in a decrease in the percentage and events of
CD15s+ cells of CD44− subpopulation (Figure 4, Table 2). The percentage of CD15s+CD44−

in treated cells was twice lower when compared to untreated controls (p-value < 0.01). The
number of CD15s+CD44− cells was almost threefold lower in treated cells, compared to
untreated controls (p-value < 0.01).
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Table 2. Percentage and events of CD15s in CD44− subpopulation after treatment with compound 1.

CD44−

Control 1 p-Value

% CD15s+ 49.03 ± 5.74 27.06 ± 5.75 0.0094

Events CD15s+ 429 ± 70 153 ± 20 0.0028
Notes: Data are expressed as a mean from experiment performed in triplicate ± SD.
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2.3. Compound 1 Decreased the Percentage and Number of Events of CD15s+CD44+CD24+

Subpopulation

After treatment with compound 1, the percentage and events of CD15s+ cells of
CD44+CD24+ subpopulation were also significantly decreased (Figure 5, Table 3). The
percentage of CD15s+CD44+CD24+ treated cells was significantly lower (p-value < 0.01),
compared to untreated controls. The number of CD15s+CD44+CD24+ cells was more than
fivefold lower in treated cells, compared to untreated controls (p-value < 0.05).
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Table 3. Percentage and events of CD15s in CD44+CD24+ subpopulation after treatment with
compound 1.

CD44+CD24+

Control 1 p-Value

% CD15s+ 93.15 ± 3.64 82.77 ± 0.82 0.0052

Events CD15s+ 370 ± 176 69 ± 8 0.0943
Notes: Data are expressed as a mean from experiment performed in triplicate ± SD.

2.4. Compound 1 Increased the Percentage of CD15− Cells in CSC, CD44− and CD44+CD24+

Subpopulations

There was no difference in the number of events of CD15s− in CSCs, CD44− and
CD44+CD24+ subpopulations after treatment with compound 1, whilst this treatment
resulted in a several-fold increase in the percentage of CD15s− CSC and CD44+CD24+,
and a significant increase in CD44− subpopulation (p-value < 0.01 for all subpopulations)
(Table 4). The sum of CD15s+ and CD15s− percentages in each sample is equal to 100%, as
proved by adding percentages from Tables 1–4.

Table 4. Percentage and events of CD15s− cells in CSC, CD44− and CD44+CD24+ subpopulations after treatment with
compound 1.

CSC CD44− CD44+CD24+

Control 1 p-Value Control 1 p-Value Control 1 p-Value

% CD15s− 7.17 ± 3.21 25.85 ± 2.21 0.0019 50.97 ± 5.74 72.94 ± 5.75 0.0094 4.36 ± 2.66 16.4 ± 1.56 0.0052

Events CD15s− 668 ± 33.94 443 ± 75.44 0.1758 444.67 ± 50.29 426.33 ± 105.67 0.8045 14 ± 2 13.67 ± 2.51 0.8666

Notes: Data are expressed as a mean from experiment performed in triplicate ± SD. Abbreviations: CSC, cancer stem cells.
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2.5. Geometric Mean Fluorescence Intensity (GMI)

Geometric mean fluorescence intensity (GMI), for instance, of CD15s (CD15s expres-
sion/cell), was derived in FlowLogic from a number of cells vs. log of fluorescence in
FL4 flow cytometer channel, with a standard optical filter of 675/25 nm (Figure 6). The
emission wavelength of immunofluorescence of eFluor 660 fluorochrome that is conjugated
to a secondary anti-CD15s antibody is 660 nm.
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GMI is derived by multiplying cell numbers with corresponding fluorescences, adding
all results, and dividing the total sum with the total cell number.

2.6. Expression of CD15s in CSC, CD44−, and CD44+CD24+ Subpopulations after Treatment
with Compound 1

There was no difference in the expression of CD15s in CSCs after treatment with
compound 1, whilst this treatment resulted in a significant decrease (p-value < 0.01) in
CD15s expression in CD44− and CD44+CD24+ subpopulations (Figure 7, Table 5).

Table 5. Expression of CD15s in CSC, CD44− and CD44+CD24+ subpopulations after treatment with compound 1.

CSC CD44− CD44+CD24+

Control 1 p-Value Control 1 p-Value Control 1 p-Value

GMI of
CD15s 9396 ± 1138 9212 ± 1006 0.844 9220 ± 899 6090 ± 191 0.0041 12985 ± 835 9469 ± 592 0.004

Notes: Data are expressed as a mean from experiment performed in triplicate ± SD. Abbreviations: CSC, cancer stem cells; GMI, geometric
mean fluorescence intensity.
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2.7. Expression of CD15s in Untreated CSC and CD44+CD24+ Cells

Geometric mean fluorescence intensity (GMI) of CD15s (CD15s expression/cell) was
increased in untreated CD44+CD24+ subpopulation (p-value < 0.05), compared to untreated
CSC (Figure 8).
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Figure 8. Expression of CD15s in untreated CSC and CD44+CD24+ subpopulation. Notes: geometric
mean fluorescence intensity of CD15s in CD15s+CSC and CD15s+CD44+CD24+ cells without treat-
ment with compound 1. Data are expressed as a mean from experiment performed in triplicate ± SD.
Columns, mean of cells; bars, SD; * p < 0.05. Abbreviations: CSC, cancer stem cells; GMI, geometric
mean fluorescence intensity.
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2.8. Expression of CD44 in CSC Positive and Negative for CD15s after Treatment with Compound 1

Treatment with compound 1 did not influence CD44 expression in CD15s+CSC
(Figure 7A) but decreased expression (p-value < 0.01) of CD44 in CD15s−CSC (Figure 9).
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3. Discussion

Our previous investigation demonstrated the efficiency of 3-amino-N-(3-chloro-2-
methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide (compound 1)
in lowering the CSCs in two TNBC lines, MDA-MB-231 and MDA-453, characterised as
CD44+CD24- and CD133+, respectively [16]. We have also shown that cell migration and
morphology of the MDA-MB-231 cell line are significantly affected by treatment with
compound 1 [21]. In this study, we analysed adhesion molecules CD15s and CD44 in
different TNBC subpopulations. We have found that compound 1 significantly decreased
the number and percentage of CD15s+ cells within three subpopulations: CD44+CD24−

cancer stem cells, CD44− epithelial cells, and CD44+CD24+ cells that exhibit mesenchymal
and epithelial features (Figures 3–5). These three subpopulations are different concerning
their CD15s plasma membrane anchoring. Due to their CD44 content, CD44+CD24− and
CD44+CD24+ cells are expected to express CD15s as glycoproteins [7], while the expression
of CD15s found in CD44− cells could be attributed to glycosphingolipid CD15s [5].

The presence of CD15s as a branch of CD44 glycoprotein was proved as a selectin
ligand activity of CD44. Although O-glycosylated, sialofucosylated CD44v isoforms are
the prevalent E-selectin ligands expressed by colon carcinoma cells, it has been shown that
in hematopoietic cells, selectin ligand activity of CD44 is primarily associated with the
N-glycosylated, sialofucosylated CD44s isoform [22,23]. Quantitative RT-PCR (qRT-PCR)
using primers designed for the specific isoforms allowed a comparison of the expression of
CD44 isoforms at the mRNA level [24]. At mesenchymal-like MDA-MB-231 cells, CD44s,
showing limited E-selectin ligand activity, was described as dominant, in comparison to
CD44v [25], which is expressed in the epithelial-like BT-20 breast cancer cell line. During
metastasis, tumour cells undergo epithelial-to-mesenchymal transition [26], as well as the
reverse, mesenchymal-to-epithelial transition [27]. The mesenchymal state is beneficial for
cell invasion in tissue [28], and functional E-selectin ligands are not necessary for these
processes. On the other hand, the epithelial state, with E-selectin ligands, may be required
for the adhesion of circulating tumour cells to vascular endothelium. In our study, there
was no difference in CD44 expression between untreated CSC and CD44+CD24+ (data
not shown), while the expression of E-selectin ligand CD15s in untreated CD44+CD24+

cells that exhibit mesenchymal and epithelial features was higher, in comparison to un-
treated mesenchymal CSC (Figure 8), emphasising the role of CD44+CD24+ in vascular
endothelium adhesion.
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We found that upon treatment with compound 1, there was a reduction in the CD15+

CSC subpopulation percentage and number (Figure 3) but without influence upon CD15s
and CD44 expression in CD15+ CSC (Figures 7 and 9A). Compound 1 decreased expression
of CD44 in CD15− CSC cells, while the increase of mean GMI of CD44 in CSC CD15+ cells
was not statistically significant.

Resistance of CD44 expression in CD15s+CSC could be a consequence of their more
resistant endoplasmic reticulum to compound 1 treatment, in comparison to CD15−CSC.
Namely, compound 1 could induce endoplasmic reticulum stress, as described for thienopy-
ridine clopidogrel gastric epithelial cells [29]. The endoplasmic reticulum is an organelle
in which the final CD44 glycoprotein synthesis is located [30]. We can hypothesise that in
CSC CD15s+ cells, the endoplasmic reticulum is preserved.

Compound 1 did not affect CSC CD15s, but CD15s expression decline was detected in
subpopulations without CD44, as well as at CD44+CD24+ cells (Figure 7). We have shown
that compound 1 lowers CSC, CD44+CD24+, and CD44− subpopulations and expression
of CD15s in CD44+CD24+ and CD44− cells, showing that it or similar analogs could be
developed into new treatments for triple-negative breast cancer.

Thieno[2,3-b]pyridines are known to modulate the activity of numerous molecular
targets, including G protein-coupled receptors [15], P2Y12 receptors [31], tyrosyl DNA
phosphodiesterase 1–a DNA repair enzyme [32], the colchicine binding site of tubulin [33],
phospholipase C-δ1 [21] as well as PIM-1 [34] and eukaryotic elongation factor-2 kinase [35],
and cyclooxygenases [36]. It can therefore be stated that compound 1 is modulating many
processes affecting E-selectin.

In order to to reduce metastasis in vivo, it may be necessary to target the E-selectin
ligand activity of CD44. It is possible that knockdown of CD44v in breast cancer cells may
increase their metastatic potential due to possible facilitated epithelial-to-mesenchymal
transition [37,38]. Glycosphingolipid CD15s E-selectin ligands, expressed in circulating
tumour cells are less sensitive to epithelial-to-mesenchymal transition regulation, being able
to serve as the critical adhesion molecules, which mediate adhesion to vascular walls [5,25].

An ideal therapeutic substance should target both heterogeneous epithelial and mes-
enchymal cancer cells, including CD44−/CD24− cells. Recently, Vikram et al. showed that
high tumourigenicity in MDA-MB-231 cells is not CD44 dependent [39]. CD44+CD24−

and CD44−/CD24− populations have comparable metastatic efficiency. CD44− popula-
tion forms slightly larger tumours, and mice injected with this population show higher
mortality. We have shown that compound 1 lowers CSC, CD44+CD24+, and CD44− sub-
populations and expression of CD15s in CD44+CD24+ and CD44− cells, showing that it or
similar analogues could be developed into new treatments for triple-negative breast cancer.
It has been shown that epithelial and mesenchymal CSC are spatially separated in vivo
breast cancer tumours [40,41] and that the tumour microenvironment could be essential
for tumour survival. Further in vivo experiments, investigating glycosidase and glycosyl-
transferase activity, are required to define the exact mechanisms induced by compound 1
and its efficiency in animal TNBC models.

4. Materials and Methods
4.1. Chemistry and Cell Line

Pure samples of 3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-
b]quinoline-2-carboxamide (compound 1) were prepared from 1,3-cyclohexadione 2 using
the reported methods [16,18–20].

Synthesis of carbonitrile 3: A solution of cyclohexanedione 2 (0.50 g, 4.46 mmol) and
DMF-DMA (0.59 mL, 4.46 mmol) in DMF (15 mL) was stirred for 24 h at room temperature.
To the above solution a pre-prepared mixture of sodium hydride (0.21 g, 8.92 mmol) and
cyanothioacetamide (0.45 g, 4.46 mmol) in DMF (15 mL), which had been mixed for 10 min,
was then added and the entire mixture stirred for 24 h. The mixture was then acidified to
pH 4 using 10M HCl and stirred for 24 h. The resultant solid was filtered and recrystallised
using ethanol to give the carbonitrile 3 (0.73 g, 82%) as a brown solid. m.p. >350 ◦C. [lit.
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m.p. >300 ◦C]; 1H NMR (400 MHz; (CD3)2SO) 2.02–2.08 (2H, m, H-7), 2.51–2.54 (2H, m,
H-6), 2.99–3.02 (2H, m, H-8), 8.24 (1H, s, H-4), 14.4 (1H, s, NH); 13C NMR (100 MHz;
DMSO-d6) 19.9 (C-8), 26.7 (C-9), 36.5 (C-7), 114.8 (CN) 116.2 and 118.2 (C-5 and C-3),
140.1 (C-4), 161.4 (C-2), 180.6 (C-10), 192.5 (C = O). The 1H-NMR data agreed with the
literature [42].

Synthesis of 3-amino-N-(3’-chloro-2’-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-
b]quinoline- 2-carboxamide (compound 1): A mixture of 2-bromo-N-(3-chloro-2-methylphenyl)
acetamide (0.13 g, 0.49 mmol), carbonitrile 3 (100 mg, 0.49 mmol) and sodium carbonate
(60 mg, 0.57 mmol) in absolute ethanol (2 mL) was heated at reflux for 18 h. After cooling to
room temperature, solvent was removed in vacuo and the resultant solid was washed with
water. The remaining solid was recrystallised from methanol to give compound 1 (54 mg,
28%) as a yellow solid. m.p. > 230 ◦C. νmax(ATR)/cm−1 3425, 3307, 1672, 1576, 1513, 1427,
1249, 1096; δH (400 MHz, (CD3)2SO) 2.15 (2H, p, J = 6.0 Hz, H-7), 2.23 (3H, s, CH3), 2.72 (2H,
t, J = 6.0 Hz, H-6), 3.19 (2H, t, J = 6.0 Hz, H-8), 7.21–7.28 (2H, m, H-5’ and H-6’), 7.35 (1H, dd,
J = 7.6, 1.2 Hz, H-4’), 7.50 (2H, br s, NH2), 9.03 (1H, s, H-4), 9.46 (1H, br s, NH). δC (100 MHz,
(CD3)2SO) 15.5 (CH3), 21.2 (C-7), 32.4 (C-8), 38.1 (C-6), 96.0 ( C-2), 124.4 (C-4a), 125.2 (C-3a),
126.2 (C-6’), 126.6 (C-5’), 126.7 (C-4’), 130.1 (C-4), 132.6 (C-2’), 133.6 (C-1’), 138.1 (C-3’),
162.2 (C-9a), 163.9 (C-8a), 164.0 (C = O), 197.1 (C-5); m/z (ESI+): 410 (37ClMNa+, 39%),
408 (35ClMNa+, 100%); HRMS (ESI+) found (37ClMNa+): 410.0550, C19H16

37ClN3NaO2S
requires 410.0519. Found (35ClMNa+): 408.0558, C19H16

35ClN3NaO2S requires 408.0544.
Just prior to its use in this study, compound 1 was dissolved in DMSO. Cell line

MDA-MB-231 was grown in a humidified incubator at 37 ◦C and 5% CO2 in Dulbecco’s
modified Eagle medium (DMEM, Sigma-Aldrich, Steinheim, Germany) containing 10%
fetal bovine serum (EuroClone, Milan, Italy) and 1% antibiotics (EuroClone).

4.2. Flow Cytometric Analysis

An equal number of cells were seeded in six-well plates and treated with 2 µM
compound 1 for 48 h, as well as the untreated controls, trypsinised and washed with
phosphate-buffered saline (PBS). Cells were pre-treated with an Fc receptor blocking
reagent (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) to prevent nonspecific
binding. After 15 min of incubation with PBS-diluted anti-CD15s (1:3; BD Biosciences, Inc.,
San Diego, CA, USA) at room temperature, cells were incubated with diluted anti-CD44-
FITC (1:13; BD Biosciences), anti-CD24-PE (1:3; eBioscience), and secondary antibody to
anti-CD15s conjugated with eFluor 660 fluorochrome (1:10; eBioscience) for 15 min in the
dark, resuspended in PBS, and thereafter analysed by flow cytometry. Data acquisition of
triple-stained samples was performed on a BD Accuri C6 cytometer (BD Biosciences) and
analysed using the FlowLogic Software.

4.3. Statistical Analysis

For statistical analyses, student t-test was performed using statistical software Graph-
Pad Prism 7.0 (San Diego, CA, USA) with the significance set at p < 0.05.
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