
Virtual Parts Repository 2: Model-driven design

of genetic regulatory circuits

Göksel Mısırlı,∗,† Bill Yang,‡ Katherine James,¶ and Anil Wipat∗,‡

†School of Computing and Mathematics, Keele University, Keele, ST5 5BG, UK

‡School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK

¶Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1

8ST, UK

E-mail: g.misirli@keele.ac.uk; anil.wipat@newcastle.ac.uk

Abstract

Engineering genetic regulatory circuits is key to the creation of biological applica-

tions that are responsive to environmental changes. Computational models can assist

in understanding especially large and complex circuits where manual analysis is infea-

sible, permitting a model-driven design process. However, there are still few tools that

offer the ability to simulate the system under design. One of the reasons for this is the

lack of accessible model repositories or libraries that cater for the modular composition

of models of synthetic systems. Here, we present the second version of the Virtual Parts

Repository, a framework to facilitate the model-driven design of genetic regulatory cir-

cuits, which provides reusable, modular and composable models. The new framework

is service-oriented, easier to use in computational workflows, and provides several new

features and access methods. New features include supporting hierarchical designs

via a graph-based repository or compatible remote repositories, enriching existing de-

signs, and using designs provided in Synthetic Biology Open Language documents to

derive system-scale and hierarchical Systems Biology Markup Language models. We

1



also present a reaction-based modeling abstraction inspired by rule-based modeling

techniques to facilitate scalable and modular modeling of complex and large designs.

This modeling abstraction enhances the modeling capability of the framework, for ex-

ample, to incorporate design patterns such as roadblocking, distributed deployment

of genetic circuits using plasmids and cellular resource dependency. The framework

and the modeling abstraction presented in this paper allow computational design tools

to take advantage of computational simulations and ultimately help facilitate more

predictable applications.

Keywords

Genetic circuits, model-driven design, genetic design automation, modular models, compu-

tational simulation

1 Introduction

Synthetic biology is moving towards data-driven design applications (1 ). DNA fragments can

be represented as electronic records ready to be composed virtually into designs for complex

genetic circuits. Whether designs are created manually in a computer-aided environment or

created computationally using heuristic approaches, these designs may need to be verified

or optimized (2 ). The resulting systems can be exceedingly complex, depending on several

parameters, and can show non-linearity between their inputs and outputs. It is almost

impossible to predict a system’s resulting biological behavior intuitively as the number of

biological components increases. Moreover, the use of components in different combinations

and arrangements can give rise to a vast number of designs (3 ). However, not all designs

are biologically viable.

Genetic design automation (GDA) has gained an interest to engineer biological systems

with desired phenotypes (4–8 ). GDA tools typically address some of the design-build-test

2



related tasks. As in other engineering disciplines (9 ), these tasks include identifying and re-

searching the problem, designing alternative solutions, choosing from these alternatives, and

fabricating and testing prototypes. One way to bridge the design and fabrication processes

and to improve the predictability of genetic circuit designs is to apply model-driven design

methodologies.

Model-driven design methodologies have already been proven to be a valuable tool to map

a virtual design to a physical system for large-scale synthetic biology (10 , 11 ). Computa-

tional models can capture the biochemical properties of biological parts. The aggregation of

these models can then be used to understand the dynamics of a system built from individual

parts (12 ).

We previously developed the Virtual Parts Repository (13 ) version 1 (VPR1), which

provides reusable and modular models of biological parts and interactions (14 ). These models

are called virtual parts and can be used to create system-scale models computationally

(15 ). VPR1 has a built-in relational repository, which enables the querying of molecular

constraints between different parts. This data warehousing approach requires that all the

required information is collected, transformed and integrated using the VPR1 data schema.

Consequently, models cannot be derived for designs created by other tools. VPR1 can

store definitions of simple parts, although hierarchical design information cannot be stored

and retrieved. Exporting information about biological descriptions of parts is limited via

existing data standards. VPR1 uses fragments of models rather than explicitly defined

hierarchical models to represent virtual parts. As a result, the model composition process

relies on a custom software library and model annotations to connect inputs and outputs

of different models. Morever, VPR1’s modeling abstraction has limitations, such as not

supporting the modeling of genetic circuits that can be deployed with multiple copy plasmids,

and genetic circuits that include different sigma factors to control gene expression under

various conditions. VPR1 also does not support modeling a genetic logic gate with multiple

promoters in a transcriptional unit. Since the VPR1 development, data standards evolved

3



to support both hierarchical designs and models, and can be used to incorporate additional

constraints about genetic parts and designs to increase modularity, improve the modeling

capability and provide enhanced support for computational workflows.

Model-driven design frameworks should be easy to incorporate into existing tools via

computational workflows; it is not practical or cost-effective to develop a single tool to

accomplish complex tasks. Data standards are crucial to implement workflows when trans-

forming the output from one tool into the input for another tool. Each tool can then be

treated as a building block with inputs and outputs that are computationally interoperable

with the other tools in a workflow (16–18 ).

The Systems Biology Markup Language (SBML) (19 ) is a widely used data standard for

computational modeling of biological systems. In SBML models, species entities represent

biological molecules such as proteins, DNA and signaling molecules. The reaction entities

capture how these species interact, forming reaction networks. These reactions can be used to

analyze how incorporating a biological part affects a reaction network and, hence, the overall

behavior of a biological system. SBML Level 3 provides additional features to facilitate the

hierarchical composition of computational models and their reuse as submodels (20 ). These

submodels can be extended with port entities, which can be mapped to entities from different

models.

The Synthetic Biology Open Language (21–23 ) (SBOL) is another data standard that

is highly adopted in GDA. While SBML can be used to capture the dynamics of a genetic

circuit, SBOL provides a machine-accessible definition of the circuit in terms of the cir-

cuit’s building blocks such as proteins, DNA-based components, and how these components

are positioned. Different constraints, including molecular interactions, can be qualitatively

represented. Moreover, designs can be defined hierarchically by reusing existing parts. In

addition to the explicit data schema, applications can use custom metadata or annotations.

This flexibility is due to the representation of SBOL documents as graphs, in which the

interpretation of unknown nodes and edges can be left to applications.

4



SBOL and SBML are increasingly being used together to capture genetic circuit designs

and to predict part composability. Tools, such as iBioSim (7 ), Tellerium (24 ) and BMSS

(5 ), provide a mapping between genetic designs and computational models using SBOL and

SBML. In particular, storing custom metadata in both SBOL and SBML (25 , 26 ) allows

the cross-referencing of design and modeling entities, and converting designs to simulatable

models (17 , 27 , 28 ) and vice versa (25 , 29 ). As a graph language, SBOL can be directly

stored in graph repositories. One such database framework is SynBioHub (30 ), which is used

to store and share genetic designs. Design-related resources in a SynBioHub instance can

be resolved using their uniform resource identifiers (URIs). It is desirable for model-driven

design tools to access design information that is curated and stored in publicly available

repositories.

Genetic regulatory circuits involve the production of gene products and the effect of these

products on the activation and inhibition of genetic elements, such as inducible or repress-

ible promoters. Ordinary differential equations (ODEs) and reaction networks can provide

an adequate approximation to represent biological interactions and to analyze the resulting

models (31 ). These mathematical equations are developed based on a modeling abstrac-

tion, which often does not provide a one-to-one mapping between biochemical reactions and

corresponding modeling entities (32 ). It is desirable to develop modeling abstractions that

accommodate scalability when models are composed computationally.

Modeling abstractions should also be compatible with the deployment scenarios of genetic

regulatory circuits using different copy numbers. A key feature to control cellular behavior

is varying copy numbers to tune the input-output behavior of regulatory networks (33–35 ).

Deployment scenarios may involve chromosomal integration or using plasmids. The former

can be applied to guarantee a single copy of a genetic circuit and is commonly applied to

transform Bacillus subtilis cells (36 ). However, a more common approach for Escherichia

coli is to deploy using low, medium or high copy plasmids of varying numbers (37 , 38 ). A

genetic circuit can then be split into sections, which can be deployed using different plasmids

5



(39 ).

Roadblocking is another design pattern to implement biological logic gates (6 , 33 , 37 ).

Roadblocking occurs when a transcription factor (TF) prevents the movement of RNA poly-

merase (RNAP) and stops downstream transcription (40 ). Flexible modeling approaches

are necessary to represent this biological concept and to design reusable logic gates.

This paper presents the second version of the Virtual Parts Repository (VPR2). VPR2

has been developed using a modular architecture including components for a Web-based

repository, a web service, a client library for computational tools, and a standalone data

library to retrieve data from remote SBOL repositories (Figure 1). The web service can be

used to retrieve virtual parts and to create computational models of genetic circuits. VPR2

has a graph-based repository and allows browsing of the underlying data. It has also been

developed as a modular service to take advantage of community-driven data repositories, such

as a SynBioHub instance. The composition of models is facilitated via hierarchical SBML

Level 3 models that rely on submodels. The resulting models can also be incorporated into

other models. Importantly, VPR2 uses SBOL as a domain-specific language to control the

composition of models and to specify design-related constraints. Tools can submit detailed

genetic circuit descriptions, or the order and types of genetic parts to retrieve the rest of the

information from a remote data repository. This service-oriented VPR2 is ideal for complex

and computational workflows that utilize data standards.

We also present a new modular modeling abstraction that allows flexible representation

of biological systems using reaction networks. Complex interactions are represented using

simple reaction-based rules. This abstraction simplifies the modeling of genetic circuits and

is scalable as the number of parts increases. Another new feature of the VPR2 modeling

approach is incorporating the roadblocking concept. Any number of promoters or binding

sequences can be included in a circuit in any order. Contextual information is incorporated

into models via sigma factors, which can play significant roles in regulating transcription

and controlling different cellular states (41 ). Such data can help design genetic circuits in

6



changing environments and synchronize cellular resources. Moreover, this modeling abstrac-

tion allows the splitting of genetic circuits into subcircuits, each of which can be defined with

different copy numbers.

2 Results

The Virtual Parts Repository version 2 (VPR2) has been developed to facilitate GDA by pro-

viding a computational framework to construct models of desired systems that can be tested

via computer simulations (Figure 1). These simulations provide insights into the temporal

behavior of genetic circuits composed of different parts. The model construction process can

be automated to search large biological design spaces to find alternative solutions, each of

which is represented as a single system-scale model. Models satisfying the requirements can

then be used to derive genotypes that encode desired phenotypes.

VPR2 provides increased modularity and reusability for computational workflows com-

pared to VPR1. Some of the important features are shown in Table 1. By adopting SBOL

to represent genetic circuits and SBML to create hierarchical models, VPR2 can be incor-

porated into computational workflows more efficiently. VPR2 supports additional workflows

in which tools can specify design requirements using SBOL without connecting to a data

repository. Tools can also enrich existing genetic circuit designs via the new service-oriented

approach. To enable these features, VPR2 simplifies interfacing with tools via a new technical

infrastructure (Figure 5) which offers different access options. Moreover, the new modeling

abstraction allows incorporating additional features to search for larger design spaces (Table

1). These new features are explained in the following sections.

Computational modeling and data integration as a service. VPR2 provides a

computational mechanism to access information about parts and constraints to derive models

of parts and to create system-scale models. This framework is service-oriented for tool access

and has a modular architecture (Figure 1). VPR2 comes with a built-in Resource Description

7



Table 1: VPR2 features and key advances compared to VPR1.

Enhanced support for tools, workflows and composing models
VPR2 VPR1

Computational work-
flows

Simpler and enabled by data standards.
SBOL2 to capture design requirements
and export detailed information.

SBOL1 export for basic
information.

Hierarchical models Yes, SBML L3 support for increased
reusability.

No, SBML L2 support
only.

Composing models Easier to use and programming lan-
guage agnostic. The SBML syntax to
represent models’ inputs and outputs.

Relies on a Java client
API. Custom metadata
for inputs and outputs.

Tool access Via the VPR2 client API, the web ser-
vice, the data API or off-the-shelf REST
tools (e.g., Curl)

Via the VPR1 client
API.

Specifying designs Via SBOL2 or SVPWrite, using infor-
mation about parts and molecular in-
teractions.

Via SVPWrite, part-level
information only.

Specifying and storing
hierarchical designs

Yes, built upon a graph-based database No, built upon a rela-
tional database.

SBOL-to-SBML con-
version

Supported. Not supported.

Remote repositories Supported. Local repository only.
Enriching designs Supported. Not supported.
Disconnected mode Supported, designs can be specified

without a reference to a repository.
Not supported.

Increased modularity and a new modeling abstraction
VPR2 VPR1

Modular modeling Yes, increased modularity via simple
reaction-based rules.

Yes, via reaction-based
transfer functions.

Parts with multiple
binding sites

Yes, via existing templates. May require adding new
templates.

Copy numbers Single or multiple copy numbers. Single-copy.
Organism support Bacterial organisms. Bacillus subtilis.
Overwriting rate pa-
rameters

Supported. Not supported.

Roadblocking Yes, allows including multiple promot-
ers within a transcriptional unit.

Allows a promoter for
each transcriptional unit.

Sigma factor support Supported. Not supported.

Framework (RDF) graph repository, which can natively store SBOL documents. In addition

to the genetic descriptions of parts and complex circuits, VPR2 related metadata can be

8



embedded within SBOL entities to be stored in the repository. Data are queried using a

graph pattern language (42 ). Consequently, VPR2 queries are generic and can be executed

over any RDF graph repository with SBOL data. Using this approach, VPR2 has been

designed to work with SynBioHub repositories, which store native SBOL data and provide

HTTP endpoints for standard RDF queries.

The primary data access method is provided by the VPR2 web service, which defines

endpoints for model composition operations and model retrieval. The produced SBML mod-

els are hierarchical and may be formed of submodels, which import models of parts and

interactions. A publicly available website has been developed for manual access. This web

interface provides functionality to browse and search for models of biological parts and in-

teractions from the VPR2 repository. In addition to using the web service, tools can use the

VPR2 data library to return information about genetic parts, designs and interactions.

Model-driven design using virtual parts. VPR2 relies on SBOL to specify genetic

circuit designs and related constraints. Design specification information in these SBOL files

is used to derive SBML models depicting the behaviors of desired systems. VPR2 can be

used in connected or disconnected mode to derive SBML models or in data mode to enrich

existing SBOL designs.

In the connected mode, tools provide basic design information and use VPR2 to retrieve

quantitative and simulatable models. It is assumed that these tools do not have informa-

tion about how different biological parts work together; SBOL is used to specify the types

and order of DNA-based parts. VPR2 then retrieves detailed information about these parts

from a specified repository, which can be the local VPR2 repository or a remote SynBioHub

instance. This detailed information is used to construct SBML models, which can be simu-

lated via existing simulators such as COPASI (43 , 44 ). Figure 1 depicts the use of the VPR2

framework in the connected mode. In this exemplar, a simple genetic circuit comprises a

promoter, a ribosome binding site (RBS), a coding sequence (CDS) and a terminator. Con-

sequently, VPR2 returns an SBML model that captures the circuit’s dynamic and temporal

9



behavior.

VPR2 provides direct access to design information by providing different search methods.

Tools can use these methods to initialize designs or to extend them. This information can

be regarded as a biological network in which nodes represent parts and edges represents

interactions. Hence, SBOL designs can be created by visiting different repository nodes

representing parts and extending the designs based on the neighborhoods with other nodes.

In the disconnected mode, tools provide all of the qualitative information required to

create quantitative and simulatable SBML models. This information may include the order

and types of biological parts and details about molecular interactions between these parts.

Rate parameters can be provided in the form of custom annotations. These annotations are

controlled using a set of VPR2 terms, and the values may indicate rate parameters. Figure

1 shows an example use of the VPR2’s disconnected mode. In the example design, the CDS

part encodes a TF, which then transcriptionally inhibits the promoter. VPR2 returns the

corresponding SBML model capturing the negative autoregulatory behavior of the genetic

circuit.

VPR2 uses its modeling abstraction in both connected and disconnected modes. How-

ever, specialized tools in model-driven design technologies may depend on different modeling

abstractions. VPR2’s data mode provides a data integration layer for such tools.

In the data mode, basic information about a genetic circuit in an SBOL document is

used as input to retrieve more detailed information. Queries are directed to a specified

repository to return information about molecular interactions and additional details about

biological parts. Figure 1 shows the use of the data mode. Here, basic information about

a genetic circuit describing the types and order of its parts is submitted to VPR2, which

subsequently queries the specified repository to find genetic production and transcriptional

repression interactions between the circuit’s parts and gene products.

Template-based model composition. VPR2 facilitates the model-driven design of

large and complex genetic circuits by providing composable models. The composition of

10



Figure 1: The VPR2 overview and examples of supported synthetic biology workflows. In
the connected mode, Tool A specifies a genetic circuit design in SBOL, which is then used
by the VPR2 web service to return a simulatable SBML model by querying a specified data
repository. The web service relies on model and data layers. The data layer uses SBOL to
construct queries and to populate designs with detailed information. The modeling layer
converts the resulting SBOL documents into SMBL models. In the disconnected mode, Tool
B provides the design constraints to build a model through the VPR2’s SBOL-to-SBML
conversion. No data repository is involved. In the data mode, Tool C submits basic design
information using SBOL. VPR2 enriches the design and returns additional information about
parts and molecular interactions from a specified data repository. The disconnected and the
data modes are new VPR2 features and cannot be achieved using VPR1.

models is standardized by instantiating models of parts and interactions from well-defined

templates based on the SBML’s hierarchical model composition package (45 ). These tem-

plates are fragments of models and may contain definitions of species and a set of reaction

and rule SBML entities. The instantiation of these templates involves importing templates

as submodels and parameterizing template-specific information. Templates are provided

11



for promoter, RBS, CDS, operator and spacer genetic parts. Interaction templates include

binding, degradation, phosphorylation, dephosphorylation, dimerization, DNA binding, and

promoter activation and inhibition.

The composition process for system-scale models is carried out hierarchically, involving

both the templates and the virtual parts. The resulting system-scale models are also sub-

models that can be incorporated into other models. An example model composition process

for a negative autoregulatory circuit is shown in Figure 2. The ‘lacI circuit’ model built from

virtual parts includes information to simulate the system’s behavior. The topmost model

shown in the figure is called the ‘System Model’ and is a placeholder to import the resulting

submodel for simulations. In this circuit, the LacI TF inhibits the pLacI promoter, and

hence its own production. VPR2 provides virtual parts for the pLacI promoter, the RBS

and the lacI CDS. While the promoter virtual part captures the production of mRNAs, the

RBS virtual part provides details about the initiation of protein translation from mRNAs

using the ribosome per second (46 ) (RiPS) signal. The CDS model includes details about

the genetic production of protein molecules from the RiPS output of the RBS virtual part.

The VPR2 models can depend on multiple templates, which can further be derived from

other templates (Figure 2).

The model composition process is facilitated via standard inputs and outputs, which can

be defined for templates, virtual parts or system-scale models. VPR2 uses the SBML’s port

entities to represent these inputs and outputs. The linking and replacement of these port

entities provide a modular mechanism to compose SBML models. Firstly, these inputs and

outputs are used to unify biological species’ meaning across different submodels. Secondly,

they are used when instantiating templates to create and parameterize virtual parts by

overwriting default parameters. Parameter overwriting can start from the topmost model

and be passed to lower-level models. As default, parameters in lower-level models are used

to calculate reaction fluxes, which then contribute to the concentration of molecules.

A modeling abstraction for genetic design automation. This section presents a

12



Figure 2: The VPR2 model composition. The exemplar LacI negative autoregulatory circuit
is designed using a model-driven approach. The resulting ‘lacI circuit’ model is hierarchical
and includes several other submodels.

modeling abstraction that facilitates modular modeling of genetic regulatory circuits. This

approach is scalable as the number of parts selected for a genetic circuit increases. Inspired by

rule-based modeling approaches (47 ), biological interactions are represented using reaction

networks that keep track of different states of biological molecules. States, such as a promoter

bound or not bound to a TF, are represented as different species. The transitions between

states are controlled via reactions representing the binding and unbinding of molecules.

Additional reaction entities for different states of molecules are then used to provide simple

rules rather than complex transfer functions. Transfer functions, such as Hill equations, are

utilized to incorporate the impact of cellular resources.

In this modeling abstraction, promoters are represented as mRNA generators (Figure

3). An inducible promoter may have weak basal expression and may require an activator

to reach its full potential (48 ). Conversely, a repressible promoter may be active until an

inhibition signal is received via the binding of a repressor TF (49 ). Hence, in the VPR2’s

modeling abstraction, mRNA production reactions are defined for promoters when they are

13



in the unbound state (for constitutive, repressible and inducible promoters) or when they

are bound to inducer TFs. Different rate parameters control how strong the corresponding

production fluxes are. The reaction flux (R) for the production of mRNAs from a free or

unbound promoter has the form:

RmrnaProduction = Promoterfree ∗ ktr ∗
σn

σn +Kn
mσ

∗ pcis (1)

where Promoterfree is the number of free promoters, ktr is the rate of transcription, and σ

is the Sigma factor controlling the expression of the promoter. The sigma factor’s effect is

described using σn

σn+Kn
mσ

, where Kmσ is the coefficient associated with the sigma factor, and

n is the Hill equation (50 ). It is assumed that mRNA production is uniform for downstream

genetic parts within a transcriptional unit. Therefore, the promoter activity is formulated as

a function of the unbound downstream components to model RNAP elongation. Here, pcis

represents the probability of all downstream cis or DNA entities being free or unoccupied

for a uniform mRNA transcription. pcis is approximated as:

pcis =
m∏
i=1

pComponentiFree (2)

where m is the total number of genetic parts between a promoter and a downstream

terminator, and pComponentifree is the probability of the genetic part in position i being free.

VPR2 allows for the roadblocking concept by incorporating the availability of each down-

stream component (pComponentifree), which can be approximated by dividing the number of

unbound copies of a genetic part by the sum of its bound and unbound copy numbers (Equa-

tion 3). The following equation dynamically provides the probability of a genetic part being

free or not based on the transient value of free copy numbers of that genetic part at time t.

pComponentiFree =
ComponentiT ransient
ComponentiInitial

(3)

14



Figure 3: The VPR2 modeling abstraction for mRNA production from constitutive, repress-
ible and inducible promoters. The diagram is created according to the Systems Biology
Graphical Notation (51 ). Lines without arrows represent consumption, lines with arrows
represent production, and lines with circles represent catalysis roles in VPR2’s SBML reac-
tion entities. A. A constitutive promoter model. B. A repressible promoter model. TF binds
to the promoter and reduces the promoter’s probability of being free for mRNA production.
C. An inducible promoter model. When the promoter is free, mRNA is produced at a basal
rate. When the promoter is bound to TF, it is activated.

A repressible promoter uses the same formulation in Equation 1 for the mRNA production

reaction flux (Figure 3B). Inhibition of the promoter is modeled implicitly by adding a

reaction that represents the inhibitor’s binding to the promoter. This interaction affects the

promoter’s probability of being free or not and takes away from the number of Promoterfree

contributing to the accumulation of the promoter species in the bound state. This promoter

occupation reaction flux can be represented as:

RpromoterOccupation = Promoterfree ∗ TF ∗ kforward − PromoterTF ∗ kback (4)

where kforward is the forward reaction rate and kback is the reverse reaction rate. In this

reaction flux, both Promoterfree and TF are substrates, while PromoterTF is the product,

which represents the complex formed by the promoter and the TF.

15



Regarding the activation of a promoter, promoter and TF complexes play an essential role

by increasing the rate of RNAP binding to the promoter. The complex formation between

the TF and the promoter is modeled using a similar approach to that used for repressible

promoters (Figure 3C). However, when the promoter is bound to a TF, the promoter and the

TF complex would also contribute to the mRNA production, in addition to the weaker basal

expression from an unbound promoter. The mRNA expression for an activated promoter is

modeled similarly as in Equation 1:

RactivatedMrnaProduction = Promoterbound ∗ ktrInduced ∗
σn

σn +Kn
mσ

∗ pcis (5)

where Promoterbound replaced Promoterfree to represent the promoter’s state when bound

to an activator.

The RBS model converts mRNA signals into RiPS using the binding specificity between

mRNAs and ribosomes (14 ). This specificity is a rate-limiting factor and can be affected

by several factors, such as the Shine-Dalgarno sequence, the start codon and 5’ sequence,

due to the formation of secondary structures (52 ). In VPR2’s modeling abstraction, a single

rate parameter is used to capture these details. This parameter can be predicted using tools,

such as RBS Calculator (53 ) and the UTR Designer (54 ). The RBS model is defined as:

RripsProduction = ktranslation ∗mRNA (6)

where ktranslation is the rate of translation, and mRNA is the total number of mRNAs con-

taining the RBS of interest.

The CDS model converts the RiPS reaction flux from an RBS model into an entity

representing the gene product (14 ). The conversion is carried out using an ODE, which also

incorporates the degradation of the gene product. A CDS virtual part provides entities to

calculate the production flux and imports the degradation template, which is parameterized

16



with a suitable degradation rate.

d[Protein]

dt
= RripsProduction −RproteinDegradation (7)

RproteinDegradation = kdegradationProtein ∗ Protein (8)

Other DNA-based components, such as operators, are represented as SBML species en-

tities that can react as substrates. The inclusion of these components is modular. Whether

these DNA-based components are bound or unbound changes the value of pcis (Equation 1)

to incorporate how mRNA transcription from preceding promoter parts is affected.

The interaction between an operator and a TF is modeled using the DNA binding tem-

plate (Equation 9a). Another binding template is used when reactions involve modifiers or

co-factors (Equation 9b). It is assumed that the concentration of such a molecule does not

change. A specific form of binding template is defined for dimerization, where two molecules

of the same type can form a complex (Equation 9c).

Rbinding = SubstrateA ∗ SubstrateB ∗ kforward − Complex ∗ kback (9a)

RbindingModifier = SubstrateA ∗ SubstrateB ∗Modifier ∗ kforward − Complex ∗ kback (9b)

Rdimerization = Substrate2 ∗ kforward −Dimer ∗ kback (9c)

Templates also exist to model post-translational modifications (13 , 48 ). The phospho-

rylation interaction is represented via a mechanism in which a phosphate donor transfers

its phosphate to a phosphate acceptor. The reaction flux is shown in Equation 10a, where

Donor p̃ and Acceptor are substrates, and Acceptor p̃ and Donor are products. An example

of such an interaction is seen in bacterial two-component systems (55 ) formed of kinase

and response regulator pairs. The phosphorylated form of a kinase protein can transfer

its phosphate to a response regulator, which then becomes an active transcriptional regu-

lator, for example, to induce gene expression. Kinases can be phosphorylated by external

17



signals, acting as environmental sensors. Such environmental cues can be represented as

modifiers, assuming that their overall concentration does not change, as shown in Equation

10b, where Acceptor is the substrate and its phosphorylated form Acceptor p̃ is the product.

For simplicity, an autodephosphorylation template is provided (Equation 10c).

R˜p = Donor p̃ ∗ Acceptor ∗ k˜p (10a)

R˜pWithModifier = Modifier ∗ Acceptor ∗ k˜p (10b)

RautoDe˜P = Acceptor p̃ ∗ kde˜p (10c)

An algorithm for genotype to phenotype mapping. VPR2 utilizes SBOL and

SBML data standards to represent information relating to genotypes and corresponding

phenotypes. Qualitative information defined in SBOL documents is used to derive SBML

models. This conversion uses the following algorithm.

• Hierarchical genetic circuit designs are flattened into a list of transcriptional units in which

genetic parts are explicitly ordered. Ordering is inferred using the exact start and end

positions of genetic parts or using information about the relative arrangement of parts.

• A submodel is created for each design, a genetic part that does not have a parent design

and acts as a container for child components.

• A single system-scale model is created connecting submodels of different designs.

• A submodel is also created for each transcriptional unit that is part of a design. It is

assumed that mRNA production is uniform throughout each transcriptional unit. Sub-

models for transcriptional units are then connected to submodels for designs.

• Each DNA-based genetic part is represented as a species within the transcriptional unit’s

scope to which the genetic part belongs. These species connect submodels of transcrip-

tional units with virtual parts and templates. For example, the same CDS with two copies

would have two different species contributing to the corresponding gene product’s pro-

duction. Similarly, multiple uses of an operator in the same or different designs would

18



continue draining the number of TFs available due to binding and unbinding reactions

dynamically.

• SBML species for non-DNA parts such as proteins and protein complexes are represented

globally to connect system-scale models with submodels. For example, a single protein

species at the system-scale model links all CDS species that encode the same protein and

participate in translation reactions via different mRNA species.

• The roadblocking concept and the probability of genetic parts being free or not is used to

link species representing DNA-based genetic parts in a transcriptional unit (Equation 2).

• An mRNA species is created for each promoter part in a transcriptional unit. These

mRNAs represent genetic production between promoters and downstream terminators.

Transcriptional units can include multiple promoters in any order.

• As a default, each species’ initial copy number is set to one for DNA-based genetic parts.

Copy number is parameterized through genetic designs. If a copy number is provided as

a parameter through an annotation, initial values for species representing DNA parts are

set to that copy number.

A toggle switch example. This section describes the VPR2 framework to generate a

system-scale model of a genetic toggle switch. Toggle switches are modular genetic devices

that can change cellular behavior between different states. Starting with Gardner’s (56 )

implementation of a genetic toggle switch, several studies have demonstrated the construction

of toggle switches using different approaches (6 , 38 , 57 ). The example below is based

upon the work of Lugagne and co-workers (38 ), who implemented a genetic toggle switch

that can be controlled by a real-time feedback mechanism. The system’s outputs were

produced as a series of transcriptional inhibition cascades. Individual cells were controlled

using a microfluidic system. The system’s anhydrotetracycline (aTc) and isopropyl-β-D-

thiogalactopyranoside (IPTG) inputs controlled RFP and GFP expressions, respectively.

The aTc and IPTG input molecules were released into the system and were periodically

washed out. Different concentrations of these inputs were used to analyze equilibrium states

19



and instability.

The toggle switch example was chosen since the design is relatively well known to demon-

strate new VPR2 features. The construction of the model is via the VPR2’s new SBOL-

to-SBML conversion, which simplifies computational workflows. Tools can use identifiers of

existing virtual parts from a database when creating an SBOL document, and VPR2 pa-

rameterizes the resulting models. Alternatively, tools can use an existing SBOL design and

annotate SBOL entities with VPR2 specific rate parameters. VPR2 then uses these custom

annotations during the SBOL-to-SBML conversion. In this particular toggle switch design,

Lugagne and co-workers deployed the GFP and RFP production genetic circuits using low

copy plasmids. Using the VPR2’s new feature to specify copy numbers for different parts of

a genetic design, we could annotate each production circuit design with ten copies to verify

the described system’s behavior.

Different states of this toggle switch could be reconstructed using the VPR2 framework.

Figure 4A shows an adapted version of the circuit. The corresponding virtual parts were

created based on the work of Nielsen and co-workers (37 ), who used aTc and IPTG molecules

to implement genetic logic gates. These virtual parts were parameterized for reported mRNA

copy numbers.

Similar to how Lugagne and co-workers initially tested this genetic circuit, a system-

scale model was constructed to confirm relative RFP and GFP levels (Figure 4B). IPTG

and aTc levels were then changed to control the RFP/GFP ratio and to verify that the

system eventually favors RFP production (Figure 4C) (38 ). The models were simulated

stochastically.

The VPR2 framework does not consider the diffusion of molecules. It is assumed that

inputs such as IPTG and aTc have constant concentrations. Hence, these molecules are

incorporated as modifiers.

20



Figure 4: A toggle switch example, adapted from (38 ). X and Y axes represent time and
particle numbers, respectively. A. The toggle switch genetic circuit design in SBOL Visual
(58 ); GFP and RFP are produced in the presence of IPTG and aTc, respectively. B. GFP
and RFP vs. time, and IPTG and aTc vs. time. The model was initially calibrated and
tested against the work of Lugagne and co-workers (38 ). IPTG and aTc concentrations are
varied every 7.5 hours. C. RFP/GFP ratio vs. time, and IPTG and aTc vs. time. The
RFP/GFP ratio is shown when IPTG and aTc concentrations vary periodically (IPTG for
120 minutes and aTc for 30 minutes).

3 Discussion

VPR2 facilitates the modeling of genetic circuits and the automation of this process, pro-

viding reusable modeling and data services for computational tools. There is already an

increasing number of tools that utilize computational simulations to predict the temporal

behavior of genetic circuits. Developing computational models is not trivial. Models need

to be carefully crafted every time, considering the biological constraints with a suitable

21



mathematical framework.

Computational workflows can directly use the VPR2 framework. These workflows can

either be implemented locally via a tool-specific task or distributed involving other tools. The

framework is built on widely adopted SBOL and SBML standards to provide interoperability

between different tools.

VPR2 decouples design and modeling processes. This separation allows focusing on

design aspects and delegating the task of modeling to VPR2. Several design tools have

already been developed using the SBOL standard (59–61 ). These SBOL compliant tools

can take advantage of computational simulations by submitting designs of genetic regulatory

circuits to VPR2 to retrieve simulatable SBML models. Using the VPR2’s SBOL-to-SBML

conversion, a proof-of-concept approach has been demonstrated to encode information in

molecular communications (62 ). VPR2 allowed providing the necessary information at the

design time via SBOL without connecting to a repository.

Another modular approach that has been used to develop VPR2 is the decoupling of

the design process and data storage. Although VPR2 comes with a local repository, other

SBOL repositories can also be used. VPR2 can work with SynBioHub instances that are

accessible via the Internet. Here, it is assumed that SBOL entities’ semantics are provided

via recommended biological ontologies (21 , 28 ).

In addition to providing a modeling service, VPR2 is also a data integration tool. DNA-

based definitions of genetic circuits are enriched using information from SBOL repositories.

This information is crucial when creating computational models. Hence, the VPR2’s new

integrative approach is also ideal for tools that can construct models. The VPR2’s data layer

has already been integrated into iBioSim (7 ), a computational design and modeling tool.

iBioSim provides SBOL designs to VPR2, which then enriches these designs. iBioSim then

uses the enriched SBOL designs and converts them into SBML models using its modeling

abstraction (6 , 28 , 63 ).

In addition to the computational resources, this paper presents a rule-based modeling

22



abstraction using reaction networks. This modeling abstraction provides flexibility to capture

the dynamics of genetic regulatory circuits built from individual parts. This approach is

scalable and allows the integration of information as the complexity of genetic regulatory

circuits increases. VPR2 takes the roadblocking concept into account, representing the

implicit dependency between different genetic components. Moreover, VPR2 supports the

modeling of distributed genetic circuits, where parts of these circuits can be deployed in

different plasmids with different copy numbers (39 ).

The VPR2’s modular architecture allows the incorporation of new modeling abstractions

and formats in the future. VPR2 assumes a uniform mRNA production and does not allow

variations in genetic output from large operons. Moreover, terminators are assumed to

be effective in stopping transcription. The modeling abstraction does not consider genetic

parts in reverse directions. However, since VPR2 uses SBOL as a domain-specific language

to specify modeling requirements, SBOL documents can be transformed to work with the

VPR2 model generation process.

We aim to improve VPR2 and address limitations in the future. For tools that want to use

the local repository, the design space is currently limited to information about existing parts

and design constraints. Our goal is to extend this repository with information about differ-

ent organisms. On the other hand, VPR2 allows parameterizing designs to generate models

without connecting to a repository. Tools can also take advantage of compatible reposito-

ries that are populated and curated by the community. The use of an external repository

requires that data are in the SBOL format. Secondly, the types of genetic parts and molec-

ular interactions and the biological roles of these parts participating in these interactions

are specified via ontological terms that VPR2 can process. Currently, default (30 ) and the

Living Computing Program (LCP) (28 ) SynBioHub instances include suitable datasets. For

example, the LCP SynBioHub instance is populated with a collection of SBOL designs recon-

structed using VPR2 from the Cello (37 ) project. Although the VPR2’s modeling approach

is generic to represent common biological reactions, the framework can be extended with

23



additional templates. The modeling approach incorporates molecular interactions involving

both DNA and protein parts, such as genetic production, protein-protein interactions and

transcriptional regulation. As a result, modeling approaches considering protein networks

only or those that incorporate RNA-level interactions are currently not supported. Another

limitation is that VPR2 is suitable for bacterial organisms, and different compartments are

not considered. The accuracy of the resulting models is constrained by rate parameters. En-

vironmental conditions are not directly represented. However, they can be linked to models

via entities representing sigma factors and small molecules.

The computational resources presented in this paper facilitate the model-driven design

of genetic regulatory circuits. VPR2 provides separation of design, modeling and data inte-

gration related tasks, and can be incorporated into computational workflows. Consequently,

software tools can take advantage of computational modeling and simulation, which is cru-

cial to the design of predictable biological applications. Moreover, VPR2 provides a generic

modeling abstraction to unlock the potential of designing genetic circuits and deriving com-

putational models. This model-based genotype to phenotype mapping is especially important

for genetic design automation in synthetic biology.

4 Methods

The VPR2 website has been developed using JavaServer Pages (JSP). The VPR2 web service

is Representational State Transfer (REST) based and has been implemented using the Jer-

sey framework (https://eclipse-ee4j.github.io/jersey). Its interface is available as a

Web Application Description Language (WADL) file, a computationally accessible format

providing information about the REST interface, parameters and return values of different

endpoints (5). These endpoints can be used for particular operations, for example, to retrieve

the model of a genetic circuit or a biological part. The web service can be accessed using

HTTP POST operations or existing REST-based tools, such as the command-line curl tool

24



(https://curl.se). A Java client library has also been developed as a wrapper for the web

service and provides programmatic access. The data layer has been developed in Java as

a Maven project using libSBOLj (64 ) and can be used as a standalone library. The model

layer depends on jSBML to process and create hierarchical SBML models (65 ).

VPR2 is backed by an RDF repository. RDF4j was chosen for the default repository

since it provides a simple approach to install and upload SBOL data. This repository cur-

rently includes the BacillOndex dataset (66 , 67 ), which includes information about parts

for Bacillus subtilis. Nominal values and the rate parameters from VPR1 were used where

possible (13 ), such as normalized gene expression values (66 ) to represent transcription

rates and translation rate predictions from RBSCalculator (53 ). Data retrieval from the

local and other remote RDF repositories is facilitated using SPARQL (68 ), a graph pattern

language for querying RDF-enabled graph repositories. These SPARQL queries are con-

structed using SBOL terms to unify accessing data and are executed using the Jena library

(https://jena.apache.org).

Genetic regulatory designs are specified using SBOL. SBML Level 3 Version 1 is used

to create hierarchical models. The simulation process requires that hierarchical models are

flattened, and the inputs and outputs between submodels are explicitly mapped. VPR2

relies on SBML simulators to flatten these models. The COPASI (44 ) tool was used to

simulate models deterministically or stochastically using the ‘Time Course’ option, and the

‘Parameter Scan’ option was used to repeat the simulations. COPASI can import hierarchical

SBML models and flatten them via libSBML (69 ).

Availability. The VPR2 website is publicly available at http://www.virtualparts.

org to manually browse data and computational models. The web service can be ac-

cessed computationally from http://www.virtualparts.org/virtualparts-ws/webapi.

The VPR-data API and a client library to programmatically access the VPR web service

are available as standalone Java libraries. Example designs and models, and documentation

about how to access and use these libraries and different components of the VPR2 framework

25



Figure 5: The VPR2 interface for tools. Dashed boxes represent different technologies used.
The VPR2 web service can be accessed directly via HTTP or standard REST tools such as
curl. Tools can also use the VPR2’s client API or the data layer to access models and data.

are available via the documentation section at http://www.virtualparts.org.

Author Contribution. G.M. and A.W supervised the project. G.M. developed the

virtual parts framework, B.Y. contributed to its development and testing. G.M., A.W., B.Y.

and K.J. wrote the paper.

Notes.

Funding: None

Conflicts of Interest: None

References

1. Freemont, P. S. (2019) Synthetic biology industry: data-driven design is creating new

opportunities in biotechnology. Emerg. Top. Life Sci. 3, 651–657.

2. Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A., and Weiss, R. (2014)

26



Realizing the potential of synthetic biology. Nat. Rev. Mol. Cell Biol. 15, 289–294.

3. Woodruff, L. B., Gorochowski, T. E., Roehner, N., Mikkelsen, T. S., Densmore, D.,

Gordon, D. B., Nicol, R., and Voigt, C. A. (2016) Registry in a tube: multiplexed pools

of retrievable parts for genetic design space exploration. Nucleic Acids Res. 45, 1553–

1565.

4. Appleton, E., Mehdipour, N., Daifuku, T., Briers, D., Haghighi, I., Moret, M., Chao, G.,

Wannier, T., Chiappino-Pepe, A., Belta, C., et al. (2019) Genetic Design Automation for

Autonomous Formation of Multicellular Shapes from a Single Cell Progenitor. bioRxiv

807107.

5. Yeoh, J. W., Ng, K. B. I., Teh, A. Y., Zhang, J., Chee, W. K. D., and Poh, C. L.

(2019) An Automated Biomodel Selection System (BMSS) for Gene Circuit Designs.

ACS Synth. Biol. 8, 1484–1497.

6. Nguyen, T., Jones, T. S., Fontanarrosa, P., Mante, J. V., Zundel, Z., Densmore, D., and

Myers, C. J. (2019) Design of Asynchronous Genetic Circuits. Proceedings of the IEEE

107, 1356–1368.

7. Watanabe, L., Nguyen, T., Zhang, M., Zundel, Z., Zhang, Z., Madsen, C., Roehner, N.,

and Myers, C. (2018) iBioSim 3: a tool for model-based genetic circuit design. ACS

Synth. Biol. 8, 1560–1563.

8. Otero-Muras, I., and Banga, J. R. (2017) Automated design framework for synthetic

biology exploiting pareto optimality. ACS Synth. Biol. 6, 1180–1193.

9. Haik, Y., and Shahin, T. Engineering Design Process, 2nd ed.; Cengage Learning, 2011.

10. Lenhard, J., and Carrier, M. Introduction: Mathematics as a Tool. In Mathematics as

a Tool; Springer, 2017; pp 1–19.

27



11. Knuuttila, T., and Loettgers, A. Mathematization in Synthetic Biology: Analogies, Tem-

plates, and Fictions. In Mathematics as a Tool; Springer, 2017; pp 37–56.

12. Lux, M. W., Bramlett, B. W., Ball, D. A., and Peccoud, J. (2012) Genetic design au-

tomation: engineering fantasy or scientific renewal? Trends in Biotechnology 30, 120 –

126.

13. Misirli, G., Hallinan, J., and Wipat, A. (2014) Composable modular models for synthetic

biology. ACM J. Emerg. Technol. Comput. Syst. 11, 22.

14. Cooling, M. T., Rouilly, V., Misirli, G., Lawson, J., Yu, T., Hallinan, J., and Wipat, A.

(2010) Standard virtual biological parts: a repository of modular modeling components

for synthetic biology. Bioinformatics 26, 925–931.

15. Hallinan, J., Gilfellon, O., Misirli, G., and Wipat, A. Tuning receiver characteristics

in bacterial quorum communication: An evolutionary approach using standard virtual

biological parts. 2014 IEEE Conference on Computational Intelligence in Bioinformatics

and Computational Biology. 2014; pp 1–8.

16. Mısırlı, G., Madsen, C., de Murieta, I. S., Bultelle, M., Flanagan, K., Pocock, M., Hal-

linan, J., McLaughlin, J. A., Clark-Casey, J., Lyne, M., et al. (2017) Constructing syn-

thetic biology workflows in the cloud. Eng. Biol. 1, 61–65.

17. Goni-Moreno, A., Carcajona, M., Kim, J., Mart́ınez-Garćıa, E., Amos, M., and

de Lorenzo, V. (2016) An implementation-focused bio/algorithmic workflow for synthetic

biology. ACS Synth. Biol. 5, 1127–1135.

18. Myers, C. J., Beal, J., Gorochowski, T. E., Kuwahara, H., Madsen, C., McLaughlin, J. A.,

Mısırlı, G., Nguyen, T., Oberortner, E., Samineni, M., et al. (2017) A standard-enabled

workflow for synthetic biology. Biochem. Soc. Trans. 45, 793–803.

28



19. Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P.,

Bornstein, B. J., Bray, D., Cornish-Bowden, A., et al. (2003) The systems biology markup

language (SBML): a medium for representation and exchange of biochemical network

models. Bioinformatics 19, 524–531.

20. Hucka, M., Bergmann, F. T., Hoops, S., Keating, S. M., Sahle, S., Schaff, J. C.,

Smith, L. P., and Wilkinson, D. J. (2015) The Systems Biology Markup Language

(SBML): language specification for level 3 version 1 core. J. Integr. Bioinform 12, 382–

549.

21. Cox, R. S., Madsen, C., McLaughlin, J. A., Nguyen, T., Roehner, N., Bartley, B., Beal, J.,

Bissell, M., Choi, K., Clancy, K., Grünberg, R., Macklin, C., Misirli, G., Oberortner, E.,

Pocock, M., Samineni, M., Zhang, M., Zhang, Z., Zundel, Z., Gennari, J. H., Myers, C.,

Sauro, H., and Wipat, A. (2018) Synthetic biology open language (SBOL) version 2.2.0.

J. Integr. Bioinform. 15, 20180001.

22. Galdzicki, M., Clancy, K. P., Oberortner, E., Pocock, M., Quinn, J. Y., Rodriguez, C. A.,

Roehner, N., Wilson, M. L., Adam, L., Anderson, J. C., Bartley, B. A., Beal, J., Chan-

dran, D., Chen, J., Densmore, D., Endy, D., Grunberg, R., Hallinan, J., Hillson, N. J.,

Johnson, J. D., Kuchinsky, A., Lux, M., Misirli, G., Peccoud, J., Plahar, H. A., Sirin, E.,

Stan, G.-B., Villalobos, A., Wipat, A., Gennari, J. H., Myers, C. J., and Sauro, H. M.

(2014) The Synthetic Biology Open Language (SBOL) provides a community standard

for communicating designs in synthetic biology. Nat. Biotechnol. 32, 545–550.

23. Roehner, N., Beal, J., Clancy, K., Bartley, B., Misirli, G., Gruenberg, R., Oberortner, E.,

Pocock, M., Bissell, M., Madsen, C., NGUYEN, T., Zhang, M., Zhang, Z., Zundel, Z.,

Densmore, D., Gennari, J., Wipat, A., Sauro, H., and Myers, C. J. (2016) Sharing

Structure and Function in Biological Design with SBOL 2.0. ACS Synth. Biol. 5, 498–

506.

29



24. Choi, K., Medley, J. K., König, M., Stocking, K., Smith, L., Gu, S., and Sauro, H. M.

(2018) Tellurium: An extensible Python-based modeling environment for systems and

synthetic biology. Biosystems 171, 74–79.

25. Misirli, G., Hallinan, J. S., Yu, T., Lawson, J. R., Wimalaratne, S. M., Cooling, M. T.,

and Wipat, A. (2011) Model annotation for synthetic biology: automating model to

nucleotide sequence conversion. Bioinformatics 27, 973–979.

26. Neal, M. L., König, M., Nickerson, D., Mısırlı, G., Kalbasi, R., Dräger, A., Atalag, K.,

Chelliah, V., Cooling, M. T., Cook, D. L., et al. (2018) Harmonizing semantic annota-

tions for computational models in biology. Brief. Bioinform. 20, 540–550.

27. Roehner, N., Zhang, Z., Nguyen, T., and Myers, C. J. (2015) Generating systems biology

markup language models from the synthetic biology open language. ACS Synth. Biol. 4,

873–879.

28. Misirli, G., Nguyen, T., McLaughlin, J. A., Vaidyanathan, P., Jones, T. S., Densmore, D.,

Myers, C., and Wipat, A. (2019) A Computational Workflow for the Automated Gener-

ation of Models of Genetic Designs. ACS Synth. Biol. 8, 1548–1559.

29. Nguyen, T., Roehner, N., Zundel, Z., and Myers, C. J. (2016) A converter from the

systems biology markup language to the synthetic biology open language. ACS Synth.

Biol. 5, 479–486.

30. McLaughlin, J. A., Myers, C. J., Zundel, Z., Mısırlı, G., Zhang, M., Ofiteru, I. D., Goñi-

Moreno, A., and Wipat, A. (2018) SynBioHub: A Standards-Enabled Design Repository

for Synthetic Biology. ACS Synth. Biol. 7, 682–688.

31. Karlebach, G., and Shamir, R. (2008) Modelling and analysis of gene regulatory net-

works. Nat. Rev. Mol. Cell Biol. 9, 770.

30



32. Alon, U. (2007) Network motifs: theory and experimental approaches. Nat. Rev. Genet.

8, 450–461.

33. Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011) Robust multicellular computing using

genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212.

34. Ausländer, D., Ausländer, S., Pierrat, X., Hellmann, L., Rachid, L., and Fussenegger, M.

(2018) Programmable full-adder computations in communicating three-dimensional cell

cultures. Nat. Methods 15, 57.

35. Bradley, R. W., Buck, M., and Wang, B. (2016) Tools and principles for microbial gene

circuit engineering. J. Mol. Biol. 428, 862–888.

36. Sonenshein, A. L., Hoch, J. A., Losick, R., et al. (2002) Bacillus subtilis and its closest

relatives: from genes to cells.

37. Nielsen, A. A., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A.,

Ross, D., Densmore, D., and Voigt, C. A. (2016) Genetic circuit design automation.

Science 352, aac7341.

38. Lugagne, J.-B., Carrillo, S. S., Kirch, M., Köhler, A., Batt, G., and Hersen, P. (2017)

Balancing a genetic toggle switch by real-time feedback control and periodic forcing.

Nat. Commun. 8, 1671.

39. Bonnerjee, D., Mukhopadhyay, S., and Bagh, S. (2019) Design, fabrication and device

chemistry of a 3-input-3-output synthetic genetic combinatorial logic circuit with a 3

input AND gate in a single bacterial cell. Bioconjugate Chem. 30, 3013–3020.

40. Hao, N., Palmer, A. C., Dodd, I. B., and Shearwin, K. E. (2017) Directing traf-

fic on DNA—How transcription factors relieve or induce transcriptional interference.

Transcription 8, 120–125.

31



41. Haldenwang, W. G. (1995) The sigma factors of Bacillus subtilis. Microbiol. Mol. Biol.

Rev. 59, 1–30.

42. Shadbolt, N., Berners-Lee, T., and Hall, W. (2006) The semantic web revisited. IEEE

Intell. Syst. 21, 96–101.

43. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M.,

Xu, L., Mendes, P., and Kummer, U. (2006) COPASI—a complex pathway simulator.

Bioinformatics 22, 3067–3074.

44. Bergmann, F. T., Hoops, S., Klahn, B., Kummer, U., Mendes, P., Pahle, J., and Sahle, S.

(2017) COPASI and its applications in biotechnology. Journal of biotechnology 261, 215–

220.

45. Smith, L. P., Hucka, M., Hoops, S., Finney, A., Ginkel, M., Myers, C. J., Moraru, I.,

and Liebermeister, W. (2015) SBML level 3 package: Hierarchical model composition,

version 1 release 3. J. Integr. Bioinform. 12, 603–659.

46. De Lorenzo, V., and Danchin, A. (2008) Synthetic biology: discovering new worlds and

new words. EMBO Rep. 9, 822–827.

47. Harris, L. A., Hogg, J. S., Tapia, J.-J., Sekar, J. A., Gupta, S., Korsunsky, I., Arora, A.,

Barua, D., Sheehan, R. P., and Faeder, J. R. (2016) BioNetGen 2.2: advances in rule-

based modeling. Bioinformatics 32, 3366–3368.

48. Mukherji, S., and Van Oudenaarden, A. (2009) Synthetic biology: understanding bio-

logical design from synthetic circuits. Nat. Rev. Genet. 10, 859.

49. Cox, R. S., Surette, M. G., and Elowitz, M. B. (2007) Programming gene expression

with combinatorial promoters. Mol. Syst. Biol. 3, 145.

50. Burrill, D. R., and Silver, P. A. (2010) Making cellular memories. Cell 140, 13–18.

32



51. Le Novère, N. (2015) Quantitative and logic modelling of molecular and gene networks.

Nat. Rev. Genet. 16, 146.

52. Reeve, B., Hargest, T., Gilbert, C., and Ellis, T. (2014) Predicting translation initiation

rates for designing synthetic biology. Front. Bioeng. Biotechnol. 2, 1.

53. Salis, H. M. The ribosome binding site calculator. In Methods Enzymol.; Elsevier, 2011;

Vol. 498; pp 19–42.

54. Seo, S. W., Yang, J.-S., Kim, I., Yang, J., Min, B. E., Kim, S., and Jung, G. Y. (2013)

Predictive design of mRNA translation initiation region to control prokaryotic translation

efficiency. Metab. Eng. 15, 67–74.

55. Fabret, C., Feher, V. A., and Hoch, J. A. (1999) Two-component signal transduction in

Bacillus subtilis : how one organism sees its world. J. Bacteriol. 181, 1975–1983.

56. Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000) Construction of a genetic toggle

switch in Escherichia coli. Nature 403, 339.

57. Lebar, T., Bezeljak, U., Golob, A., Jerala, M., Kadunc, L., Pirš, B., Stražar, M.,

Vučko, D., Zupančič, U., Benčina, M., Forstnerič, V., Gaber, R., Lonzarić, J., Ma-

jerle, A., Oblak, A., Smole, A., and Jerala, R. (2014) A bistable genetic switch based on

designable DNA-binding domains. Nat. Commun. 5, 5007.

58. Baig, H., Fontanarossa, P., Kulkarni, V., McLaughlin, J., Vaidyanathan, P., Bartley, B.,

Bhakta, S., Bhatia, S., Bissell, M., Clancy, K., Cox, R. S., Moreno, A. G., Goro-

chowski, T., Grunberg, R., Lee, J., Luna, A., Madsen, C., Misirli, G., Nguyen, T.,

Novere, N. L., Palchick, Z., Pocock, M., Roehner, N., Sauro, H., Scott-Brown, J., Sex-

ton, J. T., Stan, G.-B., Tabor, J. J., Terry, L., Vilar, M. V., Voigt, C. A., Wipat, A.,

Zong, D., Zundel, Z., Beal, J., and Myers, C. (2021) Synthetic biology open language

visual (SBOL Visual) version 2.3. J. Integr. Bioinform. 20200045.

33



59. Zhang, M., McLaughlin, J. A., Wipat, A., and Myers, C. J. (2017) SBOLDesigner 2: An

intuitive tool for structural genetic design. ACS Synth. Biol. 6, 1150–1160.

60. Der, B. S., Glassey, E., Bartley, B. A., Enghuus, C., Goodman, D. B., Gordon, D. B.,

Voigt, C. A., and Gorochowski, T. E. (2016) DNAplotlib: programmable visualization

of genetic designs and associated data. ACS Synth. Biol. 6, 1115–1119.

61. Bates, M., Lachoff, J., Meech, D., Zulkower, V., Moisy, A., Luo, Y., Tekotte, H.,

Franziska Scheitz, C. J., Khilari, R., Mazzoldi, F., et al. (2017) Genetic Constructor:

An Online DNA Design Platform. ACS Synth. Biol. 6, 2362–2365.

62. Aksoy, D., Yilmaz, B., Kuran, S., Wipat, A., Pusane, A. E., Misirli, G., Tugcu, T., et al.

Receiver Design Using Genetic Circuits in Molecular Communication. 4th workshop on

Molecular Communications. 2019.

63. Fontanarrosa, P., Doosthosseini, H., Borujeni, A. E., Dorfan, Y., Voigt, C. A., and

Myers, C. (2020) Genetic circuit dynamics: Hazard and Glitch analysis. ACS Synth.

Biol. 9, 2324–2338.

64. Zhang, Z., Nguyen, T., Roehner, N., Misirli, G., Pocock, M., Oberortner, E., Sami-

neni, M., Zundel, Z., Beal, J., Clancy, K., et al. (2015) libSBOLj 2.0: a java library to

support SBOL 2.0. IEEE Life Sci. Lett. 1, 34–37.

65. Rodriguez, N., Thomas, A., Watanabe, L., Vazirabad, I. Y., Kofia, V., Gomez, H. F.,

Mittag, F., Matthes, J., Rudolph, J., Wrzodek, F., Netz, E., Diamantikos, A., Eich-

ner, J., Keller, R., Wrzodek, C., Fröhlich, S., Lewis, N. E., Myers, C. J., Le Novere, N.,

Palsson, B., Hucka, M., and Dräger, A. (2015) JSBML 1.0: providing a smorgasbord of

options to encode systems biology models. Bioinformatics 31, 3383–3386.

66. Misirli, G., Wipat, A., Mullen, J., James, K., Pocock, M., Smith, W., Allenby, N.,

and Hallinan, J. S. (2013) BacillOndex: An integrated data resource for systems and

synthetic biology. J. Integr, Bioinform. 10, 103–116.

34



67. Mısırlı, G., Hallinan, J., Pocock, M., Lord, P., McLaughlin, J. A., Sauro, H., and

Wipat, A. (2016) Data integration and mining for synthetic biology design. ACS Synth.

Biol. 5, 1086–1097.

68. Allemang, D., and Hendler, J. Semantic web for the working ontologist: effective

modeling in RDFS and OWL; Elsevier, 2011.

69. Bornstein, B. J., Keating, S. M., Jouraku, A., and Hucka, M. (2008) LibSBML: an API

library for SBML. Bioinformatics 24, 880–881.

35



Graphical TOC Entry

36


