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OA: Osteoarthritis; HP: hydrostatic pressure; hESCs: human embryonic stem cells 

hBMSCs: human bone marrow stem cells; EVs: extracellular vesicles; MVs: microvesicles 

 

Abstract  

Mechanical stimulation plays in an important role in regulating stem cell differentiation and their 

release of extracellular vesicles (EVs). In this study, we examined effects of low magnitude 

hydrostatic pressure (HP) on the chondrogenic differentiation and microvesicle release from human 

embryonic stem cells (hESCs) and human bone marrow stem cells (hBMSCs). hESCs were 

differentiated into chondroprogenitors and then embedded in fibrin gels and subjected to HP (270 

kPa, 1Hz, 5 days/week). hBMSC pellets were differentiated in chondrogenic media and subjected to 

the same regime. HP significantly enhanced ACAN expression in hESCs. It also led to a significant 

increase in DNA content, sGAG content and total sGAG/DNA level in hBMSCs. Furthermore, HP 

significantly increased microvesicle protein content released from both cell types. These results 

highlight the benefit of HP bioreactor in promoting chondrogenesis and EV production for cartilage 

tissue engineering.  
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Introduction 

Osteoarthritis (OA), a disease characterized by the degeneration and loss of articular cartilage, 

affects at least 250 million people globally [1]. Tissue engineering strategies using sources of stem 

cells, either allogeneic or autologous, present promising approaches for cartilage repair in OA 

patients. To date, researchers have explored various cell sources for cartilage tissue engineering 

application, including embryonic stem cells [2, 3] and adult stem cells derived from tissues such as 

bone marrow [4], synovium [5], and infrapatellar fat pad [6, 7], among which bone marrow stem 

cells (BMSCs) are the most intensively investigated. Studies have demonstrated successful 

chondrogenic induction of BMSCs over various culture protocols such as pellet [8], natural hydrogel 

[4, 9], and synthetic polymers [10]. However, the procurement of stem cells from the bone marrow 

is a surgical procedure associated with pain and risk of complications. Also, since these cells are 

mainly used as autologous cell based therapy, treatments usually involve a two-step operation, 

leading to higher cost. Furthermore, several studies have reported BMSCs derived from OA patients 

exhibit reduced chondrogenic capacity [11]. In contrast, there are thousands of human embryonic 

stem cells (ESCs) lines available from surplus embryos donated from in vitro fertilization procedures 

and a number of these are of clinical grade [12]. They are pluripotent and possess unlimited self-

renewal capacity, thus may form an alternative allogeneic cell source for cartilage tissue engineering 

applications. The behaviour of ESCs has been investigated in a number of naturally derived 

hydrogels, such as agarose [13], hyaluronic acid [14, 15] and fibrin gels [16, 17], for cartilage tissue 

engineering applications. 

 

In vivo, articular cartilage experiences a range of mechanical loading during joint movement, 

including compression, tension, shear stress and hydrostatic pressure [18, 19]. Mechanical 
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conditioning in vitro has been shown to play a role in chondrogenesis under multiple regimes [20]. 

The potential for preconditioning of tissue engineered rudiments has been suggested as a way to 

facilitate engraftment into a repair site in vivo [20-22]. How a certain cell type responds to joint-

specific mechanical stimulation is therefore crucial to determine its clinical suitability for cartilage 

tissue engineering application [4]. Hydrostatic pressure (HP), a key mechanical factor within the joint 

environment, has been shown to promote matrix synthesis in chondrocytes [23, 24]. Studies have 

also demonstrated cyclic HP upregulated chondrogenic gene expression and/or increased 

proteoglycan and collagen synthesis in BMSCs [25-28], although occasionally conflicting results have 

also been reported, with HP showing no significant effects [29, 30]. However, to the authors’ 

knowledge, to date no studies have investigated the influence of HP on ESC-chondrogenesis. 

Consequently, there is an urgent need to understand how ESCs respond to HP to further understand 

how these cells might be used ultimately for clinical therapies. 

 

In addition to cell-based approaches, extracellular vesicles (EVs) are receiving increasing attention as 

novel acellular tools for cartilage repair [31, 32]. EVs are defined as cell-secreted phospholipid 

nanoparticles which contain a complex biological cargo including nucleic acids, proteins and other 

signalling molecules that are believed to stimulate numerous biological processes including 

proliferation and differentiation [33, 34]. In particular, microvesicles (MVs) are a heterogenous 

population of EVs which are formed by the outward budding of the plasma membrane, possessing a 

diameter ranging from 100 – 1000 nm [35-37]. Several studies have demonstrated the chondro-

inductive potency of stem cell derived EVs [31, 32]. As research continues to foray into the 

exploitation of EVs in regenerative medicine, there is a need to enhance the scalable manufacture of 

EVs for clinical applications [38]. Recent studies have shown mechanical stimulation such as shear 

stress can increase the yield and/or therapeutic potency of EVs secreted by numerous cell types 
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including stem cells [39, 40]. It is therefore worth investigating whether HP could provide an 

alternative approach to enhance the production of EVs for cartilage repair.  

  

The objective of this study was to investigate the effects of HP on chondrogenic differentiation of 

human ESCs and BMSCs as well as on the production of MVs during the differentiation phase. 

Specifically, we induced chondrogenic differentiation in both hESCs and hBMSCs, subjected them to 

HP, collected the conditioned media during the loading period, and examined 1) chondrogenic gene 

expression; 2) matrix synthesis in engineered tissues; and 3) quantity of MVs released. We 

hypothesize that HP would enhance stem cell chondrogenesis and promote MV secretion during 

differentiation. 
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Materials and Methods 

 

Cell isolation and expansion  

hBMSC were purchased from Lonza as bone marrow aspirate and isolated following the company’s 

protocol. Cells were expanded in high glucose Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum, 2 mM L-glutamine and 100 U/mL penicillin-0.1mg/mL 

streptomycin (all GIBCO, ThermoFisher) under 5% CO2 at 37 °C.   

hESC lines, MAN7 and MAN13, were isolated as previously published [12, 41], at the University of 

Manchester. The hESC lines were generated under licence R0171 from the Human Fertilisation and 

Embryology Authority (HFEA) UK, following local ethics approval and are lodged in the UK Stem Cell 

bank. Tissue culture plates were coated in vitronectin recombinant human protein (VTN) (Gibco, 

ThermoFisher), diluted in Dulbecco’s phosphate buffered saline (DPBS) to a concentration of 5 

μg/mL and incubated at 37⁰C for 30 minutes. Frozen cryovials of hESC (approximately 1x106 cells) 

were thawed and slowly added to 9 mL Essential 8 (E8) medium (Gibco, ThermoFisher) at room 

temperature. The cells were then centrifuged at 700 g for 3 minutes and resuspended in 2 mL E8 

medium. Rho kinase (ROCK) inhibitor (American Type Culture Collection) was added at a 

concentration of 10 μM and the cell suspension was transferred to one vitronectin-coated well of a 

6-well plate and incubated for 24 hours, after which point the ROCK inhibitor was removed. Medium 

was changed daily and cells were split at 80% confluency via incubation for 3-5 minutes with 0.5 mM 

EDTA, diluted in DPBS with 30 mM sodium chloride (NaCl). Medium was always supplemented with 

ROCK inhibitor for the first 24 hours following cell seeding. 
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Chondrogenic differentiation 

hBMSCs were pelleted and differentiated chondrogencially in a high-throughput v bottomed 96 well 

plate culture system as previously described [42]. Briefly, 200,000 cells (P3) were added into each 

well of an autoclave-sterilized v bottomed 96 well polypropylene microplate (Greiner bio-one), and 

the plate was centrifuged for 5 min at 500× g. Each cell pellet was cultured in 250 µl chondrogenic 

differentiation medium consisting of high glucose DMEM supplemented with 2 mM L-glutamine, 100 

U/mL penicillin-0.1 mg/ml streptomycin, 100 μg/mL sodium pyruvate, 40 μg/mL L-proline, 50 μg/mL 

L-ascorbic acid-2-phosphate, 4.7 μg/mL linoleic acid, 1.5 mg/mL bovine serum albumin (BSA), 1× 

insulin-transferrin-selenium, 100 nM dexamethasone (all from Sigma-Aldrich) and 10 ng/ml 

recombinant human TGF-β3 (Peprotech). Medium was changed three times a week and pellets were 

cultured for 3 weeks in total.  

Chondroprogenitors were derived from hESC using a modified version of the directed differentiation 

protocol described previously [17]. Cells were dissociated and seeded onto VTN-coated tissue 

culture plastic at approximately 5x104 cells/cm2. The following day, E8 medium was replaced with 

DMEM/F12 supplemented with 2% (vol/vol) B27 supplement, 1% (vol/vol) non-essential amino 

acids, 1% (vol/vol) ITS-A supplement, 1% (vol/vol) L-glutamine and 90 µM ß-mercaptoethanol (all 

GiboTM). Cultures were maintained for 14 days and split on days 4 and 8 at ratios of 1:8 and 1:4 

respectively. Basal differentiation medium was changed daily and further supplemented with growth 

factors or small molecules at appropriate concentrations. On day 1 cells were supplemented with 

CHIR99021 (Stem Cell Technologies) (2 µM) and human Activin-A (Qkine) (50 ng/mL). On day 2 they 

were supplemented with CHIR99021 (2 µM), Activin-A (25 ng/mL) and recombinant human FGF2 

(Qkine) (20 ng/mL). On day 3 cells were supplemented with CHIR99021 (2 µM), Activin-A (10 ng/mL), 

FGF2 (20 ng/mL) and recombinant human BMP2 (Qkine) (40 ng/mL). On days 4-8 they were 

supplemented with FGF2 (20 ng/mL) and BMP2 (20 ng/mL); on days 9-10 with FGF2 (20 ng/mL), 
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BMP2 (20 ng/mL) and recombinant human GDF-5 (Peprotech) (20 ng/mL); and on days 11-14 with 

FGF2 (20 ng/mL) and GDF-5 (40 ng/mL). 

On day 15 hESC-derived chondroprogenitors were encapsulated in 50 µL fibrin hydrogels set into 96 

well tissue culture plates, at a density of 50 x 103 cells/mL and a final fibrinogen concentration of 10 

mg/mL. Each 50 µL hydrogel consisted 15 µL cell suspension, 20 µL fibrinogen from human plasma 

(Sigma) (25 mg/mL in 0.9% NaCl), 5 µL thrombin from human plasma (Sigma) (20 UN/mL in dH2O), 8 

µL calcium chloride (100 mM in dH2O) and 2 µL bovine lung aprotinin (Sigma) (1 mg/mL). Constructs 

were then cultured for 7 days in 200 µL day 14 differentiation medium, which was supplemented 

with aprotinin (20 µg/mL) and changed daily. 

Application of hydrostatic pressure 

hBMSC pellets were subjected to hydrostatic pressure from day 1 for a total of three weeks as 

described previously [43-45]. hESCs were first differentiated into chondroprogenitors and then 

embedded into fibrin gels and subjected to hydrostatic pressure for one week. For both cell types, 

hydrostatic pressure was applied at an amplitude of 270 kPa at a frequency of 1 Hz, 1 h per day, 5 

days per week. Samples which were not subjected to hydrostatic pressure were cultured as parallel 

controls. 

 

RNA isolation and qRT-PCR 

Neo-cartilage tissues engineered from hBMSCs and hESCs (n=4 per group) were snap frozen upon 

termination of experiments and homogenised using disposable pellet pestles (Sigma). RNA was then 

extracted using TRI Reagent (Sigma) and converted into cDNA using High Capacity cDNA Reverse 

Transcription Kits (Applied Biosystems) (both as per the manufacturer’s instructions). Gene 

expression analysis was performed for SOX9, ACAN and COL2A1 using SYBR® Green-based 

quantitative real-time polymerase chain reaction (qRT-PCR) with pre-optimised QuantiTect primer 
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assays (Qiagen) and an AriaMx Real-Time PCR System (Agilent Technologies). qRT-PCR data were 

analysed using the Delta Delta Ct method as described previously [46] with the unloaded control 

samples used as the calibrator and GAPDH as the endogenous control gene. Relative quantification 

values are presented as fold changes in gene expression relative to the control group, which was 

normalised to one. 

 

Biochemical analysis 

hBMSC and hESC constructs (n=4 per group) were digested with 125 µg/ml papain in 100mM sodium 

phosphate Buffer containing 5mM Na2EDTA and 10mM L-cysteine (pH 6.5, all Sigma-Aldrich) at 60 °C 

under constant rotation for 18 hours. DNA content was quantified using the PicoGreen dye assay 

(Biosciences) following the kit instructions with a calf thymus DNA standard. Sulfated 

glycosaminoglycan (sGAG) content within the sample was quantified using the dimethylmethylene 

blue (DMMB) dye-binding assay with a chondroitin sulfate standard. The sGAG content secreted into 

media was analysed using Glycosaminoglycan Assay Blyscan TM kit (Biocolor) following the kit 

instruction, also with a chondroitin sulfate standard. 

 

Histology and immunohistochemistry 

Samples (n=2 per group) were fixed in 10% formalin and embedded in paraffin. 5 μm thick sections 

were stained with picrosirius red for collagen deposition, 0.1% safranin-O for proteoglycan 

deposition and Gill’s number 2 haematoxylin for nuclei. Sections were also immunohistochemically 

stained for Type II collagen. Briefly, sections were treated with chondroitinase ABC (Sigma-Aldrich) 

for 1 hour in a humidified environment at 37°C for antigen retrieval, then blocked for 1 hour with 

10% goat serum. They were then incubated with primary antibody for human type II collagen 

(Abcam, ab34712, 1:100) at 4⁰C overnight. Sections were then treated with 3% hydrogen peroxide 
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(Sigma) to block the hydroperoxidase activity, followed by incubation with a biotin conjugated 

secondary antibody (Abcam, ab6720, 1:1000) at RT for 1 hour, followed by incubation with 

Streptavidin HRP (Abcam, ab64269) at RT for 10 minutes. Finally, sections were developed with DAB 

peroxidase (Vector Labs) for 10 mins. Secondary antibody only slides were used as a negative 

control. Sections were then imaged with an EVOS microscope (Invitrogen). 

 

MV isolation and characterisation  

MV isolation 

MVs were isolated from hBMSCs and hESCs conditioned medium by differential centrifugation: 2000 

g for 20 min to remove large debris/cells and 10,000 g for 30 min to pellet MVs. The supernatant 

was removed, and the obtained pellet was washed with PBS at 10,000 g for 30 min and subsequently 

re-suspended in 500 μl PBS. All ultracentrifugation steps were performed using the Sorvall WX Ultra 

Series Ultracentrifuge (Thermo Scientific, UK) and a Fiberlite, F50L-8×39 fixed angle rotor (Piramoon 

Technologies Inc., USA). MV characterisation was conducted following guidelines published in 

Minimal Information for Studies of Extracellular Vesicles 2018 [47].  

 

Particle size and concentration analysis 

Dynamic Light Scattering (Zetasizer Nano ZS, Malvern Instruments, UK) was used to determine MV 

size distribution. Total MV protein concentration was determined using the Pierce Micro BCA protein 

assay kit (Thermo Scientific, UK) following manufacturer’s instructions.  

 

Transmission electron microscopy (TEM) 
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Imaging of MVs was conducted via a JEOL JEM1400 transmission electron microscope (TEM) coupled 

with an AMT XR80 digital acquisition system. MVs were physisorbed onto 200 mesh carbon‐coated 

copper formvar grids (Agar Scientific, UK) and negatively stained with 1% uranyl acetate. 

 

Detection of EV markers 

The presence of EV tetraspanin markers CD9 and CD81 at the surface of extracellular vesicles was 

assessed using the ExoViewTM Tetraspanin Kit according to the manufacturers’ instructions and as 

previously described [48]. Briefly, 35 µL of hESC-MV or hBMSC-MV suspension (1:1000 dilution in 

Solution A) was incubated on the ExoViewTM chip for 16 hours. Following which, the chip was 

washed in 1000 µL of Solution A for 3 minutes at 500 rpm. Chips were then washed three times 

using Solution B and then with deionized water. The chip was carefully dried and analysed using the 

ExoView R100 (NanoView Biosciences, Boston, USA). Using single particle interferometric reflectance 

imaging sensing (SP-IRIS), tetraspanin-positive (CD9 and/or CD81) nanoparticles were detected and 

quantified on each spot as they were immuno-captured on the chip. IgG spots were used as an 

isotype control. Data was acquired using the nScan software (Nanoview Biosciences, version 2.8.10) 

and analysed using the NanoViewer software (Nanoview Biosciences, version 2.8.10). 

 

 

Statistics  

Statistics were performed using GraphPadPrism software package (San Diego, CA, USA). Unpaired t-

test was used to compare between two groups. Statistical significance was considered if p < 0.05. 

Data are presented as mean ± standard deviation (SD).  
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Results 

HP promotes chondrogenic differentiation of hESCs and hBMSCs. 

hESCs were first differentiated into chondroprogenitors using a modified version of the directed 

differentiation protocol described previously [17]. After 14 days of directed differentiation, the hESC 

marker OCT4 and NANOG significantly reduced whereas the chondrogenic markers including Sox9, 

COL2A1 and ACAN all increased significantly (Supplementary Fig.1A). Furthermore, on day 15 

majority of the cells stained positive for Sox9 (Supplementary Fig.1B), suggesting hESCs were 

differentiated into a chondroprogenitor linage. These hESC derived chondroprogenitors were then 

embedded in fibrin gels and cultured in a chondrogenic differentiation medium with or without 

cyclic HP (270 kPa, 1 Hz) for 1 week. HP led to a more than 10-fold increase in aggrecan gene 

expression in the engineered tissue (p<0.05), as well as a trend of increase in the expression of SOX9 

(1.4 fold, p=0.07) and COL2A1 (1.9 fold, p=0.08, Fig. 1). Biochemical data revealed no significant 

difference in DNA or sGAG content between control and HP group (Fig. 2A). sGAG secretion into 

media was also assayed, however, the level was not detectable (data not shown). There was no 

significant difference in sGAG/DNA level between the two groups (Fig. 2A). Histologically, more 

intense Safranin O staining for proteoglycan was observed in the HP group (Fig. 2B), in line with the 

gene expression data. However, no positive staining for picrosirius red or Type II collagen 

immunohistochemistry was observed in either group (data not shown). 

 

To study the effects of HP on hBMSCs chondrogenesis, hBMSCs pellets were cultured in a 

chondrogenic media and subjected to HP (same regime as above) for 3 weeks, while samples that 

were not subjected to HP were kept as control. HP had no significant effect on expression of any of 

the chondrogenic genes examined (Fig. 3). HP led to a significant increase in DNA (p<0.01) and sGAG 
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(p<0.01) content in the samples (Fig. 4A). A significantly higher level of sGAG secretion into the 

media and total sGAG/DNA (both accumulated in construct and secreted) was also observed with 

the application of HP (both P<0.001, Fig. 4A). Histologically, more intense Safranin O staining was 

found in the HP group (Fig. 4B), in line with the biochemical data. Picrosirius red staining for collagen 

showed no obvious difference between control and HP samples. Immunohistochemistry revealed 

positive staining for Type II collagen accumulation in both groups, with HP showing no obvious 

effects on Type II collagen content in the sample (Fig. 4B). 

 

HP increases MV secretion from chondrogencially primed hESCs and hBMSCs.  

To investigate the effects of HP on hESCs and hBMSCs release of microvesicles (MVs) during 

chondrogenic differentiation, conditioned media from the loading period was collected and MVs 

were isolated. TEM confirmed the presence of nano-sized particles exhibiting a spherical 

morphology and diameters of approximately 230 and 190 nm for hESCs-MVs and hBMSCs-MVs, 

respectively (Fig. 5A). The detection of EV markers CD81 and CD9 on isolated MVs was performed 

using the Exoview platform and SP-IRIS confirmed the presence of CD9-positive and CD81-positive 

nanoparticles within both hESCs-MVs and hBMSCs-MVs (Fig. 5B). Particle size analysed using DLS 

revealed a bell-shaped size distribution of MVs isolated from both groups. An increase in particle 

mean size was observed with the application of HP. For hESCs, MVs isolated from control and HP 

group had an average size of 263 nm and 330 nm respectively. For hBMSCs, the control group 

displayed an average size of 223 nm and the HP group 237 nm (Fig. 5C). The content of MV 

associated protein was analysed by BCA assay. HP led to a significant increase in MV protein content 

secreted by both cell types, with the hESC control group showing a 1.1-fold increase (P<0.01) and 

hBMSCs showing a 1.7-fold increase (P<0.001) in response to HP (Fig. 5D). When MV protein content 

was normalized to DNA content, HP led to a 1.4-fold increase in MV/DNA level in loaded hESCs 
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(P<0.001, Fig. 5E). For hBMSCs, a small trend of increase in MV/DNA level (1.2 fold) was also 

observed with the application of HP, although not statistically significant (p=0.09, Fig. 5E). 
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Discussion 

Hydrostatic pressure is a key mechanical stimulus present in the joint environment. How progenitor 

and mature cells respond to HP is crucial to understanding how to achieve clinical success for 

cartilage repair. In this study, we examined effects of low magnitude HP on chondrogenesis of hESCs 

and hBMSCs. Here, we showed HP significantly enhanced ACAN expression in chondrogencially 

differentiated hESCs. It also increased the DNA content, sGAG content and total sGAG/DNA level in 

tissues engineered using hBMSCs. Furthermore, we investigated effects of low magnitude HP on EV 

release from cells during the differentiation phase. We found that HP significantly increased MV 

protein content secreted by both cell types. These results suggest that the use of an HP bioreactor 

has potential as an effective tool to promote chondrogenesis and EV yield for cartilage tissue 

engineering application.  

 

Many studies have demonstrated that both physiological level HP (3-10 MPa) and low magnitude HP 

(100-500 kPa) promotes the chondrogenesis of stem cells [28]. We have previously shown that a low 

magnitude HP of 270 kPa can promote osteogenesis in bone rudiments and tissue engineered bone 

[45, 49]. Therefore, in this study, we were interested to explore how HP of the same magnitude 

would affect chondrogenesis of hESCs and hBMSCs. Here, we showed that low magnitude HP 

resulted in a significant increase in the DNA content, sGAG content, sGAG secretion, total GAG/DNA 

level as well as the intensity of Safranin O staining of cartilaginous tissue engineered using hBMSCs. 

Similar results have also been reported by other studies using low magnitude HP [27, 50-54]. For 

example, Maxson et al. showed a low magnitude HP of 300kPa led to increased GAG/DNA level in 

cartilage tissues engineered using BMSCs [53].  Luo et al. also showed increased DNA content, sGAG 

content as well as sGAG secretion in BMSCs after being subjected to a HP of 100 kPa for 10 days [52]. 
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While extensive research have been conducted to study effects of HP on chondrocytes [23, 24], 

BMSCs [4, 25] and adipose stem cells [55], little is known about how ESCs would respond to HP. 

Here, for the first time, we showed low magnitude HP promoted chondrogenesis of hESCs by 

inducing a more than 10-fold increase in aggrecan gene expression after application for only one 

week. No increase in sGAG content was observed, which may be due to the relatively short 

stimulation period applied, comparing to the hBMSCs study (7 days for hESCs vs 21 days for 

hBMSCs). In a previous pilot study, we found that when hESCs derived chondroprogenitor were 

seeded in fibrin gels, these gels started to partially degrade after 7 days. Kim et al. and Eyrich et al. 

have also reported similar results that low concentration (similar to what we used) fibrin gels 

degrade rapidly and start to partially dissolve after one week in culture [56, 57]. Therefore, in this 

study we used a relatively short stimulation period for hESCs compared to hBMSCs. 

 

Several studies have reported the influence of physiological conditions such as fluid shear, hypoxia 

and oxidative stress on increasing the shedding of MVs from activated cells [58, 59]. With the 

application of HP replicating the in situ environmental conditions within the joint and promoting 

chondrogenesis in our study, this applied mechanical stimulation could provide a novel approach to 

promote the scalable manufacture of EVs for cartilage tissue engineering applications. In order to 

examine effects of HP on EV yield, we isolated MVs from medium collected during the 

differentiation phase and characterized them with TEM, DLS and BCA protein assay. An increase in 

MV size was observed with the application of HP. Yan et al. have reported similar results that 

prolonged exposure to mechanical stimuli led to an increase in EV size produced by umbilical cord 

MSCs [40]. Furthermore, we found that the application of HP increased MV protein secretion for 

both cell types, which is in agreement with other studies showing mechanical stimulation promotes 

EV yield [40, 60]. For example, Najrana et al. showed that cyclic stretch increased the release of EV 

from lung epithelial cells by around 2-fold compared to control [60]. Also, Yan et al. showed that 
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umbilical cord MSC expanded in rotary cell culture system, which creates a combination of 

simultaneous HP, shear stress and buoyancy force, released approximately 3.8-fold more EVs 

compared to unstimulated group [40].  

 

The underlying mechanism by which HP regulate stem cell differentiation has not yet been fully 

elucidated. Previous studies suggest this might happen through HP affecting the endogenous TGF-β 

production [27], integrin proteins [61], intermediate filament [62], TRP ion channel family [63] and 

intracellular calcium stores [64]. A recent review also pointed the possibility of HP affecting primary 

cilia or nuclei [28]. To the author’s knowledge, no study to date has investigated effects of HP on EV 

release and/or its biological function, and how such change may regulate chondrogenesis as a 

feedback loop. Many studies have demonstrated the chondro-inductive nature of EVs [31, 32]. As HP 

increases EVs secretion from the cells, these EVs may in turn promote better chondrogenesis in the 

cells. Furthermore, studies also suggest mechanical stimulation can promote the biological function 

of EVs. For example, Eichholz et al. showed EVs isolated from osteocytes subjected to shear stress 

promoted better osteogenesis of MSCs, compared to EVs isolated from cells cultured statically [39]. 

Similarly, Xia et al. reported EVs from mechanically stimulated Schwann cells promoted more neurite 

outgrowth in vitro and better nerve regeneration in vivo, compared to EVs derived from non-

stimulated cells [65]. Moreover, Yan et al. showed EVs isolated from umbilical cord MSCs cultured in 

a rotating system induced higher cell proliferation and matrix synthesis in chondrocytes through 

upregulating the expression of long noncoding RNA H19 in the mechanically stimulated EVs 

compared to normal EVs [40]. Therefore, it is possible that another mechanism by which HP 

promotes the chondrogenesis of stem cells is through increasing the release of EVs and/or the 

biological function of EVs. While the current study has demonstrated HP increase EV yield, future 

studies will investigate effects of HP on the composition and therapeutic efficacy of EVs, as well as 
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effects of magnitude and duration of HP on EV yield. Future studies may also test if MVs isolated 

from hESCs and hBMSCs have different potency in promoting chondrogenic differentiation.  

 

In conclusion, this study showed that the application of HP promoted the chondrogenesis of hESCs 

and hBMSCs, in addition to increasing their MVs secretion during differentiation. It highlights the 

benefit of bioreactor culture to promote the quality of engineered tissues and EVs production for 

cartilage tissue engineering applications.   
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Fig. 1. Relative SOX9, ACAN and COL2A1 expression in hESC derived chondroprogenitor seeded fibrin 

gels that were cultured statically or subjected to cyclic hydrostatic pressure. Gene expression shown 

relative to GAPDH and data was normalized to unstimulated control. Data were pooled from donor 

MAN7 and MAN13. *: P<0.05, data are presented as mean ± SD. 

 

 

Fig. 2. Assessment of hESC derived chondroprogenitor seeded fibrin gels that were cultured statically 

or subjected to cyclic hydrostatic pressure. (A) DNA and sGAG content as well as sGAG/DNA level of 

MAN13 samples. Data are presented as mean ± SD. (B) Safranin O staining of each group, with cell 
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nuclei counter-stained with Hematoxylin. Box regions in the upper row indicates areas where images 

in the lower row were taken. Scale bars in both rows are 100 µm. 

 

 

 

 

 

Fig. 3. Relative expression of SOX9, ACAN and COL2A1 expression in hBMSCs pellets that were 

cultured statically or subjected to cyclic hydrostatic pressure. Gene expression shown relative to 

GAPDH and data was normalized to unstimulated control. Data are presented as mean ± SD. 
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Fig. 4. Assessment of hBMSCs pellets that were cultured statically or subjected to cyclic hydrostatic 

pressure. (A) DNA and sGAG content in the sample, sGAG content secreted into medium as well as 

total sGAG/DNA level (accumulated and secreted) of each group. **: P<0.01, ***: p<0.001, data are 

presented as mean ± SD. (B) Safranin O/ Hematoxylin, Picrosirius Red and Collagen Type II staining of 

each group. Inserted images shown pellets taken at a lower magnification. All scale bars are 100 µm. 
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Fig. 5. Characterization of isolated MVs from hESCs and hBMSCs conditioned media of samples that 

were cultured statically or subjected to cyclic hydrostatic pressure. (A) TEM analysis showing the 

morphology of isolated MVs. Scale bar 100 nm. (B) Detection of tetraspanin markers in isolated MVs. 

(C) DLS analysis showing the size distribution of isolated MVs. (D) BCA assay showing the MV 
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associated protein content secreted per sample. (E) MV protein/DNA (ug/ug) level of each group. **: 

P<0.01, ***: P<0.001, data are presented as mean ± SD. 

 

 

Supplementary Fig. 1. hESCs were differentiated into chondroprogenitors using a 14 day directed 

differentiation protocol. (A) Relative expression of OCT4, NANOG, SOX9, ACAN and COL2A1 

expression in cells on day 1 and day 15. Gene expression shown relative to GAPDH and data was 

normalized to day1 cells. Data are presented as mean ± SD. (B) Immunofluorescence staining for 

Sox9 on day 15 cells. Scale bars are 100 µm. Sox9 (green), DAPI (blue). 
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Mechanical stimulation plays in an important role in regulating stem cell differentiation and their 

release of extracellular vesicles (EVs). In this study, we showed low magnitude hydrostatic pressure 

(HP) can promote chondrogenic differentiation and microvesicle release from human embryonic 

stem cells (hESCs) and human bone marrow stem cells (hBMSCs). Our study highlights the benefit of 

mechanical stimulation in promoting chondrogenesis and EV production for cartilage tissue 

engineering.  

 

 


