Title: MASTREE+: time-series of plant reproductive effort from six continents

Running Title: Database of plant reproduction time-series

List of Authors
Andrew Hacket-Pain 1 *, Jessie J. Foest 1, Ian S. Pearse 2, Jalene M. LaMontagne 3, Walter D. Koenig 4, Giorgio Vacchiano 5, Michał Bogdziewicz 6,7, Thomas Caignard 8, Paulina Celebias 6, Joep van Dormolen 9, Marcos Fernández-Martínez 10, Jose V. Moris 11, Ciprian Palaghianu 12, Mario Pesendorfer 13, Akiko Satake 14, Eliane Schermer 15, Andrew J. Tanentzap 16, Peter A. Thomas 17, Davide Vecchio 11, Andreas Wion 18, Thomas Wohlgemuth 19, Tingting Xue 20, Katherine Abernethy 21,22, Marcelo Daniel Barrera 23, Jessica H. Barton 3, Stan Boutin 24, Emma R. Bush25, Sergio Donoso Calderón 26, Felipe S. Carevic27, Carolina Volkmer de Castilho 28, Juan Manuel Cellini 23, Colin A. Chapman 29,30,31,32, Hazel Chapman 33,34, Francesco Chianucci 35, Patricia da Costa 36, Luc Croisé 37, Andrea Cutini 35, Ben Dantzer 38, R. Justin DeRose 39, Jean Thoussaint Dikangadissi 40, Edmond Dimoto 40, Fernanda Lopes da Fonseca 41, Leonardo Gallo 42, David F. Greene 43, Martín A. Hadad 44, Alejandro Huertas Herrera 45,46, K.J. Jeffery 21, Jill F. Johnstone 47, Urs Kalbitzer 48,49, Władysław Kantorowicz 50, Christie A. Klimas 51, Jonathan G.A. Lageard 52, Jeffrey Lane 53, Katharina Lapin 54, Mateusz Ledwon 55, Abigail Leeper 3, Maria Vanessa Lencinas 56, Ana Cláudia Lira-Guedes 57, Michael C. Lordon 3, Paula Marchelli 42, Shealyn Marino 58, Harald Schmidt Van Marle 26, Andrew G. McAdam 59, Ludovic R.W. Momont 60, Manuel Nicolas37, Lúcia Helena de Oliveira Wadt 61, Parisa Panahi 62, Guillermo Martínez Pastur 56, Thomas Patterson 63, Pablo Luis Peri 64, Łukasz Piechnik 65, Mehdi Pourhashemi 66, Claudia Espinoza Quezada 26, Fidel A. Roig 67,68, Karen Peña Rojas 26, Yamina Micaela Rosas 56, Silvio Schüler 54, Barbara Seget 65, Rosina Soler 56, Michael A. Steele 58, Mónica Toro-Manríquez 45,46, Caroline E.G. Tutin 21, Tharcisse Ukizintambara 69, Lee White 21,22,70, Biplang Yadok 34, 71, John L. Willis 72, Anita Zolles 54, Magdalena Żywiec 65, Davide Ascoli 11

Institutional affiliations
1. Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
2. U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
3. Department of Biological Sciences, DePaul University, Chicago, IL, 60614, USA
4. Hastings Reservation, University of California Berkeley, Carmel Valley CA 93924 USA
5. Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan Italy
6. Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
7. INRAE, LESSEM, University Grenoble Alpes, France
8. Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
9. Department of Computing, University of London, London, WC1B 5DN, United Kingdom
10. CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
11. Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
12. Stefan cel Mare Univ Suceava, Forestry Fac,  Appl Ecol Lab, Suceava, Romania
13. Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Strasse 33, A-1180 Vienna, Austria
14. Kyushu University, 819-0395, Fukuoka, Japan
15. Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
16. Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
17. School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
18. Graduate Degree Program in Ecology and The Department of Forest and Rangeland Stewardship, 1472 Campus Delivery, Colorado State University, Fort Collins, Colorado, 80526, USA
19. Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
20. College of Civil and Architecture and Engineering, Chuzhou University, China
21. Faculty of Natural Sciences, University of Stirling, Stirling, UK
22. Institut de Recherche en Ecologie Tropicale, CENAREST, Libreville, Gabon
23. Universidad Nacional de la Plata (UNLP). Calle 60 y 118 (1900) La Plata, Buenos Aires, Argentina
24. Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
25. Royal Botanic Garden Edinburgh, Edinburgh, UK
26. Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
27. Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile.
28. Embrapa Roraima, Boa Vista 69301-970, RR, Brazil
29. Wilson Center,1300 Pennsylvania Avenue NW, Washington, DC 20004,
30. Department of Anthropology, George Washington University, Washington DC, USA
31. School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
32. Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, China,
33. School of Biological Sciences, University of Canterbury, New Zealand
34. Nigerian Montane Forest Project, Yelway State, Nigeria
35. CREA - Research Centre for Forestry and Wood, Arezzo, Italy
36. Embrapa Meio Ambiente, Jaguariúna 13918-110, SP, Brazil
37. Office National des Forêts, Département Recherche-Développement-Innovation, Bâtiment B, Boulevard de Constance, 77300 Fontainebleau, France
38. Department of Psychology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
39. Department of Wildland Resources and Ecology Center, Utah State University, 5230 Old Main Hill, Logan, UT, 84322-5230, USA
40. Agence Nationale des Parcs Nationaux (ANPN), Libreville, Gabon
41. Embrapa Acre, Rio Branco – Acre, Brazil
42. Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (INTA - CONICET) Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas. Modesta Victoria 4450, 8400, Bariloche, Argentina
43. Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, 95521, USA
44. Laboratorio de Dendrocronología de Zonas Áridas, CIGEOBIO (CONICET-UNSJ), Av. Ignacio de la Roza 590 (oeste), J5402DCS, Rivadavia, San Juan, Argentina
45. Ulterarius Consultores Ambientales y Científicos Ltda, Río de Los Ciervos 5862, Loteo D, km 6 ½ Sur, 6200000 Punta Arenas, Chile
46. Departamento de Ciencias Agropecuarias y Acuícolas, Universidad de Magallanes, Av. Bulnes 01855, 6210427 Punta Arenas, Chile
47. University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, USA
48. Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell, Germany
49. Department of Biology, University of Konstanz, Konstanz, Germany
50. Department of Silviculture and Genetics of Forest Trees, Forest Research Institute, Raszyn, Poland
51. Environmental Science and Studies Department, DePaul University, McGowan South 203, 1110 West Belden Ave., Chicago, IL 60614, USA
52. Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
53. Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
54. Austrian Research Centre for Forests, Department Forest Biodiversity & Nature Conservation, Vienna, Austria
55. Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, ul. Sławkowska 17, 31-016 Kraków, Poland
56. Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Houssay 200 (9410) Ushuaia, Tierra del Fuego, Argentina
57. Embrapa Amapá, Macapá, AP, Brazil; 68903-419
58. Department of Biology and Institute of Environmental Science and Sustainability, Wilkes University, Wilkes-Barre PA, USA 18766
59. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
60. Independent researcher, Saint-Maur-des-Fossés, France
61. Embrapa Rondônia, Porto Velho 76815-800, RO, Brazil
62. Botany Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, Tehran, Iran
63. School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
64. Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). cc 332 (9400) Río Gallegos, Santa Cruz, Argentina
65. W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31-512 Kraków, Poland
66. Forest Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, Tehran, Iran
67. Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA - CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
68. Hémera Centro de Observación de la Tierra, Escuela de Ingeniería Forestal, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
69. Stony Brook University, Long Island, New York
70. Ministère des Eaux, des Forêts, de la Mer, de l’Environnement chargé du Plan Climat, des Objectifs de Development Durable et du Plan d’Affectation des Terres, Boulevard Triomphale, Libreville, Gabon
71. Biosecurity NZ, Ministry for Primary Industries, Wellington 6011, New Zealand
72. USDA Forest Service, Auburn, AL, United States
Contact Information: andrew.hacket-pain@liverpool.ac.uk

Abstract 
Significant gaps remain in understanding the response of plant reproduction to environmental change, partly because measuring reproduction in long-lived plants requires direct observation over many years, and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a dataset that collates reproductive time-series data from across the globe and makes these data freely available to the community. 
MASTREE+ includes 73,772 georeferenced observations of annual reproduction (e.g., seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5,968 population-level time-series from 974 species in 66 countries. The median time-series length is 10 years (mean = 12.4years), and the dataset includes 1122 series that extend over at least two decades (>=20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access dataset, available as a .csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.
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1. Introduction
Climate change and other anthropogenic drivers are altering plant demographics, with reported changes in plant mortality, growth, and reproduction (Allen et al. 2010; McDowell et al. 2020; Senf et al. 2018; Pearse, LaMontagne, and Koenig 2017). These demographic shifts are changing the composition and structure of vegetation, with far-reaching effects on ecosystem functioning and services, including complex effects on biodiversity and terrestrial carbon sinks (Ruiz-Benito et al. 2017; Chen et al. 2019; Carnicer et al. 2011; Clark et al. 2016). In most plant species, seed production is a key process limiting sexual reproduction. However, our understanding of climate-driven changes in seed production lags behind other key demographic processes such as growth and mortality (Clark et al. 2021), where inventory data, tree-ring networks and remote sensing have transformed understanding of responses to environmental change (Buras, Rammig, and Zang 2020; Changenet et al. 2021; Klesse et al. 2020). Reproduction and other processes associated with plant recruitment require direct and intensive field-based observation over many years. However, there have been few previous attempts to collate, archive and make available original data from long-term monitoring studies across taxa and wide geographic areas (Koenig and Knops 2000; Ascoli, Maringer, et al. 2017; Pearse et al. 2020). Consequently, the response of plant reproduction to ongoing environmental change remains poorly understood, and paucity of data compromises the parameterisation of reproduction in models used to predict future vegetation dynamics (Fisher et al. 2018; Vacchiano et al. 2018).
Recent analysis of long-term datasets indicates that seed production may be sensitive to climate change. Where increases in temperature favour reproduction, warming is linked to increased seed production (Buechling et al. 2016; Caignard et al. 2017; Bogdziewicz et al. 2020), whereas in drought-limited populations seed production has declined in association with warming (Redmond, Forcella, and Barger 2012). Additionally, environmental change may alter the interannual variability and spatial synchrony of reproduction (Pearse, LaMontagne, and Koenig 2017; Hacket-Pain and Bogdziewicz 2021). These shifts in reproduction have consequences for recruitment and wider ecosystem dynamics (Pau et al. 2018; Redmond, Forcella, and Barger 2012; Schupp et al. 2019). For example, long-term reductions in tropical rainforest fruit production have been linked with declining vitality of herbivorous megafauna (Bush et al. 2020), and low seed availability can limit forest recovery after large-scale mortality events (Redmond et al. 2018). Beyond changes in mean seed and fruit production, shifts in the spatiotemporal variability of flowering and fruiting (i.e. masting) will also have impacts on key ecosystem services and habitat management (Pearse et al. 2021) including commercial and subsistence food crops (Ladio and Lozada 2004; Calama et al. 2011; Shelef, Weisberg, and Provenza 2017), seed-eating animal population dynamics (Touzot et al. 2020), and human health through the trophic interactions that drive vector-borne zoonotic disease dynamics (Bregnard, Rais, and Voordouw 2020; Bennett et al. 2010). However, the direction and magnitude of reported changes in masting are inconsistent, and this variability in response remains poorly understood (Hacket-Pain and Bogdziewicz 2021).
As the magnitude of plant reproduction is highly variable across time and space (Figure 1), multi-decadal time-series of plant reproductive effort with high replication and sampling across environmental gradients are needed to derive meaningful inferences and predictions from modelling efforts (Vacchiano et al. 2018; Pennekamp et al. 2019; Pearse et al. 2021; Clark et al. 2021). The availability of such data will enable robust estimates of the response of plant reproduction to recent environmental change, and through identification of the underlying drivers, prediction of future trends. MASTREE+ provides these time-series of plant reproductive effort, and will enable testing of changes in masting patterns associated with recent environmental change across multiple species and geographical regions (Pearse, LaMontagne, and Koenig 2017; Hacket-Pain and Bogdziewicz 2021; LaMontagne et al. 2021). Such datasets will also enable new insights into the ecology and evolution of perennial plant reproduction (Dale et al. 2021), and the role of plant reproduction as a driver of other ecological processes including plant recruitment and animal population dynamics (Schupp et al. 2019; Brumme et al. 2021; Curran and Leighton 2000; Connell and Green 2000).
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Figure 1. Examples of population-level time-series of reproductive effort from MASTREE+. For five diverse plant species, data from several local populations are plotted to illustrate the range of spatiotemporal variation in reproduction that is typical in long-lived plants. Note that axes scales vary between plots. 
2. MASTREE+
[bookmark: _Hlk87950940]Here we introduce a project to collate data of perennial plant reproductive time-series. Time-series originate from diverse sources, including 17th century European forestry records of seed production (“mast years”) (Ascoli, Vacchiano, et al. 2017), data from ongoing plant reproductive biology and phenology monitoring programmes  (e.g. RENECOFOR, LTER, California Acorn Survey), and projects studying the dynamics of ecosystems including the relationships between seed production and animal demographics  (Boutin et al. 2006). Many of these datasets record the number or mass of flowers, seeds, fruits or cones per individual or unit area on a continuous scale. We also include ordinal time-series which record annual reproduction output according to an ordered categorical scale (e.g. failure/partial/full crop) which can be successfully used to investigate the variability and synchrony of plant reproduction (Bogdziewicz et al. 2021). 
The current version of MASTREE+ currently includes 5,968 species-specific and georeferenced time-series representing 73,772 annual observations of reproductive effort in perennial plant populations, and the project is designed to continue to assemble and update records (see Section 4 and 5). Mean and median time-series length are 12.6 and 10 years respectively. 2,843 series are based on continuous measures of reproductive effort, and 3,125 are ordinal series. Ordinal series originate mainly from Europe.  Importantly, MASTREE+ contains 1122  time-series ⋝20 years, of which 187  time-series exceed 40 years of observations. Such records will enable quantification of recent changes in plant reproduction, including mean reproductive effort and spatiotemporal variability, and the identification of key drivers of change.
In total, 974 species are represented, drawn from 136 families across the plant Tree of Life. This increases species representation by 168 % compared to the largest previously available compilation (Pearse et al. 2020), which is incorporated into MASTREE+. This expands the potential to quantify reproductive traits that describe the spatiotemporal variability of reproduction (i.e., masting) with other life-history traits to better understand the evolution of plant reproductive strategies (Fernandez-Martinez et al. 2019; Dale et al. 2021; Pesendorfer et al. 2021). For example, we have 67 species overlap with the plant demographic database COMPADRE (Salguero-Gomez et al. 2015), 442 species overlap with seed mass data from the Kew Seed Information Database (Royal Botanic Gardens Kew 2021), and 82 species overlap with the seed germination database SylvanSeeds (Fernandez-Pascual 2021). Reflecting a bias in sampling to temperate forests, woody species from the genera Quercus (60 species), Nothofagus (10), Pinus (25), Abies (13), Acer (13) and Eucalyptus (15) are highly represented, but other well-represented genera include Acacia (11), Shorea (9) and Chionochloa (11). We include data from66 countries and from six continents (Figure 2), and from all the major vegetated biomes (Figure 3). Importantly, we increase data representation from regions that have been unrepresented in previous datasets (Pearse et al. 2020; Ascoli, Maringer, et al. 2017), including south and central America, Africa, and Asia, although these regions remain strongly under-represented. 
Sampling intensity varies between species. For example, 71% of species are represented by a single time-series, but other species have high replication, often covering large parts of their geographical distribution. 51 species are represented by at least 10 location-specific time-series. The most replicated species are Fagus sylvatica (912 site-specific time-series), Picea abies (843), Pinus sylvestris (419), Larix decidua (395), Abies alba (392), Quercus robur (188), Quercus petraea (161), Pinus cembra (135) and Picea glauca (108). These and other well-replicated species include data from across large climatic gradients (Figure 3). These records will enable investigation of intraspecific variation in plant reproduction across climate space and time, including trends in the spatiotemporal variability of reproduction. It will also enable comprehensive assessments of intraspecific variability of masting characteristics (i.e. interannual variability, autocorrelation), including variation with environmental conditions that are predicted by theory but have rarely been tested (Pearse et al. 2020; Pesendorfer et al. 2021), and analysis of interspecific variation in spatial synchrony of reproduction (Dale et al. 2021), and its drivers, in functionally diverse plant species. 
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Figure 2. The geographical distribution of time-series within MASTREE+. The A) spatial and B) latitudinal distribution of species-specific time-series. For B), series are stacked and coloured according to the variable type (Continuous, Ordinal). Plotting of counts for ordinal data in the northern mid-latitudes are truncated due to high sampling intensity in central Europe. Unprojected map, datum = WGS84.
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Figure 3. Distribution of time-series according to local climate (Worldclim v2.1, 30 arcsecond resolution, Mosier, Hill, and Sharp 2014). Only time-series representing reproduction at the stand or patch scale are plotted (regional records are excluded, as local climate data based on coordinates may not be representative). A) Series plotted according to Whittaker biomes (Whittaker 1970), and B) Species with high replication (>=20 species-specific time-series), plotted according to local mean annual temperature. Species are labelled according to the first three characters of the genus followed by the first three characters of the species name, and species are ordered according to the sample site with the lowest mean annual temperature. Unfilled points represent ordinal time-series and filled points represent continuous time-series.
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Figure 4. Timespans covered by species-specific time-series, coloured by data class. Inset plot shows continuous data since 1950 when time-series replication is highest.
3. Applications of MASTREE+
MASTREE+ provides the datasets to establish how fecundity, and specifically seed masting, responds to environmental change. It includes the high replication of long time-series required to isolate climate change effects on plant reproductive effort (Mundo, Sanguinetti, and Kitzberger 2021; Hacket-Pain and Bogdziewicz 2021), while high spatial replication across environmental gradients (e.g. Figure 3B) provides the opportunity for a complementary space-for-time substitution approach (Wion et al. 2020). The expected response of masting to climate change remains unresolved, and MASTREE+ will enable testing of contrasting predictions that masting will be unresponsive to trends in mean temperature (Kelly et al. 2013), or will shift predictably based on climate-driven changes in resource limitation (Bogdziewicz 2021). Resolving this uncertainty is a priority because changes in seed masting will impact plant reproductive success, and more widely affect ecosystem services and habitat management (Pearse et al. 2021; Touzot et al. 2020; Ida 2021). 
In systems where seed production limits recruitment, MASTREE+ can be utilised to understand the drivers of plant reproduction and regeneration (Abraham et al. 2018; Oliva, Collantes, and Humano 2013; Manríquez et al. 2016). Intraspecific differences in fecundity and masting influence regeneration success, determining species composition and vegetation structure, including during the colonisation of new habitats  (Joubert, Smit, and Hoffman 2013), and after natural and anthropogenic disturbance (Martin-DeMoor, Lieffers, and Macdonald 2010; Peters, MacDonald, and Dale 2005; Mokake et al. 2018). Masting characteristics of hundreds of species can be investigated using MASTREE+, and integration with plant trait and demographic databases will enable deeper integration of masting (and reproductive strategies more generally) within life history theory (Salguero-Gomez et al. 2016). Many ecologically and economically important species show highly variable investment in reproduction between years, and the ability to accurately forecast occasional years of high seed production is a priority for habitat management, with wide ranging applications (Pearse et al. 2021; Chiavetta and Marzini 2021; Pukkala, Hokkanen, and Nikkanen 2010). Predictive models of masting developed and tested using MASTREE+ data may enable more effective seed collection for afforestation and restoration schemes (Kettle et al. 2010; Fargione et al. 2021), inform wildlife and conservation management (Fujiki 2018; Ida 2021; Choquenot and Ruscoe 2000; O'Donnell and Hoare 2012) and enable forecasting of periods of elevated infection risk from tick-borne disease, which predictably follow years of high seed production in many systems (Heyman et al. 2012; Cunze et al. 2018; Brugger et al. 2018). 
The availability of seed and fruit production datasets in MASTREE+ will be broadly relevant when paired with existing animal population datasets. The pulses of resources associated with large reproductive events are key drivers of the population dynamics of seed-eating insects, mammals, and birds, with cascading impacts through ecosystems (Selonen, Wistbacka, and Korpimaki 2016; Kanamori et al. 2017; Bouchard, Regniere, and Therrien 2018). Time-series in MASTREE+ can be combined with existing long time-series of animal populations and behaviour to identify the drivers of population dynamics, both in seed-dependent species and further down the trophic cascade (Kleef and Wijsman 2015; Lithner and Jönsson 2002). Where species are well replicated in MASTREE+, the spatial synchrony of masting can also be quantified, allowing researchers to determine where regional estimates of masting can be appropriately used as indicators of local variability in seed or fruit availability. The scale of spatial synchrony of masting appears to be highly variable between species (Bogdziewicz et al. 2019), but this has only been quantified of a handful of species so far (LaMontagne et al. 2020; Koenig and Knops 2013). 
In masting species, highly variable allocation to reproduction has wider effects on plant resource allocation, and on carbon and nutrient cycling through ecosystems, but this remains poorly explored (Muller-Haubold, Hertel, and Leuschner 2015; Brumme et al. 2021; Khanna et al. 2009). Data in MASTREE+ can be combined with existing field and remote-sensing datasets of plant growth or productivity, and with datasets of whole-ecosystem or soil carbon and nutrient fluxes to understand how variable allocation to reproduction influences carbon sequestration above and belowground, and how this varies between species and across environmental gradients (Bajocco et al. 2021; Oddou-Muratorio et al. 2021; Zhang et al. 2022; Nussbaumer et al. 2021). Related work can use MASTREE+ data combined with existing or retrospective sampling (e.g. tree-rings) to address outstanding question regarding resource allocation between growth, reproduction and defence, particularly how this varies interspecifically and with environmental stress, and how this may shape species and community responses to environmental change (Lauder, Moran, and Hart 2019; Redmond et al. 2019). 
4. Data sources, acquisition, and compilation
We collected species-specific time-series of annual reproductive effort for terrestrial perennial plant populations, including trees, shrubs, herbs, and grasses. We included data from unmanaged and managed populations, but excluded agricultural crop species subject to selective breeding. Where reproduction was monitored under experimentally manipulated conditions (e.g., fertilisation, warming, rainfall exclusion) we only included data from control plots. 
Data were collected for reproductive effort at different stages of the reproductive cycle (e.g., flowers or inflorescences, pollen abundance, number of fruits, cones, or seeds), but 90% of data were mature seed, fruit or cone production. We did not set a minimum time-series length but prioritised compiling effort on time-series ≥4 years. All time-series represent reproductive effort at the population level, ranging from local populations with <10 individuals to regional estimates of reproduction, and we recorded information on the number of monitored individuals in each population and the spatial scale represented by the time-series (Table 1). We also included information on the original data collection methods, which included litter traps (19.3% of all records), seed, cone and fruit counts (18.3%), other methods including estimates of cone production using cone or fruit scars and categorical classification of seed and fruit crops by wildlife managers or foresters.
[bookmark: _Hlk87947074][bookmark: _Hlk87954457]Data were collected from several sources. We harmonised data from existing published compilations of plant reproductive effort displaying differences in data architecture (Pearse et al. 2020; Ascoli, Maringer, et al. 2017; Ascoli et al. 2020). To identify other time-series, we searched Google Scholar and Scopus with multiple combinations of search terms (See Appendix 2). Spanish- and French-language searches was used to increase data representation from South America and Africa. An initial screen was based on the title and abstract to exclude irrelevant sources. Then, potential sources were classified based on the inclusion of useful data (time-series of reproductive effort) available as either data tables, figures, descriptions in the text or in supplementary data files, or in online data repositories. Finally, we solicited contributions of previously unpublished datasets from our research networks. Time-series were extracted from the original sources. In the case of values published in tables, in the text, or in online data repositories or supplementary data files, we extracted values directly from the source. In cases where data were contained in figures we used the WebPlotDigitizer tool (Rohatgi 2020). Metadata associated with each time-series was also extracted from the sources, or directly from dataset contributors, and copies of original sources were archived.
Dataset variables
[bookmark: _Hlk87947368]For each monitored population we recorded annual observations of reproductive effort, the units of measurement, the method used to assess reproductive output and the number of monitored individuals (Table 1). Where multiple measures of reproductive output were measured for the same population (e.g., where seeds and cones were recorded separately), this was recorded to enable filtering of the dataset for pseudoreplicates (Table 1). For ordinal series, we maintained the original number of classes, but we rescaled to integer scales starting at 1 (lowest reproductive output). For continuous series, where possible we converted data into a common unit (e.g. we converted “seeds/ha” to “seeds/m2”). Years with missing observations are not recorded, and time-series that would otherwise have gaps consist of a set of segments. The Start and End year corresponds to the first and last observation year for each time-series, including all segments. The Length is the number of observations within each time-series, and can therefore be lower than the number of years between the Start and End. The location (decimal degrees), site name, elevation and country of each time-series were recorded. The spatial scale represented by the time-series was estimated on a four-point scale, from individual stand to region, based on information contained in the original source. Information on the nature of the source, and reference information was also recorded. Full details of data variables are listed in Table 1. Each time-series can be uniquely defined by combining Alpha_Number, Site_number, Variable_number and Species_code.
 
Table 1. Overview of the data variables in the MASTREE+ dataset. A more detailed description of the variables is included in Appendix 5.
	[bookmark: _Hlk92353033]Variable
	Description

	Alpha_Number
	Unique code associated with each original source of data, i.e. the publication, report or thesis containing extracted data, or the previously unpublished dataset included in MASTREE+

	Segment
	Temporal segment of a time-series containing gaps (note that years with no observations are not recorded). Individual time-series can consist of multiple segments. 

	Site_number
	Code to differentiate multiple sites from the same original source (Alpha_Number/Study_ID)

	Variable_number
	Code to differentiate multiple measures of reproductive output from the same species-site combination (e.g. where seeds and cones were recorded separately)

	Year
	Year of observation

	Species
	Species identifier, standardised to the The Plant List nomenclature. “spp.” is used to indicate a record identified to the genus level only. “MIXED” indicates a non-species-specific community-level estimate of annual reproductive effort

	Species_code
	Six-character species identifier

	Mono_Poly
	Monocarpic (semelparous) or Polycarpic (iteroparous) species

	Value
	The measured value of annual reproductive output

	VarType
	[bookmark: _Hlk87951168]Continuous or Ordinal data. Continuous timeseries are recorded on a continuous scale. Ordinal series are recorded on an ordered categorical scale. All ordinal series are rescaled to start at 1 (lowest reproductive effort) and to contain only integer values

	Unit
	The unit of measurement, where VarType is continuous 

	Max_Value
	The maximum value in a time-series

	Variable
	Categorical classification of the measured variable. Options limited to: cone, flower, fruit, seed, pollen, total reproduction organs. 


	Collection_method
	Classification of the method used to measure reproductive effort. Options are limited to: cone count, cone scar count, flower count, fruit count, fruit scar sound, seed count, seed trap, pollen count, lake sediment pollen count, harvest record, visual crop assessment, other quantification, dendrochronological reconstruction 

	Latitude
	Latitude of the record, in decimal degrees

	Longitude
	Longitude of the record, in decimal degrees

	Coordinate_flag
	A flag to indicate the precision of the latitude and longitude. 
A = coordinates provided in the original source
B = coordinates estimated by the compiler based on a map or other location information provided in the original source 
C= coordinates estimated by the compiler as the approximate centrepoint of the smallest clearly defined geographical unit provided in the original source (e.g. county, state, island), and potentially of low precision

	Site
	A site name or description, based on information in the original source

	Country
	The country where the observation was recorded

	Elevation
	The elevation of the sample site in metres above sea level, where provided in the original source

	Spatial_unit
	Categorical classification of spatial scale represented by the record, estimated by the compiler based on information provided in the original source.
stand = <100 ha
patch = 100-10,000 ha
region = 10,000-1,000,000 ha
super-region = >1,000,000 ha

	No_individuals
	Either the number of monitored individual plants, or the number of litter traps. NA indicates no information in the original source, and 9999 indicates that while the number of monitored individuals was not specified, the source indicated to the compiler that the sample size was likely >=10 individuals or litter traps

	Start
	The first year of observations for the complete time-series, including all segments

	End
	The final year of observations for the complete time-series, including all segments

	Length
	The number of years of observations. Note that may not be equal to the number of years between the Start and End of the time-series, due to gaps in the time-series.

	Reference
	Identification for the original source of the data, see Appendix 4 for the complete list of references

	Record_type
	Categorisation of the original source.
Peer-reviewed = extracted from peer reviewed literature
Grey = extracted from grey literature
Unpublished = unpublished data

	ID_enterer
	Identification of the original compiler of the data
AHP = Andrew Hacket-Pain; ES = Eliane Schermer; JVM = Jose Morris; XTT = Tingting Xue; TC = Thomas Caignard; DV = Davide Vecchio; DA = Davide Ascoli; IP = Ian Pearse; JL = Jalene LaMontagne; JVD = Joep van Dormolen

	Date_entry
	Date of data entry into MASTREE+ in the format yyyy-mm-dd

	Note on data location
	Notes on the location of the data within the original source, such as page or figure number

	Comments
	Additional comments

	Study_ID
	Unique code associated with each source of data. M_ = series extracted from published literature; A_ = series incorporated from Ascoli et al. (2017, 2020); PLK_ = series incorporated from Pearse et al (2017); D_ = unpublished datasets



Technical validation and quality control
A two-stage approach was adopted to validate time-series data. Initially, we standardised attribute data and checked for errors and inconsistencies within time-series. Species names were checked and standardised to The Plant List nomenclature, using the “Taxonstand” package for R (v. 2.3) (Cayuela et al. 2021). Country names were converted to the English short name (ISO3166-1), using the “countrycode” package for R (v. 1.2.0) (Arel-Bundock, Enevoldsen, and Yetman 2018). Automatic checks were performed to ensure that each time-series was uniquely identified by the identification variables, and that time-series’ observations were uniquely identified by Year. Species_code was assigned by automatically combining the first three characters from the TPL-standardised genus and species names. Where separate species shared a Species_code, a unique combination was manually created. The final character of Species_code for populations of a hybrid origin was changed to “X”. We ran various automatic checks to ensure all observations in a time-series had uniform attribute data where such uniformity was expected (i.e., within a time-series, there was only a single value for variables such as Unit). Interrelated variables were checked to ensure consistency; for example, checking that time-series spatial data (Latitude, Longitude) fell within the boundaries of the indicated Country. Time-series duration variables (i.e., Segment, Start, End, Length) were directly calculated from time-series. 
The second stage involved the detection and removal of duplication problems between time-series, i.e., series added multiple times, including with partial overlap, usually when data was published in more than one source. First, we created ‘potential duplication groups’ that contained sets of time-series that shared the same study species and approximate location (using a ± 0.1 decimal degree buffer between pairs of time-series). PDGs containing time-series from multiple sources (Alpha_Number) were then inspected further. Suspect pairs of time-series within PDGs were initially identified based on a correlation test (Spearman's ρ > 0.97), and we then inspected manually for duplication using information including location, units, and collection methods to identify possible duplication. To supplement the semi-automated detection of duplicates, we performed a further manual check, examining groups of time-series that shared the same country and species. Suspect pairs of series might, for example, share matching spatial references, matching site descriptions, and/or matching author names. 
Where duplicated series were identified, or where independence could not be confirmed, we selected a single time-series for inclusion in MASTREE+. Generally, the longest time-series was prioritised, unless there were clear signs that a shorter time-series was of higher quality (e.g., the data was directly shared by the author and not extracted from a graph).
5. Dataset availability and MASTREE+ Data Explorer
The dataset is provided as a csv file in the online supporting information (Appendix 1), and is distributed under a CC-BY-4.0 licence so that the dataset can be freely used, shared and modified so long as appropriate credit is given. The dataset will be expanded and updated over time, so users are encouraged to check for the latest version of the dataset on GitHub (https://github.com/JJFoest/MASTREEplus) and via associated updates to the MASTREE+ Data Explorer. The MASTREE+ Data Explorer allows users to explore the MASTREE+ dataset, and provides an alternative for downloading the dataset, including user-defined subsets of the full dataset. The MASTREE+ Data Explorer was created using the shiny package in R (Chang et al. 2021), and can be accessed at https://mastreeplus.shinyapps.io/mastreeplus/. Time-series are plotted on a zoomable visualisation of the world, with updating summary plots showing the time-series lengths and species/genera for the selected region, and scaled time-series for initial visualisation of the data within the selected region of interest (Figure 5). Individual time-series can be selected on the map to reveal associated meta-data, including the location, species, and original source. Various filter options allow the user to subset the full dataset. An R script is provided in Appendix 6 that illustrates how to load. manipulate and visual the dataset. 

[image: ]
Figure 5. Example of the MASTREE+ Shiny Data Explorer, showing data from the South Island of New Zealand. The Data Explorer allows the user to explore data availability within MASTREE+, and download the full or user-defined subsets of the dataset.  

6. Call for data
We have increased taxonomic and geographic representation in MASTREE+, but many gaps remain in the coverage of our dataset. Our goal is to provide a global platform for sharing data on long-lived plant reproduction, and we encourage scientists to submit time-series of annual reproductive effort in perennial plant populations for inclusion in MASTREE+ (Table 2). We will consider all species-specific time-series of four or more years, including continuous and ordinal observations. We include data on flower, seed, fruit, and cone production. Time-series must include geographical coordinates. We can include data that represents small local populations through to large regional-scale assessments of reproductive effort. Note that we only record annual reproductive effort. Where data is collected at sub-annual timesteps, this means that reproduction must be aggregated to annual units (e.g., April-March).
Potential contributors of data are encouraged to search the latest version of the dataset to check whether the data is already included in MASTREE+, either by downloading the latest version from GitHub (Section 4) or via the MASTREE+ Data Explorer. If the data are not already included, potential contributors are encouraged to contact the corresponding author to discuss arrangements for sharing data. The minimum data requirements are included in Table 2.

Table 2. Minimum data requirements for submissions to MASTREE+. For further details see Table 1. 
	Minimum data requirements and metadata

	Minimum of four consecutive measurements of annual reproductive output

	Measurement at the population level (local population through regional scale estimates acceptable)

	Species name according to The Plant List. Records identified to the genus level are acceptable, and measurements of non-species-specific community reproductive effort may be included.  

	Spatial coordinates of the monitored population

	Details of the method used to measure reproductive effort (e.g., litter traps, seed counts, visual crop estimate, see Table). 




Data licence
[bookmark: _Hlk92177534]MASTREE+ is published under a CC-BY-4.0 licence, which enables users to copy and redistribute, adapt and modify the dataset in any medium or format and for any purpose, including commercial. You must give appropriate credit by citing this publication, provide a link to the license, and indicate if changes were made (see https://creativecommons.org/licenses/by/4.0/ for further details). Publications using the RENECOFOR data (Reference = RENECOFOR_2020) are requested to acknowledge the RENECOFOR network, and send copies of publications to manuel.nicolas@onf.fr. Publications using the Lopé data (Reference = Bush_2021) are requested to cite the original dataset http://hdl.handle.net/11667/152), acknowledge The National Parks Agency of Gabon (ANPN) and the University of Stirling, and send copies of any resulting publications to science@parcsgabon.ga and k.a.abernethy@stir.ac.uk.
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