Applied Energy 317 (2022) 119123

journal homepage: www.elsevier.com/locate/apenergy

Contents lists available at ScienceDirect

Applied Energy

Check for

Multi-agent deep deterministic policy gradient algorithm for peer-to-peer s
energy trading considering distribution network constraints

Cephas Samende **, Jun Cao °, Zhong Fan *

aSchool of Computing and Mathematics, Keele University, UK
b Environmental Research and Innovation Department, LIST, Luxembourg

ARTICLE INFO

Keywords:

Multi-agent

Deep deterministic policy gradient
Peer-to-peer energy trading
Renewable generation

Markov decision process

ABSTRACT

In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-
to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and consumption,
(ii) difficulties in developing an accurate and efficient energy trading model, and (iii) the need to satisfy
distribution network constraints, it is challenging for prosumers to obtain optimal energy trading decisions
that minimize their individual energy costs. To address the challenge, we first formulate the above problem
as a Markov decision process and propose a multi-agent deep deterministic policy gradient algorithm to learn
optimal energy trading decisions. To satisfy the distribution network constraints, we propose distribution
network tariffs which we incorporate in the algorithm as incentives to incentivize energy trading decisions that
help to satisfy the constraints and penalize the decisions that violate them. The proposed algorithm is model-
free and allows the agents to learn the optimal energy trading decisions without having prior information
about other agents in the network. Simulation results based on real-world datasets show the effectiveness and

robustness of the proposed algorithm.

1. Introduction

Extensive deployment of distributed energy resources (DERs) and
flexible loads as well as the digitization of power systems are changing
the conventional way in which power is generated, consumed and
traded [1]. Conventionally, power systems were dominated by central-
ized generators situated in strategic locations [2]. The generated power
was transmitted over long distances to consumers for consumption. As
the result, power flow was unidirectional (flowing from generators to
consumers) and control of the power flow was easy due to centralized
structures (i.e. generation, transmission, distribution and consump-
tion) [2]. With digitization and the emergence of DERs such as battery
energy storage systems, rooftop solar photovoltaic (PV) installations
and smart home appliances, power systems are no longer passive but
active with DERs actively involved in the electricity system [3].

As DERs can generate energy at point of consumption, power flow
in today’s power system is bidirectional, thus transforming traditional
consumers into prosumers, who can proactively schedule their gener-
ation, consumption and energy storage to achieve specific objectives
like minimum energy costs [4]. This new operation paradigm intro-
duces new benefits like reduced energy costs and dependency on the
power system as well as new operational and market challenges on the
distribution system such as voltage limit violation, line congestion, and
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security of supply [5]. These technical challenges vary in both time and
space and require a coordinated and controlled operational approach of
the distribution system to obtain maximum value from the flexibility
provided by the DERs [6].

Under contemporary market structures, prosumers individually re-
spond to tariff signals provided by energy service providers (ESP) and
thus only benefit from their DERs by shifting their energy demands to-
wards time periods when the tariffs are low in order to minimize energy
costs. As the operation is not coordinated, prosumers do not obtain
maximum benefits, thus less incentivized to increase the adoption of
DERs and/or change their consumption patterns.

Recently, the concept of peer-to-peer energy trading has been intro-
duced as an emerging energy management approach for incentivizing
prosumer participation in the adoption of DERs as well as reducing
stress on the distribution system [7]. With P2P energy trading, pro-
sumers locally trade and share energy with each other in a local energy
market. Consumers with deficit energy take advantage of the prosumers
in the local energy market with surplus energy and buy from them at
energy prices relatively cheaper than those provided by the ESP. On the
other hand, prosumers with excess generation sell the surplus energy
to consumers with deficit energy at energy prices relatively higher than
those supplied by the ESP [8]. This creates a win—win situation between
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prosumers and consumers in terms of economic benefits, thereby en-
couraging adoption and investments in DERs [9]. At the same time,
through the local energy sharing, local balance between generation
and demand is achieved and peak demand on the distribution system
is reduced, thereby reducing network reinforcements and operational
costs [10].

Although P2P energy trading has many advantages and is the
promising next generation energy management technique for smart
grids, the following challenges must be addressed. Firstly, it is generally
intractable to develop a P2P energy trading model that is accurate
and efficient enough for optimal energy trading decision making [11].
Secondly, it is hard to implement P2P energy trading at a large-scale
and in real time when conventional and model-based optimization
techniques are used [12-14]. Thirdly, P2P energy trading has so many
uncertainties caused by the stochastic nature of renewable generation,
power consumption and electricity price [15,16]. Fourthly, as the
distribution network acts as a medium for energy exchange during
energy trading, its own hard technical constraints including voltage
limits and power balance constraints must be satisfied [5]. Finally, as
prosumers do not have access to information about others, its difficult
to make optimal energy trading decisions. Many of the existing methods
e.g. in [17-21] are model-based approaches which require domain
expert knowledge to model P2P energy trading, making them difficult
to apply.

To address the above challenges, many studies are focusing on
the use of deep reinforcement learning (DRL), which is an artificial
intelligence framework with proven success in playing Atari and Go
games [22]. DRL is a combination of deep learning and reinforcement
learning [22,23]. Compared to model-based methods, DRL-based meth-
ods have the following advantages: (i) they are model-free and the
agents learn optimal energy trading policies by interacting with the
energy trading environment [24,25]. Thus, they can operate without
explicit knowledge and rigorous mathematical models of the environ-
ment, (ii) they have self-adaptability and can operate in an on-line
way without requiring forecast information about the energy trading
environment [26,27], and (iii) they are data-driven and capable of de-
termining optimal control actions in real-time even in complex energy
trading environments [15].

Recently, DRL-based algorithms have been proposed for P2P energy
trading in [11,13,24,25] using single-agents, where each prosumer
determines its own optimal energy trading decisions without modelling
and predicting the behaviour of other prosumers in the energy trad-
ing environment. However, stability of today’s power system requires
a coordinated energy management approach of all interacting DERs
connected to the power system, thus amplifying calls for multi-agent
coordination through multi-agent DRL (MADRL). Yet, there are very
limited research efforts that have been focused on applying MADRL
to P2P energy trading [12,15,28-31]. The scopes of these pioneering
efforts, however, are limited in not considering distribution network
constraints in the P2P energy transactions. As the distribution network
acts a medium of exchange for the traded energy, failing to consider
its underlying electrical network constraints may cause the outcome of
the studied MADRL-based energy trading schemes to be impractical.

This paper proposes a novel MADRL algorithm for coordinating the
P2P energy trading while taking into account the distribution network
constraints in the energy transactions. Each prosumer is modelled as
an agent. The energy trading environment is modelled as a multi-
agent environment where an action of one agent affects the actions
of others, making the entire energy trading environment to be non-
stationary from an agent’s perspective. As most DRL-based methods
such as deep Q-networks [22] perform poorly in multi-agent settings
because they do not use information of other agents during training, we
adopt a multi-agent deep deterministic gradient policy (MADDPG) [32]
based framework to design the proposed algorithm. With the proposed
MADDPG-based algorithm, training is centralized with each agent using
states and actions of other agents. This makes the environment to be
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Fig. 1. Distribution network model with P2P platform.

stationary during training even as the agent actions change. Meanwhile
execution is decentralized with each agent using only local information
to make actions without knowing others’ information.

The main contributions of this paper are summarized as follows:

Propose a local P2P energy trading market which maximizes the
benefits of energy sharing without compromising the reliability
of the distribution system by leveraging the flexibility of DERs.
Propose a MADDPG-based algorithm to learn optimal energy
trading policies for each prosumer to minimize the energy costs
while satisfying the distribution network constraints.

Design actor and critic networks for each agent to ensure that
training of the agents is stable and that the output from the actor
network is optimal.

Introduce a novel strategy using distribution network tariffs (DNT)
to incentivize the prosumers to provide the flexibility required to
satisfy the network constraints. A distribution AC optimal power
flow (OPF) framework is used to determine the DNTs based on
distribution locational marginal pricing (DLMP) [33], a temporal-
spatio pricing mechanism which exposes prosumers to the true
cost of energy delivery in the distribution network.

The rest of the paper is organized as follows. Section 2 presents the
proposed P2P energy trading model and the energy cost minimization
problem considered in this paper. Section 3 presents the proposed algo-
rithm. Simulation results that verify the effectiveness of the proposed
algorithm are given in Section 4. Section 5 concludes the paper.

2. System model

Fig. 1 shows a simplified distribution network and P2P energy
trading model studied in this paper. The distribution network can be
described as a connected graph, G = (N,,€) where N, = N U {0},
N = {l1,...,N} is a set of buses with 0 representing a substation bus
and € is a set of distribution lines. Each bus, n € N corresponds to
either a consumer or prosumer connected to the distribution network.

We denote the set of prosumers and consumers participating in
P2P energy trading as P = {1,...,P} and C = {1,...,C} respectively
such that N/ = P U C. Each prosumer, p € P consists of a solar PV
system, battery and/or load. In addition, each prosumer is equipped
with an energy management system (EMS) to: (i) collect and send to the
P2P platform data such as PV generation, energy consumption, battery
charge and discharge power, (ii) receive the price signal from the P2P
platform and (iii) optimally schedule the battery energy storage system.

As energy buying and selling prices via the P2P platform must
be lower and higher than the import and export tariffs set by the
ESP respectively [8], the P2P platform communicates with the ESP in
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achieving this. To avoid overloading the distribution network, the en-
ergy sharing between the prosumers must satisfy distribution network
constraints such as voltage limits and losses. In many countries includ-
ing the UK, management and operation of the distribution network is
a responsibility of the DSO, who operates independently from the P2P
platform [5,34]. To satisfy the network constraints at every transaction,
the intended power exchange between the prosumers must be approved
by the DSO either through penalties or monetary incentives [18,19].
Bi-directional communication links are required for communication
between the prosumer EMS, P2P platform, DSO and the ESP. Further,
we assume that the prosumer EMS, P2P platform, ESP and DSO operate
on a common time horizon, 7 = {1, ..., T} with equal time slots, Ar.

2.1. Prosumer model

The PV generation profile for prosumer p during the operation
horizon 7 is defined as follows

G’ =(G.G......GL). peP ¢b)

We assume that the PV is operated in maximum power point tracking
(MPPT) mode [35] and thus, G” is maximum power output.

The total power consumption profile of prosumer p during time
horizon 7 can be defined as follows

D’ = {d}.d},....d72}, peP 2

We consider loads that do not have a certain amount of flexibility.
Consideration of flexible loads is beyond the scope of this paper and
considered as future work.

For prosumer p € P, let SoC? be the battery state of charge (SoC),
which indicates the amount of energy remaining in the battery after
a charge or discharge operation. Let 5 be the battery power output
(positive 4! to denote discharging and negative b” to denote charging),
n’ be the battery charge or discharge efficiency and let Elf be the
battery energy capacity. The dynamics of the SoC can be modelled as
follows [26]

n, b, A
P
E,

PP
[[t

P
SOCI+AT

=SOCtp— , PEP, teT 3)
It should be noted that the value of #/ is calculated differently based
on whether the battery is charging or discharging [26]. To prolong the
battery lifetime, b7 must be restricted within a certain range as follows

E} (SoC! — SoCj,

max) ., Ej (SoC} —SoC,
n’ A !

<K< - ’”"”), peP. teT (4
n; At

where SoC? and SoCj,, are predetermined SoC limits to indicate a
fully discharged and charged battery respectively.

Also, b” must satisfy the power limits of the inverter to which the
battery is connected as follows
B <bP <

min — 7t ma.

. PEP, teT 5)

where 5” and b}, are minimum and maximum inverter power limits
respectively.

Practically, the lifetime of the battery is shorter than any other asset
in the distribution network. Thus, its wear cost has great impact on
the economics of the energy trading strategies of the prosumers. The
empirical wear cost w” of the battery can be expressed as [36]

CP
wl = b
ACC x2x DoD x El X u?

©

where C]’)’ is battery price per kWh, DoD is depth of discharge at which
the battery is cycled, y, is round trip efficiency and ACC is life cycle
at a specific DoD. ACC is multiplied by two as one cycle consists of
charge and discharge phases.

As profiles of power generation and consumption are different from
each other, prosumer p can assume the role of an energy buyer or seller
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at any time ¢ € 7 based on the net power x/ which is defined as follows

xf=d’ - (G'+b'), peP, teT %]

That is, if x” > 0, the prosumer is an energy buyer, buying energy from
others or the grid to meet its power deficit. The prosumer is an energy
seller if x! < 0, selling the excess energy to others or the grid.

2.2. P2P pricing mechanism

Energy buying and selling all happens through the P2P platform
as shown in Fig. 1. To set the energy buying/selling price in the
platform, we adopt the suppy-to-demand ratio (SDR) based pricing
mechanism [8,11,37], mainly for two reasons: (i) it is simple in prin-
ciple and easy to obtain, and can be updated in real time and (ii)
it satisfies the basics of modern economics, i.e., price is inversely
proportional to SDR as demonstrated in the following paragraphs.

SDR is defined as the ratio of the total power supply to the total
demand in the energy sharing community, i.e.,

ZpEP (th + bf)
Zpep dtp
The SDR varies with time because of the volatility of solar generation
and power consumption. This means that the energy buying/selling
price is also not constant but fluctuating according to the SDR. Let
the ESP’s import and export prices as received by the P2P platform
be 4, and 2, respectively, where 4, > 4. Let the prosumer’s buying
and selling prices through the P2P platform be z} and # respectively,
where 7z, < 1) and #} > ). The buying/selling price vector set by the

P2P platform can be defined as follows

SDR' = ,teT (8)

7|:={7rb1,n'z,...,7rg- : i'L'Sl,ﬂ'Sz,...,ﬂ{} 9

The n; and #! can be obtained as a function of SDR’, /l’b and Z; as

follows [8]

A2yt
%’ 0<SDR <1
7= (/lb—/lx—/l)SDR’-ﬁ—/lSwl (10)
X+ e SDR'> 1

'SDR"+ A (1-SDR"), 0<SDR <1
— {ﬂx b( ) = = (ll)

A+ SDR >1

where {4|0 < 4 < (4, — )} is a compensation price which is used to
incentivize prosumers to continue participating in P2P energy trading
when SDR' > 1 (the situation which happens when prosumers have
more power supply than demand). Without the compensation price,
buying price would be equal to selling price when SDR’ > 1, a situation
that would favour prosumers who are buyers and not sellers. This
may discourage the sellers from participating in P2P energy trading
especially during periods of high PV generation.

The SDR' given by (8) mainly depends on the adjusted power
consumption and battery charge and discharge power from all the
prosumers. This means that z! and z; largely depend on the choice of
b?. Decreasing b/ (when charging the battery) drives SDR' towards zero
and 7! or xj towards A,. Conversely, increasing 57 (when discharging
the battery) drives SDR' towards 1 and z! or ﬂ'; towards 4!. Thus,
price is inversely proportional to the SDR. In both cases the following
relationship is satisfied

4
”i
That is, prosumers are better off buying and selling their energy via the

P2P platform because of lower buying prices and higher selling prices
compared to the prices, A} and 4! offered by the ESP.

IA

A

t
b (12)
/15

v
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2.3. Proposed distribution network tariffs

The selling and buying price given by (10) and (11) respectively do
not take distribution network constraints such as line congestion and
voltage limits into account. If not controlled, the net power obtained
for each energy trading transaction may overload the distribution
network. We introduce the use of a distribution network tariff (DNT)
to incentivize transactions that do not violate the distribution network
constraints and penalize those that violate the constraints.

The DSO issues the DNTs as it is the responsibility of the DSO to
manage and operate the distribution network [5,34]. The DSO also
achieves supply—demand balance in the distribution system by buying
necessary energy from day-ahead markets. Thus, one of the key objec-
tives of the DSO is to minimize energy costs associated with the energy
bought from electricity markets, i.e. the total active energy injected at
the substation node n = 0 into the distribution system. Considering a
radial distribution network and denoting the energy price from day-
ahead markets as C;, and the power injected into the distribution
system as pg, the objective function for the DSO can be given as follows

Fp§) =Y pCLat a3
teT

Note that the injected power pg is a function of all the power flows in

a radial distribution system [38].

Prosumer’s contribution towards violation of the distribution net-
work constraints depends on its location on the distribution network
and operational time [33]. Thus, we derive the DNTs from DLMP, a
temporal-spatio pricing mechanism which exposes prosumers to the
true cost of energy delivery in the distribution network [33,39]. The
DLMP can be decomposed into four constituent components; marginal
cost of energy demand, marginal cost of network loss, marginal cost
of congestion and marginal cost of bus voltage [19,33]. As the energy
buying/selling price (9) is set by the P2P platform, the proposed
DNTs are determined from the other three components of the DLMP,
i.e. the marginal cost of network losses, marginal cost of congestion
and marginal cost of voltage. The DLMP can be calculated from AC
OPF [38] as follows.

Let x” be decomposed into active power generation, pf and con-
sumption, p§ components as follows

xf = p; - pf a4

We also consider that the reactive power generation, ¢¢ and consump-
tion, qjc. components of xf relate to pf and pj through the load and smart
inverter [40] power factors respectively.

Considering all customers in the distribution network, the AC-OPF
can be formulated as follows

Mingnize F (15a)
Subject to:
P = X Pi= Y (Py—ryty) 05+ Gu;, ViEN
k:(j.k) i:(i.j)
(15b)
=Y Ou- Y (0y-x;ty)+d - By, VjeN
k:(j.k) i1(i,j)
(15¢)
P +0Q} <S). Yi.)eE (15d)
2 2 A
(Py—ristiy) +(Qy —xi;60;) <S5, Vi, )eE (15e)
0y = 0= 2 (ry Py 3,0,) + (1] 453 ) 6 VG EE
(15f)
P+
—— Su, V@pHEE (159)

7 -
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gj’gpf.gl%’, VjieN (15h)
Q<qf<0f. VieN (151)
V, <0, <V, VJeEN (15j)

where F is given by (13), (i, j) € £ is a distribution line between bus i
and bus j, x;; is line reactance, P; is line active power, Q;; is line reac-
tive power, S;; is line complex power, B; is real-valued susceptance, G,
is real-valued conductance, /;; is square of current flowing between bus
i and bus j, v; is square of voltage at bus j, X = [P,.j,Q,.j,pf,qf,l,-j] are
optimization variables as pg in (13) is a function of all the power flows
in the distribution system, and Aj,yj,n;r,nj‘,aj,ﬁj,yj,gj, and o denote
the dual variables (Lagrange multipliers) associated to Egs. (15b)—(15j)
respectively.

It should be noted that if the DSO also owns other generating units
supplying the distribution network, their energy costs can be added to
the objective function in (15a). For prosumers p € P whose net power
injections, x/ are known, local variables, (pf .45 ) o are fixed parame-
ters. Egs. (15b)—(15c) ensure that active and react/ive power is balanced
in the network while considering the network loss. Egs. (15d)-(15e)
ensure that distribution lines are not congested while (15f) ensures that
ohms law on each distribution line is satisfied. Eq. (15g) is a second-
order conic constraint which defines complex power on a distribution
line and is designed to make the AC-OPF problem (15) convex. Limits
on active power and reactive power injection, and limits on bus voltage
magnitude are imposed through (15h), (15i) and (15j) respectively.

Let the DLMP at bus j, j € N be 4 ;- Given the solution to the AC-
OPF (15), A ; can be calculated from the dual variables as follows [33]:

Ay = Aydg, + Agpy + Azpy, +A4’1;-r+A5'1; (16)

where MI»MA/ are dual variables of bus j, and A;j = 1,...,5 are
non-linear functions of P;;,Q;;,¢;;, which are given by the following
equations

(1’3 +Qi2j> x;; + f,-jQ,-j (r,zj - xlzj) - 2f,-jP,-jrl-jx,-j
A= (17a)
2. 02 2 L2
(Pij + Qij) Xij =21 Qij <rij +xij)
2. 02 2 42
(Pij + Qij) rij =iy (rij +xij)
A, = (17b)
2 L 02 2 4,2
(Pij +Q[/> Xij =10y ("i/ +xu)

2 2 2 2
_ (Pu +Q,./.)r,~j +f,-jP[j (r[.j —xU) +2f[jQ[jrijxij

(17¢)
<P3 +Qi2j)x,-j =70 (r,z/ +x,.2j>

2 (Q?,'rij - PS"U) +2P;0Qy; (Pyryy — Qijxyj)

Ay =
2 2 2 2
(Pij +Ql.j) X = €0y (rij +xl.j)

17d)

2 (Q?jrij - 2Pi§'xij> +2P;0; (Pyrij = Qyxi;)
(P3+03) s =0y (7 +)
202 (Q,»,-rfj - P,-/X?,-) =42, R0y (’:2/ - x?/)
vt )
Aiyryxiy (Pii' - Q'ZJ)
CIEDETICrE)
=207 riixi; (Pyri; — Qijxi)

2, 02 2 42
(Pij + Qij) Xij =21 Qij (rij + xij)

As =

(17e)

+

The DLMPs calculated from (16) can be interpreted in terms of line
congestion (power flow limits), voltage limits and network losses as
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it incorporates the effects of the binding constraints given in (15b)-
(15e). Let the DLMP obtained at time ¢, ¢ € 7 for the substation bus
(i.e, n=0, ne N)be /16 and the DLMP for prosumer p be /1;. The
DNT 6[’] for prosumer p can be calculated as follows

6}:/1;—/16, pEP, tET (18)

As 4 only accounts for the marginal cost of energy delivery at the
substation bus (which is the same at every bus n € W), subtracting
it from /l; gives 5;, which is the sum of marginal cost of line losses,
congestion and voltage. 6;} is zero when the net power injected by
prosumer p at t € 7 does not cause network losses, congestion and/or
violate voltage limits. Otherwise, &’ is not equal zero due to either
network loss, congestion and/or voltage limit violation.

As 51’] reflects the condition of the entire distribution network consid-
ering both location and time, it is therefore a suitable tariff to manage
the distribution network constraints. 5; can be used as an incentive to
incentivize a prosumer whose net power transfer helps to satisfy the
network constraints and penalize the one whose power transfer violates
the constraints.

2.4. Problem formulation

Each prosumer p that can schedule the operation of its energy
assets can be considered to be an agent. Thus, P2P energy trading
can be described as a multi-agent system. Each agent’s energy trading
decision at a given time slot, t+ depends on the current information
it receives from its assets (e.g. battery energy level) and the P2P
platform (e.g. energy buying/selling price and DNT), and not on the
prior history. Thus, energy trading and the subsequent scheduling of
the energy assets can be formulated as a Markov decision process
(MDP) [41] with continuous action spaces (i.e. assuming that operation
of the assets e.g., battery is continuous).

Let the set of agents be the same as that of prosumers (i.e. p € P).
The MDP for each agent p proceeds as follows: Given a local agent state
s;, € S at time slot 1, where s} = (G?,d’, SoC?), the agent selects an
action a; € A, where a; = (bf ) based on a stochastic policy, 7, The
taken action takes the agent into a next local state s' € S according to
a state transition probability function, 7. At the end of the time slot,
the agent receives a reward, r;] as a function of the current state and
action as follows

r==y [(n+5;)x§’+wﬂ|bf|] At (19)

teT

., if x*>0
T = b 1
#!, Otherwise

where the first term is the cost for both purchasing energy in the P2P
platform and using the distribution network. The second term is the
cost of using the battery.

It is important to note that 61’, is equal to zero when the net power x”
does not contribute to network losses, congestion and/or voltage limit
violations, otherwise &’ is non-zero. Furthermore, through 7 and 51’, , the
reward is a function of all agent states and actions in the network (i.e. to
determine = and 5; , the P2P platform and the DSO needs access to all
the states and actions of all agents in the network). In other words, an
action of one agent affects the rewards of all other agents in the system.

The goal of each agent is to maximize its own expected reward R, =
Z,T:() y’r;J where y is a discount factor. As market prices, generation
and demand are volatile in nature, it is generally impossible to obtain
with certainty the state transition probability function F required to
derive an optimal policy 7, needed to maximize R,. To circumvent this
difficulty, we propose to use an artificial intelligence-based approach
which is data-driven and model-free as discussed in Section 3.
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3. Proposed learning algorithm
3.1. Deep reinforcement learning

Reinforcement learning (RL) is the process in which agents learn
for themselves through trial and error [23] the optimal policy 7y, to
achieve optimal actions that maximize the cumulative reward R,,. Like
a human, agents need to construct and learn their own knowledge
directly from raw data such as a historic solar PV generation, demand
and market prices. This can be achieved by DRL. DRL has given rise to
several value-based algorithms such as Deep Q-networks (DQN) [22,26]
and policy-based algorithms such as deep deterministic policy gradient
(DDPG) [42,43].

As each agent’s reward as given by (19) depends on actions from
other agents, the interaction between the agents during energy trading
can be described as a mixed cooperative-competitive. Naive application
of DOQN and policy gradient algorithms to such multi-agent settings
performs poorly because they do not use information of other agents
during training. We propose to use an MADDPG-based algorithm which
overcomes this difficulty by using states and actions of other agents
during training.

3.2. Multi-agent deep deterministic policy gradient algorithm

Fig. 2 shows the architecture and workflow of the proposed MAD-
DPG algorithm. Each agent is modelled as a DDPG agent, where,
however, states and actions are shared between the agents during
training. In particular, each agent consists of two networks: an actor
network and a critic network. Both actor and the critic networks are
created from dense layers with hidden layers having ReLu activations.
An actor-network maps the local state of an agent to optimal actions
using a Tanh activation function in the output layer. A critic network
evaluates the actions received from the actor network to improve
the performance of the actor network. The output layer of the critic
network is activated by a linear function.

During training, the actor network uses only the local state to
calculate the actions while the critic network uses states and actions
of all agents in the system in evaluating the local action. As actions
of all agents are known by each agent’s critic network, the entire
environment is stationary during training. During execution, critic net-
works are removed and only actor networks are used. This means that
with MADDPG, training is centralized while execution is decentralized.
As DNTs are obtained independently by the DSO, we leverage the
centralized training provision of the MADDPG to incorporate the DNTs
in the algorithm during training.

3.3. Learning algorithm

The details of the proposed MADDPG algorithm which are illus-
trated in Fig. 2 are given by Algorithm 1. Let the actor and critic
network of agent p be denoted as , and Q,, and the associated network
weights as €£” and 95” respectively. Before training starts, 4, and Q,
(which we refer to as original networks) are created and their weights
0;‘1’ and é)pQ” are randomly initialized. To add stability to the training,
target actor ,u;) and target critic Q; networks which are identical to
the original net\’/vorks u, and Q/,, are also created and their weights are
initialized as 9;“’ — 05" and 9,,0” « 01?”.

For each agent p, a replay buffer D is created and initialized to store
list of tuples (s,a,r,s’) known as experiences, where s = (s’1 ,s’P),
a= (a’l, ,a’P), r= (r‘1 ..rh)and s’ = (s’l', ,s'],,). The replay buffer
adds stability to the training as agents learn by sampling mini-batches
from all of the accumulated experiences during training.

For each training episode, a random process for action exploration
and an initial state s are initialized. We use Ornstein-Uhlenbeck pro-
cess [44] for generating the noise W, for action exploration. With the
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Fig. 2. Architecture and workflow of the proposed MADDPG algorithm. Each agent p, p = 1,2,..., P consists of an original actor network 4, (and target actor network M;,) and

original critic network Q, (and target critic network Q; ).

received state s;, SL € s, and noise W, each agent makes an action
given by

a’p =p, (s;) + N, (20)
where Hy s;,) is output (action) of the actor network Hp-

The actions from the agents together with their states at time
slot, ¢ are applied to the distribution system simulation and used to
simulate the energy trading mechanism including the calculation of
selling/buying price and the DNTs. At the end of the time slot, each
agent calculates its reward r;, s r; € r given by (19) and observes a new
state s"U/ s Sju/ € s'. The experience (s, a,r,s’) is stored in the replay buffer
D and the initial state s gets updated; s « s'.

After every ¢ number of episodes, for each agent p, the actor y,
and critic Q, networks are trained by (random) sampling S number
of transitions from the replay buffer D. The transitions are used to
update the network weights for both original and target actor and critic
networks. Let (s/,a/, r/, s ) be an experience for each transition j, j € S.
Each agent p updates the weights of its original critic network (i.e. 6,?" )
by minimizing the loss

K

L) = 3 (-0, )

=l

21
where Q, (s, a’) is the predicted output of the original critic network
and y, is its target value which is given by

j 4 r (i t
y;]—rp +yQp(s ,al,...,ap) (22)

O
a, —yp(sp ), peEP

where a;' = ;41/) (s;') is the predicted action by the target actor net-

work and Q; (s// s a’l', ,a’};) is the predicted value by the target critic
network.

Weights for the original actor network (i.e. 9:,“’) are updated using
sampled policy gradient

u .
Ve,’;”‘] (gpp> = Va,‘;l’ Hp (sL) Va’pr (s.a)

where a = (;41 (s’l),...,yp (stp))

’ /
Weights for both target actor and critic network (i.e. 0::” and 0,?" )
are updated as follows

(23)

(o (o) (o
6,7 «10,"+(1-1)0,"

24)
H, u H, (
0,0 «10," +(1-1)0,"

13 14 15

|
12 |—v1:3 LISV

C2

Fig. 3. A low voltage 15-bus radial distribution network with C1 and C2 as consumers
and P1, P2 and P3 as prosumers participating in a P2P energy trading scheme.

where 7 is the learning rate.

After training, the trained critic network and the replay buffer are
removed from each agent. Let the trained actor network for agent p
be Hy. At every time slot 7, each agent p only requires to make an

observation of the local state s; to obtain optimal actions a’ = Hy s; .
The obtained actions are considered to be optimal for energy trading

and for satisfying the distribution network constraints.
4. Case study
4.1. Simulation parameters

Fig. 3 shows a low voltage 15-bus radial distribution network [33]
which is used to demonstrate the effectiveness of the proposed algo-
rithm for reducing energy costs while satisfying network constraints.
The distribution network parameters are given in [33]. Two consumers
(denoted as C1 and C2) and three prosumers (denoted as P1, P2, and
P3) are considered to participate in the P2P energy trading scheme.
These have time-varying load and solar power profiles (with 30 min
resolution) instead of fixed ones as shown in Fig. 4. The load and solar
power profiles are for one month (744 h) and they are obtained from
UK’s customer led network revolution (CLNR)' and UK power networks

1 http://www.networkrevolution.co.uk/project-library/dataset-tc1a-basic-
profiling-domestic-smart-meter-customers/
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Fig. 4. Half-hourly load and solar power profiles for the consumers and prosumers participating in P2P energy trading.

Algorithm 1 MADDPG Algorithm for P2P Energy Trading.

1: Randomly initialize (original) actor and critic networks

2: Initialize (target) actor and critic networks

3: Initialize replay buffer D

4: Initialize actor and critic networks’ update rate as ¢

5: for episode =1 to M do

6: Initialize a random process N, for action exploration

7:  Observe initial state s

8 forr=1toT do

9: For each agent p, make an action according to (20)

10: Execute the actions a, calculate the reward r using (19) and
observe next states s’

11: Store (s, a,r,s’) in D

12: Update s < s’

13: if episode % ¢ = 0 then

14: for agent p=1to P do

15: Randomly sample S from D

16: Update (original) critic network by minimizing (21)

17: Update (original) actor network using policy gradient (23)

18: Update (target) actor and critic network by (24)

19: end for

20: end if

21: end for

22: end for

(UKPN)? respectively. The ESP’s import and export prices are set to be
4, =0.05 £/kWh and 2} = 0.03 £/kWh respectively.

2 https://data.london.gov.uk/dataset/photovoltaic--pv--solar-panel-
energy-generation-data

Table 1
Battery parameters.
Parameter Value/description
Battery type Tesla Powerwall
Life cycle 5000
Initial SoC 50%
Useable capacity 13.5 kWh
Depth of discharge 100%
Price per kWh (£/kWh) 314.64
Round trip efficiency 92.5%

The prosumers P1, P2 and P3 all have 1 kW of installed solar
capacity and are exposed to equal amounts of solar irradiance. Each
prosumer has battery parameters® as given in Table 1. The loads have
0.95 power factor. The solar and battery energy storage systems have
a unity power factor.

The actor and critic networks for each prosumer agent are designed
using hyper-parameters tabulated in Table 2. Algorithm 1 is developed
and implemented in Python using PyTorch framework [45]. An OpenAl
Gym environment [46] is designed to model the multi-agent energy
trading environment.

4.2. Performance analysis without network constraints

In this section, convergence and performance analysis of the pro-
posed algorithm without first considering distribution network con-
straints are presented. The agents are trained with 800 episodes and
the evolution of the episode rewards is shown in Fig. 5. As the agents

3 https://www.tesla.com/support/energy/powerwall/documents/
documents/
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Table 2
Hyper-parameters for each actor and critic network.

Hyper-parameter Actor network Critic network

Optimizer Adam Adam
Batch size 256 256
Discount factor 0.95 0.95
Learning rate 1x107* 3x107*
No. of hidden layers 2 2
No. of nodes in each layer 500 500
0
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Fig. 5. Mean episode rewards of the agents during the training process.
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Fig. 6. Variation of energy buying/selling price with total net energy of the prosumers
without considering network constraints.

explore their action spaces according to the Ornstein-Uhlenbeck pro-
cess (20), the episode rewards keep fluctuating until after 300 episodes
when the training becomes stable. This shows that the proposed MAD-
DPG achieves stable trainings despite the energy trading environment
being non-stationary from the perspective of each agent.

For presentation purposes, we show performance of the proposed
algorithm using the first 100 h of the dataset which is shown in Fig. 4.
Fig. 6 shows that the energy selling and buying price are high and
low when net energy is positive and negative respectively. Positive
net energy means that total consumption is more than total energy
generation in the P2P energy sharing community, and the converse is
true.

Using prosumer P1 as case study, Fig. 7 shows the optimal battery
control actions. In the figure, the (negative) charge and (positive)
discharge power of the battery are scaled to —1 and 1 in order to plot on
one graph the battery SoC and power output. We can observe that the
proposed algorithm can learn the optimal policy to charge/discharge
the battery optimally. That is, to charge the battery when the price
(e.g. selling price) is low and discharge the battery when the price is
high, thus, reducing the energy costs.

4.3. Performance analysis with network constraints

In this section we evaluate the effectiveness of the proposed al-
gorithm for charging and discharging the batteries optimally while
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Fig. 7. The charging (negative charge) and discharging (positive charge) action of the
battery for prosumer 1 as it responds to the price (e.g. the selling price).
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Fig. 9. U.K’s wholesale (WS) market price for the month of January, 2017.

Table 3
Average episode rewards.

Prosumer Without DNTs With DNTs Difference (%)
P1 —2464.25 —1919.88 22.1

P2 —22661.05 -1919.55 15.1

P3 —2258.64 -2073.27 8.2

satisfying distribution network constraints. We use U.K’s January 2017
wholesale (WS) market electricity price which is obtained from the
institution of civil engineers (ICE)* as shown in Fig. 9 to determine
the DNTs. We also assume that the loads have 0.95 power factor and
the solar and battery energy storage systems have unity power factor.
We present the results using the first 100 h of the dataset in Fig. 4.
Fig. 8 shows that learning is stable even when network constraints are
considered.

Table 3 compares the average episode rewards of Figs. 5 and 8.
We can observe that prosumers benefit more (by having more than
8.2% of accumulated episode rewards) when they support distribution

4 https://www.ice.org.uk/knowledge-and-resources/briefing-sheet/the-
changing-price-of-wholesale-uk-electricity/
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Fig. 10. (a) Distribution network tariffs (DNT) for P1, P2 and P3, and (b) network loss comparison with and without DNTs.
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Fig. 11. (a) Average bus voltage and (b) line loading with and without DNTs.

network constraints than when they do not. Rewards are highest for P1
because it has the lowest total load: P1, P2 and P3 have a total load
of 194 kWh, 219.17 kWh and 240.76 kWh respectively. Thus, much of
the renewable energy generation is sold to other prosumers for profit,
hence increasing the rewards.

Further, Fig. 10(a) shows that P1 contributes least to network loss,
congestion and voltage limit violation as it has the lowest value of
the DNT. The DNTs change according to the wholesale price, making
them economically suitable for influencing the consumption pattern of
prosumers.

Benefits of incorporating DNTs in the P2P energy selling and buying
price to the distribution network are also shown in Figs. 10(b) and 11.
Fig. 10(b) shows that by incorporating the DNTs in the proposed algo-
rithm, network losses are reduced. We can observe in Fig. 11(a) that
voltage regulation is improved and in Fig. 11(b) that (peak) congestion
is reduced by more than 50% when DNTs are used. Furthermore, the
execution time taken by each trained agent to make an observation of
the local state and obtain optimal actions was found to be 2 ms.

4.4. Performance comparison

In this section, effectiveness of the proposed algorithm at reducing
import energy costs from the main grid is compared to that of a model-
based approach derived from the method detailed in [37]. To reduce
complexity and the number of variables required by the model-based
approach, the results are presented using the first 50 h of the dataset in
Fig. 4. The comparison result is shown in Fig. 12. We can observe that
the energy cost result obtained by the proposed algorithm is consistent
with that obtained from the model-based approach, verifying that the
results produced by the proposed algorithm are accurate.

5. Conclusion
In this paper, we have proposed a MADDPG-based algorithm to

minimize the energy costs of prosumers participating in peer-to-peer
energy trading while considering the distribution network constraints.
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Fig. 12. Comparison of total import (positive) and export (negative) energy costs for
the prosumers between the proposed algorithm and model-based approach.

The energy costs are minimized by scheduling the operation of batteries
optimally as flexible assets. First, the battery scheduling process is
modelled as a Markov decision process. Then, the MADDPG algorithm
proposed (which is model-free) is used to learn the optimal battery
scheduling strategies that minimize the energy costs. To satisfy the
distribution network constraints, we have proposed the use of DNTs.
The DNTs act as incentives enticing the prosumers to either reduce
or increase their consumption as a way of satisfying the network
constraints. Simulation results based on real-world datasets have shown
that the algorithm proposed can optimally minimize the energy costs
while also satisfying the distribution network constraints. Minimizing
the energy costs by also scheduling the operation of flexible loads is a
potential future work.
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