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A B S T R A C T   

Tyrosyl-DNA phosphodiesterase 1(TDP1) is a promising target for a new therapy in oncological disease as an 
adjunct to topoisomerase 1 (TOP1) drugs. In this paper, novel thiazolidin-4-one derivatives with a benzyl and 
monoterpene substituents were synthesized. Compounds with a monoterpene fragment attached via a phenyloxy 
linker were active against TDP1 with IC50 values in the 1 ÷ 3 μM range, while direct attachment of monoterpene 
moiety to the thiazolidin-4-one fragment had no activity. Molecular modelling predicted two plausible binding 
modes of the active compounds both effectively blocking access to the catalytic site of TDP. At non-toxic con-
centrations the active ligands potentiated the efficacy of the TOP1 poison topotecan in human cervical cancer 
HeLa cells, but not in non-cancerous HEK293A cells.   

Inhibition of DNA repair enzymes is a viable strategy to fight drug- 
resistant tumors. Enzymes, whose inhibitors are already in clinical 
use, or in clinical trials, include PARP (poly(ADP-ribose)polymerases) 
[1], ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia 
and Rad3-related protein) kinases, DNA-PKcs (DNA-dependent protein 
kinase, catalytic subunit) [2]. Inhibitors of a number of other DNA repair 
enzymes undergoing preclinical trials include, ligases I, III and IV, 
ERCC1–XPF, MRN complex proteins and others [2–4]. 

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising target to 
develop new oncological therapy based on small molecules; this enzyme 
removes various covalent adducts from the 3′-end of DNA [5]. The 
camptothecin derivatives in clinical use, topotecan and irinotecan, sta-
bilize covalent complexes of topoisomerase 1 (TOP1) with DNA, leading 
to the accumulation of DNA damage and eventual death of the cancer 
cells [6]. TDP1 neutralizes the effect of these drugs, which is one of the 
reasons for tumors’ resistance to chemotherapy [6]. Thus, suppression of 
TDP1 activity could increase the efficacy of topotecan and irinotecan. 

Thiazolidine derivatives have a wide range of biological activity such 
as anti-viral, anti-tumor, anti-ulcer, and anti-inflammatory effects [7–9]. 
Interestingly, there is little known about TDP1 inhibitory activity of 
thiazolidines except for compounds 1, 2 (Fig. 1) [10,11] and some usnic 
acid derivatives (compounds 3a-c, Fig. 1) [12,13]. Of these, thiazoles 
with two substituents (compounds 3a-b) showed the best activity in the 
double-digit nanomolar region. In addition, the presence of a mono-
terpene moiety might result in improved activity (compound 3b) [13]. 
Finally, monoterpenoids are often used as starting material for the 
synthesis of potent TDP1 inhibitors (compounds 3b, 4) [14–19]. 

Thiazolidin-4-one is a member of the thiazole family and is consid-
ered as a pharmacophore in numerous anti-tumor compounds [20,21]; 
but thiazolidin-4-one has never been used as a central scaffold for TDP1 
inhibitors. 

The aim of this work was to synthesize disubstituted thiazolidin-4- 
ones with monoterpenoid substituents at the second position and 
benzyl moiety at the third position (Fig. 2) to determine their TDP1 
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Fig. 1. The molecular structures of known monoterpenoid- and aromatic-derived TDP1 inhibitors.  

Fig. 2. The design of novel TDP1 inhibitors.  

Scheme 1. Synthesis of bromides 7a-e.  
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inhibiting activity and ability to enhance of topotecan antitumor 
potency. 

At first, monoterpene bromides 7a-e (Scheme 1), required as starting 
material, were obtained from their corresponding alcohols using PBr3 in 
Et2O for 7a-d [14,22–24] or NBS and PPh3 in DCM for 7e [25]. Alcohols 
6c and 6d were obtained from commercially available aldehydes using 
NaBH4 in EtOH as a reducing agent [14,26]. 

Bromide 7f was synthesized from (+)-α-pinene 8. First, we obtained 
(-)-campholenic aldehyde 10. For this, (+)-α-pinene 8 was oxidized to 
(+)-α-pinene epoxide 9, which was then converted to aldehyde 10 by 
the action of ZnCl2 followed by ring opening [27,28]. Then, aldehyde 10 
was converted to alcohol 6f using NaBH4 in EtOH [29]. Final synthesis of 
bromide 7f was carried out using NBS and PPh3 in DCM [18] (Scheme 
2). 

Aldehydes 5a and 5e (Scheme 3) were obtained by oxidation of 3,7- 

dimethyloctanol 6a with PCC [30] and (-)-nopol 6e with DMP, respec-
tively [31]. 

Substituted benzaldehyde derivatives 12a-f were obtained by reac-
tion between monoterpene bromides 7a-f and p-hydroxybenzaldehyde 
11 (Scheme 4). 

2,3-Disubstituted thiazolidin-4-ones 15a-g and 16a,c-f,h were pro-
duced by one pot condensation between benzylamine 13, thioglycolic 
acid 14, and aldehydes 12a-g or 5a,c-f, 5 h, respectively. Due to the fact 
that (-)-nopinal 5e was unstable in boiling toluene, compound 16e was 
made using DCC as a cyclizing reagent in DCM (Scheme 5). Compounds 
15a-g, 16a,c-f were obtained as a mixture of diastereomers; separation 
or preparation of individual stereoisomers was not carried out due to 
cost and would be done only for substances with substantial biological 
activity. 

NMR spectra of compounds 15a-f do not have signal characteristics 

Scheme 2. Synthesis of (-)-campholenic bromide 7f.  

Scheme 3. Synthesis of aldehydes 5a and 5d.  

Scheme 4. Synthesis of p-substituted aldehydes 12a-f.  
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of pairs of diastereomers, apparently due to the asymmetric centers 
being separated by some distance. However, compounds 16a, 16c-f 
have NMR spectra showing a mixture of diastereomers (see 
Supplementary). 

Then, we investigated the inhibiting activity of the synthesized 
compounds against TDP1 using a real-time oligonucleotide biosensor 
assay [32]. Human recombinant TDP1 was used as an enzyme and a 16- 
mer single-stranded oligonucleotide containing both a 5′-FAM (Fluo-
rescein) fluorophore donor and a quenching 3′-BHQ1 (Black Hole 
Quencher 1) acceptor was used as a biosensor for in vitro screening. The 
results are presented in Table 1. 

Analysis of the data shows that the presence of monoterpenic moi-
eties attached to the thiazolidin-4-one core via aromatic linker is a key 
factor resulting in activity; compounds with a monoterpene fragment 
attached by a phenyloxy linker were mostly active with IC50 in the 1 ÷ 3 
μM range. Surprisingly, compound 15c with a citronellol moiety was 
inactive, while both its analogues, 15a,b had good activity. Replace-
ment of the monoterpenyloxy fragment by a methoxy group (15g), or 
even hydrogen (16h), resulted in inactivity. In addition, removal of the 
aromatic linker at the second position of the thiazolidin-4-one core 16a- 
h led to inactive derivatives. This means that a monoterpenic fragments 
and the phenyloxy linker are vital for this design approach. 

The cytotoxicity of the inhibitors was tested, this is important 
because TDP1 inhibition is proposed to be an adjunct therapy thus the 
ligands ought to have no, or minimal, toxic footprint. Human cervical 
cancer (HeLa) and non-cancerous HEK293A cells were used and the 

compounds were slightly toxic, or non-toxic, to both cell lines (Table 1). 
The effect of the TDP1 inhibitors on the cytotoxic potential of top-

otecan, a TOP1 inhibitor widely used in the clinic [6] was investigated 
using the same cell lines as before. With regard to the HeLa cells, all the 
compounds in non-toxic concentrations led to an increase in the cyto-
toxicity, i.e., they sensitize tumor cells to topotecan’s action (Fig. 3, 
left). As for the non-cancerous HEK293A cells no sensitization was 
observed. Furthermore there was some degree of protection for the cells 
from the action of topotecan for compounds 15d,e,f. 

To confirm the drug potentiation in HeLa cells, we calculated the 
combination index (CI) values [33] for combinations of 5 µM topotecan 
in conjunction with 5 or 20 µM for the TDP1 inhibitors. All the obtained 
values are less than one, which indicates a synergistic interaction of 
drugs (Table 2). 

The thirteen thiazolidin-4-one derivatives shown in Table 1 are 
either enantiomers or diastereomers. Six have two chiral centers (15a, 
15c, 15f, 16a, 16b and 16e) and seven have one (15b, 15d, 15e, 15g, 
16h, 16c and 16d) resulting in 38 distinct chemical structures. The 
chiral center on the thiazolidin-4-one ring was given the first specifi-
cation for the diastereomers for either R (rectus) or S (sinister) followed 
by the center on the aliphatic chain. The classical rules of Cahn, Ingold 
and Prelog were used for all the designations [34]. All of the enantio-
mers and diastereomers were docked into the binding site of TDP1 (PDB 
ID: 6W7K, resolution 1.70 Å) [35]. The scoring functions GoldScore (GS) 
[36], ChemScore (CS) [37,38], ChemPLP (Piecewise Linear Potential) 
[39] and ASP (Astex Statistical Potential) [40] in the GOLD (v2020.2.0) 

Scheme 5. Synthesis of the desired thiazolidin-4-ones 15a-g, 16a-f, and 16h.  
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docking algorithm were used; the robustness of the docking scaffold has 
been previously established [13]. Furthermore, the GOLD docking al-
gorithm is reported to be an excellent molecular modelling tool [41,42]. 
The binding scores are given in Table S1 (see Supplementary); very 
similar scores are predicted between the enantiomers and di-
astereomers. Furthermore, the smaller ligands of the 16 series, as well as 

the 15g and 16h, which do not have monoterpene moieties, have lower 
scores than their larger counterparts in the 15 series. All the active de-
rivatives have good scores as well as 15c, which interestingly is inactive. 

When the predicted configurations of the ligands were analysed two 
main binding modes appeared for the 15 series, excluding 15g and 16h; 
e.g., for ligand 15fRS these two binding modes are shown in Fig. 4; as 

Table 1 
TDP1 inhibitory activities and cytotoxicity of the thiazolidin-4-ones.   

Structure TDP1 IC50, μM HeLa 
CC50, μM 

HEK293A 
CC50, μM 

15a 1.2 ± 0.1 66 ± 15 >100 

15b 2.9 ± 0.6 >100 >100 

15c >100 nd* nd* 

15d 1.6 ± 0.4 74 ± 25 51 ± 14 

15e 2.1 ± 0.4 >100 >100 

15f 1.2 ± 0.2 79 ± 13 90 ± 22 

15 g >100 nd* nd* 

16a >100 nd* nd* 

16b >100 nd* nd* 

16d >100 nd* nd* 

16e >100 nd* nd* 

16f >100 nd* nd* 

16 h >100 nd* nd* 

Furamidine  1.2 ± 0.3 nd* nd* 

*not determined. 
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can be seen both configurations occupy the catalytic pocket and fit well 
into the binding site of the enzyme. The monoterpene fragment is either 
placed in a lipophilic groove close to the allosteric site (Fig. 4A) or into a 
cleft (Fig. 4B). In many cases for the configuration shown in Fig. 4A the 
monoterpene fragment is placed deeper in the groove further away from 
the allosteric site. The phenyl ring is either placed in the cleft (Fig. 4A) or 
in a shallow pocket on the side of the binding site (Fig. 4B). The 
configuration depicted in Fig. 4A and 4C is predicted to have one 
hydrogen bonding with the side chain of Asn283 via the carbonyl group 
in the thiazolidin-4-one ring. Interestingly, no hydrogen bonding inter-
action were predicted for the binding mode shown in Fig. 4B and 4D, 
however a lone pair - π bond is predicted between the backbone carbonyl 
moiety of Pro461 and the phenyl ring. 

An allosteric binding site was suggested based on molecular dy-
namics simulations next to the catalytic site as shown in Fig. 4A [43]. 
Further evidence for this allosteric binding site was found in a combined 
molecular modelling and structurally activity relationship study of usnic 
acid derivatives [13]. The modelling of the derivatives presented here 
did not show any special affinity for this allosteric pocket. 

Derivative 15c, which has activity >100 μM, did not display 
different binding modes than the other active 15 series members so its 
lack of efficacy cannot be explained in term of its binding modes to 
TDP1. 

The calculated molecular descriptors MW (molecular weight), log P 
(water-octanol partition coefficient), HD (hydrogen bond donors), HA 
(hydrogen bond acceptors), PSA (polar surface area) and RB (rotatable 
bonds) are given in Table S2 (see Supplementary). The values of the 
molecular descriptors lie within lead-like chemical space for HD and 
PSA; drug-like for HA. In the case for RB, MW they span both lead- and 
drug-like spaces and finally the Log P values are in lead-, drug and 
Known Drug Spaces (KDS) (for the definition of lead-like, drug-like and 
KDS regions see ref. [44] and Table S3 (see Supplementary)). The en-
antiomers and diastereomers have the same values for all the molecular 
descriptors except for Log P and PSA, which are structure dependent. All 
the descriptors for the inactive derivatives of series 16, plus 15g and 
16h, have lower values than the active compounds in series 15. It is not 
possible to explain the lack of activity for 15c based on its physico-
chemical properties, as they are practically the same as for the active 
compounds in series 15. 

A group of disubstituted thiazolidin-4-ones with monoterpenoid and 
benzyl substituents was synthesized. Some of the compounds were 
active against TDP1 at low micromolar concentrations. It is established 
that an aromatic linker between the thiazolidin-4-one central scaffold 
and the terpene fragment is required for activity for this class of ligands 
as shown by the monoterpenyloxy fragment replacement by a methoxy 
group or hydrogen. The structure of the monoterpenyl fragment (bicy-
clic, monocyclic, and linear) does have minimal influence on the 
inhibitory activity, except of compound 15c, which was inactive. Two 
main binding modes were predicted for the active derivatives effectively 
blocking access to the catalytic pocket. The compounds are slightly 
toxic, or non-toxic, to cancerous HeLa and non-cancerous HEK293A cell 
lines and at non-toxic concentrations increased the cytotoxicity of top-
otecan in a dose-dependent manner. In sum, both experimental and in 
silico results support the proposed mechanism of action for the novel 
disubstituted thiazolidin-4-ones. 

Fig. 3. The influence of the TDP1 inhibitors (at 10 µM) on topotecan (Tpc) cytotoxicity in HeLa (left) and HEK293A (right) cell lines.  

Table 2 
Combination index (CI) values for topotecan and thiazolidin-4-one derivatives 
combinations.  

Compound CI at 5 µM CI at 20 µM 

15a 0.51  0.29 
15b nd*  0.13 
15d nd*  0.21 
15e 0.32  0.21 
15f 0.25  0.16 

*not determined. 
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Fig. 4. The docked pose of 15fRS in the catalytic site of TDP1; the ligand is shown in the ball-and-stick format. (A and B) The co-crystallised ligand is depicted as 
green lines. The protein surface is rendered; blue depicts regions with a partial positive charge on the surface; red depicts regions with a partial negative charge and 
grey shows neutral areas. (A) The predicted configuration using the ChemPLP scoring function and (B) by the ASP scoring function. (C and D) The catalytic amino 
acid residues His263 and His493 are shown as sticks as well as the Tyr204 making up the allosteric binding pocket. The adjacent amino acids (<6 Å), buttressing the 
ligand, are shown as lines. The hydrogens on the amino acids are not shown for clarity. (C) Hydrogen bonding (green line – 1.7 Å) is predicted between the carbonyl 
group in the thiazolidine-4-one ring and the side chain of Asn283. (D) The phenyl ring forms a lone pair - π bond (green lines ~3.5 Å) with the backbone carbonyl 
moiety of Pro461. 
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