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REGISTERED REPORT

Rumination and inhibition in task switching: no evidence for an
association
James A. Grange

School of Psychology, Keele University, Keele, UK

ABSTRACT
Rumination is typically defined as the perseverative focus of attention on negative
internal thoughts and feelings, which can increase the risk of developing – and
severity once developed – of depression. It is thought the perseveration is caused
by a deficit in inhibitory control in ruminators. Congruent with this hypothesis,
estimates of inhibition in task switching – the n–2 task repetition cost – are
negatively associated with estimates of rumination. However, estimates of
individual differences of n–2 task repetition costs are hampered by (a)
measurement error caused by trial-wise variation in performance, and (b) recent
evidence suggesting much of the n–2 task repetition cost measures interference in
episodic memory, not inhibition. The aim of the current study was to revisit the
question of the association between the n–2 task repetition cost and measures of
rumination by (a) statistically accounting for measurement error by estimating n–2
task repetition costs via trial-level Bayesian multilevel modelling, and (b)
controlling for episodic interference effects on estimates of n–2 task repetition cost
by utilising a paradigm capable of doing so. The results provided no evidence for
an association between rumination and n–2 task repetition costs, regardless of
episodic interference.
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Rumination refers to the process of continuously
focussing on one’s thoughts and feelings: A process
of self-reflection. Although rumination refers to the
process of thought rather than the content of
thought, it can become maladaptive in people with
depression where the content of rumination tends
to be negative (Nolen-Hoeksema et al., 2008). Such
depressive rumination (Nolen-Hoeksema & Morrow,
1991) is of interest to clinical researchers because
depressed individuals who engage in it tend to have
longer periods of depression with more severe symp-
toms (Lyubomirsky & Nolen-Hoeksema, 1993; Nolen-
Hoeksema & Morrow, 1991), and are more likely to
go on to develop major depression (Joormann &
Quinn, 2014; Nolen-Hoeksema et al., 2008). In
addition, levels of depressive rumination remain rela-
tively stable even when depressive symptoms change

(Bagby et al., 2004; Nolen-Hoeksema & Davis, 1999),
suggesting depressive rumination could pose a risk
factor for a recurrence of depressive episodes in
recovered individuals (Nolen-Hoeksema et al., 2008).

Rumination is associated with a wide range of
deficits in cognitive function, and in particular with
tasks that tap executive functions (EFs) (Yang et al.,
2017; Zetsche et al., 2018). EFs are a set of higher-
order cognitive processes that include – but are not
necessarily limited to – task switching, memory
updating, and inhibition of pre-potent responses
(Miyake et al., 2000). They allow for goal directed
behaviour, supporting cognitive flexibility in response
to changing task demands (Logan & Gordon, 2001;
Miyake et al., 2000; Norman & Shallice, 1986). The
observed deficits in EFs in individuals with higher
levels of rumination has led some authors to
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suggest that EF deficits play a causal role in establish-
ing and maintaining rumination during onset of nega-
tive mood (Koster et al., 2011; Whitmer & Gotlib,
2013). For example, Koster et al. (2011) suggest that
depressive rumination could be caused by an inability
to disengage from negative thought and to switch to
a more adaptive thought mode. As such, understand-
ing the nature of EF deficits in individuals with trait
rumination could help understand the cognitive
mechanisms underlying increased vulnerability to
depressive rumination (Zetsche et al., 2012).

1. Cognitive inhibition

One prominent component of executive functioning
is cognitive inhibition (Friedman & Miyake, 2004; but
see Rey-Mermet et al., 2018), which – broadly
defined – refers to the ability of the cognitive
system to ignore and/or suppress irrelevant stimuli,
thoughts, and actions (Gorfein & MacLeod, 2007).
Indeed, inhibition might be important to avoid
depressive rumination as it might allow the cognitive
system greater cognitive flexibility to disengage
attention from negative thoughts, allowing the
system to switch to other thoughts and/or activities
(Koster et al., 2011).

The role of inhibition in supporting cognitive flexi-
bility has been extensively studied using the task
switching paradigm (Grange & Houghton, 2014;
Kiesel et al., 2010; Vandierendonck et al., 2010),
where participants are required to rapidly switch
between simple cognitive tasks (such as judging
whether a number stimulus is odd/even, or lower/
higher than five, or printed in red/green font), with
the currently relevant task being signalled via a task
cue (e.g. the word “magnitude”). Inhibition is
thought to be important for successful task switching
performance to reduce the interference in working
memory caused by the persisting activation of the
mental representation associated with a recently per-
formed – but no longer relevant – task (see Koch et al.,
2010 for a review; see Sexton & Cooper, 2017 for a
computational demonstration).

Evidence for inhibition in task switching comes
from the so-called n–2 task repetition cost: When par-
ticipants switch between three tasks (arbitrarily
labelled A, B, & C), response times are slower to ABA
sequences than to CBA sequences (Mayr & Keele,
2000); this detriment to performance on ABA
sequences is thought to reflect the persisting inhi-
bition of task A across the trial triplet which delays

reactivation attempts on the current trial (see Koch
et al., 2010 for a review). Thus in the taxonomy of inhi-
bition proposed by Friedman and Miyake (2004), n–2
task repetition costs reflect inhibition of distracting
interference (but see Rey-Mermet et al., 2018 for
difficulty in establishing a similar taxonomy).

Given the n–2 task repetition cost is thought to
reflect inhibition of high-level mental representations
(i.e. task / goal representations), it is a potentially
important tool to explore inhibitory control in clinical
applications, such as depressive rumination. The ten-
dency to perseverate on negative thoughts in rumina-
tors could be caused by an inability to inhibit the
processing of irrelevant information (Whitmer &
Banich, 2007). Congruent with this hypothesis,
research has shown a consistent negative association
between n–2 task repetition costs and self-report
measures of rumination, using standard (Whitmer &
Banich, 2007; Whitmer & Gotlib, 2012) and emotional
task switching designs (De Lissnyder et al., 2010). This
work was furthered by Whitmer and Gotlib (2012)
who induced rumination (i.e. state rumination) in indi-
viduals with major depressive disorder and individuals
in a control group; the results showed that the rumi-
nation induction had no impact on n–2 task repetition
costs in either group, but trait rumination –measured
via self-report questionnaire – was again negatively
associated with n–2 task repetition costs (across all
participants). This suggests that whilst state and trait
rumination may lead to dissociable cognitive
deficits, depressive trait rumination appears consist-
ently associated with a reduction in the ability to
inhibit irrelevant / interfering mental representations
during task switching.

1.1. Issues with measuring individual
differences in task inhibition

Despite the impressive progress made on quantifying
the association between rumination and inhibition
during task switching, there are two issues – one stat-
istical, and the other methodological – which warrant
a reexamination of this association.

1.1.1. Statistical issues
The first issue is statistical, and relates to the difficul-
ties of estimating individual participants’ true n–2
task repetition costs in the face of measurement
error. Measurement error has been known to plague
estimates of latent variables, and has been cited as
one primary contributor to the low-reliability often
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reported of tasks that are thought to measure a wide-
range of cognitive facets (Hedge et al., 2018; Rouder &
Haaf, 2019), including inhibition (Rouder et al., 2019).

A primary source of measurement error in cognitive
paradigms is trial-noise: Data collected from partici-
pants is obviously limited in the sense that a finite
set of trials are presented to each participant. There-
fore, the response times for each participant represent
only a sample estimate of that participant’s true per-
formance, and this sample estimate is compromised
by sampling error, which decreases as trial numbers
increase (Rouder & Haaf, 2019; Rouder et al., 2019).
However, the application of an appropriate multilevel
statistical model can account for trial noise and
provide estimates of participant’s true performance.

Following Rouder et al. (2019), one potential stat-
istical model is a multilevel linear model, which
models an individual’s (i) response time (RT) for trial
sequence j on trial k as

RTijk � Normal mij , s
2

( )
mij � ai + x jui

(1)

where ai represents the participant’s true RT baseline
performance, xj is an effect-coded parameter for the
current level of task sequence (e.g. j = 0 for CBA
trials and j = 1 for ABA trials), and ui is participant
i’s true effect of task sequence (i.e, their n–2 task rep-
etition cost). The model is considered multilevel
because the variation in α and θ across individuals is
constrained to be random draws from a population
of α and θ values, representing the whole population
of participants. Specifically, these parameters could be
distributed as follows:

ai � Normal ma, s
2
a

( )
ui � Normal mu, s

2
u

( )
(2)

where μ is the population mean for each parameter,
and s2 is the variance associated with the population
parameters.

One advantage of the multilevel modelling
approach is that trial-level noise is accounted for in
the analysis because trial-level data are modelled
rather than aggregate-level data, and as such superior
estimates of true effect sizes can be established
(Rouder et al., 2019); that is, the model provides esti-
mates of ui, the true n–2 task repetition cost for each
participant. This is in contrast to sample-estimates of
effect sizes (as typically used in individual-differences
studies of inhibition in task switching) where trial-
noise is not accounted for, and therefore adds varia-
bility to estimates of inhibition. This has implications

for studies estimating the association between rumi-
nation and inhibition in task switching because
extant studies have utilised sample-estimates of indi-
vidual’s n–2 task repetition costs; by utilising multile-
vel modelling, superior estimates are possible which
could lead to different outcomes.

1.1.2. Methodological issues
The second issue pertains to the measure of the n–2
task repetition cost itself, and the extent to which it
is a pure measure of cognitive inhibition. Grange
et al. (2017) extended the work by Mayr (2002) and
reported that a large proportion of the n–2 task rep-
etition cost can be explained by a non-inhibitory
effect, specifically interference caused by automatic
episodic retrieval. Within a task switching context,
this account proposes that elements of a just-per-
formed task – such as the task cue presented,
details of the imperative stimulus, and the response
selected – become bound together into a single
memory representation in episodic memory, called
“event-files” in Hommel’s terminology (Hommel,
1998, 2004) and “instances” in Logan’s terminology
(Logan, 1988, 2002). When this task is cued again,
the most recent episodic trace of this task is retrieved
from memory; if all elements of the retrieved episodic
trace (e.g. the cue, the stimulus, and the selected
response) are the same as the elements presented
on the current trial, repetition priming occurs and
response selection is facilitated. However, if elements
of the retrieved episodic trace are different to the
current task demands (e.g. if a different response is
required due to a different stimulus), then a mismatch
cost occurs which impairs response selection. From
this perspective, n–2 task repetition costs can
emerge across an ABA sequence if the task
demands differ for task A from trial n–2 to trial n;
that is, from this perspective the n–2 task repetition
could be a mismatch cost caused by episodic mis-
matches rather than an active inhibitory mechanism.

Grange et al. (2017) utilised the paradigm intro-
duced by Mayr (2002) to examine the contribution
of episodic retrieval effects on estimates of the n–2
task repetition cost (an example of this paradigm is
shown in Figure 1). In this paradigm, participants are
presented with a circular stimulus that can appear in
any of the four corners of a centrally presented
square frame. The task of the participant is to mentally
transform the spatial location of the stimulus accord-
ing to the currently relevant rule, and make a spatially
congruent response to the new location. Participants
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know which rule is currently relevant based on a task
cue. For example, if participants are presented with a
which is indicated by a task cue. For example, if the
cue is a pentagon, the participant must mentally
move the stimulus vertically; for example, if the stimu-
lus is in the bottom-left, the transformation rule would
move the stimulus to the top-left, and as such a top-
left response is required.

This paradigm is able to control whether n–2 task
repetitions include episodic interference because
the trial parameters can be either match or mismatch
across an ABA sequence. For example, if the stimulus
is in the same location for task A across an ABA
sequence, then this would constitute an episodic
match as the requirements on trial n match the par-
ameters retrieved from trial n–2; this would lead to
facilitated response selection, and a reduced n–2
task repetition cost. If, however, the stimulus is in a

different location across an ABA sequence there
would be a mismatch between trial n and trial n–2;
this would lead to a mismatch cost and an increased
n–2 task repetition cost. Comparing n–2 task rep-
etition costs for n–2 response repetitions (i.e. episodic
match trials) and n–2 response switches (i.e. episodic
mismatches) allows quantification of the contribution
of episodic interference to measures of n–2 task rep-
etition costs.

Across several studies, Grange and colleagues have
consistently found larger n–2 task repetition costs for
episodic mismatches (Grange, 2018a; Grange et al.,
2019, 2017; Kowalczyk & Grange, 2019), suggesting
that much of the n–2 task repetition cost can be
explained by episodic retrieval effects rather than
inhibition. When episodic retrieval effects are
removed on n–2 response repetition trials, the n–2
task repetition cost is much smaller.

Figure 1. Schematic overview of the switching paradigm used in the current study. The arrows represent the spatial transformation that is
required from participants, but these arrows are not presented to participants. (Note images are not to scale). Figure is available at https://
www.flickr.com/photos/150716232@N04/shares/5413G0 under CC licence https://creativecommons.org/licenses/by/2.0/.
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This has implications for studies estimating the
association between rumination and inhibition in
task switching because extant studies have not been
able to control – and hence remove – the contribution
of episodic interference to estimates of the n–2 task
repetition cost. The possibility remains, then, that
the observed association between rumination and
the n–2 task repetition cost is actually an association
between rumination and episodic retrieval effects.

1.2. The current study

The purpose of the current study is to revisit the ques-
tion of the association of rumination and the n–2 task
repetition cost whilst addressing both the statistical
limitations and methodological limitations of measur-
ing inhibition using the n–2 task repetition cost.
Specifically, the current study will utilise the paradigm
used by Grange et al. (2017; originally introduced by
Mayr, 2002) to provide estimates of n–2 task repetition
costs uncontaminated by episodic interference. In
addition, the study will utilise Bayesian multilevel
regression models to provide improved estimates of
individual participant’s true n–2 task repetition cost
by accounting for trial-level noise. These model-esti-
mates of true n–2 task repetition costs will then be
used as the outcome measure in a regression model
to establish the predictive value of rumination.

Another methodological issue addressed in the
current study is that all of the previously mentioned
studies that examined the relationship between rumi-
nation and n–2 task repetition costs employed task
switching paradigms where immediate task repetitions
were possible. There is good evidence from the cogni-
tive literature that if immediate task repetitions are
possible, estimates of n–2 task repetitions reduce in
magnitude (Philipp & Koch, 2006; Scheil & Kleinsorge,
2019). This reduction has been attributed to a shift in
the balance of task inhibition and task activation
when the cognitive system detects that immediate
task repetitions are possible (which would favour per-
sisting task activation). If this shift of balance occurred
in previous studies, this could affect the precision of
the estimate of the relationship between task inhibition
and rumination. In the current study, immediate task
repetitions are therefore not permitted.

2. Method

The study was programmed and delivered online
using Gorilla (Anwyl-Irvine et al., 2020), and

participant recruitment was via Prolific academic
https://www.prolific.co/.

2.1. Sample size planning

The target sample size was set at N = 250. Sample size
was determined via a series of simulation studies (see
Appendix 1). The simulations assessed the ability to
detect an association between RRS scores and n–2
task repetition costs within a Bayesian linear
regression, where the population-level association
between the two variables was expected to be
�b = −0.20. The effect size selected for the current
study is smaller than estimates in the literature to
guard against potential over-estimation of effect
sizes in published research (see e.g. Gelman & Carlin,
2014). For example, Experiments 1 and 2 of Whitmer
and Banich (2007) reported effect sizes of r =−0.693
and r =−0.404, respectively; Whitmer and Gotlib
(2012) reported the association between n–2 task rep-
etition cost and trait rumination to be r =−0.241. Note
though that an effect size of r =−0.20 is similar to esti-
mates from meta-analyses on the association
between rumination and inhibition [r =−0.23; Yang
et al., 2017] and the association between rumination
and discarding irrelevant information from working
memory [r =−0.20; Zetsche et al., 2018].

The simulations showed that a sample size of N =
250 provided excellent sensitivity (90% and above) to
detect an association between n–2 task repetition
costs and RRS scores in a Bayesian linear regression
if the true association is �b = −0.20 or larger. Note
that the sensitivity analysis was based on the main
research aim of estimating the association between
n–2 task repetition cost and RRS scores separately
for both levels of n–2 response (response repetition
vs. response switch). That is, separate regressions
were performed for each level of n–2 response, pro-
viding an estimate of the association between n–2
task repetition cost and RRS in both (i.e. estimation
of bRRS−repetition and bRRS−switch).

The study was therefore not designed to establish
whether bRRS−repetition and bRRS−switch are reliably
different from each other. As outlined in Appendix
1, establishing this difference requires estimation of
an interaction parameter within a multiple regression
with n–2 task repetition cost as the outcome variable,
RRS as a continuous predictor variable, and n–2
“Response” as a binary predictor variable (response
repetition vs. response switch). With N = 250 the
current study is sensitive to detect relatively large
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differences in these parameters; for example, if the
true difference in parameters is 0.20 or larger, the
study has 87% sensitivity to detect it. However, sensi-
tivity drops off considerably if the true difference is
smaller than this. For example, if the true difference
is 0.10, sensitivity analysis suggested 3200 partici-
pants are required to detect it. The study will there-
fore not make any strong claims about the
differences in these parameters.

2.2. Participants

The final sample consisted of 255 participants (132
females, 117 males, 6 other) with a mean age of
35.66 (SD = 11.84). Only participants residing in the
United Kingdom or the United States of America
were able to enter the study on Prolific. Participants
were also be required to be aged between 18–60 to
exclude potential negative effects of healthy ageing
on task switching performance. Participants were
removed from final analysis if they failed the attention
check embedded within the rumination questionnaire
(see “Materials” section) or if they maintained a
session-wise accuracy on the task switching paradigm
below 85%.

2.3. Materials

2.3.1. Questionnaire measures
Rumination was measured via the Rumination
Response Scale [RRS; Nolen-Hoeksema & Morrow,
1991], a self-report measure of ruminative tendencies.
Participants are asked to read a series of statements
(e.g. “Why do I have problems other people don’t
have?”) and for each to respond whether they
almost never, sometimes, often, or almost always
think or do each when they feel depressed. Responses
for each item are scored from 1 (almost never) to 4
(almost always), and the total score is the sum of all
responses. It has been shown that several items on
the RRS overlap with items found on depression
scales, and as such the current study utilised the 10-
item version of the RRS (Treynor et al., 2003). The
10-item version has been found to have a two-factor
solution, with five items loading onto depressive
“brooding”, and five items loading onto reflective
“pondering”. Scores on this scale thus range from 10
to 40.

The Beck’s Depression Inventory II [BDI-II; (Beck
et al., 1996)] was used to assess levels of depression.
The BDI-II is a 21-item self-report measure of attitudes

and symptoms associated with depression (e.g.
sadness, anhedonia, fatigue) and has excellent psy-
chometric properties (Dozois et al., 1998). The BDI-II
presents a series of categories to which participants
must select the response that best describes their
feelings during the past two weeks (for example, for
sadness participants must select either “I do not feel
sad”; “I feel sad much of the time”, “I am sad all the
time”; or “I am so sad or unhappy that I can’t stand
it”). The BDI-II is scored out of 63 and scores can be
classified as having minimal (0–13), mild (14–19),
moderate (20–28) or severe (29–63) levels of
repression.

2.3.2. Attention check
An attention check was embedded as an additional
item into the RRS questionnaire to aid identification
of participants not reading the items carefully. The
item read It is important you pay attention to this
study; please select “almost never”. Participants who
do not select this response were removed from the
study (see Participants section).

2.3.3. Task switching paradigm
The task switching paradigm consisted of the presen-
tation of a large black square frame positioned within
the centre of the screen. A task cue was presented in
the centre of the frame for 150 milliseconds (ms). The
cue was either be a hexagon, a square, or a triangle.
The cue informed the participant which spatial trans-
formation rule was relevant on the current trial, with
each cue uniquely being associated with a single
rule (cue – rule pairings were fully counterbalanced
across participants). After 150ms, the stimulus
appeared in any one of the four corners of the
frame (note the cue remained on the screen through-
out stimulus presentation); the stimulus consisted of a
single filled black circle. The participant was required
to mentally make a spatial transformation of the
stimulus’ position within the frame according to the
relevant transformation rule currently being cued,
and make a spatially congruent response on their key-
board. For example, if a hexagon cue was presented
(and if this cue was associated with the “vertical”
response rule), and the stimulus appeared in the
top-right corner of the frame, the participant must
apply the relevant transformation rule which would
move the stimulus from the top-right to the
bottom-right. The participant must then respond
with a bottom-right keypress. Participants were
asked to use the “D”, “C”, “J” and “N” keys on the
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keyboard for top-left, bottom-left, top-right, and
bottom-right responses, respectively. Participants
were asked to use their index and middle finger of
each hand for the response keys, and were instructed
to respond as quickly and as accurately as possible.

Once a response was registered from the partici-
pant, the frame went blank for 50ms, before the
cue for the next trial was presented. However, if an
error was made the word “Error!” appeared in red
font in the centre of the frame for 1000ms before pro-
ceeding. Note that a 50ms inter-trial interval was
shown by Grange (2018a) to produce larger n–2 task
repetition costs, which enhanced the sensitivity of
the analysis. The cue for the next trial was randomly
selected with the constraint that no immediate rule
repetitions were allowed. Stimulus position was ran-
domised without constraint.

Participants were presented with 5 blocks of 120
trials in the main experimental block. This was pre-
ceded by a 32-trial practice block to familiarise partici-
pants with the task and the cue – rule pairings.

2.4. Procedure

Participants were presented a full study information
sheet and consent form upon entering the study via
Prolific. After providing informed consent, participants
were randomly allocated to a particular ordering of the
experimentalmaterials: (1) BDI-II – RRS – task switching
paradigm; (2) RRS – BDI-II – task switching paradigm;
(3) task switching paradigm – BDI-II – RRS; or (4) task
switching paradigm – RRS – BDI-II2.

Participants were presented with a debrief screen
after all materials had been presented. The study
took approximately 30 minutes to complete.

3. Results

The results section is structured as follows. First, the
task switching data are analysed at the aggregate
level to assess the impact of task sequence and
response repetition on both response time and accu-
racy; this serves as a manipulation check to establish
that previous results are replicated (e.g. Grange
et al., 2017 showing smaller n–2 task repetition costs
in the case of episodic matches (i.e. n–2 response rep-
etitions). After this, trial-level response time data are
modelled with a multilevel Bayesian regression to
obtain model-estimates of participants’ true n–2 task
repetition costs for both episodic matches and episo-
dic mismatches by accounting for trial-level noise

(Rouder & Haaf, 2019). These model-estimates of
n–2 task repetition costs are then used as outcome
variables in two separate Bayesian multiple regressions
with RRS and BDI-II scores as predictor variables.

3.1. Data preparation

All of the data wrangling, statistical modelling, and
visualisation utilised R (R Core Team, 2020) and
various packages3. The first two trials from each
block were removed as these cannot be classified
into either n–2 task repetitions or n–2 task switches.
The two trials following an error were removed; for
the response time analysis, error trials were also
removed. Total error trimming led to removal of
11.26% of trials. For the response time, RTs faster
than 150 milliseconds were removed, as were RTs
slower than 2.5 SDs above each participant’s mean
for each cell of the experimental design. Response
time trimming led to removal of a further 2.95% of
trials. RTs were log-transformed prior to final analysis.

3.2. Aggregate-Level analysis

Mean (log) RT4 and proportion accuracy across both
factors of the design are visualised in Figure 2. Five
Bayesian regression models were fitted to each
dependent variable at the aggregate level (i.e. the
means per participant per cell of the design were
used as outcome variables); each model predicted
the outcome variable (either RT or proportion accu-
racy) from one or more predictor variables: (1) an
intercept-only model (i.e. a null model with no predic-
tors); (2) just a (binary) predictor of sequence; (3) just a
(binary) predictor of response; (4) a main effectsmodel
including both predictors sequence and response and
(5) an interaction model, which included both predic-
tors plus a term for their interaction. All models had
random intercepts per participant. For the RT analysis,
the outcome variable was modelled as a Gaussian dis-
tribution, and for the proportion accuracy the
outcome variable was modelled as a beta distribution.
The models were fitted using the R package brms
(Bürkner, 2017) using four chains; each chain took
5000 samples from the posterior distribution for
each parameter, with the first 2000 samples being
treated as warmup. Visual inspection of the chains
showed good convergence for all models, and all �R
values were close to 1.

Model comparison was used to assess whether the
inclusion of certain predictors led to a superior model
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fit. For this, the widely applicable information criterion
(WAIC) was used, which provides an estimate of
model fit quality whilst penalising for additional par-
ameters; the model with the lowest WAIC is to be pre-
ferred. Akaike weights for WAIC were also calculated
(Wagenmakers & Farrell, 2004) which provides an esti-
mate of the probability each model out of the set
under consideration will provide a better prediction
to new data. Akaike’s weight for each model i being
considered within the set of all models j is given by

Weighti =
exp −0.5∗dWAICi( )∑
j[J exp −0.5∗dWAIC j

( ) , (3)

where dWAICi is the difference between model i’s
WAIC value and that of the best-fitting model.

The results of themodel fitting canbe seen in Table 1.
For response times, the best model included both main
effects of task sequence (ABA vs. CBA) and n–2 response
(repetition vs. switch), plus their interaction. The
interaction model showed that RTs were generally
faster for CBA sequences than for ABA sequences
(bsequence = −0.016, 95%CI −0.025, −0.007) and were
slower for n–2 response switches than for n–2 response
repetitions (bresponse = 0.068, 95%CI 0.059, 0.077). The
interaction parameter was reliably different from zero
(binteraction = −0.084, 95%CI −0.097, −0.071) suggesting
the n–2 task repetition cost was reliably smaller for n–2
response repetitions than for n–2 response switches.
Follow-up analyses showed that the n–2 repetition cost
for n–2 response repetitions (20ms, un-transformed)
was not reliably different from zero (bsequence = −0.016,
95%CI= −0.059, 0.027),but itwas for then–2 repetition
cost for n–2 response switches (104ms, un-transformed;
bsequence = −0.100, 95%CI = −0.144, − 0.057), thus
replicating the main finding of Grange et al. (2017).

For the accuracy analysis, the best model was
again the interaction model. The interaction model
showed that accuracy was better on CBA trials than
on ABA trials (bsequence = 0.938, 95%CI 0.824, 1.051),
and was better for n–2 response repetitions than for
n–2 switches (bresponse = 0.350, 95%CI 0.254, 0.449).
The interaction parameter was reliably different
from zero (binteraction = −0.893, 95%CI −1.047,
−0.742). In contrast to the response time analysis,
this interaction was driven by larger n–2 repetition

Figure 2.Mean log response time (left panel) and mean proportion accuracy (right panel) as a function of task Sequence (ABA vs. CBA) and n–2
Response (repetition vs. switch). Error bars denote one standard error around the mean.

Table 1. Model comparison results for the aggregate behavioural
data.

Outcome Model WAIC dWAIC Weight

Response Time Intercept −2313 530 0
Sequence (S) −2586 257 0
Response (R) −2358 485 0
Main Effects (S + R) −2650 193 0
Interaction (S x R) −2843 0 1

Accuracy Intercept −4953 310 0
Sequence (S) −5105 158 0
Response (R) −4963 300 0
Main Effects (S + R) −5102 161 0
Interaction (S x R) −5263 0 1

Notes: dWAIC = difference between each model’s WAIC and that
ofthe best-fitting model. If dWAIC is zero, that model is the best
model.Weight = Akaike’s weight for each model.
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costs for n–2 response repetitions (3.0%, reliably
different from zero, bsequence = 0.843, 95%CI 0.710,
0.976) than for n–2 response switches (0.1%, not
reliably different from zero, bsequence = 0.038, 95%CI
−0.040, 0.116).

3.3. Individual-level analysis

A Bayesian multilevel regression was performed on
the trial-level RT data to obtain model estimates of
participants’ true n–2 task repetition costs for both
n–2 response repetitions and n–2 response switches.
Individual trial-level response time was predicted
from sequence and response, together with a term
for their interaction; random intercepts were included
per participant, as well as random slopes for sequence,
response, and the interaction per participant. These
random effects were used to estimate true n–2 task
repetition costs for each participant for n–2 response
repetitions and n–2 response switches.

These estimated n–2 task repetition costs were
used as outcome variables in separate regression
models (one for each level of n–2 response) which
predicted n–2 task repetition cost from RRS scores
and BDI scores. All variables were standardised
before entering the regression analysis. The results
are visualised in Figure 3. The analysis showed that
for n–2 response repetitions, there was no evidence
for an association between n–2 task repetition cost
and RRS (b = −0.041, 95%CI −0.206, 0.122) or BDI
(b = 0.081, 95%CI −0.081, 0.247). For n–2 response
switches, the same partern was found: There was no
evidence for an association between the n–2 rep-
etition cost and RRS (b = −0.013, 95%CI −0.179,
0.149) or BDI (b = −0.023, 95%CI −0.191, 0.142).

3.4. A note on the difference in the RRS
predictors

The primary research aim was to establish the associ-
ation between n–2 task repetition costs and RRS for
episodic matches (n–2 response repetitions) and epi-
sodic mismatches (n–2 response switches). The pre-
vious section has found no evidence for an
association for either n–2 response switches (i.e. bRRS

was −0.041 and not reliably different from zero) or
for n–2 response repetitions (i.e. bRRS was −0.013
and not reliably different from zero).

Although the question of whether bRRS is different
across levels of n–2 response is not pertinent to the
main research aim, the difference in bRRS can be

estimated by an additional Bayesian regression, pre-
dicting n–2 task repetition costs from RRS scores,
BDI scores, the binary predictor of n–2 response, and
the interaction between RRS and response. Of interest
is the β value associated with the interaction term; if it
is reliably different from zero, it suggests the β values
for the predictor RRS change across levels of n–2
response repetition. This analysis showed that the
interaction term was not reliably different from
zero (binteraction = −0.039, 95%CI −0.209, 0.0.130)
suggesting n–2 response repetition does not change
the predictive ability of RRS scores on the n–2 task
repetition cost.

3.5. Exploratory analysis

The analysis in this section was not part of the pre-
registration.

3.5.1. Accuracy individual differences
The aggregate analysis reported above showed an
n–2 repetition cost in the accuracy data, but only for
n–2 response repetitions. Despite there being no evi-
dence for an association between RRS scores and n–2
repetition costs for the response time data, it remains
possible that an association exists between n–2 rep-
etition costs and the RRS for accuracy data5.

Individual trial-level accuracy was predicted from
sequence and response, together with a term for
their interaction; random intercepts were included
per participant, as well as random slopes for sequence,
response, and the interaction per participant. As with
the response time individual level analysis, these
random effects were used to estimate true n–2 task
repetition costs in accuracy for each participant for
n–2 response repetitions and n–2 response switches.
These estimated n–2 task repetition costs were used
as outcome variables in separate regression models
(one for each level of n–2 response) which predicted
n–2 task repetition cost from RRS scores and BDI
scores. All variables were standardised before enter-
ing the regression analysis. As individual trail accuracy
is either correct or incorrect, the regression modelled
the data as a bernoulli distribution. The analysis
showed that for n–2 response repetitions, there was
no evidence for an association between n–2 task rep-
etition cost and RRS (b = 0.008, 95%CI −0.072, 0.248)
or BDI (b = 0.035, 95%CI −0.124, 0.196). For n–2
response switches, the same pattern was found:
There was no evidence for an association between
the n–2 repetition cost and RRS (b = 0.065, 95%CI
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−0.093, 0.224) or BDI (b = 0.042, 95%CI −0.116,
0.204).

Additional analysis was conducted to assess
whether the predictive ability of rumination on the
n–2 task repetition cost (i.e. bRRS) is different across
levels of n–2 response. As before, this consisted of
an additional Bayesian regression, predicting n–2
task repetition costs from RRS scores, BDI scores, the
binary predictor of n–2 response, and the interaction
between RRS and response. This analysis showed
that the interaction term was not reliably different
from zero (binteraction = −0.039, 95%CI −0.209,
0.0.130) suggesting n–2 response repetition does

not change the predictive ability of RRS scores on
the n–2 task repetition cost for accuracy.

3.5.2. Average n–2 task repetition cost
This analysiswished toexplorewhether theaveragen–2
task repetition cost – that is, ignoring the factor of
response –was associated with RRS scores. This analysis
therefore provides a replication attempt of the original
finding of Whitmer and Banich (2007). A Bayesian
regression was conducted predicting average n–2 task
repetition costs from RRS and BDI scores (all standar-
dised). The analysis showed that there was no evidence
for an association between n–2 task repetition cost and

Figure 3. Individual participant rumination response scale (RRS) scores plotted against (log) n–2 task repetition costs for n–2 response rep-
etitions (left plot) and n–2 response switches (right plot). Note that all variables are standardised. Points show individual participant data; lines
show random draws from the posterior distribution of the association between RRS and n–2 task repetition costs.

Figure 4. Density plots of the rumination response scale (RRS) scores (Panel A) and Beck-Depression Inventory-II (BDI-II) scores (Panel B).
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RRS (b = −0.021, 95%CI −0.121, 0.122) or BDI
(b = 0.068, 95%CI −0.094, 0.229).

3.5.3. Questionnaire scores
The density distributions of RRS and BDI-II scores can
be seen in Figure 4. Both the RRS (Range = 13–40;
Mean = 23.63; Median = 24; SD = 5.56) and the BDI-
II (Range = 2–63; Mean = 21.65; Median = 20; SD =
13.56) showed a good spread of scores. Whilst there
are no criteria for different levels of rumination
using the RRS, for the BDI-II the responses showed
33.33% of respondents had minimal depression,
15.29% had mild depression, 23.53% had moderate
depression, and 27.84% had severe depression. A
Bayesian regression of standardised RRS and BDI-II
scores showed that RRS scores could be predicted
from BDI scores (b = 0.641, 95%CI 0.546, 0.737).
These analyses provide a sense check on the ques-
tionnaire data (i.e. that RRS and BDI-II are associated,
as expected) and shows the sample captured a wide
range of rumination and depression scores.

3.5.4. Separation of the RRS into components
The RRS is thought to consist of two distinct com-
ponents: One measuring brooding, and one measuring
reflection (Treynoret al., 2003; but seeWhitmer&Gotlib,
2011 for a potential exception to this in currently
depressed individuals). To examine whether n–2 task
repetition costs were differentially associated with the
brooding and reflection components of the RRS, separ-
ate analyses for each component were conducted6.

Specifically, participants’ RRS scores were recalcu-
lated to quantify levels of brooding and reflection.
These separate scores were then used as predictors
in a Bayesian regression predcting n–2 task repetition
costs (separately for n–2 response repetitions and n–2
response switches) from the RRS component and BDI
scores7 (all variables were again standardised). The
results are shown in Figure 5.

The analysis showed that there was no evidence for
an association either component and n–2 task repetition
costs for n–2 response repetitions (bbrooding = −0.030,
95%CI −0.187, 0.131; breflection = −0.031, 95%CI
−0.171, 0.124) or n–2 task repetition costs for n–2
response switches (bbrooding = −0.012, 95%CI −0.173,
0.148; breflection = −0.010, 95%CI−0.153, 0.133).

4. General discussion

The present study sought to re-examine the question
of the association between rumination and the n–2

task repetition cost, though to measure cognitive inhi-
bition during task switching (Koch et al., 2010; Mayr &
Keele, 2000; Sexton & Cooper, 2017). The study offers
an improvement over previous studies in several
ways. First, the analysis reduced the potential
impact of trial-level noise on estimates of n–2 task
repetition costs at the individual participant level via
use of Bayesian multilevel regression models
(Rouder & Haaf, 2019; Rouder et al., 2019). Second,
the present study controlled for the impact of episo-
dic retrieval effects on estimates of the n–2 task rep-
etition cost (Grange et al., 2017). An additional
methodological improvement is that immediate task
repetitions were not allowed. This scenario has been
shown to increase measures of the n–2 task repetition
cost, thought to be due to the cognitive system shift-
ing the balance between task activation and task inhi-
bition in favour of inhibition when immediate
repetitions are not detected by the system (Philipp
& Koch, 2006).

The results showed robust n–2 task repetition costs
that were strongly influenced by episodic retrieval
effects, replicating previous work (Grange, 2018a;
Grange et al., 2019, 2017; Kowalczyk & Grange,
2019). For the response time analysis, the results
showed a large n–2 task repetition for cost episodic
mismatches (i.e. n–2 response switches) and a small,
non-reliable n–2 task repetition cost for episodic
matches (i.e. n–2 response repetitions). For the accu-
racy data, the opposite was true: There was no evi-
dence for an n–2 task repetition cost for episodic
mismatches, but there was an n–2 task repetition
cost for episodic matches. This latter finding is not
typical based on previous work, and could potentially
reflect a speed – accuracy trade off in the interaction
between episodic retrieval and inhibitory effects in
task switching. At the individual-difference level,
there was no evidence for an association between
n–2 task repetition costs and self-report measures of
rumination (not for episodic matches, not for episodic
mismatches, and not for n–2 repetition costs ignoring
episodic match). Therefore the current study has not
been able to replicate previous work which reported
a negative association between measures of task inhi-
bition and rumination (De Lissnyder et al., 2010;
Whitmer & Banich, 2007; Whitmer & Gotlib, 2012).

There could be several plausible explanations for
why the current study did not find an association
between self-report measures of rumination and
measures of task inhibition. One straightforward
possibility is that there is no true association
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between rumination and n–2 task repetition costs,
which was then reflected in the results of the
current study. There have been many reports of fail-
ures to replicate findings in psychology and other dis-
ciplines (e.g. Open Science Collaboration, 2015), so
this possibility requires serious consideration. The
current study utilised a large sample size that was sen-
sitive to finding a true association smaller than that
reported in previous research (see Appendix 1), so it
is unlikely – but of course possible – that the
current results represent a type-2 error. Future replica-
tions might be warranted to address this question.

There were also paradigm differences which
could potentially lead to the different outcomes
across studies. The current study utilised a “rule-
switching” paradigm introduced by Mayr (2002).
This paradigm has been shown to produce standard

task switching effects, such as the switch cost, prep-
aration effects, and response-repetition effects (Mayr
& Bryck, 2005) as well as n–2 task repetition costs
(Grange, 2018a; Grange et al., 2019, 2017; Kowalczyk
& Grange, 2019; Mayr, 2002). Previous work examin-
ing the association between rumination and the n–2
task repetition cost have used different paradigms;
for example, Whitmer and Banich (2007; see also
Whitmer & Gotlib, 2012) used a target localisation
paradigm introduced by Mayr and Keele (2000),
and De Lissnyder et al. (2010) adapted this target
localisation paradigm to include emotionally
valenced targets. There is no clear theoretical
reason why these paradigm differences would lead
to different outcomes regarding the association
between rumination and the n–2 task repetition
cost, but it remains a possibility.

Figure 5. Individual participant scores for the Brooding and Reflection components of the rumination response scale (RRS) scores plotted
against (log) n–2 task repetition costs for n–2 response repetitions (left plots) and n–2 response switches (right plots). Note that all variables
are standardised. Points show individual participant data; lines show random draws from the posterior distribution of the association between
RRS-component score and n–2 task repetition costs.
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4.1. Limitations

There exist several limitations of the current study
which should be considered. First, in contrast to pre-
vious research on this question, the current study
recruited an online sample of participants which
could lead to concerns about data quality. However,
there is evidence that online data tends to be of
high quality when utilising various cognitive exper-
imental paradigms (Anwyl-Irvine et al., 2020; Crump
et al., 2013). In addition, the behavioural data in the
current study was of a high quality suggesting this
was not likely an issue. For example, overall error
rates were low, response time variance was typical,
and the study revealed reliable n–2 task repetition
costs together with replication of the interaction
with episodic retrieval effects. The current sample
also demonstrated a wide range of rumination and
depression self assessment scores, so the lack of an
association between rumination and n–2 task rep-
etition cost cannot be explained by insufficient varia-
bility and range in rumination scores.

The current study addressed a limitation of
attempting to measure individual differences in inhi-
bition by using multilevel linear modelling (Rouder
& Haaf, 2019; Rouder et al., 2019). This statistical
approach reduces the impact of trial-level measure-
ment error in estimating each participant’s true n–2
task repetition costs. But utilising this improved esti-
mate of n–2 task repetition costs at the individual
level does not help if the n–2 task repetition itself
does not actually measure cognitive inhibition. That
is, if there is a true association between rumination
and cognitive inhibition, but the n–2 task repetition
cost does not actually measure cognitive inhibition,
then one would not expect an association between
the two. In previous work (and in the current study)
it has been shown that a proportion of the n–2 task
repetition cost can be explained by non-inhibitory
processes (Grange, 2018a; Grange et al., 2019, 2017;
Kowalczyk & Grange, 2019); it could be that other
non-inhibitory processes contribute (either partially
or fully) to the n–2 task repetition cost too.

Therefore it remains plausible that a true association
might exist between rumination and cognitive inhi-
bition, but that the n–2 task repetition cost does not
measure cognitive inhibition effectively. Indeed, many
studies have examined the association between rumi-
nation and inhibition using other experimental para-
digms thought to measure cognitive inhibition (see
e.g. Daches & Mor, 2014; Ganor et al., 2023; Grant

et al., 2021; Joormann, 2005, 2006; Joormann & Tran,
2009; Koster et al., 2011), but establishing a causal
relationship between cognitive inhibition and rumina-
tion has proved challenging (see Roberts et al., 2016).

An alternative approach that could be taken by
future studies is to expose participants to a battery
of tasks thought to tap cognitive inhibition and to
explore at the latent variable level the association
between inhibition and rumination8. However, it
should be noted that the concept of cognitive inhi-
bition more broadly has recently been called into
question using a similar latent variable approach.
For example, Rey-Mermet et al. (2018) presented par-
ticipants with a battery of eleven tasks thought to
measure cognitive inhibition (including the n–2 task
repetition paradigm) and used structural equation
modelling in an attempt to establish a latent factor
for inhibition. However, the authors reported an
inability to establish a clear reliable latent factor for
inhibition, leading to the conclusion that inhibition
as a psychometric construct is questionable.

Given that a deficit in cognitive inhibition has been
proposed as a key cognitive mechanism contributing
to rumination (Whitmer & Gotlib, 2012, 2013), this
might require serious reconsideration if cognitive inhi-
bition itself is not a reliable psychometric construct.

Notes

1. Whitmer and Gotlib (2012) reported an regression coeffi-
cient of b = −0.236, but it was not clear whether this is
standardised. The t-value of this association was −2.0
with 67 degrees of freedom. I therefore calculated the

correlation coefficient via r =
���������

|t|2
|t|2+df

( )√
and then took

the sign of t.
2. This allowed full counterbalancing of the order of pres-

entation of study materials to control for potential order-
ing effects.

3. Specifically, I used R (Version 4.2.1; R Core Team, 2020) and
the R-packages afex (Version 1.2.0; Singmann et al., 2020),
brms (Version 2.18.0; Bürkner, 2017, 2018), dplyr (Version
1.0.10; Wickham et al., 2021), faux (Version 1.1.0; DeBruine,
2021), forcats (Version 0.5.2; Wickham, 2020), ggplot2
(Version 3.3.6; Wickham, 2016), lme4 (Version 1.1.31;
Bates et al., 2015), MASS (Version 7.3.57; Venables &
Ripley, 2002), Matrix (Version 1.5.1; Bates & Maechler,
2019), papaja (Version 0.1.1; Aust & Barth, 2020), patch-
work (Version 1.1.2; Pedersen, 2020), purrr (Version 0.3.5;
Henry & Wickham, 2020), Rcpp (Eddelbuettel & Balamuta,
2018; Version 1.0.9; Eddelbuettel & François, 2011), readr
(Version 2.1.3; Wickham et al., 2018), stringr (Version
1.4.1; Wickham, 2019), tibble (Version 3.1.8; Mller and
Wickham (2021)), tidybayes (Version 3.0.2; Kay, 2020),
tidyr (Version 1.2.1; Wickham, 2021), tidyverse (Version
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1.3.2; Wickham et al., 2019), tinylabels (Version 0.2.3; Barth,
2020), and trimr (Version 1.1.1; Grange, 2018b).

4. Response times were log-transformed for several reasons.
As the main analysis centres on analysis of trial-level data,
log-transformation to some extent deals with the positive
skew typically found in response time distributions. In
addition, the main outcome of this task switching
design is a comparison of the magnitude of n–2 task rep-
etition costs for n–2 response repetitions and n–2
response switches (i.e. an interaction). Log-transformation
of RTs is one recommended strategy to deal with so-called
“removable interactions” (Wagenmakers et al., 2012). Note
that in Appendix 2, I report a repetition of the main
response time analysis without log-transformation and
find qualitatively identical results.

5. Individual difference analysis of the accuracy data was
not included in the pre-registration as n–2 task repetition
costs are more consistently found for response time data,
and less so in accuracy data. Indeed, the studies dis-
cussed in the introduction examining the association
between rumination and inhibition in task switching
(De Lissnyder et al., 2010; Whitmer & Banich, 2007;
Whitmer & Gotlib, 2012) focussed their analysis exclu-
sively on response time data. To address this question,
a Bayesian multilevel regression was performed on the
trial-level accuracy data to obtain model estimates of
participants’ true n–2 task repetition costs for both n–2
response repetitions and n–2 response switches.

6. Thank you to an anonymous reviewer for suggesting this
analysis.

7. Note that removing BDI as a covariate led to qualitatively
identical results.

8. Note that when variables are standardised in a regression
model (i.e. transformed to have a mean of zero and a
standard deviation of one), β in a linear regression is
equal to the correlation coefficient r. We can therefore
use r to estimate likely values for �b.
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Appendices

Appendix 1. Sample size planning

Sample size was determined via a series of exploratory simu-
lations within a Bayesian framework assessing the adequacy of
a planned sample size of N = 250. The purpose of these simu-
lations was to assess whether the planned sample size could
reliably detect the expected effect size of interest.

The main research aim centres around estimating the associ-
ation between the n–2 task repetition cost and measures of
rumination via the rumination response scale (RRS) for both
n–2 response repetitions (episodic match trials) and n–2
response switch trials (episodic mismatch trials). Within a
regression framework, we are therefore interested in estimating
the population-level parameter �b for n–2 response repetitions
and for n–2 response switches, which represents the true
slope of the linear relationship between RRS and n–2 task rep-
etition cost. The current study will estimate plausible values
for �b by taking a sample from the population (e.g. N = 250)
and measuring the strength of association within that sample
(via the regression model parameter β). The posterior distri-
bution of β provides plausible values for �b.

In order to establish whether �b is different from zero – that is,
to establish whether there is indeed a true association between
n–2 task repetition costs and RRS – we can assess whether zero
is included within the 95% credible interval of the posterior dis-
tribution of β. If zero is contained within the credible interval, we
cannot exclude this as a possible value for �b (and hence, we
cannot exclude the possibility that there is no association in
the population). Note that this is equivalent to two-tailed
power analysis within the frequentist framework. However,
given that extant studies have found a negative association
between inhibition and RRS (Whitmer & Banich, 2007;
Whitmer & Gotlib, 2012), an alternative approach is to assess
the proportion of the posterior distribution that is below zero
(i.e. in the expected direction); this is equivalent to a one-
tailed power analysis.

The challenge for the sample size simulations is therefore to
determine whether the planned sample size of N = 250 is
sufficient to reliably detect a true effect size of interest in the
population (i.e. �b). In order to address this, we first need to
establish what the expected size of �b is likely to be. In Exper-
iment 1 of Whitmer and Banich (2007), the authors reported
the correlation between n–2 task repetition cost and RRS to
be r =−0.6938; in Experiment 2, the correlation coefficient for
this relationship was not reported. However, their Figure 2
shows scatter plots for both experiments with data points for
each participant; using the open source software WebPlotDi-
gitizer (https://github.com/ankitrohatgi/WebPlotDigitizer)
the raw data for both experiments can be recovered and reana-
lysed. The correlations are plotted in Figure A1; the analysis
showed that r =−0.693 in Experiment 1 and r =−0.404 in Exper-
iment 2.

To remain conservative, I assumed that this estimate for �b is
actually an over-estimate (e.g. Gelman & Carlin, 2014); this
approach ensures the study is designed with enough sensitivity
to reliably detect smaller effects than reported in the literature. I
therefore set the effect size of interest for the sample size plan-
ning equal to �b = −0.20.

I now discuss the approaches we explored to assess whether
N = 250 participants is sufficient to detect this effect size of inter-
est. Although the analysis is from a Bayesian perspective, note
that standard frequentist power analysis provides converging
evidence as the to the adequacy of the sample size. A power
analysis using G*Power (Faul et al., 2009) showed that N = 250
provides 94% power to detect the expected effect size of
�b = −0.2 (with a = 0.05). A sensitivity analysis showed that
the sample size provides 95% power to detect effect sizes stron-
ger than �b = −0.206, 90% to detect effects stronger than
�b = −0.184, and 80% power to detect effects stronger than
�b = −0.157.

A.1. Approach 1: drawing multiple random
samples from the population

The first approach estimates the adequacy of the design by
simulating many individual “studies”. Within each study, n–2
task repetition costs and RRS scores are simulated for N = 250
participants, with a population-level association between vari-
ables set to b = −0.2. Then, a Bayesian linear regression is
fitted to the data, and the posterior distribution of the β par-
ameter is explored. I recorded (a) the proportion of the posterior
distribution that is below zero (i.e. one-tailed), and (b) whether
zero is included in the 95% credible interval (two-tailed). This
process is repeated multiple times, and the sensitivity of the
sample size is estimated from evaluating (a) the average pro-
portion of the posterior distribution found to be below zero,
and (b) the proportion of studies with zero not included in the
95% credible interval.

Specifically, N = 250 n–2 task repetition costs and RRS scores
were sampled from a multivariate normal distribution with
means equal to zero and standard deviation equal to one (i.e.
the data were simulated as standardised), with a population-
level association between variables set to �b = −0.20. (Note
that as it is the population-level association that is set to
−0.20, due to sampling error the sample association β will not
necessarily equal this value.) Then the Bayesian linear regression

Figure A1. Reanalysis of Experiments 1 and 2 from Whitmer and
Banich (2007). Individual points show participant scores for the rumi-
nation response scale (RRS) and their n–2 task repetition cost (in milli-
seconds). Lines show linear models fitted to the data, and the
shading represents 95% confidence intervals around each model.
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predicting n–2 task repetition costs from RRS values was con-
ducted (using the R package brms using its default regularising
priors), and the posterior distribution of β was explored as
described above. This process was then repeated for a total of
1000 simulated studies.

The results showed that across simulations, an average of
98.8% of the posterior distribution for β was below zero. In
addition, 89.5% of the simulated studies had 95% credible inter-
vals that did not include zero.

A.2. Approach 2: Kruschke and Liddell’s (2018)
method

The next approach utilised the methods recommended by
Kruschke and Liddell (2018), which proceeds via several
steps visualised in Figure A2. In Step 0 (not visualised), a popu-
lation-level effect size �b is selected as the effect size of inter-
est, which has been set to −0.20. Then in Step 1, idealised
data are simulated reflecting the statistical properties of this
effect size of interest: data from N = 250 participants were
simulated for two standardised variables from a multivariate
normal distribution with an empirical association between
variables set to �b = −0.20. A Bayesian regression was then
fitted to this data, which provides a posterior distribution of
estimates of �b in the slope parameter β. These are shown as
blue lines in Step 1 of Figure A2, and reflect plausible
regression slopes of the true association between the
variables.

In Step 2, new sample data is simulated using these plaus-
ible regression parameter values. Specifically, one of the
regression lines from Step 1 is randomly selected (shown as
the red line in Step 1 of Figure A2), and the slope of this
regression line (β) is used as the association value between
variables when generating data from the multivariate normal
distribution. The new sample data is generated to have N =
250 data points, which is the sample size under investigation.
Once the new sample data is generated, again the Bayesian
regression is fit to this data.

Once fit, in Step 3 the posterior distribution of β is
explored to assess whether the research aims have been
met. Specifically, I recorded the proportion of the posterior dis-
tribution which is below zero (i.e. one-tailed) and whether the

95% credible interval of the distribution includes zero (two-
tailed; shown in Figure A2). Once recorded, a new randomly
selected regression line from Step 1 is used to generate new
data in Step 2, and again fitted with the Bayesian model.
This process is repeated for a total of 1000 times.

The analysis showed that across the 1000 simulations, on
average 96.7% of the posterior distributions for β were
below zero, and 81.5% of the 95% credible intervals did not
include zero.

A.3. Summary

In sum, both approaches have provided converging evidence
that an intended sample size of N = 250 is adequate to be
able to detect true effect sizes of �b as small as −0.20 with
good reliability.

A.4. A note on assessing differences in model
parameters

Note that the sample size is determined based on my primary
research aim, which is to estimate the association between n–
2 task repetition costs and RRS (i.e. β in the Bayesian regression)
separately for both n–2 response repetitions and n–2 response
switches. The simulations have shown that a sample size of N
= 250 is sufficient to detect true associations as small as −0.20
with good sensitivity.

However, being able to detect individual non-zero associ-
ations with good sensitivity does not mean we have good sen-
sitivity to detect differences in associations. That is, if the
association between n–2 task repetition cost for response rep-
etitions and RRS is given by bResponseRepetition and the association
between n–2 task repetition cost for n–2 switches and RRS is
given by bResponseSwitch , the analysis so far has suggested the
study has good sensitivity to detect whether either
bResponseRepetition or bResponseSwitch are non-zero (i.e. whether there
is an association present). Our analysis so far does not tell us
how sensitive our design is to detect whether bResponseRepetition

is reliably different from bResponseSwitch . More concretely, if the
analysis shows that bResponseSwitch is reliably different from zero,
but bResponseRepetition is not reliably different from zero, this tells

Figure A2. Schematic example of the steps applied to conduct sample size planning for Bayesian linear regression. See text for details.
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us nothing about whether bResponseSwitch is reliably different from
bResponseRepetition (see e.g. Nieuwenhuis et al., 2011).

In regression approaches, establishing whether there is a
reliable difference in predictor variables can be addressed by
conducting a multiple regression analysis with n–2 task rep-
etition cost as the outcome variable, RRS as a continuous predic-
tor variable, and “Response Repetition” as a binary predictor
variable (response repetition vs. response switch); the key par-
ameter is the interaction term between RRS and Response Rep-
etition: if it is non-zero, the association between RRS and n–2
task repetition cost is different for response repetitions and
response switches.

Sensitivity to detect interaction terms tends to be low as
they are often subtler than the main effects of predictors.
However, I wanted to establish whether the planned sample
size of N = 250 had good sensitivity to detect an interaction in
the design between RRS and response repetition.

To address this question, I simulated 1000 data sets with
sample size N = 250 from the following regression model:

N− 2cost = a+ b1RRS+ b2Response+ b3RRSxResponse

+ e 1)

where α is the intercept (ignored here due to the standardis-
ation of variables), b1 is the parameter for the RRS predictor,
b2 is the parameter for response repetition (repetition vs.
switch), and b3 is the parameter for the interaction. In the simu-
lation, population parameter values were b1 = −0.20,
b2 = 0.00, and b3 = 0.20; that is, I simulated data where there
was a “true” association between n–2 task repetition cost and
RRS of �b = −0.20 for response switches, and �b = 0.00 for
response repetitions.

For each simulated data set, a Bayesian regression was fitted
to the data predicting cost from the continuous predictor RRS
and the binary predictor Response Repetition. I was interested
in the posterior distribution of the interaction term (b3) and
the proportion of the posterior distribution that is above zero
(in the expected direction). The results showed that on
average, 86.63% of the posterior distribution was above zero.

These results converge well with a similar power analysis
from a frequentist perspective. Specifically, I used the R
package InteractionPoweR to establish the power to
detect an interaction effect size of b = 0.20; the results
showed that with N = 250, the study has 90.3% power.

The results of this section suggest there is good sensitivity to
detect a true difference in bResponseRepetition and bResponseSwitch if the
true difference is around 0.20. However, note that if the true differ-
ence is smaller than this, sensitivity to detect it drops off consider-
ably. For example, if the true interaction parameter is 0.15,
simulations via InteractionPoweR showed that with N = 250
power drops to 66.7%, and it drops to 35.4% if the true interaction
parameter is 0.10. In order to detect such a small effect size,
InteractionPoweR suggests 3200 participants are required.

Appendix 2. Analysing standard response
times

In this Appendix, I report the repetition of the aggregate- and
individual-level analysis on non-transformed response time
data.

A.5. Aggregate-level analysis

The results of the model fitting can be seen in Table A1. For
response times, the best model included both main effects of
task sequence (ABA vs. CBA) and n–2 response (repetition vs.
switch), plus their interaction. The interaction model
(bintercept = 1130.94, 95%CI 1087.78, 1173.61) showed that RTs
were generally faster for CBA sequences than for ABA sequences
(bsequence = −13.92, 95%CI −27.98, 0.482) and were slower for n–
2 response switches than for n–2 response repetitions
(bresponse = 83.34, 95%CI 69.18, 97.77). The interaction parameter
was reliably different from zero (binteraction = −104.20, 95%CI
−124.46, −84.19) suggesting the n–2 task repetition cost was
reliably smaller for n–2 response repetitions than for n–2
response switches. Follow-up analyses showed that the n–2 rep-
etition cost for n–2 response repetitions (14ms) was not reliably
different from zero (bsequence = −14.18 95%CI = −72.24, 43.87),
but it was for the n–2 repetition cost for n–2 response switches
(118ms; bsequence = −117.98, 95%CI = −179.16, −57.52), thus
replicating the main finding of Grange et al. (2017).

A.6. Individual-level analysis

A Bayesian multilevel regression was performed on the trial-
level RT data to obtain model estimates of participants’ true
n–2 task repetition costs for both n–2 response repetitions
and n–2 response switches. Individual trial-level response time
was predicted from sequence and response, together with a
term for their interaction; random intercepts were included
per participant, as well as random slopes for sequence, response,
and the interaction per participant. These random effects were
used to estimate true n–2 task repetition costs for each partici-
pant for n–2 response repetitions and n–2 response switches.

These estimated n–2 task repetition costs were used as
outcome variables in separate regression models (one for each
level of n–2 response) which predicted n–2 task repetition
cost from RRS scores and BDI scores. All variables were standar-
dised before entering the regression analysis. The results are
visualised in Figure A3. The analysis showed that for n–2
response repetitions, there was no evidence for an association
between n–2 task repetition cost and RRS (b = −0.010, 95%CI
−0.154, 0.176) or BDI (b = −0.001, 95%CI −0.166, 0.163). For
n–2 response switches, the same partern was found: There
was no evidence for an association between the n–2 repetition
cost and RRS (b = −0.023, 95%CI −0.184, 0.137) or BDI
(b = 0.002, 95%CI −0.159, 0.165).

Table A1. Model comparison results for the aggregate behavioural
data on non-transformed response time data.

Outcome Model WAIC dWAIC Weight

Response
time

Intercept 12,482.08 335 0

Sequence (S) 12,314.07 167 0
Response (R) 12,450.21 303 0

Main Effects (S + R) 12,273.90 127 0
Interaction (S x R) 12,146.73 0 1

Notes: dWAIC = difference between each model’s WAIC and that
ofthe best-fitting model. If dWAIC is zero, that model is the best
model.Weight = Akaike’s weight for each model.
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Figure A3. Individual participant rumination response scale (RRS) scores plotted against (log) n–2 task repetition costs for n–2 response rep-
etitions (left plot) and n–2 response switches (right plot). Note that all variables are standardised. Points show individual participant data; lines
show random draws from the posterior distribution of the association between RRS and n–2 task repetition costs.
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