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Background: The impact of gene-sets on a spatial phenotype is not necessarily
uniform across different locations of cancer tissue. This study introduces a
computational platform, GWLCT, for combining gene set analysis with spatial
data modeling to provide a new statistical test for location-specific association of
phenotypes and molecular pathways in spatial single-cell RNA-seq data collected
from an input tumor sample.

Methods: The main advantage of GWLCT consists of an analysis beyond global
significance, allowing the association between the gene-set and the
phenotype to vary across the tumor space. At each location, the most
significant linear combination is found using a geographically weighted
shrunken covariance matrix and kernel function. Whether a fixed or
adaptive bandwidth is determined based on a cross-validation cross
procedure. Our proposed method is compared to the global version of
linear combination test (LCT), bulk and random-forest based gene-set
enrichment analyses using data created by the Visium Spatial Gene
Expression technique on an invasive breast cancer tissue sample, as well as
144 different simulation scenarios.

Results: In an illustrative example, the new geographically weighted linear
combination test, GWLCT, identifies the cancer hallmark gene-sets that are
significantly associated at each location with the five spatially continuous
phenotypic contexts in the tumors defined by different well-known markers
of cancer-associated fibroblasts. Scan statistics revealed clustering in the
number of significant gene-sets. A spatial heatmap of combined
significance over all selected gene-sets is also produced. Extensive
simulation studies demonstrate that our proposed approach outperforms
other methods in the considered scenarios, especially when the spatial
association increases.

Conclusion: Our proposed approach considers the spatial covariance of gene
expression to detect the most significant gene-sets affecting a continuous
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phenotype. It reveals spatially detailed information in tissue space and can thus play
a key role in understanding the contextual heterogeneity of cancer cells.
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Introduction

Globally, there were approximately 2.3 million new cases of and
685,000 deaths due to breast cancer (BC) in 2020 (Lei et al., 2021).
BC is also the leading cause of cancer-related deaths among women
(Beiki et al., 2012; World Health Organization, 2018) and the second
leading cause of cancer deaths globally, worldwide (Beiki et al.,
2012). The tumorigenesis involves uncontrolled growth of cells in
breast tissues which can be either benign or malignant (Liu et al.,
2013). Several studies on breast cancer patients have revealed the
different anti- and pro-tumorigenic roles of the CAFs involved
(Chang et al., 2012; Brechbuhl et al., 2017; Su et al., 2018).

Extensive studies over the past few decades have uncovered a
variety of cell populations in tumors, thus leading to the active
research area of intratumor heterogeneity (ITH) (Marusyk et al.,
2020). In 2010, Hanahan andWeinberg noted that tumors exhibit an
additional dimension of complexity through their “tumor
microenvironment” that contributes to the acquisition of the so-
called hallmark traits of cancer. ITH is attributed to genetic,
epigenetic, and microenvironmental factors (McGranahan and
Swanton, 2017; Marusyk et al., 2020) and associated with poor
prognosis, therapeutic resistance and treatment failure leading to
poor overall survival in cancer patients (Landau et al., 2013; Patel
et al., 2014; Zhang et al., 2014; Jamal-Hanjani et al., 2015; Jamal-
Hanjani et al., 2017). Indeed, the persistence of some of the drug-
tolerant intratumor cell populations could be attributed to their high
phenotypic plasticity (Flavahan et al., 2017).

Interestingly, hierarchies of differentiation also exist among normal
cells in healthy tissues, but the populations of tumor cells display far
greater cell-to-cell variability and the resulting phenotypic instability
(Landau et al., 2014; Jenkinson et al., 2017). Such ITH could be
attributed to genetic causes ranging from aneuploidy to other factors
such as complex contextual signals in the highly aberrant tumor
microenvironments, or even global alterations in cancer cell
epigenomes (Senovilla et al., 2012). ITH also involves immune cell
infiltration, which is important to immunotherapies. Tumor antigen
diversity could be determined by the T Cell clonality in the different
regions of the same tumor (Senovilla et al., 2012). Studies have shown
spatially complex interactions between tumor microenvironments and
the patient’s immune system (Hanahan and Weinberg, 2011;
Vogelstein and Kinzler, 2015).

While heterogeneous cell types are prevalent within the tumor
microenvironment, some of which may account for cancer
development and progression, it also contains different non-
malignant components, including the cancer-associated
fibroblasts (CAFs) (Pietras and Östman, 2010; Cortez et al., 2014;
Kalluri, 2016). Although the origin and activation mechanism of
CAFs remains an area of active research (Anderberg and Pietras,
2009; Shiga et al., 2015; LeBleu and Kalluri, 2018; Chen and Song,
2019), studies have attributed the processes of formation and

derivation of CAFs to various precursor cells (Anderberg and
Pietras, 2009; Shiga et al., 2015; LeBleu and Kalluri, 2018; Chen
and Song, 2019), which may be the source of the well-known
heterogeneity among the CAFs (Du and Che, 2017; Öhlund
et al., 2017; Costa et al., 2018; Raz et al., 2018; Lee et al., 2020).
Indeed, in certain tumors, such as in the breast, in which the
prevalence of CAFs could be as high as 80%, they can play both
anti-as well as pro-tumorigenic roles (Chang et al., 2012; Brechbuhl
et al., 2017; Su et al., 2018). Importantly, CAFs can facilitate drug
resistance dynamically by altering the cell-matrix interactions that
control the outer layer of cells’ sensitivity to apoptosis, producing
proteins that control cell survival and proliferation, assisting with
cell-cell communications, and activating epigenetic plasticity in
neighboring cells (Cuiffo and Karnoub, 2012; Junttila and De
Sauvage, 2013). CAF-targeted treatments can have dual effects
depending on the target and the tissue under consideration
(Özdemir et al., 2014; Koliaraki et al., 2015; Wagner, 2016). For
instance, spatial proximity to CAFs has been shown to impact
molecular features and therapeutic sensitivity of breast cancer
cells influencing clinical outcomes (Marusyk et al., 2016).

In recent years, higher resolution, tissue-specific gene expression
analysis is made possible by using new platforms such as single-cell
RNA sequencing (scRNA-seq), which has rapidly evolved as a powerful
and popular tool (Kalisky et al., 2018; Sun et al., 2021). Unlike previous
transcriptomic studies that assayed a “bulk” sample, scRNA-seq data
can provide a detailed characterization of each tumor. Indeed, the
Human Tumor Atlas Network [https://humantumoratlas.org] is
increasingly enriched with data on human cancers based on scRNA-
seq assays. The high-resolution transcriptomic platform has led to
several scRNA-seq studies of the composition of CAFs in different
stages of cancer (Bernardo and Fibbe, 2013; Li et al., 2017; Puram et al.,
2017; Lambrechts et al., 2018; Elyada et al., 2019; Hosein et al., 2019;
Davidson et al., 2020; Dominguez et al., 2020; Friedman et al., 2020). For
focused understanding of the heterogeneous expressions of genes,
different sites of the same tumor were analyzed with multiregional
RNA sequencing for different cancers (Gerlinger et al., 2012; Zhang
et al., 2014; Yates et al., 2015; Thrane et al., 2018).

Despite the advancements and efficacy of scRNA-seq, the lack of
spatial information in scRNA-seq analysis is a significant shortcoming
for typical scRNA-seq methods to capture cellular heterogeneity. For a
tumor sample, the presence of spatial contexts might play a major role
which could be combined with scRNA-seq data with the explicit aim to
capture microenvironmental heterogeneity. Spatial cell-to-cell
communication in a given tissue image can be recovered from a
spatial scRNA sequencing data via computational spatial re-mapping
(Teves and Won, 2020). Alternatively, integration of high-resolution
gene expression data with spatial coordinates can resolve such
experimental shortcomings (Eng et al., 2019). While imaging the
transcriptome in situ with high accuracy has been a major challenge
in single-cell biology, development of high-throughput platforms for
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sequential fluorescence in situ hybridization such as RNA seqFISH+
and algorithms such as CELESTA can identify cell populations and
their spatial organization in intact tissues (Zhang et al., 2014; Eng et al.,
2019). Towards this, many recent efforts have developed methods to
analyze spatial information in single-cell studies (Lee et al., 2014;
McKenna et al., 2016; Shah et al., 2016; Frieda et al., 2017; Alemany
et al., 2018; Codeluppi et al., 2018; Raj et al., 2018; Spanjaard et al., 2018;
Wang et al., 2018).

High-throughput transcriptomic data are useful not only for
identifying genes that are differentially expressed, but also to test for
co-regulation of multiple genes, i.e., a gene-set, based on existing
empirical knowledge of biological pathways and gene signatures, e.g.,
the well-known hallmarks of cancer. In this direction, several methods
for gene-set analysis (GSA) were introduced by (Goeman et al., 2004;
Mansmann and Meister, 2005; Subramanian et al., 2005; Kong et al.,
2006; Dinu et al., 2007; Efron and Tibshirani, 2007). Since the genes
within such gene-sets share a common biological function, considering
the correlations within each set is a key aspect of a useful GSA method.
However, it was shown by (Tsai and Chen, 2009) that the above GSA
methods were affected by large type II errors.

An important limitation of many GSA methods is that they can
only accommodate binary outcomes, such as disease versus control. Our
method, Linear Combination Test (LCT) is a GSA method that was
designed to address these limitations by taking into account correlations
across genes and outcomes, and dealing with binary, univariate or
multivariate continuous outcomes, measured either at a single point in
time or at multiple time points, and therefore, allow us to analyze a
wider range of studies involving complex study designs (Wang et al.,
2014). Studies have shown that LCT can overcome difficulties such as
small sample size, large gene-sets, and can accommodate correlations
across gene-sets, time points, and multiple correlated continuous
phenotypes (Dinu et al., 2013). Thus, while a specific gene may not
show consistent expression across individual cells, LCT is more likely
than traditional approaches to detect the regulation of a functional
process or biological pathway associated with the intercellular diversity
of outcomes in a single cell level experiment.

Recently, we have extended LCT beyond any other “bulk” GSA
method for application to single cell experiments (Dinu et al., 2021).
However, GSA is considerably more complicated in the presence of
spatial information since the analyzed gene-sets need not have a
uniform impact over the entire area of a spatially continuous
phenotype. In fact, the significance of association between a selected
gene-set and a particular phenotypic context at various
microenvironmental neighborhoods could be different. Yet, variable
as they may be, since spatial effects are generally continuous in nature,
proximity may determine more correlated associations than those
across distant locations within the same tumor space. Notably, this
alludes to Tobler’s First Law of Geography, which states that
“everything is related to everything else, but near things are more
related than distant things.” Traditional testing of such relationships
involves global or “aspatial” regression, with the implicit assumption
that the impact of the genes in a gene-set (covariates) on the phenotype
(spatial outcome) is constant across the tumor space (study area). In the
presence of ITH, such stationarity assumption is unlikely to be valid.
Geographically weighted regression (GWR) is a well-known method
(Brunsdon et al., 1996) that avoids this problem by performing the
regression within local windows and each observation is weighted
according to its proximity to the center of the window. Adaptive

kernel bandwidths allow for heterogeneity among densities of gene
expression over the windows in different parts of the study region. Local
regression coefficients and associated statistics are mapped to visualize
how the explanatory power of a gene-set on the associated phenotypes
changes spatially.

In the present study, we combined gene-set analysis of LCTwith the
local spatial modeling of GWR with the aim to develop geographically
weighted LCT (GWLCT) as a statistical test. We demonstrated it on
spatial scRNA-seq data from a real breast tumor sample and obtained
key insights into its molecular heterogeneity across different spatially
continuous phenotypic contexts defined by five well-known markers of
CAFs. We note that GWLCT has several distinct advantages. While the
popular GSA methods are aspatial and use only bulk gene expression
data, GWLCT is developed for spatial single cell gene expression data.
The geographical weighting scheme allows nearby
neighborhoods to contribute more to each local model, and
the regions with significant association of a selected gene-set
and a corresponding phenotype are detected using scan statistics
on the local test scores and illustrated as maps. At each location,
the combined significance of such associations for the selected
gene-sets is computed and visualized with a spatial heatmap. We
also present new 3D interactive tools for insightful visualization
of the tumor space. In the next section, we describe the data and
methods, followed by the results of real tumor data analysis and
simulations of different association scenarios using GWLCT, and
end with discussion, including future work.

Materials and methods

Data

Data for spatial transcriptomics were downloaded from the 10x
Genomics website (https://www.10xgenomics.com/). In brief, the data
were created using the Visium Spatial Gene Expression technique on an
invasive breast cancer tissue sample that is expressing the Estrogen
Receptor (ER), Progesterone Receptor (PR), and Human Epidermal
Growth Factor Receptor (HER) negative. Illumina NovaSeq 6000 was
used to generate the RNA sequencing data, which had a sequencing
depth of 72,436 mean reads per cell. The downloaded dataset was
filtered for average gene expression values greater than 1, and the
resulting data matrix had 1,981 rows (genes) and 4,325 columns (single
cells). The zero counts were substituted as part of the RNAseq data
preparation with a relatively small random jitter about zero that would
have the least impact on the remaining gene expression values. Using
the bestNormalize package in the R programming language, we used a
10-fold cross-validation based data transformation strategy to
normalize each gene’s expression across samples (Peterson and
Peterson, 2020).

Gene-sets

We downloaded from the Molecular Signatures Database
(MSigDB) candidate gene-sets that represent commonly known
“hallmarks” of cancer (Liberzon et al., 2011). To ensure their
relevance and non-redundancy, we selected 8 hallmark gene-sets
with at least 25% overlap with the expressed genes (see above text on
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preprocessing) but mutual gene-set overlap of less than 10%. The
selected hallmark gene-sets are: Epithelial Mesenchymal Transition
(EMT, size = 81) (Sun et al., 2020), Angiogenesis (size = 12) (Madu
et al., 2020), DNA Repair (DNA_Rep, size = 42) (Paluch-Shimon
and Evron, 2019), Pi3k AKT MTOR Signaling (Pi3k, size = 28)
(Dong et al., 2021), Fatty Acid Metabolism (FAM, size = 41) (Xu
et al., 2021), P53 Pathway (P53, size = 50) (Gasco et al., 2002),
Estrogen Response Early (ERE, size = 63) (Oshi et al., 2020), and
Estrogen Response Late (ERL, size = 62) (Takeshita et al., 2021).

CAF markers

A selected set of five CAF phenotypes, which were represented
by the expression of the corresponding marker genes (the respective
phenotypes are noted in parentheses): CXCL12 (CAF-S1), FBLN1
(mCAFs), C3 (inflammatory CAFs), S100A4 (sCAFs), and
COL11A1, which is a fibroblast-specific “remarkable biomarker”
that codes for collagen 11-α1 and shows expression gain in CAFs

(Vázquez-Villa et al., 2015). For details on the CAF markers, see
reviews, e.g., (Gascard and Tlsty, 2016; Lee et al., 2020).

Statistical analysis

Similar to our previously developed GSA methods, GWLCT
is motivated by a research gap, more precisely, the need for a
statistical method taking into account spatial correlations across
genes. The main goal of GSA methods is to efficiently screen large
catalogues of a priori defined sets of genes sharing common
biological functions, easily accessible to GSA users. GSA methods
are testing for associations of such sets with a phenotype. To the
best of our knowledge, there are no such methods developed for
situations where gene measurements at spatial proximity could
exhibit higher correlations. What is popularly known as Tobler’s
“first law of geography” states that “everything is related to
everything else, but near things are more related than distant
things.” Based on this fundamental concept, which we borrowed

TABLE 1 An evaluation of cancer hallmark gene-sets associated with five continuous phenotypes C3, COL11A1, CXCL12, FBLN1, and S100A4 using the aspatial
methods including GSEA, LCT, and RF-GSEA on a single cell breast cancer study.

Method Phenotype Gene-set name Gene-set size p-value Q-value

GSEA (No phenotype specified) Not Applicable EMT 81 0.504 0.648

ANGIOGENESIS 12 0.227 0.486

DNA_Rep 41 0.425 0.763

PI3K 28 0.059 0.155

FAM 40 0.623 0.648

P53 50 0.009 0.010

ERE 64 0.178 0.486

ERL 62 0.297 0.486

Global LCT C3, COL11A1, CXCL12, FBLN1, S100A4 EMT 81 <0.001 <0.001

ANGIOGENESIS 12 <0.001 <0.001

DNA_Rep 41 <0.001 <0.001

PI3K 28 <0.001 <0.001

FAM 40 <0.001 <0.001

P53 50 <0.001 <0.001

ERE 64 <0.001 <0.001

ERL 62 <0.001 <0.001

RF-GSEA C3, COL11A1, CXCL12, FBLN1, S100A4 EMT 81 <0.001 <0.001

ANGIOGENESIS 12 <0.001 <0.001

DNA_Rep 41 <0.001 <0.001

PI3K 28 <0.001 <0.001

FAM 40 <0.001 <0.001

P53 50 <0.001 <0.001

ERE 64 <0.001 <0.001

ERL 62 <0.001 <0.001
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from spatial data analysis, we provide below statistical
derivations of an extension of LCT to geographically weighted
spatial omic data.

Consider gene expression data of “g” gene variables
(X1, X2, X3, . . . , Xg), “L” cells (points) and “K” sets of genes at
locations given by 2-dimensional Cartesian coordinates. The LCT
approach assumes a null hypothesis in which there is no association
between a linear combination of X1, X2, X3, . . . , Xg with the
phenotype (Dinu et al., 2013). For a local point (ul, vl), we can
define a univariate regression as:

Y ul,vl( ) � α0 ui,vi( ) + α1 ul,vl( )β1X1 ul,vl( ) + . . . + +αg ul,vl( )βgXg ul,vl( )

+ ε ul,vl( )

where

Z β( ) ul,vl( ) � α0 ul,vl( ) + α1 ul,vl( )β1X1 ul ,vl( ) + . . . + +αg ul,vl( )βgXg ul,vl( )

is the linear combination of X1, X2, X3, . . . , Xg and
ε(ul,vl) ~ N(0, σ2). For each location in the dataset, we can find
the most significant linear combination as follows:

βpul,vl( ) � Max ρ Y ul,vl( ), Z ul,vl( )( )[ ]
� Max

βTul,vl( )SCov Y,X( ) ul,vl( )β
T
ul,vl( )

βTul,vl( )SCov X,X( ) ul,vl( )β
T
ul,vl( )

⎡⎣ ⎤⎦
where SCov represents the weighted shrunken covariance matrix for
each calibration location. The weights are generated using a bisquare
kernel function, based on the Euclidean distance between two points
l and l′

dll′ �














































Longitudel − Longitudel′( )2 + Latitudel − Latitudel′( )2

√
and bandwidth hl, which determines the radius around the point l.
Here, the optimal bandwidth is calculated using cross validation
(CV) based on the sum of squared errors at each cell point and set of
genes:

CV � ∑K
k�1

∑C
i�1
∑C
j�1

Y ui .vi( ).k − Ŷ uj ≠ i .vj ≠ i( ).k( )2

The bandwidth with the least measure of CV is used for
localization. Weighting functions of bisquare and tricube type
kernels are used to take the weighted location at l against
another location l′ into account. The bisquare kernel weighting
function is defined as:

wll′ ui.vi( ) � { 1 − dll′
hl

( )2[ ]2

; dll′ < hl 0 ; dll′ ≥ hl

and the tricube kernel weighting function as:

wll′ ui.vi( ) � { 1 − dll′
hl

( )3[ ]3

; dll′ < hl 0 ; dll′ ≥ hl.

For the weighting functions, the bandwidth can be determined
either beforehand (fixed distance) or as the distance between the point l
and its nearest neighbor (adaptive), which is predetermined as well.

The shrunken covariance matrix of the gene expression data
in the lth cell and around the estimated bandwidth (h) can be
written as:

SCov X.X( ) ul .vl( )

�

1
L − 1

∑L
l′�1

wll′ x1ll′ − �x1( ) x1ll′ − �x1( ) /
1

L − 1
∑L
l′�1

wll′ x1ll′ − �x1( ) xgll′ − �xg( )
..
.

1 ..
.

1
L − 1

∑L
l′�1

wll′ xgll′ − �xg( ) x1ll′ − �x1( ) /
1

L − 1
∑L
l′�1

wll′ xgll′ − �xg( ) xgll′ − �xg( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
SCov Y .X( ) ul .vl( )

�

1
L − 1

∑L
l′�1

wll′ yll′ − �y( ) x1ll′ − �x1( )⎡⎢⎣ ⎤⎥⎦2 /
1

L − 1( )2 ∑
L

l′�1
wll′ yll′ − �y( ) x1ll′ − �x1( )∑L

l′�1
wll′ yll′ − �y( ) xgll′ − �xg( )

..

.
1 ..

.

1

L − 1( )2 ∑
L

l′�1
wll′ yll′ − �y( ) xgll′ − �xg( )∑L

l′�1
wll′ yll′ − �y( ) x1ll′ − �x1( ) /

1
L − 1

∑L
l′�1

wll′ yll′ − �y( ) xgll′ − �xg( )⎡⎢⎣ ⎤⎥⎦2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using the weighted shrunken covariance matrices, the most
significant linear combination at location (ul, vl) can be determined
as the maximum Eigenvector of SCov(Y,X)(ul,vl)SCov(X,X)(ul,vl)−1

Combined significance mapping

We used the Fisher’s sum of log of independent p-values method
to calculate the combined significance (CS) of association of the K
gene-sets (e.g., 8 hallmarks in the present example) with a fixed
phenotype at each location. The sum X2 � (−2) × ∑K

k�1 logpk

follows a chi-square distribution with 2K degrees of freedom,
which yields a combined p-value CP corresponding to X2 at a
given location. Thus, the combined significance is computed asCS �
(−1) × logCP and plotted as a spatial heatmap.

Spatial cluster detection

Based on the count of significant gene-sets as determined by
GWLCT at a given location, spatial clusters are detected and
mapped for the user. For this purpose, assuming a Poisson
distribution of such counts over a grid of points placed on the
tumor space, scan statistics are computed with Openshaw’s
Geographical Analysis Machine (GAM) (Openshaw et al., 1987)
function as implemented in the R package DCluster.

Comparative analysis

A comparative analysis against popular aspatial GSA methods
should help the reader understand the relevance of GWLCT
extension to the GSA literature. In addition to GWLCT, the
global LCT, GSEA, and a Random Forest based GSEA (RF-
GSEA) (Chien et al., 2014) were also performed to identify the
global gene-sets associated with the outcome. In the domain of
regression, the random forest based technique is used when the
outcome of concern is a continuous phenotype. The GSEA ignores
the continuous phenotype and checks if the gene-sets show
statistical difference between biological states. The RF-GSEA
combines bootstrap and classification tree to find the proportion
of explained variance of a continuous phenotype for a specific gene-
set. The small sample size issue has been previously considered in
these methods so that variable selection is conducted only from a
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small random subset of the variables. Moreover, the RF-GSEA is able
to accommodate a continuous phenotype when the associations
between genesets and phenotypes are non-linear and contain
complicated high-order interaction effects (Chien et al., 2014).
Next, we give details of the simulation studies, including our
approach to generate low and high spatial correlations among
genes’ expressions. This is a key aspect in observing and
understanding advantages of GWLCT over aspatial methods in
our study.

Simulation study

Several scenarios were designed to find the impact of simulation
components such as bandwidth, number of coordinate points,
number of genes, genes spatial association, phenotype-genes
spatial association, and gene set probability on the statistical
power of the methods. Similar to our previous simulations studies
for LCT and its extensions (Wang et al., 2014), we generated a
random subset of genes. The first step of the simulation was designed
by making assumptions for the spatial distribution of the genes and
phenotype. To do so, we used spatial and spatio-temporal
geostatistical modeling, prediction and simulation function in R
software called “gstat”. This function creates an R object with the
necessary fields for univariate or multivariate geostatistical

prediction, its conditional or unconditional Gaussian, or indicator
simulation equivalents (Pebesma, 2004). Values were set for the
variogrammodel components as 10 for the partial sill, 3 for the range
parameter, 10 for the nugget, and 30 for the number of nearest
observations that are used for the kriging simulation. Moreover, a
Gaussian model was assumed for the distribution of the gene
expressions and phenotypes.

In the next step, the GWLCT components were defined. For the
gene-set matrix, a binomial distribution was used to generate a
membership indicator matrix in which the proportions of genes
belonging to the gene-sets were characterized using the probability
parameter (Low = 0.3, and High = 0.9). Three different values for the
spatial covariance were considered to imply the spatial association
among genes’ expressions. The higher the spatial covariance, the
lower the spatial association. Thus, a variance of 50 was considered
as high which gives a corresponding low spatial association, a
variance of 5 a moderate spatial association, and a variance of
0.1 a high spatial association.

As well, the spatial association between the continuous
phenotype and the gene expression data was taken into account
by a spatially and normally distributed phenotype generated from
the gene expression data with the same parameters as for the spatial
association among genes’ expressions. High and low levels for the
radius/bandwidth around each location for the local analyses were
20 and 6, respectively. The number of coordinate points was 10 by

FIGURE 1
Scan statistics are used to detect and demarcate the putative clusters of cells which are enriched with selected gene-sets. The spatial clusters are
defined on the tumor space by a scan statistic based on a Poisson distribution. At the locations where the scan statistics exceed a pre-specified threshold,
the detected clusters for each phenotype are shown in white.
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10 for low, and 100 by 100 for high. Finally, the two levels of low and
high were defined for the total number of genes as 100 and
1000 respectively.

The above simulation components resulted in 144 scenarios in
which an adaptive bandwidth kernel with the bisquare weighting
function was used. The number of permutations was fixed and
considered as 500, and the threshold of significance was assumed as
0.05. The methods were compared based on their statistical power.
An average of statistical powers across the locations was computed
and used as the performance measure for GWLCT.

R programming software version 4.1.1 is used for data analysis
and packages such as corpcor (Schafer et al., 2017), qvcalc (Firth and
Firth, 2020), stringr (Wickham, 2010), and plotly (Sievert, 2020).

Results

The three aspatial methods, LCT, RF-GSEA, and GSEA, were
used to identify the “hallmark” cancer gene-sets that are significantly
associated with five spatially continuous CAF phenotypes
represented by their known markers C3, COL11A1, CXCL12,
FBLN1, and S100A4 in the single cell breast cancer spatial
transcriptomic data. The three aspatial methods, the phenotype,
the size of each gene-set, p-value of the test, and the corresponding

q-value are shown in Table 1. We note that such global p-values
cannot be obtained from our proposed GWLCT, as this method is
spatial in nature and assesses significance at every coordinate point
rather than an overall significance measure. Using GSEA, the only
significant gene-set was P53 (p-value = 0.009, q-value = 0.010). The
results of LCT and RF-GSEA revealed that all the gene-sets are
strongly associated with the five continuous phenotypes with
p-value and q-value less than 0.001. This was expected since the
candidate gene-sets represent commonly known “hallmarks” of
cancer (Liberzon et al., 2011). The breast cancer data analysis
interpretation resulting from the three aspatial methods
considered is limited to the global significance values. This is an
important limitation of aspatial methods. For the remainder of this
section, we emphasize the advantages of GWLCT results
interpretation in the context of spatial data analysis. Since the
main advantage of GWLCT consists of an analysis beyond global
significance, we study specifically at locations across the tumor
space. Scan statistics provide a well-established computational
method for detecting spatial clusters based on point count data.
We computed scan statistics to detect the putative clusters of spatial
regulation based on the number of cells with significantly enriched
gene-sets occurring at locations where such counts exceeded what
may be expected from an underlying Poisson distribution defined
over the tumor space. The clusters are demarcated as white regions

FIGURE 2
The interactive plots (3D) for the 5 phenotypes at Low, Medium and High CAF levels. Further information about the number and the name of
significant gene-sets at each location can be obtained by rotating, zooming, and clicking each dot. The green, orange and blue dots reflect high, low, and
medium CAF levels. (This figure is an illustrative static snapshot of the interactive 3D plots accessible online at https://mortezahaji.github.io/GWLCT-
Project/.)
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in Figure 1. Notably, the 3D plots, which are instrumental in
showcasing the advantages of GWLCT over existing aspatial GSA
methods, are presented here as well as at the following links on
GitHub: https://mortezahaji.github.io/GWLCT-Project/. By clicking
on any point in the plot, one can find the coordinate of the cell,
corresponding number and name of significant gene-sets at three
different levels: Low, Moderate, and High expressions of the selected
CAF marker gene.

In addition, for local GWLCT, three different CAF categories
were identified as Low (CAF gene expression less than 0.5),
Moderate (CAF gene expression between 0.5 and 1), and High
(CAF gene expression exceeding 1). Figure 2 demonstrates a

snapshot of the 3D plots for the 5 phenotypes at three CAF
levels. A snapshot of the 3D plot for the phenotype COL11A1 at
high CAF level is also demonstrated in Figure 3. One is able to detect
the frequency as well as the names of significant gene-sets at each
location (based on the 8 gene-sets) by clicking on each dot, and
rotating and zooming into the 3D interactive plot available at the
above-mentioned website. The 3D plot in Figure 3 is divided into
eight 2-dimension plots in Figure 4 so that one can evaluate the
distribution of one to eight significant gene-sets across the regions
with COL11A1 expressed at high CAF level.

Finally, Figure 5 shows the combined significance (CS) heatmap
of the 8 hallmarks for COL11A1 phenotype at a high CAF level.

FIGURE 3
A snapshot of the 3D plot for COL11A1 at high CAF level. The number of significant gene-sets are shown in 8 colors (based on 8 gene-sets). The
interactive plots can be accessed at: https://mortezahaji.github.io/GWLCT-Project/.
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Higher values of CS in Figure 5 represent locations with a combined
significant gene-set.

Simulation study results

Supplementary Table S1 and Figure 6 shows the estimated
statistical power of the methods using the simulation study.
GSEA has the least statistical power among the four methods at
all the 144 scenarios. Using 500 iterations in the simulation study, it
was revealed that regardless of any parameter in the simulation,
GSEA and GWLCT always have the least and most statistical power
among the methods, respectively. Overall, we note that bandwidth,
number of coordinate points, gene-set size, or total number of genes
in each simulation experiment, do not affect the statistical power
performance of the methods, a desirable feature shared by sound
gene-set analysis methods.

To be particular, by considering GWLCT as the reference
category and using Dunnett’s test, we compared the average
power of GWLCT against Bulk GSEA, LCT, and RF-GSEA by
varying from Low to Moderate to High levels of six different
parameters, as shown in Figure 6A through F. (A) For the low
bandwidth, the mean power of GWLCT was significantly higher
than LCT and Bulk (p < 0.001). The GSEA and GWLCT were not
statistically different in terms of statistical power (p = 0.534). For the
high bandwidth level GWLCT was not different with the GSEA (p =
0.709), and LCT (p = 0.126) and different with Bulk (p < 0.001). (B)
GWLCT performed better than Bulk (p < 0.001 for low and high
level of number of coordinate points), and LCT (p = 0.0.021 for low
level of number of coordinate points, and p = 0.002 for high level of
number of coordinate points). No statistical difference was found
between GWLCT and GSEA (p = 0.541 for low level of number of

coordinate points, and p = 0.715 for a high level of number of
coordinate points). (C) GWLCT performed better than Bulk (p <
0.001 for low and high levels of number of genes), and LCT (p =
0.004 for low level of number of genes, and p = 0.019 for high level of
number of genes) and the same with GSEA (p = 0.599 for low level of
number of genes, and p = 0.590 for high level of number of genes).
(D) GWLCT performed better than Bulk and LCT (p < 0.001 for low
and high levels of gene-set probability (size of gene-sets)). No
statistical difference was found between GWLCT and GSEA
(p = 0.397 for low level of gene-set probability, and p =
0.820 for high level of gene-set probability). (E) For the high
level of spatial association between genes and continuous
phenotype, GWLCT outperformed Bulk (p < 0.001) and LCT
(p = 0.005). No statistical difference was found between GWLCT
and GSEA (p = 0.778). For the moderate level of spatial
association between genes and continuous phenotype, GWLCT
outperformed Bulk (p < 0.001) and LCT (p < 0.001). No statistical
difference was found between GWLCT and GSEA (p = 0.399). For
the low level of spatial association between genes and continuous
phenotype, GWLCT outperformed GSEA (p < 0.001), Bulk (p <
0.001), and LCT (p < 0.001). (F) For the high level of spatial
association between genes, GWLCT outperformed Bulk (p <
0.001). No statistical difference was found between GWLCT
with GSEA (p = 0.849) and with LCT (p = 0.523). For the
moderate level of spatial association between genes, GWLCT
outperformed Bulk (p < 0.001) and LCT (p = 0.012). No statistical
difference was found between GWLCT and GSEA (p = 0.768). For
the low level of spatial association between genes, GWLCT
outperformed Bulk (p < 0.001), and LCT (p < 0.001). No
statistical difference was found between GWLCT and GSEA
(p = 0.528).

FIGURE 4
2D plots indicating the number of significant gene-sets across
the tumor space for COL11A1 at high CAF level.

FIGURE 5
The spatial heatmap shows the Combined Significance (CS) of
association of the 8 hallmarks with the COL11A1 phenotype at high
CAF level. Bigger the value of CS at a location, the corresponding point
is shown in darker red.
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The GSEA statistical power is affected by all the simulation
variables, however this is mostly due to the zero power of some
scenarios. The performance of GSEA is affected by larger number of
coordinate points, higher number of genes, higher spatial
association among gene expressions, as well as between the
phenotype and the gene expressions, and higher number of genes
at the gene-sets leads to higher statistical power. Obviously, GSEA is
in a lower class of statistical power compared to the other three
approaches. Regardless of the scenarios, the results of one-way
analysis of variance shows that there are significant differences in
the statistical power of LCT, GWLCT, and RF-GSEA (F = 7.842, p <
0.001). Tukey’s multiple comparison revealed that the difference is
due to lower statistical power of LCT compared to the other two
methods. Considering a fixed effect for other variables in the

simulation, one can find out that LCT has a lower statistical
power compared to the other two GWLCT and RF-GSEA when
the band width is low. For a study with a low number of coordinate
points, the power of GWLCT is significantly higher in comparison to
LCT. The almost flat trend of power for the methods also reveals that
the performance of the methods is robust against this parameter. As
the number of genes increases, the power of LCT reduces
significantly compared to GWLCT and RF-GSEA. Moreover, as
the amount of spatial association among genes decreases, the power
of LCT is significantly lower compared to GWLCT and RF-GSEA.
At high levels of genes spatial association, LCT performs reasonably
well compared to GWLCT and RF-GSEA, as it is designed to
accommodate correlations across genes in a set or biological
pathway, via a shrinkage correlation matrix. However, at lower

FIGURE 6
Comparing the average statistical power of each method across various levels of simulation parameters. Considering GWLCT as the reference
category and using Dunnett’s test, we compared the average power of GWLCT (green) against Bulk GSEA (red), LCT (blue) and RF-GSEA (purple) by
varying from Low to Moderate to High levels of the following parameters: (A) the kernel bandwidth, (B) the number of coordinate points, (C) the number
of genes, (D) gene-set probability (size of gene-sets), (E) the spatial association between genes and continuous phenotype, and (F) the spatial
association between genes. For detailed interpretation of the results in terms of the testing significance given by the p-values, see text.
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levels of gene spatial correlation, GWLCT and RF-GSEA
outperform LCT. Moreover, as the amount of spatial association
between phenotype and genes increases, the power of GWLCT is
significantly higher compared to LCT and RF-GSEA. In addition,
the statistical power is robust against the probability of genes
belonging to the gene-sets, which is directly related to gene-set
size. Although the power increases slightly for all the methods when
the size of gene-sets are larger, the increase is not statistically
significant between Low and High levels of binomial probability
parameter.

Therefore, the most important variables influencing statistical
power are the spatial association features. There is a dose response
trend of improvement in statistical power for each method, as spatial
association among genes increases. The GWLCT outperforms all
other methods in all levels of low, medium, and high spatial
association among genes. The performance gap narrows down as
we move from Low to High levels, indicating higher magnitudes of
correlations are easier to be picked up. Interestingly, GWLCT picks
up even on subtle spatial associations across genes, exhibiting the
largest improvement in statistical power over other methods at Low
spatial association levels. The spatial association between phenotype
and gene expressions also plays a key role in method performance.
When there is a low spatial association between phenotype and
genes, GWLCT is still able to detect true significant associations
between gene-sets and phenotype, while all other methods have a flat
zero statistical power. Similar to the spatial associations across genes,
GWLCT picks up on subtle signals for low levels of phenotype-gene
expression levels of spatial associations. GWLCT outperforms all
other methods at Moderate and High spatial association between
phenotype and genes, with the highest statistical power of 0.95,
across all simulation scenarios. A significant increase happens when
the spatial association between phenotype and genes increases. The
highest power for the GWLCT and RF-GSEA can be achieved when
both spatial association variables are high. In contrast to GWLCT,
the RF-GSEA loses its statistical power when the spatial association
among the genes is at Low levels. GWLCT can identify more subtle
signals of spatial association, which is an attractive property of the
proposed method. More details on the statistical power of the
methods in different circumstances can be found in the appendix
Supplementary Table S2.

Discussion

Observations of heterogeneity of cell subpopulations in a tumor
and the complex interplay of functions involved in the diverse
morphological and phenotypic profiles of cancers have a long
history. Even in the 19th century, pleomorphism of cancer cells
within tumors was observed by the “father of modern pathology”,
Rudolph Virchow. More recently, in the 1970s, G.H. Heppner,
I.J. Fidler and others showed the existence of distinct
subpopulations of cancer cells in tumors, which differed in terms
of their tumorigenicity, resistance to treatment, and potential to
metastasize. Heppner reviewed the concept of tumor heterogeneity
in 1984, and recognized cancers as being composed of multiple
subpopulations (Heppner and Miller, 1983), which leads to
heterogeneity of cellular morphology, gene expression,
metabolism, motility, proliferation, etc (Marusyk et al., 2020).

Importantly, ITH has been shown to be associated with poor
outcome and decreased response to cancer treatment multiple
human cancer types implying a general role in therapeutic
resistance (Landau et al., 2013; Patel et al., 2014; Zhang et al., 2014).

The past decade has revealed the immense potential of
immunotherapy in cancer. Therapies that promote anti-tumor
immune responses have resulted in marked and durable
responses in subsets of patients in several cancers (Egen et al.,
2020). For instance, abundance of tumor-infiltrating lymphocytes
(TILs) and absence of lymphovascular invasion were found to be
useful prognostic factors for disease-free survival in patients with
HR-/HER2+ breast cancer who were treated using adjuvant
trastuzumab (Lee et al., 2015). Spatial transcriptomic approach
(Ståhl et al., 2016) was used to identify a type I interferon
response overlapping with regions of T Cell and macrophage
subset co-localization in HER2+ breast tumors (Andersson et al.,
2021). To address the complex interplay between different
molecular backgrounds that can characterize ITH with spatial
precision, we used GWLCT at a given location in the tissue
space to test for the association between a phenotype of interest
and different selected gene-sets. The CS score to summarize the
overall significance of such associations is computed and visualized
with a spatial heatmap.

Gene-set analysis (GSA) is a well-established methodological
approach in bioinformatics to test for significant regulation of a
selected collection of genes across given samples that represent
distinct outcomes. At the level of single cells, GSA could be
extended to samples that are individual cells which admit to
different phenotypes of interest (Dinu et al., 2021). Furthermore,
for spatial single cell analysis, such phenotypes would ideally have a
spatially correlated and continuous representation. The gene-sets
used in GSA are typically curated based on existing experimentally
obtained knowledge of genes and their involvements in molecular
pathways. In the present study, for illustrative purposes, we selected
a collection of 8 gene-sets that represent certain distinctive
hallmarks of cancer (Hanahan, 2022). To test for their
enrichment in relevant intratumor contexts, we selected
5 different CAF phenotypes of interest since CAFs are well-
known for their contribution to heterogeneity and plasticity in
the tumor microenvironment (Ping et al., 2021).

The usual methods for GSA involve one of the two major
approaches: (a) competitive, which examines if the correlation of
a gene-set with the phenotype is the same as the other gene-sets, and
(b) self-contained hypothesis, which investigates if the expression of
a gene-set changes by the experimental condition. Our LCT method
belongs to the former approach which is more likely than traditional
methods to detect the regulation of a functional process or biological
pathway that is significantly associated with the gene expression
results of a given SCA experiment (Dinu et al., 2021). Interestingly,
LCT also extends to longitudinal (Khodayari Moez et al., 2019),
multivariate and continuous outcomes (Wang et al., 2014), which
are capabilities that we built upon here for providing more accurate
representation of single cell level stochasticity of the transcriptomic
behavior than that of the univariate and discrete class labels typically
used in traditional bulk sample studies.

Simulations, along with real omic data analysis, have served as a
powerful and effective tool for establishing the performance of new
GSA methods. Past studies have thus used simulation for
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comparative analysis of different criteria of performance of LCT and
other major GSA methods. It was found that LCT has type I error
and power that are comparable to MANOVA-GSA (Wang et al.,
2014) and superior to SAM-GS (Dinu et al., 2007), particularly at
higher magnitudes of correlation values across gene-sets (as is
commonly noted during GSA). In terms of computational
efficiency, LCT outperformed both methods. In another
simulation study, LCT also outperformed GSEA (Moez et al.,
2018). Along this direction, therefore, in the present study, we
conducted a large number of simulations to compare the
performance of GWLCT against multiple known GSA techniques
based on a variety of well-defined criteria under different
experimental assumptions (or scenarios). Interestingly, statistical
power did not change with a variation in set size, number of
coordination points or bandwidth, or total number of genes in
the simulation dataset, for any of the methods considered, which
represent desirable properties for sound GSA methods. Larger
spatial correlation across gene expression measurements and
between genes and phenotype are key aspects of improved
statistical power across our simulation experiments.

In the present study, we introduced GWLCT as a new
computational platform that presents a fusion of ideas from
spatial data analysis (GWR) and bioinformatics (GSA). We
understand that the dual modes—both spatial and single-cell—in
which GWLCT provides a joint extension to other GSA approaches
places it in a unique category thus making it difficult to compare
with the existing methods. Yet, we conducted extensive simulation
studies which revealed better performance of GWLCT based on
several criteria as compared tomany knownGSAmethods that work
either on bulk transcriptomics for different scenarios or aspatial
version of single-cell transcriptomics. In particular, the use of
multiple different kernels and flexible (adaptive) choice of
corresponding bandwidths for geographical weighting allows the
linear combination test to test for local associations between selected
gene-sets and phenotypic contexts within a tumor sample. Thus,
GWLCT provides a novel spatial version of gene-set analysis using
high-resolution spatial scRNA-seq data. It does have some
limitations that will be addressed in our future work. For
instance, as it is difficult to determine a priori the precise spatial
scale at which a gene-set or pathway may be regulated in a given
phenotypic context, new multi-scale geographical weighting
techniques (Fotheringham et al., 2017) may prove to be useful.
We will also extend GWLCT to other omic data as we have
previously demonstrated with LCT (Khodayari Moez et al.,
2019). As spatial single cell omic platforms become increasingly
popular, GWLCT will enrich the ongoing efforts in this rapidly
emerging area of research (Zhang et al., 2014; Eng et al., 2019;
Hajihosseini et al., 2022). Clinical verification of such new analytical
methods will require follow-up studies that must be systematically
designed for that specific purpose.
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