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                                                 Abstract                                

Randomised controlled trials (RCTs) are widely accepted as the optimum design 

for comparing two or more medical therapies. Chance baseline imbalance (BI) 

through randomization opens the estimate of effect to bias. Statistical methods 

such as change score analysis (CSA) and analysis of covariance (ANCOVA) - 

are commonly used to deal with BI. However, unadjusted analysis by analysis of 

variance (ANOVA) is still common. 

This study examined precision, power, efficiency and bias of estimates of effect 

associated with ANOVA, CSA and ANCOVA in RCTs with a single post-

treatment assessment of a continuous outcome variable. A total of 210 

hypothetical trial scenarios were evaluated; each was simulated (1000 iterations 

per scenario) using combinations of specific levels of treatment effect, covariate-

outcome correlation, direction and level of BI. Evaluation was also performed on 

three empirical trial datasets, which showed different baseline-outcome 

correlations. 

Precision and efficiency of CSA were not better than those of ANOVA unless 

baseline-outcome correlation exceeded 0.5. Depending on the level of baseline-

outcome correlation, the sample size required at a given level of nominal power 

can be reduced by up to 80% using ANCOVA. Conditionally, both ANOVA and 

CSA are prone to false-negative or false-positive error. When BI exists in the 

same direction as treatment effect, the conditional power to detect the unbiased 

effect by ANCOVA falls below the nominal power in most trial scenarios. Also the 

review of current practices regarding covariate adjustment shows that whereas 
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over 60% adopt appropriate (modelling and stratified analysis) statistical 

adjustment, the most widely used single analytical approach is change. Overall, 

minimum covariate-outcome correlation of 0.3 is necessary but not sufficient to 

consider a covariate for inclusion in the model for adjustment. Appropriateness of 

CSA depends largely on baseline-outcome correlation and direction of 

imbalance. ANOVA is reasonable if the prognostic strength of the covariate is 

low. ANCOVA is the optimum statistical strategy regardless of BI. 
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Chapter 1: Introduction 
 

1.1 Background information  

Randomised clinical trials (RCTs), also referred to as randomised controlled 

trials, have been described as the gold standard and widely accepted as the best 

trial design for comparing two or more medical therapies or health care 

interventions (McLeod et al, 1996; Grimes & Schulz, 2002a). This claim, though, 

is correct only if the trial is appropriately designed, conducted and reported 

(Schulz et al 2010 – CONSORT statement). RCTs offer solutions to some of the 

issues that have been raised against observational studies. Kang et al (2008) 

argue that treatment differences identified from observational designs, rather 

than from experimental clinical trials are subject to methodological weaknesses, 

including confounding, cohort effects1 and selection bias. The simplest and 

perhaps the most popular type of clinical trial is the two-group parallel design, in 

which the study participants on recruitment to the trial are randomised to either 

one of the two treatment groups (Altman, 1991; Overall & Doyle,1994; Tu et al, 

2000; Cook & DeMets, 2008; Schulz et al 2010 – CONSORT statement).  

A major principle of RCTs is the random allocation of participants to treatment 

groups. The essence of a randomization exercise is to bring about comparable 

treatment groups. The groups are expected to be similar in factors – known or 

unknown – that are related to the prognosis of the outcome or condition of 

                                            

1
 Variations in characteristics of an illness over time among individuals who are defined by some shared 

temporal experience, such as year of birth (Maggio et al, 2001). 
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interest. These factors are referred to as prognostic factors. For the investigator 

to draw a valid inference on a treatment effect it is assumed that potential 

covariates are evenly distributed between the treatment groups. In other words, it 

is necessary that the treatment groups be balanced at baseline in terms of 

prognostic factors for the investigators to be able to correctly attribute change in 

outcome to the treatment intervention (Altman & Dore, 1990). 

However, practical experience has suggested that such balance in covariates 

between groups is often not attained with randomisation (Tu et al, 2000; Altman 

& Dore, 1990). The resultant imbalance subtly opens the trial intervention to a 

degree of misrepresentation of estimates of its effect. Thus, the need for a 

correct and more reliable inference on the effect of interventions under trial has 

led to efforts to try to ensure that balance is achieved in the distribution of 

covariates across the treatment groups. It was observed by Kent et al (2009) that 

even when the treatment groups received the same treatment and in the 

absence of allocation bias, treatment outcome is not likely to be same for the 

groups when there is covariate imbalance. They argue that for this reason, 

unadjusted analysis that does not take this imbalance in groups’ covariate 

distribution into account, may be both inefficient and yield an inaccurate estimate 

of the treatment effect. 

The issue with covariate imbalance between treatment groups is partly design 

and partly statistical in nature. It is regrettable to note that several studies with 

great prospect at onset have failed to maximise their potential owing to issues 

related to improper design; especially in relation to imbalance in risk factors 
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between treatment groups. In their article, Rosenberger and Sverdlov (2008) 

recall the termination at an early stage of a trial of the role of erythropoietin in 

maintaining normal haemoglobin concentrations in patients with metastatic 

cancer. This was intended to be a major study involving 139 clinical sites and 

939 patients. In the words of the investigators, (Rosenberger & Sverdlov 2008):  

...drawing definitive conclusions has been difficult because the study was not 
designed to prospectively collect data on many potential prognostic survival 
factors between treatment groups…. The randomization design of the study may 
not have fully protected against imbalances because the stratification was only 
done for one parameter, and was not at each participating centre… It is 
extremely unfortunate that problems in design… have complicated the 
interpretation of this study. Given the number of design issues uncovered in the 
post hoc analysis, the results cannot be considered conclusive. 

 

It is clear that covariate distribution and balance between treatment groups 

warrants careful consideration by researchers prior to starting the trial. 

However, it still appears that the statistical community is unclear on how to deal 

with covariates at the design stage, especially on the first line strategy for 

balancing important prognostic factors in the design of RCTs (Kernan & Makuch 

2001; Scott et al, 2002; Hagino et al, 2004; Taves, 2004; Rosenberger & 

Sverdlov, 2008). The general consensus seems to be that, whichever method is 

employed at the design stage to attempt balance in covariate distribution, an 

adjusted statistical analysis that takes into account important covariate 

imbalance should take precedence over the unadjusted analysis (Altman & Doré 

1990; Scott et al 2002; Hagino et al, 2004; Hernandez et al, 2004; Moore & 

Vanderlaan, 2007; Kent et al, 2009).  
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Various methods used at the design stage to attempt balance in prognostic 

factors between treatment groups include: blocking, stratification and 

minimisation. Also commonly used is the basic simple randomisation; the 

principle being that between-group inequalities are reduced through chance 

correction with increased sample numbers. However, each of these design 

methods has certain drawbacks. For example, with simple randomisation one 

may end up having unbalanced treatment groups, especially when the design is 

implemented on a study with a small sample size.2 Similarly, stratification breaks 

down with small sample sizes per unit of stratification. Also, it is limited in the 

number of stratification factors that can be included. When there are large 

numbers of covariates each presenting with multiple levels the stratification 

procedure requires that separate allocation lists be prepared at each level of an 

identified covariate (Matthews, 2000). Inevitably, such multi-stratification may 

pose logistical problems, making the whole exercise almost impracticable. For 

example, in a trial with four prognostic factors at levels 2, 2, 3 and 4 respectively, 

48 separate allocating lists have to be prepared and maintained for as long as 

the study lasts. Minimisation is not a pure randomisation procedure, as the next 

patient is allocated to a group based on an already determined attribute. Thus, 

the risk of selection bias, and subsequent applicability of crude statistical 

methods is in question. This explains the reason for reporting together both the 

                                            

2
 For a two arm trial, the chance of pronounced imbalance becomes negligible with n>200 (Lachin, 1988) 
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unadjusted analysis and the adjusted analysis that takes into account the 

minimisation factors.  

There is evidence indicating that adjusted analysis is more efficient than 

unadjusted analysis i.e. adjusted analysis gives an increase in statistical power 

(Hernandez et al, 2004; Wang & Hung, 2005; Moore & Vanderlan, 2007; Kent et 

al, 2009), improved type I errors (Hagino et al, 2004), provides increased 

precision of estimates of treatment effect (Tsiatis et al, 2007; Wang & Hung, 

2005), and reduced bias, giving more accurate estimates of the true value 

(Altman & Doré; 1990). It is important to note that covariate imbalance is not 

important for consideration unless it is in some way related to the outcome 

variable. Unless covariates have an established relationship clinically or 

physiologically with the outcome variable, it is unnecessary to attempt to balance 

them across the treatment groups (Assmann et al, 2000). An investigator 

therefore need not be concerned when treatment groups are not balanced in 

factors or attributes that are not related to the outcome measure of interest.  

 
1.2 Baseline imbalance 

A particular class of covariate imbalance between treatment groups is that which 

involves baseline difference in an outcome variable of interest. In the primary 

care setting, randomised controlled trials often involve quantifying a numerical 

outcome variable at baseline and repeating the same after treatment. 

Measurement of treatment effect often depends on the observed changes from 

the baseline value within a designated period of time after treatments have been 

administered. The period of time allowed to monitor treatment effect of such 
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therapies under investigation is referred to as the follow-up period. At such time, 

it is the change in the mean value of an outcome variable that is under 

investigation.  

For example, two or more diets may be compared for the mean change in body 

weight they produce Sacks et al (2009); two or more treatments for hypertension 

may be compared for the mean changes in diastolic or systolic blood pressure 

which they produce; two or more cancer therapies may be with respect to the 

mean changes in tumour size they produce Wieder et al (2005) and finally, the 

effect of exercise and diet on obesity may also be compared in osteoarthritis 

patients in terms of mean change in body mass index. In all of these empirical 

examples, the difference in baseline score of the outcome variable between 

treatment groups has a direct influence on the treatment effect. The fact that one 

group has a higher mean score at baseline reflects an unfair 

advantage/disadvantage for that group in relation to the other. Accordingly, a 

primary concern of this thesis is with the implications of the directions and 

magnitudes of chance baseline differences for the analysis of randomised 

controlled trials. 

 

1.3 Methods for statistical analysis of RCTs with baseline imbalance 

The choice of statistical methods for handling baseline imbalance is dependent 

on a number of factors. In the first instance, there are four such methods that are 

commonly used in the case of a single post-treatment outcome assessment. 

They are: analysis of variance (ANOVA) for direct comparison of average post-
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treatment scores between groups; analysis of covariance (ANCOVA); change 

score analysis (CSA) – essentially an analysis of variance based on comparison 

of change values, and percentage change. The last of these, however, is 

believed to be inefficient and inappropriate for the purpose of baseline 

adjustment, as it presents with poor power and yields estimates of effect with 

high variance (Vickers, 2001; Overall and Magee, 1992). For this reason an 

analysis of percentage change will not be presented in this study.  

 

Generally, the nature of the outcome variable plays a major role in determining 

the statistical method for covariate adjustment; for example, multiple linear 

regression for a quantitative outcome variable, logistic regression for a binary 

response, or Cox's proportional hazard models for time-to-event (e.g. survival) 

data (Assmann et al, 2000). Another method that has been used for covariate 

adjustment for a quantitative outcome variable is: hierarchical linear modelling 

(multi-level modelling), particularly when the post-treatment score is assessed at 

more than one follow up time point (Overall & Doyle, 1994). In view of the 

foregoing, it is important to restate that the evaluations in this thesis focus on 

methods that are used for statistical adjustment of baseline imbalance of a 

quantitative-numerical outcome variable for a single post treatment score 

(though similar implications may be drawn for non-numerical outcomes). It shall 

critically examine, under certain experimental conditions, the strengths and 

weaknesses of known statistical methods for adjustment for baseline imbalance 

and compare these with the unadjusted reference analysis. 



  

8 

 

1.4 Statistical methods of interest to the study 

In this study, specifically, analysis of variance ANOVA will be the reference 

unadjusted analysis for the study while ANCOVA is the model-based adjustment 

and CSA is a basic baseline statistical adjustment. The results from these three 

statistical methods shall be compared at various pre-determined experimental 

conditions mimicking a randomised controlled trial using simulated data. In 

addition, a further aim of this research thesis is to evaluate these methods of 

statistical analysis using empirical data from a number of primary care trials of 

musculoskeletal disorders within the Arthritis Research UK Primary Care Centre. 

Information shall be drawn on such trial attributes as: statistical power, efficiency, 

precision and bias of estimate of effect. ANCOVA has been used widely for 

covariate adjustment, especially when its underlying assumptions are met. Basic 

assumptions that underlie the use of ANOVA and ANCOVA models shall be 

established in the datasets before further statistical analyses and comparisons 

are performed.   

 

These three statistical methods have been variously used for a single post-

treatment assessment of a continuous outcome variable in randomised 

controlled trial settings. Although differences in effect estimates are evident 

among the three methods (Christensen, 1985), their comparative effectiveness 

has not been completely explored under several combinations of levels of 

various experimental conditions. In this thesis the appropriateness of each 

method is explored across a range of different experimental conditions typical of 
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clinical trial settings. This information is crucial to informing analysts on which 

statistical approach they should adopt for their statistical evaluation of the 

treatment effect in their clinical trial.   

   

1.5 Rationale  

Previous authors, though few in numbers (Wang & Hung, 2005; Tsiatis et al, 

2008) have reported the precision benefits of adjusted analysis over the 

unadjusted. They also reported that the benefits of adjusted analysis in 

randomised controlled trials extend to reduction of bias, thus guaranteeing an 

estimate of treatment effect that is close to the true value. However, it remains 

unclear the extent of the benefit and loss of precision and bias across different 

potential experimental conditions. Since both adjusted analyses in the context of 

this study, CSA and ANCOVA, operate on a different underlining principle, it is 

necessary to assess the impact of such difference on the various attributes of 

treatment effect estimate under the same trial conditions (for varying levels and 

directions of baseline imbalance, prognostic indication and various levels of 

treatment effect. By this means, the comparative strengths and weaknesses of 

these statistical methods under the same trial scenario will be made clear.  

 

There is no known study that has used the same datasets to assess the 

performance of these statistical methods (ANOVA, CSA and ANCOVA) in 

respect of all of the following attributes: precision of estimate, bias, statistical 

power and trial efficiency. Studies that have been carried out are characterized 
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by having considerable mathematical notation and expressions that render the 

findings inaccessible to non-mathematicians (Twisk & Proper, 2005). This study 

attempts to present findings in a simple and clear way within a clinically 

meaningful context that makes it accessible to non-specialists without 

compromising the theoretical framework on which it is based.  

 

It is not only the method of analysis used – unadjusted or adjusted – that can 

have a profound effect on the conclusion of a trial; the variable chosen for 

adjustment can also have marked influence (Altman, 1985; Beach and Meier, 

1989). Thus, there is a need to determine under what circumstance or at what 

time an adjusted analysis should be preferred to an unadjusted or vice versa, 

which covariates are to be selected for adjustment, and what method of 

adjustment should be used, given certain experimental conditions. Contrary 

views have been reported on the implication of using CSA as a method for 

statistical adjustment in an RCT (Senn, 1989b; Altman & Dore, 1990; Senn, 

1990) and this needs further investigation, for purposes of clarity and to facilitate 

informed decisions on when to use and when not to use particular methods. Trial 

situations in which model-based adjustment (ANCOVA) and basic adjustment by 

CSA will possibly yield different estimates need be well understood to provide 

guidance on future analysis of a randomised controlled trial with a continuous 

outcome variable. 

Previous authors on this subject have not yet fully explored various levels of 

experimental conditions in clinical trial settings and the impact they have on 
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precision, efficiency, statistical power and associated bias of estimates of effect 

of each of the statistical methods being studied. For example, the effect of 

direction and size of covariate imbalance, various levels of covariate-outcome 

correlation at different levels of anticipated treatment effect – small, medium and 

high (Cohen 1982) – need to be investigated. When imbalance at baseline is 

evident, the credibility of the crude estimate of effect becomes a matter of 

concern. At such time, researchers sometimes select those covariates with large 

imbalance for statistical adjustment. The practice whereby baseline scores 

between treatment groups are assessed using tests of significance has been 

variously criticised and condemned by different authors (Altman 1985; Schulz et 

al, 1994; Schulz 1995; Senn 1997). An attempt shall be made to evaluate the 

correctness of this practice in the context of this study and to provide information 

that may guide what, when and how to adjust in future clinical trials.  

Previous studies have performed comparative evaluations of different statistical 

approaches (ANOVA, CSA and ANCOVA) under a range of experimental 

conditions. Vickers (2001) in studying statistical power of these methods, with a 

similar design, considers a single level of treatment effect, equal allocation, 

different levels of correlation, and balanced treatment groups; no mention was 

made of direction and size of imbalance. In his master’s thesis, Sim (2003) 

considers only two levels of covariate-outcome correlation (0.1 and 0.5) and a 

single effect size, and did not consider statistical power and the relative 

efficiency of these methods. This PhD study proposes a more elaborate 

comparative study of the statistical methods involved and hope to use a different 



  

12 

 

approach that ensures efficient data simulation procedure in several 

combinations of factors: levels of baseline-outcome correlation, levels and 

direction of baseline imbalance, levels of treatment effect and statistical power. 

This PhD study is based on different simulation syntax from that which Sim used 

in his master’s thesis. The simulation program is similar however to Vickers’ 

(2001), in that it creates a shift on an existing baseline variable to represent 

treatment effect. Beach and Meier (1989) had previously used an algebraic 

procedure to compare certain attributes of the unadjusted and adjusted analysis; 

they also recommended a computer simulation approach to investigate the 

issue. 

 

1.6 Design methods for baseline imbalance  

Measures to create balance at the design stage include: stratified-blocking, 

minimization or dynamic allocation (covariate-adaptive randomization). There 

has been controversy among statisticians on whether or not a covariate-adaptive 

procedure should be used and if so, how. Against this background, a relatively 

new procedure known as covariate-adjusted response-adaptive (CARA) 

randomisation for ensuring balance in the distribution of covariates between 

treatment groups at the design stage was recently introduced (Rosenberger & 

Sverdlov, 2008). It is worth noting, however, that another popular measure to 

deal with covariate imbalance in the interest of gaining a more reliable estimate 

of treatment effect across groups is subgroup analysis (Assmann et al, 2000; 

Hernandez et al, 2003); though some authors have also warned against 

mishandling and erroneous reporting of subgroup analyses (Altman, 1991; 
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Matthews, 2000). Subgroup analyses suffer from inevitable loss in statistical 

power (Pocock, 2002; Cook & DeMets, 2006) and are therefore practicably only 

useful in terms of gaining better insight into which group may benefit most from 

the treatment. This concept is handled in chapter 2 section 2.5.5. 

 

1.7 Aims and objectives 

The primary aim of the study is therefore to examine, through simulated and real-

life data, the effect of combinations of different degrees of covariate-outcome 

correlations, different degrees of covariates imbalance, and different degrees of 

treatment effect, on:  

a) Bias in estimates of treatment effect  

b) Precision   

c) Statistical power of the methods; 

 For this simulation study, the actual (conditional) power of the statistical 

methods being studied is computed and defined for a particular scenario 

as the number of times the null hypothesis of no significant treatment 

effect was rejected in the simulations by each of the statistical methods 

multiplied by 100% (Vickers; 2001; Tu et al, 2005). 

d) Relative efficiency - for any given trial scenario, a more efficient trial will 

require fewer patients to have a stated level of power (usually 80 or 90%) 

to detect an important difference between two treatments (Kernan et al 

1999; Vickers, 2001; Kent et al, 2009). 
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Conclusions will also be drawn regarding the trade-offs between these properties 

(e.g. between the power of an analysis to detect an effect as statistically 

significant and its ability to provide an unbiased estimate of this effect). Results 

from ANCOVA in these scenarios will be compared with those from: 

1) An unadjusted one-way ANOVA (as the reference unadjusted analysis) 

2) CSA (as an alternative method of adjustment). 

  

1.8 Research methods to be used 

This study requires that several levels of experimental factors – such as the 

degree of baseline-outcome correlation, the levels of treatment effect, levels and 

direction of baseline imbalance – be variously combined. Each combination of 

levels of experimental conditions represents a hypothetical trial scenario. The 

only practical way these statistical methods (ANOVA, CSA and ANCOVA) can be 

studied at the same time in several trial scenarios in respect of the trial attributes 

mentioned earlier is through a program-driven computer simulation. Also the 

requirement to study several hypothetical trial scenarios and the need to study 

pre-specified levels of experimental conditions can only be guaranteed by a 

simulation procedure. For the purposes of this PhD, computer simulation of data 

will be carried out using STATA statistical software (version 10). The statistical 

program that shall be developed during the course of the study will be 

executable in the ‘do file’ facility of the STATA package. 
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Data will be simulated for a two-group RCT to represent a specific treatment 

effect in the outcome variable, and for small, medium and large correlations 

between the outcome variable and the covariate. Numerous scenarios 

representing different combinations of levels of parameters or experimental 

conditions (covariate difference, correlation with outcome, effect differences, 

sample size, nominal power, direction and size of baseline imbalance) will be 

investigated. These will be considered alongside parameter values that are 

observed in the empirical datasets (of the Centre’s musculoskeletal trials) to 

assess the impact of the imbalances and correlations on the work in our health 

field. Simulations shall be repeated 1000 times for each scenario and the 

evaluation estimates (of the ANOVA, CSA and ANCOVA models) averaged 

across the multiple outputs generated. In terms of scope and extent of 

experimental conditions involved, previous studies have not been as extensive 

as this study, which will consider 210 hypothetical trial scenarios – involving 

seven levels of covariate-outcome imbalance in both directions of treatment 

effect, five levels of baseline-outcome correlation, three levels of effect, and two 

levels of power (80% & 90%). Thus a total of 210,000 simulated datasets and 3 

empirical trial datasets will be studied, comparing the three statistical methods 

each time. 

Through a series of comparative analyses, this project will examine different 

situations involving adjustment for a continuous covariate in the analysis of a 

two-group parallel RCT. The focus of the study will be on the effects of a 



  

16 

 

covariate-adjusted analysis on important aspects of a statistical hypothesis test: 

precision, bias, power and statistical efficiency (sample size reduction).  

 

1.9 Data simulation  

Scientific data simulations are increasingly being employed to solve a wide range 

of problems. They have been widely adopted for studying concepts and issues 

that would have remained ordinarily difficult and almost impossible in a wide 

range of disciplines, for example; astrophysics, engineering, chemistry, 

environmental study (Abdulla et al, 2004). Data simulations have also been 

widely employed in medical sciences to facilitate informed decision. For 

example, researchers at Massachusetts Institute of Technology-Harvard MIT 

Division of Health Sciences and Technology were able, using mathematical 

models from simulated data, to study cardiovascular function, in particular 

orthostatic intolerance, among astronauts, and thus overcome the difficulty 

associated with interpretation of limited experimental data (Mark, 2007). Various 

medical researchers have also availed themselves of the opportunities data 

simulation offers to investigate patterns and distribution of disease for the 

purpose of informed preventive and curative recommendations. Mellor et al 

(2007) study of targeted strategies for tuberculosis in areas of high HIV 

prevalence was based on simulation. In another study, Hughes et al (2006) 

modelled tuberculosis in areas of high HIV prevalence based on simulated data. 

Various authors have also used simulated datasets when interest was in 

addressing a statistical problem such as varying parameters to illustrate a 

statistical concept or deepen understanding of a statistical process; for example, 
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Vickers (2001) used a simulation study to show how statistically inefficient the 

use of percentage change from baseline could be in an attempt to adjust for 

baseline. Rosenberger and Sverdlov (2008) used simulation to examine various 

ways by which covariates are handled in the design of clinical trials and came up 

with a new proposal called covariate-adjusted response adaptive (CARA) 

randomisation procedures. Hagino et al, (2004) used a simulation-based study to 

justify the use of minimisation over simple randomisation and stratified 

randomisation. Overall and Magee (1993) used a simulation procedure to study 

directional baseline differences and type I error probabilities in randomised 

controlled clinical trials.  

Data simulation procedures usually make use of specialized commands or 

syntaxes. The simulation work in this study was carried out in STATA version 10 

(see Appendix 1 for the linked STATA ‘do file’).   

 

1.10 Empirical trial data 

The study shall also investigate and compare the statistical approaches under 

real-life pragmatic conditions using a number of Centre datasets of randomised 

trials in primary care musculoskeletal disorders. The correctness of the usual 

practice of including a priori selected covariates (e.g. age and sex) in the model 

– without observable information on the levels of their prognostic importance – 

will be scrutinised. Information on what level of covariate-outcome correlations 

exist in musculoskeletal trial settings will be sought, along with typical treatment 

effect sizes based on nominated outcomes of interest in this setting. The effect 
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on bias and precision of including more covariates other than the baseline of the 

outcome variable in the model-based adjustment will be explored with respect to 

these empirical clinical trial datasets.   
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Chapter 2: Literature review 

2.1 Introduction 

This chapter is devoted to review of previous works on various issues and 

concepts related to design and statistical methods in clinical investigations 

especially randomised controlled trials. Although evidence abounds that 

randomised controlled trials present the desirable qualities expected of a design 

for medical investigations, it is sometimes not possible to carry out an RCT. 

Earlier trials focus on in vivo and animal-based research before rolling out into 

tests of human efficacy on a small number of subjects (e.g. phase 1 and 2 trials). 

These are largely concerned with determining whether a new intervention is safe 

(as well as potentially producing beneficial effects) and are carried out using 

adaptive sequential allocation approaches. If an experiment is not possible then 

medical research studies are concerned with observational evaluations (which 

are briefly reviewed, below). However, since this study is primarily concerned 

with randomised controlled trials, focus shall mostly be on concepts and issues 

related to this design method. 

2.2 Basic design in clinical research 

Medical research is carried out with set of objective(s); this to a very large extent 

determines how such studies should be designed. An investigator could have an 

idea of what to do in some cases but more often there is a choice of reasonable 

ways of designing a study. Clinical research occurs in two main arenas: 

experimental research and observational research. This classification is based 

on whether the investigator assigns the exposures (treatments) or whether a 
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clinical practice or a population characteristic was just observed (Grimes & 

Schulz; 2002b). Funai et al (2001) observed that observational studies are the 

more popular studies and dominate medical literature; perhaps because 

observational studies often guarantee a quicker result, are methodologically less 

demanding, and may also be relatively cheaper (most notably in the case of 

surveys and case-control designs). They are used to investigate factors or 

exposures that cannot be controlled. For example, in investigating possible 

association between passive smoking and lung cancer, individuals cannot be 

randomised into smoking or not smoking (Rothwell & Bhatia, 2007). 

 Von et al (2007) argue that observational studies are also essential for effective 

clinical practice; although, to make the most of the enormous potential of 

observational epidemiology to transform clinical practice and improve public 

health, studies must be designed and reported as rigorously as possible. This 

explains the reason for the development of recommendations by the 

Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) project on what should be included in an accurate and complete 

report of an observational study. Observational study design is basically divided 

into two groups based on whether there is a comparison or control group. An 

observational study design in which there is no control or comparison group is 

called a descriptive study, and when control group is present it is called an 

analytical study (Grimes & Schulz; 2002b). While analytical studies include case 

control and cohort studies, descriptive observational study designs include case 

reports, case series and cross-sectional studies.   
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The other arm of clinical research is the experimental design. Here, the 

investigators deliberately change or manipulate one or more variables 

(intervention variables) in an organised manner in order to examine the effects of 

so doing on one or more other variables (outcome variables). Experimental 

studies can either be a randomised controlled trial or a non-randomised 

controlled trial, depending on whether or not there is a random element to the 

allocation of participants to treatment groups (Grimes & Schulz; 2002b). A non-

randomised experimental design is also called a quasi-experimental design (Sim 

and Wright, 2000). Whereas quasi-experimental designs are discussed briefly in 

section 2.2.2, issues and concepts related to randomized controlled trials are 

treated afterwards following this section and in the remainder of this thesis. 

2.2.1 Descriptive and analytic observational studies 

Descriptive studies are the set of studies designed to elicit information on 

individuals’ health profiles with the aim of formulating hypotheses. They are 

sometimes a report of an unusual occurrence of clinical importance, which may 

be a disease condition or side effect of a treatment; for this reason, they are 

popularly regarded as opportunistic and unplanned. Descriptive studies also 

involve the assessment of a sample at one time with the aim of making 

statements on the distributional pattern of the event of interest. This does not 

however include inferring a causal relationship between exposure and the 

disease condition or the health related event (Grimes & Schulz, 2002b); a control 

group is usually needed for such a purpose. This thus implies that when a study 

design does not incorporate a control group then it might be difficult to draw 
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conclusion on the causal relationship between the exposure and the disease 

condition - no control no conclusion. Descriptive studies can be categorised into 

two main classes: those that deal with individuals and those that are concerned 

with populations. While case reports, case series report, cross- sectional studies, 

and surveillance relate with individuals, ecological deals with populations 

(Hennekens & Buring, 1987). Generally descriptive studies are used for 

planning; to generate information on trend analysis as obtained in surveillance, 

and to develop hypotheses about cause (Grimes & Schulz, 2002b). 

2.2.1.1 Case report 

A case report is a detailed report of an individual diagnosed with a specific 

condition. It is about the most elementary way of seeking and preparing 

information on the distribution of a health related event of interest. The simplest 

studies are descriptions of a single case (case report) or a number of cases 

(case series) that were encountered in clinical practice or routine disease 

surveillance (Callas, 2008). A classic example is the case series study of 5 

homosexual males who developed a rare pneumonia. This case series study led 

to the eventual discovery of HIV (The National Emergency Medical Services to 

Children Data Analysis Resource Centre – 04/04/09). The major weakness of 

case report and case series as observed is that without any frame of comparison 

for the cases, the meaning of any observed association is unclear (Callas, 2008).  

2.2.1.2 Cross-sectional study 

 This is also called a frequency survey or a prevalence study. Here researchers 

attempt to investigate both exposure and outcome at the same time in a 
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predefined population. Usually a sample of the population is taken and studied 

for the population characteristics of interest. The researcher provides information 

simultaneously on the frequency both of exposure to factor(s) of interest and of 

the disease condition. However, such information is not essentially meant to 

indicate causality, as the temporal sequence is often impossible to work out, 

given that exposure and outcome are measured at the same time (Bamgboye, 

2006).  

2.2.1.3 Case-Control study 

This study design starts with a group of people known to have the outcome of 

interest – usually disease condition – who are referred to as "cases". A 

comparison group of people without the outcome is then assembled – these are 

referred to as "controls". The two groups are usually matched on certain 

characteristics e.g. age, sex but not in terms of disease status (Sim & Wright, 

2000). Finally, the exposure history of both groups is compared and the results 

analyzed for any association between the exposure and the outcome. Past 

exposure is determined through interviews, questionnaires, medical record 

reviews, laboratory tests for biomarkers, or similar methods (Callas, 2008).  

Case-control studies are especially useful for outcomes that are rare or that take 

a long time to develop, such as cardiovascular disease and cancer. These 

studies often require less time, effort, and money than cohort studies (Grimes & 

Schulz, 2002b). A drawback with this study design is that it can be very 

challenging to create a valid control group. The controls should represent the 

population from which the cases arose with regard to past exposure history, but 
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in practice they are often not entirely representative. Another disadvantage of the 

case-control study design is the possibility of information bias through incorrect 

recall or memory of exposure data which is imbalanced between case and 

control groups, leading to bias in the estimation of the exposure-outcome 

association, usually weighted towards a more positive association or an 

overestimated association (Grimes & Schulz, 2002b; Callas, 2008; 

Bamgboye,2006). 

2.2.1.4 Cohort study 

 These are studies in which a group of individuals with an exposure of interest 

(exposed group) is identified and studied simultaneously with another group of 

individuals who do not have the exposure (unexposed group) over a period of 

time, so as to study the development of the outcome of interest (e.g. disease 

incidence). Since the development of the outcome variable usually entails 

looking forward; this design is also called a prospective cohort design. A 

retrospective cohort involves identifying a historical cohort (or past sample) for 

which, in its simplest form, two groups are defined – one has past exposure of 

interest, the other does not. The investigator looks considers the comparative 

development/incidence of disease or ‘outcome’ of interest between the two 

groups. It is important that the two groups are similar - differing only in the factor 

or exposure of interest (Bamgboye, 2006). If the exposed group shows a higher 

incidence of outcome than the unexposed, this is evidence of an association 

between exposure and disease. Here, there is a logical sequence from exposure 

to outcome. A cohort study enables calculation of true incidence rates, relative 
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risks and attributable risks (Grimes & Schulz, 2002b). However, it can be very 

expensive and time-consuming to conduct, particularly for chronic diseases that 

may require many years to develop or rare conditions that require a large 

number of subjects to obtain enough cases of the outcome to be able to 

compare the exposed and unexposed groups (Callas, 2008). A cohort study 

design is appropriate when randomisation to exposure is not possible (Chan et 

al, 2007).  

2.2.2 Quasi-experimental design 

These are experimental designs in which there is no true random assignment to 

treatment groups (Sim & Wright, 2000). Here, investigators study treatment and 

control groups that are as similar as possible. However, the similarity cannot 

compare with that obtained between randomly selected group in which 

randomisation provides balance on both known and unknown factors. The 

analysis follows that of a cohort study after a pre-specified follow-up period has 

been completed. This method can also be used to investigate the effect of an 

intervention in community-based studies whereby two similar communities are 

identified; one is exposed to the intervention and the other not exposed. The 

treated and untreated groups are followed up for a period of time for the 

development of outcome of interest. An advantage of this design method is the 

ease with which the study is conducted and results obtained. Another advantage 

is the use of a concurrent control group and uniform ascertainment of outcomes 

for both groups; however, with no proper random allocation procedure there is 
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usually difficulty in applying statistical methods correctly and in interpretation of 

the findings (Grimes & Schulz, 2002a) 

2.3 Random allocation in controlled clinical trials 

Randomisation is a major principle and the hallmark of randomised controlled 

trials. It is a procedure that allows for chance placement of trial participants in the 

treatment groups. The procedure in principle ensures that treatment groups are 

balanced with respect to baseline characteristics and thus provides the basis for 

post-treatment crude comparison of treatment effect in the groups. Ever since its 

first usage in agricultural experiments by Fisher in 1920s and its introduction to 

medical research by Hill in the 1940s, it has generated a lot of methodological 

interest and controversies among medical researchers – particularly statisticians 

(Grimes & Schulz, 2002). This perhaps has led to the methodological advances 

and developments of strategies by which clinical controlled trials are not only 

analysed but designed. 

2.3.1 Random allocation and how not to do it 

The randomised controlled trial has been widely described and accepted as the 

best trial design in the investigation of medical therapies (McLeod et al, 1996). 

The reason for this is that conscious efforts are made to reduce bias in estimates 

of effect, by nullifying potential allocation bias. Randomisation is about chance 

allocation of participants to treatment groups; thus, in addition to reducing 

allocation bias, it also permits a valid test of significance Hall (2007) since such 

tests are based on the assumption of random assignment to both treated and 

control groups. The successful implementation of this all-important procedure 
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depends on the generation of an unpredictable random allocation sequence and 

concealment of that sequence until assignment occurs (Grimes and Schulz, 

2002).  

 

The benefits of randomisation can be greatly undermined if allocation sequence 

is not properly concealed and implemented. For this reason, researchers have 

suggested that the person who generates the sequence should not be the 

person who determines eligibility and enters patients into the trial; they also 

advocate the use of people not involved in the trial for treatment allocation – i.e. 

‘third party randomisation’ (Altman and Schulz, 2001). Allocation concealment is 

thus a procedure by which measures are taken to conceal allocation sequence 

or study group assignment from those responsible for assessing patients for 

entry in the trial. Such measures include; central randomisation, sequentially 

numbered opaque sealed envelopes, numbered or coded bottles or containers, 

drugs prepared by the pharmacy, or other descriptions that contain elements 

convincing of concealment. Allocation concealment is not the same as blinding; 

as while it is possible to conceal the randomised sequence in all randomised 

controlled trials, blinding is only possible in some (e.g. in many trials of surgical 

procedures). Whereas concealment guards against confounding through 

inappropriate selection, related to the way patients are selected and allocated to 

treatment groups, blinding guards against confounding through inappropriate 

recording of information – assessment bias.   
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There have been some erroneous opinions and misrepresentations of the 

concept of randomisation, both in principle and practice (Liu et al, 2002), and 

although randomisation is supposed to be fundamental to the success of any 

controlled clinical trial, it remains perhaps the least understood element thereof. 

Many researchers often confuse non-random techniques such as haphazard and 

alternating assignment with random (Grimes and Schulz, 2002b). Chalmer 

(1999), while commenting on the allocation technique of the trial involving 

streptomycin in treating tuberculosis, which is generally accepted as the first 

randomised clinical trial believed that randomisation could not have been a better 

procedure in controlling selection bias than assignment based on strict 

alternation. He further reckons that the sole reason for the preference given to 

the former procedure was its tendency to conceal allocation sequence. It has 

been suspected that the reason for not reporting allocation techniques in some 

controlled clinical studies by researchers was because the methods used by 

such authors for such purpose could be short of a true random process. 

In separate reviews of medical journals for the adequacy of randomisation 

procedures in trials, Hewitt and Torgerson (2006) and Grimes and Schulz (2002) 

respectively found that 79/232 (34%) and 129/206 (63%) authors did not specify 

the method used to generate an allocation sequence, despite the CONSORT 

statement Moher et al (2001) which stipulates that authors should make clear 

how randomisation was conducted. The result of their reviews also shows that 

non-random methods, such as using case record number, date of birth and date 

of presentation, are still being confused and presented as random methods by 
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some researchers. However, it is worth noting that a considerable reduction in 

the proportion of medical researchers that did not comply with the CONSORT 

statement was observed between the two reviews – four years apart. This 

implies that awareness and compliance to the CONSORT regulatory statement 

grew between the times of the reviews. 

Despite all the benefits randomisation confers on controlled clinical trials, its 

applicability in some studies has been challenged; Cotton (2000) argues that a 

well-conducted observational study could be better than a randomised controlled 

trial in the investigation of endoscopic therapy. The reason for his argument was 

that the randomised controlled trial is accepted as the gold standard in the 

design of medical studies with randomisation a fundamental activity; it becomes 

dangerous therefore to put together a randomised controlled trial with distorted 

randomization. A distorted randomisation in a trial can actually show a treatment 

effect that is biased through bias in allocation, such trials are more dangerous 

than observational studies as statistical considerations and overall interpretations 

usually take into account bias in non-experimental studies (Torgerson and 

Roberts, 1999). 

 

2.3.2 Simple randomisation 

This is a procedure that ensures that trial participants have an equal chance of 

being allocated to any treatment group. Different authors have observed that this 

elementary and basic allocation procedure surpasses all other sophisticated and 

complex allocation techniques in its unpredictability of sequence and control of 



  

30 

 

bias (Lachin, 1988; Grimes and Schulz, 2002a). The techniques of sequence 

generation by simple randomisation in a controlled clinical trial setting can easily 

be facilitated, especially with a small trial. Such techniques include tossing a 

coin, throwing a die, card shuffling, and using a table of random numbers.  

However, a major drawback of simple randomisation is that, treatment groups 

can by chance end up being dissimilar both in size and in composition as 

regards prognostic factors. Such dissimilarity may be very pronounced in small 

sample trials. The implication of this is that post-treatment crude comparison of 

effect between the groups may produce a biased estimate and hence a 

misleading trial result (Hewitt and Torgerson, 2006) – notably in small trials as 

randomisation ensures less balance in small trial than in large trial. This explains 

the reasons for using some sort of mechanisms both at the design and statistical 

analysis stages to attain balance in treatment groups prior to a final comparison 

of effect. Researchers have different views on the subject of handling chance 

imbalance by simple randomisation, especially at the design stage (Rosenberger 

& Sverdlov, 2008; Scott et al, 2002; Kernan & Makuch, 2001; Hagino et al, 

2004).  

In their article: “Is restricted randomisation necessary”, Hewitt and Torgerson, 

(2006) while commenting on the reason for stratification on important covariates, 

argue that simple randomisation is safe and there is no need for stratified 

randomisation since covariate imbalances can be adjusted statistically. In 

support of their claim, they refer to a previous study by Grizzle (1982) where the 

author noted that stratification followed by an adjusted analysis does not add 
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much to the statistical power to detect treatment effect. The effect of the level of 

baseline-outcome correlation and other experimental factors on certain attributes 

of treatment effect following adjusted analysis is handled in chapters 4 and 5. 

Grimes and Schulz (2002a) observe that the inherent baseline imbalance with 

simple randomisation becomes negligible in large sample trials; here, n ≥ 200. 

These authors appear not to see any need for design effort at attaining balanced 

treatment groups especially if there is a plan to account for important covariates 

during statistical analysis or when the trial is large. Given this submission, one 

wonders what ‘important covariates’ are and in what context is the claim that the 

design effort such as: stratification or minimisation is not necessarily needful. 

Also another issue to consider from the above arguments is whether or not large 

sample trials should preclude the use of statistical methods that appropriately 

account of covariates. These issues are handled in the results chapters 4, 5 and 

7, here, the pros and cons of statistical adjustment at different levels of 

imbalance and the influence of levels of prognostic variables on the attributes of 

treatment effect are treated using both real-life and hypothetical trial datasets.  

2.3.3 Blocking  

In view of the potential failure of a simple randomisation procedure to ensure 

balance in treatment groups, especially regarding the number of participants, the 

first design method that seeks to equalise group sizes is blocking. Blocked 

randomisation, also called random permuted blocks, belongs to the family of 

restricted random allocation procedures. It is the most frequently used method 

for achieving balanced randomisation at the design stage (Grimes and Schulz, 
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2000a). Stratified blocking not only strives for a balanced randomisation and 

thus, for an unbiased groups’ comparison it also strives for comparison groups of 

about the same size throughout the trial. This attribute becomes helpful when 

investigators plan interim analyses; it makes meaningful treatment effect 

comparison possible between groups at such time when there are indications 

that the trial might be terminated before the final recruitment target. Blocking 

makes use of short sequences of assignment (blocks) randomly generated to 

ensure balance in the treatment groups. For example, with a block size of 4, 

there is an assurance that the group is balanced each time the 4th patient is 

enrolled. With a block of size 4, there are six ways in which treatments are 

allocated such that two subjects get A and two get B (Altman and Bland 1999):  

1. AABB   2.ABAB   3.ABBA   4.BBAA   5.BABA   6.BAAB 

 A note of caution while using this method, however, is that the blocking 

arrangement used should not be revealed to the clinic personnel until it is 

appropriate to do so. However, because of the possibility of sequence prediction, 

especially in an unblinded trial and when the block size is small, the use of two or 

more block sizes (or random permuted blocks) has been advocated (Doig & 

Simpson, 2005).  

2.3.4 Stratified random allocation technique 

This is a procedure that divides the trial participants into strata according to 

important outcome-related prognostic factors. A separate randomization 

allocation schedule is used within each stratum by which participants are 



  

33 

 

assigned to treatments groups. During this process it has been advised that the 

investigators use some form of restricted randomisation – such as blocking – to 

generate the allocation sequence in order to ensure balanced numbers per 

treatment group per stratum (Hewitt and Torgerson, 2006). Often stratification is 

done in combination with blocking (Altman and Bland, 1999; Grimes and Schulz, 

2002a). This is to ensure equal distribution of covariates as well as equal 

allocation sizes between study groups.   

As a note of caution, however, it has been argued that the usefulness of stratified 

blocking can be reduced by the use of too many allocation strata. Given that, as 

previously noted, simple randomization potentially fails to produce balance in 

baseline prognostic factors between treatment groups, especially when the 

sample size is small, stratified block random allocation is a design that attempts 

to overcome this limitation. Kernan et al (1999) argue that the estimate of 

treatment effect can be more precise and has more power following a stratified 

block random allocation procedure in a trial with small sample size than simple 

randomisation since stratification makes groups similar on the outcome variable 

at baseline. Both power and precision are inversely related to the variance of the 

estimate. These authors further identified benefits of stratified randomisation to 

include; increased efficiency, facilitation of subgroup analysis and protection 

against type I error. Kernan & Makuch (2001) explains that the greatest benefit of 

stratified block randomisation was to be observed for therapies with large 

treatment effect. This supposes that the trial sample will be relatively smaller 
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compare with when the anticipated effect is small and thus, then, simple 

randomisation has a higher tendency to have treatment groups not balanced.  

However, the potential complexity of stratified randomisation has limited its use 

and wide application in the design of randomised controlled experiments. It has 

been observed that stratification breaks down – too complex and almost 

impossible to manage when there are several important prognostic factors to 

account for at the design stage (Rosenberger & Sverdlov, 2008). In addition, it 

has been argued that, in large trials, stratified randomisation confers little or no 

benefit; given its potential complexity, some researchers have argued for the use 

of simple randomization for allocation of treatment (Lachin, 1988; Grimes and 

Schulz, 2002a). These authors claim that the gain from stratification becomes 

minimal when participants in each of the treatment groups are more than 50 in 

number, given a minimum sample size of 100. It should also be noted – and this 

can perhaps be regarded as a rule of thumb – that when stratified randomisation 

is used the stratification factor should be in the adjusted statistical analysis 

(Hagino et al, 2004). This is important as stratification or minimisation as the 

case may be somehow imposes a constraint on the simple randomisation 

procedure.   

Another issue of much importance in stratified randomisation is the choice of an 

appropriate number of strata; the popular view on this is to make the number of 

strata few, so as to keep the trial manageable (Grimes and Schulz, 2002a; 

Altman and Bland, 1999). However, it has been observed by various authors 

that, in practice it is rarely possible to stratify for more than two factors, especially 
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in small trials (Roberts and Torgerson, 1998; Altman and Bland, 1999). Hallstrom 

and Davis, (1988) suggest that the number of strata should be appreciably less 

than n/B, where n is the total sample size and B is the block size for trials that 

make use of blocking. Regarding appropriate number of strata in stratified 

randomization Kernan et al, (1999) suggested that number of strata should not 

be more than n/(Bx4), where n is the sample size at the first planned interim 

analysis and 4 is a safety factor that accounts for unequal distribution of patients 

among strata. They illustrate this by example of a trial of 1000 patients with 

random allocation of block size of 4 and with the first interim analysis planned 

after 500 are enrolled. Following their formula on calculating the optimum 

number of strata there would be a maximum of 31 strata (Kernan et al, 1999).  

2.3.5 Minimisation 

This is the first covariate-adaptive randomisation procedure to be developed and 

was first proposed in the 1970s by Taves (Cai et al, 2006). It is a covariate 

adaptive allocation procedure because a conscious effort is made to create 

balance in covariate distributions between groups. (Rosenberger & Sverdlov, 

2008). Here, as was observed by Everitt & Pickles (1999), imbalances in the 

distribution of prognostic factors are minimised according to a certain criterion – 

thus the term minimisation. Minimisation has been described as an alternative 

treatment allocation procedure to stratified block randomisation (Roberts and 

Torgerson, 1998; Kernan et al, 1999).  

A random allocation technique is used to assign treatment to the first patient and 

subsequently the decision is made for each patient on which allocation would 
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result in a better balance in the groups, with respect to a particular prognostic 

factor (Altman & Bland, 2005). Such important prognostic factors are identified 

before the trial starts. Minimisation thus uses information about patients who are 

already in the trial to determine treatment assignment for the incoming 

participant, such that differences between groups are minimised (Kernan et al, 

1999). Taves’s minimisation method makes use of the information on the 

previous participant’s group assignment to decide on the next assignment until 

all the enrolled participants have been completely assigned (Minsoo et al, 2008). 

Thus, the next patient is usually assigned to the treatment group with the lower 

covariate marginal total. This feature makes the allocation of the next subject to 

treatment group dependent on the balance of the groups is sometimes referred 

to as dynamic allocation (Cai et al, 2006). As was observed, minimisation though 

applies to any of Pocock and Simon methods, it is most commonly used to refer 

to the special case described by Taves, which is less complicated to employ in 

practice (Scott et al 2002).  

 Medical researchers have variously submitted that minimisation proffers a 

solution to the limitations of stratification in balancing for multiple prognostic 

factors in small trials, as the procedure makes treatment groups similar in several 

important features even with small samples (Roberts and Torgerson, 1998; 

Grimes and Schulz, 2002a; Altman and Bland, 1999; Minsoo et al, 2008). Scott 

et al, (2002) observed from the results of a simulation study that minimisation 

provides better balanced treatment groups when compared with unrestricted 

randomisation and that it can incorporate more prognostic factors than stratified 
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randomisation methods such as permuted blocks within strata. They added, 

however, that adjustment should always be made for minimisation factors when 

analysing trials that used minimisation as an allocation method. This 

recommendation is also in order since minimisation is not entirely a random 

method and statistical tests or statistical inference are based on the assumption 

of random assignment to treatment and control groups, a property that is 

satisfied by only simple randomisation . The view that minimisation is not entirely 

a probabilistic procedure was also shared by (Grimes and Schulz, 2002; 

Rosenberger & Sverdlov, 2008).  

However, it has been argued that minimisation is open to predictability of 

assignment (Hewitt and Torgerson, 2006; Minsoo et al, 2008) and researchers 

can therefore add a random element to the procedure at least to reduce 

prediction of assignment (Hewitt and Torgerson, 2006), perhaps by randomly 

allocating the first few participants. Another drawback with minimisation is the 

complex computation process involved; however, a user-friendly program that 

manages this has been developed (Minsoo et al, 2008).The flow chart below 

(Figure 2.1), adapted from Minsoo et al (2008), provides some guidance on 

selecting an appropriate randomisation technique. 
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Figure 2.1: A flow chart for selecting appropriate randomization techniques 
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2.4 Selected design issues in randomised controlled trials 

2.4.1 Pragmatic and explanatory trials  

According to Alford (2006), Schwartz and Lellouch (1967) were the earliest 

authors to publish on the differences between explanatory and pragmatic RCTs. 

Explanatory RCTs are intended to assess the underlying effect of a therapy 

carried out under optimal conditions, whereas pragmatic trials are intended to  

assess the effectiveness to be expected in normal medical practice (Cook & 

DeMets, 2008). In normal medical practice, patients are sometimes seen not to 

comply with treatment prescriptions one way or the other; they default, take 

some other treatments not prescribed, or do not take the treatment when it is 

due. Explanatory RCTs are usually associated with treatment efficacy in drug 

trials, and are limited in relation to generalisability of results. This is because of 

the tight inclusion criteria that are inherent with this randomised controlled trial 

method, which places artificial constraints upon participation that limit the 

applicability of the findings.  

 

It was however noticed that while this is a particular concern for efficacy 

(explanatory) studies of drugs, it is likely to be less of a problem in quality 

improvement evaluations that are likely to be inherent with pragmatic trials that 

allows for what obtains in normal medical practice, for example switching of 

treatment by the patients. Also, efficacy studies assess differences in effect 

between two or more conditions under ideal, highly controlled conditions, while 
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effectiveness studies assess differences in effect between two or more 

conditions when used in normal real-world clinical circumstances (Alford, 2006).  

As was observed, a particular treatment approach might be shown to be 

efficacious, but may prove not to be clinically effective (Helms, 2002). It has been 

argued that since pragmatic studies aim to test whether an intervention is likely 

to be effective in routine practice by comparing the new procedure against the 

current regimen, they are as such the most useful trial design for developing 

policy (Eccles et al, 2003). While the explanatory approach recruits 

homogeneous populations and aims primarily to further scientific knowledge on, 

for example, underlying pharmacological effects, a pragmatic trial reflects 

variations between patients that occur in real clinical practice and aims to inform 

choices between treatments. Pragmatic trials are normally conducted on patients 

who represent the full spectrum of the population to which the treatment might 

apply. These patients may demonstrate variation in compliance, have a number 

of co-morbid conditions, and use other medication (Roland & Torgerson, 1998; 

Godwin et al, 2003). Another important point of difference between these two 

trials, as observed by Macpherson (2004), is the use of placebo in explanatory 

trials. Pragmatic trials would not compare placebo with an active treatment since 

a placebo is never administered in real life clinical practice; instead an existing 

treatment is compared with a new intervention.  

 Various authors have argued that in a pragmatic trial, it is neither necessary nor 

always desirable for all subjects to complete the trial in the group to which they 

were allocated; so as to have a good representation of the population to which 
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treatment may apply. However, patients are always analysed in the group to 

which they were initially randomised even if they drop out of study. Application of 

intention-to-treat analysis (ITT) is considered to be synonymous to the pragmatic 

approach (Cook & DeMets, 2008; Roland & Torgerson, 1998). The concept of 

intention to treat analysis (ITT) is further treated in section 2.5.3. Pragmatic trials 

are well suited to situations where blinding is difficult or impossible (Helms, 

2002). Roland & Torgerson, (1998) claim, somewhat controversially, that in 

pragmatic trials the biases of both clinicians and therapists can be accepted. 

This, they argue, reflects a normal clinical environment where the expectations of 

the patient and the therapist may influence the size of treatment effect. Even in 

this circumstance, Hotopf (2002) and Herbert et al (2005) have warned that 

concealment of randomisation is still important, as is blinding the assessor of 

outcomes so as to minimise the risk of selection, information or measurement 

bias by the researchers. In conclusion, with a pragmatic study, it has been 

observed that if an intervention is shown to have a beneficial effect, then it has 

been shown not only that it can work, but also that it does work in real life. 

(Godwin et al, 2003). 

2.4.2 Blinding 

Blinding is a procedure by which groups of individuals involved in a trial are 

made unaware of which treatment the participants are assigned. These groups 

of individuals may include some or all of: the participants, trial investigators or 

assessors, and data analysts. Some individuals and research organisations 

prefer the term masking to blinding to describe the same procedure. It has been 
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argued that masking might be more appropriate in trials that involve participants 

who have impaired vision, and could be less confusing in trials in which 

blindness is an outcome (Schulz et al, 2002). In a trial, knowledge of treatment 

allocation can bring about subjective bias by both patient and the investigator. 

This can influence the reporting, evaluation and management of data and the 

statistical analysis of treatment effect can also be influenced (Pocock, 1983; 

Chow & Liu, 1998). Knowledge of treatment allocation can also affect 

compliance and retention of trial participants. 

There are some instances in which it may be relatively difficult to achieve 

blinding. For example, if the new intervention under consideration is a surgical 

procedure and this is being compared with a chemotherapy delivered by tablet, 

here the difference between the two is clear and the trial needs be carried out 

unblinded as far as patients and caregivers are concerned. Such studies are 

known as open or unblinded. Open or unblinded studies have the advantages of 

being simple, relatively inexpensive and a true reflection of clinical practice. 

Single blind usually means that one of the three groups of individuals 

aforementioned remains unaware. In a double-blind trial, participants, 

investigators and assessors usually all remain unaware of the intervention 

assignments throughout the trial (Schulz et al, 2002). Here, three groups are 

kept ignorant thus, double blind is sometimes misrepresented. It should be noted 

that in medical research, the investigator frequently assesses, so in this instance 

there are actually two groups. Triple blind usually refers to double blind trials that 

also maintain a blind data analyst (Pocock, 1983). 
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As suggested in the CONSORT guidelines, it is no longer sufficient for 

investigator to use the terms single blind, double blind or triple blind; authors 

must show who was blinded and how and also provide information about the 

procedure on how it was carried out (Schulz et al, 1996).   

2.4.3 Outcome measure/end-point  

The choice of appropriate outcome measures, which can be primary or 

secondary, has been identified as one of the most challenging activities in the 

design of a randomised controlled trial (Wang & Bakhai, 2006). A primary 

endpoint is used to address the primary objective of the clinical trial, whereas a 

secondary endpoint addresses a secondary objective of a study. It is necessary 

that a clear definition of the two be stated. The choice of the most appropriate 

outcome measures has implications for the cost of the trial, the sample size, the 

burden that the trial will place on patients and clinicians taking part, and the 

likelihood that the result of the trial will influence clinical practice; therefore, 

whichever outcome is chosen it is important that it has been properly validated in 

a representative sample of patients for the disease under study (Rothwell, 2000).  

Information about the effect of a treatment is often gathered in relation to many 

variables, thus, there is a temptation to analyse each of the variables and look to 

see which difference is significant between groups. It should be noted that such 

an approach leads to misleading results. Presenting only the most significant 

results as if they were the only analyses performed has been described as 

fraudulent (Altman, 1991). Thus it was suggested that the best practice would be 

to decide in advance of analysis on the main outcome variable of interest for 
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particular trial; data could be analysed for other emerging variables but this 

should be considered as of secondary importance. Results of such secondary 

outcome variables should be interpreted cautiously and should be seen as ideas 

for further rather research than as definitive result. The major reason for this is 

that the study might not have been powered to detect difference in respect of 

such secondary variables. It is also important to note that even when the major 

or the primary outcome variables number more than one, the sample size 

calculation is usually based only on one variable (Altman, 1991). 

2.4.4 Study population in RCT setting 

Patient selection basically hinges on two opposing principles: homogeneity and 

heterogeneity of the study population. Both have pros and cons. The more 

homogeneous the population is the narrower the population on which the results 

apply (internal validity) and hence the smaller the number of patients needed to 

detect a given difference. On the other hand the greater the heterogeneity, the 

broader the basis for generalising findings at the end of the study – external 

validity (Curtis, 1986). In the spirit of a large and simple trial some authors 

recommend that eligibility criteria be kept to a minimum (Peto, et al, 1976; Peto 

et al, 1977). They are not to be too restrictive; otherwise, they undermine the 

external validity of the trial. However, some valid reasons exist for exclusion of 

certain participant, for example contraindication to intervention. 

Eligibility criteria for a trial should be clear, specific, and applied before 

randomization. Trialists should endeavour to minimise exclusion after 

randomisation. For the primary analysis, all participants enrolled should be 
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included and analysed as part of the original group to which they were assigned 

– intention-to-treat analysis. Mishandling of exclusions causes serious 

methodological difficulties and undermines trial validity (Schulz & Grimes, 

2002a).The aim of the trial is to generalise its results to all patients who are like 

those randomised and treated in the trial. Without a strict set of eligibility criteria 

it is more or less impossible to describe which types of patients the results of the 

study can be applied. 

2.4.5 Single and multicentre trials 

‘Centre’ in a clinical trial sense refers to an autonomous unit that is involved in 

the collection, determination, classification, assessment or analysis of data or 

that provides logistical support for the trial (Meinert, 1986). For a trial to be multi-

centre, it must consists of two or more centres and must involve a common 

treatment and data collection protocol, with each centre to receiving and 

processing study data (Meinert, 1986). Centres are treated as a stratifying 

variable in a multicentre trial and as such patients need to be randomised 

independently unless there is a central coordinated randomizing service (Altman, 

1991).  

A multi-centre study, unlike a single-centre study, allows a large number of 

patients to be recruited in a shorter time as recruitment can take place in each of 

the centres at the same time. The results are more generalisable since the scope 

of recruitment is generally wider than that obtained in a single centre trial and the 

participants are like going to be more diverse in their attributes. Multi-centre trial 

studies are critical in trials involving patients with rare presentations or diseases 
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(Wang & Bakhai, 2006; Hedman et al, 1987). Large trials are usually studied 

when investigating rare conditions. However, when the number of centres is too 

large, multicentre trials can pose administrative and logistic challenges. In 

contrast, a single centre trial demonstrates homogeneity of the study population 

since patients enrolled for the trial usually come from the same area (Meinert, 

1986). It has been noted that the analysis of data collected in multicentre trials 

offers
 

challenges because the data from the individual
 

centres must be 

combined in some way to give an overall evaluation of the differences between 

the treatments
 
in the trial (Fedorov & Jones, 2005). However, the practice of 

combining together all the data and ignoring the centres is not theoretically 

sound and should therefore be avoided. Ideally, the centre variable ought to be 

accounted for in the analysis as it is often treated as a stratifying variable and 

thus places some constraints on randomisation.  

 

2.5 Selected statistical analysis issues in randomised controlled trials 

2.5.1 Baseline comparability 

This is a single concept that has generated much controversy among trialists, 

statisticians, and clinical investigators who have the responsibility of interpreting 

treatment effects (Altman, 1991).It has been observed by various authors that 

randomisation guarantees unbiased allocation of treatments to patients, but does 

not ensure for a particular trial that the patients in each treatment group have 

similar characteristics (Altman, 1991; Senn,1989). This then suggests that 

randomisation at best secures unbiased treatment allocation and not necessarily 

balance. This view was shared by other researchers; for example, Tu et al 
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(2000) noted that randomisation prevents biased allocation of subjects to 

treatment groups and provides foundation for statistical tests in practice, but that 

some important covariates may not be balanced at the end of the study, 

especially when the sample size is small. Such imbalance in baseline 

characteristics in treatment groups will either have a masking or exaggerated 

influence on treatment effect depending on the direction of the proposed 

intervention. Thus, it is usual practice in trials for researchers to compare 

treatment groups for their similarities in prognostic factors at baseline (Begg, 

1990; Raab, et al; Altman, 1985). 

 

However, the way in which such comparison is done differs between clinical 

researchers; while some adopt a practice of using tests of significance by using 

p-values to justify their choice of covariates to control or adjust in the mainstream 

analysis, others renounce such practice and regard it as unnecessary. It is 

advocated that researchers should present distributions of baseline 

characteristics by treatment group in a table as such information describes the 

hypothetical population from which their trial arose and allows readers to see the 

extent of similarities of the groups (Lachin, 1998; Burgess et al, 2003). 

Furthermore, this practice allows physicians to infer the results to particular 

patients (Pocock, 1982). Many authors disapprove of the use of hypothesis 

tests,e.g. p-values – in such tables as a means of comparing baseline 

characteristics across groups (Schulz et al, 1994; Schulz,1995; Senn, 1997; 

Matthews, 2001). They contest the practice whereby tests of significance are 

used to assess the magnitude of baseline imbalance as to whether or not to 
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include the covariate concerned in the model for statistical adjustment. It has 

also been argued that there is no need for such tests as a proper randomisation 

procedure ensures that groups’ difference is entirely due to chance and all of 

such tests seek to establish that the observed difference could or could not have 

been due to chance. They also argue that researchers who use hypothesis tests 

to compare baseline characteristics report fewer significant results than expected 

by chance – thus suspecting a foul play in reporting. The procedure of 

hypothesis tests on baseline characteristics has been described as not only 

clearly absurd but also as unnecessary and might also be harmful (Altman, 1985; 

Schulz et al, 1994; Senn, 1997). It has been stated that a significant imbalance 

will not matter if a factor does not predict outcome, whereas, a non-significant 

imbalance can benefit from covariate adjustment (Assmann et al, 2000). 

2.5.2 Selection of covariates for adjustment 

Irrespective of the method adopted at the design stage to bring about balance at 

baseline, the view shared by most clinical investigators (especially statisticians) 

is to further account for baseline imbalance by applying relevant statistical 

analysis methodologies. However, a major bone of contention is which 

covariates to include in the statistical adjustment model. A review of previous 

literature shows that there are basically three different views on this issue of 

covariate selection for statistical adjustment. Perhaps the most popular of these 

is the use of baseline tests of significance to determine which covariate to 

include in the model for adjustment. In this case, study groups are compared on 

a wide range of baseline variables and any that are significantly different 
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between groups are automatically accounted for in the analysis (Meinert, 1986); 

those that are non-significant are ignored. Assmann et al (2000) observed that 

about 50% of clinical trial experiments published in four leading medical journals 

adopted this method. However, this idea has suffered major criticism over the 

years, and its use has been greatly discouraged among methodologists (Fayers 

& King, 2009).  

The basic argument of those that disagreed with this method is that, since the 

patients were randomly allocated to treatment groups in the first instance, then it 

must be that any observed difference must have been due to chance. It then 

appears absurd testing whether the observed difference is purely by chance or 

not which is what the test of significance does. In addition, the case of baseline 

covariates that have prognostic influence but are not significantly different 

between groups is also an argument against the correctness of the use of 

hypothesis testing for covariate selection for adjustment (Schulz et al, 1994; 

Schulz, 1995; Senn, 1997; Matthews, 2000; Assmann et al, 2000; Senn, 1993).  

The second view reflects the importance attached to the prognostic strength of 

covariates. However, there are two variants of this idea. The first bases the 

covariate prognostic importance on the level of correlation between the particular 

covariate and the outcome variable. The usual practice here is that, if there is a 

weak correlation, say r ≤ 0.1, adjusting for the imbalance in such a covariate is 

not necessary even with a significant baseline difference in the covariate 

between the treatment groups. This seems also to support the idea that non-

significance does not matter if the covariate-outcome correlation is strong. Just 
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like significance testing, examining strength of correlation between the baseline 

and the outcome variables is a data-driven procedure, indicating that analysts 

should examine the correlation between the covariates and the outcome of 

interest before deciding on selection of such covariates for adjustment. A classic 

example by Christensen et al (1985) is a trial of primary biliary cirrhosis that had 

a non-significant imbalance in a strong prognostic variable, serum bilirubin: 

unadjusted and adjusted analyses yielded p=0.2 and p=0.02, respectively, for 

the treatment differences in survival. This example touches on the importance of 

recognising the prognostic strength of baseline variables rather than the 

statistical significance of imbalances.  

The third known principle that guide covariate selection for the purpose of 

adjustment of baseline imbalance appears to be a variant of the second with 

selection being on the basis of covariates that have been found a priori to be 

prognostic in relation to the outcome variable. This includes evidence of suitable 

covariate-outcome correlation (r ≥ 0.3) from previous research or pilot studies 

(Altman, 1985; Senn, 1994). The decision on which covariate is selected for 

adjustment is taken before the trial starts and usually specified in the protocol. 

This agrees with the recommendation of the International Conference on 

Harmonization of Technical Requirements for Registration of Pharmaceuticals 

for human use (ICH) guideline (Tu et al, 2000). The idea of using covariates 

identified a priori would also cover statistically adjusting for stratification or 

minimisation factors.   
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2.5.3 Covariate adjustment 

In practice, simple randomisation may not ensure balance in some important 

covariate. If any unbalanced covariates are strongly correlated with the study 

outcomes, their presence may make it difficult to interpret the results of statistical 

tests for the treatment effect (Tu et al, 2000). Thus it is important that such 

imbalances are corrected or adjusted. Other studies have recorded a beneficial 

effect of a covariate adjustment over the unadjusted even for moderate 

correlation of covariates with outcome (Canner, 1991; Senn, 1989). The 

procedures for controlling the covariate imbalance can either be at the design 

stage or during statistical analysis; adjustment at the design stage includes the 

use of such techniques as minimisation and stratification. They are all employed 

at the design stage to prevent imbalance in prognostic factors in the first 

instance.  

Stratified randomisation reduces groups’ variability and thus enhances precision 

of the estimate; however, it has been argued that no amount of stratification can 

achieve balance for all covariates (Cook & DeMets, 2008). The procedure for 

adjustment during statistical analysis accounts for covariate imbalance at the 

analysis stage by using a statistical basis for the purpose. In the context of this 

study, methods for adjustment at the statistical analysis stage are: CSA that 

determines group effect base on the difference between the baseline and the 

post treatment score (basic adjustment) and ANCOVA, which is a model-based 

adjustment that includes the covariate in the model. Statistical adjustment can 

also be by pooling the stratified analyses, by using for example a Mantel 
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Haenszel test. In many clinical trials, both design methods that reduces 

covariates imbalance and statistical adjustment during analysis are used 

simultaneously. Raab et al, (2000) observed that for a given set of covariates, 

even though the stratification or minimisation methods will make the treatment 

groups comparable in these variables, they do not completely remove the effect 

of imbalance unless the stratification or minimisation factors are incorporated in 

the model for adjustment. Statistical adjustment can have a profound effect on 

effect estimates and tests of significance. For example, it has been observed that 

covariate-adjusted estimates are not only more precise, but the odds ratio or 

hazard ratio for logistic regression analyses and hazards models becomes 

further away from the null and that adjustment for strong predictors of outcome 

achieves more valid treatment effect estimates and significance tests (Assmann 

et al, 2000).  

In addition, with respect to chance imbalance between treatment groups in a 

baseline covariate (especially when the baseline covariates is strongly correlated 

with the outcome) an adjusted estimate of the treatment effect accounts for this 

observed imbalance while an unadjusted analyses does not (Assmann et al , 

2000; Pocock et al, 2002). A further benefit of the covariate adjusted analysis 

can be the creation of a predictive model which combines the influences of 

treatment and prognostic covariates in estimating the expected outcome for 

individual patients (Pocock et al, 2002). This allows for projection and informed 

decisions about the expected treatment outcome in relation to certain prognostic 

variables. It has been observed that the direction of imbalance is a factor that 
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affects treatment outcome, for example, if the imbalance is such that the 

experimental group has a better prognosis than the control group, then adjusting 

for the imbalance is particularly important (The European Agency for the 

evaluation of medicinal product, 2003).  

The validity of an unadjusted analysis relies on the assumption that there are no 

important imbalances involving measured and unmeasured baseline covariates 

across treatment groups. When imbalances occur on measured predictors of 

outcome variables, adjusted analyses should be performed (CPMP, 2003; Wang 

& Bakhai, 2006). It should be added that even if the groups have similar 

characteristics, it might still be desirable to adjust for another variable if we know 

in advance that the variable is strongly related to prognosis. Age is often such a 

variable (Altman, 1991). The relevance of adjusting for age is further investigated 

in chapter 7. Although, a primary reason for adjustment for imbalance in one or 

more covariates is the removal of chance bias, adjusting for a prognostic variable 

may also lead to greater power for the trial (Altman, 1991). 

2.5.4 Intention-to-treat (ITT) analysis 

Intent-to-treat analysis is the strategy for the analysis of randomised controlled 

trials that compares patients in terms of the groups to which they were originally 

randomly assigned (Hollis & Campbell, 1999). This implies that patients are 

always analysed in the group to which they were initially randomised even if they 

drop out of the study (Hollis & Campbell, 1999; Roland & Torgerson, 1998; 

Wright and Sim, 2003). This principle is foundational to the experimental nature 

of randomised controlled trials as it ensures that the ideal structure for 
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comparison created by random assignment of participant into treatment group is 

not distorted. There is wide agreement that the most appropriate analysis set for 

the primary effectiveness analyses of any confirmatory (phase III) clinical trial is 

the intent-to-treat analysis; it could be argued that an ITT analysis assesses the 

overall clinical effectiveness most relevant to the real-life use of the therapy 

(Cook & DeMets, 2006). 

It is a recommendation of the CONSORT statement that authors should indicate 

whether analyses were performed on an intention to treat basis (Begg et al, 

1996). The only safe way to deal with all forms of protocol violation is to apply 

intention-to-treat analysis; included here are patients who actually receive a 

treatment other than the one allocated, and patients who do not take their 

treatment (known as non-compliers). However, whether ITT principle also applies 

if it is discovered after the trial has begun that a patient was not after all eligible 

for the trial is opened to debate.   

A different analysis strategy commonly used (as a secondary evaluation) is to 

exclude patients who have not adhered to the allocated management strategy for 

whatever reason. This form of analysis is called per protocol analysis, efficacy 

analysis, explanatory analysis, or analysis by treatment administered; this form 

of analysis only describes the outcomes of the participants who adhered to the 

research protocol. Montori & Guyatt, (2001) observed that per protocol analysis 

becomes a problem especially when the reasons for non-adherence to the 

protocol are related to prognosis. Empirical evidence suggests that participants 

who adhere tend to do better than those who do not adhere, even after 
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adjustment for all known prognostic factors and irrespective of assignment to 

active treatment or placebo (Howitz et al, 1990). Thus, excluding non-compliers 

participants from the analysis leaves those who are destined to have a better 

outcome and destroys the unbiased comparison afforded by randomization. 

However, a relationship between a higher methodological quality of the trials and 

the reporting of the intention to treat has also been established (Miguel & Miguel, 

2000). 

2.5.5 Subgroup analysis 

One of the reasons for collecting substantial baseline data from patients in a 

randomised controlled trial is that subgroup analyses (treatment outcome 

comparisons for patients subdivided by baseline strata) may be carried out 

(Assmann etal, 2000). This is to assess whether treatment differences in 

outcome or lack of it depends on certain characteristics of patients. The results 

from such group-specific assessment can be used to generate hypothesis for 

future study (Assmann et al, 2000; Wang & Bakhai, 2006). Subgroup analyses 

are important if there are potentially large differences between stratified groups 

in the risk of a poor outcome with or without treatment; if there is potential 

heterogeneity of treatment effect in relation to pathophysiology, if there are 

practical questions about when to treat, or if there are doubts about benefit in 

specific groups such as elderly people which are leading to potentially 

inappropriate over- or under-treatment (Rothwell, 2005). 

Since patients recruited into a clinical trial are not a homogeneous sample, their 

response to treatment and the differing impact on them of different treatments 
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may well vary in ways that affect the choice of which treatment is best for which 

patients. Pocock, (2002) argues that if in truth, there are specific subgroups of 

patients for which a new treatment is more or less effective or harmful than is 

indicated by the overall comparison with standard treatment in the trial as a 

whole, there is a scientific and ethical obligation to try and identify such 

subgroups.      

However, most trials only have sufficient statistical power to detect the overall 

main effect difference in response between treatment groups, so that if subgroup 

effects do exist, they may well go undetected because the trial was not large 

enough (Pocock, 2002; Cook & DeMets, 2006).Smaller sample sizes within 

subgroups lead to greater standard errors and reduced power relative to the 

overall clinical trial resulting in an increased risk of a false-negative result, 

whereas, the multiplicity of hypotheses tests that results from examining multiple 

subgroups will lead to an increased risk of a false positive result-inflation of type I 

error (Altman, 1991). Altman (1991) further reckoned that to look for effects in 

subgroups is never a good way to rescue a study in which the primary ITT 

analysis fails to show an overall effect. The suggested approach to a sub-group 

analysis is to compare the difference between the treatments for the sub-groups 

of interest. The interaction can be examined within an appropriate multiple 

regression model, whether the outcome is continuous, binary or survival time 

(Altman, 1991).  

The unadjusted strategy yields an average treatment effect without any 

consideration of heterogeneity in prognosis among patients. Although covariate 
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adjustment and subgroup analyses both consider heterogeneity and attempt to 

provide more individualized estimates of treatment effect they are, however, 

substantially different (Hernandez et al, 2004 ). The difference is that, while 

covariate adjustment obtains a single more individualised treatment effect 

estimate, which is assumed to be applicable to all patients (Pocock et al, 2002; 

Robinson & Jewell, 1991), subgroup analyses provide multiple treatment effect 

estimates, assuming that treatment effects differ between particular groups of 

patients (Parker & Naylor, 2000). For the reason aforementioned, though 

subgroup analyses are sometimes performed, they rarely have enough power to 

detect differential treatment effect. It has however been variously observed that 

tests of interaction are underused and subgroup analyses are commonly over-

interpreted (Altman 1991; Robinson & Jewell, 1991). Researchers should 

therefore be wary of this. 
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Chapter 3: Measuring bias, precision of estimate, power and 
efficiency in RCTs – the methods 

 

3.1 Introduction 

Even though there have been concerted efforts to improve the quality of 

reporting of RCTs (Hernandez et al 2004), dealing with covariates has remained 

an issue not only at the design stage of a controlled clinical trial but also during 

statistical evaluation of the treatment effect. The usual statistical approaches to 

the analysis of RCTs are either a crude comparison of post-treatment scores or a 

statistical evaluation of treatment effects in a way that chance imbalance in the 

baseline characteristics of the treatment groups is taken into consideration. This 

alternative approach is widely referred to as the adjusted analysis. If treatment 

comparison is to take into account the distribution of covariates between the 

treatment groups, or when heterogeneity in treatment groups as a result of 

chance imbalance of patients is of any importance, then, adjusted analysis is 

done. Thus, for a given RCT scenario, researchers are presented with various 

approaches to statistical analysis. While the practice of crude comparison of post 

treatment scores is still popular in some circles, some researchers will prefer 

statistical adjustment. Those that adjust traditionally fall into two groups: those 

that do so on the basis of covariates already pre-specified in the protocol, and 

those who opt for covariates that show large disparity between groups (Beach & 

Meier, 1989).  
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As mentioned in section 1.2, methods for statistical adjustment of baseline 

imbalance for a single post-treatment assessment of a continuous outcome 

variable are change score analysis (CSA), percentage change score and 

analysis of covariance (ANCOVA). However, the use of percentage change 

score for the evaluation of treatment effect in a clinical trial setting has been 

shown not to be statistically efficient (Vickers, 2001). Percentage change score 

analysis presents large error variance of the estimator and as a result has poor 

power to detect a difference in treatment effect when one exists. Van Breukelen 

(2006), when comparing analysis of change from baseline with ANCOVA, argued 

that only ANCOVA should be used if chance imbalance in treatment groups is to 

be taken into consideration since ANCOVA takes account of regression to mean 

whereas CSA does not. It has been argued that crude comparison of post 

treatment score by unadjusted analysis – ANOVA – will usually fail to detect a 

bias in an effect estimate since there is no term in the ANOVA model that takes 

account of the baseline difference in the treatment groups (Camilli & Shepard 

1987).These considerations suggest that various methods used for the analysis 

of clinical trials can have a very profound effect on the estimate of treatment 

effect. In fact, under the same experimental conditions, ANOVA, CSA and 

ANCOVA have been observed to yield estimates of effect that are conspicuously 

different in size and precision (Van Breukelen 2006; Christensen et al, 1985, 

Piantodosi, 1997).  

Furthermore, it is not only the method of analysis used – unadjusted or adjusted 

– that can have a profound effect on the conclusion of a trial; the variable chosen 
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for adjustment can also have marked influence (Beach and Meier, 1989; Altman, 

1985). Thus, there is a need to determine under what circumstance or at what 

time an adjusted analysis is preferred to an unadjusted, which covariates are to 

be selected for adjustment, and what method of adjustment should be used, 

given certain experimental conditions. However, the pros and cons of the 

adjusted analyses have not been fully understood as there remains a dearth of 

information in certain areas. Pocock et al (2002) asserted that the statistical 

properties of covariate adjustment are quite complex and often poorly 

understood. There is still need for systematic comparison of the precision, bias-

reduction, and statistical power of these methods of analysis of RCT across 

various experimental conditions. Indeed, previous authors on this subject have 

not explored the full set of parameter changes (notably the simultaneous 

influences on precision, efficiency, statistical power and associated bias of 

estimates) across a diversified set of experimental conditions: notably, the effect 

of direction and size of covariate imbalance across various levels of covariate-

outcome correlation at different levels of anticipated treatment effect – small, 

medium and high (Cohen, 1988).   

When imbalance at baseline is evidenced, the credibility of the crude estimate of 

effect becomes a matter of concern. At such time, researchers usually select 

those covariates with large imbalance for statistical adjustment. The practice 

whereby baseline scores between treatment groups are assessed using tests of 

significance has been variously criticised by different authors (Schulz et al, 1994; 

Schulz 1995; Senn 1997; Altman 1985). An attempt shall be made to evaluate 
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the correctness of this practice in the context of this study and to provide 

information that may guide what, when and how to adjust in future clinical trials.  

Despite the dearth of information that exist in this area, in the few existing 

studies results and findings are often presented in ways that make them 

inaccessible to non-mathematicians owing to the level and number of 

mathematical notations, expressions and formulae used. This study, despite the 

fact that it shall attempt to simultaneously compare the statistical methods 

aforementioned under a wide range of levels of experimental conditions for 

pattern of bias, precision, power and efficiency, will also attempt to present the 

results in a way that will make them accessible to a broader readership without 

compromising the theoretical basis on which they rest. Subsequent sections in 

this chapter are devoted to the fundamental principles of the statistical methods 

of randomised controlled trials that are of concern to this study. An effort is also 

made to describe the methodology adopted for gathering the study datasets and 

analysis.   

3.2 ANOVA – the reference unadjusted analysis 

It might be asked why analysis of variance of post-treatment scores has been 

chosen in preference to the t test in this study as the reference unadjusted 

analysis, especially when the design focus is on two treatment arms. In this 

section, an attempt shall be made to justify this choice and also to outline the 

basic principles of this popular statistical test. 

ANOVA and the t test are well known statistical methods in the assessment of 

groups average scores on a continuous outcome variable. Both are equivalent 
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analyses (Porter and Raudenbush, 1987), except that ANOVA has more 

generality, as it can be used for two or more groups. Apart from this, it produces 

more useful output, such as mean square error (MSE). It is also closer to the 

generalised linear modelling GLM that includes ANCOVA, and which generates 

the regression coefficients that are to be used in this study. Since the idea of 

covariate or baseline imbalance in relation to appropriate statistical strategies is 

central to this study, conceptually it is more appropriate to think in terms of 

ANOVA than the t test, as the principle is based on explaining variability in 

scores between treatment groups. One of those factors in ANOVA that explains 

variability between groups is the ‘individual differences’ within each of the groups 

(Roberts and Russo, 1999). 

 In the analysis of a clinical trial, information on other sources of variation other 

than treatment effect may also be of particular interest to researchers, and so it 

is in this study. For example, in addition to providing information on estimates of 

different treatment effects by various methods of statistical analysis of RCTs, this 

study is also interested in capturing the associated ‘noises’ (variances). The 

study is interested in showing how such noise changes with levels of 

experimental conditions in each of the statistical methods that are of interest to 

the study. With ANOVA as the reference unadjusted analysis, the effect of 

statistical adjustment on the experimental error will be apparent for comparison 

purposes, especially in the context of precision and bias of these various 

statistical methods.  
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3.2.1 ANOVA – the principle 

Since analysis of variance is the reference unadjusted analysis in this study, it is 

important to give a clear description of how it works – its principles. This will 

provide a basis for some of the arguments that follow in the section that 

compares the selected attributes of these various statistical methods of ANOVA, 

CSA and analysis of covariance (ANCOVA). The description that is given in this 

section follows Roberts & Russo (1999). As noted earlier, the basic task that 

ANOVA seeks to perform is to determine the sources of variation in an 

experiment; it explains why scores of any pair of individuals is likely to differ 

within a group of people that have similar exposure or treatment – what are the 

causes of within-group variability? A similar question, which is more fundamental 

to a clinical trial, is why is it that between two groups of people, the scores of any 

pair of individuals are also likely to differ? In other words, what are the causes of 

between-group variability? The answers to these questions will of course present 

in clear terms inherent limitations of ANOVA as the statistical method of analysis 

of RCT. All three methods to be examined operate on the principle of ANOVA, 

with only slight modifications in ANCOVA modelling.  

Whereas, Porter & Reudenbush (1987) identified two potential sources of 

variability between treatment groups in ANOVA; variation due to treatment and 

that due to residual error, more recent authors Roberts & Russo (1999), have 

partitioned the overall variability in posttreatment outcome into three; variation 

due to treatment effect, individual characteristics and the residual or unexplained 

variation. Treatment effects – the effect the researcher is looking for and which is 
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a result of the treatment or intervention of interest; under the alternative 

hypothesis (of a superiority trial) treatment groups are expected to be different 

since they are treated differently. For example, the outcome in a treated group is 

expected to be different from that of a control group, or people who receive 

treatment A are expected to have a different outcome score compared to people 

who receive treatment B. 

Individual differences – despite the fact that subjects in the same group are 

treated in exactly the same way, their level of response to treatment can be and 

usually will be different. This might be due to difference in individual tendency to 

react to a stimulus, level of an underlying factor in participants that is related to 

the treatment in some way and also because they are simply different 

individuals. The basis for comparison of unadjusted post treatment scores is the 

assumption that groups are similar in the attributes of individuals that are related 

to outcome Matthews (2000) otherwise, resultant estimates of effect would be 

biased. Practically, randomization does not guarantee that treatment groups will 

be balanced at baseline. Authors have always noticed a chance imbalance in 

individual attributes despite randomization. This becomes important when such 

imbalance occur in individual characteristics that have prognostic relationship 

with the outcome variable. The effect of this chance imbalance on certain 

attributes of the estimate of effect is examined within the thesis.  

Porter and Reudenbush (1987) and Roberts and Russo (1999) shared similar 

views, except that the former interpreted that the variation resulting from the 

individual differences within the groups and that of residual variation are 
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inseparable in the context of ANOVA modelling. They argue that only ANCOVA 

provides further information on the between groups variability by identifying and 

using the variation due to the covariate or individual characteristics. 

In the view of Porter and Raudenbush, the breaking down of variability is 

represented as follows;  

               

                                       

              

             

 

 

 

     Without ANCOVA                                   With ANCOVA 

 

The above model provides quick information on how the adjusted analysis by 

ANCOVA yields a more precise treatment effect estimate than that of ANOVA as 

a result of the reduction in the unexplained variance or the residual error. The 

effect of baseline-outcome correlation on the precision of estimates by these 

statistical methods is considered in chapter 4. 

Variation explained by 
treatments 

Unexplained variation:   
residual error 

 

Variation explained by 
treatments 

Variation explained by 
covariate 

Unexplained variation:   
residual error    
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3.2.2 Within-group and between-group variability 

It is a common occurrence to observe differences in individuals within the same 

group despite all the precautionary efforts made to ensure that members are 

treated the same way. Even in well-designed RCT settings, individual differences 

both within and between groups will occur. A well designed RCT will particularly 

ensure that no two members of the same group are treated differently; all 

members receive exactly the same treatment (within the latitude permitted by the 

trial protocol). The extent of the observed difference within the same group or 

sample is a measure of within–group variability or the residual error, Doncaster & 

Davey (2007). This phenomenon, essentially caused by differences in individual 

level characteristics and by random variation or chance explains why members 

of the same treatment group end up having different treatment scores.   

On the other hand, treatment groups are also expected to differ as a result of 

difference in treatment they received; the extent of overall difference between 

treatment groups is also a measure of between-group variability. Obviously, this 

will comprise the difference due to treatment effect and that due to the chance or 

random variability in the groups – residual error. Expectedly, if the treatment 

under trial is effective, the within-group variability should be small compared to 

the between-group variability. Since difference by treatment is not expected 

among members in the same group, the only source of variability here, therefore, 

is the random error. Whereas within-group variability depends on the distribution 

of data in the particular group, the between-group variability depends on the 

group means, the higher the difference the higher the variability. The difference 
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in overall means of the treatment groups is an indication of the between-group 

variability; if this difference is zero – that is, where there are two identical group 

means – the between group variability is zero. If the difference between means 

were to be increased, the between-group variability would also increase.  

The adjusted statistical techniques attempt to account for the chance imbalance 

in individual characteristics and the random error in the measurement between 

the groups by some mechanisms, so that similar treatment groups are 

compared, allowing for a possibility of a more accurate estimate of treatment 

effect. So therefore, there is an expectation of a reduction in the residual error 

when adjusted analysis is done. The extent of this reduction and the accuracy of 

effect estimate under various levels of experimental conditions shall be 

investigated in chapter 4. Unless the baseline score or the covariate in question 

can together with the intervention completely explain the between group 

variability for a particular method of statistical adjustment, there will still be a 

minimised error term (residual error) after adjustment. Porter & Raudenbush 

(2007) observed that if the covariate has a strong correlation with the outcome, 

the residual variation will be small, and the statistical power will be substantially 

improved. Similarly, Rutherford (2000) observed that the unexplained error term, 

though minimal, will still persist despite adjustment. 

3.2.3 Analysis of variance – the F test 

When an analysis of variance test is conducted, the common statistic which 

gives a description of the groups’ variability is the F ratio. The size of the 

observed F statistic is a reflection of the extent to which differences in the 
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treatment groups diverge from that expected on the basis of chance (Rutherford, 

2000). The practice is to compare the obtained F ratio values against a critical 

value from the F table at appropriate degree of freedoms; a significant F value 

means that random error can be ruled out (at a stated level of confidence) as the 

reason for the observed difference in a set of means (Roberts & Russo, 1999). 

Then, the observed difference in means is attributable to a treatment effect. 

F =  
variance group-

variance group-

within

between
 

The F value can be influenced by individual differences and measurement error 

both brought about by chance as represented in the equation that follows. The 

value of F provides very useful information on the size of the treatment effect, the 

further away from 1 the F value, the larger the effect size. 

The denominator of the equation is known as the error term. It is a measure of 

the extent to which residual error and not the treatment effect causes the scores 

to differ. It comprises both the individual differences within the groups and the 

measurement error.  

Thus, 

                       F = 
error

effectstreatment

 residual

error residual  
 

showing all sources of variability. 
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As mentioned earlier, since residual error has two sources of variability for a 

between-subjects design, the equation can also be expressed thus: 

F = 
errortmeasuremensdifferenceindividual

errortmeasuremendifferenceindividualeffectstreatments

  

 s  





 

Thus, in order to conclude that a treatment has worked, the variance due to the 

treatment effects, i.e. the effect due to the intervention variable, must be 

sufficiently large to stand out from the ‘noise’ that constitutes the residual error.  

Given the above equation, if it is imagined that a treatment has no effect on the 

outcome variable, then the amount of variability between groups caused by the 

treatment effect is zero. Hence, any variability in subject scores and overall 

means is due only to random error; and the equation will look like this:                                 

F = 
errorresidual

error

 

 residual 0
  = 1 

Hence, if F is 1 or approaching 1, it is an indication that the treatment has little or 

no effect. 

This does not however mean that each time F is large there is a significant 

treatment effect as with small numbers of subjects, one will obtain F values 

larger than 1 by chance more often than 1 time in 20. The usual practice is to 

calculate the probability of finding a particular value of F for a given number of 

degrees of freedom. The degrees of freedom take account of both the number of 

subjects and the levels of the intervention variable. It is also important to note 

that the F ratio is similar to a t test in that it is more likely to detect a given effect 
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more statistically significant with a larger sample than a smaller sample; F tables 

must therefore be used in order to determine whether or not an effect is 

significant. The table gives critical values –- hurdles – for given degrees of 

freedom that must be equalled or exceeded in order to conclude that there is a 

significant effect. If however, the within-group variance is low – members in the 

same group have similar scores and there is variability in the overall level means 

– then the value of F will be large. The larger the value of F, the more the 

variability explained by the treatment effect, and thus the less likely that the 

observed difference in the overall means is caused by residual error, the more 

the treatment effects are standing out from the random error, and the less likely 

that differences in treatment effect were caused by chance. 

         

3.3 Residual error, standard deviations and standard error 

In an experimental design setting involving two or more groups, residual variation 

defined by the variation amongst sampling units within each sample or group is 

caused by difference from the individual characteristics and measurement errors. 

These errors will usually either mask or exaggerate treatment effects and hence, 

the aim of any experiment is to minimize them. Residual errors are known 

normally to disperse data away from the group means, thus increasing the 

variability from the mean score – i.e. increase the standard deviations. Similarly, 

the values of the group means may be pushed away from the mean of the 

population from which they are drawn – standard error is a measure of spread of 

sample means in relation to the population mean. Either of the standard 
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deviation or standard error increases with residual error; the greater the standard 

deviation or standard error the less confident we can be that a difference 

between a pair of means has been accurately measured. Standard error is a 

measure of how precisely the population mean can be estimated using sample 

data, the smaller the value the greater the precision.  Wang & Hung (2005) 

observe that a major advantage of the covariate adjustment analysis is the 

reduction of (residual error) variance in the estimation of treatment effects and 

the production of a more powerful statistical test for detecting the treatment 

effect. 

 

Thus, in relation to the focus of this study, associated standard error is taken to 

be the measure of precision of the estimate of treatment effect. This statistic is a 

direct reflection of the mean square error; for example, when the residual post-

test variance is minimised, standard error of the estimate of treatment effect is 

also minimised (Van Breukelen 2006). Standard error also determines the width 

of the confidence interval around the estimate as a correct representation of the 

population parameter. For example, the 95% CI of a sample mean ( x ) is given 

as: 

nsx /.(  961 ) 

Any statistical method that minimises the mean square error, and consequently 

standard error, will be adjudged as most precise. The width of the associated 

confidence interval measures the precision of an estimate; this ultimately 

depends on standard error for its computation. At a given confidence level, the 
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smaller the standard error the narrower the width of the interval, the higher the 

precision of the estimate and the more confidence we have that the estimate is 

close to the true value.   

3.3.1 Minimum variance unbiased estimator and bias 

The deviation between the average value of an estimator and the population 

parameter to be estimated is termed bias or systematic error. It is a measure of 

how close, on average, that estimator comes to the true value. It is the difference 

between the true value and actual measurement. Millard & Neerchal (2001) 

express this as: 

 )ˆ()ˆ( EBias  .....................................(3.1) 

( where  is the population parameter to be estimated and 


is the estimator) 

From the above equation, if the average value of an estimator equals the 

population parameter, then the bias is equal to 0 and the estimator is said to be 

unbiased. An estimator can be negatively or positively biased. From the above 

equation, when the average value of an estimator is less than the value of the 

population parameter to be estimated a negatively biased estimator results; 

otherwise, the bias is positive. Thus, in an RCT setting, where the interest is to 

estimate treatment effect, it becomes imperative to seek information on how well 

the resultant estimate represents the true treatment effect by quantifying the 

associated systematic error or bias, which also contributes to the overall 

variability.  

At certain experimental conditions – when there is baseline imbalance – the 

estimate of effect by both ANOVA and CSA cannot be unbiased. The percentage 
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of the associated bias using either of these methods is quantified by using the 

formulae adapted from Austin, (2008); 

.....3.2)
)coef.ANOVA sionABS(regres

ANOVA) coef. sionABS(regres-ANCOVA) coef. sionABS(regres
 X 100    

    % ANOVAforbias

 

% bias for CSA= 

change) coef. sionABS(regres

change) coef. sionABS(regres -ANCOVA) coef. sionABS(regres
 X100 .... (3.3) 

               (Where ABS represents the absolute value of the estimates) 

 

3.3.2 Precision, mean square error (MSE) and standard error of estimate  

An estimator is precise if it has a small variability and imprecise if the variability is 

large. Given that ̂  is an estimator of some parameter : since there are various 

ways by which the parameter of a probability distribution can be estimated, it is 

important to know which method will give the best estimate. A commonly used 

approach is to quantify the associated mean square error (MSE) (Matthew, 2000; 

Millard & Neerchal, 2001; Porter & Reudenbush, 1987). Mean square error is a 

measure of variability that comprises the variance of the estimator (random error) 

and bias (systematic error):- 

22 )]ˆ([)ˆvar(])ˆ[()(  BiasEMSE ………(3.4) 

= random error + the square of the systematic error 
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The MSE of an estimator is the average or mean of the squared distance 

between the estimator and parameter it is trying to estimate. It measures how 

much the estimator represents the parameter. As noted by Millard & Neerchal 

(2001), the estimator that has the smallest associated variance is the most 

efficient estimator. Thus, a statistical methodology that gives an estimate which 

minimises MSE as a result of reducing either the associated variance of the 

estimator (random error) or bias (systematic error) or both will have a higher 

precision of the estimate. As mentioned earlier, associated standard error of an 

estimate which is more relevant given the context of this study is a direct 

reflection of the mean square error.                                                          

The ratio of the standard error of each of the methods of adjusted analysis 

(ANCOVA and CSA) to that of the unadjusted provides an indication of the 

relative magnitude of the MSE for the adjusted analysis compared to the 

unadjusted analysis: this will be inversely related to the measure of precision. 

 

3.4 Adjusting for baseline imbalance – the analogy 

Not adjusting for baseline covariate imbalance in an RCT setting could be 

likened to two athletes who prepare to run a 100m race but start at different 

points on the track – this gives one an unfair advantage over the other, and the 

winner of the race may not be the truly faster runner over 100m; the level of 

unfairness (and implication on the result) ties in with the size of the difference in 

starting position. Clearly, the result or outcome would not be a precise or correct 

reflection of their true performance because the baseline difference is a factor 
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that has a direct relationship with the outcome, – in this case time to finish. So 

therefore, it is only expected in the interests of a fair result, and correct 

measurement of performance, that the baseline difference at the starting point 

should be ‘accounted for’ in the system so that the measure of true performance 

(time to finish) of the two athletes would be a valid measure. Nobody bothers of 

course if the two athletes differ at baseline in some respects that do not affect 

the outcome; for example, colour of their outfit.  

In a two parallel-arm RCT setting, the two athletes in the above scenario 

represent the two treatment groups (treated and control), while difference in 

starting point is analogous to baseline imbalance as it has an established 

relationship with the outcome variable, and difference in time-to-finish the race 

represents treatment effect. This analogy of course, may not completely 

represent what transpires in a trial setting, where the average scores of various 

responses (rather than individual responses) within each treatment group is 

compared. The mechanisms of adjustment by CSA and ANCOVA differ; the 

effect of this difference on the estimate of treatment effect shall be considered in 

chapter 4.             

3.4.1 Issues with covariate-outcome joint distribution 

If there are two random variables that are jointly normally distributed, for 

example; the baseline and the outcome scores are denoted here as Z and Y, 

respectively. As Z and Y are normally distributed, they have means and 

variances of;           

                              Z ,
2

Z  and Y ,
2

Y  respectively. 
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Then, 

YYE )( ..............................................................................(3.5) 

If Z and Y have a correlation ρ. then for every Z=z, there is a corresponding 

expected value of Y=y. 

The distribution of Y conditional on this value of Z is not the same as the 

unconditional distribution of Y. This implies that since both Y and Z are related, 

the value of Y adjusting for Z is not the same as the value of Y unadjusted for Z. 

Hence, the expectation of Y conditional on Z=z, written )zZ|Y(E   , is not the 

same as E (Y), this is because Z and Y are not independent.  

This fact explains why there is an expectation of difference between the 

estimated effect given Z, that is, Y conditional on Z, and the crude estimate of 

effect, that is Y unconditional on Z. The results of a series of simulations in this 

study explain this further in subsequent chapters. So, a statistical method that 

does not reflect a corresponding difference in Y as a result of the difference in Z 

is theoretically biased. If the covariate and outcome are prognostically related, 

the estimated value of outcome at a level of imbalance that was not taken into 

consideration is not expected to equal the observed simulated effect if the 

imbalance was taken into consideration.     

However, consider another random variable M that is independent of Y, then, 

specifying a value for M does not affect the distribution of Y.  

Thus, 
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)()|( YEmMYE   since Y and M are not related……………………(3.6) 

3.4.2 ANOVA of post treatment scores theoretically yields unbiased 
estimate of treatment effect  
 
The simplest and perhaps the most common approach to estimating treatment 

effect between treatment groups is the crude comparison of post-test scores 

using statistical tests, such as t test or ANOVA for quantitative outcome 

variables. 

The underlying model representation for a two-group trial is given as:  

ijioijY  .............................................................(3.7) 

i =1,2;  j = 1…n, or 

ijiijY  ................................................................(3.8) 

where ijY  is the posttreatment score for the jth  patient in the ith  group, O or   

is the common mean value of the outcome variable, i is the treatment effect in 

the ith group and εij is the error term. There is clearly no term in the model for 

ANOVA of posttest to accommodate any systematic variation in the groups that 

is related with the outcome as ANCOVA does and this explains the larger error 

term associated with the estimate from ANOVA.  

Essentially, with respect to ANCOVA the model extends to:                                                

ijijijoij ZGY  21 ........................................................................(9) 

ijG  is a treatment indicator,
1  is the group difference in Y adjusted for 

differences on Z. 
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 When β2 is close to 0, then it approximates the ANOVA model. It becomes 

obvious, therefore, that the difference between the statistical methods under 

investigation in this study actually lies in the different ways in which each of them 

responds to the presence of baseline imbalance. For example, as mentioned 

earlier, with ANOVA of post-test, β2 = 0, for ANOVA of change β2 = 1, and with 

ANCOVA β2 is computed such that the residual post-test variance is minimized, 

thereby minimizing the standard error of the treatment effect estimate (Van 

Breukelen 2006). 

The basis for the statistical procedure of ANOVA on posttest is that baseline 

scores of the outcome are comparable between the treatment arms by 

randomization. In other words, the statistical procedure assumes that baseline 

data for the groups to be compared are sufficiently similar and thus only the post 

treatment score is entered into the analysis.    

 In an RCT, let the baseline measurement from the control group be represented 

by random variable ZC and the outcome variable by YC; the corresponding 

measurements for the intervention group are ZT and YT for baseline and outcome 

respectively, following Mathews (2000). 

Thus,  

)( CYE  and )( TYE ………………………………………(3.10) 

and since by randomization the baselines have a common mean value 
Z :  

zTC ZEZE  )()(  .........................................................................(3.11) 

 )()( CT YEYE ............................................................................(3.12) 
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From the above, the sample mean of the outcome in the control group )y( C  will 

have expectation of   and in the intervention group it will be  ; hence, the 

difference in means will have expectation  as required. This shows that the 

analysis based on post score is unbiased yielding an unbiased estimate of 

treatment effect. 

This can be a simple way of demonstrating the correctness of the simulation 

procedure and the bias or otherwise of other methods of statistical analysis 

change score and ANCOVA, at least when the treatment groups are balanced at 

baseline. Both other methods are expected to yield the same unbiased estimate 

as ANOVA when the treatment groups are comparable in baseline scores. This 

shall be examined in the simulations.  

However, when treatment groups are not comparable at baseline and such that 

there exist a correlation between baseline and outcome scores, then,  

)()( CT ZEZE   .................................................................(3.13) 

Direct comparison of outcomes from the groups becomes invalid and the 

resultant estimate is not unbiased. 

Thus the true effect is modelled as,  

)( ),|( CTTTCT ZZZZYYE  .....................................(3.14) 

However, since the ANOVA model does not have such a term that accounts for 

the baseline imbalance, its estimate of treatment effect will not respond to 

baseline-outcome correlation, direction and magnitude of baseline imbalance as 
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in the last equation. The results of the simulation exercise highlight the non-

responsiveness of ANOVA to various degrees of baseline imbalance and 

prognostic strength. 

 

3.4.3 Change score analysis - CSA 

If the analysis is based on ANOVA of change from baseline, there is a conscious 

effort to bring about balance in baseline data in the treatment groups by 

analysing the absolute difference between the baseline and the posttest score in 

the groups; however baseline scores are not included in the analysis as 

independent variables. 

Here, analysis concerns (Y-Z)s in the two groups.  

The underlying model is given as: 

ijijijoij ZGY  1 ..............................................................(3.15) 

 Where ijZ  is the baseline value for the jth  patient in the ith group. For change 

score analysis, the regression coefficient for the covariate is equal to 1. 

Again, supposing treatment groups are comparable by randomization, the 

expectation will be, 

 )()()()( ZzCCTT ZYEZYE ………………….(3.16) 

and this demonstrates that CSA yields unbiased estimate when treatment groups 

are comparable.   

However, the associated variance differs from the variance of the unadjusted 

analysis. The variance of the unadjusted analysis is completely independent of 
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the baseline outcome correlation, furthermore, if we assume randomisation 

makes groups similar, according to Matthews, (2000) it is convenient to assume 

in practice that: 

)b16.3..(..............................=)Z(=)Zvar(=)Yvar(=)Yvar( 2

CTCT   

(where YT, YC are the outcome variables for both treated and control groups and 

ZT and ZC are the baseline variables for the both treated and control groups) 

but the variance of the CSA is given as; 

)Z,Ycov(2)Zvar(+)Yvar(=)Yvar( -Z-  

=
222 2+    - = )(  12 2

………………………………(3.17) 

where   is the correlation between Y and Z, assumed to be same for both 

groups. 

The above presentation shows that the analysis of change scores from baseline 

has an entirely different variance structure compared with analysis from post-

score comparison, and this has implications for the precision of the effect 

estimate. For example, if the correlation ρ exceeds 0.5 then a small variance 

(standard error) results and the analysis becomes more powerful than the 

comparison of post-test outcomes. However, if the correlation is below 0.5, using 

analysis of change from baseline (CSA) will bring about increased variance – a 

large standard error and less power to detect a real difference between groups. 

This fact was observed by Fleiss (1986), who argued that the estimate by 

analysis of change would not always have a lesser magnitude of associated 

variability compared with that from an unadjusted analysis – crude comparison of 
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post-treatment scores. He states that precision will be lost by change score 

analysis if the baseline-outcome correlation is less than θ/2,  

where, 

̂ = 
Y

Z

s

s
........................................................................(3.18) 

sz, sy being the standard deviation for pre and post treatment scores, 

respectively.   

If, however, there is a correlation )( between the baseline and outcome 

variables with random imbalance at baseline between the treatment groups 

despite randomization, then the expectation of the treatment effect by change 

score analysis cannot be unbiased.   

Thus, 

))(],|)()[( CTCTCCTT ZZZZZYZYE  1 ………..(3.18b) 

This implies that the estímate of effect will be biased for any value of )( that is 

not 1 and will also be related to both direction and magnitude of imbalance. The 

combined effect of baseline-outcome correlation, magnitude and size of 

imbalance on bias in treatment effect is shown in chapter 4. 

Matthews (2000) observed that a common fallacy in practice involving baseline 

analysis is to conduct a separate comparison of the change in baseline score for 

the two groups and drawing conclusion on the treatment effect based on the two 

separate p values. For example, if the p values arising from comparing the pre- 
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and post-intervention scores for the treatment and the control groups 

respectively are 0.002 and 0.18, it would be erroneous to conclude that the 

treatment was effective. This is because randomised controlled trials require that 

comparisons be carried out between groups (usually including a control group 

and not within groups) for a valid inference on treatment effect. 

 

3.4.4 Analysis of covariance – ANCOVA  

Analysis of covariance (ANCOVA) is a statistical technique that makes use of the 

distribution of baseline scores and disparity in this between treatment groups to 

explain the overall treatment effect. ANCOVA conspicuously features baseline 

score as a covariate in its model equation and thus accounts for the imbalance 

during the analysis. Thus, because the model incorporates additional 

information, there is already an expectation of efficiency in the estimation of the 

effect. This extra or ancillary information accounts for the reduction in residual 

variance by ANCOVA (Mathews, 2000).   

Similar to other authors on this subject, Van Breukelen (2006) presents 

ANCOVA models as; 

ijijijoij ZGY  21  

equivalently as, 

ijijoijij GZY  12 )( ....................................................(3.19) 

This, though, presents the method as removing all the effect of the covariate 

from the outcome. However, Rutherford (2001) argues that outcome variables 

are not adjusted to completely remove the effect of the covariate but rather, 
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adjustment is done such that all patients obtain a covariate score equal to the 

general covariate mean. In other words, ANCOVA uses the general covariate 

score to equalize the covariate distribution in the treatment groups. Thus, if a 

treatment group has a group mean at baseline that is greater than the grand or 

general covariate mean, the average treatment outcome for that group is 

adjusted downward. On the other hand, if a group has a mean score at baseline 

that is lower than the grand mean, then, the group average treatment outcome 

will be adjusted upward. The issue here is more of semantic (language) than 

concept. When ANCOVA equalizes the covariate distribution in the treatment 

groups by using the grand covariate mean, baseline imbalance is inevitably 

removed and thus offers a platform for a justifiable comparison of groups’ 

treatment effect. 

Thus, Rutherford (2001) expresses the ANCOVA model following adjustment as:             

ijijijoij ZZGY  )(21 ................................................(3.20) 

Equivalently as; 

ijijoijij GZZY  12 )( .................................................(3.21) 

 β2, represents the degree of linear relationship between the covariate and the 

outcome and is empirically determined from the data – again, in ordinary 

language, this represents the portion of the post treatment outcome that is 

explained by the baseline difference. This must be separated from the main 

effect otherwise it biases the estimate of effect. Z represents the grand covariate 

mean (average of all the baseline score). 
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Thus, the adjusted dependent variable score based on the difference between 

the recorded baseline score and the grand or general covariate mean, that is, the 

adjusted score for person j in treatment group i is given in algebraic notation as: 

)(̂ zzbyy ijijija  ........................................................(3.22) 

In terms of the groups’ adjusted effect, 

)(̂ zzbyy iiia  ...................................................(3.23) 

 for ith group and     

)(̂ zzbyy TTTa  ............................................................(3.24) 

for the treatment group 

)(̂ zzbyy CCCa  ..............................................................(3.25) 

for the control group 

Thus for  ANCOVA by taking the difference, this translates to having the adjusted 

estimate of effect  as: 

)(̂)( CTCT zzyy  ..................................................(3.26) 

Only ANCOVA yields an unbiased estimate of effect (with respect to a covariate) 

when baseline imbalance in the prognostic baseline variable is accounted for. 

This then suggests that the estimate of treatment effect by ANCOVA 

approximates that of ANOVA if the mean baseline score for the two groups is 

similar. Alternatively, both analyses are equal if )( 0 irrespective of the size 

and direction of imbalance. If, however, the baseline score for the control group 
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is greater than the baseline score for the treated group in absolute value, then 

the overall treatment effect by ANCOVA is expected to be greater than that of 

the ANOVA (also in absolute value). Similarly, if the treatment group is higher in 

baseline absolute score than the control group, then the overall treatment effect 

by ANCOVA will be smaller in absolute score compared to that from ANOVA of 

post treatment scores. The results from the simulation exercise (in chapter 4) will 

demonstrate this.  

As earlier mentioned from a review of previous studies, randomisation in a 

practical sense does not ensure that treatment groups are always balanced in 

prognostic factors. This creates a random variation that needs be accounted for 

in the interests of a valid estimate of treatment effect. ANOVA does not have a 

term that takes account of random variation in prognostic factors between the 

treatment groups. This explains why direct comparison of treatment outcomes 

between groups with ANOVA presents with a larger error term and, 

consequently, a less powerful analysis. The lack of such an extra term in ANOVA 

has also been observed to be responsible for the exaggeration or masking of 

treatment effect by this method, depending on the direction of imbalance. For 

example when the imbalance in prognostic factor is in the same direction as the 

treatment, ANOVA fails to detect such imbalance irrespective of its size and the 

prognostic importance of the factor. At such time, Camilli & Sheperd (1987) 

argue that the imbalance would contribute to the group treatment effect rather 

than being detected as bias by this method. This implies that some of the 

difference in means after treatment will be as a result of the random difference in 
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means before treatment – the group difference in the characteristics of the 

patients that is responsible for extra gain or loss in treatment effect depending 

upon the direction of imbalance.  

There is directionality in how treatment outcome is affected by covariate 

imbalance between the treatment groups. For example, if the treated group has 

a lower mean value at baseline and reduction in baseline score implies that 

treatment is effective, then the unadjusted treatment effect will fail to identify the 

possible exaggeration on the overall treatment effect. The overall treatment 

effect will not reflect the undue advantage of a better prognosis that the treated 

group had at baseline (That is, when the effect is in the same direction as the 

baseline imbalance). Conversely, if a lower mean value is recorded at baseline 

for the control group, then the masking effect on the overall treatment effect will 

still not be identified and the unadjusted analysis will yield an overall under-

estimate of effect (analysis being carried out as if baseline prognosis of both 

treatment groups is the same). Thus, whether imbalance is in the same direction 

as treatment or opposite the crude unadjusted analysis will give the same 

(biased) estimate of effect. With respect to the direction of baseline imbalance, 

change score analysis will yield an exaggerated treatment effect when baseline 

imbalance is in the opposite direction of the treatment, that is, the control group 

has a better prognostic status (lower baseline score) than the treated group. The 

overall treatment effect however, will be masked by using change score analysis 

if the imbalance is in the same direction as treatment. 
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This situation may be overcome by ANCOVA accounting for the imbalance at 

baseline, thus reducing the systematic variation in the interests of a less biased 

and more precise estimate of treatment effect. ANCOVA does not crudely 

compare the treatment groups’ outcomes, but first adjusts the outcomes in 

relation to the covariate level in the groups. Thus, the procedure of covariate 

adjustment by ANCOVA, as explained by Rutherford (2000), usually involves two 

stages: 1) ANCOVA determines the co-variation between the covariate(s) and 

the outcome variable, that is, the influence that the group imbalance has on the 

treatment outcome for that group, and 2) it removes that variance associated 

with the covariates from the outcome variable scores (adjusts in a way that the 

covariate mean value is made equal between the groups). These two stages 

occur prior to determining whether there is difference in outcome. So, essentially 

ANCOVA compares two adjusted outcome values. Wang and Hung (2005) 

observe that the precision of the adjusted estimate of treatment effect increases 

as a function of the correlation between the response variable and the covariate. 

This implies that as correlation between the covariate and outcome variable 

increases, the precision of the estimate by ANCOVA also increases; this 

proposition will be investigated further in the simulation results (see chapters 4 

and 5). 
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3.5 Regression to mean 

The mechanism of adjustment by ANCOVA is quite different from that of change 

score analysis; this explains the reason for the differences in their estimate of 

effect and in the standard errors that they yield. 

For ANCOVA, the baseline score for an individual patient, irrespective of the 

treatment arm, is adjusted by the overall mean of the baseline scores. The 

implication of this is that the treatment arm that has a lower mean score at 

baseline by chance will by this mechanism of adjustment have its new adjusted 

mean jacked upward, and the other treatment arm with the higher mean score at 

baseline will have its mean score adjusted downward, compared to the original 

observed value. This mechanism of adjustment by ANCOVA is based on the 

phenomenon that has been described as regression to the mean (Fleiss 1986; 

Van Breukelen2006). Assuming treatment leads to reduction in baseline score as 

being the case in some empirical trial settings, those participants with low 

baseline score on the outcome variable tend to show less change than the 

average patient, similarly those with high baseline scores tend to show more 

changes than the average patients. This occurs when patients are measured as 

being severe or extreme on a variable that is subject to random fluctuation over 

time. The patients that are measured as being extreme, for example, at baseline 

on such variables are generally going to end up as having highest improvement 

over time with or without the treatment (Fleiss, 1986; Van Breukelen, 2006).Of 

the three methods under consideration in this study, only ANCOVA takes 

regression to mean into account while estimating the overall treatment effect. 
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3.6 Basic ANOVA model assumptions 

Three basic assumptions underlying the validity of the estimate of treatment 

effect by ANOVA or a regression model were taken into consideration in this 

study. Executable commands which assess whether these assumptions are met 

or not have been included in the STATA statistical program developed. The 

assumptions are: 

1. Normality of the residual 

2. Linearity of the baseline (covariate) and outcome relationship 

3. Parallel regression lines (homogeneity of regression slope). Interaction 

terms between the covariate and the outcome variable were tested to see 

if terms were sufficiently dispersed from zero. 

Other assumptions that were assumed met by virtue of the simulation 

exercise include: 

4. Covariate is measured without error 

5. Random sampling of participants 

6. Outcome variable is at least interval 

7. Residuals are identical and independently vary of each other 

8. Variance of the outcome is equal in each group 

9. Covariate is independent of the treatment variable, since baseline score 

(covariate) are generated before the treatment effects were added. 
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3.7 The study statistical program and simulation procedure 

The nature of this study requires a statistical program that will generate 

hypothetical trials involving certain levels of experimental conditions, 

simultaneously run the regression models for the statistical methods being 

studied, and then post selected results into a file. Each hypothetical trial scenario 

will be repeated a thousand times, so as to generate a highly robust estimate of 

effect each time. Thus, the success or otherwise of the study depends to a large 

extent on the ability to assemble a series of executable and logical commands 

for this purpose. The program is such that the original simulated data is 

reproducible, this is made possible by setting the seed – the first line in the 

program was set to a constant value for the entire simulation. Details of the 

syntax used are available in the appendix 1. The body of the program contains 

several lines of executable command statements; each statement targets a 

specific task that is fundamental to the objective of the study. For example, the 

loop commands ensure that each simulation is repeated 1000 times for each 

hypothetical trial generated. The same number of iterations was used by (Vickers 

2001). The essence of the repetition is to have a very robust estimate of the 

treatment effect by each statistical method, as the 1000 datasets obtained on a 

single trial scenario give a more accurate view of the population distribution in 

respect of the specific trial scenario. Any random fluctuation associated with the 

number of iterations used in this study is common to the estimates from all the 

three statistical methods and so does not affect the comparison.    
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A portion of the program randomly generates the scores for the treatment groups 

with specified levels of experimental conditions, such as: levels of treatment to 

be detected, levels of covariate-outcome correlation, sample size, and baseline 

imbalance. 

 

An important aspect of the program is the group of commands that tests three 

major assumptions regarded as fundamental to the statistical analyses in this 

study. The assumptions are: the normality of the residuals, the linearity of 

baseline-outcome relationship, and the homogeneity of regression slopes 

assumption (which specifies that there is no interaction between the treatment 

group variable and the covariate). The tests on the assumptions have been 

mainly by inspecting the graphical presentations for normality and linearity 

assumptions and the inspection of the test of significance for the homogeneity 

assumption. If the p value for the interaction group variable in a separate 

ANCOVA model is greater than 0.05, for the first trial sample in each scenario, 

then there is no group-covariate interaction.  

 

The other group of commands performs the statistical analysis by writing the 

three statistical methods in a regression model for information on respective 

regression coefficients and the associated standard error in each case. The last 

group of commands ensures that certain estimates, specifically the regression 

coefficients and the associated standard error, are collected for the 1000 

datasets on each scenario and then saved in a postfile. The simulation was run 

at least two hundred and ten times to generate the data for the study. Each 
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round of simulation, which represents a hypothetical trial, is unique in terms of 

the levels of experimental conditions it comprises. Hypothetical trials that have 

the same level of power for detecting a particular level of treatment effect (in 

standardized form) between groups have the same sample size. A population 

standard deviation of 1 (σ=1) was assumed in each trial and the same allocation 

ratio (i.e. equal sample size) was nominated within each treatment group. At 

each round of the simulation, selected output results were saved into a postfile 

and later collected into a SPSS data editor and re-analysed to meet the 

objectives of the study. The results of the re-analysis are presented in the results 

sections. 

             

3.8 Levels of experimental conditions 

It should be mentioned here that one of the things this study does differently from 

most other simulated studies that have similar objectives is not to choose levels 

of experimental conditions arbitrarily. Each of the levels that were chosen follows 

the principles that guide the design of a randomised controlled experiment. The 

reason for following this rather more thorough pathway is to be able to draw clear 

statements on the relative merits of each of the statistical methods under 

investigation to certain experimental conditions typically found in clinical trial 

settings. For example, at different levels of power of 80% and 90%, the required 

sample size was studied for each of the standardized effect sizes of 0.2, 0.5 and 

0.8. These effect sizes have been previously specified and classified as low, 

medium, and large (Cohen 1988). For each sample size, the correlation between 

pre and post treatment scores varied from 0.1 to 0.9 at intervals of 0.2, as 
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previous studies reveal that correlation between pre and post treatment scores in 

trial settings could range between 0.1 and 0.9 (Tu et al, 2005). Each level of 

correlation studied does not influence the number of patients studied in each 

group, but relates the baseline scores Z1 and Z2 to the treatment outcome scores 

Y1 and Y2, respectively. 

As often done in the empirical trial settings, preliminary computations of certain 

parameters were made before embarking on the generation of the hypothetical 

trial datasets for this study. The reason for this is to ensure that this simulation 

study is conducted under such conditions that are typical of an empirical trial 

scenario. For example, the sample size was calculated in relation to 80% power 

of detecting each of the effect differences of: 0.2, 0.5 and 0.8 used in this study. 

This ensures that adequate sample size that correspond to the size of the effect 

is studied; small sample size for large effect size and large sample for small 

effect size.  

For each hypothetical trial, the absolute imbalance was computed from a 

standardized score for the imbalance at baseline and the pooled standard error 

of the baseline imbalance (2/√n in this study, since the variance is 1 in each 

group and the two groups have equally balanced size), following the standard 

formula of:   

effect) (simulated error standard

(b) imbalance absolute
Z  ........................................(3.27) 

The absolute imbalance is therefore the product of the z-score and the standard 

error in each case. 
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With this arrangement, realistic values of imbalance were derived in relation to 

the sample size; thus avoiding large absolute imbalance for large sample sizes – 

which could have contradicted the principle of randomization. In the statistical 

program, the baseline scores were simply scaled by the absolute imbalance in 

each trial scenario to generate the trial dataset for that hypothetical trial. 

However, for trial scenarios that assume baseline comparability, the baseline 

imbalance was simply ignored. 

The predetermined standardized normal deviates (standardized imbalance) for 

this study are; +/- 1.28, +/- 1.64 and +/- 1.96 (representing 20%, 10% and 5% 

two tailed probabilities of the standard normal distribution). This indicates that the 

various levels of imbalance in this study have a predetermined probability of 

occurring whatever the sample size and on whatever scale the covariate or 

outcome variable is scored. The imbalance was assumed on both direction of the 

treatment effect in the simulation exercise, it either occurs in the treated group 

(same direction) or in the control group (opposite direction). 

This also represents another major difference between this study and most 

others, as pre-treatment scores are usually assumed identical for the treatment 

groups in a randomised control setting (Tu et al, 2005; Porter and Raudenbush, 

1987). Tu et al, while investigating the statistical power for analysis of changes in 

RCT used arbitrary sample sizes of 10, 20 and 30 per treatment group in their 

simulation study. Even though their study produced certain power values to 

compare across a range of statistical methods, since the nominal power was not 

computed, it is rather difficult to associate important meaning to either low or 
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high value of statistical power in their study. Markham and Rakes (1998) 

associate sample size and the robustness of regression analysis and artificial 

neural network. 

Another advantage of this approach is that sample size, unit or scoring on which 

the covariate or outcome variables are measured does not really matter; the 

findings of the study will still be applicable. For example, in a study of 

comparison of osteopathic spinal manipulation with standard care for patients 

with low back pain (Anderson et al, 2010), a variety of outcome measures, all 

scored differently, were used; the visual analogue pain scale was scored from 0 

to 10, the Roland Morris questionnaire was scored from 0 to 24 and the 

Oswestry questionnaire was scored from 0 to 50. The use of standardized 

scores has already solved the problem of inconsistency that could have arisen in 

the application of the findings of the study to different trial settings if absolute 

scores had been used for both imbalance and treatment effect. Standardized 

scores are particularly useful if several covariates are accounted for in the 

statistical model and the investigator is interested in ranking them according to 

their level of importance in the model. The differences in the original units of the 

covariates are already taken care of by the standardization of the coefficients. 

For any given covariate, irrespective of the scores, the standardized normal 

deviate of 1.96 (p=0.05) represents the threshold at which some researchers 

would want to select the particular covariate for adjustment. Their claim is that at 

this point the imbalance between groups is large enough, despite randomization, 

to consider the covariate for statistical adjustment. Though the argument that this 
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difference is unlikely to have occurred by chance would hold no logic if true 

randomisation is assumed to have been implemented. 

So in the context of this study, the standardized imbalances used of +/-1.28, +/-

1.64 and +/- 1.96 represent low, medium and large imbalances (Cohen, 1988) for 

any covariates, irrespective of how they are scored. The table of sample sizes at 

various standardized effects, given nominal power levels of 80% and 90%, and 

the corresponding imbalances is included in the appendices 4. 

Thus, specifically, the number of combinations of hypothetical trial scenarios 

simulated was 210 (evaluated per each of the three statistical methods) based 

around:- 

7 standardized baseline imbalances: -1.96; -1.64; -1.28; 0; 1.28; 1.64; 1.96 

5 covariate-outcome correlations: 0.1; 0.3; 0.5, 0.7 and 0.9 

3 standardized treatment effect sizes: 0.2; 0.5 and 0.8 

2 nominal power values: 80% and 90% 

3.9 Conditional versus nominal power 

Clinical trials are expected to be powered so as to be able to detect a particular 

treatment effect size considered to be of clinical importance by the researchers; 

most frequently, 80% and 90% power have been used by researchers. The 

power of a study has a profound effect on the importance which the wider 

community attaches to a study, a study that has a power of less than 80% is 

unlikely to have a wide acceptability. However, the power of a study also 

determines, to a large extent, the cost and the burden of a study on the 
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investigators. Investigators often consider the efficiency of the methods; a 

statistical method that requires relatively fewer numbers of patients to provide a 

certain level of statistical power is said to be efficient (Vickers, 2001; Kernan 

1999). 

 

This study considers two-arm clinical trials at nominal power levels of both 80% 

and 90%. The level of a nominal power of a trial is one of the factors that 

determine how many participants or patients should be included in that trial. 

Higher powered studies require that more patients be studied than lower 

powered ones, at a given effect size. For example, a study designed to detect a 

standardised effect size of 0.5 at 80% power under a two tailed test will need to 

study 64 patients in each arm of the treatment groups, whereas the same study 

but with a 90% power to detect the difference will need to study 86 patients in 

each treatment arm. Power is inversely related to the variance of the difference 

between two means (Kernan et al, 1999). 

For this simulation study, the actual (conditional) power of the statistical methods 

being studied is computed and defined for a particular scenario as the number of 

times the null hypothesis of no significant treatment effect was rejected in the 

simulations by each of the statistical methods multiplied by 100%. It is also 

interpreted as the proportion of true positives in the simulation per trial by the 

methods or the percentage of the simulated study that show a statistical 

difference between the two groups (Tu et al, 2005; Vickers, 2001).  

Thus, 
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8)100...(3.2*
 trial lhypothtica  each for ssimulation of number Total

effect treatment tsignificanlly statistica with ssimulation of number
 

Power 

 

In this study, the computation is rather more laborious and time consuming, as 

this necessitates the recoding or computation of at least eighteen new variables 

from the regression coefficients and the standard errors for each trial scenario. 

For example, in a particular trial scenario, the new variables that were computed 

are: the critical values (say, Z1, Z2 and Z3) for each of the three methods, given 

as; 

Z = 
)(



se
  , …………………………..(3.28b) 

where   is the regression coefficient and the standard error of the regression 

coefficient is the denominator. 

The power of the test (for each of the three statistical methods) across the 1000 

simulations per trial scenario was generated by examining the percentage of 

occurrences of the absolute value of the z-score that exceeded the critical value 

of the absolute of 1.96 (denoting a 5% two-tailed significance level). This critical 

value of 1.96 is applicable for large samples e.g. obtained when the studied 

effect size was small to moderate (i.e. 0.2 or 0.5).  

However, when the effect size to be detected was large (0.8) such that only 52 

patients need be studied, the critical (absolute) value was set at 2.0009. This is 

to conservatively allow for the extra uncertainty in the sampling distributions of 

smaller samples.  
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Thus, a total of 1260 new variables were computed for the entire 210 trial 

scenarios.   

The sample size calculation in this study was done using the sampsi command 

in the STATA statistical package. 

The widely used sample size formula according to Matthews, (2000) is given as; 

n
2

2

2

22



  )( / zz
...........................................................(3.29) 

where, n is the sample size and is the standardized treatment effect size 

(difference in means divided by the pooled standard deviation), σ is the standard 

deviation of z in both groups. Clearly, the higher the variability in the 

measurement (σ2), the larger the sample needed to detect a given effect. Also, 

when a treatment effect to be detected (  ) is very small a much larger trial is 

also needed for the purpose. However, the computation of sample size in this 

study using the sampsi procedure follows the formula proposed by Machin et al 

(1997), which imposes a correction factor (the correction factor only adds 1 to 

the size required from the above formula (for a nominated significance level of 

about 2)) and is given as; 

n  
4

2 21
2

2

2

21

2
// )( 




 zzz
 ..........................................(3.30) 
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3.10 Efficiency (relative sample sizes) of the adjusted and unadjusted 

analyses 

As earlier mentioned in this chapter, the associated variance of the estimate of 

treatment effect by the three statistical methods differs and is dependent on the 

level of relationship between the baseline and the outcome in the case of the 

adjusted analysis. For example, the adjusted analysis by ANCOVA leads to 

reduction in the standard error as a result of the extra information – the baseline 

variable (with or without imbalance) – with which it tends to explain the variability 

in treatment groups. CSA provides an alternative means of accounting for a 

baseline imbalance, though, differently. On the other hand, ANOVA does not 

make use of the baseline variable at all in its explanation of the variability 

between treatment groups. Thus, for a given trial scenario, there is a contrast in 

the precision of the estimate of effect (measured by the standard error) for the 

three methods. 

The standard error depends on the standard deviation of the scores and the 

sample size. Thus, this simulation study shall investigate the ratios of the 

standard error of each of the two methods of statistical adjustment with reference 

to the unadjusted analysis at different trial scenarios. The resultant ratio will thus 

provide information on the relative sample size requirement of the statistical 

methods under investigation. In this study, efficiency is seen in the context of 

using a reduced number of patients to detect a level of treatment difference at a 

stipulated level of power.  
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Pocock et al (2002) gave the following mathematical expressions for the ratio of 

the standard error for the ANCOVA against ANOVA as:                        

21  ..................................................................(3.31) 

and for the reduction in the original sample size for ANCOVA against ANOVA as: 

21  .........................................................................(3.32)  

Also, the ratio of standard error of ANCOVA to that of CSA is given as: 

2/)1(  .................................................................(3.33) 

and the relative reduction in sample size for using ANCOVA instead of CSA is 

given as:   

2

1 
...........................................................................(3.34) 

The results of the simulation study will help demonstrate the application of the 

above formulae for different trial scenarios, and highlight the increased 

conditional power and efficiency savings for ANCOVA over ANOVA (as well as 

addressing the comparative power and efficiency statistics for CSA). Recall that 

for any given trial scenario, a more efficient trial will require fewer patients to 

have a stated level of power (usually 80 or 90%) to detect an important 

difference between two treatments (Kernan et al 1999). 
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Chapter 4: Directional pattern of precision and bias of statistical 

methods for RCTs – findings of the simulation exercise. 

 

4.1 Introduction 

This chapter presents a comparison of the pattern of precision and bias of the 

ANCOVA, change score and ANOVA in an analysis of an RCT with a single post 

treatment assessment of a continuous outcome variable. The comparison is in 

respect of various levels of experimental conditions typical of a clinical trial: 

levels of baseline-outcome correlation, levels of baseline imbalance in either 

direction relative to the treatment effect, levels of treatment effect (to be detected 

at 80% nominal power). The reference unadjusted analysis as mentioned 

previously is ANOVA and the adjusted analyses in this case are change score 

analysis (CSA) and ANCOVA. It should be noted that the same hypothetical trial 

data were used in both instances (with or without imbalance). The only difference 

is that, while the first part focuses on absolute balance of treatment groups as a 

result of randomisation – which is an unlikely scenario -, the second part does 

not and takes account of random differences. Throughout, results are presented 

on all three levels of standardized treatment effect (small – 0.2, medium – 0.5 

and large – 0.8) to be detected. Results on trial scenarios in which there is 

baseline imbalance and treatment effect implies decrease in baseline score are 

presented in subsequent parts.  

The two possible cases of defining an improvement in relation to baseline scores 

are considered in this study, when treatment effect or improvement implies 
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increase or decrease in baseline scores. However, in this chapter results are 

presented on the latter possibility – treatment effect or improvement implies 

decrease in baseline score – and results relating to the other possibility are 

included as appendices. The reason for this choice is because most of the 

outcomes in musculoskeletal trials (and therefore of interest within the Arthritis 

Research UK centre) are such that treatment effect implies decrease in baseline 

score. For example, pain scales, depression/anxiety scales, disability scales are 

usually directional as low scores (often 0) denote no pain or no 

anxiety/depression or no disability whereas highest scale scores denote 

maximum pain or highest anxiety/depression or most severe disability. Hence, 

patients usually present with high scores (denoting increased severity of the 

condition) and the goal of treatment is to lower the scores. Results for situations 

in which treatment effect generally implies increase in baseline score (e.g. 

improved quality of life as shown by increased scores on the Short Form (SF-

12/36) and EuroQoL questionnaire scales) and at 90% nominal power are 

attached as appendix 2. In all, there are six different graphs (Figures 4.1- 4.6) 

with each of them representing different aspect of the result in this chapter. 

  

4.2 Bias and precision of estimate of effect associated with the statistical 
methods for groups with or without baseline imbalance 

The first part of this section presents results on the precision and bias of 

estimates of treatment effect of RCTs in which treatment groups are 

homogeneous at baseline – in line with absolute balance due to randomisation. 

However, several authors have argued (Dougsheng et al, 2000; Altman et al, 
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1990) that the occurrence of comparable treatment groups at baseline is only 

possible in principle and not in practice. Hence, the second part of this section 

focuses on results for trial scenarios whereby treatment groups are 

heterogeneous to differing degrees at baseline. 

 

4.2.1 Bias and precision of statistical methods of analysis of RCTs when 
groups are homogeneous 

Table 4.1 presents the pattern of bias and precision of the three statistical 

methods across different levels of baseline-outcome correlations and different 

levels of treatment effect.  

Table 4.2: Pattern of bias and precision of methods of analysis of RCTs 
with homogeneous treatment groups across differing levels of baseline-
outcome correlations and treatment effect size.  

Statistical 
Methods 

 Levels of baseline-outcome correlations  and estimates 

 0.1 
{β, se(β)} 

0.3 
{β, se(β)} 

0.5 
{β, se(β)} 

0.7 
{β, se(β)} 

0.9 
{β, se(β)} 

ANOVA      

Small (0.2)           –0.20,0.07 –0.20,0.07 –0.20,0.07 –0.20,0.07 –0.20,0.07 

Medium (0.5) –0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 

Large (0.8) –0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 

CSA      

Small (0.2)           0.20,0.10 0.20,0.08 0.20,0.07 0.20,0.06 0.20,0.03 

Medium (0.5) 0.50,0.24 0.50,0.21 0.50,0.18 0.50,0.14 0.50,0.08 

Large (0.8) 0.80,0.37 0.80,0.33 0.80,0.28 0.80,0.21 0.80,0.12 

ANCOVA      

Small (0.2)           –0.20,0.07 –0.20,0.07 –0.20,0.06 –0.20,0.05 –0.20,0.03 

Medium (0.5) –0.50,0.18 –0.50,0.17 –0.50,0.15 –0.50,0.13 –0.50,0.08 

Large (0.8) –0.80,0.28 –0.80,0.27 –0.80,0.24 –0.80,0.20 –0.80,0.12 

When Y = 0.2, n=788; Y=0.5, n=128, Y=0.8, n=52 (1000 iterations in each scenario) 

The simulation results confirm the fact that all the statistical methods of interest 

yield unbiased point estimates of the treatment effect when the groups are 

comparable at baseline by randomisation; this is independent of baseline-
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outcome correlation. Whilst the CSA method yields an estimate of effect that is 

equal in magnitude to that of ANOVA and ANCOVA, the direction of its estimate 

is always opposite; this is connected with the way it is computed. To clarify, the 

interpretation of the difference in effect for CSA is in the opposite direction to that 

for ANOVA and ANCOVA such that a positive mean difference for ANOVA and 

ANCOVA implies that the treatment group has higher (i.e. ‘worse’) outcome than 

the control group, whereas, a positive difference for the CSA implies that the 

treated group has greater change (i.e. ‘better’) outcome than the control group. 

Thus, as way of measuring bias, absolute values of the regression coefficients 

were therefore taken in Figure 4.1 to illustrate a direct comparison of treatment 

effects between the three statistical methods. A green dotted line is drawn 

through the point at which baseline imbalance is zero for each hypothetical trial 

scenario – the Figure shows that the three methods have the same absolute 

effect estimate when the treatment arms are exactly balanced.  

By contrast, also in Table 4.1, the precision of the estimate of effect by the 

methods varies dramatically with levels of correlation. Whereas precision of the 

estimate for ANOVA at a particular level of treatment effect to be detected is the 

same across all levels of covariate-outcome correlation, it is not so for both CSA 

and ANCOVA. The reason for this is because the variances of the estimates 

produced by both CSA and ANCOVA respond to baseline-outcome correlation. 

As shown in figure 4.2, a green dotted line is drawn through the point at which 

baseline imbalance is zero for each trial scenario, to further illustrate differences 

in precision between the three methods of statistical analysis when there is 
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balance in baseline scores. Since ANOVA is independent on baseline-outcome 

correlation the precision of its estimate is given as in (Chapter 3, equation 

3.16b). 

Mathematical relationships between the precision of effect estimate of each of 

the methods for statistical adjustment and baseline-outcome correlation was 

given in chapter three (equation 3.17). The results show that both ANOVA and 

ANCOVA are approximately equally precise in their estimate of treatment effect 

at a low correlation of 0.1, irrespective of the level of the simulated effect. 

However, an estimate of effect from ANCOVA becomes progressively more 

precise than that from ANOVA with higher levels of baseline-outcome correlation 

(r≥0.3). Also, at baseline-outcome correlation below 0.5, ANOVA presents with 

an estimate of effect that is more precise than that of CSA. Although estimates 

from both methods are equally precise at a correlation of 0.5, CSA has higher 

precision when baseline-outcome correlation is greater than 0.5. ANCOVA offers 

the benefit of a generally higher precision of estimate of effect than either 

ANOVA or CSA at most experimental conditions typical of a RCT. However, as 

shown in figure 2, the precision of estimate from CSA is somewhat comparable 

to that of ANCOVA at high baseline-outcome correlations (e.g. r ≥0.7), and the 

precision of the ANOVA is somewhat comparable to the ANCOVA for low 

baseline-outcome correlations (e.g. r≤0.3). Note, for all three methods the  
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Figure 4.2: Directional pattern of bias of statistical methods for the  
analysis of RCTs at differing levels of baseline imbalance, baseline-
outcome correlation and treatment effect sizes 

 
 
KEY: __ ANOVA ___ CSA ___ANCOVA; When Y = 0.2, n=788; 
Y=0.5, n=128, Y=0.8, n=52 (1000 iterations in each case) 
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Figure 4.2: Directional pattern of precision of statistical methods for the 

analysis of RCTs at differing levels of: baseline imbalance, baseline-

outcome correlation and treatment effect sizes 

      
KEY ___ ANOVA ___ CSA ___ANCOVA; When Y = 0.2, n=788; 
Y=0.5, n=128, Y=0.8, n=52 (1000 iterations performed in each case) 
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standard errors are larger for greater treatment effect sizes since the required 

sample sizes are correspondingly greater for trials where the treatment effects 

are smaller (the simulations necessarily taking these differences in sample sizes 

into account). Hence, the standard errors are incremental across the increasing 

levels of treatment effect size shown in Figure 4.2. 

4.2.2 Pattern of precision of statistical methods when groups are 
heterogeneous 

The direction and size of imbalance does not affect the precision of estimate 

within a particular level of correlation. In fact, as illustrated in Figure 4.2, the 

precision of estimate of effect by these statistical methods is the same 

irrespective of baseline balance or heterogeneity at the same level of baseline-

outcome correlation and same treatment effect size.  

Table 4.2: Directional pattern of bias and precision of statistical methods at 
differing levels of: baseline-outcome correlation and baseline-imbalance in 
the same direction of effect [treatment effect size Y = 0.2; n=788] 

          Levels of baseline-outcome correlations  and estimates 

 
Methods    (Z) 

0.1 
β, se( β) 

0.3 
β, se( β) 

0.5 
β, se( β) 

0.7 
β, se( β) 

0.9 
β, se( β) 

ANOVA 
                1.28 
                1.64 
                1.96 

 

–0.20, 0.07 –0.20, 0,07 –0.20, 0.07 –0.20,0.07 –0.20,0.07 

–0.20,0.07 –0.20, 0,07 –0.20, 0.07 –0.20,0.07 –0.20,0.07 

–0.20,0.07 –0.20,0.07 –0.20,0.07 –0.20,0.07 –0.20,0.07 

Change score 
                1.28 
                1.64 
                1.96 

 

 0.11, 0.10 0.11, 0.08 0.11,0.07 0.11,0.06 0.11,0.03 

0.08,0.10 0.09, 0.08 0.08.0.07 0.08,0.06 0.08,0.03 

0.06,0.10 0.06,0.08 0.06,0.07 0.06,0.06 0.06,0.03 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

–0.19,0.07 –0.17,0.07 –0.16,0.06 –0.14,0.05 –0.12,0.03 

–0.19,0.07 –0.17,0.07 –0.14,0.06 –0.12,0.05 –0.10,0.03 

–0.19,0.07 –0.16,0.07 –0.13,0.06 –0.10,0.05 –0.07,0.03 
Y is the simulated effect size at 80% power and Z is the standardized imbalance 
 1000 iterations in each scenario  
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Table 4.3: Directional pattern of bias and precision of statistical methods at 
differing levels of: baseline-outcome correlation and baseline-imbalance in 
the same direction of effect [treatment effect size Y = 0.5; n=128] 

       Levels of baseline-outcome correlations  and estimates 

 
Methods    (Z) 

0.1 
β, se( β) 

0.3 
β, se( β) 

0.5 
β, se( β) 

0.7 
β, se( β) 

0.9 
β, se( β) 

ANOVA 
                1.28 
                1.64 
                1.96 

 

–0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 

–0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 

–0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 

Change score 
                1.28 
                1.64 
                1.96 

 

0.27,0.24 0.27,0.21 0.27,0.18 0.27,0.14 0.27,0.08 

0.21,0.24 0.21,0.21 0.21,0.18 0.21,0.14 0.21,0.08 

0.16,0.24 0.15,0.21 0.15,0.18 0.15,0.14 0.15,0.08 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

–0.48,0.18 –0.43,0.17 –0.39,0.15 –0.34,0.13 –0.30,0.08 

–0.47,0.18 –0.41,0.17 –0.35,0.15 –0.30,0.13 –0.24,0.08 

–0.46,0.18 –0.40,0.17 –0.33,0.15 –0.26,0.13 –0.19,0.08 
 Y is the simulated effect size at 80% power and Z is the standardized imbalance 
 1000 iterations in each scenario 

 

 
Table 4.4: Directional pattern of bias and precision of statistical methods at 
differing levels of: baseline-outcome correlation and baseline-imbalance in 
the same direction of effect [treatment effect size Y = 0.8; n=52] 
 

 Levels of baseline-outcome correlations  and estimates 

 
Methods   (Z) 

0.1 
β, se( β) 

0.3 
β, se( β) 

0.5 
β, se( β) 

0.7 
β, se( β) 

0.9 
β, se( β) 

ANOVA 
                1.28 
                1.64 
                1.96 

 

–0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 

–0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 

–0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 

Change score 
                1.28 
                1.64 
                1.96 

 

0.44,0.37 0.44,0.33 0.44,0.28 0.44,0.21 0.44,0.12 

0.34,0.37 0.34,0.33 0.34,0.28 0.34,0.21 0.34,0.12 

0.25,0.37 0.25,0.33 0.25,0.28 0.25,0.21 0.26,0.12 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

–0.76,0.28 –0.69,0.27 –0.62,0.25 –0.55,0.20 –0.48,0.12 

–0.75,0.29 –0.66,0.27 –0.57,0.25 –0.48,0.21 –0.39,0.13 

–0.74,0.29 –0.63,0.28 –0.53,0.25 –0.42,0.21 –0.31,0.13 
Y is the simulated effect size at 80% power and Z is the standardized imbalance 
 1000 iterations in each scenario  
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For example, under the same experimental conditions, a treatment effect 

estimate by ANCOVA when treatment groups are homogeneous at baseline will 

be as precise as an effect estimate for trial scenarios with heterogeneous 

groups. 

Although level and direction of imbalance have little or no influence on the size of 

the standard error, the levels of covariate-outcome correlation are seen to have 

an important influence on the size of the standard error as it does if groups are 

balanced at baseline. With adjusted analysis, the precision increases with 

increase in levels of correlation; however, this increase in precision over the 

unadjusted analysis becomes noticeable only at a certain level of baseline-

outcome correlation: r≥0.3 for ANCOVA and r≥0.7 for CSA. At a correlation of 

r 0.3 the standard error estimate for ANCOVA is similar to that of ANOVA. 

Correspondingly, at low levels of correlation the effect estimate from the 

unadjusted analysis is more precise than that from CSA at all levels of baseline 

imbalance. Both ANOVA and CSA are equally precise (but less precise than 

ANCOVA) at trial scenarios where the baseline-correlation is 0.5.  

Thus, when a suspected prognostic factor has little or no correlation with the 

outcome, statistical adjustment to account for any level of imbalance does not 

make the estimate of effect more precise than would have obtained if treatment 

comparison had been based on crude post-treatment comparison by ANOVA. 

The issue with precision of estimate of effect and the type of analysis to conduct 

hinges not on the levels of imbalance but rather on the degree of prognostic 

relationship – i.e. the correlation between covariate and outcome. Adjusting for a 
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strong prognostic variable that appears balanced between treatment groups can 

lead to a more precise estimate of effect. Conversely, there is no gain in 

precision when adjusting for a covariate with large imbalance that is not 

prognostic ally related with the outcome. It is therefore clear from these results 

that the precision of estimate achieved through statistical adjustment depends on 

the level of prognostic relationship between the covariate and the outcome and 

not on the level of imbalance. Thus, researchers should endeavour to identify 

such baseline variables that are prognostic of outcome and account for them in 

the analysis. 

4.2.3 Bias of statistical methods for RCT when groups are heterogeneous 
at baseline 

 In Tables 4.2- 4.4 it is observed that even at the lowest level of baseline-

outcome correlation, when baseline imbalance exist, ANOVA and ANCOVA do 

not have the same estimates of effect, as denoted by the regression coefficients. 

The magnitude of this disparity in the regression coefficients of ANOVA and 

ANCOVA is dependent on the degree of baseline-outcome correlation and both 

level and direction of baseline imbalance. The observed difference in the 

regression coefficients by ANOVA and ANCOVA is as a result of the statistical 

adjustment of the baseline imbalance by ANCOVA. As earlier described in 

chapter 3, ANCOVA yields an estimate of effect that is conditional on the 

baseline imbalance for a prognostic variable, and in this case, baseline of the 

outcome variable. The size and direction of imbalance in a prognostic variable 

determine how much difference is observed between the estimate of effect by 

ANOVA that does not take such imbalance into account and the estimate of 
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effect by ANCOVA that appropriately accounts for the imbalance. Indeed, the 

results of this simulated study agree with the algebraic equations and 

expressions on the subject. For example, as mentioned in (Chapter 3, Equation 

3.26), the estimate of effect by ANCOVA, having taking into account the direction 

and size of a prognostic imbalance is given as;  

)(ˆ)( CTCT ZZYY 
 

In Table 4.4, this yields –0.74 and –0.31 respectively as effect estimates for a 

hypothetical trial scenario in which the treatment effect is ‘large’ (0.8), the 

baseline imbalance is in the same direction as the effect and is ‘large’ (1.96), and 

the baseline-outcome correlation is 0.1 and 0.9 respectively. Also the results of 

the simulation fit perfectly well with the above equation representing estimate of 

treatment for using ANCOVA. For example; at baseline-outcome correlation of 

0.3 when absolute imbalance of (–0.09) (equivalence of 1.28 standardized 

imbalance) is in the same direction as treatment effect of (–0.2), the effect due to 

the covariate ( ̂ ) then is (0.322). By substituting these values in the above 

equation representing treatment effect by ANCOVA,  

 = (–0.2 – 0) – 0.322(–0.09 – 0) 

=  –0.2 + 0.0290 

=  – 0.171 

this approximates the estimate of effect by ANCOVA in the simulation results in 

(Table 4.2) 
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Whereas, as expected theoretically, the regression coefficient is the same for 

ANOVA across various levels of baseline imbalance and baseline-outcome 

correlation, it varies at each level of these experimental conditions for ANCOVA. 

This variation is again closely related to the direction and size of imbalance. 

ANOVA naively yields the same simulated value as its estimates of treatment 

effect despite increasing levels of groups’ heterogeneity at baseline; (Tables 4.2 

– 4.4); these effect estimates are biased as they do not respond to or reflect the 

groups’ baseline imbalance. The baseline scores are rather reckoned with by 

ANOVA as if they are not at all related with the outcome. The stronger the 

prognostic relationship between the baseline and the outcome the more bias the 

estimate given by ANOVA.  

The estimate of effect by CSA does not change markedly with increase in 

baseline-outcome correlation as it yields approximately the same estimate 

across all observed levels of baseline-outcome correlation. It is important 

however, to point out that, with increasing magnitude in baseline-outcome 

correlation, and when all other factors remain the same, estimates of effect from 

CSA progressively approximate that of ANCOVA. In fact, for a baseline-outcome 

correlation of 0.9, and especially when the effect to be detected is low (0.2), 

irrespective of the size and direction of imbalance, the estimate from CSA and 

ANCOVA look so much alike. This result again is expected and supported 

theoretically. It was earlier mentioned in chapter 3 that, when there is imbalance 

in a prognostic factor at baseline, CSA cannot be unbiased unless the baseline – 

outcome correlation is 1. At that circumstance, the estimate of effect by CSA is 
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the same as that of ANCOVA. It would be recall that the estimate of treatment 

effect by CSA is given as; 

)ZZ)(1(+=]Z,Z|)ZY()ZY[(E CTCTCCTT --  

This explains why estimates from both methods appear so close to each other at 

a correlation of 0.9. The difference in estimate however becomes more 

noticeable at lower levels of correlation. This then suggests that the lower the 

baseline- outcome correlation, the more biased are the estimates of effect by 

change score analysis. In this study, as evidenced from Tables 4.2–4.7, there is 

a substantial difference between the estimate of effect from ANOVA and that 

from change CSA at all levels of experimental factors when treatment groups are 

heterogeneous at baseline. 

Even though the estimate of effect by CSA appears not to be markedly affected 

by the degree of baseline-outcome correlation, Tables 4.2 – 4.7 show that CSA 

regression coefficients are markedly influenced by both the magnitude and 

direction of imbalance. When imbalance is in the opposite direction to that of the 

treatment effect (signified by an increased positive value on the x-axis in Figure 

4.1), that is, the control group have lower values (i.e. are better) at baseline, the 

absolute value of the effect estimate by CSA increases in relation to the 

underlying treatment effect. Here, the higher the level of imbalance the wider the 

distance between the estimated effect and zero, and the more likely it is to infer a 

significant result by change score. The reason for this seeming exaggeration is 

because the control group is treated by change score analysis as if it enjoys a 
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level of treatment which was never assigned to it, giving rise to false positives. 

On the other hand, if the imbalance is in the same direction as the treatment 

effect, overall, there is a masking of the treatment effect by change score. This is 

a consequence of the way change is computed. 

For example, assume that ),( TT YZ


 represents the baseline and outcome score 

for the treatment group and ( CC YZ , ) represents the baseline and outcome for the 

control group. 

Thus, with change (C) given as; 

C = baseline – outcome 

for an absolute imbalance of 0.09 in the same direction as an effect size of 0.2, 

the arrangement will be (note that reduction implies treatment effect and 

imbalance in same direction as treatment implies the treated group has a better 

prognosis at baseline): 

C= )( TT YZ 


 – ( CC YZ  ) 

–0.09 – (–0.2) – (0 – 0) = – 0.09 + 0.2 = 0.11 

Whereas, if the imbalance of 0.09 is in the opposite direction of effect size of (– 

0.2), then:       

C= 0.09 – ( – 0.2) – (0 – 0) = 0.09 + 0.2 = 0.29 

Alternatively, 
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C = 0 – (-0.2) – (-0.09) – 0 = 0.29 + 0.09 = 0.29 

These arrangements explain three points;  

1) CSA yields estimates of effect in the opposite direction to the effect 

(improvement) to be determined. This is the reason for the positive sign 

on the estimate of effect that is expected to be negative.  

2) Change score assumes the baseline-outcome correlation to be 1. Thus 

estimates of effect are the same across all levels of correlation. 

3) Summarily, the computation of effect by CSA when imbalance is in the 

same direction as treatment effect is such that the magnitude of this 

imbalance is subtracted from the absolute value of the treatment group’s 

effect. On the other hand, when imbalance is in the opposite direction of 

treatment, the computation of effect by CSA is such that the magnitude of 

imbalance is added to the absolute value of the treatment group’s effect. 

When imbalance is in the same direction as the treatment effect, the estimate 

from CSA is seen to converge to a zero value, indicating no effect. This 

phenomenon ultimately depends on the size of imbalance; the larger the 

imbalance the closer to zero is the estimate of effect by CSA. This tapering of 

effect size relative to size of imbalance is due to the deduction of the size of the 

imbalance from the treatment effect in the treatment group resulting in the loss of 

some effect. This then means that though some treatment effects exist, they will 

not be detected by CSA and thus, false negatives will result. Therefore, 

depending on direction, the larger the imbalance the larger the exaggerating or 
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masking effect by CSA on its estimate of effect. It can also be observed from 

Tables 4.2 – 4.7 that the estimate of effect by ANCOVA for a corresponding level 

of imbalance is similar to that of change at correlation of 0.9.          

Going by the absolute values, the imbalance in the opposite direction to the 

treatment effect in this study means that the baseline score of the treatment 

group is smaller and the group has a worse prognosis compared to the control 

group. Thus, the mean score for the treatment group at baseline is lower 

compared to the control group and by implication, given this method; the mean 

baseline score for the treatment is also lower than the grand mean on baseline 

covariate for the two groups. Under this condition, the mechanism of adjustment 

by ANCOVA which ensures the upward adjustment of the baseline score of the 

group with the lower mean score favours the treatment group. This explains the 

reason for the higher value of the regression coefficients that ANCOVA presents, 

in respect of the simulated score at this instance of baseline imbalance being in 

the opposite direction of the effect. It should be noted that, these regression 

coefficients which represent the estimate of true effect is the unbiased estimate, 

as it takes account of the baseline imbalance. While the results also show that 

these estimates of effect are highly dependent on levels of covariate-outcome 

correlation, they also change considerably with levels of imbalance. 

The magnitude of the regression coefficient from ANCOVA is influenced by the 

levels of baseline imbalance and the degree of baseline-outcome correlation (as 

shown in Figure 1). For example, when imbalance is in the opposite direction to 

the treatment effect (positive direction in Figure 1), the size of the regression 
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coefficient from ANCOVA increases as correlation increases; under the same 

conditions, the coefficient also increases as the baseline imbalance increases. 

On the other hand, when the imbalance is in the same direction with the 

treatment (reflected in negative values for the baseline imbalances in Figure 1), 

then the regression coefficient by ANCOVA decreases as the correlation 

increases and decreases as the imbalance also increases. The value of 

regression coefficient by ANCOVA would always be in excess of the estimate by 

ANOVA and by implication the simulated score, if imbalance is in the opposite 

direction of the effect. Thus, when heterogeneity in treatment groups is such that 

the imbalance is in the opposite direction of treatment group the likelihood of a 

significant result upon adjustment through ANCOVA (compared to ANOVA) is 

enhanced. This likelihood increases with an increase in the level of covariate-

outcome correlation.  

Conversely, when imbalance is in the same direction as treatment, the estimate 

of effect by ANCOVA will always be less than the unadjusted; this trend is also 

observed as correlation increases and thus a significant effect by ANOVA may 

not be significant by ANCOVA especially if the baseline and the outcome are 

very strongly correlated (Tables 4.2–4.4). For example, the estimate of effect by 

ANCOVA, represented by the regression coefficient;  

)(ˆ CTZCT ZZYY  = – 0.17 

If y = – 0.2,   z= –0.09 at r=0.3; Z̂ - regression coefficient for the baseline 

covariate is computed as 0.322 



  

121 

 

Conversely, when imbalance is in the opposite direction and with 
z̂  computed 

as 0.229, the estimate of effect by ANCOVA is given as; 

 = [(–0.2 – 0) – 0.229 (0 – (–0.09)] = (–0.2) – 0.0206 = –0.221 

This also equates the results of the simulation. 

Table 4.5: Directional pattern of bias and precision of statistical methods at 
differing levels: of baseline-outcome correlation and baseline-imbalance in 
the opposite direction of effect [treatment effect size Y= 0.2; n=788] 

 Levels of baseline-outcome correlations and estimates 

 
Methods    (Z) 

0.1 
β, se( β) 

0.3 
β, se( β) 

0.5 
β, se( β) 

0.7 
β, se( β) 

0.9 
β, se( β) 

ANOVA 
                1.28 
                1.64 
                1.96 

 

–0.20, 0.07 –0.20, 0,07 –0.20, 0.07 –0.20,0.07 –0.20,0.07 

–0.20,0.07 –0.20, 0,07 –0.20, 0.07 –0.20,0.07 –0.20,0.07 

–0.20,0.07 –0.20,0.07 –0.20,0.07 –0.20,0.07 –0.20,0.07 

Change score 
                1.28 
                1.64 
                1.96 

 

0.29,0.10 0.29,0.08 0.29,0.07 0.29,0.06 0.29,0.03 

0.32,0.10 0.32,0.08 0.32,0.07 0.32,0.06 0.32,0.03 

0.34,0.10 0.34,0.08 0.34,0.07 0.34,0.06 0.34,0.03 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

–0.21,0.07 –0.23,0.07 –0.25,0.06 –0.24,0.05 –0.28,0.03 

–0.21,0.07 –0.24,0.07 –0.26,0.06 –0.28,0.05 –0.31,0.03 

–0.21,0.07 –0.24,0.07 –0.27,0.06 –0.30,0.05 –0.33,0.03 
Y is the simulated effect size at 80% power and Z is the standardized imbalance 
 1000 iterations in each scenario  
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Table 4.6: Directional pattern of bias and precision of statistical methods at 

differing levels of: baseline-outcome correlation and baseline-imbalance in 

the opposite direction of effect [treatment effect size Y = 0.5; n=128] 

 Levels of baseline-outcome correlations  and estimates 

 
Methods    (Z) 

0.1 
β, se( β) 

0.3 
β, se( β) 

0.5 
β, se( β) 

0.7 
β, se( β) 

0.9 
β, se( β) 

ANOVA 
               1.28 
               1.64 
               1.96 

 

–0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 

–0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 

–0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 –0.50,0.18 

Change score 
               1.28 
               1.64 
               1.96 

 

0.72,0.24 0.73,0.21 0.73,0.18 0.73,0.14 0.73,0.08 

0.79,0.24 0.79,0.21 0.79,0.18 0.79,0.14 0.79,0.08 

0.84,0.24 0.84,0.21 0.85,0.18 0.85,0.14 0.85,0.08 

ANCOVA 
               1.28 
               1.64 
               1.96 

 

–0.52,0.18 –0.57,0.17 –0.61,0.15 –0.66,0.13 –0.70,0.08 

–0.52,0.18 –0.59,0.17 –0.64,0.15 –0.70,0.13 –0.76,0.08 

–0.53,0.18 –0.60,0.17 –0.67,0.15 –0.74,0.13 –0.81,0.08 
Y is the simulated effect size at 80% power and Z is the standardized imbalance 
 1000 iterations in each scenario  

Table 4.7: Directional pattern of bias and precision of statistical methods at 
differing levels of: baseline-outcome correlation and baseline-imbalance in 
the opposite direction of effect [treatment effect size Y = 0.8; n=52] 

 Levels of baseline-outcome correlations  and estimates 

 
Methods (Z) 

0.1 
β, se( β) 

0.3 
β, se( β) 

0.5 
β, se( β) 

0.7 
β, se( β) 

0.9 
β, se( β) 

ANOVA 
               1.28 
               1.64 
               1.96 

 

–0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 

–0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 

–0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 –0.80,0.28 

Change score 
             1.28 
             1.64 
             1.96 

 

1.15,0.37 1.15,0.33 1.15,0.28 1.15,0.21 1.15,0.12 

1.24,0.37 1.25,0.33 1.25,0.28 1.25,0.21 1.25,0.12 

1.34,0.37 1.34,0.33 1.34,0.28 1.34,0.21 1.34,0.12 

ANCOVA 
               1.28 
               1.64 
               1.96 

 

–0.83,0.28 –0.90,0.27 –0.98,0.25 –1.04,0.20 –1.12,0.12 

–0.84,0.29 –0.94,0.27 –1.03,0.25 –1.12,0.21 –1.21,0.13 

–0.85,0.29 –0.96,0.28 –1.07,0.25 –1.18,0.21 –1.29,0.13 
Y is the simulated effect size at 80% power and Z is the standardized imbalance 
 1000 iterations in each scenario  
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4.3 Ratios of standard error of statistical methods for the analysis of 
randomised controlled trials at several hypothetical trial scenarios 

Table 4.8 below presents the ratio of the associated variance of estimate of 

effect measured by its standard error for both ANCOVA and ANOVA over the 

range of study hypothetical clinical trial scenarios. This is analogous to a design 

effect, e.g. in the context of cluster randomised controlled trials and trials in 

which individuals are randomised. With the standard error of ANCOVA as the 

numerator, the results illustrate various levels of reduction in the standard error 

of estimate of effect by using ANCOVA instead of ANOVA for statistical analysis. 

A ratio of 1 indicates that both methods are equally precise at the given trial 

scenario, and this occurs when baseline-outcome correlation is low (0.1). From 

the table, it is clear that the precision benefit of ANCOVA over ANOVA is 

independent of the level and direction of imbalance and is solely driven by the 

level of baseline-outcome correlation. There is generally a reduction in the ratio 

of standard errors as the level of baseline-outcome correlation increases. The 

percentage reduction, therefore, in the standard error by using ANCOVA ranges 

from 0%, when correlation is 0.1, to 57%, when correlation is 0.9. 

It can be seen from these results that, when treatment groups are balanced, 

there is only about a 4% reduction in the variance of estimates by using 

ANCOVA instead of ANOVA at baseline-outcome correlation of 0.3, but a 25-

30% reduction is observed if the baseline-outcome correlation is 0.7. In fact, for a 

trial with balanced treatment groups, the percentage reduction in standard error 
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Table 4.8: Ratio of the standard error of ANCOVA and ANOVA 

 

Effect       Z 
0.2 

Levels of baseline-outcome correlations         

0.1 0.3 0.5 0.7 0.9 

         –1.96 
         –1.64 
         –1.28 
              0 
          1.28 
          1.64 
          1.96 

1.01 0.97 0.86 0.71 0.43 

1.01 0.97 0.87 0.73 0.44 

1.00 0.97 0.87 0.73 0.43 

1.00 0.96 0.86 0.71 0.43 

1.00 0.97 0.86 0.71 0.43 

1.00 0.97 0.86 0.71 0.43 

1.00 0.97 0.86 0.71 0.43 

0.5  

         –1.96 
         –1.64 
         –1.28 
             0 
          1.28 
          1.64 
          1.96  

1.01 0.97 0.88 0.72 0.44 

1.01 0.96 0.88 0.72 0.44 

1.01 0.96 0.87 0.73 0.44 

1.00 0.96 0.86 0.71 0.43 

1.03 0.93 0.83 0.70 0.43 

1.01 0.97 0.86 0.72 0.44 

1.00 0.97 0.86 0.72 0.44 

0.8  

        –1.96 1.04 1.00 0.90 0.75 0.45 

        –1.64 1.02 0.99 0.90 0.74 0.45 

        –1.28 1.02 0.98 0.89 0.73 0.45 

           0 1.00 0.96 0.86 0.71 0.43 

         1.28 1.01 0.97 0.89 0.72 0.45 

         1.64 1.03 0.99 0.90 0.74 0.45 

         1.96 1.04 1.00 0.90 0.75 0.46 
When Y = 0.2, n=788; Y=0.5, n=128, Y=0.8, n=52, 1000 iterations in each scenario 

 
 

using ANCOVA is the same for both large and small trials given a particular 

baseline-outcome correlation. Thus at correlation of 0.7, the respective ratios of 

the standard error of ANCOVA and ANOVA for large, medium and small trials is 

0.71, implying a 29% reduction in the standard error of ANOVA at each instance. 

Thus, the stepwise precision pattern presented in Figure 2 above does not 

necessarily mean that there is a greater disparity in the standard error of ANOVA 
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and ANCOVA across levels of effect or trial sizes, it is just a response to the size 

of effect being determined at each time.    

Although size of imbalance may not matter when considering the precision of 

ANCOVA in a trial with a given sample size, the level of reduction in the standard 

error is lower at a small sample size, especially when the imbalance is large. For 

example, for a large trial (n=788), when the baseline-outcome correlation is 0.3 

and 0.7 respectively, ANCOVA yields 3% and 29 % reduction in the standard 

error of ANOVA, whereas, for a small trial (n=52), given the same conditions, 

there is 0.0 and 25% reduction in the standard error of ANOVA respectively by 

using ANCOVA. This observation is not however consistent with change in the 

trial size and or size of imbalance. Here, a reason for the slight difference in the 

standard errors is the postulated random fluctuation inherent with simulated 

datasets and the differences in width of sampling distributions with different sizes 

of trials. Trials with small sample sizes are more likely to be prone to chance 

inconsistency. Generally, especially at low baseline-outcome correlation (r 0.3), 

irrespective of the trial size and the size and direction of baseline imbalance, the 

precision of the unadjusted analysis approximates that of the adjusted analysis 

by ANCOVA. This is not so as correlation increases, the gain in precision for 

using ANCOVA instead of ANOVA is seen to be near 10% and 25% when 

baseline-outcome correlation is 0.5 and 0.7, respectively.  

Furthermore, it is also interesting to note that the absolute value of the reduction 

in standard error is approximately equal on either side of zero (no imbalance). 

This appears symmetrical over the various levels of imbalance. This shows that 
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direction of baseline imbalance does not matter in determining a comparative 

precision benefit of using ANCOVA against ANOVA. This fact has a very 

important implication at the design stage of RCTs, as researchers (statisticians) 

can confidently specify ANCOVA as the primary analysis even when they are 

completely blinded to random allocation procedure. They do not need to know 

which treatment group is favoured or disfavoured by randomization.  

This further confirms the fact that, adjustment by ANCOVA for a baseline 

imbalance in the same direction of effect is as precise as for an imbalance in the 

opposite direction of the treatment effect. Essentially, these results provide 

illustration that, for randomised trials with balanced/unbalanced treatment 

groups, the ratio of the standard error of the adjusted analysis by ANCOVA 

against the unadjusted analysis by ANOVA is defined as equation (3.31) in 

chapter 3. The mathematical expression is
                                            

21   

When trials are large, the simulated ratios of the standard errors at any level of 

baseline imbalance approximate this algebraic expression; there is little or no 

deviation from the expression by the ratios. However, with small sample trials, in 

respect of the precision of estimate when imbalance is ignored, the observed 

slight deviation in the ratios at any level of imbalance does not exceed that which 

can be attributed to chance. These results thus confirm the fact that both the size 

and level of imbalance and the size of the trial do not matter when considering 

the precision of estimate if appropriate statistical adjustment is used. This result 
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is further represented in Figure 4.3, though, some minor random fluctuations are 

observed in the data representing trial scenarios in graph labelled N..  

Essentially, figure 4.3 provides a graphical illustration of table 4.8; both represent 

the ratio of the standard error (SE) of ANCOVA to that of ANOVA at different trial 

scenarios. The closer to 1 the ratio is the more the SE of the two methods 

resembles each other for that trial scenario. Figure 4.3 shows that the ratio of the 

SE of the two methods are very comparable at low baseline-outcome correlation 

(r<0.3) irrespective of the level of baseline imbalance. The implication of a low 

ratio for the SE of ANCOVA relative to ANOVA, as a result of a high baseline-

outcome correlation, on relative sample size requirement is considered in 

chapter 5.  

Table 4.9 gives the ratios of standard errors of both methods for statistical 

adjustment (CSA and ANCOVA) with ANCOVA as the numerator. The ratio is 

about 0.75 (signifying a 25% reduction in variance of estimates) when the 

baseline-outcome correlation is 0.1, and about 0.9 (10% reduction) when the 

correlation is 0.7. The estimate of effect by ANCOVA is more precise for most 

trial scenarios, and especially when correlation is less than or equal to 0.5. The 

precision benefit of ANCOVA over change score is minimal when the baseline–

outcome correlation is greater than or equal to 0.7. Both direction and size of 

imbalance do not favour either of the two methods over the other.  
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Figure 4.3: Ratio of the standard error (SE) of the adjusted analysis 

(ANCOVA) to unadjusted analysis (ANOVA) at different hypothetical trial 

scenarios 
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Table 4.9: Ratio of the standard error of baseline adjustment by ANCOVA 
and the change score analysis 
           

Effect       Z 
0.2 

Levels of baseline-outcome correlations 

0.1 0.3 0.5 0.7 0.9 

         –1.96 
         –1.64 
         –1.28 
              0 
          1.28 
          1.64 
          1.96 

0.75 0.85 0.86 0.91 1.00 

0.75 0.81 0.87 0.93 1.00 

0.74 0.85 0.87 0.93 1.00 

0.74 0.84 0.86 0.91 1.00 

0.74 0.85 0.85 0.83 0.97 

0.73 0.81 0.86 0.91 1.00 

0.74 0.85 0.86 0.91 1.00 

0.5  

         –1.96 
         –1.64 
         –1.28 
             0 
          1.28 
          1.64 
          1.96   

0.75 0.82 0.88 0.94 0.99 

0.75 0.81 0.88 0.94 0.99 

0.75 0.81 0.87 0.93 0.99 

0.74 0.81 0.87 0.93 0.97 

0.77 0.80 0.83 0.93 0.99 

0.75 0.82 0.86 0.94 0.99 

0.75 0.82 0.86 0.94 0.99 

0.8  

        –1.96 0.78 0.85 0.91 0.97 1.02 

        –1.64 0.77 0.84 0.90 0.96 1.02 

        –1.28 0.76 0.83 0.89 0.97 1.01 

           0 0.75 0.81 0.87 0.93 0.99 

         1.28 0.75 0.83 0.89 0.95 1.00 

         1.64 0.77 0.83 0.90 0.98 1.02 

         1.96 0.78 0.84 0.91 0.99 1.02 
When Y = 0.2, n=788; Y=0.5, n=128, Y=0.8, n=52, 1000 iterations in each scenario 

 

 

Also, reduction in standard error for using ANCOVA instead of CSA does not 

also show a distinct pattern across various trial sizes. For example, when there is 

large imbalance in a baseline covariate that has a correlation of 0.5 with the 

outcome; for large, medium and small trials, the percentage reduction in 

standard error for using ANCOVA instead of change score is 14%, 14% and 9 % 

respectively. However, if treatment groups are homogeneous at baseline, with 

the same baseline-outcome correlation of 0.5, the relative reduction in standard 
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error is; 14%, 13% and 13% showing no definite pattern of deviation from that 

obtained when baseline imbalance is large.  

Again, in all trial scenarios irrespective of the direction and size of imbalance and 

the level of prognostic relationship between the baseline and the outcome, the 

results of this simulation study provides illustration that the ratio of the standard 

error of ANCOVA to CSA is expressed as in (equation 3.33) in chapter 3 and the 

expression is reproduced below; 

                                                         
2

1 
 

The slight discrepancy that is however observed between the simulated result 

and the value of the algebraic expression can be attributed to random 

fluctuations in the simulated datasets and the degree of accuracy used in 

computing the ratios (2 decimal places instead of 8 decimal places of the 

simulated output). For example, at a correlation of 0.5, algebraically the ratio of 

the standard error is 0.87, whereas, for levels of imbalance, the range of the 

simulated results is between 0.83 and 0.91. This difference (+/– 0.04, 4%) could 

not have been due to any other source other than observed random error in the 

data and that which accrued from approximations. The results also show that for 

trial scenarios that have baseline-outcome correlation of greater than or equal to 

0.7, the ratio of the standard error approaches 1 and thus, the tendency for the 

precision of the two methods to be equal. In fact, from Table 4.9 at a baseline-

correlation of 0.9, the standard error of CSA is approximately equal to that of 

ANCOVA as the ratio of standard error for the two methods is approximately 1.                 
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Figure 4.4: Ratio of the standard error (SE) of the two adjusted analysis 
(ANCOVA and CSA) at differing hypothetical trial scenarios 

In table 4.10, with CSA as the numerator, the ratios of the standard errors for 

CSA relative to ANOVA are 1 at baseline-outcome correlation of 0.5 irrespective 
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of the levels and direction of baseline imbalance and treatment effect or sample 

size, i.e this shows equality in precision of ANOVA and CSA at all trial scenarios 

for a correlation of 0.5. The precision benefit of ANOVA over CSA is about 35% 

((1.35/1.00)*100%) at a small (≤0.1) correlation, whatever the level of imbalance. 

However, with baseline-outcome correlations exceeding 0.5, CSA shows a 

reduction in SE compared to ANOVA: about a 21% and 57% reduction in SE for 

a correlation of 0.7 and 0.9, respectively (and independent of other parameters).  

Table 4.10: Ratio of the standard error of baseline adjustment by CSA and 
the unadjusted analysis by ANOVA 
 

Effect       Z 
0.2 

Levels of baseline-outcome correlations 

0.1 0.3 0.5 0.7 0.9 

         –1.96 
         –1.64 
         –1.28 
              0 
          1.28 
          1.64 
          1.96 

1.36 1.14 1.00 0.79 0.43 

1.36 1.20 1.00 0.79 0.44 

1.36 1.14 1.00 0.79 0.43 

1.36 1.14 1.00 0.79 0.43 

1.36 1.14 1.01 0.86 0.44 

1.37 1.20 1.00 0.79 0.43 

1.36 1.14 1.00 0.79 0.43 

0.5  

         –1.96 
         –1.64 
         –1.28 
             0 
          1.28 
          1.64 
          1.96   

1.34 1.18 1.00 0.77 0.44 

1.34 1.18 1.00 0.77 0.44 

1.34 1.18 1.00 0.77 0.44 

1.34 1.19 1.00 0.77 0.44 

1.34 1.17 1.00 0.75 0.43 

1.34 1.18 1.00 0.77 0.44 

1.34 1.18 1.00 0.77 0.44 

0.8  

        –1.96 1.34 1.18 1.00 0.77 0.44 

        –1.64 1.32 1.18 1.00 0.77 0.45 

        –1.28 1.34 1.18 1.00 0.76 0.45 

           0 1.34 1.18 1.00 0.77 0.45 

         1.28 1.34 1.18 1.00 0.76 0.45 

         1.64 1.34 1.18 1.00 0.76 0.45 

         1.96 1.34 1.18 1.00 0.76 0.45 
When Y = 0.2, n=788; Y=0.5, n=128, Y=0.8, n=52, 1000 iterations in each scenario 
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4.4 Percentage bias in the estimate by ANOVA and change score analysis 
with the unbiased estimate by ANCOVA as the reference 

Here, results on the percentage bias associated with the estimates of effect 

using ANOVA and change score with ANCOVA as the reference analysis are 

presented. Table 4.11, presents the results on the percentage bias associated 

with the estimate of effect using ANOVA.  

 

Table 4.11: Percentage bias in estimate of effect by ANOVA with reference 

to the unbiased estimator of effect by ANCOVA  

Effect       Z 
0.2 

                     Levels of baseline-outcome correlations   

0.1 0.3 0.5 0.7 0.9 

         –1.96 
         –1.64 
         –1.28 
              0 
          1.28 
          1.64 
          1.96 

–6.50 –20.50 –35.50 –50.0 –62.50 

–5.50 –17.00 –30.00 –41.00 –54.50 

–5.00 –15.00 –22.25 –31.50 –41.00 

0.00 0.00 0.00 0.50 0.00 

5.00 14.00 23.00 30.00 40.00 

6.00 18.00 29.50 40.00 55.00 

5.00 20.00 35.00 49.00 65.00 

0.5  

         –1.96 
         –1.64 
         –1.28 
             0 
          1.28 
          1.64 
          1.96   

–7.40 –21.12 –35.00 –48.80 –62.60 

–6.20 –17.80 –29.40 –41.00 –52.60 

–5.00 –14.00 –22.69 –32.00 –41.00 

0.00 0.00 0.04 0.00 –0.20 

4.00 14.00 22.00 31.60 40.00 

5.60 17.20 28.00 40.00 52.00 

6.00 20.00 34.00 48.00 62.00 

0.8  

        –1.96 –7.13 –21.25 –34.38 –47.88 –61.8 

        –1.64 –6.25 –17.50 –28.88 –40.25 –51.50 

        –1.28 –4.88 –13.75 –22.53 –31.38 –40.25 

           0 –0.40 0.00 0.00 –0.25 0.00 

         1.28 3.75 12.50 21.88 30.88 39.88 

         1.64 5.00 16.88 28.25 38.75 51.13 

         1.96 6.25 20.13 33.75 47.38 61.00 
When Y = 0.2, n=788; Y=0.5, n=128, Y=0.8, n=52, 1000 iterations in each scenario 
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Figure 4.5: Pattern and percentage of directional bias of ANOVA in relation 
to the unbiased estimate of effect by ANCOVA at differing hypothetical trial 
scenarios
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The percentage bias expresses the level in percentage of exaggeration or 

masking of treatment effect associated with the estimate of effect resulting from 

using ANOVA or change instead of ANCOVA. 

When baseline imbalance is in the same direction as treatment effect, ordinarily, 

the unadjusted analysis exaggerates treatment effect. Accordingly, the 

exaggerated effect is reduced following the mechanism of adjustment by 

ANCOVA, making it smaller than the observed effect that results from using 

ANOVA. This explains why the percentage bias in the same direction presents 

with negative signs. The magnitude of bias in a given trial scenario is clearly 

being driven by the level of baseline-outcome correlation and the size of 

imbalance (see Figure 4.5). Also, the higher the baseline imbalance, the higher 

the percentage bias recorded. From Table 4.11, it is clear that treatment effect 

size (and hence size of trial) is not influential. Percentage biases by ANOVA in 

either direction are approximately equal in magnitude and opposite, thus, 

confirming the non-directionality of this bias. There is no bias in the estimate of 

treatment effect when treatment groups are balanced in baseline score; at all 

levels of baseline-outcome correlation the percentage bias is zero. This thus 

implies that in the context of bias, the level of baseline-outcome correlation is 

immaterial in the absence of baseline imbalance. A level of bias is jointly 

determined by the amount of baseline imbalance and the magnitude of the 

baseline-outcome correlation. It would appear that a large imbalance in a  
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Figure 4.6: Pattern and percentage of directional bias of CSA in relation to 
the unbiased estimate of ANCOVA at differing trial  
scenarios
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variable with little or no prognostic relationship with the outcome does not cause 

as much bias as does a small imbalance in a strongly prognostic variable. For 

example, from Table 4.11, at an effect size of 0.5, small imbalance (z = 1.28) in a 

strongly prognostic variable (r ≥ 0.7) can have percentage bias in excess of 30%, 

whereas a large imbalance (z = 1.96) in a variable that has little prognostic 

relationship (r = 0.1) with the outcome presents with percentage bias that is just 

about 6%. 

Table 4.12 and Figure 4.6 illustrate the percentage bias in the estimate of effect 

from a change score analysis relative to ANCOVA, given different levels of 

experimental factors. The results confirm the fact that when treatment groups are 

balanced at baseline, the estimate of effect using CSA is unbiased, as the 

percentage bias is approximately zero at each trial scenario. Higher percentage 

level of bias in the estimate of change is recorded for large imbalance in the 

same direction as effect. The absolute percentage bias is found to decrease as 

baseline-outcome correlation increases.  

Although, percentage bias on estimate of effect for using CSA is scarcely related 

to the size of effect to be detected, both size and direction of baseline-imbalance 

determine bias to a very large extent. The percentage bias here is not 

symmetrical, considering the direction of imbalance. At a particular effect size, 

the percentage bias in a trial is significantly different from that obtained in a 

corresponding trial with imbalance in the opposite direction as treatment effect. 

For example, at effect size of 0.2 and baseline-outcome correlation of 0.5, the 
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percentage bias for a trial that has a large imbalance in the same direction (–

1.96) as effect is approximately 110% whereas the percentage bias in a 

corresponding trial with large baseline-imbalance in the opposite direction (1.96) 

as effect is approximately 20%. Generally, the associated bias in the estimate of 

effect using CSA to account for baseline imbalance in the same direction as the 

treatment is higher than that obtained when imbalance is in the opposite 

direction to the treatment. 

Table 4.12: Percentage bias in the estimate of effect by change score 
analysis with reference to the unbiased estimator of effect by ANCOVA 

Effect       Z 
0.2 

Levels of baseline-outcome correlations 

0.1 0.3 0.5 0.7 0.9 

–1.96 
–1.64 
–1.28 
0 
1.28 
1.64 
1.96 

211.67 165.00 109.68 66.67 25.00 

122.35 95.29 66.67 47.50 14.46 

72.73 54.55 41.36 24.55 7.27 

0.00 0.00 0.00 0.00 0.00 

–27.59 –22.18 –16.04 –10.34 –3.45 

–33.75 –26.02 –18.81 –11.95 –2.82 

–38.24 –29.41 –20.59 –12.35 –2.94 

 
0.5 

 

–1.96 
–1.64 
–1.28 
0 
1.28 
1.64 
1.96 

206.62 159.47 113.82 68.42 23.03 

126.57 97.88 70.53 41.83 13.94 

75.93 58.67 41.54 25.00 8.46 

0.00 0.40 0.20 0.40 0.00 

–27.78 –21.92 –16.44 –9.24 –4.11 

–33.08 –25.73 –18.88 –11.28 –3.80 

–36.90 –28.57 –20.71 –12.43 –4.14 

0.8  

–1.96 198.00 151.00 108.33 64.82 21.18 

–1.64 122.55 95.27 67.50 40.18 13.45 

–1.28 74.14 57.18 40.86 24.77 8.64 

0 0.50 0.76 0.63 0.13 0.25 

1.28 –27.70 –21.74 –15.23 –8.96 –2.70 

1.64 –32.75 –25.20 –17.92 –11.20 –3.67 

1.96 –36.42 –28.18 –20.09 –12.01 –3.88 
When Y = 0.2, n=788; Y=0.5, n=128, Y=0.8, n=52, 1000 iterations in each scenario 
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A crude effect estimate, while baseline imbalance is in the same direction as 

treatment, will normally be smaller than the unbiased treatment effect from 

ANCOVA, and thus the crude estimate will have to be increased by a certain 

percentage to obtain the unbiased estimate. Similarly, when imbalance is in the 

opposite direction of the treatment, the biased effect from change score analysis 

will normally be greater than the unbiased estimate from ANCOVA, and thus the 

crude estimate will have to be decreased by a certain percentage to obtain the 

unbiased estimate. The size of treatment effect to be detected, and by 

implication the size of the trial, does not significantly influence the percentage 

bias of estimate using change score. 

 

4.5 Discussion 

4.5.1 Bias 

The results of this simulation study demonstrate that when treatment groups are 

balanced at baseline, the estimate of effect by each of the methods for statistical 

analysis of RCTs is unbiased. When balanced at baseline, these methods yield 

the same estimate of treatment effect across all trial scenarios, except that CSA 

yields an estimate of effect that, though equal in magnitude to those of ANOVA 

and ANCOVA, has an opposite sign. This confirms Matthews’ (2001) algebraic 

notations as mentioned in chapter 3, which indicates that using any of these 

methods yields an unbiased estimate if and only if the two treatment groups are 
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exactly comparable at baseline. This finding also agrees with Senn (1991), who 

reports that, for groups that are perfectly balanced at baseline, the choice of 

CSA, ANOVA or ANCOVA makes no difference to the point estimate of 

treatment effect. In addition, Van Breukelen (2006) argues that if treatment 

groups are similar by randomization, both CSA and ANCOVA are unbiased. It is 

therefore a desirable feature of a trial to have the treatment groups comparable 

at baseline, since under these conditions both adjusted and unadjusted analyses 

will yield the same point estimate of treatment effect. Pocock et al (2002) believe 

that there is some credibility attached to demonstrating that covariate adjustment 

does not alter the conclusion derived from unadjusted analysis. This perhaps 

explains the huge efforts that researchers sometimes invest in the design of a 

clinical trial to ensure that treatment groups are the same in prognostic factors. 

Although views may differ as to their relative appropriateness, those design 

methods that have been variously used to attain balance in treatment groups in 

prognostic factors include; minimization, blocking usually combined with 

stratification and covariate adaptive response adjusted method - CARA (Hagino 

et al, 2004; Kernan & Makuch, 2001; Rosenberger & Sverdlov, 2008; Scott et al, 

2002; Taves, 2004). However, as mentioned earlier in Chapter One, owing to 

one limitation or another, none of these design methods can ensure a total or 

complete balance in prognostic factors between the treatment groups. 

In fact, the popular option is to include such prognostic factors that would require 

to be balanced at the design stage in the model for statistical adjustment, 

regardless of any of the design methods used to ensure balance (Altman & 
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Bland, 1999; Grimes & Schulz, 2002; Hagino et al, 2004; Minsoo et al, 2008; 

Roberts & Torgerson, 1998). Scott et al.  (2002) and Senn (1995, 1989) contend 

that treatment groups will often differ with respect to some important prognostic 

covariate whose influence has proved impossible to control by design alone. 

Given the findings of this study that a small imbalance in a strongly prognostic 

baseline score is capable of inflicting a bias of over 30% on the estimate of 

effect, irrespective of the size of the trial, this is a matter of concern. This 

particularly strengthens the earlier view that advocates adjusting for imbalance in 

a prognostic variable despite minimization or stratification, as the case may be.  

Moreover, this study has demonstrated that a large imbalance in a non-

prognostic variable is not as important as a small imbalance in a strongly 

prognostic variable. This finding is consistent with Pocock et al (2002). Thus, it is 

suggested that if baseline-outcome correlation is weak,  < 0.3, baseline 

imbalance, irrespective of its level, is immaterial, whereas it is important to adjust 

for a strongly prognostic variable that manifests even a minimal baseline 

imbalance. With respect to bias of estimate, there should, however, be no 

concern whatsoever over a strongly related covariate that is balanced between 

treatment groups. Given this fact therefore adjusting for a balanced strongly 

prognostic covariate can be regarded as an extremity and should be avoided. 

However, since there is no known design method that promises complete 

balance in prognostic factors, particularly in pragmatic trial environments -and a 

small baseline imbalance in a strongly prognostic variable can cause major 

distortion to the estimate of effect, researchers are advised to adjust anyway. 
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Furthermore, one of the most striking findings of this study is the fact that, given 

the bias of the estimate of effect, covariate imbalance is just as much a problem 

for large studies as for small ones. This result corroborates earlier studies by 

Pocock et al (2002) and Senn (1989), but is in disagreement with Altman (1985) 

who asserted that, for large trials, any imbalance is likely to be very small and 

inconsequential. While trying to clarify this statement in a letter to the editor, 

(Altman & Caroline (1991) Altman appear to declare that his concern was with 

the bias of estimate of effect in the earlier paper and not any other trial attribute 

as might have been supposed. It is evidenced from this study that whether the 

trial is large or small, every little imbalance in a strongly prognostic variable 

poses the risk of a similar level of bias. There is no added advantage in terms of 

minimizing bias of the point estimate for studying large sample when in fact a 

small sample trial is also appropriate. Trial sizes are always in respect of the size 

of treatment effect to be detected. Large trials do not necessarily protect against 

biased estimates of effect. They are only necessary in trials that aim at detecting 

a small effect size, so as to have enough statistical power to do so. It is a matter 

of ethical concern to expose more patients than is necessary to a treatment 

whose efficacy has not yet been ascertained.  

This study shows that, with respect to the bias in the treatment effect, ANOVA, 

CSA and ANCOVA all yield unbiased estimates only if the treatment groups are 

comparable at baseline. This result is consistent with what Matthews (2000) 

reports. However, when baseline imbalance is apparent, this study has shown 

that estimates from both ANOVA and CSA cannot be unbiased. Although the 
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estimate of effect using ANOVA is close to that of ANCOVA when the baseline-

outcome correlation is weak, ρ ≤ 0.3, as the correlation increases the level of 

bias in the estimate also increases especially with an increase in the level of 

imbalance.  

Generally, when imbalance exists the level of bias of the point estimate of effect 

is much higher when using CSA instead of the crude and naïve ANOVA 

approach. This agrees with the argument by Senn (1991). Considering the level 

of bias associated with the estimate of effect using CSA, the method cannot be 

appropriate in dealing with imbalance. Senn (1994) maintains that when the 

covariate is the baseline measurement of the outcome variable, differences 

(changes) from baseline are often taken and mistakenly assumed to deal with 

imbalance. Depending on the level of imbalance and the prognostic relationship, 

the amount of bias associated with the estimate of effect (small, medium or 

large) using ANOVA can be very substantial, often in excess of 60%. Camilli & 

Shepard (1987) had earlier argued that ANOVA will fail to detect absurdly large 

amounts of bias, this is not surprising as there is no term in the ANOVA model 

that accounts for baseline imbalance when one exist. Thus it is incapable of 

detecting and accounting for bias. In this respect, CSA is worse than ANOVA as 

the level of bias associated with its estimate of treatment effect can be in excess 

of 15% when correlation (r) equals 0.3, a condition which is possible in empirical 

trial setting. 

Although CSA has the potential to produce an estimate of treatment effect that 

approximates that of ANCOVA, this can only happen if the baseline- outcome 
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correlation is close or equal to 1. This then shows that the bias in the estimate of 

effect by both ANOVA and CSA relates to baseline-outcome correlation 

differently. Bias in estimate of effect by ANOVA reduces as the correlation tends 

to 0, whereas bias in the estimate of effect by CSA reduces as the correlation 

tends to 1. In accordance with this finding, Matthews (2000) argues that 

theoretically, if baseline imbalance exists, CSA will yield a biased estimate of 

effect unless the correlation is 1. However, for a single variable to have a 

correlation of 1 with the outcome is highly unlikely in practice.  

Lastly, this result also illustrates the directionality associated with the bias in 

estimate of effect using change scores. With CSA, the estimate is much more 

biased for trial scenarios that have the baseline imbalance in the same direction 

as the treatment effect. In practice, CSA cannot be a statistical method for 

controlling baseline imbalance since baseline - outcome correlation cannot be 1 

and because of the issue of directionality associated with its estimate. The 

findings of this study thus suggest that, if the interest is in the unbiased estimates 

of effect, then it is erroneous to regard change scores as a method for statistical 

adjustment, given any level of baseline imbalance.  

4.5.2 Precision 

In this study, the precision of the estimate of effect for each of the methods 

varies widely with respect to the size of the trial. For each of the statistical 

methods, larger trials (relating to a small measured effect size, e.g. 0.2) present 

with smaller standard errors, and smaller trials are marked by larger standard 

errors (i.e. less precision), under same experimental conditions. All the methods, 
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unadjusted or adjusted, have the potential to increase precision as the size of the 

sample increases. This result is consistent with the findings from previous 

authors (Pocock et al 2002; Altman, 1985; Rubberts & Russo, 2001). Standard 

error of treatment effect is a measure of the dispersion of the distribution of the 

estimate of effect in relation to the true effect size. As a result of the way in which 

it is computed, it depends upon the sample size being studied and the variability 

of scores in the sample. The larger the number of scores (i.e. the sample size), 

the smaller the variability within them, the smaller the standard error and the 

more likely the mean of the population will be more precisely measured.  

Design strategies for treatment group allocation of patients in trials, such as 

stratification, minimization and blocking, are targeted to create uniformity both 

within and between treatment groups to minimize variability in scores. Thus, 

irrespective of the method for statistical analysis, there is always a reduction in 

standard error as sample size increases. This result is however limited to 

comparison within the same statistical method. Any of the three statistical 

methods will secure a higher precision of estimate with a larger sample size. 

Comparatively, this study has shown that the precision benefit of the adjusted 

analysis by ANCOVA is, however, independent of the sample size. For example, 

for trials in which baseline imbalance is ignored the ratio of the standard error of 

ANCOVA against ANOVA reduces markedly with increasing baseline – outcome 

correlation, irrespective of any change in the size of the trial. The percentage 

reduction, which is consistent over the various trial sizes, was observed to be as 

high as 57% for a correlation of 0.9. This means that, regardless of the size of 
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the trial, there is a 57% reduction in the width of the confidence interval by using 

ANCOVA (as opposed to ANOVA), thus making the estimate of effect more 

plausible in relation to the true and unknown effect. In fact with this, there is 57% 

more confidence that the estimate is more accurate than that obtained from 

using ANOVA.   

 A reduction of 29% and 4% is observed in the width of confidence interval for 

correlations of 0.7 and 0.3 respectively. This result is consistent with Pocock et al 

2002, who also record a reduction of 29% in the width of the confidence interval 

for a correlation of 0.7 and less than 10% (number not specified) when the 

correlation was 0.3.This again confirms the earlier submission, that in terms of 

the precision of estimate, the benefit of appropriate covariate adjustment is 

independent of the trial size. Rather, effort should be made to identify covariates 

that are strongly related with the outcome and adjust for such using ANCOVA 

even if the trial is balanced. Unless the correlation is greater than 0.3, there is no 

reason to consider statistical adjustment over the unadjusted analysis for a 

higher precision of the estimate of effect. The precision benefit of the adjusted 

analysis over the unadjusted has also been reported by Tsiatis et al (2007) and 

Wang and Hung (2005). 

Furthermore, the results have demonstrated that statistical adjustment by 

ANCOVA of a strongly prognostic factor with large baseline imbalance yields the 

same results as adjustment for a strong prognostic factor with little or no 

imbalance. In this study, a ‘large’ trial comprises 788 hypothetical patients. 

Altman (1985) indicates a ‘large trial’ to mean n>500. In fact, following statistical 
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adjustment, the difference between the precision of estimate of effect for large 

trials and small trials, irrespective of the size of baseline imbalance and baseline-

outcome correlation is not beyond that which could have been explained by 

chance. Similarly, the difference in precision, following statistical adjustment by 

ANCOVA, of a trial with homogeneous treatment group at baseline and that with 

imbalance in a very strongly prognostic variable, does not also exceed that which 

could have been due to chance. 

Thus, this simulation study has shown that with reference to the relative 

precision of estimate of effect, neither the size of the trial nor the size and 

direction of baseline imbalance in the treatment groups is important. This does 

not however seek to underestimate the usefulness of such strategies as 

blocking, stratification and minimization that are used for ensuring balance in 

treatment groups. They may seem not to add any extra value to the precision of 

estimate of effect so far the imbalance is accounted for by statistical adjustment, 

they do possibly have for other attributes as will be seen later. So, when any of 

such design methods as stratification or minimisation is used to make treatment 

groups similar in selected baseline covariates, the estimate of effect that results 

from using appropriate covariate adjusted method then is not more precise than 

the estimate which results from using the same appropriate covariate adjusted 

method following simple randomisation. The driver of the difference in precision 

of effect estimate between the ANCOVA adjusted and the unadjusted analysis is 

the degree of prognostic relationship between the baseline covariate and the 
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outcome. The baseline-outcome correlation is also influential in relation to the 

contrast in precision between ANCOVA and CSA.  

4.6 Conclusion 

Generally, regarding precision, ANCOVA yields the most precise estimate of 

effect of the three methods and should always be used. When baseline 

imbalance exists in a strongly prognostic (r>0.3) variable, for example baseline 

values of the outcome variable, the estimate of effect from ANOVA presents with 

a less precise estimate compared to that of ANCOVA. However, the estimate 

from change score analysis is only more precise than that of ANOVA if the 

baseline-outcome correlation is greater than 0.5. The point estimate of effect 

from change score analysis is susceptible not only to the prognostic relationship 

between the baseline and outcome but also to both the size and the direction of 

baseline imbalance. The imbalance, and particularly the baseline-outcome 

correlation, is influential in distinguishing ANCOVA as the unbiased approach 

relative to unadjusted ANOVA.             
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Chapter 5: Statistical methods of analysis of RCTs with or 
without baseline imbalance: Implications on statistical power 

and trial sample size – efficiency 
 

5.1 Introduction  

In this chapter, results will be presented on the statistical power of methods for 

the analysis of randomised controlled trials at differing combinations of levels of 

treatment effect, baseline-outcome correlation and both levels and directions of 

imbalance. The effect of adjusted analysis on sample size requirements at 

various hypothetical trial scenarios is also presented. The results of the 

simulations demonstrate the effect of different directions and levels of baseline 

imbalance, levels of baseline-outcome correlation, and levels of treatment effect 

on the statistical power and sample size requirement of each of the methods of 

analysis of randomised controlled trials: ANOVA, ANCOVA and CSA (change 

score analysis). The first three sections are exclusively on the power of the 

statistical methods. The later sections provide results on relative sample size and 

efficiency of each of the methods at 80% power, with analysis of variance 

(ANOVA) as the reference unadjusted method.  

 The relative sample size of each of the methods for adjusted analysis was 

determined in relation to 80% nominal power. The chapter will present the 

difference in sample size required by each of the methods for statistical 

adjustment in relation to the original sample size. The original sample size 

represents the sample size for the unadjusted analysis, and percentage 

difference in sample size for each of the methods was computed and 
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represented graphically. In this study, relative difference or percentage difference 

in sample size of each of the methods for statistical adjustment in relation to the 

original sample size are measures of the statistical efficiency of the methods in 

absolute and percentage terms, respectively. The method that requires the 

smallest sample size at 80% power is the most efficient and that which requires 

the largest sample size at the same 80% power to detect a specified effect size 

is the least efficient. Results are presented in tables and charts. In the tables, the 

hypothetical trial datasets for the information presented in the rows vary in the 

levels of baseline-outcome correlation, whereas, in the columns, the trial 

datasets vary in the levels of imbalance. Multiple scatter diagrams with 

interpolation lines fitted are used to represent statistical power and percentage 

efficiency of methods in different hypothetical trial scenarios.  

As was mentioned in chapter 4, the primary concern in this thesis centres around 

outcome scales whereby treatment effect implies a decrease in baseline score of 

the outcome variable; for example, pain, depression and anxiety scales where 

low scores denote less health problems and high scores denote greater health 

problems. It is noted that at other times, however, it might mean an increase in 

baseline score of the outcome variable; examples of this are common generic 

quality of life scales and pain relief scales (though these are not the focus in this 

chapter). Although, this simulation study covers hypothetical trial scenarios in 

which treatment effect implies either decreasing or increasing baseline scores of 

outcome variables, the results in this section exclude those scenarios where 

increasing in baseline score of the outcome variable implies treatment effect. 
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Also, all results in this chapter are presented on experimental conditions at 80% 

nominal power; all other results in graphs and tables for 90% nominal power and 

when increasing in baseline scores implies treatment effect, are attached as 

appendices. 

5.2 Statistical power of methods of RCTs at differing levels and direction of 
baseline imbalance 

In the next three subsections, the effect of levels of groups’ baseline 

heterogeneity at baseline on the statistical methods of ANOVA, CSA, and 

ANCOVA at different trial scenarios is investigated and results presented.  

5.2.1 Statistical power of methods of analysis of RCT when groups are     
homogeneous 
 
In this subsection, results on statistical power of the statistical methods being 

studied (ANOVA, ANCOVA and CSA) are presented. Table 5.1 below shows the 

statistical power of the methods at various effect sizes; small (0.2), medium (0.5) 

and large (0.8). The design in this section ignores the possibility of baseline 

imbalance on the basis that randomization produces similar treatment groups at 

baseline. Thus, the assumption is that there is no baseline difference, for 

example, treatment groups start with comparable or similar level of pain score. 

Here, baseline severity of pain does not influence treatment effect, as it is 

assumed to be balanced in the two groups.   

From Table 5.1, level of treatment effect does not influence the power of the 

statistical test. Across levels of baseline-outcome correlation, the observed 

statistical power for ANOVA in the simulation approximates the nominal power of 
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the study. However, especially as the level of effect increases, there appears to 

be a slight increase in the observed statistical power for ANOVA against the 

nominal power of 80%. As explained in the previous chapter, this slight deviation 

is likely to be a result of random fluctuation which is more pronounced for smaller 

sample sizes.  

Table 5.14: Power (in percentage) of statistical methods for homogeneous 
trials at levels of baseline-outcome correlation (r) and differing levels of 
effect  

Methods/ 
Effects 

                                
                     Levels   of baseline-outcome correlation 

0.1 0.3 0.5 0.7 0.9 

ANOVA      

   Small (0.2) 79.2 80.2 78.7 79.7 80.8 

   Medium(0.5)              80.3 79.3 80.2 80.1 80.1 

   Large(0.8)       81.0 81.7 81.9. 82.8 82.6 

CSA      

   Small(0.2) 57.2 68.6 80.7 95.0  >99.9 

   Medium(0.5) 56.7 66.3 79.9 95.2 >99.9 

   Large(0.8) 54.3 65.6 80.5 95.2 >99.9 

ANCOVA      

   Small(0.2) 79.8 82.2 89.0 96.8 >99.9 

   Medium(0.5) 80.0 83.4 90.1 97.5 >99.9 

   Large(0.8) 79.7 82.9 89.7 97.4 >99.9 
When Y = 0.2, n=788; Y = 0.5, n=128; Y = 0.8, n=52, 1000 iterations in each scenario 

 

As mentioned earlier, when the difference to detect is large (that is, Y=0.8), such 

that sample size to be studied is relatively small, it appears ANOVA slightly 

exceeds the nominal power that was set for the study. Again, this occurrence 

can be explained by random fluctuations in the simulations, the possibility of 

which is higher when the sample size is small, as is the case here. Small 

samples are more prone to higher variability in the sampling distribution of an 

identified population attribute. Another round of simulations in which a different 



  

153 

 

seed (150) was used in the statistical program yielded a power for ANOVA that 

was closer to the 80% nominal power. This also presented a corresponding 

reduction in the observed power for both ANCOVA and CSA.  

The power of the adjusted analysis increases with baseline-outcome correlation. 

For ANCOVA this increases upward from the nominal power (when the 

correlation is low) toward 100% (when the correlation is high). The power for 

CSA, though low at baseline-outcome correlation below 0.5, is similar to that of 

ANCOVA as covariate-outcome correlation exceeds 0.7. By and large, when 

covariate-outcome correlation is greater than or equal to 0.3, across all levels of 

experimental conditions, ANCOVA is most powerful. It is also evidenced from 

table 5.1, that large trials benefit as much as small trials from statistical 

adjustment when baseline-outcome correlation is sufficiently large, as a similar 

level of power is attained when appropriate statistical adjustment is applied. In 

most of the trial scenarios represented in this simulated study in which treatment 

groups are balanced in baseline score, ANCOVA is most powerful. Under the 

same trial conditions and given that groups are homogeneous, each of the 

methods yields approximately same level of statistical power across different 

levels of sample size, thus sample size or level of effect does not play any role in 

the statistical power of these methods. Although not shown in the table, further 

results in the appendix 2 confirm that when treatment groups are comparable at 

baseline, whether treatment effect implies an increase or a decrease in baseline 

score does not impact on the power of these statistical methods of analysis of 

RCTs.  
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5.2.2 Statistical power of methods of RCTs when groups are 
heterogeneous                                         

When treatment groups are not comparable at baseline, the directions and levels 

of imbalance and the relative prognostic importance of the baseline difference 

play an important role in the statistical power of the various methods of analysis 

of a randomised controlled trial. The next subsections illustrate how statistical 

power of ANOVA, CSA and ANCOVA differs across levels and directions of 

baseline imbalance, baseline-outcome correlation and treatment effect.  

5.2.2.1 Statistical power of methods of RCTs at levels of baseline 
imbalance in the same direction as treatment effect 

The power of ANOVA, as observed from (Tables 5.2–5.4) does not respond to 

change in the level and direction of baseline imbalance and other experimental 

factors (baseline-outcome correlation and effect size). This is because there is 

no term in the ANOVA model that takes account of imbalance in baseline when 

one exists. Thus, the level and direction of the prognostic relationship of the 

covariate with the outcome is immaterial with ANOVA. The power of ANOVA 

essentially reflects the nominal power of the trial, which is unconditional on the 

disparity that may exist in baseline scores between treatment groups. Thus, 

irrespective of the direction of imbalance and the level of prognostic relationship 

(correlation) between the baseline and outcome, the power of ANOVA in the 

simulation approximates the nominal power of the study.  
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Table 5.15: Power (in percentage) of statistical methods at levels of 

baseline-imbalance (Z) in the same direction as effect and baseline-

outcome correlation [Treatment effect size Y = 0.2; n=788] 

             Levels of covariate-outcome correlations   

Methods    (Z) 0.1 0.3 0.5 0.7 0.9 

ANOVA 
                1.28 
                1.64 
                1.96 

 

79.2 80.2 78.7 79.7 80.8 

79.2 80.2 78.7 79.7 80.8 

79.2 80.2 78.7 79.7 80.8 

CSA 
                1.28 
                1.64 
                1.96 

 

21.5 27.2 35.1 53.2 91.2 

14.6 17.4 23.1 33.0 74.6 

8.9 11.3 13.6 20.6 51.0 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

77.4 73.9 71.8 76.8 96.1 

76.4 69.1 64.1 64.6 84.6 

75.5 64.8 57.8 53.3 67.8 
Y is the simulated effect size and Z is the standardized imbalance, 1000 iterations in each 
scenario 

 
 
Table 5.16:  Power (in percentage) of statistical methods at levels of 
baseline-imbalance (Z) in the same direction as effect and baseline-
outcome correlation [Treatment effect size Y = 0.5; n=128]  

            Levels of covariate-outcome correlations   

 
Methods    (Z) 

0.1 0.3 
 

0.5 
 

0.7 
 

0.9 
 

ANOVA 
                1.28 
                1.64 
                1.96 

 

80.3 79.3 80.2 80.1 80.1 

80.3 79.3 80.2 80.1 80.1 

80.3 79.3 80.2 80.1 80.1 

CSA 
                1.28 
                1.64 
                1.96 

 

22.4 27.5 34.7 51.3 92.9 

15.6 18.8 24.1 34.5 74.1 

11.1 12.6 15.5 22.4 48.5 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

76.0 70.9 70.0 75.8 96.2 

74.3 67.1 63.3 64.5 85.5 

73.0 64.1 56.4 52.1 66.8 
Y is the simulated effect size and Z is the standardized imbalance, 1000 iterations in each 
scenario 
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Table 5.17: Power (in percentage) of statistical methods at levels of 

baseline-imbalance (Z) in the same direction as effect and baseline-

outcome correlation [Treatment effect size Y = 0.8; n=52] 

                            Levels of covariate-outcome 
correlations   

 
Methods    (Z) 

0.1 0.3 
 

0.5 
 

0.7 
 

0.9 
 

ANOVA 
                1.28 
                1.64 
                1.96 

 

81.0 81.7 81.9 82.8 82.6 

81.0 81.7 81.9 82.8 82.6 

81.0 81.7 81.9 82.8 82.6 

CSA 
                1.28 
                1.64 
                1.96 

 

22.7 26.2 34.0 51.5 94.4 

15.0 18.6 23.2 34.1 76.8 

10.7 12.4 15.8 21.7 51.8 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

74.6 70.5 69.2 75.0 96.2 

73.0 64.2 60.0 61.8 86.8 

71.0 60.3 52.9 49.8 65.8 
Y is the simulated effect size and Z is the standardized imbalance, 1000 iterations in each 
scenario 

 

When there is baseline imbalance the statistical power of CSA and ANCOVA 

respond to this disparity in baseline scores. There is a shift from the nominal 

power of the study as it is now conditional on baseline imbalance; both the level 

and direction of baseline imbalance. In the two methods of statistical adjustment, 

the higher the imbalance the lower the conditional power recorded (for scenarios 

where the imbalance is in the same direction as the treatment effect, that is, the 

treated group has a better prognosis at baseline – a lower pain score than the 

control group). The result shows that with the imbalance in the same direction as 

treatment, the conditional power of CSA is very poor, especially when baseline-

outcome correlation is low and the imbalance is very high (e.g. power can be as 

low as 10% when baseline imbalance is very high (z = 1.96) and baseline-
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outcome correlation is very low (r = 0.1). The higher the level of imbalance the 

lower the statistical power of CSA, and the greater the likelihood of false 

negatives (type II error) – the situation in which the test fails to detect the 

treatment effect when it exists. The level of treatment effect does not seem to 

have a marked impact on the power output of either CSA or ANCOVA. 

 

When imbalance is in the same direction as effect, the pattern of conditional 

power of ANCOVA is somewhat different from that of CSA. The low power of 

ANCOVA at this instance of baseline imbalance being in the same direction as 

the treatment effect has to do with the way ANCOVA adjusts for imbalance; this 

was mentioned in chapter 4. In most trial conditions, across increasing levels of 

baseline-outcome correlation, the conditional power of ANCOVA decreases until 

a baseline-outcome correlation of 0.7, where it starts to increase. In this study, 

this attribute is observed when imbalance is either low or at medium level.  

 

With imbalance in the same direction as treatment effect, the conditional power 

for ANCOVA decreases as imbalance increases, irrespective of the level of 

baseline-outcome correlation. This therefore leads to the possibility of an 

unadjusted analysis by ANOVA indicating a significant difference in effect 

whereas the adjusted analysis by ANCOVA fails to detect such a difference. The 

possibility of this occurring is high when there is a medium or large baseline 

imbalance in the same direction as effect in a strongly prognostic factor (in this 

case, the baseline value of the outcome variable). For example, in Table 5.3, 

when the baseline-outcome correlation is 0.7, for both medium and large 
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imbalance, the statistical power to detect a treatment difference by ANCOVA are 

64.5 and 52.1 respectively, whereas, that of ANOVA stood at 80.1. The statistical 

power for CSA then is 34.5 and 22.4 respectively.  

  
5.2.2.2 Statistical power of methods of RCTs at levels of baseline 
imbalance in the opposite direction to effect 
 
By contrast, when baseline imbalance is in the opposite direction to treatment 

effect – that is, the control group has a higher average score and better 

prognosis at baseline – the pattern of conditional power by the methods for 

statistical adjustment differs from what was observed in the previous section. 

Here, though there is little or no change in the unconditional power by ANOVA 

despite change in direction of an imbalance, there is an obvious increase in the 

statistical power of the adjusted analyses (CSA and ANCOVA). From tables 5.5–

5.7, both ANCOVA and CSA give an increase in power from the nominal 80%. 

CSA demonstrates a higher probability to detect treatment effect compared to 

ANCOVA particularly when the baseline-outcome correlation is low (r = 0.1), 

though both methods have about 99% power or higher when the correlation is in 

excess of 0.5. Unlike the data for an imbalance in the same direction as the 

treatment effect, statistical power for CSA increases with an increase in level of 

imbalance and prognostic relationship of the baseline and outcome. ANCOVA is 

not dependent on the size of the baseline imbalance but is influenced by the size 

of the baseline-outcome correlation. Figure 5.1 illustrates the simulated power of 

ANOVA, CSA and ANCOVA across the different hypothetical trial scenarios. 
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Table 5.18: Power (in percentage) of statistical methods at levels of 

baseline-imbalance (Z) in the opposite direction of effect and baseline-

outcome correlation [Treatment effect size Y= 0.2; n= 788] 

              Levels of baseline-outcome correlations   

 
Methods    (Z) 

0.1 0.3 
 

0.5 
 

0.7 
 

0.9 
 

ANOVA 
                1.28 
                1.64 
                1.96 

 

79.2 80.2 78.7 79.7 80.8 

79.2 80.2 78.7 79.7 80.8 

79.2 80.2 78.7 79.7 80.8 

CSA 
                1.28 
                1.64 
                1.96 

 

85.6 92.7 98.3 99.9 >99.9 

90.5 96.0 99.3 >99.9 >99.9 

93.8 97.9 99.7 >99.9 >99.9 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

82.8 90.6 97.3 99.7 >99.9 

83.7 92.1 98.3 99.9 >99.9 

84.2 93.8 99.0 >99.9 >99.9 
Y is the simulated effect size and Z is the standardized imbalance, 1000 iterations in each 
scenario 

 
 
 
Table 5.19: Power (in percentage) of statistical methods at levels of 
baseline-imbalance (Z) in the opposite direction of effect and baseline-
outcome correlation [Treatment effect size Y= 0.5; n=128] 

             Levels of baseline-outcome correlations   

Methods    (Z) 0.1 0.3 
 

0.5 
 

0.7 
 

0.9 
 

ANOVA 
                1.28 
                1.64 
                1.96 

 

80.3 79.3 80.2 80.1 80.1 

80.3 79.3 80.2 80.1 80.1 

80.3 79.3 80.2 80.1 80.1 

CSA 
                1.28 
                1.64 
                1.96 

 

85.1 92.6 98.7 >99.9 >99.9 

90.0 96.0 99.2 >99.9 >99.9 

97.5 98.2 99.8 >99.9 >99.9 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

83.4 91.3 97.5 >99.9 >99.9 

84.1 93.1 98.6 >99.9 >99.9 

84.4 94.1 98.8 >99.9 >99.9 
Y is the simulated effect size and Z is the standardized imbalance, 1000 iterations in each 
scenario 
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Table 5.20:  Power (in percentage) of statistical methods at levels of 
baseline-imbalance (Z) in the opposite direction of effect and baseline-
outcome correlation [Treatment effect size Y= 0.8; n=52] 

        Levels of baseline-outcome correlations   

 
Methods    (Z) 

0.1 0.3 
 

0.5 
 

0.7 
 

0.9 
 

ANOVA 
                1.28 
                1.64 
                1.96 

 

81.0 81.7 81.9 82.8 82.6 

81.0 81.7 81.9 82.8 82.6 

81.0 81.7 81.9 82.8 82.6 

CSA 
                1.28 
                1.64 
                1.96 

 

86.6 93.7 98.3 99.9 >99.9 

91.7 96.2 99.8 99.9 >99.9 

94.9 98.0 99.9 >99.9 >99.9 

ANCOVA 
                1.28 
                1.64 
                1.96 

 

81.9 90.7 97.6 99.8 >99.9 

81.7 91.4 98.1 99.9 >99.9 

82.2 91.9 98.7 99.9 >99.9 
Y is the simulated effect size and Z is the standardized imbalance, 1000 iterations in each 
scenario 

 

Figure 5.1 illustrates how the statistical power of CSA and ANCOVA responds to 

levels of baseline-outcome correlation, levels of treatment effect, and directions 

and levels of baseline imbalance. In all cases, the simulated power for ANOVA 

approximately equals the nominal power, though the simulated power shows a 

very slight increase as effect size increases (due to wider random fluctuation 

dispersion for smaller trials). Statistical power for ANOVA (simulated) is non-

responsive to change in level of baseline-outcome correlation and both direction 

and level of baseline-outcome imbalance.  
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Figure 5.8: Directional pattern of statistical power (%) of methods for 

analysis of RCT at levels of baseline imbalance, baseline-outcome 

correlation and differing level of treatment effect              

 

KEY: ___ ANOVA nominal; ___ANOVA simulated; ____ CSA; ___ANCOVA 
When Y = 0.2, n=788; Y = 0.5, n=128; Y = 0.8, n=52 
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Also, Figure 5.1 demonstrates how adjusted analyses are influenced by baseline 

imbalances and baseline-outcome correlations, but not the treatment effect size. 

Power is adversely affected for these approaches when the baseline-imbalance 

is in the same direction as the treatment effect, and is particularly problematic for 

CSA when the baseline-outcome correlation is low (e.g. r ≤ 0.3). By contrast, the 

power of CSA is inflated when the baseline-imbalance is in the opposite direction 

to the treatment effect. Under such imbalances in the opposite direction to the 

effect CSA demonstrates greater power, and hence a higher potential to detect 

treatment effect than ANCOVA, when the baseline-outcome correlation is low (r 

≤ 0.5), whereas the two methods of analysis have roughly equal statistical power 

at higher level of baseline-outcome correlation (r ≥ 0. 5).  

The graph also shows the disparities in statistical power of these methods even 

when treatment groups are balanced in baseline outcome scores. As above, the 

disparity is independent of the size of treatment effect, and is therefore driven by 

the level of baseline-outcome correlation. This phenomenon parallels the way 

baseline-outcome correlation drives the precision of these statistical methods at 

different trial scenarios when groups are homogeneous. For randomised 

controlled trials in which groups are homogeneous, with nominal power at 80%, 

depending on the baseline-outcome correlation the conditional power for CSA 

ranges between about 54% and >99.9%, whereas, that of ANCOVA ranges 

between 80% and >99.9%. Thus, Figure 5.1 shows that if treatment groups are 

balanced the statistical power of ANOVA, though it may equal, cannot exceed 
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that of ANCOVA. Whilst appreciating the need for statistical adjustment to 

overcome the issue of bias, the illustration highlights the need to be alert to the 

impact of the size and direction of imbalances and the magnitude of the 

baseline-outcome correlation on the conditional power of the statistical test (as it 

is the conditional power and not the nominal power that is the true basis of the 

test).  

5.3 Efficiency or relative sample size of the statistical methods 

The results on the ratios of the standard error (in chapter 4, tables 4.8–4.10) 

gave an insight into the number of patients that must be studied by these 

statistical methods at statistical power of 80%. This section is concerned with 

presenting the relative sample size for both ANCOVA and CSA in relation to the 

original sample size across different hypothetical trial scenarios. Efficiency, 

observable from the relative sample size for each trial scenario here, implies the 

level of reduction in the original sample size at the same level of power of 80%, 

which is brought about by using either of the methods for statistical adjustment 

instead of the unadjusted analysis (the reference). Also, results comparing the 

efficiency between methods of adjusted analysis (ANCOVA and CSA) are also 

presented (with ANCOVA the reference). The results of the simulations in the 

tables 4.8 to 4.10 had earlier shown that the ratio of the standard error of all the 

methods is exclusively dependent on the level of baseline-outcome correlation. 

These results are explored to determine their implications for the relative sample 

size requirement by each of these three methods. 
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Firstly, given that all three methods relate to the same standard deviation of 

original scores, at 80% power, it follows from section 4.2 that the ratio of the 

standard error of ANCOVA to ANOVA at baseline-outcome correlation of 0.7 in 

relation to equation (3.31) in chapter 3 for example, is given as;  
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where 'n  represents the sample size for ANCOVA and n  the original sample 

size.  

However, in this context, both 'n and n are equal since the same sample size was 

originally used for all the three methods at each trial scenario. Therefore, the 

above mathematical expressions show that ANCOVA has a possibility of 

reducing the original sample by half, if the baseline-outcome correlation is 0.7. 

Following this reasoning, the results presented in subsequent tables in this 

section were derived, representing the relative reduction in the original sample 

size by taking the square of the ratio of the standard errors of ANCOVA and 

ANOVA at different hypothetical trial scenarios. These results of the simulated 

datasets illustrate the algebraic expression )( 21  labelled as equation (3.32) in 

chapter 3. 
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Table 5.21: Relative reduction in original sample size for using ANCOVA 

instead of ANOVA in different trial scenarios  

Effect       Z 
0.2 

        Levels of baseline-outcome correlations         

0.1 0.3 0.5 0.7 0.9 

         -1.96 
         -1.64 
         -1.28 
              0 
          1.28 
          1.64 
          1.96 

1.02 0.94 0.74 0.51 0.18 

1.03 0.94 0.76 0.53 0.20 

1.00 0.94 0.76 0.53 0.18 

1.00 0.92 0.73 0.51 0.18 

1.00 0.94 0.73 0.51 0.18 

1.00 0.94 0.73 0.51 0.18 

1.00 0.94 0.73 0.51 0.18 

0.5                                                                                    

         -1.96 
         -1.64 
         -1.28 
             0 
          1.28 
          1.64 
          1.96  

1.02 0.94 0.77 0.52 0.19 

1.01 0.93 0.77 0.52 0.19 

1.01 0.92 0.76 0.51 0.19 

1.00 0.92 0.75 0.50 0.19 

1.06 0.87 0.69 0.49 0.18 

1.01 0.93 0.73 0.52 0.19 

1.02 0.94 0.73 0.52 0.19 

0.8                                                                                   

        -1.96 
        -1.64 
        -1.28 
           0 
         1.28 
         1.64 
         1.96 

1.09 1.00 0.81 0.56 0.20 

1.04 0.98 0.81 0.55 0.21 

1.04 0.96 0.79 0.54 0.20 

1.01 0.92 0.75 0.52 0.20 

1.02 0.95 0.79 0.52 0.20 

1.06 0.97 0.80 0.55 0.21 

1.08 0.99 0.81 0.56 0.21 
     When Y = 0.2, n=788; Y=0.5, n=128, Y=0.8, n=52, 1000 iterations in each scenario 

  
 

Table 5.8 above shows the reduction in the original sample size that needs to be 

studied if statistical adjustment by ANCOVA is preferred to ANOVA at different 

trial scenarios, maintaining 80% power. Remarkable reduction in the original 

sample size that is independent of both level and direction of imbalance was 

observed to change with levels of baseline-outcome correlation. For example, 

this simulation results demonstrate a reduction of 9% if baseline-outcome 

correlation is 0.3; whereas a 50% reduction in sample size was achieved with 
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adjusting for a variable that has a baseline-outcome correlation of 0.7. Reduction 

in sample size exceeds 80% when the baseline-outcome correlation is 0.9 or 

higher.  

Figure 5.9: Relative sample size for using ANCOVA instead of ANOVA at          
differing level of baseline-outcome correlation 
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Figure 5.10: Relative reductions in sample size for using ANCOVA instead 

of ANOVA at differing trial scenarios 
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However, it may be impractical to find a variable that will have such level of 

prognostic relationship with the outcome. Clearly, the reduction in the required 

total sample  

size for ANCOVA is compounded by the level of the baseline-outcome 

correlation as the algebraic expression includes a quadratic term for the 

correlation. Clearly, the size of the trial and level or direction of baseline 

imbalance does not matter as the efficiency is dictated by the baseline-outcome 

correlation only. Figure 5.2 illustrates the relationship between the reduction in 

sample size and the baseline-outcome correlation (without regard to the size of 

treatment effect and both levels and direction of imbalance – since these are not 

influential in this regard). Figure 5.3 however regards treatment effect and both 

size and direction of baseline imbalance.     

The absolute size of the sample that needs to be studied in different scenarios 

using ANCOVA instead of ANOVA is presented in table 5.9. So, the sample size 

requirement of the trial (if carrying out ANCOVA analysis as opposed to ANOVA) 

is not greatly different when the baseline-outcome correlation is small, but a 

sizeable difference is noted when the baseline-outcome correlation is large. For 

example for detecting a treatment effect size of 0.5, when the correlation is 0.3 

the required sample size for ANCOVA is 9% less (i.e. n=116 instead of 128), but 

when it is 0.7 the required sample size is 49% less (i.e. n=66 instead of 128), 

and for a correlation of 0.9 the required sample size is 81% less (i.e. n=24 

instead of 128).   
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  Table 5.22: Adjusted sample sizes for using ANCOVA instead of ANOVA 
in different trial scenarios      

Effect       Z 
0.2 

        Levels of baseline-outcome correlations         

0.1 0.3 0.5 0.7 0.9 

         -1.96 
         -1.64 
         -1.28 
              0 
          1.28 
          1.64 
          1.96 

811 744 582 403 145 

811 744 599 417 155 

788 744 599 417 145 

788 722 579 402 145 

788 744 579 402 145 

788 744 579 402 145 

788 744 579 402 145 

0.5  

         -1.96 
         -1.64 
         -1.28 
             0 
          1.28 
          1.64 
          1.96  

131 121 100 67 25 

130 119 100 67 25 

130 118 98 66 25 

128 118 96 65 24 

136 112 89 63 24 

130 120 94 67 25 

131 121 94 67 25 

0.8  

        -1.96 57 52 43 29 11 

        -1.64 55 51 42 29 11 

        -1.28 55 50 41 28 11 

           0 53 50 39 27 11 

         1.28 54 50 41 27 11 

         1.64 55 51 42 29 11 

         1.96 57 52 43 29 11 
Y=0.2, n=178; Y=0.5, n=128; Y=0.8, n=52, 1000 iterations in each scenario 

Table 5.10 shows the proportion of the original sample size when using CSA 

instead of ANOVA. Here again, the only influential factor is the level of 

prognostic relationship between the baseline variable and the outcome. Levels of 

treatment effect or size of the trial and both levels and directions of imbalance 

have no impact on changes in sample size. Table 5.10 was derived by taking the 

ratio of the standard error of CSA versus ANOVA at different hypothetical trial 

scenarios in the simulated results. The changes are almost symmetrical at both 

sides of correlation of 0.5. For a baseline-correlation less than 0.5, the relative 
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sample size for CSA is in excess of 1. For example, at a correlation of 0.3, the 

required sample size for CSA will be 31% in excess of the original sample size, 

whereas at correlation of 0.7, using CSA will save 38% of the original sample 

size.  

Table 5.23: Relative sample size for using CSA instead of ANOVA at 

different trial scenarios  

Effect       Z 
0.2 

        Levels of baseline-outcome correlations         

0.1 0.3 0.5 0.7 0.9 

         -1.96 
         -1.64 
         -1.28 
              0 
          1.28 
          1.64 
          1.96 

1.84 1.31 1.00 0.62 0.18 

1.84 1.45 1.00 0.62 0.20 

1.84 1.31 1.00 0.62 0.18 

1.84 1.31 1.00 0.62 0.18 

1.84 1.31 1.02 0.73 0.20 

1.87 1.44 1.00 0.62 0.18 

1.84 1.31 1.00 0.62 0.18 

0.5  

         -1.96 
         -1.64 
         -1.28 
             0 
          1.28 
          1.64 
          1.96  

1.80 1.40 1.00 0.60 0.20 

1.80 1.40 1.00 0.59 0.20 

1.80 1.40 1.00 0.60 0.20 

1.80 1.41 1.00 0.60 0.20 

1.80 1.36 1.00 0.56 0.19 

1.80 1.40 1.00 0.59 0.20 

1.80 1.40 1.00 0.59 0.20 

0.8  

        -1.96 1.80 1.40 0.99 0.60 0.19 

        -1.64 1.75 1.40 0.99 0.60 0.20 

        -1.28 1.80 1.40 1.00 0.57 0.20 

           0 1.80 1.40 0.99 0.60 0.20 

         1.28 1.80 1.39 0.99 0.57 0.20 

         1.64 1.79 1.39 0.99 0.57 0.20 

         1.96 1.78 1.39 0.99 0.57 0.20 
     Y=0.2, n=178; Y=0.5, n=128 ; Y=0.8, n=52, 1000 iterations in each scenario 

When baseline-outcome correlation is 0.5, at all trial scenarios the sample size 

required for CSA equals that of the ANOVA. At the extremes of the levels of 

correlation (0.1or 0.9) there is 80% increase or decrease in the original required 

sample size respective of the trial size or effect size to be detected at nominal 
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80% power. Figures 5.4 and 5.5 illustrate the proportional changes in the original 

sample sizes for using CSA instead of ANOVA, given different trial scenarios. 

The two figures show the inverse relationship that exists between the proportion 

of change in the original trial sample units that have to be studied and baseline-

outcome correlation for using CSA. 
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Figure 5.11: Relative changes in the original sample size for using CSA 

instead of ANOVA at differing level of baseline-outcome correlation 

 



  

173 

 

Figure 5.12: Relative changes in sample size for using CSA instead of 
ANOVA at differing trial scenarios 
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Table 5.11 presents the minimum absolute sample sizes that must be studied 

across different hypothetical trial scenarios with CSA as the primary analysis. At 

lower baseline-outcome correlation (r<0.5) ANOVA is more efficient than CSA, 

both are equally efficient at r=0.5, and CSA is more efficient at r>0.5. 

Table 5.24: Adjusted sample size for using CSA instead of ANOVA  

Effect       Z 
0.2 

        Levels of baseline-outcome correlations         

0.1 0.3 0.5 0.7 0.9 

         -1.96 
         -1.64 
         -1.28 
              0 
          1.28 
          1.64 
          1.96 

1452 1030 788 487 145 

1452 1143 788 487 155 

1451 1030 788 487 145 

1452 1030 788 487 145 

1452 1030 811 579 155 

1470 1135 788 487 145 

1452 1030 788 487 145 

0.5  

         -1.96 
         -1.64 
         -1.28 
             0 
          1.28 
          1.64 
          1.96  

230 180 129 77 26 

230 180 128 76 25 

231 179 128 76 26 

231 182 128 76 26 

231 175 128 72 24 

231 179 128 76 25 

231 179 128 76 26 

0.8  

        -1.96 94 73 52 31 10 

        -1.64 91 73 52 31 11 

        -1.28 94 73 52 30 11 

           0 94 73 52 31 11 

         1.28 94 73 52 30 11 

         1.64 94 73 52 30 11 

         1.96 93 73 52 30 11 
   Y=0.2, n=178;Y=0.5, n=128;Y=0.8, n=52, 1000 iterations in each scenario 

Table 5.12 presents the relative sample size changes when using ANCOVA 

instead of CSA at different trial scenarios. The relative sample size formula 

follows the algebraic expression   21 /  (from chapter 3, equation (3.34). Again, 

the formula is a function of the baseline-outcome correlation only (i.e. sample 
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size reduction is not influenced by the directions and size of baseline imbalance 

and treatment effect). The results show that ANCOVA requires a smaller sample 

size compared to CSA given most trial scenarios, making it the more efficient of 

the two statistical methods. The benefit of sample size reduction by ANCOVA 

over CSA can reach nearly 50% when the correlation is close to 0.1. From table 

5.12, the figures increase as correlation increases, meaning that the actual 

reduction in the sample size for using ANCOVA instead of CSA decreases as 

baseline-outcome correlation increases.  

Table 5.25: Relative sample size reduction for using ANCOVA instead of 
CSA 

Effect       Z 
0.2 

        Levels of baseline-outcome correlations        

0.1 0.3 0.5 0.7 0.9 

         -1.96 
         -1.64 
         -1.28 
              0 
          1.28 
          1.64 
          1.96 

0.56 0.73 0.74 0.83 1.00 

0.56 0.65 0.76 0.86 1.00 

0.54 0.72 0.76 0.86 1.00 

0.54 0.70 0.73 0.83 1.00 

0.54 0.72 0.71 0.69 0.94 

0.54 0.66 0.73 0.83 1.00 

0.54 0.72 0.73 0.83 1.00 

0.5  

         -1.96 
         -1.64 
         -1.28 
             0 
          1.28 
          1.64 
          1.96  

0.57 0.67 0.77 0.87 0.97 

0.56 0.66 0.77 0.89 0.99 

0.56 0.66 0.76 0.87 0.97 

0.55 0.65 0.75 0.86 0.99 

0.59 0.64 0.69 0.87 0.97 

0.56 0.67 0.73 0.89 0.97 

0.57 0.67 0.73 0.89 0.97 

0.8  

        -1.96 0.61 0.72 0.82 0.94 1.05 

        -1.64 0.60 0.70 0.82 0.92 1.03 

        -1.28 0.58 0.69 0.79 0.93 1.02 

           0 0.56 0.66 0.76 0.86 0.98 

         1.28 0.57 0.68 0.79 0.91 1.00 

         1.64 0.59 0.70 0.81 0.95 1.03 

         1.96 0.61 0.71 0.82 0.97 1.04 
   Y=0.2, n=178;Y=0.5, n=128;Y=0.8, n=52, 1000 iterations in each scenario 
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For example, there is at least a 44% reduction in the sample size if ANCOVA 

was used instead of CSA to adjust for a baseline variable that has a correlation 

of 0.1 with the outcome; whereas, with a correlation of 0.7, the reduction in 

sample size is just around 14%. Figure 5.6 shows a relationship between relative 

efficiency and baseline-outcome correlation. This simulation result is reasonably 

consistent with the algebraic expression earlier expressed for sample size 

reduction when using ANCOVA instead of CSA.       

Figure 5.13: Relative changes in sample size for using ANCOVA instead of 
ANOVA at differing level of baseline-outcome correlation 
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Figure 5.14: Relative change in sample size for using ANCOVA instead of 

CSA at different trial scenarios 
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Both ANCOVA and CSA are approximately equally efficient when adjusting for a 

baseline factor that has a correlation of 0.9 with the outcome. Accordingly, table 

5.13 gives the number of additional patients that must be studied when using 

CSA instead of ANCOVA for statistical adjustment. 

Table 5.26: Increase in the adjusted sample size for using CSA instead of 
ANCOVA   

Effect       Z 
0.2 

        Levels of baseline-outcome correlations         

0.1 0.3 0.5 0.7 0.9 

         -1.96 
         -1.64 
         -1.28 
              0 
          1.28 
          1.64 
          1.96 

641 286 207 85 0 

641 400 190 70 0 

664 286 190 70 0 

664 308 209 85 0 

664 286 232 177 10 

682 392 209 84 0 

664 286 209 85 0 

0.5  

         -1.96 
         -1.64 
         -1.28 
             0 
          1.28 
          1.64 
          1.96  

100 60 30 10 1 

102 61 29 9 -1 

102 62 31 10 1 

102 63 32 11 1 

96 63 39 10 1 

102 60 34 9 1 

100 59 34 9 1 

0.8  
 

        -1.96 37 21 10 2 -1 

        -1.64 37 22 10 3 -1 

        -1.28 39 23 11 2 -1 

           0 41 25 13 4 -1 

         1.28 40 23 11 3 0 

         1.64 39 22 10 2 -1 

         1.96 37 21 10 1 -1 
   Y=0.2, n=178; Y=0.5, n=128;Y=0.8, n=52, 1000 iterations in each scenario 
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5.4 Discussion 

5.4.1 Efficiency 

The results of this simulation study demonstrate that, as a result of applying 

appropriate statistical strategies for adjustment, there can be an appreciable 

reduction in the sample units that have to be studied to detect a given effect. 

This reduction, as was shown in the results, is independent of both level and 

direction of imbalance, and it is wholly driven by the level of prognostic 

relationship between the baseline and the outcome. There is a lesser 

requirement for the number of patients in the study if statistical analysis takes 

strong prognostic factors into account, even if such factors are balanced 

between the groups at baseline. The sample size requirement is the same for 

trials in which baseline imbalance is zero and trials with significant level of 

imbalance as long as the baseline variable is appropriately adjusted. Thus, at 

any given level of baseline-correlation, relative efficiency is approximately the 

same across all levels of baseline imbalance for any pair of these statistical 

methods. This thus appears to suggest that in the context of relative efficiency in 

trials (reduced sample size) measures to balance the treatment arms 

(stratification, minimization etc) in prognostic factors are of little or no value. For 

example, the relative benefit in sample size reduction of ANCOVA against 

ANOVA is not a function of both direction and size of baseline imbalance. 

Kernan et al (1999) however, observe that stratification improves power and 

reduces sample size. These authors further argue that power losses for failure to 

stratify randomization could be made up by adding 6-14 patients to a given trial, 
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their observations and comparison however, are limited to trials that do not use 

statistical methods of adjustment.  

In addition, the results also show that in the design of a clinical trial, information 

on the amount or extent of possible baseline imbalance is not necessary to 

design a trial that minimizes the number of patient by using statistical method of 

adjustment. In the same vein, there is no need to be concerned with the direction 

of the possible imbalance in order to take advantage of the adjusted analysis for 

the purpose of minimising sample size. Once the treatment effect size to be 

detected is fixed, the efficiency of a statistical test depends on the precision with 

which treatment effects are estimated. From previous results (chapter 4), the 

precision of the treatment estimate in the context of a trial is dependent on 

baseline-outcome correlation and which statistical method is specified for 

analysis. Thus in terms of relative statistical efficiency, what matters is the 

information on the prognostic relationship between the relevant baseline variable 

and the outcome and then specify an appropriate method for statistical 

adjustment. Adjusting for a baseline covariate (by ANCOVA) that has the 

strongest relationship with the outcome guarantees the most efficient trial.  

Depending on the prognostic relationship between the baseline and the 

outcome, these results demonstrate that up to 80% of the original sample size 

could be saved if ANCOVA or CSA is appropriately specified as the primary 

analysis, assuming baseline outcome variable has a correlation of 0.9 with the 

outcome. Taking a more realistic baseline-outcome correlation, about half the 

original sample size will be needed if a baseline variable that has correlation of 
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0.7 with the outcome is adjusted using ANCOVA. This result is consistent with 

Pocock et al (2002); these authors observed that with a baseline-outcome 

correlation of 0.7, the required sample size is roughly half the original sample 

size if the baseline variable is included in an ANCOVA model. Similarly, Porter & 

Raudenbush (1987) state that, at a baseline-outcome correlation of 0.8, only 33 

patients per group will be needed when using ANCOVA instead of 84 per group 

if ANOVA is the statistical method to detect a large effect with 80% power. This 

of course has huge implications for: safety issues for the patients (as less 

patients will be randomised to receive treatment which in some cases may not 

be effective or presents with certain adverse reactions), trial cost, patient’s 

recruitment and implementation time and other administrative issues. In this 

study, in the context of minimizing sample size – efficiency – CSA shows some 

potential to be more efficient than ANOVA, but only when correlation is greater 

than 0.5. On the other hand, in terms of efficiency ANCOVA shows itself to be 

the statistical method of choice across a wider range of experimental conditions 

typical of a clinical trial setting.  

As a method for statistical adjustment, ANCOVA provides greater efficiency than 

ANOVA, especially where CSA performs poorly; for example, for a baseline-

outcome correlation that is less than 0.5. The results show that there is a 25% 

reduction in the required sample size when using ANCOVA instead of CSA in a 

trial with a baseline-outcome correlation of 0.5. This finding corroborates the 

results of earlier studies (Egger eta al, 1985; Pocock, 2002; Van Breukelen 

2006). Furthermore, whilst statistical adjustment of imbalance affects the 
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statistical power in contrasting ways depending on the direction of imbalance, 

this is not so for efficiency. These results show that the potential for relative 

sample size reduction by ANCOVA does not depend on the original sample size 

or the size of treatment effect to be detected, nor does it depend on either the 

magnitude or the direction of imbalance.  

This result agrees with Hernandez et al (2004), who argue that potential sample 

size reduction by the adjusted analysis does not depend on the size of treatment 

effect and sample size, although in the context of a dichotomous outcome 

variable in this instance. This implies that during the design of a trial, in order to 

minimise the sample size requirement, researchers need not worry about the 

possible effect of either size or level of chance imbalance if statistical adjustment 

is to be specified as the primary analysis. Efficiency – sample size reduction – of 

the statistical methods under consideration actually relates to the ability of each 

of the statistical methods to control the associated variability in the data and not 

necessarily the ability to reject the null hypothesis. A more efficient statistical 

method is expected to be more powerful than the other, however, statistical 

power responds to change in certain factors apart from baseline-outcome 

correlation, such as direction and level of baseline imbalance. For example, 

ANCOVA is the most efficient statistical method of the three, however, when 

imbalance is in the same direction as treatment then, with respect to the 

unbiased estimate of effect that it yields, the conditional power is lower than the 

nominal power of the trial at this instance. 
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The results further demonstrate that irrespective of the level of imbalance, CSA 

can be more efficient than the crude between-group comparison of treatment 

effect using ANOVA, but only if the baseline-outcome correlation is greater than 

0.5. It also follows that while ANOVA can be more efficient than CSA at a 

correlation less than 0.5, both methods are equally efficient at correlation of 0.5. 

Thus, unless the prognostic relationship between the baseline and the outcome 

is represented by a correlation that is anticipated to be in excess of 0.5, CSA 

should not be specified as the primary analysis for the purpose of increased 

efficiency. This finding is again consistent with Senn’s (1989, 1990), view that 

CSA is worse than simply using the unadjusted outcome values if the baseline-

outcome correlation is less than 0.5. This result does not fully accord with Altman 

and Doré (1990), who present CSA as a reasonable statistical method for 

dealing with baseline imbalance without specifying the level of baseline-outcome 

correlation at which their observation is valid.  

5.4.2 Statistical Power 

The simulated statistical power for ANOVA within the range of study correlation, 

given a level of effect, is approximately equal, except for some random 

fluctuations that are more pronounced in small trials. Small trials are also known 

to be more susceptible to random or sampling error in the estimation of a 

population characteristic. In this study, for trials that ignore baseline imbalance 

as levels of effect increases, the statistical power for ANOVA shows capacity for 

slight increment. Although, on average, when correlation is low (r=0.1), ANCOVA 

has a statistical power that exceeds that of ANOVA, given the same level of 
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correlation and a large effect size (y=0.8), ANOVA shows a slight increase in 

statistical power over ANCOVA as a result of random fluctuation. Random 

fluctuations of some sort are not unexpected in simulation studies, especially in 

small samples, as is the case when the effect size is large. Previously, 

Hernandez et al (2004) have also observed a reduction in the power of the 

adjusted analysis against the unadjusted under similar trial conditions. These 

results, in common with other previous studies, show that the benefit of statistical 

adjustment in terms of increased statistical power by ANCOVA is not noticeable 

until baseline-outcome correlation is greater than or equal to 0.3 (Altman, 1985; 

Senn, 1994).  

Furthermore, the finding in this study that ANOVA is more powerful than CSA at 

baseline-outcome correlation below 0.5, irrespective of level of treatment effect 

to be detected, agrees with previous studies (Frison & Pocock, 1992; Vickers, 

2001, Tu et al, 2005; Walters 2009). However, at a baseline correlation of 0.5 the 

pattern of statistical power of these methods (ANOVA & CSA), which shows 

slight variations across levels of treatment effect in this study, is similar to Tu 

etal’s (2005) across a range of sample sizes studied. This therefore shows that 

there is approximately the same improvement in the statistical power of large 

trials as there is for small trials when a strong prognostic factor is adjusted for in 

the analysis. This finding is also consistent with previous studies by Pocock et al, 

(2002) and Senn (1989), who argue that appropriate covariate adjustment is also 

important for large trials. Various authors have also reported, similar to the 

findings in this study that increased statistical power increases with increase in 
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baseline-outcome correlation (Porter & Raudenbush, 1987; Senn, 1989, Vickers, 

2001;Pocock et al, 2002; Tu et al, 2005; Wang & Hung, 2005). This results show 

that adjusting for a strongly related baseline variable increases the statistical 

power of the test to detect the treatment effect between the groups.    

The results generally demonstrate that for a randomised controlled trial that 

assumes that treatment groups are comparable in baseline outcome score, 

ANCOVA is the most powerful of the three methods of statistical analysis. The 

same findings have been reported by (Frison & Pocock 1992; Vickers 2001; Tu 

et al 2005; Van Breukelen 2006; Walters 2009). Overall, this study suggests that, 

a randomised controlled trial in which treatment groups are similar at baseline, 

and depending on covariate-outcome correlation, can benefit from adjusted 

analysis in terms of increased statistical power. This result is consistent with 

findings from other authors (Kent et al, 2009; Hernandez et al, 2003, Vanderlaan 

& Moore, 2007; Wang & Hung, 2005). For such trials, level of prognostic 

importance of the covariate with the outcome is important while deciding on 

whether or not to adjust and what method of statistical adjustment to use. The 

benefit of increased statistical power of the adjusted analysis is not significant 

unless baseline-outcome correlation is greater than or equal to 0.3.  

Generally, CSA is no more powerful and no more efficient than ANOVA unless 

baseline-outcome correlation is greater than 0.5. In relation to CSA researchers 

should take advantage of the simplicity of ANOVA, especially for trials in which 

baseline-outcome correlation is low. The potential to increase statistical power 

with moderate baseline-outcome correlation (r≥0.3) by ANCOVA makes it a 
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statistical analysis of choice for this design, and this quality should always be 

harnessed. Appropriate adjustment of baseline outcome will usually lead to 

statistical power that exceeds the nominal power by a margin that depends on 

how strongly correlated baseline and outcome scores are. Thus, if there is any 

treatment effect to be detected, the study is adequately prepared in terms of 

statistical power to detect such effect far more than the study nominal power.   

The statistical model in these simulations is kept simple, with just a single 

covariate, the baseline score. However, one or two other covariates that is/are 

strongly correlated with the outcome predetermined or otherwise, can also be 

included in the model for adjustment. However, Pocock et al (2002) consider that 

other baseline covariates, either quantitative or binary, will usually have a weaker 

correlation with the outcome variable than that between the baseline and follow-

up values of the outcome variable. In chapter seven of this study, the concept of 

covariate selection for statistical adjustment in relation to the prognostic strength 

of covariates was assessed using empirical trial datasets. The above results 

demonstrate the important effect imbalance in baseline prognostic factors can 

have, especially on the statistical power of the study. The issue with imbalance 

of a prognostic factor, as shown in this study, depends largely on the direction of 

such imbalance with respect to the treatment effect. Thus, the power of these 

statistical methods – ANOVA, CSA and ANCOVA – is not only driven by the size 

of baseline imbalance in prognostic variables, they are also dependent on the 

direction of the imbalance. Overall and Magee (1992) similarly assert that the 
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effect of correlation on power is closely related to the direction of baseline 

imbalance.                 

Owing to the finding of this study that the direction of imbalance impacts on the 

statistical power of methods for adjustment, it is important to investigate the 

direction of imbalance to inform a suitable statistical method, given a particular 

trial scenario. This can be determined using summary statistics, but not 

necessarily tests of significance Schulz (1995), Senn (1997) and Altman (1985), 

to assess the direction of baseline imbalance in strong prognostic variables, 

especially the baseline values of the outcome variable. However, this is a post 

hoc activity, performed once data have been collected, which may mean that 

pre-specifying either the covariates to adjust for or the method of analysis to use 

is not appropriate at all time

Pocock et al (2002) have argued that prior specification of the covariates to 

adjust for would be unrealistic in many instances. They also observed that 

direction of imbalance affects the two tails of a two sided test in contrasting 

ways. Similarly, according to Altman (1985), it should be remembered that if 

adjustment for prognostic factors affects the overall comparison, it is equally 

likely to do so in either direction. These two previous studies seem to corroborate 

the finding of this study especially of the effect of the direction of imbalance on 

the statistical power of the test and as a result the conclusion on the treatment 

effect. As earlier mentioned in this study (Chapter 4, Tables 4.2 - 4.7) the 

direction of baseline imbalance affect the size of the estimated treatment effect 

by each of these statistical methods, this thus has overall impact on the power 
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with which the estimated effect is detected. There is a possibility of false positive 

and false negative errors associated with the estimate of effect by either ANOVA 

or CSA depending on the direction of imbalance. 

This study has shown that, with respect to statistical power, it is not advisable to 

use CSA when imbalance is in the same direction as treatment effect. The 

reason is because, then, the method yields statistical power that might be too 

low to detect an effect that exists, thus giving rise to false negatives. Tu et al 

(2005) have also reported the possibility of false-negative results with CSA, 

although they did not mention the conditions under which this applies. The 

problem with CSA in this instance is associated with the way it adjusts for the 

imbalance. As earlier mentioned in chapter 3 (equation 3.15), CSA regards the 

regression coefficient for the covariate 
2  to be a value of 1 in its model. This 

leads to overcorrection of the imbalance and does not take the phenomenon of 

regression to the mean into account. Given the finding of this study that CSA can 

give a very different result from ANCOVA in respect of statistical power, even if 

the imbalance is low but in the same direction as treatment effect, the safest 

approach is to consider even a slight imbalance to be potentially important 

(Lewis, 1983) and use appropriate statistical adjustment – ANCOVA – to account 

for it. However, in terms of statistical power, the finding does not agree with 

Hewitt and Torgerson (2006) and Altman and Doré (1990) who had earlier 

reported that chance differences are generally of no consequence. 

Although the conditional power for ANCOVA falls below the statistical power for 

ANOVA with imbalance in the same direction of effect, this should not be a 
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problem as this only occurs when the unbiased treatment effect is smaller than 

the minimum effect the trial is designed to detect. The results show that when 

baseline imbalance is in the same direction as treatment effect the unadjusted 

analysis is most powerful. Consequently, a treatment effect may be indicated by 

the unadjusted analysis whereas the adjusted analysis by ANCOVA or CSA fails 

to detect any difference in effect. The issue here, however, is not necessarily 

because ANOVA is more sensitive than ANCOVA in identifying a given treatment 

effect, but rather because the two methods relate to different levels of effect. For 

ANOVA, the unadjusted large effect comprises the effect of the treatment and 

the influence of the imbalance that was not adjusted for. Conversely, ANCOVA 

or CSA operate with the adjusted effect – a smaller effect, because the effect of 

the imbalance (in the same direction as the treatment effect) is already 

accounted for. Camilli and Sheppard (1987) observe that ANOVA cannot but fail 

to detect even a markedly large amount of bias.  

Since ANOVA fails to identify the effect of baseline imbalance, but rather regards 

it as treatment effect, this method cannot be free of false positives under the 

circumstance that imbalance is in the same direction of the treatment. This thus 

explains the higher level of statistical power ANOVA presents when baseline 

imbalance exists in the same direction of effect. These findings have implications 

for the design of clinical trials, specifically in relation to nominal power and 

sample size. When imbalance exists, not only in the same direction as effect, 

there will be problem with the interpretation of the results as was observed by 

Dougsheng et al, (2000). Researchers should therefore be careful of interpreting 
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an effect size resulting from unadjusted analysis, especially when the 

appropriate adjusted method does not indicate one. As such, exaggerated effect 

may have arisen not only because the treatment is effective, but also because 

the treated group at baseline has a better prognosis – the baseline score of the 

outcome variable in the treated group is lower compare to the baseline score in 

the control group, which ANOVA fails to account for.                  

Thus, depending on the level and direction of imbalance and the size of the 

prognostic relationship between the baseline and outcome, one statistical test 

may have enough power to identify a significant difference in treatment effect 

whereas another may not, under the same experimental conditions. A classic 

example that illustrates this, cited by Altman (2005) and Assman et al (2002), is 

a trial by Christensen et al (1985) that concerned primary biliary cirrhosis. This 

study had a non-significant imbalance in a strong prognostic variable, serum 

bilirubin. Unadjusted and adjusted analyses yielded p=0.20 and p=0.02, 

respectively, for the treatment differences in survival. The only reason for this to 

have occurred in the context of the finding of this simulated study is if the 

baseline imbalance is in the opposite direction of the treatment. This implies that 

the treated group has a worse prognosis at baseline in the distribution of serum 

bilirubin. It is also possible to have a result that is further from the null and 

favouring the unadjusted analysis; this is expected if the baseline imbalance in 

the same direction as the effect, is large enough, and has an appropriate 

prognostic relationship with the outcome. This possibility is much higher, and will 

readily occur if CSA is the method for the adjusted analysis as CSA will usually 
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presents with a very low statistical power much lower than that of ANCOVA, with 

imbalance in the same direction as effect.  

When the treated group has a worse prognosis at baseline on the outcome 

variable, ANCOVA tends to account for the imbalance by adjusting the absolute 

value of the treatment effect in that group upward in relation to the overall score 

on imbalance – (average covariate score of the two groups). In contrast, CSA, by 

computing the difference between the baseline and outcome score, takes the 

treatment effect to be the sum of both baseline and treatment effect score. This 

explains the high overall effect size by this method for statistical adjustment of 

baseline imbalance in the opposite direction of effect. However, the high 

statistical power that results from using CSA can only lead to cases of false 

positives, in which the method suggests treatment effect when in fact there is 

none. Thus, when important baseline imbalance exists, and depending on its 

direction in relation to treatment effect, CSA is prone to statistical power that can 

be either inappropriately low or inappropriately high. This anomaly is as a result 

of the tendency to overcorrect baseline imbalance (Frison & Pocock, 1992; 

Assman et al 2000), due to the fact that CSA fails to take regression to the mean 

into account (Van Breukelen, 2006). 

In a randomised trial, although post-test scores and baseline scores tend to be 

positively correlated, change and baseline scores tend to be negatively 

correlated (Senn, 1997, Vickers & Altman, 2001). With respect to pain and 

disability functions, patients with high baseline scores on the outcome variable 

tend to show more change than the average patient, and those with low baseline 
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score tend to show less change than the average patient; in each case, 

regression to the mean is apparent.  

5.5 Conclusion 

Overall, in most conditions typical of clinical trial in which change from baseline 

score is a measure of improvement, ANCOVA is most powerful of the three 

statistical methods (ANCOVA, CSA and ANOVA) for analysis. However, when 

imbalance is in the same direction as treatment, ANCOVA has a reduced, lower 

power to detect an effect compare to ANOVA. This does not mean that ANOVA 

is better-off than ANCOVA, as the power of ANOVA at this time presents with 

false positive error just as that of CSA presents with false negative error. Thus 

when imbalance exists in the same direction as treatment, it poses serious 

implication for interpretation of treatment effect. The reduced statistical power by 

ANCOVA is in respect of the adjusted effect which is much lower compared to 

that on which the nominal power of the study is based. The reduced power by 

ANCOVA can also be viewed as a trade-off in respect of the unbiased estimate 

of effect that is yielded by this method. 
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Chapter 6: Baseline imbalance in randomised controlled trials: 
What does the literature say? 

 

6.1 Introduction 

In this chapter, an attempt is made to systematically review current practices on 

the subject of accounting for baseline imbalance in the clinical trial setting. Here, 

the review focuses on trials reported in five leading medical journals in which an 

increase in score from the baseline value of the outcome variable is a measure 

of treatment effect. The following journals provided articles that were reviewed in 

this study; Pain, Arthritis and Rheumatism, Rheumatology, Annals of the 

Rheumatic Diseases and Journal of Rheumatology. The impact factors of the 

journals and the geographical location were taking into consideration when 

making the choice of which journals should be considered in the review. All the 

journals have high impact factor and are also based in Europe, Canada and 

America. The systematic review exercise included all articles published in 2010 

in these journals that met other inclusion criteria (as detailed in section 6.1) set 

for the purpose of this study. 

  

The review seeks to cover current issues and practices related to statistical 

analysis involving baseline or covariate imbalance in clinical trial settings, as 

reported in these journals. However, since the primary endpoints covered in the 

review include both categorical and time to event, in addition to continuous 

primary endpoints, appropriate covariate adjusted methods in this context 

include; logistic regression, Cox regression, Mantel Haenszel test statistics and 
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ANCOVA. The more general focus of this PhD study is on those statistical 

methods that are used for the post-treatment assessment of a continuous 

outcome variable in RCTs, with or without baseline imbalance: the statistical 

methods of interest being ANOVA, CSA and ANCOVA 

. 

6.2 Methods 

Following a careful selection of the journals in discussion with my supervisors, 

inclusion criteria were set out. The inclusion criteria for articles were: parallel-arm 

phase III clinical trial, published from 1 January–31 December 2010; overall 

sample size (n) greater than 50 – the minimum sample size (for large effect size) 

used in the simulation previously was 52 ; human subjects; results presented of 

a primary analysis/dataset; and published in the English language. All 

observational studies were excluded, as were cross-over trials, trials that 

analysed secondary datasets, phase I and II trials, and pilot trials. All issues 

regarding initial disagreement between the two reviewers on whether an article 

should be included or not were resolved by discussion. 

 

The search was conducted in the Pub Med electronic database. The selected 

journals were entered as search terms. An abbreviation [TA] was however 

attached to each of the journals; this is to ensure that each search conducted 

returned only articles published in the specified journal. By making use of the 

‘limit’ facility, the inclusion criteria were selected from the drop down menu. The 

title, abstract and method section of each article were searched to be sure that 

each article met the inclusion criteria. Each of the 40 eligible articles was 



  

195 

 

assigned a study number as a means of identification. Once the ‘eligible’ trials 

had been identified, two reviewers (EE and ML) screened the journal articles and 

completed separate datasets for information (see section 6.2.1) relating to each 

trial. After completing this task, the two reviewers compared databases. 

Disagreements in relation to any of the recorded data between the matched data 

of the two completed datasets were to be resolved through discussion and 

consensus if possible; a third reviewer (‘arbitrator’ (JS)) was to be called on to 

resolve any disagreements.  

 

6.2.1 Database 

From each article, data were collected on the author’s name, centre status 

(single/multicentre) and, if multicentre, the number of centres. Data collected 

also included: allocation method, stratification/minimization factor if either 

stratification or minimization was used, sample size, disease category, statistical 

method for primary analysis (whether unadjusted or adjusted), primary outcome 

measure, type of endpoint (note, often a continuous primary outcome is 

categorized for the purposes of a main analysis), whether or not the primary 

outcome was based on ‘change’ from baseline (change in numerical terms (for 

numerical outcomes) or as a reference for categorical measures (e.g. ‘improved / 

better’ or ‘not improved / better’ compared to baseline . 

 

In terms of the statistical method for primary analysis the emphasis was on 

whether adjusted analysis was used or not. Also of interest was: which statistical 

method for adjustment was used, the number of covariates adjusted for, whether 
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correlation between baseline and posttest values on the outcome variable was 

determined, whether or not a test of significance of imbalance was performed, 

and whether or not imbalance was acknowledged. In addition, data were 

collected on whether or not centre status variable was adjusted; whether or not 

stratification or minimization factor(s) were adjusted as appropriate, and whether 

or not a subgroup analysis was done. The name of Journal was recorded, and 

reason(s) for exclusion if the article failed the inclusion criteria. Data were also 

collected on the treatment effect on the primary outcome and the conclusion 

pertaining to this. 

 

Of these, 40 articles met the inclusion criteria for this study. Agreement between 

the two reviewers (EE and ML) was mostly achieved at the outset, and 

consensus was achieved through discussion without the need for a third 

reviewer/‘arbitrator’ (JS). 

6.3 Results 

6.3.1 Summary characteristics of included trials  

The search yielded 33 articles in Pain, 41 in Arthritis and Rheumatism, 34 in 

Rheumatology, 133 in Annals of the Rheumatic Diseases and 36 in Journal of 

Rheumatology; thus a total of 277 full articles were accessed. Of the 277 articles 

that the search strategy yielded, (figure 6.1) only 40 (14.4%) articles met the 

inclusion criteria. More than half, 155(65.0%), of the total number of the excluded 

articles were not randomised controlled trials but observational studies 

(prospective/longitudinal cohort-, case control-, and cross sectional studies). Of 
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the articles that were excluded 32 (13.5%) were ineligible owing to the sample 

size being less than 50; 26 (11.0%) articles were ineligible on the basis of 

reporting secondary data, 18 articles (7.6%) were non-phase III trials, and 6 

(2.5%) articles were based on cross-over design. Of the 40 articles that were 

included in the study, 11(27.5%) were in each of Pain and Arthritis and 

Rheumatism journals respectively, 8 (20.0%) articles were in Annals of the 

Rheumatic diseases, 7 (17.5%) in the Journal of Rheumatology and 3 (7.5%) 

articles were in Rheumatology. 

 

All the 40 trials included in this review randomised individuals into treatment 

arms; there were no cases of cluster randomisation. The trials were mostly 

(about two-thirds) multicentre trials, with the highest number of centres in a 

particular trial being 143. The authors of 6 of the 25 multicentre trials did not 

mention the number of trial sites or centres. The trial sample size was between 

51 and 1025 inclusive and the median sample size was 160. Fifteen of the trials 

had a sample size of less than 100, the sample size for 18 trials was between 

100 and 499 inclusive, and 7 trials had greater than or equal to 500 patients 

recruited. The sample size was classified into two categories (less than 200 and 

200 and above) for the purposes of evaluation. 
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  Figure 6.4: Flow chart illustrating the review procedures and outcomes 

 

  

 

             

 

 

 

 

 

 

 

 

 

 

 

Total articles reviewed = 277 

Articles excluded= 237: 
Observational studies = 155 
Sample size < 50 = 32 
Secondary data = 26 
Non phase III trial = 18 
Cross-over trial = 6 

 
Articles 
included in the 
review= 40 

Used adjusted 
analysis= 25 

 

Used unadjusted 
analysis= 15 

Stratum-based 
adjustment=8 

Model based 
adjustment=17 

Reported treatment 
effect in 

16 (64%) articles 

 

 

Reported treatment 
effect in 

9 (34%) articles 
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Table 6.4: Selected trial characteristics 

Trial  characteristics Number of trials 
(%) 

Trial centre 
                            Single 
                            Multicentre  

 
15 (37.5) 
25 (62.5) 

Methods of patient allocation 
                            Stratified blocking 
                            Minimization 
                            Simple random sampling 

 
17 (42.5) 
1 (2.5) 
22 (55.0) 

Primary outcome change score 
                             Yes 
                             No 

 
34 (85.0) 
6 (15.0) 

Primary outcome measure(s) 
                             Numerical 
                             Categorical 
                             Time-to-Event                         

 
33 (82.5) 
4 (5.0) 
3 (7.5) 

Primary end point(s) 
                             Numerical 
                             Categorical 
                             Time to Event 

 
19 (47.5) 
18 (45.0) 
3 (7.5) 

Sample size 
                              < 100 
                              100-499 
                              ≥500 

 
15 (37.5) 
18 (45.0) 
7 (17.5) 

Baseline test of significance 
                                       Yes  
                                        No 

 
12 (30.0) 
28 (70.0) 

Subgroup analysis done 
                                        Yes 
                                        No 

 
3 (7.5) 
37 (92.5) 

 

Also, regarding the treatment allocation method, in 22 trials the authors failed to 

specify the allocation technique beyond indicating that patients were randomised 

to treatment groups. In all of the 22 trials in which the authors did not specify the 

method of allocation, it was inferred that they had used a simple randomisation 

technique, on the basis that in none of these articles was a stratification factor 
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mentioned. Thus, in all, stratification with blocking featured in 17 trials, 1 trial 

used minimization, and 22 trials adopted a simple random allocation technique.  

Even though 33 trials had a numerical primary outcome measure (table 6.1), in 

14 of these trials the continuous outcome variables were dichotomised; for 

example, one of the reviewed articles, Molsberger et al (2010) dichotomised the 

average pain level during the last seven days (VAS score) by using at least 50% 

reduction from baseline VAS following treatment as the yard stick for treatment 

effectiveness. Only three trials had primary outcome measures that were time-to-

event measures. Thirty-four of the trials were explicit on the fact that change 

from baseline was the measure of treatment effect or improvement. Overall, 25 

(62.5%) trials recorded significant improvement as a result of the treatment and 

two-third of all trials that had no record of statistically significant effect in primary 

outcome did not do so with a placebo.  

In 12 (30.0%) of the trials the author used a test of significance to assess 

baseline comparability and only in one trial was baseline imbalance statistically 

significant. Statistically non-significant baseline comparisons were reported in 7 

trials, and in 1 of the 12 trials the authors reported that baseline-imbalance 

occurred in certain variables and in the remaining 3 the authors declared no 

imbalance. In all, only in 17 trials did the authors report that there is no baseline 

imbalance and in another 10 trials, authors did not make a clear statement on 

the status of baseline-imbalance.  
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As shown in figure 6.2, 25 (62.5%) of the clinical trials reviewed statistically 

adjusted for baseline imbalance using regression or (pooled) stratification-based 

approaches. Model-based adjusted analyses, such as using ANCOVA for a 

continuous outcome variable, logistic regression for a binary outcome variable 

and Cox regression for time-to-event data, were more popular than stratum-

based adjustment (using Mantel Haenszel and stratified Wilcoxon rank sum 

approaches), featuring in 17 trials compared to 8 respectively. Of the 25 trials 

that properly accounted for covariate imbalance, 10 (40%) adjusted for baseline-

outcome only. In 7(28.0%) trials, the authors adjusted for centre or stratification 

factors, and only in 1 trial did the authors determine covariate-outcome 

correlation.  

Trialists who used ‘change’ as the form of primary outcome often did so with 

statistical adjustment: of the 25 trials that did adjust using modelling- or a 

stratified- approach, 22 (88%) included ‘change’ as an outcome. Among the 15 

studies that did not adjust, 12 (80%) included ‘change from baseline’ as the 

primary outcome. Thus, in three of the articles, the authors did not attempt to 

account for baseline imbalance. Most trials that used model-based adjustment 

reported adjustment for a single covariate (baseline values of the outcome 

variable); the largest number of covariates adjusted was 7. Subgroup analysis in 

which the baseline variable was stratified was reported in only 3 trials, one of 

which declared a subgroup treatment effect. 
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Table 6.5: Covariate adjustment practices and characteristics of the             

statistical adjustment 

 Number of trials 
(%) 

Primary outcome; covariate adjusted?** 
                Yes 
                No            

  
 
25 (62.5) 
15 (37.5) 

If yes, what was adjusted? 
                Baseline only 
                Baseline and others 
                Others 

 
10 (40.0) 
12 (48.0) 
  3 (12.0) 

If yes, which approach?** 
                Model based adjustment 
                Stratified adjustment                                                     

 
17 (68.0) 
  8 (32.0) 

If no, which approach?** 
                Analysis of ’ 
                Change’(not necessarily CSA) 
                Unadjusted 

 
 
12 (80.0) 
  3 (20.0) 

If yes, Centre adjusted?** 
                Yes 
                No           

 
  7 (28.0) 
18 (72.0) 

If yes, baseline-outcome correlation 
determined?** 
                 Yes 
                 No 

 
 
  1 (4.0) 
24 (96.0)  

If yes, number of baseline covariates adjusted 
                   
                   1 
                   2–7 

 
 
10 (40.0) 
15 (60.0)  

If stratified or minimization used, was the 
stratification/minimization factor adjusted 
for? 
                   Yes 
                   No  

 
 
 
  7 (43.8) 
11 (56.2) 
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Figure 6.5: Flow chart representing current statistical practices in RCTs  
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Centre adjusted? 
Yes – 7(28.0%) 
No – 18(72.0) 

 

Correlation determined? 
Yes – 1(4.0%) 
No – 24(96.0) 

 No of covariate adjusted? 
1 [10(40.0%)] 

2-7[15(60.0%)] 

Subgroup analysis done? 
Yes – 3(7.5%) 

No – 37(92.5%) 
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6.3.2 Association between study factors and statistical adjustment  

Table 6.3, below, shows some association (albeit not statistically significant at 

the customary 5%-two tail level) between covariate adjustment and: baseline 

testing, trial status (single/multicentre), sample size, allocation technique and 

effect status.         

Table 6.6: Association between statistical adjustment and selected trial 
attributes 

Variables   Used baseline   
significant test 
Yes (%)        No (%) 

Chi-
square          
(X2 ; df=1) 

 
  P-
value 

Statistical               
adjustment  
      Unadjusted (%) 
           Adjusted (%) 

 
 
 6(50.0)           9(32.1)                      
6(50.0)          19(67.9)      

 
 
1.14 

 
 
0.311 

Statistical               
adjustment  
      Unadjusted (%) 
           Adjusted (%) 

         Trial Centre 
Single        Multicentre 
 8(53.3)            7(28.0)                   
7 (46.7)           18(72.0)     

 
2.57 
 

 
0.109 

Statistical               
adjustment  
      Unadjusted (%) 
           Adjusted (%) 

        Sample Size 
< 200                ≥ 200 
 10(47.0) 5(26.3)               
11(52.4)           14(73.7)     

 
1.93 

 
0.165 

Statistical               
adjustment  
      Unadjusted (%) 
           Adjusted (%) 

         Allocation 
Simple R   Stratified R 
 10(45.5)  5(27.8)       
12(54.5)           13(72.2)    

 
1.30 
 

 
0.251 

Statistical               
adjustment  
      Unadjusted (%) 
           Adjusted (%) 

      Treatment effect 
Yes (%)          No(%) 
9(36.0)          6(40.0) 
 16(64.0)      9(60.0) 

 
0.064 

 
0.800 
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Figure 6.6: Trial size and covariate adjustment 

 

Furthermore, as seen in table 6.3, of the 25 trials that statistically adjusted for 

covariates 19(76.0%) did not use a test of significance compared with 9 (60.0%) 

of trials that did not adjust. Similarly, trials that adjusted for the primary outcome 

were more likely to be larger trials (see Figure 6.3), multi-centre trials and have 

stratification approaches to the design of patient allocation (as shown in  
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Table 6.3 is an assessment of the mean difference (by t test) in sample size 

between the trials that adopted a primary unadjusted analysis versus those that 

adopted a primary adjusted analysis yielded a statistically significant mean 

difference in sample size (t=2.06, 38df, p=0.047). Hence trialists were more likely 

to present a crude estimate of effect for small sample trials than they did in trials 

that had a large sample size.  

Sixteen (64.0%) of trials that adjusted for covariates reported significant 

treatment effect and 9(36.0) of such trials had no significant effect. Similarly, 

9(60.0%) of the trials that used unadjusted analysis recorded significant 

treatment effect and only 6(40.0%) of such trials had no significant effect.  

6.4 Discussion 

This review shows the current trend in statistical analysis of RCTs as one 

tending towards statistical adjustment of covariates. There is a considerable 

increase in the number of trials in which appropriate covariate adjusted analyses 

is specified as a primary method of analysis compared to what the practice was 

about ten years ago. For example in their review, Pocock et al (2002) recorded 

that in 12 (24%) of the 50 reviewed articles the authors specified covariate 

adjusted analyses as the primary method of analysis. This is low in comparison 

to the figure of 25 (62.5%) from 40 articles that were included in this review. This 

observed upward surge in the preference for the adjusted analysis could possibly 

be due to the various potential benefits that have been attributed to covariate 

adjusted analysis and increase in support for this statistical approach over the 

years. Since the review by Pocock et al (2002) for example, various authors 
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have mentioned different benefits of covariate adjusted analysis over the 

unadjusted and these include: increase in statistical power (Kent et al (2009); 

Hernandez et al (2004) Moore and Vanderlan (2007); Wang & Hung, (2005)); 

improved type I error (Hagino et al (2004)); increased precision of estimates of 

treatment effect (Tsiatis et al, 2007; Wang & Hung, 2005), and reduced bias, 

giving more accurate estimates of the true value (Altman & Doré; 1990). The 

simplicity of the unadjusted analysis may no longer be a sufficient reason to 

continue to prefer this naïve method as the first line statistical approach in a 

clinical trial setting. There is evidence therefore of increasing in the usage and 

awareness of the merits of the ‘adjusted’ approach over the unadjusted 

approach. However, despite this increasing trend in the application of 

appropriate statistical adjustment, there still remain a substantial proportion of 

studies that do not properly adjust: in this review 37.5% of trials were unadjusted 

(crude comparison of effect or based solely on change from baseline). 

Presently, the most popular statistical approach to the analysis of clinical trials is 

through ‘change from baseline’. For numerical variables this equates to the CSA 

method presented in Chapters 4 and 5 (i.e. change from baseline score). For 

categorical variables, this equates to ‘improvement’ ascertained either directly 

through questioning such as ‘how are your symptoms now compared to when 

you first presented at clinic: completely recovered, much better, better, no 

change, worse?’, or indirectly by defining a threshold for change score 

improvement from a numerical measure whether this is in absolute (e.g. ≥ 2-point 

change on a pain-scale) or in relative terms (e.g. ≥30% improvement from 
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baseline score). As established in earlier chapters, ‘change’ in itself is not a 

proper adjustment (and accordingly has not been merited as an ‘adjustment’ 

approach within the context of the results of this chapter). Overall, 3 (7.5%) of 

the trials in this review did not adopt any form of covariate adjustment in the 

primary analysis. This represents a marked reduction in the number of trials in 

which authors did not adopt any form of statistical adjustment, for example, 

Altman and Doré (1990) previously observed that in 39 (49%) of 50 reviewed 

articles the authors did not adjust at all.  In this review, analysis based on 

‘change from baseline’ (including CSA for numerical outcome) is the most 

popular, as 12 (30.0%) of all the articles reviewed are contented with ‘change’ as 

the primary analysis. This doubles the figure reported by Altman and Doré (1990) 

in which the authors reported a 15% utilisation. This finding confirms the fact that 

there is much more awareness for the need to adjust for covariate imbalance in 

the primary analysis of RCTs. However, the majority of authors settle for a basic 

adjustment in their trials. 

Even though statistical methods such as ANCOVA that properly account for 

covariate imbalance especially the baseline of the outcome variable has been 

recommended by previous authors (Assman et al 2000; Senn 1989; Senn 1994; 

Tu et al 2005; Vickers 2001) the ease and convenience that accompany the use 

of CSA may well explain its use. Since CSA analyses differences from baseline 

score following intervention, it is sometimes believe to adjust for baseline 

imbalance (Altman & Doré 1991; Altman & Doré 1990). However, the 

mechanism of adjustment of imbalance by CSA that does not take the 
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phenomenon of ‘regression to mean’ to cognisance also exposes the estimate of 

effect from this method to a degree of bias (as shown in Chapter 4). With respect 

to trial efficiency – relative sample size requirement and also the associated bias 

and precision of estimate of treatment effect, CSA alone is not better than the 

crude unadjusted analysis by ANOVA unless baseline-outcome correlation 

exceeds 0.5. Its statistical power is largely dependent on the direction of baseline 

imbalance; thus, CSA is prone to both false positive and false negative errors 

depending on the direction of imbalance. 

In spite of the importance of the level of baseline-correlation in determining which 

covariate(s) to select for adjustment, the comparative benefit and 

appropriateness of the statistical methods for the analysis of RCTs, the practice 

by which the degree of prognostic relationship between covariate(s) and the 

outcome is empirically assessed to inform the choice of statistical method and or 

covariate selection is almost non-existant in this review. Most of the trials in this 

review lacked proper description of the allocation technique that was used in 

assigning patients to treatment groups. In this regard, there is an obvious 

deviation from the recommendation of the CONSORT document (Campbell et al, 

2004; Schulz et al, 2010). CONSORT encourages authors to be explicit about 

the method used to generate and conceal random allocation sequence be 

described. It was observed that there is little or no improvement in the way 

authors report their trial allocation method compared to over ten years ago. This 

review found that over half of the authors did not properly document the 

allocation technique used in their trials, which is consistent with Assman et al 
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(2000), who also record that over half of the trials included in their review did not 

mention or describe the allocation method.  

However the statistic in this review was an improvement compared to that 

reported by Altman and Doré (1990); in their study only one-fifth of the trials 

reviewed had stated the method of randomisation. Omission of such an 

important methodological issue represents a major flaw in the reporting but not 

necessarily the conduct of controlled clinical trials. A poorly reported trial will not 

allow the reader to understand how the study was conducted and how to assess 

the validity of the result.  

Stratified random blocking was commonly used in the trials reviewed, and centre 

and baseline severity were the most specified stratification factors. The use of 

minimization as an allocation technique is still very limited; this might not be 

unconnected with the major drawbacks associated with this practice, such as: 

predictability of assignment, complex computation, and the fact that it is not 

completely a random process (Hewitt and Torgerson, 2006; Minsoo etal, 2008). 

However, Scott etal (2002) argue that minimization provides better balanced 

treatment groups when compared with unrestricted randomization and that it can 

incorporate more prognostic factors than stratified randomization methods such 

as permuted blocks within strata. The practice whereby most authors in this 

review did not adjust for the stratification or minimization factor(s) does not agree 

with the prevailing opinion on the issue (Scott et al, 2002; Hagino et al, 2004; 

Kent et al, 2009; Hernandez et al, 2003; Moore & Vanderlaan, 2007; Altman & 

Doré; 1991), who recommended that the stratification or minimization factor 
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should always be included in the model for statistical adjustment. The expert 

view is that appropriate statistical adjustment is still necessary, despite efforts at 

the design stage to make treatment groups similar, as none of these methods is 

without one drawback or another. For example, in addition to the fact that 

stratification does not guarantee full and complete protection against imbalance, 

it becomes very complex to manage when there are several important prognostic 

factors to account for at the design stage (Rosenberger & Sverdlov, 2008). 

In around one in three of the trials in this review, authors used a test of 

significance to assess baseline comparability. This represents a decrease in use 

compared to a similar review by Assman et al, (2000), where 50% of the authors 

used statistical tests of significance to assess baseline comparability of treatment 

groups. The common view of those that indulge in this practice is that once they 

are able to establish a non-statistically significant relationship or difference 

between groups on a specified baseline variable, adjusting for such variable is of 

no use. This is deemed to be an insufficient and improper practice as chance 

imbalance in a strongly prognostic variable has serious implication on the 

precision and estimate of effect. Thus, the fact that two-thirds of trials in this 

review did not engage in such a practise provides a reassurance that trialists are 

becoming less inclined to carry out hypothesis tests on a random phenomenon – 

which clearly does not make sense.  

More often than not, in this review and in previous studies, when authors assess 

baseline imbalance between groups using a test of significance and such tests 

are non-significant, they tend to report that groups are comparable in baseline 
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characteristics: which in itself should be a default position through a properly 

implemented randomisation procedure. The problem, as noted in earlier 

chapters, is that random differences can have a substantial effect – especially 

when it meets with a strong baseline-correlation. The issue is that by conducting 

such baseline testing with only about 1 in 20 tests being significant by the 

chance process the likelihood of overlooking important factors, notably ones that 

would be highly prognostic of outcome, is high.       

In this review there was little association between trialists’ use of adjustment in 

the hypothesis test of the primary outcome and observed significance in the 

treatment effect. As was shown in chapter 4, adjustment potentially results in 

increased power (particularly for a prognostic covariate) and thus an increased 

likelihood of attaining statistical significance for a true treatment effect. However, 

as was also shown in chapter 4, statistical significance after adjustment will also 

be dependent on the direction of covariate imbalance. When baseline imbalance 

is in the opposite direction of the treatment, treatment effect favours the 

covariate adjusted analysis; however, when imbalance is in the same direction 

as the treatment, higher estimate of treatment effect favours the crude 

unadjusted analysis. This observation may not hold for logistic regression and 

proportional hazard models as previous authors such as Robison & Jewell 

(1991) and Ford et al (1995) maintain that with covariate-adjusted estimates, 

odds ratios or hazard ratios become further from the null.   

As explained in chapter 4, when a strong covariate that is in the same direction 

as treatment effect is statistically adjusted, the absolute value of the effect 
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estimate is smaller compared to the effect estimate of the unadjusted analysis, 

and thus the F-ratio is closer to 1. When this happens, there is a higher likelihood 

for a treatment effect to be inferred with the unadjusted analysis than with the 

adjusted. Conversely, when the strong prognostic variable that is adjusted is in 

the opposite direction from the treatment effect, the absolute value of the effect 

estimate is larger than that of the unadjusted analysis – and the test yields a 

lower p-value. 

Although the practice of using baseline significance testing to evaluate 

comparability is discouraged, its use however does not lead to significantly 

different results in this review. A higher likelihood of inferring treatment effect 

exists with non-usage of baseline significance tests; this may not be 

unconnected with the practice of covariate adjustment which is more popular in 

trials that do not use significance tests of baseline variables. From the review, 

trials in which baseline covariates are appropriately adjusted stand a higher 

chance of detecting a between-group difference when one exists. Again, this 

study suggests that those authors who use significance baseline tests will less 

likely adjust for covariate imbalance, as more often than not they will adjust only 

for imbalance that is statistically significant.  

The practice of covariate-adjusted analysis in this review favours was more 

common among larger trials (i.e. those with greater sample size) than the smaller 

trials. However, since conditional benefit of covariate adjusted analysis is 

independent of sample size the size of a trial should not determine whether or 

not covariate adjusted analysis should be used. It has been previously found in 
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this study that, in terms of precision, bias of estimate, statistical power and 

relative efficiency, both small sample trials and large sample trials benefit across 

different trial scenarios from appropriate statistical adjustment of covariate 

imbalance. Previous authors (Pocock et al 2002; Senn 1989) also maintain that 

in terms of bias, covariate imbalance is just as much a problem for large studies 

as for small ones. 

6.5 Conclusion 

The frequency of use of covariate adjusted analysis as the primary analysis in 

this review is reasonably high – compared to previous review studies. However, 

the number of trials that did not appropriately adjust for covariate by using CSA 

is still significant. Furthermore, trials that did adjust often excluded important 

covariates such as the corresponding baseline measure or severity indicator 

and/or the stratification/minimisation factors (applicable to block randomised 

trials) and/or Centre (applicable to multicentre trials). Lack of statistical 

adjustment has been shown to be more prominent amongst smaller (single-

centre) trials. Adherence to standard guidelines on reporting of clinical trials is 

still an important issue.  

Authors should endeavour to always provide concise information on 

randomisation procedure: type of randomisation, information on blocking and 

block size, method used to generate and implement the random allocation 

sequence, and how the sequence was concealed until assignment. Clear 

statements on which covariate was stratified on or minimized during the 

allocation process should be mentioned. Proponents of adaptive allocation 
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techniques such as minimization still have the responsibility of creating 

awareness and promoting the usage of this alternative allocation method in the 

circles of clinical researchers in order to maximize the benefits and comparative 

advantages of using this procedure in the clinical trial setting.  
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Chapter 7: Comparative analysis of statistical models: the place 
of prognostic covariates in empirical datasets of clinical trials in 
musculoskeletal conditions 

 

7.1 Introduction 

The previous chapters, especially those on the results of the simulations, have 

shown that information on the level of correlation between pre and post-

treatment scores on the outcome variable is crucial to precision, associated bias 

of estimate, statistical power and efficiency, with regard to the statistical method 

for the analysis. Depending on the level of correlation, there is considerable 

difference in these trial attributes with respect to the statistical methods of 

analysis: ANOVA, CSA or ANCOVA. For example, it has been shown (see table 

4.8 in Chapter Four) that, for a given trial scenario and depending on the level of 

prognostic relationship between the baseline and the outcome, there can be up 

to 57% gain in precision by using ANCOVA instead of ANOVA. By contrast, the 

difference in precision between CSA and ANCOVA may not exceed 25% at any 

given trial scenario and this also is absolutely dependent on the level of baseline 

outcome correlation. 

In addition, the associated bias of the effect estimate has varied considerably 

with levels of baseline-correlation in respect of the statistical methods used for 

analysis. However, depending on the statistical method, level and direction of 

imbalance also play an important role in the bias of estimate when using either 

CSA or ANOVA instead of ANCOVA. For example, in section 4.3 (Table 4.11) at 
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an effect size of 0.2, with ANOVA as the method of analysis, for a large chance 

baseline imbalance, percentage bias on the estimate of effect varies from 6.5% 

to 62.5% depending on the level of pre and post-treatment outcome correlation. 

Direction of imbalance does not affect this bias. Also, with CSA as the method of 

analysis, in section 4.3 (Table 4.12) given that chance imbalance at baseline is 

large and in the same direction as treatment, depending on the level of pre and 

post-treatment outcome correlation, bias on the estimate of effect also varies 

from 25% to 211.7% whereas, at the same level of imbalance but in the opposite 

direction of treatment, bias varies from 7.3% to 72.7% depending on the level of 

pre and post-treatment outcome correlation.   

Furthermore, in section 5.1.0, it is evidenced that the comparative advantage of 

the statistical methods under investigation with respect to gain in statistical 

power when treatment groups are balanced at baseline exclusively depends on 

pre and post-treatment outcome correlation. Although, when groups are 

heterogeneous (section 5.1.1, Figure 5.1) such that the chance imbalance is in 

the same direction as treatment, levels of chance imbalance and degree of 

baseline outcome correlation play an important role in determining the statistical 

power of both CSA and ANCOVA. Largely, the size of pre and post-treatment 

outcome correlation determines the power of CSA and ANCOVA when chance 

imbalance exists in the opposite direction from the treatment effect. The 

statistical power of ANOVA does not change with either level or direction of 

chance imbalance or changes in levels of other factors in the experiment.   
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Also, an important effect of pre and post-treatment outcome correlation is seen in 

the way it modifies the trial sample size requirement in respect of the statistical 

methods of ANOVA, CSA and ANCOVA. Usually, patients or other sample units 

are recruited into trials based on a specific figure calculated a priori. Such 

calculations are typically based on figures for the primary analysis that would be 

affiliated to crude unadjusted analysis (in this case, ANOVA) that does not make 

use of information on the covariance structure between the baseline and the 

post-treatment scores of the outcome. However, the simulation results in chapter 

5 (Section 5.4.0) have shown that there is a remarkable difference in the sample 

size requirement between statistical methods of analysis that take pre and post-

treatment outcome relationship into account and those that do not. This 

difference however, depends absolutely on the size of this relationship and is 

measured by the correlation between the pre and post-treatment scores. This 

difference which was earlier algebraically expressed (equation 3.32) by (Frison & 

Pocock 1992; Pocock et al, 2002) is independent of both size and direction of 

imbalance. With the information on the level of the pre and post-treatment 

outcome correlation, only a proportion of the original sample size will have to be 

studied if either of CSA or ANCOVA is specified as the method for the primary 

analysis. For example, specifying ANCOVA as the method for primary analysis 

instead of ANOVA (Table 5.4.3) in a trial scenario with pre and post-treatment 

outcome correlation (r) of 0.9 will lead to up to 80% reduction in the original 

sample size in any trial scenario, irrespective of the level of other experimental 

factors such as size of treatment effect to be determined and level and direction 

of baseline imbalance. 
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However, information on the level of correlation between the pre and post-

treatment scores in musculoskeletal trials is not always available, making it 

almost impossible to harness the benefits that having such information offers in 

respect of design and methodological issues in the conduct of clinical trials in this 

setting. This chapter thus seeks to address this problem by exploring levels of 

correlation between baseline covariates and outcome, including baseline of the 

outcome variable, in empirical trial datasets in this Centre (Arthritis Research UK 

Primary Care Centre). Focus, specifically, is on trials involving back pain or low 

back pain. This information will not only dictate the path-way to future analysis of 

clinical trials in this setting, it also promises to inform a more efficient way of 

designing such trials. In subsequent sections in this chapter, an attempt is made 

to explore correlation between baseline variables and selected post treatment 

outcomes in three musculoskeletal trials. As have seen in chapters 4 and 5, 

when correlation between baseline variable and the post-treatment score 

reaches 0.3 and beyond, then adjusting or not adjusting for such prognostic 

covariates could have considerable effect on the performance of the statistical 

methods. Previous authors (Altman 1985; Cox & McCullough 1982; Senn 1994) 

have also specified a threshold of 0.3 as the minimum correlation a covariate 

should have with the outcome in order to include such covariate in the model for 

statistical adjustment. The overall effect of statistical adjustment of prognostic 

covariates on precision and bias in empirical trial settings is illustrated in this 

chapter. Exploration of levels of correlation in the covariates and the primary 

outcomes in these trials will inform the choice of potential covariates in the 
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design and statistical analysis of future trials involving spine or low back-pain 

conditions.  

7.2 Statistical methods for the empirical trial datasets 

In this section, attempt is made to describe the statistical frame work necessary 

for the tasks set out in this chapter. Even though this study considers only 

continuous outcome variables, for example RMDQ and Northwick score, 

baseline covariates can either be continuous, binary or ordinal categorical. Thus, 

when inspecting the level of prognostic relationship between covariates and the 

outcome variables appropriate statistical methods depending on the scale of 

measurement of the covariates concerned were used. For example, whereas 

Pearson’s correlation was used for assessing the degree of linear relationship 

between all numerical scales Spearman’s correlation was used when the 

covariates being evaluated were ordinal categorical measures (since the scales 

were not linear) and in the event of binary/dichotomous covariates the point-

biserial correlation was used to assess level of relationship between covariates 

and outcome. In each of the three trials, information on the level of correlation 

between the baseline covariates and the outcome were presented in tables. Any 

correlation that is greater than or equal to 0.3 is written in bold fonts for ease of 

identification.   

In order to assess the stepwise selection of prognostic covariates in the model in 

terms of the amount of variability in the outcome that is explained by each 

progressively, all the covariates that met the criterion of having a minimum 

correlation of 0.3 with the outcomes at either of the follow-up times were entered 
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into the regression model. In situations where a prognostic covariate is an ordinal 

categorical variable, appropriate numbers of dummy variables were manually 

entered alongside other covariates. In the regression mode, with outcome 

variables (for example RMDQ score at 4 months) as dependent variables a 

forward selection procedure was specified. However, the forward criterion: 

probability-of-F-to-enter which was <= 0.05 by default was preset to 0.98 so as to 

have all the entered covariates retained in the model outputs. Otherwise, as a 

result of the default 0.05 probability level for F, some covariates would not be 

retained and as such their explanation of the observed variability of the outcome 

would be missed.  

Moreover two statistic were of interest at this time, they are: tolerance and R2- 

change. Tolerance statistic assesses colinearity or multicolinearity as the case 

may be. It describes the percent of variance in the predictor that cannot be 

accounted for by the other predictors, hence very small values indicate that a 

predictor is redundant. Thus, a high tolerance value implies the covariates 

cannot explain each other and therefore merit further investigation. The minimum 

tolerance value allowed in this study for including a covariate into an existing 

model is 0.1. A tolerance value below 0.1 is not acceptable as it indicates 

unacceptable level of colinearity (on –line resource 

http://128.97.141.26/stat/spss/webbooks/reg/chapter2/spssreg2.htm). Colinearity 

is the term that describes the existence of two linearly related covariates in the 

model and multi-colinearity when more than two covariates are involved. In the 

absence of colinearity or multi-colinearity covariates that give desirable level of 
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explanation of the variability in the outcome measured by R2-change were 

selected and re-entered into a regression model this time together with the 

treatment group allocation variable. 

In this study, a R2-change value of 0.005 was carefully chosen (based on the 

observed change in the level of precision and bias associated with adding further 

covariate to the model) as the minimum amount of variability in the outcome a 

prognostic covariate should be capable of explaining independently to be 

considered for inclusion in the final model. In some cases, certain dummy 

variables of prognostic ordinal categorical variables are seen to be capable of 

independently explaining the variability in the outcome by at least the required 

amount of 0.005. Such prognostic categorical covariates include ‘Fear 

avoidance’, ‘Catastrophising’, and ‘Physical activity for age’. In such situations, 

summaries of estimates of the dummy variables were pooled together manually 

in each case. Thus, instead of reporting the estimates of the dummy variables 

individually the sum of each of their independent contributions was taken in each 

case. Lastly, in the final models, only those identified prognostic covariate(s) with 

a minimum correlation of 0.3 with the outcome and which are also capable of 

independently explaining at least a variability of 0.005 of the outcome are 

included together with the treatment allocation variable. Covariates according to 

their level of importance were added to the preceding model to show how they 

affect both estimate and precision of treatment effect.  

Comparison of precision and estimate of treatment effect are later made with 

those obtained from using either ANOVA or CSA.   
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The focus of the evaluation are on pain and disability outcomes, which were the 

primary measures of treatment efficacy in these trials – and are the usual key 

clinical measures in musculoskeletal trials in primary care. Three empirical trials 

in the Centre provide the necessary datasets needed for the study objective set 

out in this chapter. The trials include the ‘StarTBack’ trial, the ‘Low back pain’ 

trial and the ‘PANTHER’ trial.                   

7.3 The StarTBack trial 

7.3.1 Introduction to the trial including baseline distribution of selected 
variables3  

This is a randomised clinical trial that has a primary objective of comparing the 

overall effectiveness of a ‘sub-grouping for targeted treatment’ approach with 

‘best current care’ (non-targeted) physiotherapy practice, over a 12-month 

period, for low back-pain patients in the primary care setting. The trial used the 

StarTBack tool to classify patients into three groups for targeted treatment based 

on the presence of potentially modifiable risk factors. Participants, male and 

female, aged 18 years and above were recruited from 9 general practices within 

the Keele GP Research Partnership. Following completion of the baseline 

questionnaire, patients who consented to take part in the trial were randomly 

allocated to one of the two treatment arms: targeted treatment or best ‘usual 

care’ treatment. The allocation technique was block randomisation, stratified 

                                            

3
 Adapted from the trial protocol and the main trial paper (Hay et al 2008; Hill et al, 2011) 
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according to centre and risk group. With a random allocation ratio of 2:1 

(targeted treatment: best current care) and a block size of three, possible 

allocation blocks were: AAB; ABA; BAA.  

Following information from the pilot study, which estimated that 25%, 50% and 

25% of participants would be in the low, medium and high risk subgroups 

respectively, at 80% power and making a 20% allowance for lost to follow up, a 

total of 800 participants needed to be recruited to detect a 2.5-point difference in 

the Roland and Morris Disability Questionnaire (assuming a SD of 5). Overall, 

851 patients were enrolled – the extra 51 patients were agreed with the Data 

Monitoring Committee to safeguard the power of the analysis based on a slightly 

higher than anticipated loss to follow up. The trial protocol specified ANCOVA for 

numerical outcomes and logistic regression for categorical outcomes on an 

intention to treat basis as the primary statistical analysis; a per protocol analysis 

would be performed as sensitivity analysis. Follow up was conducted at 4 

months and 12 months post-randomisation. In this trial, outcome variables that 

were assessed at both 4 and 12 months included: RMDQ, ‘intensity least painful 

back (last 2 weeks)’ and average usual back pain (last 2 weeks) though the 

primary outcome variable was RMDQ.  
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Table 7.1: Baseline distribution showing covariates Z-sores at levels of risk between the treatment groups 
 ■ Numbers are mean and standard deviation in brackets

 
Covariates 

Low risk 
 

ZL-
score 

Medium risk ZM-
score 

High risk ZH-

score 

Intervention Control  Intervention Control  Intervention Control  

Age in  years■ 46.5 (14.3) 47.6(14.7) -0.50 50.5(15.3) 49.3(13.5) 0.76 52.7(14.5) 50.1(15.3) 1.26 

Sex, females (%) 82(55.4) 42(57.5) - 160(60.8) 83(63.4) - 88(56.1) 45(57.0) - 

Routine & manual occupation (%) 61(42.1) 26(27.1) - 137(54.4) 65(51.2) - 89(61.4) 58(76.3) - 

Currently in paid employment (%) 112(75.7) 50(68.5) - 158(60.1) 83(63.4) - 80(50.1) 41(51.9) - 

Time off work for back pain (%) 40(35.7) 12(24.0) - 95(60.1) 51(61.4) - 50(62.5) 27(65.9) - 

RMDQ disability score ■ 4.6(3.5) 4.2(3.3) 0.87 9.9(4.5) 9.8(4.8) 0.19 14.4(4.6) 14.7(4.4) -0.51 

Back pain intensity■ 3.4(1.6) 3.5(1.7) -0.34 5.5(1.7) 5.3(1.8) 0.75 7.0(1.8) 6.8(2.0)  0.62 

Average usual pain, last 2 
weeks■ 

4.5(2.1) 4.8(2.3) -1.20 7.0(2.0) 6.9(2.0) 0.60 7.9(1.9) 8.1(1.8) -0.44 

Referred leg pain (%) 61(41.2) 28(38.4) - 176(66.9) 89(67.9) - 115(73.2) 61(77.2) - 

Radiating pain below knee (%) 24(16.2) 10(13.7) - 75(28.5) 47(35.9) - 80(51.0) 36(45.6) - 

IPQR – Symptoms summary■ 4.4(1.6) 4.2(1.6) 1.07 5.2(1.3) 5.6(1.4) -2.57 6.01(1.1) 6.0(1.1) 0.28 

EUROQOL – 5D Scores ■ 0.7(0.2) 0.7(0.1) -0.19 0.5(0.3) 0.6(0.3) -1.04 0.3(0.3) 0.2(0.3) 1.71 

PCS – catastrophizing score ■ 8.6(5.8) 8.1(6.5) 0.57 14.6(8.1) 13.6(8.1) 1.15 26.4(10.6) 26.9(10.3) -0.33 

TSK – fear avoidance score ■ 36.5(4.9) 36.5(5.8) -0.02 39.2(5.0) 39.7(4.7) -1.13 45.8(5.0) 46.0(5.7) -0.20 

HADS – anxiety subscale ■ 5.2(2.9) 5.4(3.3) -0.64 7.0(3.7) 7.4(3.7) -0.83 10.1(4.2) 10.1(3.8) 0.04 

HADS – depression subscale■ 3.1(2.7) 3.0(2.5) 0.46 5.5(3.3) 6.0(3.8) -1.35 8.9(4.3) 8.9(3.7) -0.02 

Widespread pain (%) 33(22.3) 16(21.9) - 93(35.4) 56(42.7) - 60(38.2) 32(40.5) - 

SF12 – Physical component ■ 45.9(8.6) 46.0(9.1) -0.08 35.7(9.5) 35.1(8.6) 0.49 30.8(7.6) 29.6(8.2) 1.17 

SF12 – Mental component■ 53.7(7.3) 53.0(8.1) 0.69 49.6(11.5) 48.6(11.3) 0.59 40.6(12.5) 41.5(12.3) -0.55 

Back pain – at the present■ 3.1(2.1) 3.1(2.1) 0.09 5.0(2.4) 4.7(2.4) 1.04 6.7(2.2) 6.6(2.4) 0.32 

Intensity of least painful ■ 2.6(1.9) 2.5(1.8) 0.31 4.4(2.5) 4.2(2.6) 0.62 6.3(2.6) 5.8(3.0) 1.31 
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The trial results provided evidence that the stratified approach, by use of 

prognostic screening with matched pathways, was effective. An economic 

evaluation alongside the clinical effectiveness study provided further justification 

for the screening-and-targeted treatment approach. The findings are likely to 

have important implications for the future management of back pain in primary 

care.  

With respect to the baseline distribution of the trial datasets in Table 7.1, 

baseline imbalances occurred similarly in the same and opposite directions as 

the estimated treatment effect.  

7.3.2 Exploring levels of correlation between baseline and the post-
treatment scores in StarTBack trial 
 
Table 7.2a below shows the prognostic strength of the trial baseline variables 

and the pain/disability outcome variables at the two different follow-up periods (4 

and 12 months). Over thirty baseline covariates and three outcome variables 

were evaluated. In this trial, the prognostic strength of the pre-treatment scores 

of the outcome variables exceeds that which exist between other covariates and 

the outcome variables, although, the prognostic strength of some of the other 

variables are somewhat close in size to that which exists between the pre and 

post treatment scores. For example, with Roland and Morris disability 

questionnaire (RMDQ) as the outcome variable,  SF12-PCS score, Depression 

score, EUROQOL5D, ‘Expectation of back pain in 4 months’ and ‘having back 

pain at present time’ all have correlation coefficients that are close in value to 

that provided by the pre-post RMDQ correlation. Also, at 4 months follow-up, 
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‘having back-pain at present’ and ‘expectation of back-pain in 4 months’ have 

higher prognostic strength than baseline average usual pain; similarly, baseline 

RMDQ and EUROQOL5D are more strongly related with this outcome at 12 

months follow-up period than its baseline score. ‘Expectation of back-pain in 4 

months’ is also more strongly related with ‘average usual back pain (last 2 

weeks)’ than the baseline score of this outcome. 

 

In this trial, age and sex do not have a strong prognostic relationship with the 

outcome at either of the two time points for outcome assessment. In fact, they 

appear to have exhibited the least prognostic relationship with the outcomes 

across the different time points. In table 7.2a, figures in bold fonts are those that 

have a correlation coefficient of greater than or equal to 0.3 (r≥0.3) between the 

respective covariate and the outcome measure concerned.  

When so many covariates have a relationship with the outcome variable that is 

high enough (r≥0.3) such that they are all included in the model for adjustment, 

there is a possibility for a linear relationship between two (collinearity) or more 

(multicollinearity) of the covariates. Thus, selected prognostic covariates have to 

be further investigated for the possibility of multicollinearity. For example, with 

respect to the primary outcome variable in this study, RMDQ, there are 14 

potential covariates of the 34 that met the model inclusion criteria of (r≥0.3) and 

these may not be completely free of collinearity. The issue with multicollinearity 

is such that as it increases, the regression model estimates of the coefficients  
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Table 7.2a: Prognostic strength measured by correlation between the 
baseline and post-treatment score of the outcome variables – StarTBack           
[RMDQ: n=688 and 649 at 4 and 12 months follow-up periods respectively] 

          
         RMDQ 

Intensity least 
painful back   
(last 2 weeks) 

Average usual 
back pain (last 
2 weeks) 

Covariates 4 12 4 12 4 12 

Age 0.11 0.20 0.13 0.22 0.05 0.13 

Intensity least painful 
 back (last 2 weeks) 

0.32 0.33 0.45 0.43 0.25 0.28 

Average usual back 
 pain (last 2 weeks) 

0.29 0.31 0.29 0.33 0.30 0.34 

Back pain at the present 
 Time 

0.38 0.37 0.41 0.40 0.34 0.34 

HADS-anxiety 0.26 0.30 0.21 0.28 0.19 0.24 

HADS-depression 0.42 0.41 0.27 0.33 0.24 0.30 

Pain severity 0.39 0.40 0.46 0.46 0.35 0.38 

PCS score 0.41 0.44 0.37 0.40 0.30 0.34 

RMDQ 0.51 0.50 0.32 0.38 0.28 0.35 

SF12-MCS -0.31 -0.29 -0.24 -0.25 -0.18 -0.20 

SF12-PCS -0.45 -0.43 -0.28 -0.32 -0.29 -0.33 

TSK 0.30 0.31 0.27 0.28 0.16 0.23 

EUROQOL5D -0.44 -0.43 -0.35 -0.38 -0.30 -0.36 

Expect back-pain in 4mth 0.38 0.38 0.39 0.45 0.36 0.34 

Sex 0.14 0.01 -0.00 0.05 -0.11 -0.05 

Currently employed 0.23 0.27 0.20 0.27 0.16 0.21 

Social class -0.04 0.15 0.17 0.19 0.10 0.12 

Risk group 0.32 0.34 0.25 0.31 0.19 0.25 

IPQR-symptom 0.34 0.38 0.27 0.31 0.27 0.30 

IPQR personal control1 -0.15 -0.15 -0.15 -0.10 -0.14 -0.15 

IPQR personal control2 -0.05 -0.04 -0.10 -0.11 -0.06 -0.10 

IPQR treatment control -0.10 -0.10 -0.11 -0.12 -0.10 -0.10 

IPQR illness coherence 0.03 0.08 0.08 0.09 0.04 0.10 

IPQR timeline cyclical -0.17 -0.16 -0.13 -0.08 -0.13 -0.10 

IPQR emotional 0.25 0.29 0.15 0.20 0.17 0.19 

STarTBack tool 0.30 0.27 0.24 0.24 0.22 0.23 

Bothersomeness 0.30 0.27 0.24 0.24 0.22 0.23 

Pain spread down legs -0.14 -0.12 -0.12 -0.15 -0.13 -0.17 

Wide spread pain 0.13 0.17 0.18 0.17 0.20 0.17 

SOC 2000 0.09 0.13 0.130 0.15 0.08 0.12 

Currently employed 0.23 0.21 0.20 0.27 0.16 0.27 

Time off work (back) -0.10 -0.06 -0.05 -0.06 -0.05 -0.14 

Time off work (other) -0.03 -0.08 -0.16 -0.13 -0.1 -0.07 

How long without pain 0.18 0.23 0.13 0.14 0.21 0.20 
Spearman’s correlation ‡Follow up time in months 
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become unstable and the standard errors of the coefficients can get wildly 

inflated. With this, the estimate of treatment effect will also present with more 

uncertainty and becomes less stable at the time.        

7.3.3 Prognostic covariates rating of influence on the variability of the 
outcome variable (RMDQ) 

 The output of the regression analysis (following the procedure already described 

in section 7.1.0) showing the contributions of each covariates in terms of how 

much of the variability in outcome each of them independently explained as they 

are added to the model are presented - in an ordered fashion – in Table 7.2b and 

7.2c. This order is completely a reflection of the importance of each of the 

covariates in terms of the variability in the outcome explained. 

From tables 7.2b and 7.2c, 25.8% and 25.9% of the variability in the outcome 

were explained by baseline RMDQ only, at 4 and 12 months follow-up 

respectively. The last column in the tables gives information on the extra amount 

of variability in the outcome that was independently explained by adding the 

subsequent baseline variables to the preceding model. At both follow-up periods, 

the tables clearly show that baseline RMDQ explained most variability in the 

outcome and this is followed by ‘expectation of back-pain in 4 months’. There are 

thirteen individual models in each of the tables 7.2b and 7.2c. Each model 

consists of the covariate(s) at any point or number on the table and the 

(cumulative covariates) from the preceding model. For example, model 3 in table 

7.2b has the following covariates: RMDQ, ‘Expectation of back pain at 4 months’  
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Table 7.2b: Model summaries and statistic at 4-month follow-up (RMDQ)                                                                                                                                                      
[n=688] 

Model Covariates added R R2 Adjusted R2 R2-change 

1 RMDQ .507 .258 .256 .258 

2 Expect back pain 4  
months* 

.573 .328 .326 .071 

3 HADS-Depression* .589 .347 .345 .019 

4 SF12PCS* .601 .361 .357 .014 

5 Risk*‡ .608 .369 .364 .008 

6 SF12MCS* .612 .373 .361 .004 

7 Back pain at present* .614 .375 .369 .002 

8 IPQR-Symptoms  
summary* 

.617 .377 .369 .002 

9 EUROQOL-5D* .618 .378 .369 .001 

10 TSK score* .618 .378 .369 .000 

11 Pain severity* .616 .378 .368 .000 

12 PCS score* .616 .378 .367 .000 

13 Intensity of least 
 painful back* 

.616 .378 .366 .000 

*Cumulative, ‡ added as 2 dummy variables (medium & high risk) 

Table 7.2c: Model summaries and statistic at 12-month follow-up (RMDQ) 
                                                     [n=649] 

Model Covariates added R R2 Adjusted R2 R2-change 

1 RMDQ .509 .259 .258 .259 

2 Expect back pain 4 
 months* 

.577 .333 .331 .074 

3 PCS score* .590 .348 .345 .016 

4 SF12PCS* .599 .358 .354 .010 

5 Risk*‡ .604 .365 .359 .007 

6 HADS-Depression* .608 .370 .363 .005 

7 TSK score* .611 .374 .366 .004 

8 IPQR-Symptoms 
 summary* 

.615 .377 .368 .003 

9 Ave. usual back pain 
(2wks)* 

.616 .379 .368 .002 

10 EUROQOL-5D* .617 .380 .368 .001 

11  Back pain at present* .617 .380 .368 .000 

12 Intensity of least painful 
 back* 

.616 .380 .367 .000 

13 SF 12 MCS* .616 .380 .366 .000 

*Cumulative, ‡ added as 2 dummy variables (medium & high risk) 
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and ‘HAD depression’. Each of the first five and six added covariates in the 

above model tables 7.2b (4 months follow-up) and 7.2c (12 months follow-up) 

respectively could explain the minimum variability in the outcome to be 

considered for inclusion in the final model.  

In table 7.2b, most of the variability in the outcome was explained by the end of 

the fifth model; the adjusted R2 indicates that 36.9% of the variability was 

explained by the time the fifth covariate was added into the model; this was close 

to the 37.8% variance accounted for by the full model that included all 13 

baseline covariates. The result also indicates that by adding mental component 

score (SF12 - MCS) a further 0.004 (0.4%) of the variability in the outcome could 

still have been independently explained by this covariate; however, the value is 

not high enough to meet the criteria set for inclusion of covariate in the final 

model (according to the minimum criterion of 0.005 for R2-change).  

According to the result in table 7.2b, none of ‘TSK score’, ‘Pain severity’, ‘PCS 

score’ and ‘Intensity of least painful back pain’ could provide strong enough 

independent explanation of the variability of the outcome, despite the fact that 

they are related with the primary outcome through crude (univariate) association 

using the r≥0.3 criterion. This result suggests that a covariate can be prognostic 

of outcome without being able to independently explain the variability in that 

outcome when existing together with other covariates in the model. This brought 

into question the sufficiency of the criterion of r≥0.3 in determining which 

covariate is adjusted for during statistical analysis of RCTs. There is a slight 

change in the arrangement of the covariates in the model at both follow-up 
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periods. Whereas at 12 months follow-up, ‘PCS score’ appears to be the third 

most important covariate regarding the amount of independent explanation of the 

variability in the outcome by these covariates, it is at the bottom of the table at 

the 4 months follow-up period. This suggests the need to repeat the check for 

which prognostic covariates to adjust for at different follow-up time points, which 

seems to contradict the practice by which covariates to be adjusted are 

determined a priori. 

The results of diagnostic tests for collinearity show that collinearity is not an 

issue in having these covariates together in the model, as the associated 

tolerance value for adding each and every one of the covariates is considerably 

higher than 0.1 or 10% threshold for tolerance. However, if all the covariates that 

have correlation of greater than or equal to 0.3 with the post treatment RMDQ 

score are to be included in the model, the resultant full adjusted model will lead 

to redundancy of some covariates and also unduly increase the complexity of the 

model. Thus, a covariate being prognostic may not really be a sufficient reason 

for including it in the model for adjustment. 

7.3.4 Comparative statistical models for the precision of the estimate and 
estimate of treatment effect at different follow-up periods - StarTBack 

Tables 7.3a and 7.3b below, present results of the model-based covariate 

adjustment at five levels of adjustment each for the two follow up periods in 

comparison with the results of ANOVA and CSA. Results are presented on the 

estimates of treatment effect and precision for each of the methods. Standard 

error is highest for ANOVA models, though close to that which was obtained by 
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using CSA; in fact the ratio of the two standard errors (CSA vs ANOVA) is 0.98 

and 0.98 for 4 and 12 months follow-up, respectively. As observed in the 

simulation results, in chapter 4 of this study, the nearness to 1 of the ratios of 

standard error of both ANOVA and CSA at the two time points only reflects the  

fact that the correlation between the baseline and post-treatment scores of the 

outcome variable is around 0.5 at each time. At baseline-outcome correlation of 

0.5, both CSA and ANOVA are equally precise, so the ratio of their standard 

errors at the time is expected to be 1. 

Table 7.3a: Models for the adjusted and unadjusted treatment effect 
comparison at 4months follow-up (StarTBack) [n=688] 

          Treatment effect 

Models Covariates added β1 SE 95% CI 

1 RMDQ 1.46 0.40 0.68, 2.24 

2 *Expect back pain 1.48 0.38 0.73, 2.22 

3 *HADS-Depression 1.45 0.38 0.71, 2.19 

4 *SF12PCS 1.42 0.37 0.69, 2.15 

5 *Risk‡  1.41 0.37 0.68, 2.14 

ANOVA          - 1.27 0.46 0.36, 2.19 

CSA          - -1.63 0.47 -2.53, -0.74 
*Cumulative;   ‡ 2 dummy variables added 

 
 
Table 7.3b: Models for the adjusted and unadjusted treatment comparison  
at 12months follow-up (StarTBack) [n=649] 

           Treatment effect 

Models Covariates  added β1 SE 95% CI 

1 RMDQ: 0.91 0.42 0.08, 1.75 

2 *Expect back pain 0.98 0.40 0.19, 1.78 

3 *PCS score: 1.02 0.40 0.23, 1.80 

4 *SF12PCS 0.97 0.40 0.19, 1.75 

5 *Risk‡  0.96 0.40 0.18, 1.74 

ANOVA         - 0.72 0.49 -0.25, 1.68 

CSA         - -1.09 0.48 -2.04, -0.15 
*Cumulative  ‡ 2 dummy variables added 
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These correlations were earlier observed, in table 7.2a, as 0.51 at 4 months and 

0.50 at 12 months follow-up. The ratios of the standard errors suggest that CSA 

is yielding a slightly more precise estimate of effect; this is expected as  

correlation between baseline and post-treatment RMDQ scores is slightly above 

0.5. This phenomenon was also noted in chapter 4. Similarly, the ratios of the 

standard error of ANCOVA to ANOVA are 0.86 in table 7.3a and 0.86 in table 

7.3b, representing the two follow-up time points. There is also a considerable 

gain in precision, especially when the second covariate ‘expectation of back-pain 

in 4 months’ was added to the models at the two time points. For example, at 4 

and 12 month follow-up, adding ‘expectation of back-pain’ yield a decrease in 

standard error of approximately 0.02 (from 0.40 to 0.38 and from 0.42 to 0.40 

respectively). Other levels of model-based adjustment involving adding other 

covariates did not show remarkable increase in precision, though each time the 

covariates were added in turn into the model they yielded a slightly more precise 

estimate of effect than the preceding model. Generally, estimates of effect at 4 

months are more precise than the estimates at 12 months; this may not be 

unconnected with missing responses (as a function of sample size), which are 

higher at the 12 months follow-up period.  

Similarly, the ratios of the standard error of ANCOVA and CSA were 0.88 and 

0.88 at 4 and 12 months follow-up. The ratios of standard errors indicated here is 

in agreement with the level of correlation (0.51 & 0.50) in table 7.2a between the 

pre- and post-treatment scores of RMDQ. The results of the simulations in 

chapter 4 (tables 4.8 and 4.9) had earlier specified similar ratios of standard 
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errors at a correlation of 0.5. At both time points, there is gain in precision 

following the addition of the third, fourth and fifth covariates to the model for 

statistical adjustment, however, whether the gain is worth the extra cost – in 

terms of the complexity of the model for including more prognostic covariates in 

the models is left to the discretion of the researcher. 

There is a considerable difference in the estimate of effect from these statistical 

methods, ANOVA, CSA and ANCOVA, with CSA having the largest absolute 

effect size, followed by ANCOVA. This suggests that baseline imbalance in the 

RMDQ is in the opposite direction from the effect of the intervention; that is, the 

intervention group has the worse mean score in RMDQ at baseline (Figure 4.1). 

At 4 months follow-up, even though there is no difference in the conclusion by 

using any of ANCOVA, ANOVA and CSA – in all cases the null hypothesis is 

rejected indicating that the targeted treatment is superior. At 12 months however, 

both ANCOVA and CSA provide different conclusions to ANOVA; for ANCOVA 

and CSA the null hypothesis is rejected indicating superiority of the new 

treatment whereas for ANOVA the null hypothesis is accepted implying no 

evidence to reject the null hypothesis. This then implies that at 12 months follow-

up which is actually the primary follow-up period being focused in this trial if the 

primary analysis had been based upon crude unadjusted analysis then the 

observed treatment effect attributed to the treatment being studied would have 

been missed out. 

In table 7.3a, the percentage bias in the estimate of effect for ANOVA and CSA 

respectively with reference to effect estimate from ANCOVA is 14.5% and 
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10.6%; and in table 7.3b, the percentage bias in the estimate of effect for 

ANOVA and CSA respectively, is 27.1% and 61.24%. Also, the difference in the 

estimates of effect across the levels of the model-based adjustment at the two 

follow-up periods was minimal. However there is an obvious difference when 

estimates of effect from model-based adjustments (gold standard in this case) 

are compared to those by either ANOVA or CSA.  

 7.4 Low Back Pain Trial (LBPT) 

7.4.1 Introduction to the trial including baseline distribution of selected 
variables4  

 This is a randomised controlled clinical trial in physiotherapy practice that 

compares the effectiveness of a brief pain-management programme with 

physiotherapy incorporating manual therapy for the reduction of disability at 12 

months in patients consulting primary care with sub-acute low back pain (pain of 

no more than 12 weeks duration). In this trial, participants were recruited from 28 

general practices in North Staffordshire, UK. All adults aged 18-64 years who 

consulted their general practitioners for the first or second time on account of 

non-specific low back pain (as defined by the UK Clinical Advisory Group) of less 

than 12 weeks’ duration and who were able to give informed written consent 

were invited to participate. Patients were randomly allocated on a 1:1 basis (via 

simple randomisation) to either a brief pain management programme or a course 

of physiotherapy including manual therapy techniques. Treatment approaches 

                                            

4
 Adapted from Hay et al (2005). 
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were agreed and standardised before the trial began. Interventions started within 

10 days of randomisation and consisted of one 40-minute assessment and 

treatment session and up to six subsequent 20-minute treatment sessions.  

Outcomes were measured at baseline, and at 3 and 12 months after 

randomisation. The primary outcome was change in disability related to the back 

pain measured at 12 months, rated on the self-completed (RMDQ) 24-item scale. 

The sample size calculation was based on change in RMDQ at 12 months after 

randomisation. To detect a clinically significant difference of 2 points between the 

two treatment groups with a significance level of 5% (2-tailed) and 90% power, 

180 patients were needed in each group. A mean reduction in RMDQ score of 

5.3 (SD 5.8) from a previous study was utilised. A total of 402 patients (including 

a 10% allowance for drop-out rate) were randomised into either of the two 

treatment arms. Analysis was by intention to treat (ITT). Primary and secondary 

analyses were by change score for numerical outcome and chi square for 

categorical variables. A sensitivity analysis used ANCOVA, which incorporated 

covariates based on the level of baseline random difference. There was little 

difference in clinical outcomes between the two active treatment groups. The trial 

concluded that brief pain management techniques delivered by appropriately 

trained clinicians offer an alternative to physiotherapy incorporating manual 

therapy and could provide a more efficient first-line approach for management of 

non-specific sub-acute low back pain. In this trial, the overall conclusion on 

treatment effect was not affected by the range of statistical methods used for the 

analysis.  
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Table 7.4: Baseline distribution showing Z-scores of selected covariates 
between the treatment arms. 

■ Numbers are mean and standard deviation in brackets 

 

Table 7.4 above shows the distribution of the baseline variables or covariates 

between the treatment groups in the low back trial. The Z-scores representing 

Covariates Brief pain 
management 
(n=201) 

Manual 
Physiotherapy 
(n=201) 

Z score   

Age■ 40.4(12.0) 40.9(11.6) -0.41 

Women (%) 100(50) 110(55) - 

Routine and manual occupation (%) 105(54) 130(66) - 

Currently in paid employment (%) 142(71) 152(76) - 

Time off for current episode (%) 97(48) 108(54) - 

RMDQ score■ 13.8(4.8) 13.3(4.9) 1.00 

Severity of pain today (VAS)■ 55.8(23.3) 55.5(22.9) 0.14 

Pain in past week (SF McGill VAS)■ 68.3(21.2) 69.9(20.3) -0.77 

Radiating pain below the knee (%) 60(30) 67(33) - 

SF-McGill, present pain intensity■ 2.13 2.07(0.704) 0.88 

Using painkillers (%) 185(92) 189(94) - 

Duration of current episode of pain < 
1 month (%) 

150(75) 149(74) - 

Previous episode of low back pain (%) 157(78) 139(6) - 

MSPQ score■ 5.6(4.3) 5.3(5.0) 0.56 

Zung score■ 24.9(7.9) 24.4(8.1) 0.78 

CS-CSS score■ 25.2(6.7) 25.1(6.2) 0.19 

CS-PH score■ 15.8(8.1) 15.1(7.7) 0.97 

CS-CAT score■ 8.4(6.7) 7.9(6.7) 0.73 

CS-IBA■ 22.4(6.3) 22.7(5.9) -0.39 

TSK■ 40.7(6.2) 41.0(7.2) -0.17 

EUROQOL SCORE■ 0.70(0.3) 0.70(0.3) 0.29 

VAS main functional complaint■ 60.9(20.0) 61.3(19.4) -0.21 

SF-McGill-sensory■ 14.1(6.5) 14.1(6.2) -0.05 

SF-McGill-affective■ 4.2(3.4) 4.2(3.3) 0.01 

VAS main leisure complaint■ 79.4(20.7) 76.7(21.2) 1.12 

Wide spread pain (%) 25(12) 27(13) - 

Lateral flexion –right (start)■ 67.9(4.5) 67.9(5.4) -0.10 

Lateral flexion – (finish)■ 53.3(6.0) 54.2(6.5) -1.40 

Right flexion - distance■ 13.9(6.1) 13.3(6.0) 1.098 

Lateral flexion – left (start)■ 67.9(4.6) 67.8(5.6) 0.19 

Lateral flexion – left (finish)■ 54.8(5.9) 54.9(8.3) -0.15 

Left flexion - distance■ 12.5(5.7) 12.4(7.5) 0.20 

Forward flexion (start)■ 68.7(4.5) 68.9(5.6) -0.26 

Forward flexion (finish)■ 55.9(12.4) 55.5(13.1) 0.28 

Longstanding illness present (%) 64(32) 59(30) - 
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the standardized imbalance in baseline variables between treatment groups 

following random allocation of participants range from 0.01 to 1.40 in absolute 

terms. Treatment groups appear to be reasonably balanced in the between the 

two study groups. 

 

7.4.2 Exploring levels of correlation between baseline and the post-
treatment scores in the Low back-pain trial 
 
Table 4a below, provides an assessment of the strength of the prognostic 

relationship of the baseline variables (covariates) with selected outcome 

variables at both 3 and 12 month follow-up periods.  

 

Table 7.4a: Prognostic strength measured by correlation between the 
baseline and post-treatment score of the outcome variables [n=319 and 329 
at 3 and 12 months follow-up periods respectively] 

           RMDQ VAS pain      
today 

 SF- McGill 
VAS  average 
pain 

Covariates 3 12 3 12 3 12 

Age 0.11 0.13 0.07 0.08 0.03 0.05 

Gender -0.06 0.05 -0.08 0.07 -0.09 0.05 

Start of back pain 0.09 0.03 0.16 0.03 0.16 0.06 

Widespread pain 0.14 0.12 0.10 0.07 0.12 0.10 

VAS pain today  0.28 0.18 0.27 0.16 0.22 0.17 

SF-McGill Vas 
average pain in last 
week 

0.13 0.15 0.15 0.16 0.13 0.12 

Referred pain to leg 0.08 0.08 0.09 0.08 0.11 0.08 

SF-McGill-sensory 0.22 0.04 0.16 -0.04 0.15 0.01 

SF-McGill effective 0.24 0.13 0.20 0.04 0.17 0.11 

RMD-sum of all items 0.32 0.30 0.16 0.15 0.15 0.13 

MSPQ-total score 0.23 0.21 0.18 0.17 0.16 0.19 

ZUNG>90% items 0.28 0.25 0.24 0.14 0.16 0.16 

CS-PH praying hop 0.18 0.13 0.14 0.12 0.11 0.13 

CS-CAT 
catastrophising 

0.28 0.24 0.21 0.12 0.20 0.14 
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CS-IBA inc. Activity -0.22 -0.04 -0.01 0.03 -0.01 0.05 

EUROQOL SCORES -0.23 -0.31 -0.17 -0.22 -0.14 -0.22 

EQ-VAS score -0.13 -0.10 -0.13 -0.08 -0.11 -0.11 

Employment status -0.23 -0.16 -0.09 -0.10 -0.06 -0.08 

Satisfaction with 
status 

0.08 -0.00 0.13 0.03 0.10 0.01 

Education after  
age 16 

-0.17 -0.13 -0.10 -0.09 -0.08 -0.09 

Education after  
age 18 

-0.14 -0.12 -0.09 -0.09 -0.09 -0.12 

Degree or equal 
qualification 

-0.04 -0.04 0.02 -0.02 0.03 -0.05 

Currently working -0.13 -0.20 -0.07 -0.16 -0.04 -0.14 

Time off employment  -0.14 -0.05 -0.05 -0.01 -0.06 -0.02 

NS-SEC(Baseline) -0.06 -0.08 0.02 -0.06 0.00 -0.08 

Days of back pain -0.08 -0.02 -0.05 -0.07 -0.07 -0.01 

Something aggravate 
 the pain 

-0.07 -0.03 0.02 -0.02 -0.01 -0.00 

VAS main functional 
complaint 

0.17 0.11 0.14 0.12 0.11 0.07 

TSK- total score 0.18 0.18 0.09 0.05 0.10 0.06 

Low back pain before 0.19 0.10 0.14 0.04 0.13 0.02 

Treatment for 
previous back pain 

-0.03 0.01 -0.04 -0.00 -0.06 -0.00 

Longstanding illness 0.20 0.09 0.16 0.07 0.16 0.06 

Lateral flexion - right 
(start) 

-0.02 0.01 -0.03 0.07 -0.07 0.05 

Lateral flexion - right 
(finish) 

0.09 0.04 0.03 0.08 -0.01 0.08 

Right flexion – 
distance 

-0.13 -0.04 -0.06 -0.05 -0.05 -0.06 

Lateral flexion – left 
(start) 

0.00 0.01 -0.01 0.06 -0.04 0.05 

Lateral flexion – left 
(finish) 

0.12 0.03 0.06 0.02 0.05 0.04 

Forward flexion – 
distance 

-0.06 -0.12 -0.02 -0.01 0.00 -0.08 

Left flexion – distance -0.14 -0.03 -0.07 0.01 -0.07 -0.02 

Forward flexion 
(start) 

-0.02 0.02 -0.02 0.07 -0.07 -0.02 

Forward flexion 
(finish) 

0.04 0.12 0.01 0.06 -0.04 0.08 

Referred pain to 
leg 

0.15 0.07 0.08 0.06 0.07 0.09 

Satisfaction with 
status 

0.11 0.05 0.15 0.06 0.13 0.05 
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Spearman’s correlation 

Baseline information was collected on both modifiable and non-modifiable risk 

factors. In all, close to seventy baseline variables measuring different attributes 

that were thought potentially to have influence on the prognosis of participants’ 

condition were assessed. However, based on previous findings in the earlier 

chapters and recommendations of previous studies, a covariate may not have an 

important relationship with the outcome unless its level of relationship measured 

by its correlation with the outcome equals or exceeds 0.3.  

 Interestingly, as far as the primary outcome variable is concerned, RMDQ, only 

3 of the assessed covariates managed to reach the threshold correlation of 0.3 

with the post treatment scores at either of the follow-up periods. The three were: 

baseline (pre-treatment score) on the RMDQ, ‘number of episodes of back pain 

more than 24 hours’, and EUROQOL score. In this trial, the level of prognostic 

relationship between the baseline and the outcome variables in these sub-acute 

low back-pain patients was generally low. The highest correlation, 0.32, was 

observed between the baseline and the post treatment RMDQ scores at three 

months. This is rather weak for a relationship between the pre and post 

treatment scores of the outcome variable. 

Days off work -0.01 0.13 -0.05 0.13 -0.03 0.11 

Work physical load -0.06 -0.01 -0.15 0.05 -0.09 0.01 

Duration of back 
pain 

0.06 -0.01 0.10 0.02 0.12 0.08 

No of episode back 
pain more than 
24hr 

0.24 0.31 0.23 0.21 0.23 0.22 

Sit  to stand 0.16 0.11 0.12 0.11 0.07 0.11 
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Theoretically, only these three covariates are qualified for statistical adjustment 

while estimating treatment effect. In fact, as a result of the weak relationship 

between the pre- and post-treatment RMDQ, the expected difference in the 

precision and the value of the estimate of the effect for ANOVA and ANCOVA 

was small.  

7.4.3 Prognostic covariates rating of influence on the variability in the 
outcome variable (RMDQ) in the Low back pain trial 

A careful study of these three covariates in the context of the amount of 

variability in the outcome that was independently explained by adding each of 

them to the model for adjustment shows a slight variation in the arrangement of 

the covariates at different follow up periods. Clearly, at the two follow-up times 

baseline score of the RMDQ is most important of the three covariates in terms of 

the explained variability in the outcome. At the 3 months follow-up period 

however, two of the ‘dummy’ levels of the covariate - ‘number of episode back 

pain more than 24 hours’ each independently explained at least 0.005 of the 

variability in the outcome. When these were added together, the aggregate of the 

variability explained by the covariate exceeds that which was explained by 

EUROQOL score. At the 12 months follow-up period however, there were three 

‘dummy’ levels of ‘number of episode back pain more than 24 hours’ that 

independently explained variability in outcome of at least 0.005. When these 

were added however, the resultant aggregate was less than the amount of 

variability that was singly explained by EUROQOL score. 
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Table 7.4b: Model summaries and statistic at 3 months follow-up (RMDQ)   
                                                     [n=319] 

Model Covariates added R R2 Adjusted R2 R2-change 

1 RMDQ 0.277 0.076 0.072 0.076 

2 *No of episodes of back 
pain‡ 

0.363 0.130 0.123 0.054 

3 *EUROQOL scores 0.385 0.150 0.137 0.020 
*Cumulative   ‡ 2 dummy variables added 

 

Table 7. 4c: Model summaries and statistic at 12 months follow-up (RMDQ)                                                                                                                                                                                         
[n=329] 

Model Covariates added R R2 Adjusted R2 R2-change 

1 RMDQ 0.321 0.103 0.099 0.103 

2 *EUROQOL scores 0.408 0.166 0.159 0.063 

3 *No of episodes of back  
pain lasting more than  
24hr ‡‡ 

 
0.476 

 
0.227 

 
0.210 

 
0.061 

*Cumulative    ‡‡ 3 dummy variables added 

 
 
The order of covariate appearance in tables 7.4b and 7.4c is a measure of the 

magnitude of the variability in the outcome that was explained by these 

covariates. The earlier a covariate appears in the model, the more the variability 

it explains. 

7.4.4 Comparative statistical models for the precision and the value of the 
estimate of treatment effect at different follow-up periods – Low back pain 
trial 

Although there is no difference in the conclusion regarding acceptance of the null 

hypothesis of no treatment effect in this trial as shown in tables 7.5a and 7.5b, by 

using any of the three different statistical methods of; ANOVA, CSA and 

ANCOVA at different levels of adjustment, CSA was observed to indicate 

treatment effect in the opposite direction of effect at 12 months (see table 7.5b). 
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A very considerable level of bias exists for not using ANCOVA especially with 

respect to the estimate of effect by CSA. 

 
Table 7. 5a: Models for the adjusted and unadjusted treatment comparison 

at 3 months follow-up (LBP)[n=319] 

        Treatment Allocation 

Models Covariates added β1 SE 95% CI 

1 RMDQ  
-0.60 

 
0.63 

 
-1.83, 0.63 

2 *No of episodes of back pain 
in 24hrs ‡ 

 
-0.16 

 
0.75 

 
-1.64, 1.31 

3 *EUROQOL scores -0.13 0.74 -1.59, 1.33 

ANOVA               - -0.84 0.66 -2.13, 0.46 

CSA               -  0.22 0.71 -1.17, 1.62 
*Cumulative  ‡ 2 dummy variables were added 

 
 
Table 7. 5b: Models for the adjusted and unadjusted treatment comparison 
at 12 months follow-up (LBP) [n=288] 

         Treatment   Allocation 

Models Covariates  added β1 SE 95% CI 

1 RMDQ -0.50 0.60 -0.17, 0.67 

2 *EUROQOL scores -0.50 0.58 -1.64, 0.64 

3 *No of episodes of back pain 
in 24hrs ‡‡ 

 
-0.47 

 
0.65 

 
-1.76, 0.82 

ANOVA                  - -0.76 0.62 -1.98, 0.46 

CSA                  -  -0.01 0.69 -1.15, 2.34 
*Cumulative  ‡ ‡ 3 dummy variables added 

For example, in table 7.5a with ANCOVA as the reference gold standard 

statistical method, the percentage bias in the estimate of effect for using ANOVA 

or CSA is 28.2% or 172.4% respectively. In the same table, there is no marked 

change in the associated level of precision between ANOVA and ANCOVA. In 

fact, the ratios of the standard error between ANCOVA and both ANOVA and 

CSA are 0.95 and 0.88 respectively. This result is a reflection of the level of 

correlation 0.32 (in table 7.4a) that exists between the baseline and post-
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treatment RMDQ scores. In table 7.5b, the ratios of the standard errors between 

ANCOVA and both ANOVA and CSA are 0.960 and 0.866 respectively. In the 

simulation results in tables 4.8 and 4.9, the ratios of the standard error between 

ANCOVA versus either of ANOVA or CSA at correlation of 0.3 clearly resembles 

the ratios of the standard errors that was observed in this result. At the two 

different follow-up time points, the level of bias using CSA is higher compared to 

that from crude analysis of post treatment scores through ANOVA, so also, 

precision is better for ANOVA. Generally, in terms of precision and estimate of 

treatment effect this result is consistent with the result in the simulation chapter 

4, however, in this particular trial, precision of ANOVA is sometimes better at 

higher level of adjustment possibly because of the involvement of the dummy 

variables of the prognostic covariate involved. This may need further 

investigating. 

Thus, even though the primary objective of this trial focuses on the change from 

baseline regarding the primary outcome variable, since the level of the 

prognostic strength between the baseline and the post treatment scores is less 

than 0.5, it is not advisable to consider CSA as the primary analysis. As seen in 

chapter 4, while level of correlation is the sole driver of the difference between 

the precision of these statistical methods, it is also largely responsible for bias in 

the estimate of effect. Even though the disparity in the estimates of effect 

through using CSA and ANCOVA does not affect the conclusion about the 

treatment effect in this study, it no doubt constitutes a misleading basis for future 

studies that may rely on such biased information for sample size calculation.    
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7.5 PANTHER trial 

7.5.1 Introduction to the trial including baseline distribution of selected 
variables5  

This was a three arm, multicentre randomised controlled trial designed to 

determine whether manual therapy or pulsed shortwave diathermy, in addition to 

advice and exercise, provide better clinical outcome at 6 months than advice and 

exercise alone in primary care patients with nonspecific neck disorders. The trial 

involved 15 physical therapy outpatient facilities in the Midlands, UK. Eligible 

participants were aged 18 years or over with a clinical diagnosis of nonspecific 

neck pain. The randomisation procedure incorporated random-sized blocks 

stratified by physical therapy department and an allocation ratio of 1:1:1. All 

participants were randomised to 1 of 3 groups: 1) advice and exercise (A &E) 

with no further addition to treatment; 2) advice and exercise with the addition of 

manual therapy (MT); 3) advice and exercise with the addition of pulsed 

shortwave diathermy (PSWD). 

The primary outcome measure was pain and disability measured with the 

Northwick Park Neck Questionnaire (9 items, scale 0-100). A sample size 

calculation was carried out to detect a mean difference in the 0-6 month change 

in Northwick Park scores of 5 points (±12.5 SD) at a 5% significance level (two 

tailed) at 80% power; a minimum of 99 patients were needed in each arm of the 

study. However, 350 patients were randomised to allow for loss to follow-up.  

                                            

5
 Adapted from Dziedzic et al (2005). 
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Table 7.6: Baseline characteristics showing the Z-scores for selected 

covariates for PSWD and MT against the control treatment arm (A&E).  

 
 
Covariates 

Advice and 
Exercise 
(n=115) 

Manual 
therapy 
(n=114) 

PSWD 
(N=121) 

Z-score 
(MT) 

Z-
score 
(PSW
D) 

Age  in years ■ 50.5(15.06) 52.8(13.24) 50.3(13.33) 1.24 -0.11 

Sex, female, no.(%) 63 (55) 77(68) 81(67) - - 

Routine and manual 
occupation, no.(%) 

50 (51) 49(49) 47(47) - - 

Currently employed, 
no.(%) 

68 (59) 67(59) 68(56) - - 

Time off work during last 
3 months as a result of 
neck problem, no.(%) 

20 (29) 22(33) 18(27) - - 

Northwick Park score■ 36.6 
(13.54) 

38.6(15.46) 36.9(13.56) 1.06 0.12 

Pain severity last 3 days, 
mean (range) 

4.6 (2.29) 5.4(2.26) 5.0(2.31) 2.46 1.29 

Severity of main 
problem ■  

5.0 (2.39) 5.6(2.25) 5.0(2.48) 1.98 0.25 

EuroQol■ 0.68(0.23) 0.62(0.27) 0.67(0.24) -1.58 0.05 

Painkillers in past 48 
hours, no.(%) 

45(39) 63(55) 60(50) - - 

First episode, no.(%) 46(43) 37(34) 36(31) - - 

Duration of pain>3 
months, no.(%) 

88(77) 96(84) 86(71) - - 

Previous neck injury, 
no.(%) 

24(26) 24(27) 33(33) - - 

Previous physical 
therapy, no.(%) 

30(27) 46(41) 47(39) - - 

Widespread pain, no.(%) 18(16) 25(22) 24(20) - - 

Chronic widespread 
pain, no.(%) 

13(11) 24(21) 19(16) - - 

SF-12 PCS score, mea■ 41.3(10.4) 39.2(9.98) 41.9(9.96) -1.49 0.43 

SF-12 MCS score■ 49.4(10.85) 48.9(9.82) 48.2(9.95) -0.37 -0.88 
■ Numbers are mean and standard deviation in brackets 

Analysis was by intention to treat. In this trial, primary analysis was by CSA; 

ANCOVA and logistic regression were also used appropriately but as secondary 

analyses. No interim analyses were undertaken during the study period. There 
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were no statistically significant differences in the primary outcome between the 

two active treatment arms and the control arm (advice and exercise alone). The 

study concluded that the addition of pulsed shortwave or manual therapy to 

advice and exercise did not provide any additional benefits in the physical 

therapy treatment of neck disorders.  

With respect to the baseline distribution in the treatment arms in Table 7.6, 

participants in the PSWD and A&E groups are more comparable at baseline than 

those in MT. This observation is evidenced in the range of Z-scores; for example, 

whereas Z- scores range from 0.37 to 2.46 for MT versus A&E, the range of Z-

scores for PSWD versus A&E is 0.11 to 1.29 in absolute terms.  

7.5.2 Exploring levels of correlation between baseline and the post-
treatment scores in PANTHER trial 

Table 7.6a below presents the strength of the prognostic relationship between 

baseline variables (covariates) and selected outcome variables. Here prognostic 

covariates are observed to have a considerably high correlation with the 

outcome variables. The baseline scores of the outcome variables are particularly 

strongly correlated with post-treatment scores in each case. For example, the 

correlations between the baseline and the post-treatment primary outcome 

measure (Northwick Park) are 0.70 and 0.62 at the 6-week and 6-month  
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Table 7.6a: Prognostic strength measured by correlation between the 
baseline and post-treatment score of the outcome variables 

[n=308 and 290 at 6 weeks and 6 months follow-up periods respectively] 

  Spearman’s correlation 

 

 

 Northwick  
 (total score) 

Average pain  
past 3 days  
(NRS) 

Most problem  
last 3 days 
(Ave. VAS) 

Covariates 6wks 6mts 6wks 6mts 6wks 6mts 

Age 0.18 0.13 0.08 0.11 0.13 0.13 

Gender -0.10 -0.07 -0.06 0.11 -0.03 -0.14 

Socio-economic class 0.26 0.26 0.21 0.24 0.18 0.26 

Centre(stratification group) 0.03 0.05 0.02 0.07 0.03 0.07 

Body chart (Baseline) 0.24 0.26 0.17 0.27 0.19 0.25 

Body chart-widespread 0.24 0.27 0.15 0.26 0.16 0.24 

Northwick(Base) total 
score 

0.70 0.62 0.50 0.47 0.51 0.50 

Medication use 0.26 0.24 0.16 0.17 0.21 0.18 

Average pain past 3 days 
NRS) 

0.47 0.46 0.44 0.43 0.43 0.46 

Euroqol (Baseline) 5D 
score 

-0.57 -0.52 -0.40 0.42 -0.41 -0.42 

SF 12 PCS -0.54 -0.45 -0.33 -0.30 -0.39 -0.36 

SF 12 mental component -0.30 -0.31 -0.20 -0.6 -0.17 -0.22 

Average VAS problem) 0.44 0.42 0.41 0.38 0.42 0.39 

Paid employment -0.30 -0.20 -0.13 -0.13 -0.16 -0.11 

Time off work 0.18 0.12 0.15 0.07 0.21 0.03 

History of neck trauma -0.04 0.06 0.03 -0.01 0.03 0.03 

Patient’s first episode -0.04 -0.13 -0.01 -0.14 -0.03 -0.19 

Fear avoidance 0.40 0.34 0.28 0.24 0.26 0.27 

Catastrophising 0.39 0.41 0.35 0.42 0.36 0.42 

Duration 0.22 0.24 0.16 0.24 0.20 0.26 

Previous neck injury 0.02 0.09 -0.01 0.02 -0.01 0.04 

Physio before 0.17 0.18 0.17 0.16 0.18 0.20 

Patient expectation 0.12 0.14 0.07 0.15 0.06 0.13 

Ability to influence work 0.02 0.07 0.03 0.10 0.03 0.08 

Physical activity for age 0.36 0.32 0.25 0.23 0.24 0.26 

Posture for age 0.11 0.09 0.04 0.06 0.02 0.04 

Work satisfaction 0.02 0.11 -0.09 -0.00 -0.04 0.02 

Duration episode 0.22 0.17 0.17 0.17 0.16 0.18 
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Despite the high level of correlation that exists between both clinical and 

psychological covariates with the outcome variables, as in other trials, (Low back 

pain trial and StarTBack trial) socio-demographic characteristics (age, sex, socio-

economic class) of patients do not have appreciable level of relationship with the 

outcome. 

7.5.3 Prognostic covariates rating of influence on the variability in the 
outcome variable (PANTHER) 

From tables 7.6b and 7.6c below, by the end of the fifth and sixth models, there 

was no prognostic covariate that could independently explain up to 0.005 or 

more of the variability in the outcome by including it in the model. To avoid 

unduly large tables, the covariates included beyond this point are not displayed 

(and have limited contribution to the variance of the NPQ at follow up). 
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Table 7. 6b: Model summaries and statistic at 6weeks follow-up (Northwick) 
[n=308] 

Model Variable added R R2 Adjusted R2 R2-change 

1 Northwick Park  
(Baseline) 
 – Total 

0.703 0.494 0.492 0.494 

2 *EurQol (Baseline) 5D  
Score 

0.717 0.514 0.510 0.020 

3 *Fear avoidance‡‡ 0.726 0.525 0.520 0.012 

4 *SF12 (Baseline) 
 physical component 

 
0.726 

 
0.528 

 
0.521 

 
0.007 

5 *Physical activity  
for age (Baseline)‡ 

 
0.733 

 
0.537 

 
0.528 

 
0.005 

*Cumulative 
‡ ‡ 2 dummy variables added 
‡ 1 dummy variable added 

 
 
Table 7.6c: Model summaries and statistic at 6months follow-up 
(Northwick) [n=290] 

Model Variable added R R2 Adjusted R2 R2-change 

1 Northwick 
 (Baseline ) – Total 

0.619 0.383 0.381 0.383 

2 *EurQol (Baseline)  
5D score 

0.639 0.409 0.405 0.026 

3 *Fear of avoidance‡‡‡ 0.657 0.432 0.422 0.023 

4 *Mental component 
score 

0.670 0.448 0.436 0.016 

5 *Catastrophising‡‡ 0.677 0.458 0.443 0.010 

6 *Physical activity for 
age‡ 
 

0.682 
 

0.465 
 

0.448 0.006 

*Cumulative 
‡‡‡ 3 dummy variables added 
‡‡ 2 dummy variables added 
‡ 1 dummy variable added 

 
With respect to Tables 7.6b and 7.6c, most of the variability in the outcome was 

explained by the baseline Northwick Park score. Again, multicollinearity is not a 

problem here as tolerance values were well above the threshold of 0.1 each time 

a covariate was added to the model.  
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7.5.4 Comparative statistical models for the precision and estimate of 
treatment effect at different follow-up periods - PANTHER 

Tables 7.7a and 7.7b below present results of the models at both follow-up 

periods: 6 weeks and 6 months. Since there were three treatment arms/groups, 

one of the groups (Advice and exercise) was made a reference category. The 

trial was powered in such a way that separate comparisons of PSWD and MT 

against A&E are taking into consideration. There is a major difference between 

the unadjusted estimates of effect and the adjusted estimates either by CSA or 

ANCOVA. At both follow-up periods, the absolute size of crude treatment effect 

by ANOVA was much larger than that from either CSA or ANCOVA. This could 

have been due to the direction of baseline imbalance in Northwick Park 

Questionnaire score following randomisation. Often, as already seen in chapter 

4, when the treated group has a better prognosis at baseline, the magnitude of 

treatment effect by the crude analysis is exaggerated. In this case, at both follow-

up times, with respect to the estimate of effect using PSWD, there were 40.51 % 

and 45.52% associated biases of estimate for using ANOVA instead of ANCOVA 

at 6 weeks and 6 months respectively. The ratios of the standard error of 

ANCOVA vs ANOVA were 0.71 and 0.79 respectively. These results again 

confirm the previous results in table 4.8, that correlation between the pre and 

post-treatment scores is the sole driver of the precision of estimate of effect. The 

correlation between pre- and post-treatment Northwick scores in Table 7.6a is 

0.70. 
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Table7.7a: Models comparison for the covariates adjusted and unadjusted 

analyses 6 weeks follow-up (Northwick) [n=308] 

   
      Treatment Allocation 
 

Models     Covariates β1 SE 95% CI 

1 Northwick (Baseline): 
                   Manual Therapy 
                   PSWD 

 
1.96 
2.64 

 
1.64 
1.62 

 
-1.27, 5.18 
-0.54, 5.82 

2 *EurQol (Baseline) 5D score: 
                   Manual Therapy 
                   PSWD 

 
1.67 
2.48 

 
1.61 
1.59 

 
-1.50, 4.83 
-0.65, 5.60 

3 *Fear avoidance:‡ 
                   Manual Therapy 
                   PSWD 

 
1.13 
2.31 

 
1.61 
1.58 

 
-2.03, 4.30 
-0.80, 5.42 

4 *SF 12 (Baseline) -Physical (PCS) : 
                            Manual Therapy 
                            PSWD 

 
1.06 
2.50 

 
1.61 
1.58 

 
-2.11, 4.22 
-0.612, 5.61 

6 *Physical activity for age:‡‡‡ 
                    Manual Therapy 
                    PSWD 

 
0.63 
2.41 

 
1.62 
1.58 

 
-2.56, 3.83 
-0.70, 5.51 

ANOVA                      Manual Therapy 
                     PSWD 

3.98 
3.29 

2.29 
2.27 

-0.53, 8.49 
-1.17, 7.75 

CSA                      Manual Therapy 
                     PSWD 

-1.47 
-2.48 

1.68 
1.66 

-4.77, 1.83 
-5.75, 0.78 

*Cumulative 
‡Compared to reference category (none of the time) 
‡‡‡Compared to reference category (very good) 
The reference category for the treatment groups is ‘Advice and exercise’ 
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Table 7.7b: Models comparison for the covariates adjusted and unadjusted 
analyses 6 months follow-up (Northwick) [n=290] 

   
       Treatment Allocation 
 

Models Variable added β1 SE 95% CI 

1 Northwick (Baseline): 
                   Manual Therapy 
                   PSWD 

 
1.69 
1.49 

 
2.10 
2.07 

 
-2.44, 5.83 
-2.58, 5.56 

2 *EurQol (Baseline) 5D score: 
                   Manual Therapy 
                   PSWD 

 
1.01 
1.41 

 
2.08 
2.04 

 
-3.08, 5.10 
-2.60, 5.43 

3 *Fear avoidance:‡ 
                            Manual Therapy 
                            PSWD 

 
0.29 
1.16 
 

 
2.07 
2.02 

 
-3.77, 4.36 
-2.82, 5.14 

5 *SF 12 (Base) mental component: 
                         Manual Therapy 
                         PSWD 

 
0.21 
0.74 

 
2.07 
2.04 

 
-3.86, 4.28 
-3.27, 4.75 

 *Catastrophising ‡‡ 
                            Manual Therapy 
                            PSWD 

 
-0.08 
0.53 

 
2.04 
2.01 

 
-4.09, 3.93 
-3.42, 4.48 

8 *Physical activity for age: 
  ‘Very poor’‡‡‡ 
                            Manual Therapy 
                            PSWD 

 
 
-0.25 
0.39 

 
 
2.03 
2.00 

 
 
-4.25, 3.75 
-3.55, 4.32 

ANOVA                             Manual Therapy 
                            PSWD 

3.60 
2.74 

2.70 
2.63 

-1.65, 8.85 
-2.45, 7.92 

CSA                             Manual Therapy 
                            PSWD 

-1.38 
-1.29 

2.11 
2.08 

-5.53, 2.77 
-5.38, 2.81 

*Cumulative 
‡     Compared to reference category (none of the time) 
‡‡‡ Compared to reference category (very good) 
The reference category for the treatment groups is ‘Advice and exercise’ 

Also, for using CSA instead of ANCOVA associated biases of estimate were 

6.32% and 15.94% at 6 weeks and 6 months follow-up time respectively. In 

addition, the ratios of the standard error of ANCOVA to CSA at the two time 

points were 0.97 and 0.99; again these results corroborate the earlier finding in 

table 4.9. The results of the simulation in the earlier chapters had established 
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that with similar levels of correlation (0.70) between pre- and post-treatment 

scores of the outcome variable such levels of the ratios of the standard error of 

estimate of effect would exist. The low biases associated with the estimate of 

effect from CSA in this instance are evidence of the fact that when the correlation 

between pre and post-treatment score is high, ≥ 0.7, then the estimates of effect 

by CSA and ANCOVA approximate each other. This idea was represented in 

figure 4.1 and table 4.12. Generally, in this study, the estimates of effect by CSA 

are more precise and less biased compare to the crude estimate by ANOVA 

owing to high level of correlation between pre- and post-treatment score of the 

outcome variable (Northwick Park).         

7.6 Discussion 

The relationship between baseline covariates and the outcome variables 

remarkably differs across the three empirical trials considered. For example, 

whereas baseline-outcome correlation reaches 0.70 for the PANTHER trial and 

0.51 for the StarTBack trial it peaked at 0.32 for Low back pain trial. This 

difference in the pattern of prognostic relationship of covariates across the trials 

is a pointer to relative need with regards to statistical adjustment across these 

empirical trials. Surely there is more need for statistical adjustment of covariate 

imbalance in trials where such covariate has a high correlation with the outcome. 

In all the three trials, as expected, baseline of the outcome variables 

demonstrates the highest level of prognostic relationship with the outcome 

variables. Pocock et al, (2002) had observed that a correlation as high as 0.7 is 

quite plausible for the same variable measured at baseline and after treatment. 
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Some baseline covariates have at least correlation of 0.3 with the outcome; 

however, in some cases, they are seen to have a very similar prognostic strength 

to the baseline of the outcome variable. This emphasizes the need to consider 

some other prognostic covariates for adjustment apart from the baseline of the 

outcome variable – although this needs to be balanced in the context of 

‘independence’.                     

In all the three trials studied, socio-demographic characteristic such as: age, sex 

and social status do not have an appreciable level of correlation with the 

outcome variables. In fact their level of prognostic strength with any of the 

outcome variables falls below 0.3, which suggests a limited need to account for 

these factors. Even if significant imbalance exist in these covariates accounting 

for them does not in any way improve the status of estimate of treatment effect. 

Findings from the earlier chapters, 4 and 5, in this study agree with previous 

authors (Altman et al 2000) that it is not necessary to balance such covariates 

between groups. Again, unless a covariate has an established correlation of at 

least 0.3 with the outcome it is of little or no use including such a covariate in a 

model for statistical adjustment (Altman 1985; Cox & McCullough 1982; Senn 

1994). This thus implies that the practice by which covariate adjustment is based 

on a priori selection of covariates which usually include age and sex needs re-

visiting as only covariate that are prognostic enough may be included in the 

model. The review of current practices regarding covariate adjustment in clinical 

trial setting (in chapter 6) had shown that it is not a common practice to 

investigate the prognostic strength of a covariate before considering such for 
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statistical adjustment. Sometimes, a covariate that has at least a correlation of 

0.3 with the outcome is not capable of providing an independent explanation of 

the variability in the outcome, thus including such covariate in the model will only 

amount to redundancy and undue increase in the complexity of the model. Thus, 

the criterion of a minimum correlation of 0.3 with the outcome is only necessary 

but not sufficient in order to consider a covariate for statistical adjustment.  

Generally, in all the three empirical trials, there is a tendency for reduction in the 

prognostic strength of the covariates at the latter follow-period. This may be 

connected with missing values as a result of loss to follow-up that is more 

apparent in the latter follow-up period (with correlation being greater among 

‘responders’). Also, the appearance in the model of covariates which is a 

measure of the importance of the prognostic covariate varies with follow-up 

periods, this emphasizes the need to separately explore the covariates by the 

follow-up periods to determine which goes into the model for adjustment. The 

pattern of precision of the statistical method perfectly fits the earlier theoretical 

models in chapter 4 using simulated datasets. This thus lends credence and 

contributes to the plausibility of the statistical program that drives the simulation 

exercise in this study. Even though precision of ANOVA, CSA and ANCOVA 

differ across trials with the degree of difference which was dependent on the 

level of correlation between the covariate and the outcome, the conclusions 

around the null hypothesis is also the same for all the methods except in one 

instance. At the 12 months follow-up of the StarTBack trial, both adjusted 

methods (ANCOVA and CSA) provide different conclusions to ANOVA. For 
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ANCOVA and CSA the null hypothesis is rejected indicating superiority of the 

new treatment whereas for ANOVA the null hypothesis is accepted implying no 

evidence to reject the null hypothesis. This thus re-affirms the possibility of 

having different conclusions on the null hypothesis regarding treatment effect 

when both adjusted and unadjusted crude analyses are used; Christesen et al, 

(1985) had earlier reported this possibility. In both studies, imbalance could have 

only occurred in the opposite direction (Figure 4.1) of the treatment as treatment 

effect favours the adjusted analyses each time. 

7.7 Conclusion 

Overall, ANCOVA is better than the other two methods (CSA and ANOVA) in 

most trial scenarios. Further adjustment of prognostic covariates can enhance 

both precision and bias of estimates, researchers should however weigh the 

benefit and ‘cost’ of inclusion of more covariates in the model before-hand. 

However, when correlation is just around the threshold of 0.3, precision of 

estimate of effect may be influenced if further adjustment involve dummy 

variables of ordinal prognostic covariates. Findings of the results of this chapter 

alongside findings of previous chapters queried the practice of a priori 

specification of covariates for statistical adjustment. More often, covariates that 

are such specified are not prognostic enough to influence outcome, examples of 

covariate that always fall in this category are; age, sex and socio-class. 

Covariates that appear to be commonly prognostic and independent in effect 

across the three spinal pain trials include the corresponding baseline 

pain/disability variable; expectation of outcome and general health status 
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(particular if scored through the EuroQoL EQ5D measure). By selecting 

covariates a priori researchers run the risk of missing some key independently 

prognostic factors that may have an important influence on the outcome – and 

hence, risk bias and reduced precision of the treatment effect. The inclusion of 

any covariate should be judged not only by its prognostic strength with the 

outcome variable, but also on the amount of variability in the outcome which it is 

capable of explaining independently amidst other covariates.  

In general, the results of the empirical evaluation parallel those established from 

the simulation study (in chapters 4 and 5). It has been re-affirmed in this chapter 

that the correlation between the pre and post-treatment score plays important 

role in determining the relative bias and precision of the estimate of treatment 

effect. When this correlation is high, considerable amount of bias presents with 

crude estimate of treatment effect which is also less precise; adjusted analysis 

(CSA or ANCOVA) is better than ANOVA. However, when correlation between 

pre and post is low, especially below 0.3, ANOVA is reasonable and using CSA 

is not advisable.  
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Chapter 8: Conclusions, Recommendations and Limitations 

 

8.1 Introduction 
 

 The RCT, although is the gold standard design for investigating treatment 

effectiveness, is not without its limitations. A major limitation of this design is the 

fact that it does not guarantee equality of treatment arms. Chance imbalance in 

prognostic covariates as a result of random allocation of patients if not accounted 

for, may have important effect on the estimate of treatment effect, causing bias.               

This study focuses on trials in which improvement is measured by change from 

baseline status or scores of a primary outcome variable following intervention. It 

represents a comprehensive assessment of three statistical methods that may 

be employed in this situation – ANOVA, CSA and ANCOVA – in respect of their 

precision, bias of effect estimates, statistical power and efficiency (relative 

sample size), which represents the overall aim of the study.  

At the outset, a statistical program was developed to carry out the simulation 

aspect of the work. The program incorporates levels of certain experimental 

factors, such as: correlation between pre- and post-treatment outcome scores, 

magnitude of treatment effect, baseline chance imbalance, direction of 

imbalance and nominal power. The level of imbalance used in the simulation is 

proportional to the sample size or the size of treatment effect; large imbalance 

corresponds to small sample size or large effect size and small imbalance 

corresponds to large sample size or small effect size. At a given trial scenario, 
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each level of these experimental factors was combined together and each of 

these three statistical methods was used simultaneously for comparison of 

results. In all, 210 trial scenarios in 210, 000 simulated datasets were involved. 

The same datasets were used to study all the four trial attributes: precision, bias, 

statistical power and efficiency. The statistical program also contained certain 

commands that tested three basic models assumptions; normality of residuals, 

linearity of the baseline covariates and outcome relationship and parallel 

regression lines assumption. A detailed account of the methods involved in the 

study has already been given in chapter 3. 

The empirical datasets were from three clinical trials previously conducted by the 

Arthritis Research UK Primary Care Centre. The availability of empirical trial 

datasets played three major roles as far as this study is concerned: 1) it provided 

a means of validating the results of the simulation on real data; 2) It provided a 

platform to determine what level of prognostic relationship exists between 

baseline measures and primary outcomes in trials involving musculoskeletal 

conditions, thus making it possible to know what covariates are necessary to 

adjust for if adjustment is actually important (this information is important for the 

design and direction of statistical analysis of future trials related to 

musculoskeletal conditions); and 3) it made statistical model building and 

comparison possible. 

8.2 Further Discussions 

In respect of the overall aim of the study, the findings of this work agrees with 

previous authors on the subject of statistical adjustment of covariate imbalance 
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in randomised controlled trial settings. For example, the simulated results in 

chapter 4 confirm what previous authors (Matthews, 2000; Pocock et al, 2002) 

have reported; that is, when treatment groups are equal at baseline, all the three 

methods for statistical analysis are unbiased as they yield the same estimate of 

treatment effect at that time. However, when there is baseline imbalance in 

treatment groups, with respect to the estimate of effect by ANCOVA which is 

theoretically unbiased (Mathews, 2000; Van Breukelen, 2006), this study is in 

agreement with previous authors (Camilli & Shepard 1987; Senn 1991, Van 

Breukelen 2006) in showing that the estimates of effect by CSA and ANOVA are 

biased. As was shown in previous chapters, major drivers of bias in the estimate 

of effect by CSA and ANOVA are the degree of prognostic relationship of the 

covariate with the outcome and both level and direction of baseline imbalance. 

The study has also shown the comparative benefits of the statistical methods in 

terms of precision at different trial scenarios. It pointed out the fact that the 

difference in precision of these statistical methods is solely dependent on the 

level of baseline-outcome correlation and that level of baseline imbalance does 

not really matter. This agrees with earlier findings by Fleiss (1986), Frison and 

Pocock (1992), Pocock et al (2002) and Walters (2009).  

In addition, although previous authors (Vickers, 2001; Tu et al, 2005) have 

mentioned that ANCOVA has highest statistical powerof the three methods 

considered in this study (ANOVA, CSA and ANCOVA), their observations are 

limited to treatment scenarios in which treatment groups are assumed balanced 

at baseline. The result of this study agrees with these authors; however, if 
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imbalance exists in baseline values of the outcome variable, depending on its 

direction, either ANOVA or CSA is more powerful than ANCOVA in most trial 

scenarios. For example, if imbalance exists in the same direction as treatment, 

ANOVA is more powerful than ANCOVA and if imbalance exists in the opposite 

direction of the treatment then, CSA is more powerful. However, this seemingly 

higher statistical power displayed by both ANOVA and CSA over ANCOVA is 

due to the fact that the estimate of effect that either of these methods yields is 

inherently marred, with false positive errors. Whereas, ANCOVA yields a smaller 

unbiased estimate of treatment effect, the estimate of treatment effect by either 

ANOVA or CSA at the time is unduly large and biased.  

Furthermore, the results of the study show that, depending on the correlation 

between the baseline and the outcome variable, both ANCOVA and CSA can 

lead to a remarkable reduction in the original sample size if they are specified as 

methods for primary analysis. The higher the correlation the smaller the sample 

size required when using ANCOVA compared to ANOVA. However, the benefit 

of sample size reduction by CSA is only possible at a baseline-outcome 

correlation greater than 0.5. Irrespective of the level of baseline imbalance, 

ANCOVA secures a reduction of up to 50% in the original sample size when 

correlation between pre and post treatment score reaches 0.7. Previous authors 

(Porter & Raudenbush, 1987; Frison & Pocock, 1992; Pocock et al, 2002; 

Walters, 2009) have also mentioned the benefit of sample size reduction 

(efficiency) for using ANCOVA instead of ANOVA. 
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Similarly, the results of this study show that whereas the effect estimate and the 

precision of effect estimate for both ANOVA and ANCOVA are similar when 

baseline-outcome correlation is low even if baseline imbalance is large, they 

differ considerably when the baseline-correlation is high and baseline imbalance 

is low. Thus a large imbalance in a non-prognostic variable is not as important as 

a low imbalance that occurs in a highly prognostic covariate. This therefore 

argues against the use of baseline significance testing to determine which 

covariate(s) is/are selected for adjustment. This work perhaps presents the first 

graphic illustrations (Figure 4.1 & Figure 4.2) on the inappropriateness of 

selecting a covariate for statistical adjustment simply because of the random 

occurrence of large baseline imbalance in such a covariate, especially in 

combination with levels of other factors typical in the clinical trial setting. This 

finding is in agreement with previous authors (Altman, 1985; Begg, 1990; Schulz 

et al, 1994; Senn, 1994; Schulz, 1995; Senn, 1997; Fayer & King, 2009), who 

have variously criticised and condemned the practice.  

In addition, this study observed a shift in the practice of covariate adjustment in 

statistical analysis of randomised controlled trials; more trials are specifying 

appropriate statistical adjustment as the primary statistical approach. For 

example, whereas, in 39 (49%) of 80 reviewed articles by Altman and Doré 

(1990) the authors did not adjust at all and only 12 (24%) of the 50 reviewed 

articles by Pocock et al (2002) specified a covariate adjusted approach as the 

primary analysis, in 25 (62.5%) of 40 articles that were included in the review 

chapter of this study the authors had specified and used appropriate statistical 
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adjustment as primary analysis. This greater observed preference for the 

adjusted analysis could possibly be due to the various potential benefits that 

have been attributed to covariate adjusted analysis and an increase in support 

for this statistical approach over the years. Since the review by Pocock et al 

(2002) for example, various authors have mentioned different benefits of 

covariate adjusted analysis over the unadjusted and these include: increase in 

statistical power (Kent et al, 2009; Hernandez et al, 2004; Moore and Vanderlan, 

2007; Wang & Hung, 2005); improved type I error rates (Hagino et al, 2004); 

increased precision of estimates of treatment effect (Tsiatis et al, 2007; Wang & 

Hung, 2005); and reduced bias, giving more accurate estimates of the true value 

(Altman & Doré, 1990). The simplicity of the unadjusted analysis may no longer 

be a sufficient reason to continue to prefer this naïve method as the first line 

statistical approach in a clinical trial setting. There is evidence therefore of 

increasing usage and awareness of the merits of the ‘adjusted’ approach over 

the unadjusted approach. However, despite this increasing trend in the 

application of appropriate statistical adjustment, there still remain a substantial 

proportion of studies that do not properly adjust; in this review 15 (37.5%) of 40 

trials were unadjusted (crude comparison of effect or that based on change from 

baseline). In fact, this study observed a 100% increase in the use of analysis 

based on ‘change’ compared with what was recorded by Altman & Doré (1990); 

these authors recorded a 15% utilisation compared to 30% observed in this 

study.   
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With respect to covariate selection in empirical trial datasets, this study 

questioned the idea of a prior specification of covariates to include in the model 

for adjustment. None of the variables (age, sex, socio-economic status) which 

are usually treated as such had meaningful prognostic relationship with the 

outcome. In all three real trials examined in this study, they all had a correlation 

of less than 0.3 with the outcome. Previous authors (Cox & McCullough, 1982; 

Senn, 1994) have recommended a minimum covariate-outcome correlation of 

0.3 for covariate selection in statistical adjustment. Thus, the practice of a priori 

specification negates the possibility of gathering maximum evidence for or 

against the effectiveness of treatment under investigation based on the current 

dataset. It was however observed in this study that the condition of having a 

minimum correlation of 0.3 with the outcome would not be sufficient to select a 

covariate for adjustment, as some of the covariates that met this selection 

criterion did not have reasonable amount of independent explanation of the 

variability of the outcome variable. Thus, by inspecting the estimate of treatment 

effect and the associated precision for adding each of the covariates that met the 

inclusion criterion of a minimum of 0.3 in the empirical datasets, this study 

suggests that for a covariate to be worthy of model inclusion it should be capable 

of independently contributing an R2- change of at least 0.005.   

This study has investigated the subject of covariate adjustment in a randomised 

controlled trial involving a single assessment of a continuous outcome variable in 

a manner that no previous study had done. For example, no previous study has 

used the same datasets to investigate trial or treatment attributes of bias, 
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precision, statistical power and efficiency in relation to the three statistical 

methods (ANOVA, CSA and ANCOVA) as was done in this study.   

A major contribution of this work is that it attempts to settle the age-long divided 

views and opinions on the benefit of using of CSA as a method for statistical 

adjustment in an RCT (Altman, 1985; Senn, 1989; Altman, 1991; Senn, 1991). 

The study has made clear statements on the comparative advantages of each of 

the methods for statistical analysis in different trial scenarios; it is hoped that 

these will go a long way to facilitate informed decisions on when to use and 

when not to use particular methods. Trial situations in which model-based 

adjustment (ANCOVA), basic adjustment by CSA and unadjusted analysis will 

possibly yield different estimates of effect have been highlighted to provide 

guidance on future analysis of a randomised controlled trial with a continuous 

outcome variable. The three methods have been observed to yield different 

conclusions on the estimate of treatment effect in empirical trial settings 

(Christensen et al, 1985; Piantadosi, 1997).  

This work study, in a way that has not previously been attempted investigate (in 

relation to three statistical methods ANOVA, CSA and ANCOVA) the 

combinations of various levels of experimental factors obtainable in empirical trial 

situations that can have serious influence on the selected trial attributes . For 

example, the effect of direction and size of covariate imbalance in combination 

with various levels of covariate-outcome correlation at different levels of 

anticipated treatment effect – small, medium and high (Cohen, 1982) – have 

been investigated. Previous authors (Vickers, 2001; Tu et al, 2005) dealing with 
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specific attributes such as statistical power have assumed that baseline scores in 

outcome variable are equal. The same datasets were used to study these trial 

attributes. 

8.3 Summary of findings 

 In the subsequent subsections the findings of this study are briefly summarised.  

8.3.1 Bias 

In agreement with previous findings (Matthews 2000) there is no difference in the 

estimate of treatment effect for all the statistical methods (ANOVA, CSA and 

ANCOVA) when treatment groups are identical at baseline – they are all 

unbiased. This situation rarely occurs in the real life clinical trial setting: due to 

random variation (randomisation rules out systematic variation). However, when 

groups are not balanced, only ANCOVA is unbiased and the level of bias 

associated with estimate of effect by ANOVA and CSA is dependent on the level 

of baseline-outcome correlation and baseline imbalance. When baseline 

imbalance is small following randomisation, the estimate of effect that results by 

using ANOVA is less biased compared with the estimate of effect of an 

unadjusted analysis when there is a larger baseline imbalance. This therefore 

establishes the benefit of design methods (such as stratification and 

minimisation) i.e. to ensure that baseline imbalances are small. Unadjusted 

analyses based on trials with a stratified-design will therefore yield estimates of 

effect that are less biased; although adjustment is preferred as it will ensure 

unbiased estimates and certainly in relation to improved precision and power 

(see following subsections). There is an indication that if appropriate statistical 
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adjustment follows, the benefit of stratification and or minimisation in reducing 

bias in the estimate of effect is the same for both small and large trials. 

 ANOVA yields an equal degree of bias but in opposite directions, depending on 

the direction of baseline imbalance. A negative bias occurs when baseline 

imbalance in a prognostic variable favours the treated group (treated group is 

better at baseline) and the estimate of effect is positively biased when the 

baseline imbalance favours the control group. When the level of baseline-

outcome correlation is low (r<0.3), the bias in the effect estimate by ANOVA is 

minimal. Also with ANOVA, whereas large imbalance does not matter unduly if 

correlation is low, a small imbalance in strong prognostic variable causes 

considerable bias in the estimate of effect. Given a level of prognostic 

relationship of covariate with the outcome variable, the degree of bias by ANOVA 

is directly related to the level of chance imbalance. In addition, size of treatment 

effect to be determined, or, by implication, trial sample size, does not affect bias 

in effect estimate. Appropriate statistical adjustment is as much of benefit to 

small trials as it is to large trials. Even though a small absolute imbalance results 

when a large sample is randomly allocated to treatment groups and large 

absolute imbalance when the randomly allocated sample size is small, at the 

same level of other factors, the associated bias is approximately the same in 

both cases if the imbalance were standardized) when compared with the 

estimate of effect by ANCOVA.  

In the case of CSA, the estimate of effect is positively biased when imbalance is 

in the same direction as the treatment or intervention and negatively biased if the 
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control group has a better prognosis at baseline. The problem with CSA is that it 

does not take regression to the mean into consideration. The amount of bias 

associated with CSA varies hugely with the direction of imbalance. The bias is 

minimal in relation to a strongly prognostic covariate. Unless there is an 

established strong relationship between the baseline and the outcome variable, 

CSA should not be used for the primary analysis. By and large, bias in the 

estimate of effect by ANOVA reduces as baseline-outcome correlation tends to 0 

and bias in the estimate of effect by CSA reduces as correlation tends to 1.  

Thus unless baseline-outcome correlation is large (as close to1 as possible) do 

not use CSA as a primary method of analysis and unless baseline-outcome 

correlation is reasonably low (< 0.3) do not use ANOVA as the primary analysis. 

8.3.2 Precision 

Within each of the statistical methods, there is evidence of improved precision of 

estimate when sample size increases or the effect size to be determined 

reduces. The precision of estimate of effect by ANOVA does not respond to 

baseline-outcome correlation and not to the size and direction of imbalance. The 

reason is that there is no term in the ANOVA model that relates to covariate 

imbalance. The key component in distinguishing the three statistical methods in 

relation to their precision is the baseline-outcome correlation. Even when 

treatment groups are balanced, there is considerable difference in the precision 

of these statistical methods, and selecting the appropriate method of statistical 

adjustment can lead to markedly higher precision in the estimate of effect 

(Altman 1985).  



  

270 

 

When baseline-outcome correlation is less than 0.3, there is little benefit in terms 

of precision of using ANCOVA instead of ANOVA; however, at a higher level of 

correlation, ANCOVA presents a more precise estimate than ANOVA. The 

precision of estimates of effect from CSA is not superior to that from ANOVA 

unless the baseline-outcome correlation is greater than 0.5; when the correlation 

is below 0.5 ANOVA yields a more precise estimate than CSA. Both CSA and 

ANCOVA have very similar standard error estimates, and hence similar precision 

of estimates, at a baseline-outcome correlation of 0.9. The higher the correlation, 

the more closely the precision of CSA aligns with that of ANCOVA. Theoretically, 

both methods are equal in the precision of estimate at a correlation of 1.0. 

Unless baseline-outcome correlation is high, it is not advisable to use CSA. 

Relative precision benefits between statistical methods are the same across 

various sample sizes and are also independent of level and direction of 

imbalance.  

8.3.3 Statistical Power 

When treatment groups are comparable at baseline, appropriate statistical 

adjustment by ANCOVA increases the statistical power of a randomised 

controlled trial. At such time, improvement in statistical power is not obvious until 

baseline-outcome correlation is greater than or equal to 0.3.Comparatively, CSA 

and ANOVA are equally powerful at correlation of 0.5; however, CSA is less 

powerful to ANOVA at a baseline-outcome correlation of less than 0.5 and more 

powerful at baseline-outcome correlation of greater than 0.5. When treatment 

groups are not balanced, both sizes and direction of imbalance, as well as the 
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degree of baseline-outcome correlation, play important roles in the power of the 

statistical methods. Depending on the direction of imbalance, CSA is prone to 

both false positive and false negative errors. When baseline imbalance is in the 

opposite direction of treatment effect, overestimation of treatment effect as a 

result of the way CSA corrects the imbalance leads to false positive error, thus 

indicating treatment effect when there is none. Similarly, when baseline 

imbalance is in the same direction as the treatment effect, there is 

underestimation of treatment effect by CSA, also as a result of the way it handles 

baseline imbalance. Here, the test based on CSA fails to identify an effect when 

one exists.  

 When the effect estimate is conditional on a baseline imbalance that occurs in 

the same direction as the treatment effect, then the nominal power of the trial 

which equals the statistical power of the unadjusted analysis is exaggerated by 

the effect of the imbalance that was not accounted for by the unadjusted analysis 

– resulting in false positive error. Also, when effect estimate is conditional on 

baseline imbalance that exists in the opposite direction from the treatment effect, 

then the nominal power or the power of the unadjusted analysis by ANOVA is 

underestimated by the effect of the imbalance which the test cannot account for, 

thus resulting in false negative error. When imbalance exists, ANCOVA presents 

a mechanism of handling such imbalance in such way that the effect of the 

imbalance is removed, and thus does not affect the conclusion as to the 

treatment effect. 
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Depending on the levels of other factors, when imbalance is in the same 

direction as treatment, there is a risk that ANOVA will indicate a treatment effect 

which the adjusted analyses (CSA and ANCOVA) fail to identify; CSA has the 

least propensity of detecting a treatment effect in this circumstance. Similarly, 

when imbalance is in the opposite direction of a treatment effect, the adjusted 

analyses are better placed to indicate a treatment effect since they are more 

powerful than the unadjusted analysis. Thus, in this circumstance, there is a 

chance of indicating treatment effect by either ANCOVA or CSA which ANOVA 

may fail to detect. The risk of ANCOVA and CSA making different inferences on 

treatment effect is higher with baseline imbalance occurring in the same direction 

as treatment than with imbalance in the opposite direction – the possibility is for 

ANCOVA to indicate a treatment effect which CSA may fail to identify here.   

In addition, with imbalance in the same direction as treatment, there is a 

possibility for all the statistical methods (ANOVA, CSA and ANCOVA) to be 

inconclusive on the estimate of treatment effect. The effect of imbalance in the 

same direction as treatment that is not accounted for by ANOVA makes the 

method prone to false positives – i.e. this method will sometimes indicate a 

treatment effect when none exists. Also, CSA is known to be susceptible to false 

negatives and as a result will be unable to identify a treatment effect when one 

exists. On the other hand, ANCOVA in this situation also ends up having a 

conditional power that is less than the nominal power with which the study is 

designed to detect a given magnitude of effect.  



  

273 

 

However, since ANCOVA yields an unbiased estimate of effect, it thus implies 

that the conditional power by ANCOVA is actually correct but in relation to the 

adjusted effect that it produces. Thus, the reduced power ‘suffered’ by ANCOVA 

when baseline imbalance is in the same direction of treatment effect though 

proportional to its estimate of effect can be viewed as a trade-off for using this 

method which of course guarantees unbiased estimate of effect. This is no 

problem as it only occurs when the treatment effect so detected is smaller than 

the minimum clinically important difference (MCID). The reduced power by 

ANCOVA here is not sufficient to compromise appropriate statistical adjustment 

using this method for the crude estimate of effect by ANOVA. 

8.3.4 Efficiency 

The choice of statistical method for the analysis of a randomised controlled trial 

has an important influence on sample size requirements. Appropriate statistical 

adjustment has the benefit of a considerable reduction in the original sample size 

that would have been required if the crude unadjusted analysis by ANOVA were 

to be specified as the primary analysis. The level of the baseline-outcome 

correlation is the sole determinant of the comparative benefit in terms of sample 

size reduction between the unadjusted and the adjusted analysis. This 

observation is parallel to the findings for the precision of the estimate of effect; 

for a given trial scenario. Both attributes – efficiency (sample size reduction) and 

precision of estimate of effect – relate to the ability of the statistical methods to 

control the variability observed in the data. 
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With ANCOVA as the primary analysis, reduction in the original sample size 

when groups are comparable is approximately the same compared to when 

there is maximum or large imbalance in the treatment groups at baseline. Thus, 

if trial efficiency is in terms of relative reduction in the sample size requirement by 

these statistical methods, design methods (stratification, minimisation) that are 

aimed at making treatment groups similar have little or no benefit. Both size and 

direction of imbalance do not affect how much reduction in the original sample 

size will be recorded if ANCOVA is used instead of ANOVA. Realistically, this 

reduction in sample size by ANCOVA can reach half of the original sample size, 

and more in some trial scenarios. 

Unless the correlation of the covariate with the outcome exceeds 0.5, CSA is not 

more efficient than ANOVA. Both ANOVA and ANCOVA are more efficient or 

require a lesser number of patients at a given statistical power than CSA when 

correlation is less than 0.5. At such time also (when r<0.5), since CSA would 

require more patients to be studied on top of the original sample size, given a 

level of statistical power therefore, the estimate of effect by CSA cannot be valid. 

8.3.5 Review on current practices around baseline imbalance in RCTs 

There is increased awareness and preference for statistical adjustment in RCT 

compared to unadjusted or crude comparison of treatment effect between 

groups. However, a very considerable proportion of RCTs are still being 

analysed with baseline imbalanced not properly accounted for, ‘change from 

baseline’ being the commonest single statistical approach for the assessment of 

a continuous outcome variable. Presently, exploring baseline-outcome 



  

275 

 

correlation to inform which covariate(s) is included in the model for adjustment is 

far from being practiced. There has not been any improvement whatsoever in the 

way authors report the allocation techniques adopted in their trials compare to 

the practice 11 years ago despite various CONSORT statements that 

recommend clear description of the allocation procedure. Most authors that 

utilized stratified- blocking did not adjust for stratification factor and this is not 

consistent with the popular opinion that recommends that stratification or 

minimisation factors should be adjusted.   

 Although, compared to existing information, this study records a reduction in the 

level of practice regarding the use of test of significance to assess baseline 

comparability with a view to select covariates for statistical adjustment, an 

unacceptable level of authors of RCTs are still guilty. This practice lacks 

theoretical support and should be ignored in statistical analysis in clinical trial 

setting. A large imbalance in a non-prognostic covariate does not warrant 

statistical adjustment, whereas little or no baseline imbalance in a strong 

prognostic covariate should be appropriately accounted for to maximise precision 

of estimate of effect. 

8.3.6 Handling covariate(s) in empirical trial datasets  

Although all the trials are within the same health domain, the level of baseline-

outcome relationship differ from trial to trial; this observation has implication on 

what is statistically adjusted in each case. In real-life clinical trial settings, 

covariates specified a priori and entered in the model may be less prognostic 

than some others which are not specified and thus not accounted for. For 
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example socio-demographic variables such as: age, sex, and socio-economic 

status which often fall into that category are among the baseline variables with 

the least level of prognostic relationship with the outcome variable in each of the 

empirical trials. This raises doubt on the correctness of prior specification of 

variables for adjustment. Prior specification of covariates to adjust may be 

necessary but there should still be a cross-checking on such pre-specified 

covariates by assessing the baseline-outcome correlation to determine the actual 

prognostic importance of such pre-specified covariates. Information on 

prognostic strength of a covariate with an outcome is a post hoc issue and 

should be treated as such. 

Allowance should be made in the protocol to include any covariates that are 

considered as strongly prognostic with the outcome in the model for adjustment, 

even if such are not pre-specified. No other covariates may be included in the 

model apart from the baseline-outcome correlation unless it is considered 

prognostic (r>=0.3). A baseline-correlation of 0.3 has been recommended by 

previous authors though few in numbers (Cox & McCullough 1982; Senn 1994) 

as the least correlation a covariate should have with the outcome to be 

considered necessary for adjustment. This condition as was detailed in chapter 7 

is though necessary (results from the simulation in chapters 4 & 5 agree to this) 

but not really sufficient for covariate selection for adjustment. A covariate may 

have a correlation of at least 0.3 with the outcome and yet not be able to 

independently explain the variability in the outcome.  
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Researchers should avoid making their model unnecessarily complex, thus 

should include only few important covariate(s) that have important contributions 

to the variability in the outcome variable. Adjusted analysis that accounts for 

strong prognostic baseline factor(s) should be specified as primary analysis and 

should be emphasized in case the effect estimate that results is noticeably 

different from that obtained from the unadjusted analysis. In trial scenarios where 

there are many covariates that meet this criterion, adjusting for them all will not 

only increase the complexity of the statistical model for adjustment, it will also 

lead to the redundancy of some covariates in the model. A necessary and 

sufficient condition for inclusion of covariates in the model for adjustment 

includes subjecting such prognostic covariates with correlation of greater than or 

equal to 0.3 with the outcome variable to test of collinearity and then establishing 

the amount of independently explained variance in the outcome variable for each 

of them. This study proposes that a covariate should be capable of explaining at 

least 0.005 of the variability in the outcome independently before including it in 

the final model. The reason for this as evidenced from the analysis of the 

empirical datasets is that there is little or no implication on both the precision and 

size of estimate of effect for including a covariate with lesser R2-change in the 

final model. 

 This proposition for covariate selection ensures the best estimate of effect with 

as parsimonious an overall model as possible. As a result of the importance of 

the information on the prognostic strength of covariates in the statistical analysis 

of clinical trials, authors should endeavour to report on this by specifying 
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baseline-outcome correlations in their trials especially those that are greater than 

or equal to 0.3.    

8.4 Recommendations 

Following the findings of this study, the following are recommended in view of the 

future statistical analysis of randomised controlled trials. 

 Appropriate statistical adjustment of prognostic covariates is important in 

all real life trial scenarios irrespective of whether measures are taken to 

balance baseline imbalance or not. 

 Using test of significance to assess baseline imbalance lacks theoretical 

support and should be ignored in practice. 

 In any given trial, prognostic strength of covariates should be assessed by 

using appropriate correlation coefficients; such covariates with correlation 

of at least 0.3 with the outcome should be marked and reported. This will 

inform what information to collect in future trials. Some pre-specified 

covariates are often less prognostic than some other covariates that 

already exist in the trial data; they are thus less useful. Pre-specification of 

covariate to be adjusted will fail to make use of existing information that 

can lead to aless biased estimate of effect. Pre-specification is therefore 

not efficient and should be avoided in practice. 

 Not all covariates that have at least correlation of 0.3 with the outcome are 

fit for inclusion in the model for statistical adjustment. Many variables have 

overlapping effect; it is those variables that have major independent 
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effects on the outcome variable that statisticians need to more readily 

target as covariates. Covariates with correlation of at least 0.3 which are 

also capable of independently explaining a considerable variability in the 

outcome should be entered into the model. In this study, I propose a 

prognostic covariate should be capable of independently explaining at 

least 0.005 of the variability in the outcome to be considered for inclusion 

in the model. 

 The statistical analysis section of any trial protocol should be clear on the 

path-way to statistical analysis and be transparent on the approach to 

statistical adjustment. 

 Change score analysis does not perform better than ANOVA or crude 

estimate of effect unless the correlation between the pre and post 

treatment score exceeds 0.5. Thus, CSA should not be used unless there 

is an established correlation of at least 0.5 between the pre and post 

treatment score. 

  Even then, neither ANOVA nor CSA should be specified as the method 

for the primary analysis as they are prone to false positives and false 

negative errors depending on the direction of imbalance. 

 ANCOVA should be specified as the primary analysis. Adjusting for 

variables that are independently prognostic will yield a markedly better 

estimate of effect. However, there are usually no considerable changes in 

both the estimate of effect and the precision of estimate after the third or 

fourth covariate is added to the model. 
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 Simplicity of models is very important and should be preserved as much 

as possible. 

 ANCOVA is most efficient and specifying it as the method for the primary 

analysis leads to considerable reduction in the original sample size 

irrespective of the direction and size of imbalance. This benefit should be 

appropriated at the design stage of the trial. It minimises trial costs and 

time of result delivery. From an analysis viewpoint, it ensures that a 

reduced number of patients are exposed to adverse effects associated 

with drug or trial of any intervention whilst maintain the power of the study 

to address the hypothesis is sets out to test . 

8.5 Limitations 

This study concerns randomised controlled trials in which there is a single post 

treatment analysis of a continuous outcome variable; thus, the primary outcome 

variable is assumed to be normally distributed. The findings of the study 

therefore are limited in interpretation to RCTs with normally distributed outcomes 

and they should not be generalised to RCTs in which the outcome variable is 

non –normal; such as that which involve a binary outcome or that in which time-

to-event is the primary outcome. Another limitation of the study is that it does not 

give considerations to missing data, which are almost a natural phenomenon in 

follow-up studies. Although there are formal procedures and techniques by which 

missing data are handled, this topic was deemed to be outside the scope of this 

study. 
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8.6 Future research areas 

In view of the foregoing, future research could usefully investigate the trial 

attributes already considered in this study but for outcome variables on different 

scales of measurement, for example, binary outcomes or time-to-event 

outcomes for trials involving survival analysis. Another possible investigation in 

this domain would be to assess the effect of repeated measures on the trial 

attributes (bias, precision, statistical power and efficiency) already studied in 

relation to particular statistical methods appropriate for such trials. It might be of 

interest to incorporate the idea of missingness into the hypothetical trials 

datasets to determine how this might affect the results. A further possible area of 

research interest is to investigate what happens if any of the underlining 

assumptions for ANCOVA are violated; for example, the assumption of linear 

relationship between the covariate and outcome variable. 

8.7 Conclusion 

If CSA or ANOVA must be used as a primary method, the level of baseline-

outcome correlation must be checked to ensure that it is high or low enough 

respectively for the purpose. Statistical adjustment that properly adjusts for 

covariate imbalance must be specified as primary method of analysis; for 

example, model-based adjustment methods; ANCOVA or linear regression for 

numerical endpoints, logistic and Cox regression for the binary and time to event 

outcomes respectively. It is no longer sufficient to include covariates that have 

been specified a priori in the model for adjustment, researchers should assess 

the level of relationship covariates have with the outcome. Only when a covariate 
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has a correlation of at least 0.3 with the outcome variable and capable of 

explaining appreciable amount of the variability in the outcome say 0.005 that 

such covariate should be included in the model for adjustment. Even though 

conclusion on treatment effect across the statistical methods may not differ, the 

need for an unbiased estimate of effect which is close to the true value should 

make authors always specify appropriate covariates adjusted method as the first 

line statistical methods in RCTs.    
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Appendices 
Appendix 1 
set obs n 
   g g=mod(_n,2) 
   g z=invnorm(uniform())*1 
   g k=invnorm(uniform())*1 
   g r=0.3 
   g y= z*r+k*(1-r^2)^.5 
   replace z=z-g*z’ 
   replace y=y-g*y 
   g c=z-y 
   regress y g 
   regress c g  
   regress y g z 
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Appendix 2 

Figure 1: Directional pattern of precision of statistical methods for the 
analysis of RCTs at levels of baseline imbalance, baseline-outcome 
correlation and differing effect sizes – 90% power 
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Figure 2: Directional pattern of bias of statistical methods for the analysis 
of RCTs at levels of baseline imbalance, baseline-outcome correlation and 
differing effect sizes – 90% power 
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Figure 3: Ratio of the standard error (SE) of the adjusted analysis 
(ANCOVA) to unadjusted analysis (ANOVA) at different hypothetical trial 
scenarios - 90% power 
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Figure 4: Ratio of the standard error (SE) of the two adjusted analysis 
(ANCOVA and CSA) at differing hypothetical trial scenarios – 90% 
power
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Figure 5: Ratio of the standard error (SE) of CSA and ANOVA at differing 
hypothetical trial scenarios – 90% power 
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Table 1: Power (in percentage) of statistical methods at levels of baseline-
imbalance (Z) in the opposite and same direction of effect and baseline-
outcome correlation [Treatment effect size Y= 0.2; n= 1054] 
 

Methods           Z Levels of Correlation 

ANOVA 
-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

0.1 0.3 0.5 0.7 0.9 

90.4 90.1 89.5 90.1 89.2 

90.4 90.1 89.5 90.1 89.2 

90.4 90.1 89.5 90.1 89.2 

90.4 90.1 89.5 90.1 89.2 

90.2 90.1 89.5 90.1 89.2 

90.4 90.1 89.5 90.1 89.2 

90.4 90.1 89.5 90.1 89.2 

CSA      

-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

97.5 99.3 99.9 99.9 99.9 

91.4 98.9 99.9 99.9 99.9 

91.4 97.2 99.4 99.9 99.9 

65.7 76.5 89.4 98.9 99.9 

39.7 27.0 48.5 71.2 99.0 

22.4 26.3 34.6 52.3 95.3 

16.1 19.7 25.0 36.9 82.6 

ANCOVA      

-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

93.5 98.2 99.7 99.9 99.9 

92.7 97.7 99.6 99.6 99.9 

92.7 97.0 99.2 99.9 99.9 

90.5 92.7 96.8 99.4 99.9 

72.7 85.5 85.6 90.9 99.7 

86.9 83.6 81.3 84.7 98.3 

86.6 80.7 74.9 75.2 92.3 
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Table 2: Power (in percentage) of statistical methods at levels of baseline-
imbalance (Z) in the opposite and same direction of effect and baseline-
outcome correlation [Treatment effect size Y= 0.5; n= 172] 
 

Methods           Z Levels of Correlation 

ANOVA 
-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

0.1 0.3 0.5 0.7 0.9 

91.5 91.6 91.4 91.2 90.7 

91.5 91.6 91.4 91.2 90.7 

91.5 91.6 91.4 91.2 90.7 

91.5 91.6 91.4 91.2 90.7 

91.5 91.6 91.4 91.2 90.7 

91.5 91.6 91.4 91.2 90.7 

91.5 91.6 91.4 91.2 90.7 

CSA      

-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

96.7 99.1 99.9 99.9 99.9 

94.3 98.1 99.7 99.9 99.9 

91.7 96.5 99.4 99.9 99.9 

68.0 77.5 89.6 98.7 99.9 

31.5 39.0 51.5 73.1 99.4 

23.9 27.9 36.5 56.6 95.8 

17.9 21.2 26.4 39.1 83.6 

ANCOVA      

-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

93.7 98.2 99.9 99.9 99.9 

93.5 97.8 99.7 99.9 99.9 

93.3 97.1 99.3 99.9 99.9 

91.8 93.3 97.0 99.5 99.9 

88.9 86.2 86.4 92.1 99.9 

88.2 83.2 81.5 84.8 98.5 

87.5 80.7 77.0 77.4 93.5 
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Table 3: Power (in percentage) of statistical methods at levels of baseline-
imbalance (Z) in the opposite and same direction of effect and baseline-
outcome correlation [Treatment effect size Y= 0.8; n= 68] 
 

Methods           Z Levels of Correlation 

ANOVA 
-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

0.1 0.3 0.5 0.7 0.9 

91.5 90.7 90.6 90.2 89.8 

91.5 90.7 90.6 90.2 89.8 

91.5 90.7 90.6 90.2 89.8 

92.5 91.4 90.8 91.0 90.7 

91.5 90.7 90.6 90.2 89.8 

91.5 90.7 90.6 90.2 89.8 

91.5 90.7 90.6 90.2 89.8 

CSA      

-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

98.2 99.5 99.9 99.9 99.9 

96.3 99.0 99.8 99.9 99.9 

92.3 97.9 99.6 99.9 99.9 

71.1 81.3 91.3 99.4 99.9 

31.6 39.2 50.8 74.3 99.5 

23.9 27.9 37.1 55.5 96.7 

17.3 20.8 26.6 39.7 83.9 

ANCOVA      

-1.96 
-1.64 
-1.28 
0 
1.28 
1.64 
1.96 

93.7 97.6 99.6 95.1 99.9 

93.8 97.4 99.6 99.9 99.9 

93.5 97.0 99.3 99.9 99.9 

92.7 94.3 97.7 99.6 99.9 

86.7 83.3 83.5 90.8 99.8 

85.2 80.0 77.6 81.8 98.5 

84.1 76.4 72.2 72.2 93.3 
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Figure 6: Relative sample sizes for using ANOCVA instead of ANOVA at           
differing level of baseline-outcome correlation 
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Figure 7: Relative sample sizes for using ANCOVA instead of ANOVA at 
differing trial scenarios 
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Figure 8: Relative sample sizes for using ANCOVA instead of CSA at 
differing level of baseline-outcome correlation 
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Figure 9: Relative sample sizes for using ANCOVA instead of CSA at 
different trial scenarios 
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Figure 10: Relative sample sizes for using CSA instead of ANOVA at 
differing level of baseline-outcome correlation 
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Figure 11: Relative sample sizes for using CSA instead of ANOVA at 
differing trial scenarios 
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Figure 11b: Relative sample sizes for using CSA instead of ANOVA at 
differing trial scenarios 
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Appendix 3 

Up-to-date thesis Plan 

The whole thesis is an eight chapters (8) document with references and 
appendices 
 
Chapter 1: This chapter provides background information to the study. It makes 
statements on existing issues and concerns around covariate imbalance in 
clinical trial setting. It also touches on what the study seeks to do and how it 
would be done. 
 
Chapter 2: This chapter is more or less the general chapter of the study; it brings 
together in single chapter existing information on selected concepts on the 
design and analysis of clinical trials.    
 
Chapter 3: This is the chapter on the methodology employed in the study. It 
gives; information on the procedure and the statistical programme that drives the 
simulation, information on the level of factors involved in the trial scenarios and 
theory of the statistical methods involved.  
 
Chapter 4: This is the first chapter on the result of the simulation. It presents 
result on the relative precision and bias of the statistical methods of ANOVA, 
change score analysis (CSA) and ANCOVA.  
 
Chapter 5: This is the second chapter on the results based on simulation. It 
presents result on the statistical power and efficiency of these methods and as in 
chapter 4, it uses both tables and graphs for illustration. 
 
Chapter 6: This chapter is a systematic review on the current practices around 
baseline imbalance in RCT setting. 
 
Chapter 7: This chapter seeks to inform the analysis of empirical trial datasets in 
the centre by the result of the simulation. It seeks information on the levels of 
baseline-outcome correlations that exist and what covariates to statistical adjust 
in trials involving musculoskeletal conditions 
 
Chapter 8: This is the chapter on the final conclusion and recommendations of 
the study.  
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Appendix 4 

Hypothetical trial scenarios at differing levels of treatment effect, levels of 
standardized imbalance and sample sizes at 80 and 90% nominal powers. 
 
Outcome 

  
Baseline covariate mean imbalance 

Effect 
size Power 

 n 
(per 
group) 

n 
(total) SE Z score 

Absolute 
imbalance 

       1       0.2 0.8 394 788 0.07124705 1.281551566 0.091306768 
2.      0.2 0.8 394 788 0.07124705 1.644853627 0.117190969 
3.      0.2 0.8 394 788 0.07124705 1.959963985 0.139641652 
4.      0.2 0.9 527 1054 0.06160411 1.281551566 0.078948844 
5.      0.2 0.9 527 1054 0.06160411 1.644853627 0.101329744 
6.      0.2 0.9 527 1054 0.06160411 1.959963985 0.120741838 
7.      0.5 0.8 64 128 0.176776695 1.281551566 0.226548451 
8.      0.5 0.8 64 128 0.176776695 1.644853627 0.290771788 
9.      0.5 0.8 64 128 0.176776695 1.959963985 0.346475956 
10.    0.5 0.9 86 172 0.15249857 1.281551566 0.195434782 
11.    0.5 0.9 86 172 0.15249857 1.644853627 0.250837827 
12.    0.5 0.9 86 172 0.15249857 1.959963985 0.298891706 
13.    0.8 0.8 26 52 0.277350098 1.281551566 0.355438452 
14.    0.8 0.8 26 52 0.277350098 1.644853627 0.456200315 
15.    0.8 0.8 26 52 0.277350098 1.959963985 0.543596203 
16.    0.8 0.9 34 68 0.242535625 1.281551566 0.31082191 
17.    0.8 0.9 34 68 0.242535625 1.644853627 0.398935603 
18.    0.8 0.9 34 68 0.242535625 1.959963985 0.47536109 
19.    0.2 0.8 394 788 0.07124705 -1.28155157 -0.091306768 
20.    0.2 0.8 394 788 0.07124705 -1.64485363 -0.117190969 
21.    0.2 0.8 394 788 0.07124705 -1.95996398 -0.139641652 
22.    0.2 0.9 527 1054 0.06160411 -1.28155157 -0.078948844 
23.    0.2 0.9 527 1054 0.06160411 -1.64485363 -0.101329744 
24.    0.2 0.9 527 1054 0.06160411 -1.95996398 -0.120741838 
25.    0.5 0.8 64 128 0.176776695 -1.28155157 -0.226548451 
26.    0.5 0.8 64 128 0.176776695 -1.64485363 -0.290771788 
27.    0.5 0.8 64 128 0.176776695 -1.95996398 -0.346475956 
28     0.5 0.9 86 172 0.15249857 -1.28155157 -0.195434782 
29.    0.5 0.9 86 172 0.15249857 -1.64485363 -0.250837827 
30.    0.5 0.9 86 172 0.15249857 -1.95996398 -0.298891706 
31.    0.8 0.8 26 52 0.277350098 -1.28155157 -0.355438452 
32.    0.8 0.8 26 52 0.277350098 -1.64485363 -0.456200315 
33.    0.8 0.8 26 52 0.277350098 -1.95996398 -0.543596203 
34.    0.8 0.9 34 68 0.242535625 -1.28155157 -0.31082191 
35.    0.8 0.9 34 68 0.242535625 -1.64485363 -0.398935603 
36.    0.8 0.9 34 68 0.242535625 -1.95996398 -0.47536109 
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37.    0.2 0.8 394 788 0.07124705 0.000000000 0.000000000 
38.    0.5 0.8 394 128 0.07124705 0.000000000 0.000000000 
39.    0.8 0.8 394 52 0.07124705 0.000000000 0.000000000 
40.    0.2 0.9 527 1054 0.06160411 0.000000000 0.000000000 
41.    0.5 0.9 527 172 0.06160411 0.000000000 0.000000000 
42.    0.8 0.9 527 68 0.06160411 0.000000000 0.000000000 
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Appendix 5 

List of Abbreviations 

 

ANCOVA                     Analysis of covariance 

ANOVA                        Analysis of variance 

 A &E                            Advice and exercise 

Back pain                    Pain intensity: 0-10 numerical rating scales of least   

                                     and average pain in last 2 weeks and current pain 

CARA                           Covariate-adjusted response adaptive 

CONSORT                   Consolidated standard of reporting trials 

CPMP                           Committee for proprietary medicinal products  

CSA                             Change score analysis 

CS-CAT                       Catastrophising 

CS-CSS                       Coping self-statement 

CS-IBA                        Increasing activity level 

CS-PH                         Praying or Hoping                    

EQ-5D                         Preference – based health utility 

HADS_ANX                Anxiety subscale score 

HADS_DEP                 Depression subscale score 

IPQR                           Illness perception questionnaire revised 

ITT                               Intent-to-treat analysis 

MT                               Manual therapy 

MCS                            Mental component Score 

MSE                             Mean square error 

NPQ                             Northwick park total score 
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PCS                             Physical component score 

PSWD                          Pulsed short wave diathermy  

RCTs                           Randomised controlled/Clinical trials 

RMDQ                         Roland and Morris Disability Questionnaire (Back pain      

                                   Disability) 

SE                               Standard error 

SF12                           Short Form 12 (Health related quality of life) 

SF-Mc Gill VAS           Average pain in last week 

STROBE                     Strengthening the reporting of observational studies in  

                                   Epidemiology 

TSK                            Tampa Scale Kinesiophobia 
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