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Abstract

Laminar fluid flows typically undergo transition to turbulence as flow speed increases.

This is a problem of fundamental importance in fluid mechanics and yet, despite

research over many decades, laminar-turbulent transition is still not well understood.

This thesis presents new results indicating how small but finite amplitude disturbances

in a laminar boundary layer flow can experience rapid amplification potentially leading

quickly to turbulence.

It is well known that when the freestream disturbance level is low enough, linear

stability theory predicts exponential growth of boundary layer disturbances. However,

in many flow structures these growth rates are relatively weak. Furthermore, linear

theories do not predict amplitude thresholds for breakdown to turbulence; they only

give growth factors.

Wind tunnel experiments have shown that transition involves nonlinear interaction of

wavy disturbances, and that resonant mechanisms are particularly important. Weakly

nonlinear theory provides the framework for studying these interactions. Previous the-

ories have been developed in the large Reynolds number limit, but moderate Reynolds

numbers are more relevant to practical applications. It is shown here that in the latter

case, the interaction coefficients take a qualitatively different form such that rapid

growth may be expected when disturbances exceed a critical amplitude.

The behaviour is shown to be prevalent at low amplitude thresholds even for subcritical

Reynolds numbers, meaning that finite, but numerically small perturbations tend to

‘blow-up’ even if the flow is linearly stable. The scenario agrees with experiments, and

so may provide a dominant mechanism for laminar-turbulent transition.
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Chapter 1

Introduction

1.1 Motivation and Previous Results

Flows of low-to-moderate viscosity fluid are frequently seen to undergo spontaneous

transition from a developed, laminar structure to a turbulent state characterised by

intensely nonlinear diffusive behaviour. It is of great interest to mathematicians and

engineers to develop models that can account for this phenomenon, in part with a view

to controlling transition. Sometimes the desire may be to facilitate turbulence, for

instance as an efficient mechanism of heat transfer or a means of achieving liquid-jet

breakup in fuel injection systems (see Mathieu and Scott, 2000, p20-22.). Conversely, in

aerodynamic applications turbulent skin-friction drag can be as much as ten times that

of laminar flow at the same Reynolds number (Joslin, 1998), and accounts for 50% of

the total drag experienced by a subsonic aircraft (Thibert et al., 1990; Edwards, 2006).

This means that any delay in turbulent onset offers huge potential for fuel savings as

well as reduction of greenhouse gases and other pollutants.

Here, interest is focussed on pre-turbulent scenarios involving low levels of viscosity

and small amplitude disturbances, so that linear or weakly nonlinear theories may

be applicable. If disturbances are found to grow significantly under these conditions,

then a cascade to shorter scales might be initiated, ultimately providing a route to

turbulence. Flow development in this regime may also provide crucial information

about the downstream flow structure, such as the location of turbulent spots.
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The governing equations are the Navier-Stokes (NS) equation and incompressibility

condition, describing conservation of momentum and mass, respectively. These equa-

tions are introduced in non-dimensional form in Appendix A, for incompressible flow.

A Cartesian coordinate system is assumed, although the methods discussed in this

thesis are applicable in any curvilinear coordinate frame. The Reynolds number Re,

appearing in the conservation of momentum equation (A.1.1a), is a non-dimensional

parameter depending on the kinematic viscosity and characteristic length and velocity

scales of the background flow. The size of this parameter determines the importance

of viscous dissipation and diffusion relative to other effects.

In many of the relevant scenarios, viscous diffusion is responsible for the formation

of a region of sharp velocity gradient, known as a shear layer. For instance, in the

case of flow past a wall or bluff body, a region of strong wall-normal shear develops

when the level of free-stream viscosity is low. Shear layers are also a feature of many

unbounded flows, such as jets, wakes and mixing layers. This thesis will focus on the

case of boundary layer flow past a semi-infinite flat plate (Appendix A).

Linear Theory

The development of small amplitude disturbances introduced to shear layers can be

studied by straightforward asymptotic expansion, resulting in a system of linearized

partial differential equations. In some cases, such as channel flow or pipe Poiseuille

flow, the stream lines are uniformly parallel so that the linearised NS equations admit

normal mode solutions. This leads to a system of ordinary differential equations for the

velocity and pressure components, as studied by Orr (1907) and Sommerfeld (1908).

Linear stability depends on the imaginary parts of the wavevector and frequency, as

determined by the dispersion relation.

The Orr-Sommerfeld (OS) theory may also be used to study the stability of ‘quasi-

parallel’ flows, in which the velocity profile does not vary significantly over distances

comparable to the wavelength of Tollmien-Schlichting (TS) type perturbations. Ac-

cording to this approach the Reynolds number is treated as a constant parameter in
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the analysis, but nevertheless takes a local value that is dependent on the downstream

distance or boundary layer thickness. The pioneering experiments of Schubauer and

Skramstad (1947) were the first to show that such a theory could be used to successfully

predict transition based on spectral content, provided that freestream disturbance levels

are sufficiently low. Subsequent experiments and direct numerical simulation, as well

as attempts to incorporate nonparallel effects in an ad-hoc way, have all indicated that

OS theory is a good approximation for unstable waves in a flat plate boundary layer

flow (see Appendix B.5 for details).

A completely rational and self-consistent framework for the inclusion of both weak

non-parallelism and weak nonlinearity can be developed using matched asymptotic

techniques, as in Hall and Smith (1984), but the presence of separate scales for nonlin-

earity and basic flow nonparallelism necessitates considerable effort in determining the

hierarchical structure of approximations, and the theory does not work well at moderate

Reynolds numbers. If basic flow non-parallelism and nonlinear wave interactions are

neglected then the results agree with OS theory (see Section 3.1.1). The non-parallel

assumption can be justified retrospectively after it has been shown that wavelengths

of unstable disturbances are short compared to the length scale over which the basic

flow evolves, but nevertheless long enough that a multiple scales approach is valid.

Nonlinearity

Whilst the monochromatic disturbance sources used by early experimenters provided

a good test of the linear theory, a better simulation of the natural environment is

given by an impulsive disturbance applied to a point in the boundary layer to generate

a wavepacket which undergoes dispersion, due to selective amplification and inter-

action of the spectral components, as it propagates. Experiments of this type were

first performed by Gaster and Grant (1975), who found that the wavetrain became

increasingly distorted as the packet developed and that the distortion was linked to

the intensification of a particular band of oblique spectral components.



4

Gaster (1978) also first reported that the modulated wavepackets produced by

a point source become nonlinear at much lower amplitudes than purely harmonic

disturbances, with subsequent breakdown to turbulence occurring ‘violently’. These

findings, together with the inability of linear theory to provide amplitude thresholds

for breakdown, provide strong motivation for the consideration of nonlinear wave

interactions.

There is also a case to be made for studying nonlinearity for monochromatic waves,

giving the Stuart-Landau (S-L) equation (Landau, 1944; Stuart, 1960) and subsequent

refinements such as the Ginzburg-Landau equation (see Stewartson and Stuart, 1971).

However, the wave interactions that will be considered in this thesis take place at

quadratic order in disturbance amplitude and may therefore be expected to occur

‘sooner’ than S-L type interactions, which take place at cubic order in amplitude and

are governed by longer length/time scales.

The methods discussed below will be described in terms of a temporal analysis,

which is used throughout the thesis. That is, wavevectors will be assumed to be real,

whilst complex frequencies account for linear growth/decay. In general, for convectively

unstable flows such as the Blasius boundary layer either a temporal or spatial analysis

may be considered, and one may readily convert between the two representations (see

Appendix B.4). The temporal approach is simpler, although a spatial choice would be

more appropriate if nonparallel effects were to be included.

1.2 Quadratic Order Tollmien-Schlichting Nonlin-

earities

Quadratic order resonance may occur between three waves having wavevectors kj and

frequencies ωj that satisfy

k0 + k1 + k2 = 0, (1.2.1a)

Re[ω0 + ω1 + ω2] = ∆, (1.2.1b)
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where the detuning parameter ∆ is zero for waves that are in exact resonance. Both

detuning and linear growth/dissipation must be sufficiently small as to permit sepa-

ration of the scales for wavy and non-wavy motion. Evolution equations for the wave

amplitudes are then deduced in a manner similar to the derivation of the S-L equation,

by applying a ‘solvability condition’ to eliminate secular behaviour (see Section 2.1).

The evolution equations are coupled through nonlinear terms, and the solutions

can exhibit a variety of behaviours, depending on the parameter values and initial

conditions. Of particular interest to the topic of transition is the apparent possibility

of unbounded solutions (e.g. Wilhelmsson et al., 1970), which are the focus of this

thesis, although the system also exhibits both periodic and chaotic solutions and offers

rich opportunities for bifurcation analysis (e.g. Wersinger et al., 1980).

The first example of a three-wave resonance for Blasius flow was identified by

Craik (1968), who considered a symmetric case consisting of a plane wave spanned

by two oblique waves of equal wave-angle, such that the streamwise wavenumbers and

frequencies of the plane and oblique waves are in the ratio 2 : 1. In the notation used

above, this can be written as

k0 = (α/2, β); k1 = (α/2,−β); k2 = (−α, 0), (1.2.2)

where α and β must be chosen so that (1.2.1b) is satisfied.

Craik (1971) also demonstrated that such a resonance could lead to ‘explosive’

amplitude growth under certain conditions, as described in Section 2.2. This might

account for the strongly three-dimensional structures seen in experiments, and the 2 : 1

ratio is in accordance with the observations of Gaster and Grant (1975), who found that

local maxima were produced at roughly half the frequency and streamwise wavenumber

of the favourably amplified plane modes. Gaster and Grant did not attribute their

findings to resonant interactions, but the experiment may nevertheless be seen as early

support of a weakly nonlinear analysis based on OS theory.

Craik-type triads have subsequently been studied in may contexts (see Craik, 1985),

and are known to play a vital role in shear layer instability. The theory has been used
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to correctly predict the relationship between the wavenumbers and frequencies of the

nonlinearly excited waves in vibrating ribbon experiments, with enhanced growth rates

exhibited for modes satisfying the resonance conditions (e.g. Kachanov and Levchenko,

1984; Corke and Mangano, 1989). Likewise, in a series of carefully controlled ex-

periments involving wavepackets injected into a boundary layer using a loudspeaker,

Medeiros and Gaster (1999a,b) observed excitation of oblique modes corresponding

to subharmonic frequencies of the least stable two dimensional wave. They repeated

their experiments with the subharmonic oblique modes entirely removed from the initial

disturbance, and found that the results were barely altered. Craik (2001) has explained

that the subharmonic modes may be quickly re-established by triad interaction if they

are not entirely removed from the source or the background flow.

The possibility of 2 : 1 resonance between only two waves of the same wave-angle

may also be considered, although it has been shown (e.g Nayfeh and Bozatli, 1979,

1980) that the least stable waves for Blasius flow do not excite subharmonic frequencies

in this manner, because of large detuning. A superharmonic resonance, in which the

least stable modes excite higher frequencies, would not account for the invigoration of

subharmonic components typically observed in experiments, but might explain other

features such as the destabilising effect of streamwise modulation. Healey (1995a) has

shown that a strong nonlinear breakdown can be triggered by increasing the strength

of modulation sufficiently. This behaviour was found to be dependent on the phase

difference between the envelope and carrier wave, and Healey found evidence to suggest

that the effect may be due to a superharmonic 2 : 1 resonance between two plane waves.

1.3 Research Objectives

The multiple scales approach can only be applied consistently when growth rates

are asymptotically small. For Reynolds numbers of experimental interest OS theory

predicts O(1) growth rates, unless the waves are on the neutral curve. By contrast, for

upper branch asymptotic scalings, or in the high-frequency limit of the lower branch

theory the growth rates are asymptotically small even away from the neutral curve, so
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that multiple scales can be applied over relatively wide parameter regimes.

In a fully rigorous high-frequency analysis of Craik-type triads, Smith and Stewart

(1987) found that the coefficients of the nonlinear terms appearing in the coupled am-

plitude evolution equations were purely imaginary. This is in contrast to the numerical

OS results of Usher et al. (1975), which were obtained at finite Reynolds numbers and

indicated fully complex nonlinear coefficients. The distinction is important, because

it is well known that for purely imaginary (or purely real) nonlinear coefficients, the

system can only exhibit unbounded growth if the coefficients are equisigned when cast

in canonical form (see Section 2.2). The coefficients derived by Smith and Stewart did

not meet this criterion, which would rule out the possibility of explosive growth.

In this thesis, as in Usher et al. (1975), a pragmatic approach will be taken using

multiple scales theory together with OS results at experimentally relevant parameter

regimes, since growth rates are numerically small. The aim is to investigate the nature

of the nonlinear coefficients in greater detail, and to determine whether resonant triads

could provide explosive amplitude growth for the Blasius boundary layer at moderate

Reynolds numbers and frequencies. The effects of detuning and triad coupling are also

considered.

A weakly nonlinear theory based on OS expansion is presented in Chapter 2,

together with results for conservative wave interactions. The novel feature of this

chapter is that the nonlinear interaction coefficients have been derived in general form.

Numerical and asymptotic evidence for the complex nature of the interaction coef-

ficients is provided in Chapter 3, and the amplitude evolution equations are analysed

in more detail allowing for the complexity of the coefficients. Results indicate that

explosive growth might be possible for a wide class of triad interactions, provided that

nonlinear growth is not offset by the effects of linear damping.

In Chapter 4, a sweep of the parameter space is conducted with a view to estab-

lishing which are the most ‘dangerous’ wavenumber combinations from a single triad

perspective. The chapter also aims to assess the amplitude thresholds required for blow-

up to be observed. This requires a pragmatic definition of the timescale, such that the
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instability takes hold before linear effects or downstream evolution dominate. The work

in the chapter is largely based on parallel flow theory, although the implications of a

quasi-nonparallel approach are also considered. Finally, some evidence is presented to

indicate the possible effect of coupling between triads sharing one or more common

wavevectors.
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Chapter 2

Weakly Nonlinear Theory

Weakly nonlinear asymptotic theories may be derived through successive perturbation

of the linear problem, as determined by the complete system of motion (A.1.1). The

key small parameter is the disturbance amplitude ǫA, and when this quantity tends to

zero we recover the equations of classical linear stability theory (B.1.3).

A decomposition comprised of normal modes proportional to exp {i(kj .x− ω
(m)
j t)}

will be assumed, where the wavevector kj is real and ω
(m)
j represents them-th eigenvalue

of the leading order dispersion relation. This temporal stability approach is justified

in Appendix B.4. The methodology and resulting dynamical systems are applicable to

any steady-state flow that may be considered amenable to OS stability analysis.

A multiple-scale perturbation approach (e.g. Hinch, 1991; Stewartson and Stuart,

1971) is required in order to avoid a breakdown in the expansion structure that would

typically occur at quadratic order due to three-wave, and possibly two-wave, interaction

processes. Accordingly, the eigenmodes are assumed to undergo amplitude modulation

on a longer time/length scale that offsets secular behaviour, and also accounts for

the amplitude-dependent nature of disturbance evolution. An inherent difficulty then

arises in determining how the linear growth term should be treated, since Re[ω(m)(kj)]

is not an eigenvalue of the leading order problem, resulting in uncertainty over the

omission or inclusion of the growth term Im[ω(m)(kj)] in the linear operator for any of

the higher harmonics. It is supposed that the harmonic part of the linear operator is

precisely described by the OS equation. This restricts attention to the consideration
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of waves that are neutral or nearly neutral in the sense that

max|Im{ω(m)
j }|

min|Re{ω(m)
j }|

≤ O(ǫA
n−1), (2.0.1)

where n is the order of nonlinearity considered, ǫA is the small parameter characterising

the amplitude of the disturbance, and {ω(m)
j } is the (possibly infinite) set of interacting

eigenfrequencies, so that linear growth/decay is smaller or comparable to the nonlinear

contribution. Plots showing normalised growth rates for individual waves at Reynolds

numbers of interest are provided in Fig. 2.1, illustrating the broad parameter space

where weakly nonlinear theory might be considered based on OS results. By Rδ = 2000

the maximum normalised growth rate is still less than 7 parts in 100.

The focus here will be on a particular type of harmonic resonance that takes place

at quadratic order in nonlinearity, and is known to lead to ‘explosive’ amplitude growth

under certain conditions. The mechanism, which results in preferential amplification

of particular wave frequencies, is caused by a phase-locking tendency between modes

satisfying

kj + kr + ks = 0, (2.0.2a)

∆
(m,p,q)
j,r,s = Re[ω(m)

j + ω(p)
r + ω(q)

s ] ≤ O(ǫA
n−1), (2.0.2b)

in which the detuning parameter ∆
(m,p,q)
j,r,s allows for consideration of waves that are

not in exact resonance, thereby encompassing a wider class of interactions. This also

permits the system evolution to be tracked as the wavemodes progress downstream,

where a frequency mismatch will develop due to spatial variation of the flow profile.

Larger initial amplitudes are then required in order for an explosive state to be reached,

perhaps to the point that the assumptions of a weakly nonlinear theory are no longer

justifiable. This point is briefly addressed in Section 4.3, although a detailed numerical

analysis is postponed for future research.

In this chapter, a systematic derivation of the equations of weak nonlinearity will

be presented, together with expressions for the interaction coefficients. The classical
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Figure 2.1: Dissipation curves for Rδ = 400, 500, 600, 800, 1200, 2000 (row-wise).
Contour levels show imaginary part of frequency normalised with respect to real part.
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case of conservative interaction between three waves is then described. In that case,

there is no linear growth/decay and the interaction coefficients are purely imaginary,

which allows a simple criterion for explosive behaviour to be derived.

2.1 Derivation of the Weakly Nonlinear Equations

Within a temporal framework an appropriate normal mode form that takes into account

the considerations outlined in the previous section is

v =
∑

j

∑

m

(

A
(m)
j,1 v

(m)
j,1 + ǫAA

(m)
j,2 v

(m)
j,2 + . . .

)

E
(m)
j ,

E
(m)
j = exp (i(kj .x− ω

(m)
j t)), A

(m)
j,i = A

(m)
j,i (τ1, τ2, . . . ),

(2.1.1a)

k−j = −kj , ω−j = −ω∗
j , v−j,i = [vj,i]

∗, A
(m)
−j,i = [A

(m)
j,i ]∗, (2.1.1b)

where v
(m)
j,1 is the OS eigenfunction of the m-th mode ω

(m)
j = ω(kj). The requirements

(2.1.1b), in which an asterisk has been used to denote the complex conjugate, ensure

that the ansatz is real. The flow profile has been assumed parallel, based on justifica-

tions outlined in Appendix B.5, and the temporal scalings τj = ǫA
nj t, n1 > n2 > . . . are

to be determined at each order by dominant balance so that the higher order effects of

inertia are balanced by weak amplitude growth/decay. For the purposes of a quadratic

theory we will require only the principal scale τ1 = ǫAt, for which the subscript 1 will

be dropped.

Expansion (2.1.1a) is substituted into the nonlinear version of the perturbed equa-

tions of motion (B.1.3a) given by

(L−∇2∂/∂t)v̂ = N[v̂, v̂], (2.1.2a)

N[v̂q, v̂r] = ∇2(v̂q.∇v̂r)− ∂/∂yTr(∇v̂q.∇v̂r), {Tr = Trace}. (2.1.2b)

Since we are concerned with relatively large Reynolds numbers, it may be assumed that

interaction effects dominate basic flow evolution so that the cross-stream component



13

of the basic flow can be ignored altogether and only the leading order component in

the streamwise direction is needed.

At leading order in amplitude expansion the OS and Squire equations for the vertical

velocity and vorticity are recovered. That is,

L
os
(k,c(m);Rδ)

[v
(m)
j,1 ] = 0, L

sq

(k,c(m);Rδ)
[η

(m)
j,1 , v

(m)
j,1 ] = 0 (2.1.3)

where L os
(k,c(m);Rδ)

, L
sq

(k,c(m);Rδ)
are defined according to (B.1.8a, B.1.8b).

Separation of the Fourier components then results in an infinite set of coupled nonlinear

equations with O(ǫA
2) components given by

A
(m)
j,2 L

os
(k,c(m);Re)[v

(m)
j,2 ] + (Dτ − σ

(m)
j )A

(m)
j,1 (Dy

2 − kj
2)v

(m)
j,1

=
∑

r,s

∑

p,q

{

A
(p)
−r,1A

(q)
−s,1 exp (−i∆

(m,p,q)
j,r,s t)N

(p,q)
j,−r,−s

}

,
(2.1.4a)

in which σ
(m)
j = Im[ω

(m)
j ]/ǫA is assumed to be O(1). Only unique combinations of

modes satisfying the resonance conditions (2.0.2) are included on the RHS of (2.1.4a),

for which the nonlinear coefficients N
(p,q)
j,−r,−s are given by

N
(p,q)
j,r,s =− µj,r(v

(p)
r,1

′Dsv
(q)
s,1 − v(q)s,1Drv

(p)
r,1

′)− µj,s(v
(q)
s,1

′Drv
(p)
r,1 − v(p)r,1Dsv

(q)
s,1

′)

− νr,s(v
(p)
r,1 D̂

+

j η
(q)
s,1 − η(q)s,1 D̂

−

j v
(p)
r,1 )− νs,r(v

(q)
s,1 D̂

+

j η
(p)
r,1 − η(p)r,1 D̂

−

j v
(q)
s,1 )

+ 2νr,sνs,r[(v
(p)
r,1

′Dsv
(q)
s,1 + v(q)s,1

′Drv
(p)
r,1 ) + (η(p)r,1 η

(q)
s,1 )

′]

+ 2µr,sνs,r(η
(p)
r,1 v

(q)
s,1

′)′ + 2µs,rνr,s(η
(q)
s,1v

(p)
r,1

′)′,

(2.1.4b)

with

µr,s = ks
−2(αrαs + βrβs), νr,s = ks

−2(αrβs − αsβr),

Dr = (Dy
2 − kr

2), D̂
±

r = (Dy
2 ± kr

2/2).

(2.1.4c)

The eigenvalue c
(m)
j appearing in (2.1.4) is not free, having already been determined

by the leading order problem L os
(k,c(m);Rδ)

[v
(m)
j,1 ] with homogeneous boundary conditions.

Accordingly, a (non-unique) solution to (2.1.4) together with (B.1.4), (B.1.5) can only

be found if a solvability condition (Fredholm alternative) is satisfied. That is, the
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system must permit a particular integral that itself satisfies the boundary conditions

imposed on v
(m)
j,2 . Assuming the existence of such a solution allows the term involving

A
(m)
j,2 to be eliminated from (2.1.4) by taking the inner product with the adjoint function

v
(m)†
j,1 , which satisfies

L
os†
(k,c(m);Re)

[v
(m)†
j,1 ] = 0, (2.1.5)

where L
os†
(k,c(m);Re)

is given by (B.3.1). The inner product 〈., .〉 is defined according to

(B.3.3). This results in a necessary relationship between the forcing terms in the form

of a system of amplitude evolution equations given by

(Dτ − σ
(m)
j )A

(m)
j,1 =

∑

r,s

∑

p,q

{

Γ
(m,p,q)
j,−r,−sA

(p)
−r,1A

(q)
−s,1 exp (−i∆

(m,p,q)
j,r,s t)

}

, (2.1.6a)

where the nonlinear interaction coefficients are

Γ
(m,p,q)
j,−r,−s =

〈v(m)†
j,1 , N

(p,q)
j,−r,−s〉

〈v(m)†
j,1 , Djv

(m)
j,1 〉

. (2.1.6b)

In this thesis, only those modes which are least stable from a linear perspective will

be considered, and so the superscripts (m),(p) ,(q) and the corresponding summation

over p, q will be dropped, although a comprehensive account should include all weakly

damped waves as a potentially stabilising influence. In the region considered in this

thesis, the higher eigenmodes are heavily damped, which justifies their exclusion. At

Reynolds numbers larger than Rδ = 1150, the two least stable branches of the OS

solution cross, but this takes place beyond the upper part of the neutral curve.

By equating real and imaginary parts separately, the system of complex-valued

equations (2.1.6) may be written in real form

(Dτ − σj)aj =
∑

r,s

γj,−r,−saras cos (φj,−r,−s − χj,−r,−s), (2.1.7a)

Dτ (φj,−r,−s) = ∆j,r,s −
∑

r,s

γj,−r,−s
aras
aj

sin (φj,−r,−s − χj,−r,−s), (2.1.7b)
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where

Aj,1 = aj exp (iφj), Γj,−r,−s = γj,−r,−s exp (iχj,−r,−s),

φj,−r,−s = ∆j,r,st+ φj + φr + φs.

(2.1.7c)

For a system of n interacting waves comprising m triads this results in a system of n

equations for the amplitudes aj , together with m equations for the phase sums φj,−r,−s.

In general, coupling between triad groups may take place through common members

(see Section 4.4, for example), but it is instructive to begin with a description of the

single-triad scenario. Analysis of the conservative case will be outlined below, as a

precursor to consideration of non-conservative interactions in Section 3.2.

2.2 Explosive Growth in Conservative Systems of

Three Waves

In conservative systems, such as may be seen in an oceanographic context (e.g. Badulin

and Shrira, 1999), the nonlinear coefficients appearing in expression (2.1.6) are purely

imaginary and all linear terms apart from detuning are identically zero. In such cases

a complete description of the solutions for a single triad, {j, k, r} = {0, 1, 2}, can be

provided (see Craik, 1985; Weiland and Wilhelmsson, 1977).

The relative phase of oscillations taking place on ‘fast’ timescale t are described

by the resonant criteria (2.0.2), whilst variations on the scale τ are governed by the

amplitudes aj and phase variations φj as defined by (2.1.7). The quantity

φ = φj,−r,−s = φ0 + φ1 + φ2 +∆τ (2.2.1)

measures the detuned sum of the phase-variations for the three waves, with

∆ = ǫA
−1∆0,−1,−2 as defined by (2.0.2b).

After a suitable amplitude renormalisaton, the governing equations (2.1.7) can be

written in the form

sjajaj
′ = a0a1a2 cosφ, j = 0, 1, 2, (2.2.2a)
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φ′ = ∆− sinφ

cos φ

(

a0
′

a0
+
a1

′

a1
+
a2

′

a2

)

, (2.2.2b)

where, sj = sign(γj,−r,−s), and a dash denotes differentiation with respect to τ .

By rearranging (2.2.2b) and substituting for a0a1a2 cosφ from (2.2.2a), the following

constant of motion can be obtained for any j = 0, 1, 2:

Γ = a0a1a2 sinφ− 1

2
∆sjaj

2. (2.2.3)

Additionally, (2.2.2a) gives the ‘Manley-Rowe’ relations

s0[a0
2(τ)− a0

2(0)] = s1[a1
2(τ)− a1

2(0)] = s2[a2
2(τ)− a2

2(0)] = x(τ), (2.2.4)

where the function x(τ) is to be determined, and from (2.2.2a, 2.2.4) it may be deduced

that

(a0a1a2)
2 cos2 φ =

(

1

2

dx

dτ

)2

. (2.2.5)

Collecting together non-trigonometric terms in (2.2.3) and substituting for aj
2 from

(2.2.4), then leads to

(Γ +
1

2
∆[x+ sjaj

2(0)])2 = (a0a1a2)
2(1− cos2 φ)

= [s0x+ a0
2(0)][s1x+ a1

2(0)][s2x+ a2
2(0)]−

(

1

2

dx

dτ

)2

,

(2.2.6)

again for any choice of j = 0, 1, 2.

This equation is of the form

(

1

2

dx

dτ

)2

= s(x− x1)(x− x2)(x− x3), (2.2.7)

where s = s0s1s2, and {x1, x2, x3} are the roots of

p(x) = [x+ s0a0
2(0)][x+ s1a1

2(0)][x+ s2a2
2(0)]− s(Γ +

1

2
∆[x+ sjaj

2(0)])2. (2.2.8)
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From expression (2.2.4) it can be seen that

sjx(τ) = −aj2(0) + aj
2(τ) ≥ −aj2(0) ∀τ, (2.2.9)

and if the nonlinear coefficients are not all the same sign then a bounded domain for

x(τ) is implied. For example, s0 = −1, s1 = +1 would give −a12(0) ≤ x(τ) ≤ a0
2(0).

The two cases of equisigned coefficients are examined in figure (2.2), accounting for

the fact that sp(x) ≥ 0 is required for real solutions to (2.2.7). Unbounded solutions are

possible only in cases where all real roots of p(x) are of opposite sign to the nonlinear

coefficients. In summary,

Unbounded growth of system (2.2.2) can only occur if all nonlinear

coefficients sj have the same sign, and if all real roots of the equation

(2.2.8) are of opposite sign to the nonlinear coefficients.

(2.2.10)

The second requirement merely places restrictions on the sizes of the initial amplitudes

of the disturbances, whilst many authors (e.g. Craik, 1985; Ostrovskĭı et al., 1986) have

interpreted the first requirement as a statement of the existence of a ‘negative energy

wave’. Energy may still be conserved if the highest frequency harmonic is a negative

energy wave, with the interpretation of this term being provided by application of a

variational principle, such as described by Whitham (1967).

Starting with an averaged Lagrangian and taking (fast) variations with respect to

wavenumber and frequency, gives an Euler-Lagrange type conservation equation from

which an expression may be deduced for the energy density, of the form

E = −1

4
ωj
∂D

∂ωj
|Aj |2, (2.2.11)

where D is the dispersion relation.

In fact, as explained by Ostrovskĭı et al. (1986), this expression should be under-

stood as the linearised wave energy and therefore not a true representation of the wave

energy, because it doesn’t include second order modulation effects. Nevertheless, it is
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(a) 0 > x1 > x2 > x3
Solution for s = 1 unbounded above.
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x
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x3 x2 0 x1

(b) x1 > 0 > x2 > x3
Solution for s = −1 bounded.

p(
x
)

0

x3 0 x2 x1

(c) x1 > x2 > 0 > x3
Solution for s = 1 bounded.

p(
x
)

0

0 x3 x2 x1

(d) x1 > x2 > x3 > 0
Solution for s = −1 unbounded below.

p(
x
)

0

x1 0

(e) x1 < 0, x2, x3 ∈ C\R
Solution for s = 1 unbounded above.

p(
x
)

0

0 x1

(f) x1 > 0, x2, x3 ∈ C\R
Solution for s = −1 unbounded below.

Figure 2.2: Schematic plots of sp(x) = s(x − x1)(x − x2)(x − x3), for s = +1 and
s = −1, according to the nature of the roots x1, x2, x3. The conditon sp(x) ≥ 0 is
required for real solutions to (2.2.7). The dashed parts of the curves do not satisfy
this requirement. In general, the initial conditions also restrict the solution domain, as
determined by (2.2.9).
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this quantity that is referred to when describing the sign of wave energy. It can be

seen that a change in sign occurs when ∂D/∂ωj changes sign with respect to ωj, and

this corresponds to a change in the sign of the group velocity.

In Craik (1985), a heuristic argument is provided to show that ∂D/∂ωj appears on

the denominator of the nonlinear coefficients, whilst the numerators must all be equal

for resonant interactions to take place in a system without viscosity. This means that

in a conservative medium, explosive growth for downstream propagating waves is only

possible if the group velocity of the wave with the highest frequency is of opposite sign

to the group velocities of the other two waves.

2.2.1 Exact Solution of the Interaction Equations

Solutions for x(τ) may be obtained explicitly in terms of elliptic integrals, by first

rearranging (2.2.7) to obtain

τ = ±1

2

∫ x(τ)

0

dξ
√

s(ξ − x1)(ξ − x2)(ξ − x3)
. (2.2.12)

The substitution

z = arcsin ρ, ρ2 =
ξ − x3
x2 − x3

(2.2.13)

then leads to

x = (x2 − x3)sn
2[θ ±

√

s(x1 − x3)τ ,
x2 − x3
x1 − x3

] + x3,

θ = sn−1[

√

−x3
x2 − x3

,
x2 − x3
x1 − x3

],

(2.2.14)

where sn[u,m2] =sin q is the generalised Jacobi elliptic function that may be obtained

by allowing m to take any real or complex value in the integral

u =

∫ q

0

dθ
√

1−m2 sin2 θ
. (2.2.15)

It is important to realise that the sign ± appearing in expression (2.2.14) is not

necessarily the same as that appearing in (2.2.12), due to the intermediate algebraic
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(a) An example of a bounded solution with s = −1. The roots of p(x) are
{−0.547,−0.137, 0.145}, corresponding to a0(0) = 0.6, a1(0) = 0.4,
a2(0) = 0.7, φ(0) = 0.9, ∆ = 1.
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(b) An example of an unbounded solution with s = 1. The roots of p(x) are
{−0.383 ± 0.0572i,−0.213}, corresponding to a0(0) = 0.6, a1(0) = 0.8,
a2(0) = 0.5, φ(0) = 0.7, ∆ = 1.

Figure 2.3: Comparison of x(τ) given by (2.2.14), and numerical solution for x(τ)
obtained by integrating (2.2.2). The curves, which are shown on the same axes, are
indistinguishable.
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manipulations involving square root functions. In either case, the choice must be made

such that sign[x′(τ)] = sign[cosφ(0)], for consistency with (2.2.2a).

By considering different cases for the sign s and roots xj , more elegant forms of the

solution can be obtained (see Craik, 1985; Armstrong et al., 1962). Nevertheless, the

generic solution (2.2.14) can easily be plotted to illustrate the types of behaviour pos-

sible, and to allow comparison with direct numerical integration of (2.2.2). Examples

are given in Fig. 2.3, in which s0 = s1 = 1 is taken without loss of generality, so that

s2 = s.

Fig. 2.3a depicts a case for which the nonlinear coefficients are not equisigned,

and the solution therefore remains bounded. Such types of solution are important in

their own right, and can display complicated, chaotic behaviour as well as periodic

oscillations (see Badulin and Shrira, 1999, for example). However, the case shown in

Fig. 2.3b for equisigned coefficients is of particular interest, since the amplitudes of all

three waves are seen to grow ‘explosively’.

2.2.2 Phase Locking in the Explosive Scenario

Rearrangement of (2.2.3) provides the relationship

sinφ =
Γ +∆sjaj

2/2

a0a1a2
, (2.2.16)

and a situation in which the three amplitudes become infinitely large therefore requires

that

sin φ→ 0, φ′ → 0. (2.2.17)

The relationship given above does not violate condition (2.2.2b), since φ′ = 0 gives

sin φ

cosφ
=

∆
d
dt
(ln a0a1a2)

, (2.2.18)

so that sinφ → 0 as d
dt
(ln a0a1a2) → ∞.

Thus, a necessary condition for explosive amplitude growth is given by the ‘phase-
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locking’ criterion

φ∞ = lim
τ→∞

(φ0 + φ1 + φ2 +∆τ) = const., tanφ∞ = 0, (2.2.19)

which represents an attractor of the system (2.2.2), in which the amplitudes governed

by (2.2.2a) diverge to infinity for large enough initial conditions.

If the detuning is neglected, then all initial conditions evolve towards the singularity,

with the particular solution of (2.2.19) being the nearest to φ(0) in the direction

determined by φ′(0). This can be seen by considering all sj = 1 without loss of

generality, so that (2.2.2) can be combined to obtain

φ′ = ∆− sinφ(a0a1a2)

(

1

a02
+

1

a12
+

1

a22

)

. (2.2.20)

When ∆ = 0 this gives

sign [φ′] = −sign [sinφ] , (2.2.21)

so that for any initial value, φ will either decrease or increase monotonically until

sinφ = 0. When this occurs, function (2.2.8) simplifies to

p(x) = [x+ s0a0
2(0)][x+ s1a1

2(0)][x+ s2a2
2(0)], (2.2.22)

which means that the second criterion of (2.2.10) is also satisfied.

The effect of the detuning parameter ∆ is to curb the instability. For instance,

it can be seen from the form of equation (2.2.8) that if ∆ is much larger than the

initial amplitudes aj, then one of the roots of p(x) will have the same sign as s, so

that the explosion will not occur unless larger initial amplitudes are chosen. Another

observation from (2.2.16) is that for ∆ = 0, sinφ → 0 as 1/(amplitude)3, whilst

for ∆ = O(1), the rate of convergence is proportional to 1/(amplitude), and so the

characteristic timescale for explosion (if it occurs) will be longer.
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2.3 Conclusions

In this chapter, a weakly nonlinear theory of quadratic order resonance was described

for moderate Reynolds numbers, based on OS theory for parallel flow profiles. It has

been shown that in a conservative system, a single triad given by (2.2.2) can experience

explosive growth if the nonlinear coefficients sj are all the same sign and the three

waves become phase-locked as described by criterion (2.2.19). For waves that are in

exact resonance (meaning zero detuning) the first requirement alone is sufficient for

explosion to occur, regardless of the size of the initial amplitudes, with the time to

explosion being determinable from (2.2.14). The effect of detuning, for instance due to

downstream changes in the Reynolds number, is to suppress the instability so that it

will only be observed for initial amplitudes exceeding a certain threshold. A pragmatic

definition of amplitude threshold requirements will be provided in Chapter 4.

The findings presented in Section 2.2 have been described by several authors such

as Weiland and Wilhelmsson (1977); Nayfeh and Bozatli (1980). However, it remains

to discuss the effects of non-conservatism. Craik (1986) notes that

there is a widespread, but mistaken, belief that the coefficients [. . . ] will

normally be such as to render the equations conservative; or if dissipative,

that linear damping provides the only non-conservative effect.

The case of TS waves in a boundary layer (Craik, 1971) is given as an example

where non-conservative effects result in complex nonlinear coefficients. In the analysis

presented in the 1971 paper, the coefficients were treated as real by the author. In

Craik and Adam (1979) it is further observed that no exact solutions have been found

to the case where complexity in the coefficients is non-removable. This is also discussed

in Wilhelmsson et al. (1970); Weiland and Wilhelmsson (1977).

Numerical results for the coefficients appearing in the interaction equations for

Craik-type triads at finite Reynolds numbers are provided in Usher et al. (1975),

indicating that the coefficients are fully complex, having O(1) real and imaginary parts,

despite the OS eigenfunctions displaying only weak imaginary components. On the
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other hand, by taking a rational asymptotic theory, Smith and Stewart (1987) found

the nonlinear interaction coefficients to be purely imaginary and equisigned, which

would rule out the possibility of a breakdown according to (2.2.10). This discrepancy is

discussed in the next chapter, where a weakly nonlinear asymptotic theory is provided

in support of the OS results. A brief analysis of the interaction equations is also

provided, for the case where the nonlinear coefficients are complex.
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Chapter 3

On the Non-Conservative Nature of

Nonlinear Interactions

In Usher and Craik (1974), nonlinear coefficients were computed for a few isolated

examples of Craik-type triads, based on OS analysis. Table 3.1 shows how their

results compare with estimates of the nonlinear coefficients (2.1.4b) obtained by the two

numerical methods used in this thesis (see Appendix C). It should be noted that the

choice of normalisation used for the eigenfunctions by Usher and Craik was different to

that used in the rest of this thesis, and the calculations made in Table 3.1 were adjusted

for the purposes of comparison. The table shows that the nonlinear coefficients are

fully complex in spite of the modest levels of linear growth/decay exhibited by the

three waves.

In fact, the nonlinear coefficients are found to be complex even when all three

waves are neutral according to the linear theory. Two example cases are illustrated

in Fig. 3.1, with the results for the nonlinear coefficients given in Table 3.2. The

normalised detuning parameters for these two triads, which are calculated according

to the expression

∆̄0,1,2 =
Re[ω0 + ω1 − ω−2]

min|Re{ωj}|
(3.0.1)

are also reported in the figures, in support of the weakly nonlinear theory. The complex

nature of the coefficients is accounted for by higher derivatives of the OS eigenfunctions
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Table 3.1: Phase-velocities c1, c−2 and nonlinear coefficients Γ0,−1,−2, Γ
∗
2,−0,−1 defined according to (2.1.4b) for

a Craik-type resonance of the form k0 = {α/2, β}, k1 = {α/2,−β}, k−2 = k0 + k1. Coefficients calculated by
the Chebyshev collocation approach of Appendix (C.1) and compound matrix method of Appendix (C.2) are
presented against values given in Usher et al. (1975). Values are identified by shorthand notation Ch, Co, U,
appearing in the rightmost column, which denote the Chebyshev, compound matrix and comparison values
respectively.

α β c1 c−2 Γ0,−1,−2 Γ∗
2,−0,−1

0.1000 0.0617 0.2860− 0.0888i 0.2860− 0.0461i 0.3812 + 0.8689i 0.6085 + 0.5570i Ch
0.2860− 0.0888i 0.2860− 0.0461i 0.3834 + 0.8686i 0.6105 + 0.5595i Co
0.2859− 0.0888i 0.2859− 0.0461i 0.5473 + 0.7013i 0.6079 + 0.5563i U

0.2000 0.1209 0.3395− 0.0295i 0.3395 + 0.0041i 3.5958 + 1.3098i 0.0090− 0.2418i Ch
0.3395− 0.0295i 0.3395 + 0.0041i 3.5911 + 1.3106i 0.0055− 0.2418i Co
0.3394− 0.0294i 0.3394 + 0.0041i 3.7350 + 1.1757i 0.0083− 0.2417i U

0.2540 0.1480 0.3569− 0.0123i 0.3569 + 0.0101i 5.9637 + 0.7693i 0.3041− 0.3323i Ch
0.3569− 0.0123i 0.3569 + 0.0101i 5.9491 + 0.7691i 0.2999− 0.3331i Co
0.3570 + 0.0122i 0.3570 + 0.0102i 6.0745 + 0.6499i 0.3036− 0.3394i U

0.3000 0.1705 0.3685− 0.0034i 0.3685 + 0.0083i 8.7200− 0.0335i 0.4322− 0.3131i Ch
0.3685− 0.0034i 0.3685 + 0.0083i 8.6955− 0.0311i 0.4273− 0.3145i Co
0.3685− 0.0033i 0.3685 + 0.0083i 8.8249− 0.1495i 0.4305− 0.3217i U

0.4000 0.2098 0.3850 + 0.0035i 0.3847− 0.0108i 18.9048− 3.6560i 0.5075− 0.3888i Ch
0.3850 + 0.0035i 0.3847− 0.0108i 18.8326− 3.6362i 0.5000− 0.3874i Co
0.3846 + 0.0035i 0.3846− 0.0107i 18.8784− 3.7073i 0.4962− 0.4081i U

0.5000 0.1911 0.3835 + 0.0048i 0.3835− 0.0446i 29.5403− 5.9601i 0.1394− 0.9642i Ch
0.3835 + 0.0048i 0.3835− 0.0446i 29.3992− 5.9354i 0.1347− 0.9343i Co
0.3835 + 0.0047i 0.3834− 0.0444i 29.5892− 6.0644i 0.0129∗− 0.9701i U

* suspected typographical error
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and by the vorticity and adjoint solutions. All of these functions, which appear in

the coefficients expressions (2.1.4b), exhibit real and imaginary parts of comparable

magnitude, as evidenced by Fig. 3.2.
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(a) k0 = { 41
224 ,

100
399}, k1 = { 64

389 ,
−37
209 }

Rδ = 882, ∆̄0,1,2 = 1.46 × 10−2.
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(b) k0 = { 31
208 ,

73
226}, k1 = { 36

359 ,
−35
339 }.

Rδ = 2000, ∆̄0,1,2 = 4.32 × 10−3.

Figure 3.1: Example triads having all 3 wavevectors on the neutral curve according to
linear OS theory. The vectors illustrated are k0, k1, k−2 = k0+k1. Detuning estimate
∆̄0,1,2 is calculated from expression (3.0.1).

Table 3.2: Estimates of nonlinear coefficients (2.1.4b) for the cases
presented in Fig. 3.1a (first line) and Fig. 3.1b (second line).

Γ0,−1,−2 Γ1,−0,−2 Γ2,−0,−1

3.49− 0.20i 1.19− 0.33i 0.02 + 0.01i

5.00 + 1.21i 0.13− 0.11i 0.01− 0.01i

In this chapter, further evidence will be presented to show that the coefficients are

complex at moderate frequencies, based on triple-deck analysis. The theory will also be

tested for consistency with the results of Smith and Stewart (1987), who showed that

in the high frequency limit of a rational asymptotic theory the nonlinear coefficients are

purely imaginary. In Section 3.2 an investigation of the complex interaction equations

is provided, and criteria for explosive growth are derived. The results will be shown to

suggest that such behaviour may be possible for a relatively wide range of parameters.
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Figure 3.2: Plots showing the OS eigenfunction v0, adjoint v
†
0, and Squire vorticity

η0 for the wavemode k0 illustrated in Fig. 3.1a. Real parts are shown in black and
imaginary parts are shown in grey. It can be seen that several of these functions
exhibit large imaginary contributions, despite the relative smallness of the imaginary
component in the OS eigenfunction.
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3.1 Triple-Deck Theory for Nonlinear Coefficients

For long waves with phase speeds much less than the free-stream velocity, the linearized

inviscid problem (Rayleigh equation) admits two linearly independent solutions, one

of which is singular at critical points where the basic flow velocity is equal to the

perturbation phase velocity. Tollmien (1929) was the first to obtain series solutions to

this problem, valid close to critical points, which suggested that within the convective

main layer lies a ‘critical layer’ where the singular solution dominates, and unsteady

terms balance convective terms. In fact, for very large Reynolds numbers, the upper

branch of the neutral curve is known to admit a 5-deck structure due to the existence

of a ‘viscous critical layer’ inside the inviscid critical layer and outside the viscous

wall-layer. On the lower branch of the neutral curve the three inner layers of this

description coalesce, forming a triple-deck structure. Healey (1995a) has shown that a

triple-deck structure also governs the upper branch of the neutral curve in the vicinity

of the critical Reynolds number, contrary to popular belief. Neutral waves on the

upper branch undergo a bifurcation from a triple-deck to a 5-deck state at Reynolds

number Rδ ≃ 105, meaning that triple-deck theory is applicable on both the lower and

upper branches at Reynolds numbers of experimental interest, although the theory

needs modification to capture the upper branch. The triple-deck theory for the lower

branch will be outlined here based on scalings with respect to downstream distance,

following Smith (1979a). This would be a convenient choice if non-parallel effects were

to be included, and in any case, the results can easily be re-scaled in terms of boundary

layer thickness using the relationship (A.3.6).
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3.1.1 Direct Problem

To deduce the scalings in each deck, the linearized NS equations for parallel flow (B.1.7)

will be assumed, together with the long-wave, low phase velocity considerations

{αj, βj} 7→ Rea{αj , βj}, 0 < a < 1/2, (3.1.1a)

ωj 7→ Rebωj, 0 < b < a. (3.1.1b)

The restriction a > 0 means that waves are short compared to the scale of boundary

layer evolution, whilst a < 1/2 means that waves are long compared to boundary thick-

ness on account of A.2.1. For disturbances of sufficiently small amplitude, nonparallel

terms would be shown to only appear at higher order in Reynolds number (see Smith,

1979b) and so they do not need to be included in a leading order linear approach.

Justification for a parallel nonlinear theory will be provided in Section 3.1.1.4.

3.1.1.1 Upper Deck

Far from the boundary layer, where viscous effects are negligible, and UB ≃ 1 the

vertical velocity solution that exhibits the necessary decay approaching the free stream

is given by

vj ∼ e−(αj
2+βj

2)1/2y, (3.1.2)

implying that motion in all coordinate directions takes place on the same length scale.

The velocity components in each direction must therefore have the same magnitude

for balance in the continuity equation, and the velocity and pressure scales also couple

for balance in the momentum equations since the flow outside the boundary layer is

pressure driven. The coordinate ŷ = Reay is assumed to be finite-valued in the upper

deck, and the component scalings are taken to be

{ûj, v̂j, ŵj, p̂j} = Reγ{ûj,1, v̂j,1, ŵj,1, p̂j,1}, (3.1.3)
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which represents an arbitrary normalisation of the eigenfunction. Solution of the

inviscid form of (B.1.7a-c) then leads to

{p̂j , v̂j} = ReγP̂j,1{1,−iαj
−1(αj

2 + βj
2)1/2}êj , (3.1.4)

in which the constant P̂j,1 ultimately depends on the wall boundary conditions through

matching between layers, and

êj = exp (−(αj
2 + βj

2)1/2ŷ). (3.1.5)

The vorticity is zero in the upper deck.

3.1.1.2 Main Deck

In the main deck of the attached boundary layer the evolution of TS waves depends on

the wall-normal coordinate ȳ = Y = Re1/2y, as defined by (A.3.4). Between the main

and upper layers there must be a smooth transition in vertical velocity and pressure, so

the relevant scalings in the main deck may be determined by considering the behaviour

of (3.1.4) as yu → 0. This gives

{ūj, v̄j , w̄j, p̄j} = Reγ{Re1/2−aūj,1, v̄j,1, Re
1/2−aw̄j,1, p̄j,1}, (3.1.6)

with the scaling of the horizontal velocity components being required for non-trivial

solutions of the continuity equation (B.1.7d). Solution of the inviscid form of (B.1.7a-c)

then leads to

{p̄j , v̄j} = Reγ{P̄j,1, V̄j,1UB(ȳ)}, (3.1.7)

where P̄j,1 and V̄j,1 are arbitrary constants that satisfy the necessary matching require-

ment between layers.

The leading order vorticity component η̄j,1 = i(αjw̄j,1 − βjūj,1) is given by

η̄j,1 =
βjV̄j,1
αj

U ′
B(ȳ). (3.1.8)
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3.1.1.3 Lower Deck

Finally, within the viscous critical layer, the vertical coordinate is scaled according to

y = Recy̌, where c < −1/2 is to be determined, and the basic flow is amenable to

Taylor expansion of the form

UB = UB(Re
1/2y) = UB(Re

1/2+cy̌) = Re1/2+cy̌

[

∂UB(y̌)

∂y̌

]

y̌=0

+ . . . (3.1.9)

The relative scalings of the vertical velocity and pressure can then be determined

from (3.1.7), and the continuity equation can be used to obtain the horizontal velocity

scalings. The resulting expressions

{ǔj, v̌j , w̌j, p̌j} = Reγ{Re1/2−aǔj,1, Re
1/2+cv̌j,1, Re

1/2−aw̌j,1, p̌j,1} (3.1.10)

are substituted into (B.1.7). Application of dominant balance among the inertial terms

together with the requirement that viscous terms enter at leading order finally leads to

a =
3

8
, b =

1

4
, c = −5

8
. (3.1.11)

Decoupling of the ‘slow/long’ scales (x, z, t) associated with boundary layer develop-

ment and the ‘fast/short’ scales (X,Z, T ) of wave motions is observed, such that

{ d

dx
,
d

dz
,
d

dt
} → {Re3/8 d

dX
,Re3/8

d

dZ
,Re1/4

d

dT
}, (3.1.12a)

which justifies the parallel flow approximation at leading order. The lower deck variable

satisfies

y = Re−5/8y̌, (3.1.12b)

and the arbitrary scaling γ can be chosen so that the horizontal velocity of the pertur-

bation is O(1) in the main (boundary) layer, giving γ = −1/8.
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3.1.1.4 Lower Deck Expansion for a Resonant Triad

Amplitude evolution equations for a system of three interacting waves can be deduced

from the full NS equations (A.1.1), together with the lower deck scalings (3.1.12) and

three-wave amplitude expansion

{ũ, ṽ, w̃, p̃} = {λȳ, 0, 0, P}+ ǫA

2
∑

j=0

[

Q̌j(y̌, X2, Z2, T2)Ej + c.c
]

+ Q̌m, (3.1.13a)

Q̌j = Q̌j,1 + ǫAQ̌j,2 + . . . , Q̌j,n = {ǔj,n, Re−1/4v̌j,n, w̌j,n, Re
−1/8p̌j,n}, (3.1.13b)

Ej = exp i(αjX1 + βjZ1 + ωjT1), EjEkEl = 0, (3.1.13c)

{ d

dX
,
d

dZ
,
d

dT
} → { d

dX1

,
d

dZ1

,
d

dT1
}+ ǫA{

d

dX2

,
d

dZ2

,
d

dT2
}, (3.1.13d)

in which Q̌m refers to mean flow corrections generated through interaction with complex

conjugate (c.c) quantities. The scaling ǫA characterises the size of the horizontal velocity

component in the main deck relative to the free-stream velocity, and ǫA ≪ Re−3/32

is required so that non-parallel effects may be neglected in a quadratic theory (see

Hall and Smith, 1984, for details). The slow scales X2, Z2, T2 for nonlinear evolution

are based on straightforward asymptotic expansion of the wavevector and frequency,

similar to the approach taken in deriving the Ginzburg-Landau (G-L) equation (see

Stewartson and Stuart, 1971, for example). In the case of the G-L equation, which

appears at cubic order in amplitude, it can be deduced from the transport equation

that the leading order slow spatial scale for nonlinearity is quadratic in ǫA, rather

than linear. However, in this quadratic order resonance, the influence of slow-spatial

evolution due to nonlinearity will be apparent ‘sooner’, as described by (3.1.13d).

At leading order, the continuity and horizontal momentum equations give

iαjǔj,1 + iβjw̌j,1 + v̌′j,1 = 0, (3.1.14a)

λv̌j,1 − iωjǔj,1 + λiαj y̌ǔj,1 = ǔ′′j,1 − iαj p̌j,1, (3.1.14b)

−iωjw̌j,1 + λiαj y̌w̌j,1 = w̌′′
j,1 − iβj p̌j,1, (3.1.14c)

whilst the pressure term p̌j,1 is found to be constant from the vertical momentum
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equation. A single differential equation for v̌j,1 can then be obtained by differentiating

(3.1.14b, 3.1.14c) and making use of (3.1.14a) to eliminate ǔj,1, w̌j,1. The result can be

simplified by introducing the variable change

ξj = ∆j
1/3(y̌ − ωj

λαj
), ∆j = λiαj , (3.1.15)

to give

(Dξj
2 − ξj)Dξj

2v̌j,1 = 0, (3.1.16)

together with the conditions v̌j,1(0) = 0, v̌′j,1(0) = 0, which are required for no-slip and

no flux through the wall. The required solution to this problem is given by

v̌j,1 = Γj,1

{

ξj

∫ ξj

ξj0

Ai(q) dq − Ai′(ξj) + Ai′(ξj0)

}

, (3.1.17)

where Γj,1 = Γj,1(X2, Z2, T2), Ai is the Airy function, and ξj0 refers to evaluation of ξj

at y̌ = 0. Solving for the leading order pressure then gives

p̌j,1 = Γj,1∆j(αj
2 + βj

2)−1Ai′(ξj0), (3.1.18)

whilst the leading order vorticity component η̌j,1 = i(αjw̌j,1 − βjǔj,1), satisfies

(Dξj
2 − ξj)η̌j,1 =

λβjξj0
ωj

v̌j,1. (3.1.19)

The bounded solution to (3.1.19) is given by

η̌j,1 = gj ı̌ξj0+ hj

{

Ai(ξj0)

(

̌ξj0− κj
Bi(ξj0)

Ai(ξj0)

)

− Bi(ξj0)

(

ı̌ξj0− κj

)}

, (3.1.20a)

where gj = Γj,1∆j
1/3βjαj

−1, hj = gjπAi
′(ξj0), and

ı̌ξj0 =
∫ ξj

ξj0

Ai(q) dq, ̌ξj0 =

∫ ξj

ξj0

Bi(q) dq, κj = ı̌∞ξj0 =
∫ i1/3∞

ξj0

Ai(p) dp. (3.1.20b)
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3.1.1.5 Leading Order Dispersion Relation and Composite Solutions

The leading order dispersion relation can be deduced, together with uniformly valid

composite solutions for vj,1, ηj,1, by adding together the expansions from each deck

and subtracting one set of any ‘overlap’ terms that would be included twice. Matching

expressions (3.1.4, 3.1.7, 3.1.17, 3.1.18) for the pressure and vertical velocity, and

expressions (3.1.8, 3.1.20) for the normal vorticity gives

Ai′(ξj,0) =
∆j

1/3κj
λ2

(αj
2 + βj

2)1/2, (3.1.21a)

vj,1/Γj,1 = (êj − 1) + (UB(ȳ)− λȳ) +
Re−1/8λ

∆j
1/3κj

{ξj ı̌ξj0− Ai′(ξj) + Ai′(ξj0)}, (3.1.21b)

ηj,1/Γj,1 =
λ

∆j
1/3κj

η̌j,1(ξ̌j) +
βj
αj

(U ′
B(ȳ)− λ), (3.1.21c)

after a convenient renormalisation of the eigenfunction vj. The solution (3.1.21c) does

not display good numerical convergence at moderate Reynolds numbers, which can be

improved by matching the leading order lower deck vorticity with the two-term main

deck vorticity to obtain

ηj,1/Γj,1 =
λ

∆j
1/3κj

η̌j,1(ξ̌j) +
βj
αj

(U ′
B(ȳ)− λ)− Re−1/8βj Īj0(ȳ), (3.1.22a)

where

Īj0(ȳ) =

∫ ȳ

0

[

UB(q)
−2 − 1

λ2q2
− 1

]

dq − 1

λ2ȳ
+ ȳ. (3.1.22b)

The two expressions (3.1.21c, 3.1.22a) give quantitatively similar results at Reynolds

numbers larger than 104. The purpose of this section is only to show that the nonlinear

coefficients are fully complex in the large Reynolds number limit, and so subsequent

reasoning will be based on expression (3.1.21c) for simplicity.

3.1.2 Adjoint Problem

To determine the matched asymptotic expansion for the adjoint function, it is necessary

to first derive the adjoint form of the linearised problem (B.1.7). It is not sufficient
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to begin with the vertical velocity equations derived in each deck, because the main

deck flow quantities scale differently in the direct and adjoint problems. In the adjoint

main deck this leads to a constant velocity and a pressure which varies with distance

from the wall, in contrast to the main deck of the direct problem in which it is the

pressure that is constant and the velocity varies. The linearised problem can be written

in matrix form as

Bj2.D
2fj +Bj1.Dfj +Bj0.fj = 0, (3.1.23)

where fj = [u, v, w, p]T , Bj2 = diag[1, 1, 1, 0] and

Bj1 =



















0 0 0 0

0 0 0 −Re

0 0 0 0

0 1 0 0



















, Bj0 =



















Θ −ReUB ′ 0 −iαRe

0 Θ 0 0

0 0 Θ −iβRe

iα 0 iβ 0



















. (3.1.24)

In the above expression, Θ = iRe(ω − αUB)− k2 and the notation D denotes differen-

tiation with respect to the wall-normal coordinate y. Taking the inner product with

the adjoint quantities gj = [u†j, v
†
j , w

†
j , p

†
j]
T gives

Bj
T
2 .D

2gj −Bj
T
1 .Dgj +Bj

T
0 gj = 0, (3.1.25)

after an application of integration by parts. Adjoint equation (B.3.4) can be recovered

by eliminating u†j, w
†
j , p

†
j. The matched asymptotic solution for this problem is governed

by the same time and length scales (3.1.12) as the direct problem and the relative

velocity and pressure scales may be determined by application of the principle of

dominant balance. A normalisation may be chosen such that u†j, v
†
jw

†
j ∼ O(1) in the

upper deck, which gives













û†j v̂†j ŵ†
j p̂†j

ū†j v̄†j w̄†
j p̄†j

ǔ†j v̌†j w̌†
j p̌†j













=













O(1) O(1) O(1) O(ǫx
−8)

O(ǫx
−1) O(1) O(ǫx

−1) O(ǫx
−8)

O(ǫx
−2) O(1) O(ǫx

−2) O(ǫx
−9)













. (3.1.26)
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Applying these scalings, and matching the leading order solutions in each deck leads

to the composite solution

v†j,1 = êj + πκ−1Ai′(ξj0)

{

Ai(ξj)

(

̌ξj0− κj
Bi′(ξj0)

Ai′(ξj0)

)

− Bi(ξj)

(

ı̌ξj0− κj

)}

, (3.1.27)

which has a similar structure to the wall-normal vorticity solution (3.1.20). Again,

better agreement with the OS results can be obtained at moderate Reynolds numbers

by matching the leading order lower deck solution with the two term main and upper

deck solutions, but this approach will not be taken here.

3.1.3 Second Order Relations

At second order in the expansion parameter ǫA, the continuity and horizontal momen-

tum contributions in the lower deck may be combined to obtain

v̌
(iv)
j,2 − i(λαj y̌ − ωj)v̌

′′
j,2 =

[

∂

∂T2
+ λy̌

∂

∂X2

]

v̌′′j,1 − iŇj(y̌), (3.1.28)

where a dash denotes differentiation with respect to y̌, and the nonlinear terms Ňj can

be written as

Ňj = µj,r(v̌
∗ ′′
r,1 v̌

∗
s,1 − v̌∗ ′r,1v̌

∗ ′
s,1)

′ + µj,s(v̌
∗
r,1v̌

∗ ′′
s,1 − v̌∗ ′r,1v̌

∗ ′
s,1)

′

+ νr,s(v̌
∗ ′
r,1η̌

∗
s,1 − v̌∗r,1η̌

∗ ′
s,1)

′ + νs,r(v̌
∗ ′
s,1η̌

∗
r,1 − v̌∗s,1η̌

∗ ′
r,1)

′

+ 2νr,sνs,r(v̌
∗ ′
r,1v̌

∗ ′
s,1 + η̌∗r,1η̌

∗
s,1)

′ + 2µr,sνs,r(v̌
∗ ′
s,1η̌

∗
r,1)

′ + 2µs,rνr,s(v̌
∗ ′
r,1η̌

∗
s,1)

′,

(3.1.29)

where µr,s, νr,s are given the same as in (2.1.4c). The solution to this problem satisfies

dv̌j,2
dy̌

=
1

3
∆

−2/3
j [(ξj − ξj0)Ai(ξj)− 2ξj0(Ai(ξj)− Ai(ξj0)]

∂Γj,1

∂X2

− 1

2
∆

−2/3
j ı̌ξj0

∂Γj,1

∂X2
+∆

−1/3
j (Ai(ξj)−Ai(ξj0))

∂Γj,1

∂T2
−∆

−1/3
j πW̌j,

(3.1.30)
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where

dW̌j

dy̌
= Bi(ξj)

(
∫ y̌

0

Ai(∆1/3p+ ξj0)Ňj(p)dp−K1

)

−Ai(ξj)

(
∫ y̌

0

Bi(∆1/3p+ ξj0)Ňj(p)dp−K2

)

.

(3.1.31)

The constants of integration K1(X2, Z2, T2), K2(X2, Z2, T2) may be determined by

matching with the main deck, which also provides a solvability condition in the form

of an amplitude evolution equation.

Since the functions appearing in the forcing terms have already been matched

at leading order, an equivalent way to apply the solvability condition is to form a

composite expression for the forcing terms that is valid in all three decks, and take

the inner product with the adjoint function derived in Section 3.1.2. The nonlinear

terms obtained at quadratic order in the main deck are the same as those obtained

in the lower deck and the linear terms appearing in (3.1.28) tend to zero in the main

deck. The influence from the upper deck is negligible. Thus, the simplest approach to

estimate the coefficients is to take

Γj =
〈v†j,1, Nj〉
〈v†j,1, v′′j,1〉

(3.1.32)

where vj, vj
†, Nj are given by (3.1.21b, 3.1.27, 3.1.29) respectively.

3.1.4 Coefficient Estimates

The triple-deck asymptotics require modification to capture the upper branch of the

neutral curve (see Healey, 1995b; Hultgren, 1987), and waves in the vicinity of the

lower branch are relatively long at the high Reynolds numbers required of an asymptotic

theory, so direct comparison with OS results at moderate wavenumbers and frequencies

is not straightforward. Triads having all three members on or near the lower branch

of the neutral curve exhibit prohibitively large detuning to be justifiably be considered

by weakly non-linear theory, as in the examples shown in Fig. 3.3. Furthermore, a

quantitative comparison of the triple-deck and OS coefficients at moderate Reynolds
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Figure 3.3: Example triads where all 3 wavevectors lie on the lower branch of the
neutral curve according to dispersion relation (3.1.21a). Parameter scalings are based
on boundary layer thickness at Rδ = 104. The vectors illustrated are k0, k1, k−2,
where k−2 = k0 + k1. Detuning parameter ∆̄0,1,2 is calculated from expression (3.0.1).

numbers is unlikely to produce meaningful results because small discrepancies in the

predicted eigenvalue have a correspondingly larger effect on the Squire vorticity and

adjoint function, as illustrated in Fig. 3.4. The dispersion relation for oblique waves is

the same as for plane waves at a lower Reynolds number, and resonant triads having all

three waves on or near to the lower branch of the neutral curve require at least one of

the waves to be quite oblique, resulting in appreciably different eigenvalues according

to the two theories.

As an interesting aside, it is also shown in Fig. 3.4 that if the eigenvalue predicted by

OS theory is substituted into the triple-deck expressions for the vorticity and adjoint,

then agreement with the OS calculations is greatly improved. In the high Reynolds

number limit the OS and triple-deck eigenvalues for the lower branch converge, and so

estimates for the nonlinear coefficients might also be expected to agree. The results

for this scenario will be outlined below.
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Figure 3.4: The composite Squire vorticity η0 and adjoint solution v0
† based on

boundary layer scalings at Rδ = 104, for k0,1 = { 21
845
,± 68

1183
}. The functions were

normalised as described in Appendix C.4. Real parts are shown in black and imaginary
parts are shown in gray. OS and asymptotic solutions are indicated by solid and
dashed lines, respectively. The strong agreement in the lower plots was achieved by
using the OS eigenvalue estimate in the asymptotic expressions. The least stable OS
eigenvalue is cp = 0.230−0.029i, whilst the leading order term of the dispersion relation
(3.1.21a) provides cp = 0.277 + 0.000i. The asymptotic expansion parameter Re−1/8 is
approximately equal to 1/9!
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3.1.4.1 The Rational, High Reynolds Number Limit

At Reynolds numbers in excess of about 106, it is possible to achieve a worthwhile

comparison of the OS and triple-deck theory, as indicated by Fig. 3.5, together with the

corresponding coefficient estimates provided in Table 3.3. The parameter values used

are in the same ratio as those selected by Smith and Stewart (1987), with the factors

involving δ, Rδ that appear in the wavevector and frequency expressions owing to the

triple-deck scalings used (see expression 3.1.1). The normalised detuning parameter

quantified by expression (3.0.1) is only 9.73 × 10−3 for this triad, and the normalised

rate of linear damping based on (2.0.1) is 8.91×10−2. It can be seen that the coefficients

retain a fully complex nature due to the appearance of a sharp spike in the vorticity

and adjoint functions near to the boundary.

Table 3.3: Estimates of frequencies and nonlinear coefficients for parameter
values Rδ = 107, k0,1 = δ5/4R

−1/4
δ {1

2
,±

√
3
2
} based on boundary layer scalings.

OS and triple-deck results are shown in the first and second rows, respectively.

δ−3/2R
1/2
δ ω0 δ−3/2R

1/2
δ ω2 Γ0,−1,−2 Γ2,−0,−1

1.46 + 0.130i −2.94 + 0.114i 57.2− 20.1i 755.4− 117.1i

1.56 + 0.114i −3.15 + 0.139i 63.1− 22.7i 795.6− 141.9i

However, in the high-frequency limit studied by Smith and Stewart, the lower deck

separates into a viscous ‘inner Stokes’ layer characterised by the wall normal coordinate

y̌in = |ωj|1/2y̌, and an inviscid ‘outer Stokes’ layer characterised by y̌out = |ωj|−1/2y̌

(see Smith and Burggraf, 1985). The leading term in a high-frequency expansion of

the dispersion relation (3.1.21a) gives

(αj
2 + βj

2)αj
2 = λ2ωj

2, (3.1.33)

which predicts real-valued frequencies ωj, and the corresponding eigenfunctions are

also real, except in a very thin viscous wall layer. As a result the evolution equations

exhibit the same canonical form as the conservative situation discussed in Section 2.2.

The details are briefly outlined below.



42

0.0 1.0 2.0 3.0 4.0 5.0

0.0

0.2

0.4

0.6

0.8

1.0

v 0

y
0.0 1.0 2.0 3.0 4.0 5.0

0.0

0.2

0.4

0.6

0.8

1.0

v 2

y

v
(3
)

0
×

10
−
2

y
v
(3
)

2
×
10

−
2

y

0.0 1.0 2.0 3.0
-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

v
† 0

y
0.0 1.0 2.0 3.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

v
† 2

y

0.0 1.0 2.0 3.0
-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

η 0

y

Figure 3.5: Functions appearing in coefficient expressions (3.1.32), for parameters

k0,1 = δ5/4R
−1/4
δ {1

2
,±

√
3
2
}, k−2 = k0 + k1, based on boundary layer scalings at

Rδ = 107. Real parts are shown in black and imaginary parts are shown in grey. OS
and asymptotic solutions are indicated by solid and dashed lines, respectively. The OS
eigenfunctions vj, and vorticity solutions ηj are normalised as described in Appendix

C.4. Adjoint functions are normalised such that v†j → 1 approaching the outer region.
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3.1.5 High Frequency Behaviour

Inner Stokes Layer

In the inner layer, defined by the wall-normal coordinate y̌in = ω
1/2
j y̌, the lower deck

equation for the velocity (3.1.17) becomes

[D2
y̌in

+ i]D2
y̌in
v̌j = 0. (3.1.34)

The equation has solution

v̌j = Kj|ωj|1/2
(

y̌ − em|ωj |1/2y̌

m|ωj|1/2
+

1

m|ωj|1/2

)

, (3.1.35)

where m = exp (3πi/4), and the constant of integration Kj depends on the normalisa-

tion of the eigenfunction.

The vorticity and adjoint functions are found to satisfy

[D2
y̌in

+ i]η̌j = 0, D
2
y̌in

[D2
y̌in

+ i]v̌†j = 0, (3.1.36)

with solutions

η̌j = Aje
m|ωj |1/2y̌ +Bje

−m|ωj |1/2y̌,

v̌†j = Cje
m|ωj |1/2y̌ +Dje

−m|ωj |1/2y̌ + Ej y̌in + Fj .

(3.1.37)

The coefficients Bj , Dj , Ej appearing in front of the growing terms must be set to zero

for matching with the outer Stokes layer (see below), and then the conditions η̌j(0) = 0,

v̌†j(0) = v̌† ′
j = 0 imply that both the vorticity and adjoint solutions are in fact zero at

this order.

Outer Stokes Layer

In the outer layer, defined by y̌out = |ωj|−1/2y̌, the lower deck equation for the velocity

(3.1.17) becomes

D
2
y̌out v̌j = 0, (3.1.38)
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which can be matched with the inner layer to give

v̌j = Kj |ωj|−1/2y̌. (3.1.39)

The vorticity and adjoint solutions are given by

η̌j = −iKj
y̌

λαj y̌ − ωj

, v̌†j = K†
j

y̌

λαj y̌ − ωj

, (3.1.40)

whereK†
j represents an arbitrary normalisation. These solutions feature a non-complex

singularity in the outer layer, but approach zero in the direction of the inner layer.

The Nature of the Coefficients

It can be seen from expressions (3.1.35, 3.1.39) that the leading order complex be-

haviour of the OS eigenfunction is confined to a very narrow viscous layer attached

to the wall, whilst the vorticity and adjoint functions are both purely real to a first

approximation. The fact that the adjoint function does not appear until higher expan-

sion order in the viscous wall layer means that this deck does not contribute a leading

order term to the integral and so the nonlinear coefficients will be purely real (or purely

imaginary) in the high Reynolds number, high frequency limit.

3.2 Analysis of Non-ConservativeWave Interactions

The first part of this chapter has provided support for the claim that the nonlinear

coefficients are fully complex at moderate frequencies based on triple-deck theory in

the vicintiy of lower branch of the neutral curve. The details of the analysis have been

shown to be consistent with findings that the coefficients are real-valued in the high

frequency limit, where the effects of viscosity are confined to a very thin wall layer

that does not contribute to the coefficient expressions. Since the experiments that

we have in mind feature moderate wavenumbers and frequencies, the behaviour of the

evolution equations (2.1.7) will now be examined for the case where complex nonlinear
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coefficients and linear growth/decay are both included.

The governing equations (2.1.7) for a single resonant triad, {j, k, r} = {0, 1, 2}, can

be written in the form

aja
′
j − σjaj

2 = a0a1a2γj cos (φ− χj), j = 0, 1, 2, (3.2.1a)

φ′ = ∆−
3
∑

j=1

akal
aj

γj sin (φ− χj), (3.2.1b)

in which γj = γj,−r,−s and χj = χj,−r,−s are given by (2.1.7c). The quantity

φ = φj,−r,−s = φ0 + φ1 + φ2 +∆τ (3.2.2)

measures the detuned sum of the phase-variations for the three waves, with

∆ = ǫA
−1∆0,−1,−2 as defined by (2.0.2b). Parameters χj represent the phases of the

nonlinear coefficients, and the fact that these parameters are not zero-valued will be

shown to be of critical importance to the development of the amplitudes of the three

waves.

In general, all three linear coefficients σj are distinct, and so an attempt to remove

the linear dissipative terms by transformation of aj will inevitably introduce new time-

dependent coefficients for the nonlinear terms. Alternatively, a different coordinate

transform might be used for the temporal variable in each of the ordinary differential

equations (3.2.1), resulting in a system of partial differential equations. Neither of

these two approaches appears to be of any benefit.

In an attempt to simplify the problem, Wilhelmsson (1970) has noted that in the

explosive scenario each wave will begin to experience growth/dissipation due to the

other two waves as the nonlinear terms grow relative to the linear terms. A modified

system of equations was proposed in which the linear coefficients are time-dependent,

such that each wave initially experiences its own linear growth rate and approaching

the time of explosion the three waves have the same (averaged) linear behaviour.

This should entail some unknown further change to the nonlinear interaction coeffi-
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cients, which Wilhelmsson did not account for, and so it is not clear what relationship

the modified system has to the original, except at onset where the original and modified

systems coincide. In any case, it remains necessary to use a different temporal transfor-

mation in each equation, to eliminate the resulting time-dependence in the nonlinear

coefficients. Wilhelmsson interpreted these different timescales as indicative of the

delay that each wave experiences in responding to the dissipation of the others, and

argued that since the three modes have the same time of explosion there must also be a

mixing of the delays, allowing use of the same time transform for each mode based on an

appropriately weighted average of the linear viscous dissipations. The approximation

was later adjusted empirically in Weiland (1972) to give better numerical agreement.

In Fig. 3.6, comparisons between the refined model and the complete system (3.2.1)

are shown. Qualitatively the solution appears to be in good overall agreement with

the full system. However, the problem still requires numerical treatment due to the

complex nonlinear coefficients, and in general the solution appears to be no better

than simply assuming averaged linear dissipation over the entire domain, as shown in

Fig. 3.7. Indeed, it is not clear precisely how an argument based on ‘rapid mixing of

timescales’ differs from one based on ‘rapid mixing of dissipations’.

An alternative approach to the problem is to consider, as in Section 2.2.2, what

happens to the phase-sum in the vicinity of an explosion. For large amplitudes,

the nonlinear terms dominate so that the effects of linear growth/dissipation may be

neglected to a first approximation, and this allows a necessary criterion to be deduced

in order that the explosion may take place. The analysis will be described in the next

section, where some special cases such as Craik-type triads are also considered.
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Figure 3.6: Numerical comparison between amplitude solutions to (3.2.1) [ ] and
approximate methods described in Wilhelmsson (1970); Weiland (1972) [ ].
The parameters used are the same as in Weiland (1972).
Top: Mixed dissipation given by unweighted average of linear dissipations.
Bottom: Mixed dissipation given by amplitude-weighted average of linear dissipations.

Figure 3.7: Numerical comparison between amplitude solutions to (3.2.1) [ ] and
solution obtained by assuming constant, averaged linear dissipation [ ].
The parameters used are the same as in Weiland (1972).

3.2.1 A Necessary Criterion for Explosive Growth

When φ′ = 0, system (3.2.1) may be written in the form

aja
′
j − σjaj

2 = ρja0a1a2, (3.2.3a)

φ′ = ∆−
3
∑

j=1

a′j
aj

tan (φ− χj), (3.2.3b)
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where the factors ρj = γj cos (φ− χj) are constant. In regions of ‘explosive’ growth,

a′j ≫ aj, so that the linear terms σjaj may be neglected, and (3.2.3a) gives

aj
2(τ) = ρjx(τ),

(

1

2

dx

dτ

)2

= ρ1ρ2ρ3x
3. (3.2.4)

This result satisfies

a′0
a0

=
a′1
a1

=
a′2
a2
, (3.2.5)

so that the corresponding solution of (3.2.3b) is given by

tan (φ− χ0) + tan (φ− χ1) + tan (φ− χ2) =
∆

d
dt
ln aj

. (3.2.6)

When ∆ = 0, the results (3.2.4, 3.2.6) are exact solutions of (3.2.3) for the case where

σj = 0, provided that initial conditions can be found such that ρj are all the same sign.

An illustrative example is provided in Fig. 3.8.

0.2 0.4 0.6 0.8 1.0
0

φ(0)

τ

0.2 0.4 0.6 0.8 1.0
0
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20

τ

Figure 3.8: Solution of the evolution equations (3.2.1) for {χ0, χ1, χ2} = {π
6
, π
4
, π
3
},

with linear terms and detuning set to zero. The factors γj were taken to be 1, which
corresponds to a rescaling of amplitudes aj . Initial condition were chosen to satisfy
(3.2.4) and (3.2.6). The left plot shows φ(τ) and the right plot shows x(τ) as defined
by (3.2.4).

In cases where ∆ 6= 0, the results are only valid in the limit a′j/aj → ∞, which happens

in the vicinity of an explosion. In that case, the solution is a stable attractor of the

system for large amplitudes. The indicial equation

tan (φ∞ − χ0) + tan (φ∞ − χ1) + tan (φ∞ − χ2) = 0 (3.2.7)
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φ∞

τ

Figure 3.9: Phase evolution of system (3.2.1) with {χ0, χ1, χ2} = {−π
4
, π
6
, π
3
} for

different random values of ∆ ∈ [−1, 1]. Initial conditions were also randomised, and
linear terms set to zero. The factors γj were taken to be 1, which corresponds to a
rescaling of amplitudes aj . The solution curves terminate at the singularity, where
a′j/aj → ∞.

together with the requirement that cos (φ∞ + χj) are all the same sign (see 2.2.10)

provides a necessary and sufficient condition for the existence of such an attractor.

An example case is shown in Fig. 3.9. In general the explosion will only occur for

disturbances exceeding a certain threshold amplitude, due to the effects of detuning

and linear stabilisation. These considerations will be addressed in the next chapter,

where a parameter space sweep will be undertaken.

Equation (3.2.7) can be ‘simplified’ by the transformation Φ = φ∞−χ2, which gives

tanΦ + tan (Φ + χA) + tan (Φ + χB) = 0,

χA = χ2 − χ0 χB = χ2 − χ1,

(3.2.8)

where cosΦ, cos (Φ + χA), cos (Φ + χB) are required to be the same sign for explosive

behaviour. As can be seen from Fig. 3.10, there are a wide range of parameter values

for χA, χB satisfying these requirements. Three simple cases will be analysed below.
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Figure 3.10: The shaded region shows parameter values
{χA, χB}, for which explosive solutions to (3.2.8) exist. It can
be seen that all values |χA−χB| < π satisfy the requirements.

Case 1 : Craik-type triads; or any other situation where two coefficients

have equal phase angles so that χA = χB = χ, say

The indicial equation (3.2.8) becomes

tanΦ + 2 tan (Φ + χ) = 0, (3.2.9)

with solutions

tanΦ =
1

2 tanχ

[

3±
√

9 + 8 tan2 χ
]

. (3.2.10)

Explosive behaviour requires that

sign[cosΦ] = sign[cos (Φ + χ)]

= sign[cos Φ sinχ(cotχ− tanΦ)],

(3.2.11)
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and from (3.2.10)

tanΦ− cotχ =
1

2
cot Φ

[

1±
√

9 + 8 tan2 χ
]

. (3.2.12)

It is clear that ∀χ, one of these values is positive, whilst the other is negative, and so

there exists an explosive solution whenever 0 < |χ| < π.

Case 2 : Coefficients χA, χB, differing by exactly π

In this case, explosion is not possible, since

sign[cos q] = sign[cos (q + π)] ⇒ sign[cos q] = −sign[cos q], (3.2.13)

which is a contradiction.

Case 3 : Coefficients χA = −χB = χ, say (where χ > 0)

The indicial equation becomes

tanΦ(3 + 2 tan2 χ− tan2 χ tan2Φ) = 0, (3.2.14)

with solutions

tanΦ = 0, tan2Φ = 2 + 3 cot2 χ. (3.2.15)

The first case satisfies sign[cos (Φ + χ)] = sign[cosΦ] iff sign[cosχ] = 1.

The second case gives

tanΦ = ±(s cotχ+ t), (3.2.16)

where s = sign[cotχ], and t > 0.

Thus, sign(cotχ + tanΦ) = −sign(cotχ − tanΦ), and so solutions to the problem

sign[cos (Φ + χ)] = sign[cos (Φ− χ)] do not exist.
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3.3 Conclusions

It has been shown that in a weakly nonlinear theory of triad interactions at moderate

Reynolds numbers and frequencies, the nonlinear coupling coefficients are typically

complex. This is in contrast to the results in a high frequency, high Reynolds number

limit where de-coupling of the scales for convective and unsteady behaviour leads to

purely imaginary nonlinear coefficients.

The fact that the coefficients are complex means that explosive amplitude solutions

are possible for a wide range of parameter values. In particular, it has been demon-

strated in Section 3.2.1 that explosive behaviour can occur whenever the phase angles

of all three coefficients differ by less than π, provided that the initial amplitudes are

large enough to overcome the effects of linear damping and detuning.

In the next chapter, growth rates and amplitude thresholds will be calculated

numerically for Blasius flow, in order to establish the ‘most dangerous’ wavenumber

combinations and to determine whether the instability can be triggered for sufficiently

small amplitudes that the assumptions of weak nonlinearity remain valid. If the explo-

sion takes place in a time frame similar to that identified by linear theory for exponential

instability, then the mechanism might ultimately provide a route to laminar-turbulent

transition via other types of instability that take place on larger scales.
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Chapter 4

Computational Results

The aim of this chapter is to provide quantitative estimates to show how downstream

flow development might be affected by resonant triad interactions, and to establish

whether the theoretical explosive growth described in Chapters 2-3 could provide a

viable nonlinear growth mechanism at realistic Reynolds numbers.

A parallel flow approach will be used in Section 4.2 to determine the parameter

regimes where resonant triads satisfy the weakly nonlinear requirements, and to as-

certain how large the disturbances need to be in order for breakdown to be observed

within timescales relevant to experiments and to linear theory. If any regions of the

parameter space are found to be particularly susceptible to breakdown then this might

provide an explanation for why some frequency components are found to grow more in

experiments than the linear theory suggests. Further research might then investigate

these cases in more detail, perhaps by taking a weakly non-parallel approach or by

direct numerical simulation.

In Section 4.3 a quasi-nonparallel description will be outlined. The approach

requires the nonlinear coefficients to be recomputed at each downstream location, which

is computationally expensive. A comprehensive investigation of the parameter space,

therefore, remains beyond the scope of this research, even if the parallel theory is used

to first identify the cases most likely to lead to breakdown. Results will be provided

only for an example case, to indicate the possible effects of basic flow non-parallelism

on amplitude thresholds.
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In the final part of this chapter, the possibility of interactions between groups of tri-

ads sharing one or more wavevectors will be considered. There are a very large number

of possible ways that such interactions could occur, and so a complete investigation

would pose a formidable task. Selected examples can, nevertheless, provide insight

into the effect that triad coupling might have on disturbance thresholds, and so results

will be presented for a pair of triads interacting through a common wavevector, and

compared to the results for the equivalent two independent triad systems.

4.1 Numerical Methods used to Calculate the

Coefficients

Both a compound matrix method (Appendix C.1) and a Chebyshev collocation ap-

proach (Appendix C.2) were used to calculate the coefficients appearing in the ampli-

tude evolution equations (2.1.7).

The two methods were both successful in finding the least stable eigenvalue over a

range of parameter values, as indicated by Fig. C.2. However, the Chebyshev colloca-

tion approach is typically faster than the compound matrix method and therefore may

be preferred when only eigenvalues are needed. On the other hand, the Chebyshev

method required additional signal processing in order to provide robust solutions for

the higher derivatives of the eigenfunction (see Appendix C.5), and so the compound

matrix approach may be preferred for calculation of the nonlinear coefficients. Both

the real and imaginary parts of the integrands appearing in the nonlinear coefficient

numerators (2.1.6) tend to vacillate around zero, as illustrated in Fig. 4.1, and so small

deviations in the accuracy of the calculated functions could lead to larger differences in

estimates of the nonlinear coefficients. Comparing the results obtained by two different

algorithms provided a means of checking the reliability of the calculations, which was

especially useful wherever a black-box sweep of the parameter space was required. The

two methods were found to provide excellent agreement and so the figures included

in this chapter were produced using the (faster) Chebyshev collocation approach. In
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Appendix C, a small number of example cases based on the compound matrix method

are provided in support of the accuracy of the calculations.
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Figure 4.1: Numerators and denominators of nonlinear coefficient integrands, as
defined by (2.1.4b). Real parts are shown in black and imaginary parts are shown
in grey. Solutions obtained by compound matrix method [ ] and by Chebyshev
collocation [ ] are shown on the same axes. Parameter values are Rδ = 882,
k0,1 = {0.25,±0.1911}, which is one of the cases considered in Table 3.1.

4.2 Parameter Space Investigation for a Single Triad

According to the Parallel Flow Approximation

This section will investigate the case of single triad, {j, k, r} = {0, 1, 2}, as described

by the evolution equations (3.2.1). A fully parallel approach will be taken to determine

whether potentially explosive wavevector combinations exist. That is, the linear and

nonlinear coefficients appearing in the evolution equations will be calculated at fixed

parameter values of Rδ, kj , and held constant in the analysis of the interaction equa-

tions. If a breakdown is predicted then comparison with the linear theory can provide
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an indication of whether the timescale for the breakdown is realistic, or whether the

disturbance would have travelled far enough downstream to lead to significant changes

in the linear stability characteristics and interaction coefficients.

A more accurate picture could be provided by undertaking a quasi-nonparallel

approach, similar to that outlined in Appendix B.6, with the parallel flow results being

used at each downstream location to determine the linear and nonlinear coefficients as

the disturbance evolves. Crucially, this would incorporate an estimate of downstream

changes in the frequency mismatch ∆, which is not accounted for by the parallel theory.

However, the parallel approach will be used here due to its simplicity, to demonstrate

the possibility of explosive growth and to identify regions of the parameter space where

a more thorough analysis might be fruitful. In Section 4.3 an example case is provided

to show how a quasi-nonparallel approach might be implemented, and to indicate

whether downstream evolution might lead to significant differences in the results.

4.2.1 Identifying the Parameter Space

Decomposition of the parameter space will be based on a number of considerations,

outlined below.

4.2.1.1 Reynolds Number

Scalings with respect to boundary layer thickness will be assumed. Results will be

presented for Rδ ∈ [400, 2000], in order to include the early stages of flow development

as well as the regime where nonlinear instability is typically first identified in exper-

iments. By Rδ = 2000 the fundamental frequency present in disturbances considered

by the likes of Gaster (1975), Healey (1995a) and Medeiros and Gaster (1999a,b) will

already have passed through the region of linear instability and exited from the upper

branch of the neutral curve. Since the Reynolds number is to be held constant in the

analysis, it will be fixed at the top level in a hierarchy of parameter variations. Results

will be computed for Rδ = 400, 500, 600, . . . , 2000, with detailed findings presented for

the cases Rδ = 400, 600, 800, 1200 to provide an overview of the main features.
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4.2.1.2 Detuning

Due to the very large parameter space of resonant triad interactions, the investigation

will be restricted to cases satisfying exact real part resonance. That is, the detuning

parameter ∆ appearing in system (3.2.1) is required to be zero. The criterion could be

relaxed to allow the inclusion of triads with weak levels of detuning but test calculations

suggest that these triads have higher amplitude thresholds, and so there is justification

for excluding them from a preliminary investigation of the most dangerous wavenumber

combinations. It is important to note, however, that the triads would begin to exhibit

detuning due to basic flow non-parallelism as they progress downstream, which is not

accounted for in the numerical estimates given in this section.

4.2.1.3 Weak Nonlinearity

Wavenumber variations satisfying |kj| ∈ [0.05, 0.6] will be taken, since this range

extends quite substantially beyond both the upper and lower boundaries of the neutral

curve at the Reynolds numbers considered, and thereby encompasses all cases of

interest. However, the triads studied must also fit the requirements of a weakly

nonlinear theory, which assumes that the imaginary parts of the frequencies are O(ǫA),

whilst the real parts are O(1). To account for this, the quantity

ǭ =
max|Im{ωj}|
min|Re{ωj}|

, j = 0, 1, 2 (4.2.1)

will be taken as a measure of the validity of the theory. This definition is somewhat

artificial, but is a pragmatic means of recognising triads whose members have large

differences in wavelength. For the weakly nonlinear theory to remain valid in a strict

asymptotic sense, ǭ should be non-finite. However, from a numerical standpoint it is

essential only that this parameter is in some sense ‘small’ so that separation of the

terms at different orders may be done in a consistent manner. Ultimately, the validity

of the approach can be assessed by comparing the predictions of the theory with direct

numerical simulation. For wavevectors in a narrow range, ǭ is quantitatively similar to
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the maximum normalised rate of dissipation for each wave calculated separately. The

definition will be used to cautiously identify regions of the parameter space where the

assumption of weak linear growth/decay is appropriate. When it comes to calculating

amplitude thresholds, however, the size of the linear terms appearing in the evolution

equations will be related to the disturbance amplitude directly, as described in Section

4.2.4.

4.2.2 Hierarchical Structure of Parameter Variations

The triads are represented in terms of wavelengths and angles in the form

r0 cos θ0 + r1 cos θ1 = r−2 cos θ−2 (4.2.2a)

r0 sin θ0 + r1 sin θ1 = r−2 sin θ−2 (4.2.2b)

Re[ω0 + ω1 − ω−2] = 0, (4.2.2c)

and the restriction θ0 > θ−2 > θ1 may be imposed without loss of generality, since all

variations of these parameters are to be considered. The wave angles are assumed to be

confined to the right-half plane since upstream-propagating waves are heavily damped.

This gives the situation shown in Fig. 4.2, where the angles between wave-vector k−2

and the flanking waves have been relabelled θA = θ0 − θ−2 and θB = θ−2 − θ1, so

that the triad is symmetric about wavevector k−2 when θA = θB. Owing to basic flow

symmetry it is only necessary to consider θ−2 ∈ [0, π
2
).

In principle, values of any three of the parameters rj , θj can be chosen and then the

others can be determined from equations (4.2.2), although there may not be a solution,

and if there is then it may not be unique. It turns out that for any given value of θ−2

there are only a small range of flanking wave-angles θA, θB for which the quantity

ǭ defined in (4.2.1) remains small (see Fig. 4.3, for example), and triads having zero

detuning cannot be found at all for some combinations of θA, θB . It is more convenient

to manipulate the parameters θ−2, r−2, θ0, since exact triads with weak damping can

then be found for a comparatively wide range of values. Furthermore, the size of
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Figure 4.2: An illustration of how the wavevectors are defined during the parameter
search. The dashed arrow indicates the oncoming flow direction.

parameter r−2 can be used to ascertain whether wavevector k−2 lies near to the lower

or upper branch of the neutral curve, and this is an important distinction that will be

discussed in Section 4.3.

The full hierarchy of parameter variations that will be taken is shown in the

schematic diagram, Fig. 4.4. In the event that more than one solution is found for a

given set of parameters, the choice that best fits the requirements of weak nonlinearity

will be selected as described in Section 4.2.1.3.

4.2.3 On Linear vs Nonlinear Growth Rates

The leading order normal velocity components appearing in (2.1.1a) are given by

vj = ǫAvj,1(y)Aj,1(τ)Ej + c.c

= 2ǫA|vj,1||Aj,1| cos (kj.x− ωjt + arg(vj,1) + arg(Aj,1)),

(4.2.3)

and so the normalised instantaneous rate of change of amplitude for each mode is

Gj =
d
dt
(2ǫA|vj,1Aj,1|)
2ǫA|vj,1Aj,1|

= ǫAaj
−1daj

dτ
= ǫA

(

σj + ρj
akal
aj

)

, (4.2.4)

where the right hand side has been rewritten using (3.2.3), and a dash denotes differ-

entiation with respect to τ . The term ǫAσj is the instantaneous temporal growth rate

given by the linear theory, and can be related to the spatial growth of disturbances
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Figure 4.3: Plots for Rδ = 800 showing parameter regions where ǭ < 0.1, as defined by
(4.2.1). Each plot is for a specified value of θ−2, and the horizontal and vertical axes
show θA/

◦ and θB/
◦, respectively.

Rδ ∈ [400, 2000]

(step size 100)
✲

θ−2 ∈ [0, π
2
)

(step size 0.1)
✲

θ0 ∈ [θ−2,
π
2
)

r−2 ∈ [0.05, 0.6]

(step size 0.01)

Figure 4.4: A schematic view of the parameter space investigation.

in the manner discussed in Appendix B.6. The second term defines the instantaneous

growth rate due to nonlinear interactions.

To account for the simultaneous growth of three waves, a measure for the triad

system might be given by replacing aj on the left-hand side of (4.2.4) with the root

mean square of the three amplitudes

arms =
√

a02 + a12 + a22. (4.2.5)
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By using (3.2.3), the result may be found to be

G = ǫA

d
dt
arms

arms

= ǫA
a0a1a2f(t)− (σ0a0

2 + σ1a1
2 + σ2a2

2)

a02 + a12 + a22
(4.2.6)

where

f(t) = γ0 cos (φ− χ0) + γ1 cos (φ− χ1) + γ2 cos (φ− χ2). (4.2.7)

It is not possible to compare this result directly with the instantaneous linear growth

rate, because the growth values in the linear theory are not amplitude dependent. It

may be informative to compare the linear and nonlinear components of G at a given

amplitude, but such a comparison will not be made here. Rather, expression (4.2.6)

will be used to determine which triad combinations have the strongest (normalised)

initial growth rates for disturbances of given magnitude. This depends on the value of

f(0) as defined by expression (4.2.7). Since d2f
dφ2 = −f , the initial growth rate can be

maximised by choosing φ0 such that

df

dφ

∣

∣

∣

∣

t=0

= 0 and f > 0. (4.2.8)

4.2.4 Pragmatic Definition of Amplitude Thresholds

The calculations made in Appendix B.6 indicate typical timescales of a little less than

t = 103 for waves to cross the neutral curve. For the purposes of finding amplitude

threshold requirements for explosive growth, t = 500 will be taken pragmatically to

define a characteristic timescale and the system of evolution equations (3.2.1) will be

solved for increasing values of the initial amplitudes, until the explosion is found to

occur within this characteristic time. This means that the breakdown is predicted to

occur by the time that waves approach the upper branch. The definition of explosion

that will be used in the parameter space investigation is

a′j(τlim)

aj(τlim)
> ǫA

−1, (4.2.9)
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where a dash denotes differentiation with respect to τ = ǫAt, and τlim = 500ǫA. The

value of ǫA will be assumed to be 0.01, which gives τ = 5 = O(1), although the

amplitude thresholds as defined here do not depend on the size of this parameter.

The definition (4.2.9) implies a breakdown in the separation of scales, as the evolution

becomes as fast as the time scale of the wavy part. Due to the way in which the

eigenfunctions have been normalised (see Appendix C.4), the result

U% = 100ǫAmax{aj(0)} (4.2.10)

gives the threshold amplitude requirement as a percentage of the basic flow strength,

and this is the quantity that will be calculated.

In order to simplify the process of finding amplitude thresholds, all initial ampli-

tudes aj(0) will be chosen to be the same, and the phase-sum φ(0) will be selected in

order to maximise the initial nonlinear growth rate by satisfying (4.2.8). In Section

4.2.6, a brief investigation of the effect of different initial conditions will be undertaken.

The value t = 500 is somewhat arbitrary, and different choices would provide

different estimates for the amplitude thresholds, but the definition will at least indicate

whether explosion could occur within typical experimental timescales. In Section 4.2.7

the effect of choosing a different characteristic timescale will be illustrated for a few

examples.

4.2.5 Results and Discussion

Figs. 4.5-4.8 provide results for the initial growth rates and amplitude thresholds

at Rδ = 400, 600, 800, 1200, for selected regions of the parameter space where the

normalised rates of linear dissipation defined by ǭ are weakest.

It can be seen that the initial rate of nonlinear growth is typically largest for triads

where the flanking waves are quite oblique, and when wavevector k−2 lies close to the

upper branch of the neutral curve. However, these triads also exhibit stronger levels

of linear dissipation and so the amplitude thresholds are lowest when wavevector k−2
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Figure 4.5: Results for the normalised rates of linear dissipation ǭ, initial growth rates
G, and amplitude thresholds U% as defined by (4.2.1, 4.2.6, 4.2.10) at Rδ = 400. Each
plot is for a specified value of θ−2, and the parameters shown on the horizontal and
vertical axes are θ0/

◦ and r2, respectively.
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(g) ǭ : θ−2 = 0.5c ≃ 29◦

1.0000
1.5000

2.0000

3.5000

5.0000

4.5000 6.0000
6.50005.5000

4.0000

3.5000

3.0000

2.0000

55 60 65 70 75

0.30

0.35

0.40

0.45

(h) G : θ−2 = 0.5c ≃ 29◦

0.6500

0.6500

0.6100

0.6900

0.
69

00

0.7
30

0

0.7
70

0

0.73000.8500

0.7300

0.7700

0.8100

55 60 65 70 75

0.30

0.35

0.40

0.45

(i) U% : θ−2 = 0.5c ≃ 29◦

0.0800

0.
10

000.0800

0.1000

65 70 75

0.30

0.35

0.40

0.45
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Figure 4.6: Results for the normalised rates of linear dissipation ǭ, initial growth rates
G, and amplitude thresholds U% as defined by (4.2.1, 4.2.6, 4.2.10) at Rδ = 600. Each
plot is for a specified value of θ−2, and the parameters shown on the horizontal and
vertical axes are θ0/

◦ and r2, respectively.
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Figure 4.7: Results for the normalised rates of linear dissipation ǭ, initial growth rates
G, and amplitude thresholds U% as defined by (4.2.1, 4.2.6, 4.2.10) at Rδ = 800. Each
plot is for a specified value of θ−2, and the parameters shown on the horizontal and
vertical axes are θ0/

◦ and r2, respectively.
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Figure 4.8: Results for the normalised rates of linear dissipation ǭ, initial growth rates
G, and amplitude thresholds U% as defined by (4.2.1, 4.2.6, 4.2.10) at Rδ = 1200. Each
plot is for a specified value of θ−2, and the parameters shown on the horizontal and
vertical axes are θ0/

◦ and r2, respectively.
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lies in a region of linear growth inside the neutral curve.

The amplitude thresholds are remarkably low across the whole parameter space in-

vestigated, which suggests that resonant triad interactions are likely to be an important

mechanism for nonlinear growth even in the earliest stages of disturbance evolution,

and the ‘most dangerous’ triads might simply be those that fit the weakly nonlinear

theory the best. The minimum amplitude thresholds at each Reynolds number are

given in Fig. 4.9, excluding those triads with ǭ > 0.05. The lowest thresholds are

found at the larger Reynolds numbers considered, although beyond Rδ = 1000 the

thresholds do not appear to decrease much further. On the other hand, at larger

Reynolds numbers there is also a wider range of triads for which the requirements of

weak linear growth/dissipation are met, as indicated by Figs. 4.5-4.8.
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Figure 4.9: Minimum amplitude thresholds at each Reynolds number, as defined
by (4.2.10). Results are determined from the whole range of wavelengths and
angles considered, wherever ǭ ≤ 0.05.

The 0.2% amplitude threshold seen in Fig. 4.9 for Reynolds numbers larger than

approximately Rδ = 1000 is in very good agreement with experimental evidence of

nonlinear instability. For instance, Medeiros and Gaster (1999a) have observed that

[T]he magnitude of the streamwise perturbation velocity for which the first

signs of nonlinearity are detected is roughly 0.2% of the free-stream velocity.



68

This is substantially below the 1% amplitude level for which nonlinearity

takes place in experiments with regular plane wavetrains.

This finding, together with the observation that nonlinear breakdown is strongly de-

pendent on the relative phase of the initial disturbances (e.g. Healey, 1995b; Medeiros

and Gaster, 1999a) provides convincing evidence that resonant triad mechanisms might

be an important precursor to turbulence.

Nevertheless, it is important to recognise that a large proportion of the triads

identified here are for cases where one of the wavevectors lies near to the upper branch

of the neutral curve. If such a triad were to be tracked downstream, then the longest

wavevector would quickly enter a region of strong linear damping, where the weakly

nonlinear theory is no longer applicable. In Section 4.3, this concern will be addressed

by choosing an example triad where all three wavevectors lie close to the lower branch

of the neutral curve, and tracking its downstream evolution using a quasi-nonparallel

approach. First, however, the somewhat arbitrary definitions used to determine the

threshold amplitudes should be scrutinised more closely, to ascertain whether the main

conclusions remain valid when slightly different measures are implemented.

4.2.6 The Effect of Choosing the Right Initial Conditions

According to the definitions described in Section 4.2.4, the lowest amplitude threshold

at Rδ = 800 is U% = 0.312, which is for the parameter values k0,1 = {0.166,±0.185}

and the initial condition φ(0) = 0.0554. The linear coefficients for this triad are given

by σ = {−0.0473,−0.0510, 0.138}, from which it can be seen that the two flanking

wavevectors would decay according to the linear theory, whilst wavevector k−2 is a

source of linear growth. Figs. 4.10 and 4.11 present results for this triad under different

choices of aj(0), φ(0), in order to examine how these conditions relate to the calculated

amplitude threshold. The results indicate that the lowest amplitude thresholds can

be achieved by taking all initial amplitudes to be the same, even though two of the

waves are linearly damped, and support the finding that U% = 0.312 is the minimum

amplitude threshold.
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Figure 4.10: Amplitude thresholds given by (4.2.10), for k0,1 = {0.166,±0.185} at
Rδ = 800. The relative scalings of the initial conditions aj(0) are randomised, and the
phase sum φ(0) is chosen to maximise the initial growth rate (4.2.6). The dashed line
indicates the result obtained when all initial amplitudes are the same.
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Figure 4.11: Amplitude thresholds given by (4.2.10), for k0,1 = {0.166,±0.185} at
Rδ = 800. All initial amplitudes are assumed to be the same, and different values of
φ(0) are tested. The horizontal line indicates the value U% = 0.312, which is predicted
by choosing the value of φ(0) that maximises the initial growth rate (4.2.6).

4.2.7 The Effect of Defining a Different Characteristic Timescale

The ‘characteristic timescale’ used in definition (4.2.10) is arbitrary, yet different

choices of this parameter would lead to different amplitude threshold estimates. Fig.

4.12 shows how different values for the characteristic timescale would affect the ampli-

tude threshold estimates for the resonant triad described in Section 4.2.6.

It can be seen that if the characteristic timescale is substantially shorter than

t = 500, then the amplitude thresholds are increased somewhat, although the values
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Figure 4.12: Amplitude thresholds given by (4.2.10) with different values of τlim,
for k0,1 = {0.166,±0.185} at Rδ = 800.

are still very low at timescales that are much shorter than those in careful experiments,

and the mechanism is therefore expected be an important amplitude driver in practical

scenarios. At larger values of the characteristic timescale, the thresholds are not

especially sensitive to the implemented value for τlim, and so the choice made in this

thesis appears to be a reasonable working definition.

4.3 Quasi-Nonparallel Approach

In this section, an example case will be studied to illustrate how basic flow evolution

might affect amplitude development as the waves progress downstream. A locally

parallel approach will be taken, whereby the linear and nonlinear coefficients, and

the detuning parameter ∆ are recomputed at each downstream location, so that they

are functions of Rδ. Since the basic flow is independent of both time and the spanwise

coordinate, the physical frequency and physical spanwise wavenumber of a given normal

mode will remain fixed during an experiment, whilst the streamwise wavenumber

depends on the downstream location due to basic flow evolution. To show how the

calculations can be related to experiment, the basic flow velocity and kinematic vis-
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cosity will be taken to be U∞ = 17.3ms−1, ν = 1.1U∞(1.7208/1946)2, corresponding

to the values given in Medeiros (2004). The same values were also used to study the

evolution of a single normal mode in Appendix B.6. However, these values have been

chosen for illustrative purposes only, since the findings would apply to any experiment

of this type.

The disturbances that will be considered are introduced at Rδ = 800 with fixed

physical frequencies and spanwise wavenumbers given by

(ω∗/2π)j = {137.604, 137.604, 275.208}s−1,

(β∗/2π)j = {28.169,−28.169, 0}m−1.

(4.3.1)

The values of these parameters were chosen so that the modes are in exact real part

resonance according to the temporal theory, and all lie close to the lower branch. The

waves are to be tracked downstream until ǭ = 0.1, which occurs due to progression

of one of the waves beyond the upper branch of the neutral curve. According to the

temporal theory, this limit is reached when Rδ = 1551.

Since the triad is of Craik-type, the phase-velocities of all three waves are the same,

and so it is a straightforward matter to relate Rδ to the temporal coordinate by using

the result

t(Rδ) =
1

δ2

∫ Rδ

800

(cp)
−1dRδ, (4.3.2a)

as described in Appendix B.6.2. In addition, the detuning parameter ∆ appearing in

the amplitude evolution equations must be multiplied by the group velocity X ′(τ) in

order to relate the temporal theory to the spatial evolution, and this quantity can be

calculated by using the relationship

x(Rδ) =
1

δ2

∫ Rδ

800

dRδ, (4.3.2b)

together with (4.3.2a).

The linear terms and the phases of the nonlinear coefficients are shown in Fig. 4.13

as a function of the slow temporal variable τ = ǫAt, with ǫA = 0.01. The resulting
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Figure 4.13: Results for the linear coefficients σj and the phases of the nonlinear
coefficients χj for the triad (4.3.1), which is introduced at Rδ = 800 and tracked
downstream. The left-hand figures show the temporal results and the right-hand figures
show the spatial results.

amplitude threshold was found to be U% = 0.269, based on the the blow-up criterion

(4.2.9) with τlim defined to be when Rδ = 1551. This result is much lower than the

amplitude threshold U% = 1.529 that is obtained for the same three waves using the

parallel flow theory for the parameters obtained at Rδ = 800. Therefore, the increased

linear growth rates found with downstream propagation is a much stronger effect than

the detuning effect, which does not seem to be significant. If the detuning is artificially

set to zero in the equations, then the amplitude threshold is only reduced by a fraction

to U% = 0.267.

A more accurate result for this scenario can be obtained by using a spatial theory,

with the linear and nonlinear coefficients and detuning calculated downstream as a

function of X . In accordance with the conditions imposed above, the waves are tracked
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downstream until

max|Im{αj}|
min|Re{αj}|

= 0.1, (4.3.3)

which occurs when Xlim = 1594. The dependent variable in the evolution equations

(3.2.1) is X , instead of τ , and the definition of blow-up is taken to be

a′j(Xlim)

aj(Xlim)
> ǫA

−1. (4.3.4)

The linear terms and the phases of the nonlinear coefficients are shown as a function of

the slow spatial variable X , alongside the temporal results in Fig. 4.13. The resulting

amplitude threshold is found to be 0.461, which drops fractionally to 0.456 if the

downstream detuning is neglected. The parallel flow assumption would give amplitude

threshold 2.878. It is interesting to note that the thresholds predicted by the spatial

theory are approximately 1.5 times smaller than those predicted by the temporal theory,

due to the smaller linear growth rates, and that this is in good agreement with the linear

theory which also indicated a factor of 1.5 between the two theories in the example

given in Appendix B.6.2.

4.4 Triad Coupling

Whilst the focus of this work has been to establish amplitude thresholds and initial

growth rates for isolated triads, it is also of interest to study the possible effects of

coupling between systems of triads sharing one or more common wavevectors. In this

section the ideas will be introduced by providing an example case to show that triad

coupling can result in even lower amplitudes than those obtained for the component

triad systems.

It can be seen from Figs. 4.5-4.8 that for given values of Rδ, k−2 there are typically

a range of values for k0 that satisfy the requirements for a resonant interaction to take

place, so that a large number of co-interactions may simultaneously occur. However,

for simplicity, the example that will be provided here is for a case of just two interacting
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triads consisting of five wavevectors k0, . . . ,k4, which satisfy the relationships

k0 + k1 + k2 = 0, Re[ω0 + ω1 + ω2] = ∆, (4.4.1a)

k3 + k4 + k2 = 0, Re[ω3 + ω4 + ω2] = ∆̂, (4.4.1b)

so that coupling takes place through the common wavevector k2. If the triads were

investigated in isolation then the following two systems of equations would be obtained:

aj a
′
j − σj aj

2 = a0 a1 a2 γj cos (φ− χj), j = 0, 1, 2,

φ′ = ∆−
3
∑

j=1

ak al
aj

γj sin (φ− χj),
(4.4.2a)

aj a
′
j − σj aj

2 = a2 a3 a4 γ̂j cos (φ̂− χ̂j), j = 2, 3, 4,

φ̂′ = ∆̂−
3
∑

j=1

ak al
aj

γ̂j sin (φ̂− χ̂j),
(4.4.2b)

where

φ = ∆t + φ0 + φ1 + φ2, φ̂ = ∆̂t+ φ2 + φ3 + φ4,

γj = γj,−k,−l, χj = χj,−k,−l, {k, l} = {0, 1, 2} \ {j},

γ̂j = γj,−m,−n, χ̂j = χj,−m,−n, {m,n} = {2, 3, 4} \ {j}.

(4.4.2c)

From these two sets of equations, the coupled interaction equations for the two triads

can be inferred directly, with no need to recompute the coefficients. The equations can

be written out in full as

a′0 − σ0 a0 = γ0 a1 a2 cos (φ− χ0), a′1 − σ1 a1 = γ1 a0 a2 cos (φ− χ1),

a′3 − σ3 a3 = γ̂3 a2 a4 cos (φ̂− χ̂3), a′4 − σ4 a4 = γ̂3 a4 a5 cos (φ̂− χ̂4),

a′2 − σ2 a2 = γ2 a0 a1 cos (φ− χ2) + γ̂2 a3 a4 cos (φ̂− χ̂2),

φ′ = ∆−
2
∑

j=0

γj
ak al
aj

sin (φ− χj)− γ̂2
a3 a4
a2

sin (φ̂− χ̂2),

φ̂′ = ∆̂−
4
∑

j=2

γ̂j
am an
aj

sin (φ̂− χ̂j)− γ2
a0 a1
a2

sin (φ− χ2),

(4.4.3)
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and further simplification of the system can be achieved on taking the amplitude

rescalings

aj →
aj

|γk γl|1/2
, j = 0, 1, 2,

a3 →
Λa3

|γ̂2 γ̂4|1/2
, a4 →

Λa4
|γ̂2 γ̂4|1/2

, Λ =
|γ̂3 γ̂4|1/2
|γ0 γ1|1/2

,

(4.4.4)

to obtain

a′0 − σ0 a0 = a1 a2 cos (φ− χ0), a′1 − σ1 a1 = a0 a2 cos (φ− χ1),

a′3 − σ3 a3 = Λ a2 a4 cos (φ̂− χ̂3), a′4 − σ4 a4 = Λ a4 a5 cos (φ̂− χ̂4),

a′2 − σ2 a2 = a0 a1 cos (φ− χ2) + Λ a3 a4 cos (φ̂− χ̂2),

φ′ = ∆−
2
∑

j=0

ak al
aj

sin (φ− χj)− Λ
a3 a4
a2

sin (φ̂− χ̂2),

φ̂′ = ∆̂−
4
∑

j=2

Λ
am an
aj

sin (φ̂− χ̂j)−
a0 a1
a2

sin (φ− χ2).

(4.4.5)

In principle, a quasi-nonparallel approach could be taken, similar to that outlined in

Section 4.3, but a fully parallel approach will be employed here, for Rδ = 800. The case

that will be presented is shown in Fig. 4.14, together with the dissipation contours.

It can be seen that the wavevectors k1 and k3 lie below the neutral curve, whilst the

other wavevectors lie inside the unstable regime. The two triads in this example are

mirror images, but this is not an essential feature. If the two triads were considered

in isolation, then the result U% = 0.348 would be obtained for each based on the same

definitions used in Section 4.2.

For the coupled triad, the initial amplitudes were assumed to be all equal, and

the initial phase sum was taken to be zero, which might not be the optimal choice.

Nevertheless, the results indicated a reduction in amplitude threshold to U% = 0.308.

The mechanism might, therefore, be responsible for the activation of triads that are

predicted to have higher amplitude threshold when investigated in isolation.
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Figure 4.14: An example of a coupled triad at Rδ = 800. The contours show the
imaginary part of frequency normalised with respect to the real part. Coupling
here takes place through common wavevector k−2, which lies in a region of linear
instability.

4.5 Conclusions

The results obtained in this chapter indicate that a wide band of explosive triad

interactions can be activated for disturbance amplitudes less than 1% of the basic

flow strength, and that multi-triad couplings are likely to reduce these thresholds

even further. The lowest amplitude thresholds predicted appear to coincide with

the disturbance levels required for nonlinearity to be observed in experiments. The

results were based on parallel flow theory, but in Section 4.3 evidence was presented

to partially illustrate the effects of downstream flow development, indicating that the

parallel flow results might in fact be conservative estimates, at least for cases where

the three waves initially lie near to the lower branch. The effects of detuning seem to

be of lesser importance then the effects of linear growth/dissipation, and so it might

be concluded that the most dangerous triads are simply those that are able to satisfy

the requirements of a weakly nonlinear theory at locations near to the leading edge.

The threshold amplitudes calculated here should not really be treated as indicative

of ‘explosion’. In realistic scenarios, the weakly nonlinear theory would quickly break

down as the amplitudes became too large, and other types of instability, such as
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described by the Ginzburg-Landau equation, take over. However, the theory is expected

to lead to an overall increase in amplitude levels for the disturbance, such that stronger

nonlinearity might be triggered.
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Chapter 5

Conclusions and Further Work

Resonant triad interactions have long been supposed to be a possible mechanism of

increasing disturbance amplitudes beyond the levels predicted by TS theory. However,

results obtained from fully rational upper branch theories or in the high-frequency limit

have suggested that the anticipated nonlinear instability might not occur at all (Smith

and Stewart, 1987).

Central to this discussion is the distinction between purely imaginary and essen-

tially complex-valued coefficients in the nonlinear evolution equations, which has been

alluded to by Craik (1986) and considered in some detail by Weiland and Wilhelmsson

(1977). It has been shown in this thesis that the coefficients are complex valued at

moderate Reynolds numbers and frequencies, according to OS theory, and this finding

has been supported using the analytic expressions given by a parallel asymptotic theory

in Chapter 3.

By using the numerical results for the coefficients obtained from a fully parallel OS

approach, it has been shown that for relevant parameter regimes, a wide band of triads

can be excited leading to rapid amplitude growth and culminating in a finite-time

singularity for disturbance amplitudes less than 1% of the basic flow strength. The

predicted amplitude thresholds are in good agreement with the results of experimental

studies such as Medeiros and Gaster (1999a). The breakdown occurs for a much wider

class of interactions than the Craik-type triads consisting of a downstream-propagating

mode spanned by two oblique modes of equal wave angle, and has been shown to be
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active even in parameter regimes where the linear theory predicts stability. Coupling

between triads may strengthen the interaction still further, and may therefore lead to

activation of triads that are found to have higher amplitude thresholds when investi-

gated in isolation. The scenario is therefore presented as an instability mechanism of

great importance in laminar-turbulent transition.

The theory might help to explain why the waves that are predicted to be least

stable according to linear theory are not necessarily those that are seen to be the most

dangerous in experiments, and may partly account for the three-dimensional nature

of the wavepackets that is seen to develop downstream. For instance, the figures in

Chapter 4, indicate that triads whose members lie close to the lower branch of the

neutral curve tend to consist of fairly oblique wavevectors, and these triads are likely

to be active in experiments, since they will continue to develop as the wavevectors cross

the neutral curve. The results also suggest that highly oblique modes might be quite

energetic. Bypass transition might therefore occur through coupling between slightly

damped, highly oblique (nearly spanwise) TS and Squire modes leading to algebraic

growth followed by exponential decay in a region that is subcritical with respect to the

TS neutral curve.

In Section 4.3, a quasi-nonparallel approach was implemented for one example

with promising results, which indicated that the effects of downstream detuning are of

much less importance than the increased linear growth rates found with downstream

propagation. Greater accuracy could be achieved by obtaining non-parallel corrections

through an asymptotic, or ‘successive approximation’ approach, and a fully nonparallel

direct numerical simulation would be of great interest. However, experiments and DNS

have indicated that nonparallel effects are very small for Blasius flow, which justifies

the use of the parallel flow theory here.

There are some notable features of the early disturbance evolution that have not

been addressed by the current study. For example, by introducing disturbances con-

sisting of flat sections and modulated sections, Healey (1995b) has shown that a

strong nonlinear breakdown can be triggered if the strength of the modulation is
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increased sufficiently. This behaviour was found to be phase-dependent, suggesting

that a resonant mechanism may be involved. However, these stronger modulations

do not take place on a weakly nonlinear scale, and so they cannot be adequately

accounted for by a Ginzburg-Landau type theory, or a resonant mechanism of the type

considered in this thesis. Derivations not shown here also indicate that heavily damped

long wave motion might be sustained by interaction between two weakly unstable short

waves of similar frequency. It might be that disturbances of this type extract energy

from the explosive triad interactions considered here, to provide the strong mean flow

modulation effects present in the experimental studies of Healey (1995b) and Medeiros

(2004).

For some shear flows the calculated linear growth rates are relatively modest, so that

the early stages of disturbance nonlinearity may perhaps be of even more importance in

determining the pre-turbulent flow structure. Indeed, Couette flow and pipe Poiseuille

flow famously exhibit breakdown to turbulence even though linear theory predicts

stability at all Reynolds numbers (Romanov, 1973; Davey and Drazin, 1969; Meseguer

and Trefethen, 2003). These scenarios therefore offer a promising opportunity for

studying the type of interactions discussed in this thesis.
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Appendix A

The Flat Plate Boundary Layer

A.1 Problem Formulation

This thesis is concerned primarily with the stability of the steady flow structure that

forms over a flat plate placed at zero incidence to a uniform free stream. A right-handed

Cartesian coordinate system {x, y, z} is assumed, with the y axis taken to be normal

to the flat plate, which is given by y = 0, x > 0. The governing non-dimensional

equations are the Navier-Stokes (NS) equation and incompressibility condition,

∂ṽ

∂t
+ ṽ.∇ṽ = −∇p +Re−1∇2ṽ (A.1.1a)

∇.ṽ = 0, (A.1.1b)

in which the velocity components are denoted by ṽ = {ũ, ṽ, w̃} and the pressure is

denoted by p. The Reynolds number

Re =
U∞L

ν
(A.1.2)

is a non-dimensional parameter based on the free-stream velocity U∞, kinematic vis-

cosity ν, and a fixed reference length L that corresponds to the downstream position of

interest. The basic flow structure will be assumed to be two dimensional, with w̃ = 0,

so that the incompressibility assumption (A.1.1b) may be satisfied by adopting the
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stream function formulation

ũ =
∂ψ̃

∂y
, ṽ = −∂ψ̃

∂x
. (A.1.3)

It is then possible to rewrite the equations of motion (A.1.1) for steady flow as the

single equation
(

ψ̃y
∂

∂x
− ψ̃x

∂

∂y
− 1

Re
∇2

)

∇2ψ̃ = 0, (A.1.4)

which is supplemented by the boundary conditions

ψ̃(x, 0) = ψ̃y(x, 0) = 0 for x > 0, (A.1.5a)

ψ̃(x, y) ∼ y for y ≫ 1. (A.1.5b)

Conditions (A.1.5a) impose no-slip at the plate and no flow through the plate, and the

far-field condition (A.1.5b) is required for the solution to match smoothly with the free

stream. For large Reynolds numbers, a solution to the given problem may be based

upon a straightforward asymptotic expansion in powers of Re. However, viscous effects

are not included in the leading term of a naive expansion, which reduces the order of

the equations so that the no-slip boundary condition cannot be satisfied. This results

in D’Alembert’s paradox of zero drag, and zero lift.

The difficulty was eventually understood by Prandtl (1904), who reasoned for the

existence of a narrow region called a boundary layer, in which the horizontal velocity

increases rapidly in the direction away from the plate. In this region, viscous terms are

comparable in magnitude to inertial terms, and act to decelerate the flow at the surface

by diffusion of momentum. The viscous solution is then matched to the inviscid solution

at the edge of the boundary layer to form a composite solution valid throughout the

entire flow field, based on the notion of an overlap domain where the outer solution

agrees with the inner solution to appropriate orders (e.g Kaplun and Lagerstrom, 1957;

Eckhaus, 1977).
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A.1.1 Outer and Inner Expansions

In the outer region of the flow, which applies far from the plate, a straightforward

asymptotic expansion of the form

ψ̃(x, y;Re) = δ1(Re)ψ̃1(x, y) + δ2(Re)ψ̃2(x, y) + . . .

as Re→ ∞ with x, y fixed,

(A.1.6)

where δ1 ≫ δ2 ≫ δ3 ≫ . . . is taken. By substituting into the full problem (A.1.4), it

may be deduced from the outer boundary condition (A.1.5b) that δ1 is finite. Thus,

δ1(Re) = 1 (A.1.7)

provides an appropriate scaling of ψ̃1. From (A.1.4) at leading order in Re

(

ψ̃1y
∂

∂x
− ψ̃1x

∂

∂y

)

∇2ψ̃1 = 0, (A.1.8)

which has solution ∇2ψ̃1 = −η1(ψ̃1) where η1 is an unknown function that can be

interpreted as the vorticity. Along streamlines this function is constant, and in the far

field it vanishes, since the vorticity is zero there. Hence, the problem for the first term

of the outer expansion is

∇2ψ̃1 = 0 with ψ̃1(x, 0) = 0; (A.1.9a)

ψ̃1(x, y) ∼ y for y ≫ 1, (A.1.9b)

which has solution

ψ̃1(x, y) = y. (A.1.10)

However, the no-slip condition is not satisfied by (A.1.10) because the effect of viscous

transfer of momentum to the plate has been neglected. To overcome this deficiency

it is assumed that there exists a narrow boundary layer attached to the plate where

viscosity is important. Within the boundary layer, as well as outside, the horizontal
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coordinate and horizontal velocity component can be taken as O(1), since the problem

has been non-dimensionalised using characteristic scales L and U∞. If the width of the

boundary layer is assumed to be O(∆1(Re)), where ∆1 is a function that vanishes as

its argument becomes infinite, then the inner coordinate

Y = y/∆1(Re) (A.1.11)

is introduced, and thus ψ̃ = O(y) = O(∆1). The same argument can be generalized to

higher approximations so that the form of the inner expansion, which applies near to

the boundary, is taken to be

ψ̃(x, y;Re) ∼ ∆1(Re)Ψ1(x, Y ) + ∆2(Re)Ψ2(x, Y ) + . . . , (A.1.12)

where Ψn = O(1) as Re→ ∞ with x, Y fixed.

For the first term,

(

Ψ1Y
∂

∂x
−Ψ1x

∂

∂Y

)

Ψ1Y Y = lim
Re→∞

[

1

Re(∆1(Re))2

]

Ψ1Y Y Y Y , (A.1.13)

and this limit must also be finite to avoid degenerate solutions that cannot satisfy the

inner boundary conditions and match the outer flow. Taking the limit to be unity

results in

∆1(Re) = Re−1/2, Y = Re1/2y (A.1.14)

and (A.1.13) may be integrated with respect to Y to give

Ψ1Y Y Y +Ψ1xΨ1Y Y −Ψ1YΨ1xY = f(x), say. (A.1.15)

Matching with the inviscid outer flow will determine f(x) and also provide an outer

boundary condition for Ψ1. Here, the matching rule of Van Dyke (1964) will be used,

though other methods such as matching by intermediate variables (see Hinch, 1991)
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are also often used in the literature. The method states that

‘the m-term inner expansion of (the n-term outer expansion)

= the n-term outer expansion of (the m-term inner expansion)’, (A.1.16)

and is carried out by rewriting the m-term inner expansion in terms of the outer

variable and the n-term outer expansion in terms of the inner variable. The n- and m-

term truncations are then made to agree by appropriately setting free constants. In

this manner the outer solution determines the form of the inner solution, which in turn

exerts a secondary influence on the outer expansion. The interested reader is referred

to Van Dyke (1964).

A.1.2 Matching of the 1-Term Inner and Outer

Expansions

In order to apply the principle (A.1.16) with m = n = 1 to the horizontal velocity ψ̃y,

the outer expansion (A.1.6) must first be written in terms of the inner variable and

expanded for large Re to obtain

ψ̃y ∼ ψ̃1y(x, 0) + . . . (A.1.17)

The inner expansion (A.1.12) is similarly expanded in terms of the outer variable to

obtain

ψ̃y ∼ lim
Y→∞

Ψ1Y (x, Y ) + . . . (A.1.18)

The matching condition, which is equivalent to the statement that the horizontal

velocity at the outer edge of the boundary layer matches the inviscid speed, then

gives

lim
Y→∞

Ψ1Y (x, Y ) = ψ̃1y(x, 0), (A.1.19)
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which provides an outer condition for (A.1.13). In similar manner,

lim
Y→∞

Ψ1xY → Ψ1xY (x, 0); lim
Y→∞

Ψ1Y Y → 0; lim
Y→∞

Ψ1Y Y Y → 0, (A.1.20)

allowing the function of integration f(x) to be found by evaluating the boundary layer

equation (A.1.15) at Y = ∞. The resulting expression

f(x) = −ψ̃1y(x, 0)ψ̃1xy(x, 0) (A.1.21)

is zero here, by (A.1.10), due to the absence of a favourable/adverse pressure gradient.

Thus, the Blasius boundary layer equation

Ψ1Y Y Y +Ψ1xΨ1Y Y −Ψ1YΨ1xY = 0, (A.1.22)

is found, together with the no-slip condition Ψ1Y (x, 0) = 0, the condition that there is

no flow through the plate Ψ1(x, 0) = 0, and the condition that the horizontal velocity

far from the plate matches the velocity of the free stream Ψ1Y (x,∞) = 1.

Continuing the expansion to higher order (see Van Dyke, 1964), the inner expansion

is found to have the form

ψ̃(x, y;Re) ∼ Re−1/2Ψ1(x, Y ) + O(Re−3/2 logRe), (A.1.23)

but the higher order corrections are not required here.

A.2 Blasius’ Solution

Blasius (1908) was the first to solve the partial differential equation (A.1.22) by showing

that it may be rewritten as an ordinary differential equation using an appropriate

coordinate transform. The key to the choice of mapping is given by the observation

that (A.1.22) is invariant under the transformation Ψ1 → qΨ1, x → q2x, Y → qY ,

where q is an arbitrary constant. This allows (A.1.22) to be rewritten in terms of the
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Y

Figure A.1: The solid line shows the Blasius boundary layer profile UB(Y ) near
to the plate at an arbitrary downstream location. Dashed and dot-dashed lines
show the first and second derivatives U ′

B(Y ), U
′′
B(Y ) respectively.

similarity variable

Ψ1(x, Y ) =
√
xfB(ζ), where ζ =

Y√
x
=
Re1/2y√

x
, (A.2.1)

in order to obtain

f ′′′
B +

1

2
fBf

′′
B = 0; fB(0) = f ′

B(0) = 0, f ′
B(∞) = 1. (A.2.2)

The equation (A.2.2) is known as Blasius’ equation, and the flat plate viscous layer

characterised by variable ζ is often correspondingly referred to as the Blasius boundary

layer. Using (A.1.23), expressions for the horizontal and vertical components of velocity

inside this layer may be given in terms of inner variable ζ as

ũ(x, y;Re) = UB(ζ) + O(Re−1 logRe−1) (A.2.3)

ṽ(x, y;Re) = O(Re−1/2), (A.2.4)

where UB(ζ) = f ′
B(ζ) is determined by (A.2.2), and ζ is given by (A.2.1).

The structure of the Blasius boundary layer at an arbitrary downstream location is
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shown in Fig. A.1. The basic flow does not possess a point of inflection, and Rayleigh’s

theorem (see e.g. Schmid and Henningson, 2001, pp.21) thereby states that the flow

profile is linearly stable to small disturbances according to an inviscid theory.

A.3 Displacement Thickness

The displacement thickness δ∗, which is used to define the boundary layer, may be

interpreted as the distance that the plate would have to be moved by in a hypothetical

frictionless flow in order to give mass flux equal to that of the actual boundary layer

flow. Using the definition (A.1.6) for the inviscid solution, this requirement may be

stated as
∫ ∞

0

ũ(x, y) dy =

∫ ∞

δ∗

dy, (A.3.1)

so that the displacement thickness δ∗ is given by

δ∗ =

∫ ∞

0

(1− ũ(x, y)) dy. (A.3.2)

One may also think of the displacement thickness as a measure of how far the stream-

lines of the outer flow are displaced by the boundary layer. A streamline that would

lie at y = q in a globally inviscid solution governed by (A.1.6) is displaced to y = q+ δ∗

such that

q =

∫ q

0

ũ(x, y) dy +

∫ q+δ∗

q

ũ(x, y) dy, (A.3.3)

and when q lies in the outer layer (A.3.2) is again obtained by using the outer solution

ũ(x, y) = 1 to simplify the second integral.

Upon using (A.2.3) and (A.2.1) at a given downstream location L, (A.3.2) gives

δ∗ =
(√

LRe−1/2
)

∫ ∞

0

(1− f ′
B(ζ)) dζ = δ

(

ν

U∞

)1/2

, (A.3.4)

where

δ = lim
ζ→∞

(ζ − fB(ζ)) and fB(ζ) satisfies (A.2.2). (A.3.5)
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This allows a new local Reynolds number Rδ, say, to be defined based on free stream ve-

locity U∞, kinematic viscosity ν and boundary layer thickness δ∗ at a given downstream

position L. It follows from definition (A.3.4), that

(

Rδ

δ

)2

= Re, (A.3.6)

where the required limit (A.3.5) can be determined numerically, by first rewriting

(A.2.2) as a system of equations that can be solved by a straightforward shooting

method to obtain

δ ≃ 1.72079. (A.3.7)

Definitions based on downstream distance (Re, Y ), or boundary layer thickness (Rδ, yδ)

may be used, and conversion between the two representations can be achieved via the

relationship
√
LY = δyδ (A.3.8)

together with (A.3.6), provided that it is clear which definition is being used. Through-

out this thesis, Reynolds number scaled with downstream distance will be denoted by

Re, and Reynolds number based on displacement thickness by Rδ.

A.3.0.1 Rescaling Argument

A convenient method for solving equation (A.2.2), found by Töpfer (1912), is described

in Boyd (2008, pp. 794). Töpfer observed that the equation is invariant under the

rescaling

fB(ζ) = κ1/3g(κ1/3ζ), (A.3.9)

and since f ′
B(∞) = 1, this provides the relationship

κ = g′(∞)−3/2. (A.3.10)

Solving the initial value problem for g(ζ) with the arbitrary initial condition for the

second derivative g′′(0) = 1, gives the result fB
′′(0) = κ. This value was found to agree
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Shooting Method 0.332057336215196
Rescaling argument 0.332057336215193
Result in Boyd (2008) 0.332057336215196

Table A.1: Results obtained for f ′′
B(0) by the methods used in

this thesis, compared with the high precision result appearing
in Boyd (2008)

with the solution obtained by shooting method to 13 d.p. as shown in Table A.1.
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Appendix B

Parallel Flow Theory and

Nonparallel Effects

B.1 Linear Theory for Parallel Shear Flow

Suppose that a rectilinear shear flow of constant density fluid, described by a Cartesian

velocity-pressure system

{ũ, ṽ, w̃, p̃} ∼ {UB(y), 0, 0, p1 + p2x}, p1, p2 ∈ R, (B.1.1)

has a disturbance ǫA{u, v, w, p} added to it, where ǫA ≪ 1. Retaining only leading order

perturbation terms from the governing equations (A.1.1), boundary value problems

may be derived for the normal velocity v and normal vorticity

η =
∂u

∂z
− ∂w

∂x
. (B.1.2)

The equations may be written in the form

(L−∇2 d/dt)v = 0; L = Re−1∇4 − (UB∇2 − U ′′
B)

∂

∂x
, (B.1.3a)

(M− d/dt)η = U ′
B

∂v

∂z
; M = Re−1∇2 − UB

∂

∂x
, (B.1.3b)
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where the appropriate boundary conditions for v and η depend on the basic flow

configuration. In particular, for channel flows such as plane Poiseuille or Couette

flow, the conditions

v(yb) = v′(yb) = η(yb) = 0 (B.1.4)

are required to enforce impermeability and no-slip at each boundary y = yb, whilst for

shear layer flows the free-stream conditions

lim
y→∞

v(y) = lim
y→∞

v′(y) = lim
y→∞

η(y) = 0, (B.1.5)

in addition to the wall conditions (B.1.4) ensure that the perturbation decays towards

the free stream. Non-zero boundary conditions can arise, for example when calculating

disturbances produced by a vibrating ribbon, but if the forcing excites unstable solu-

tions to the homogeneous problem then these tend to dominate far from the disturbance

source and so attention here will be focussed on the homogeneous problem.

The key feature of the steady shear flow (B.1.1) is that it is independent of two

spatial coordinates, resulting in a coupled system of ordinary differential equations

(B.1.3) whose coefficients depend on only the shear coordinate. This ensures that the

system admits wave-like (normal mode) solutions of the form

{u, v, w, p} = {uj(y), vj(y), wj(y), pj(y)}ei(kj.x−ωjt) + c.c, (B.1.6)

where x = {x, z} and kj = {αj, βj}, with αj, βj , ωj constant. The abbreviation c.c

stands for complex conjugate. Broadband disturbances may thus be investigated via

Fourier decomposition by considering a superposition of modes. The subscripts here are

used to identify individual harmonic components. For a single harmonic, substitution
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of (B.1.6) into (B.1.3) yields

−iωjuj + iαjUBuj +UB
′vj + iαjpj = Re−1(u′′j − (αj

2 + βj
2)uj), (B.1.7a)

−iωjvj + iαjUBvj + p′j = Re−1(v′′j − (αj
2 + βj

2)vj), (B.1.7b)

−iωjwj + iαjUBwj + iβjpj = Re−1(w′′
j − (αj

2 + βj
2)wj), (B.1.7c)

iαjuj + iβjwj + v′j = 0, (B.1.7d)

in which a dash denotes differentiation with respect to y. These equations may be

combined to obtain the Orr-Sommerfeld equation for the normal velocity (Orr, 1907;

Sommerfeld, 1908) and the Squire equation for the normal vorticity (Squire, 1933),

given respectively by

L
os
(kj ,cj ;Re)[vj ] =

[

(UB − cj)(D
2 − kj

2)− UB
′′ − 1

iαjRe
(D2 − kj

2)2
]

vj = 0, (B.1.8a)

L
sq
(kj ,cj ;Re)[ηj, vj ] =

[

1

Re
(D2 − kj

2)− iαj(UB − cj)

]

ηj + iβjU
′
Bvj = 0, (B.1.8b)

with k2j = kj.kj , cj = ωj/αj and D = d/ dy. The downstream wavenumber αj and

spanwise wavenumber βj depend on the length scale used to nondimensionalise, while

the downstream phase velocity cj depends on the characteristic velocity scale. If any of

αj, βj , ωj are complex, then the waves exhibit exponential growth or decay, depending

on the sign of the imaginary part. In this thesis, subscripts r,i will sometimes be used

to refer respectively to the real and imaginary parts of these quantities.

For boundary layer flow, problem (B.1.8) is supplemented by conditions (B.1.4) at

yb = 0 as well as the free-stream conditions (B.1.5), thereby defining an eigensystem

whose solutions may be split into two classes. One class is the set of Orr-Sommerfeld

(OS) modes, in which the dispersion relation D(kj , ωj) = 0, and a forced equation for

ηj , are determined by the eigenvalue problem (B.1.8a). The other is the set of Squire

modes, which results from taking vj = 0 so that (B.1.8b) constitutes an eigenvalue

problem. It may be shown (e.g Schmid and Henningson, 2001) that all members of the

latter solution set are damped, and so the focus of this thesis will be the OS modes.
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Nevertheless, it remains plausible for the Squire modes to play a role in the types of

nonlinear behaviour that will be considered here, and an exhaustive treatment should

include them.

B.2 Squire’s Transformation

Squire’s transformation provides a straightforward mapping of equation (B.1.8a) to a

form equivalent to the two dimensional OS equation for modes propagating parallel to

the basic flow. A reduced Reynolds number R̃e is defined according to

R̃e = Reαj/kj = Re cos γj, (B.2.1)

where γj is the polar angle in wave space and kj is the polar wavevector (Fig. B.1).

z

x

γj

αj

βj

kj

Figure B.1: Sketch of the polar representation of a
two dimensional wavevector.

The substitution of (B.2.1) into the three dimensional OS equation (B.1.8a) results in

L
os
(kj ,cj ;R̃e)

[vj ] =

[

(UB − cj)(D
2 − kj

2)− UB
′′ − 1

ikjR̃e
(D2 − kj

2)2

]

vj = 0, (B.2.2)

which has exactly the same form as the two dimensional OS equation obtained by

taking αj = kj, βj = 0 in (B.1.8a). Thus, Squire’s transform enables solutions to the

three dimensional problem to be obtained by solving the simpler equivalent problem

(B.2.2). Furthermore, the transformation enables straightforward generalisation of

many of the results obtained in a two dimensional linear context to the consideration

of three dimensional disturbances.
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For linearly unstable flows, Squire’s transform predicts growth rates for three di-

mensional waves that are equal to those of plane waves at smaller Reynolds numbers.

However, the theorem is applicable only to linear disturbances. In realistic situations,

wave-like disturbances undergo nonlinear evolution incorporated through the governing

equations or boundary conditions, and the most unstable disturbance configuration

may not necessarily be comprised of those modes exhibiting the strongest linear growth.

B.3 The Adjoint Problem

When homogeneous boundary conditions are to be imposed for vj , v
′
j in (B.2.2), it is

possible to define a corresponding adjoint function v†j such that

〈L os
(kj ,cj;Re)[vj ], v

†
j〉 = 〈vj,L os†

(kj ,cj;Re)[v
†
j ]〉, (B.3.1)

where 〈·, ·〉 is a suitable inner product that determines the form of the adjoint operator

L
os†
(kj ,cj ;Re). In order to satisfy this relationship, the same boundary conditions are

imposed on v†j as for vj, and for consistency with (B.1.8a) it is also required that

L
os†
(kj ,cj;Re)[v

†
j ] = 0. (B.3.2)

Here, the inner product is defined according to

〈a, b〉 =
∫

D

ab dy, (B.3.3)

with the integration domain for Blasius flow given by D = [0,∞). Relationship (B.3.2)

then forms an eigenvalue problem for the adjoint function v†j with the same eigenvalues

as the direct problem, and straightforward application of integration by parts gives

L
os†
(kj ,cj ;Re)[v

†
j ] =

[

(UB − cj)(D
2 − kj

2) + 2UB
′
D − 1

iαjRe
(D2 − kj

2)2
]

v†j . (B.3.4)
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The resulting set of eigenfunctions may be shown to be mutually orthogonal to the set

of OS eigenmodes under an appropriately weighted inner product, and in some appli-

cations this orthogonality property is a necessary consideration, as for example when

dealing with an eigenfunction expansion of an arbitrary initial condition. However, for

the current purposes it will not be necessary for the adjoint and OS eigenfunctions to

be mutually orthogonal. Rather, the adjoint function will be used merely as a tool for

eliminating terms responsible for secular behaviour in a weakly nonlinear theory, and

so the unweighted definition (B.3.2) will be used for simplicity.

B.4 Linear Instability

During the early development of boundary layer instability theory, αj /∈ R was consid-

ered to be unphysical because it gives an unbounded solution as x → ∞. Studies at

this time (e.g Schlichting, 1933, 1935) attempted to model instability within a temporal

framework, in which disturbances are assumed to be spatially periodic with

kj ∈ R : ωj ∈ C. (B.4.1)

However, temporally periodic waves are easier to set up experimentally, as in the

groundbreaking oscillating ribbon experiments of Schubauer and Skramstad (1947),

and this corresponds to a spatial framework with

βj, ωj ∈ R : αj ∈ C. (B.4.2)

Disturbances of this type were first studied by Gaster (1965a), after he showed that the

temporal theory for a “spatially-growing wave” can be well approximated by a spatial

framework when the waves are nearly neutral (Gaster, 1962). Later, by considering the

full initial value problem, Gaster (1968) introduced the ideas of convective and absolute

instability that determine when a spatial or a temporal analysis is appropriate. In

fact, this distinction was first made by Briggs (1964) in the context of plasma physics,
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although the ideas only became widely used in fluid mechanics much later (Huerre and

Monkewitz, 1985, 1990).

Classification of the basic flow profile is based upon consideration of how perturba-

tions evolve in space and time. If disturbances spread both upstream and downstream

then the basic flow is called absolutely unstable, whilst in a convectively unstable flow

disturbances are swept either upstream or downstream. These concepts are shown

graphically in Fig. B.2.

t

x

(a) Stable

t

x

(b) Absolutely Unstable

t

x

(c) Convectively Unstable

Figure B.2: Spatio-temporal classification of the impulse response

Huerre and Monkewitz (1990) note that in the case of absolutely unstable flow

the transient part of the solution will contaminate the steady state response at all

stations, so that only a temporal analysis is of interest, whereas in a convectively

unstable boundary layer either a spatial or temporal analysis is acceptable. Thus, it is

important to know which type of instability is to be modelled.

The appropriate classification can be determined by consideration of the response

of the system to an impulse at the origin of the space-time diagram. In Briggs’ method

(Briggs, 1964) an attempt is made to transform from a temporal representation of

growth/attenuation into a spatial representation by continuous analytic deformation of

the integration contours (e.g. Schmid and Henningson, 2001; Huerre and Monkewitz,

1990). The flow is classed as absolutely unstable if a saddle point results from a

coalescence of modes that originate in different half planes, so that the integration

contour is forced to pass through the apex. The physical interpretation is of the

existence of an unstable wave with zero group velocity, since then

(cg)j =
dωj

dαj
= − ∂D

∂αj
/
∂D

∂ωj
= 0, (B.4.3)
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where D denotes the dispersion relation and (cg)j denotes the group velocity. This

corresponds to Fig. B.2b. On the other hand, if the frequency inversion contour can

be successfully moved below the real axis without pinching, then the flow is classed as

convectively unstable or stable depending on whether a spatial branch has crossed the

real axis or not.

In Ashpis and Reshotko (1990) the response of the flat plate boundary layer to a dis-

turbance was investigated by application of Briggs analysis, taking an inhomogeneous

boundary condition at the wall corresponding to a vibrating ribbon. The inversion of a

generalised double Fourier transform was then calculated numerically using integration

contours placed according to Briggs’ method. The results confirmed that the Blasius

boundary layer is convectively unstable, consistent with earlier experimental evidence

by Schubauer and Skramstad (1947) for a monochromatic wave and later by Gaster

and Grant (1975) for a wavepacket. The latter study measured the wavepacket with

unprecedented accuracy and detail, which then compared extremely well with the

spatial OS theory in Gaster (1975).

Nonetheless, in a weakly nonlinear theory (Chapter 2) αj , βj, ωj are all approxi-

mately real, so that spatial and temporal theories give good agreement. Some numerical

techniques are more straightforward to implement for temporal analysis, so this is

the approach that will be taken here, although a spatial approach would be more

appropriate if nonparallel effects were to be included.

B.4.1 Results for Blasius Flow

There are only a finite and small number of discrete eigenvalues for boundary layer

flows, and it may be shown analytically (Case, 1960) that for unconfined geometries,

such as the flat plate boundary layer, there exists a supplementary continuous spec-

trum. This was later confirmed for Blasius flow by Gustavsson (1979) by solving the

initial value problem formally with Fourier-Laplace transform techniques. Gustavsson

showed that the contour of integration for the inverse Laplace transform must be

deformed around a branch cut, which gives rise to the continuous spectrum. Gustavsson
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also noted that the modes in the continuous spectrum are more heavily damped

than those of the discrete spectrum, and suggested that the study of the least stable

Tollmien-Schlichting (TS) mode is most important. The more thorough study by

Ashpis and Reshotko (1990) also found the continuous spectrum to be heavily damped,

so the analysis here will be restricted to the discrete spectrum of TS type modes.

Healey (2006) has found a flow for which the continuous spectrum is unstable, leading

to many interesting and counter-intuitive physical phenomena, but this case will not

be considered.

The neutral curve for the discrete two dimensional Blasius spectrum shown in

Fig. B.3 demarcates the linearly stable and unstable regions according to a temporal
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Figure B.3: Neutral curve for Blasius flow, based on scaling with respect to
boundary layer thickness. The critical point is denoted by (αc, Rc), and the
imaginary part of the eigenvalue is denoted by ci.
× : Trajectory of a 200Hz wave introduced at Rδ = 836.

theory, with the critical value Rc ∼ 519.4 defining the lowest Reynolds number for

which exponential growth due to the imaginary part of the frequency is permitted.

The focus of this thesis will be on the early flow development. In particular, the

range 400 < Rδ < 2000 is sufficient for consideration of realistic disturbances of the
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type studied by experimenters such as Gaster (1975), Healey (1995a) and Medeiros

and Gaster (1999a,b).

B.5 Parallel Flow Approximation for Weakly Non-

parallel Flow Profiles

For spatially evolving flow systems, linearisation of the disturbance equations leads to

a coupled system of partial differential equations, meaning that straightforward Fourier

decomposition is not possible. If non-parallelism is weak, the system may be reduced

to ordinary differential equations, through approximation of the global eigenvalue

problem by a locally parallel structure that is applicable to each downstream location.

Distinction is made between between a global definition of the Reynolds number in

which the length scale is determined by some downstream fixed reference location L,

and a local definition in which the basic flow is assumed to be independent of the

streamwise coordinate. In the latter definition the Reynolds number is dependent on

downstream position, and acts as a control parameter when tracking the development

of wavy modes. Thus, linear stability is related to the behaviour of the basic flow. The

influence of boundary layer development on the stability of wave-like perturbations is

neglected, due to treatment of the Reynolds number as constant in the analysis. The

underlying assumption, which is that the boundary layer thickness is invariant on a

local scale, can be justified retrospectively after it has been shown that wavelengths of

unstable disturbances are short compared to the length scale over which the basic flow

evolves. This is a non-rigorous procedure at finite Reynolds numbers, since basic flow

nonparallelism due to viscous effects is neglected, but the effects of viscosity on per-

turbation quantities is included. However, the approach may be shown to be justified

in the large Reynolds number limit by taking a WKB formulation which separates out

slow spatial variation of the basic flow from fast spatial variation associated with the

wave. At large Reynolds numbers nonparallel effects become negligible and OS theory

and asymptotic theories approach one another (see Healey, 1995a).
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Figure B.4: Neutral stability curves for theoretical Blasius flow, together
with experimental data (Klingmann et al., 1993) for different leading-
edge pressure gradients.

: OS results based on imaginary part of wavenumber.
: DNS results by Berlin et al. (1998), based on umax.
: PSE results by Bertolotti et al. (1992), based on umax.

� : Weak leading edge pressure gradient (experiment).
• : Strong pressure gradient at the leading edge (experiment).

At more moderate Reynolds numbers, non-parallel effects can be taken into account

in an ad hoc way by using parabolized stability equations (PSE) as described in

Bertolotti et al. (1992). The method, in common with OS theory, treats all terms

simultaneously. However, the definition of growth is ambiguous in a PSE formulation,

(see Schmid and Henningson, 2001), and for the lower branch OS theory compares

favourably with both PSE and direct numerical simulation (see Fig. B.4).

The results of many early experiments did not agree favourably with OS predictions

near to the leading edge, and this has sometimes been attributed to non-parallelism,

despite the consistency between numerical and OS predictions. However, Klingmann

et al. (1993) suggested that the discrepancy could be due to the presence of a non-zero

pressure gradient near to the leading edge in the experiments. They devised a set-up

in which the leading-edge pressure gradient could be controlled by changing the angle

of a flap at the trailing edge, with the optimal angle for a weak pressure gradient being
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3◦. By adjusting the angle of the flap at the trailing edge to zero, Klingmann et al

were able to create a flow profile similar to other experimenters, with a large pressure

gradient at the leading edge. The results, which are also shown in Fig. B.4 appeared

to strongly support the accuracy of the OS predictions.

B.6 Linear Growth of Disturbances

Typically, in experiments, perturbations are introduced at a fixed physical frequency

inside the linearly stable regime, near to the lower branch of the neutral curve. As

the waves are swept downstream, they pass through the unstable region before exiting

through the upper branch of the neutral curve, although by this time nonlinear effects

may have become significant. By way of example, Fig. B.3 illustrates the path taken

by a 200Hz disturbance introduced to the flat-plate boundary layer by Medeiros (2004).

The disturbance was produced by a loudspeaker embedded in the plate at Reynolds

number Rδ = 836 based on scaling with respect to boundary layer thickness δ∗, and hot

wire measurements were recorded at various locations downstream at a distance 0.6δ∗

from the wall. Fig. B.5 shows contours in the complex wavenumber plane for constant

ωr, ωi, following the 200Hz wavemode as it is tracked downstream. The wavenumber

in the figure is nondimensional with respect to boundary layer thickness. Subscripts

refer to real and imaginary parts, so temporally increasing modes lie on the αr axis and

spatially increasing modes lie on the contour αi = 0. The growth rate of disturbances

of fixed frequency is well suited to a spatial study, but a temporal analysis can also be

used effectively with the two approaches being related through a simple transformation.

The details are outlined below.

B.6.1 Spatial Approach

For a spatially evolving flow profile, the normalised instantaneous growth rate when

ωi = 0 is given by

Re
[

v−1dv

dx

]

= −αi(x)− xαi
′(x), (B.6.1)
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Figure B.5: Evolution of a 200Hz disturbance, introduced at Rδ = 836,
shown in the complex wavenumber plane.
Solid contours show dispersion branches satisfying ωi = const.
The two locations marked by crosses identify points on the neutral curve,
where the spatial and temporal contours intersect.
Dashed contours show dispersion branches satisfying ωr = const. These are
used to relate growth rates between the spatial and temporal theories.

with the term involving αi
′(x) being neglected according to the OS approach. For

quasi-parallel flow profiles, non-parallel effects could be accounted for as higher order

corrections by taking a WKB-type expansion, but these effects are often quantitatively

small and can be safely neglected.

Thus, the linear growth between spatial locations x0 and x1 may be estimated by the

quantity

v(x1)

v(x0)
= exp

(

−
∫ x1

x0

αi(x)dx

)

. (B.6.2)

It should be understood that the parameters referred to here have not been made

nondimensional. If boundary thickness scalings are to be used then the growth rate is

calculated by

v(Rδ1)

v(Rδ0)
= exp

(

− 2

δ2

∫ Rδ1

Rδ0

αi(Rδ)dRδ

)

. (B.6.3)

A plot of this amplitude growth factor for the 200Hz disturbance considered by

Medeiros (2004) is presented in Fig. B.6. The results predict stronger amplitude growth
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Figure B.6: Predicted amplitude growth factor for a 200Hz wave introduced
to the Blasius boundary layer at Rδ = 836, according to expression (B.6.2)
which is for a parallel, spatial theory.

than demonstrated by the experiment. For instance, between Rδ = 1173 and Rδ =

1552, the data obtained by Medeiros indicate a growth factor of approximately 4, whilst

linear theory predicts amplitude growth by a factor of nearly 10. The wave attained

maximum amplitude at Rδ = 1660 in the experiment, suggesting that the upper

branch of the neutral curve is shifted upstream slightly relative to OS theory, which

predicts maximum amplitude growth at Rδ = 1757. A possible explanation for the

slower growth observed in the experiment may be that nonlinear interactions transfer

energy into steady streaky structures, creating the significant mean flow distortion

that is evident in the figures of Medeiros (2004). Furthermore, the long envelope waves

produced by weak modulation exhibit large damping rates according to linear theory,

and for certain scalings these waves may be forced by weakly unstable short waves such

that their presence is sustained by a transfer of energy from the short wave motion.

There is also a linear dispersive mechanism that might explain the lower growth

rates seen in the experiment. The experimental disturbance was created by a point
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source, which would spread into a Gaussian wavepacket as the disturbance progresses

downstream. This would contribute an algebraic decay factor directly downstream

of the source as dispersion effects cause the disturbance to spread in the spanwise

direction, and would affect attempts to measure exponential growth rates over short

downstream distances.

B.6.2 Temporal Approach

It is difficult to see how the growth rate of spatial modes might by measured by a

temporal theory (αi = 0), and early researchers (e.g. Schubauer and Skramstad, 1947;

Schlichting, 1933) variously used

ln

[

v(x1)

v(x0)

]

= −
∫ x1

x0

ωi(x)

Re[cp(x)]
dx, (B.6.4)

ln

[

v(x1)

v(x0)

]

= −
∫ x1

x0

ωi(x)

Re[cg(x)]
dx, (B.6.5)

where cp and cg denote the phase- and group- velocity.

Subsequent clarification was given by Gaster (1962, 1965b), who was able to show

that (B.6.5) is the appropriate quantity to use, with the result (B.6.4) providing a good

approximation for Blasius flow, since the phase velocity and group velocity typically

differ by less than 20%. The argument proceeds by Taylor expansion of the dispersion

relation D(α, ω) = 0 in the vicinity of a point on the temporal branch. The coordinate

(α, ω) is then substituted from the spatial branch and the result is deduced by using

relationship (B.4.3), together with the observation that for boundary layer flows the

group velocity is real to an O(1) estimate. Fig. B.7 shows the approximation to the

spatial branch given by the group velocity transform. The wavenumber in the figure is

nondimensional with respect to boundary layer thickness, and the maximum deviation

between the two curves shown on the figure is less than 12%. Growth factor estimates

may be calculated according to

ln

[

v(Rδ1)

v(Rδ0)

]

≃ 2

δ2

∫ Rδ1

Rδ0

ωi(Rδ)

Re[cg(Rδ)]
dRδ, (B.6.6)
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Figure B.7: Evolution of a 200Hz disturbance, introduced at Rδ = 836,
shown in the complex wavenumber plane. The solid curve is given by
spatial theory, and the dashed curve is given by temporal theory using the
approximation αi = −ωi/Re[cg].

where δ is given by (A.3.7). The main original purpose of Gaster’s transform was

in clarifying the connection between spatial and temporal theories, rather than for

quantitative prediction of spatial growth rates. The transform is not quantitatively

accurate far from the neutral points, but gives a good qualitative description of be-

haviour. An estimate of 45 is obtained for the 200Hz wave as it crosses the neutral

curve, compared to a growth factor of 30 that would be obtained using expression

(B.6.3). The non-dimensional timescale for this motion is given by

1

δ2

∫ 1757

933

(cg)
−1dRδ ≃

1

δ2

∫ 1757

933

(cp)
−1dRδ = 800. (B.6.7)
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Appendix C

Numerical Solution of the Orr-

Sommerfeld Equation

Exact analytic solutions of the OS equation (B.1.8a) and corresponding adjoint problem

(B.3.2) are not known, and the equation is ‘stiff’ for moderately large values of Re

because the highest derivative is multiplied by Re−1. Nevertheless, the equation is

amenable to both numerical and asymptotic analysis. In this chapter the numerical

techniques for a compound matrix method and a Chebyshev collocation approach will

be outlined. The compound matrix method was implemented in Wolfram Mathematica

8, whilst Matlab R2008b was used for the Chebyshev collocation approach.

C.1 Compound Matrix Method

By introducing φ = [ v v′ v′′ v′′′ ]
T , the Orr-Sommerfeld equation (B.1.8a) may be

written as a first order system

φ′ = M φ, (C.1.1a)

M =



















0 1 0 0

0 0 1 0

0 0 0 1

θ1 0 θ2 0



















,
θ1 = iαRe

{

1

2
fBfB

′′ − k2(fB
′ − c)

}

− α4,

θ2 = 2α2 − iαRe(fB
′ − c),

(C.1.1b)
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where a dash denotes differentiation with respect to y and (A.2.2) has been used to

simplify the second derivative of the basic flow.

The general solution to this equation is given by

φ = γ1φ1 + γ2φ2 + γ3φ3 + γ4φ4 (C.1.2)

in which φi are four linearly independent solutions and γi are the integration constants.

In the limit y → ∞, the OS equation reduces to a fourth order differential equation

with constant coefficients, since fB
′ → 1 and fB

′′ → 0. The fundamental solutions

therefore exhibit exponential behvaiour for large y, and φi may be chosen to satisfy

lim
y→∞

φi = exp (λiy)( 1 λi λ2i λ3i )T , (C.1.3)

where λi are determined by substituting this ansatz into the linear system (C.1.1) to

give

λ1 = −k,

λ3 = +k,

λ2 = −(k2 + iαRe(1− c))1/2,

λ4 = +(k2 + iαRe(1− c))1/2.

(C.1.4)

Since solutions must decay approaching the free stream, this gives,

φ = γ1φ1 + γ2φ2, (C.1.5)

and φ1, φ2 may be obtained by solving (C.1.1) subject to

φ(y) ∼ eλ1y, φ(y) ∼ eλ2y, for y ≫ 1. (C.1.6)

The boundary conditions v(0) = v′(0) = 0 then lead to







v1(0) v2(0)

v′1(0) v′2(0)













γ1

γ2






=







0

0






. (C.1.7)

The stiff eigenvalue problem (C.1.1), (C.1.6) may be solved by forming a composite
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matrix

χ = ( φ1 φ2
). (C.1.8)

The minors of χ are denoted by x1...6, such that

x1 =

∣

∣

∣

∣

v1
(0) v2

(0)

v1
(1) v2

(1)

∣

∣

∣

∣

, x2=

∣

∣

∣

∣

v1
(0) v2

(0)

v1
(2) v2

(2)

∣

∣

∣

∣

, x3 =

∣

∣

∣

∣

v1
(0) v2

(0)

v1
(3) v2

(3)

∣

∣

∣

∣

,

x4 =

∣

∣

∣

∣

v1
(1) v2

(1)

v1
(2) v2

(2)

∣

∣

∣

∣

, x5=

∣

∣

∣

∣

v1
(1) v2

(1)

v1
(3) v2

(3)

∣

∣

∣

∣

, x6 =

∣

∣

∣

∣

v1
(2) v2

(2)

v1
(3) v2

(3)

∣

∣

∣

∣

,

(C.1.9)

and a superscript (i) has been used to denote the i-th derivative with respect to y. Using

(C.1.1) to eliminate v1, v2 between x1...6 then leads to the following set of ordinary

differential equations together with upper boundary conditions provided by (C.1.6):

x′1 = x2, x′4 = x5,

x′2 = x3 + x4, x′5 = −θ1x1 + θ2x4 + x6,

x′3 = θ2x2 + x5, x′6 = −θ1x2.

(C.1.10)

In order to satisfy the condition at y = 0, solutions to x1(0) = 0 must be found. This

can be done using a shooting procedure.

The coefficients γ1, γ2 may be eliminated between several of v(i)xi, where the

exponent denotes the ith derivative. Thus, the eigenfunction v can be determined

by integrating over any one of the following eigenrelations

x1v
′′ − x2v

′ + x4v = 0 (C.1.11a)

x1v
′′′− x3v

′ + x5v = 0 (C.1.11b)

x2v
′′′− x3v

′′+ x6v = 0 (C.1.11c)

x4v
′′′− x5v

′′+ x6v
′= 0. (C.1.11d)

Here, the third relation was chosen since it has been shown to give slightly more
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accurate results than the fourth for Blasius flow and the first two relations cannot be

integrated starting at y = 0 (Criminale et al., 2003).

The adjoint problem (B.3.2), together with the same boundary conditions as (B.1.8a)

can also be solved using the method above. There are again two eigenvectors that

satisfy the boundary condition at infinity, allowing a composite matrix to be formed

with minors x1...6 that satisfy

x′1 = x2, x′4 = x5,

x′2 = x3 + x4, x′5 = −θ1x1 + θ3x4 + x6,

x′3 = θ2x1 + θ3x2 + x5, x′6 = −θ1x2 − θ2x4,

(C.1.12)

along with boundary conditions (C.1.9), where

θ1=iα2Re {ω − αf1(y)} − α4,

θ2=2iαRef2(y),

θ3=2α2 − iRe {ω − αf1(y)}ω.

(C.1.13)

The eigenvalues do not need to be calculated, since they are the same as for the direct

problem. However, the eigenrelation (C.1.11c) can not be integrated accurately to

determine the corresponding eigenfunctions of the adjoint problem and so (C.1.11a)

may be chosen instead, integrating from y = ǫ = 0.001 with the appropriately modified

boundary conditions

v(ǫ) = ǫ2/2, v′(ǫ) = ǫ. (C.1.14)

The compound matrix method requires an accurate initial ‘guess’ for the eigenvalue,

which can be achieved by iterating from a known solution at nearby parameter values,

and so it is helpful to include a stored table of results as part of the algorithm. This

is made simpler due to Squire’s transformation (see Appendix B.2), which allows the

result for a three-dimensional disturbance to be expressed in terms of a two-dimensional

disturbance at lower Reynolds numbers.
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C.2 Chebyshev Polynomial Interpolation

It is supposed that a function u(y) defined on the interval [−1, 1] may be approximated

by an interpolating polynomial of the form

u(y) ≃ pN−1(y) =

N
∑

k=1

ũkφk(y), (C.2.1)

where {φk}Nk=1 is a system of algebraic polynomials which are mutually orthogonal with

respect to a weight function w. In particular, enforcing the governing differential equa-

tion for u(y) at a finite number of collocation points {−1 = y1 < y2 < ... < yN = 1},

provides

u(y) ≃ pN−1(y) =
N
∑

k=1

ukφk(y), (C.2.2)

where uk = u(yk), and {φk(y)}Nk=1 may be taken to be the set of Lagrangian interpo-

lating polynomials defined by

φk(y) =
N
∏

m=1
m6=k

y − ym
yk − ym

. (C.2.3)

Chebyshev collocation aims to take advantage of the convergence properties of a series

expansion based around the orthogonal set of Chebyshev functions, Tk, defined by

Tk(y) = cos (k arccos y). (C.2.4)

This suggests implementing a Gauss-type quadrature in which the N nodes are simply

taken as the zeros of TN . However, if boundary conditions are to be enforced at both

ends of the domain then points ±1 must be included in the collocation, and this may

be achieved by Gauss-Lobatto quadrature in which the nodes are instead taken to be

zeros of the polynomial (1− y)2T ′
N (y) (see Peyret, 2002). These nodes are located at

yk = cos
(k − 1)π

(N − 1)
, k = 1 . . . N (C.2.5)
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and the corresponding form for the the orthogonal polynomials φk is given by

φk(y) =
(−1)k(1− y2)T ′

N−1(y)

ck(N − 1)2(y − yk)
, (C.2.6)

where c1 = cN = 2 and c2 = · · · = cN−1 = 1 (see Canuto et al., 2006, pp88).

The derivative operator matrix, D(l), is generated by taking derivatives of the

interpolant (C.2.6), and evaluating the result at the nodes xn. This gives

u(l) = D(l)u, (C.2.7)

where u is the vector of function values, with

D
(l)
k,j =

dl

dyl
[φj(y)]y=yl, y = 1, . . . , N. (C.2.8)

The Matlab calculations carried out in this thesis were based on a differentiation suite

and accompanying literature, both written by J.A.C. Weideman and S.C. Reddy (2001).

The suite contains package files for the calculation of Chebyshev differentiation matrices

using Gauss-Lobatto type quadrature, and provides several examples on how to enforce

boundary conditions, including the example of the OS problem for Poiseuille flow. The

only significant changes in methodology for Blasius flow are a variable transform in the

vertical coordinate and a slightly different implementation of the clamped boundary

conditions.

The Chebyshev interpolating polynomial of degree N − 1 is defined according to

(C.2.2), where the collocation points and corresponding set of Lagrange interpolating

polynomials are given by (C.2.5) and (C.2.6) respectively. However, since Dirichlet-

type boundary conditions are specified at both ends of the OS domain, the endpoints

must be dropped from the collocation, to leave N − 2 interpolation conditions as well

as the 4 boundary conditions. The clamped boundary conditions may be enforced by
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replacing φj with φ̃j = fφj where f is a weighted polynomial that satisfies

f ′(±1) = 0 and f(±1) = 0. (C.2.9)

Then (after a change of index k → k − 1) the polynomial

pN+1(y) =
N−2
∑

k=1

φ̃k+1uk+1 (C.2.10)

satisfies the interpolating conditions as well as the required boundary conditions, and

the fourth derivative Chebyshev matrix, D(4) is given by differentiating (C.2.10). The

simple choice of function f used here gives

φ̃k(y) =

(

1− y2

1− y2k

)2

φk(y), k = 1, . . . , N − 2. (C.2.11)

The discretised Orr-Sommerfeld equation may then be written in the form

Ly = cQy with Q = (D(2) − k2I),

L = diag(u).Q− diag(ddu)− (D(4) − 2k2D(2) + k4I)/(iαRe),

(C.2.12)

where D(i) is the i-th collocation derivative matrix, u, ddu are the basic velocity vector

and its second derivative for Blasius flow, evaluated at the collocation points, and k is

the wave-vector norm. However, Huang and Sloan (1994) point out that the matrix Q is

nearly singular if the second derivative Chebyshev matrix is calculated according to the

definition of the polynomial (C.2.10), and that this causes the introduction of spurious

eigenvalues. The key to the method, they say, is the use of different interpolating

polynomials for the left and right sides of the differential equation. Thus, for this

problem it is necessary to choose a different interpolating polynomial for the second

derivative matrix. The most straightforward choice is the simplest Chebyshev interpo-

lating polynomial that satisfies homogeneous Dirichlet conditions at both boundaries.
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The clamped boundary conditions can be ignored. This polynomial is given by

pN−1(y) =

N−2
∑

k=1

φk+1uk+1. (C.2.13)

Finally, for the flat plate boundary layer the algebraic transformation

y 7→ yi
1 + y

1− y
(C.2.14)

may be used to map the domain [−1, 1] to the domain [0,∞), whilst concentrating half

of the collocation points below vertical location yi. This allows for sufficient resolution

of the wall-normal boundary layer for a suitable choice of yi, which is fairly flexible.

The Chebyshev collocation method proved robust in finding eigenvalues of the OS

equation for the flat plate boundary layer, and N = 120 collocation points were ample

for convergence with yi = 0.5. Eigenvalues associated with the numerical approxi-

mation to the continuous spectrum were easily removed by selecting those with real

part close to unity. However, despite the success of the method in finding accurate

eigenvalues and associated eigenfunctions, the spectral nature of the decomposition

resulted in excessively oscillatory behaviour in the fourth (and sometimes the third)

eigenfunction derivatives, which are needed for calculation of the nonlinear coefficients

in Chapter 4. This numerical artefact was successfully removed by filtering out less than

5% of ‘high frequency’ Chebyshev components using a tanh based ramping function r

given by

r =
1

2
[1− tanh (sinh (qπ − π/2))] ; q =

wmax(w − f)

f(wmax +w)
, (C.2.15)

where w is the vector of Chebyshev abscissae, and f is the cut-off frequency.

Fig. C.1 shows an example of filtered and unfiltered behvaiour in the third derivatives,

together with their Chebyshev power spectra.
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(a) Unfiltered third derivative. (b) Filtered third derivative.
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(c) One-sided Chebyshev power spectra.
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(d) ‘High frequency’ spectral components.

Figure C.1: Chebyshev estimates of the OS eigenfunction for α = 0.1, β = 0.05,
Rδ = 800.
In (a), (b), the real and imaginary parts are shown in black, grey respectively.
In (c), (d), solid and dashed lines show the unfiltered and filtered spectra, respectively.

C.3 Solving the Squire Vorticity Equation

It should be possible to solve equation (B.1.8b) together with the OS equation, by

forming the augmented version of matrix (C.1.1), although the decision taken here was

to solve the OS problem independently, and then use the solution to integrate (B.1.8b).

Due to a difficulty involved with direct integration, which has been descibed by Usher

et al. (1975), Chebyshev interpolation was used to perform the integration even where

the compound matrix method had been used to solve the OS problem.
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C.4 Normalisation of the Eigenfunction

The leading order components of the weakly nonlinear theory adopted in Chapter 2

are given by

{ûj, v̂j, ŵj} = Aj(τ){uj(y), vj(y), wj(y)}ei(kj .x−ωjt) + c.c, (C.4.1)

and this leads to

Re[ûj ] = 2|Aj||uj| cos (kj .x− ωjt + arg(uj) + arg(Aj)) ≤ 2|Aj||uj|, (C.4.2)

which is the quantity that is typically measured at a given distance from the wall in

experiments.

The incompressibility condition (A.1.1b) gives

uj = i
αjv

′
j − βjηj

k2j
, (C.4.3)

in which ηj is defined according (B.1.2). A normalisation of vj is taken such that

arg(vj) = arg(uj) = 0 at the upper boundary and max|uj| = 1/2. This ensures that

the phase remains zero in the upper and main decks and that the maximum size of the

disturbance is given by ǫA|Aj(τ)|, where ǫA is the nonlinearity parameter.

C.5 Accuracy of Numerical Methods

The least stable two dimensional eigenvalues were tabulated by each method for Reynolds

numbers Rδ = 100 to 2000 in intervals of 10, and curves depicting the frequency and

growth rates for each Reynolds number were plotted. In every case, the curves were

visually indistinguishable when plotted on the same axes. In fact, Fig. C.2 shows that

the difference in the least stable eigenvalue calculated by the two methods is less than

1 part in 10,000 across the whole of the parameter regime. The solutions obtained

by each method were also compared with tabulated values in Schmid and Henningson
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(2001, pp. 507), and this data is presented in Table C.1. A typical comparison of

the results for the OS eigenfunction, adjoint and Squire vorticity is shown in Fig. C.3

for the same parameters that were used in Fig. C.1. This example illustrates the

effectiveness of filtering the Chebyshev solutions.
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Figure C.2: The maximum difference between the compound matrix and
Chebyshev eigenvalue estimates, relative to the size of the compound matrix
result. Each data point is based on least stable eigenvalue computations for
α ∈ [0.05, 0.6]. This range encompasses values beyond the boundaries of the
neutral curve.

Table C.1: Least stable eigenvalue solutions obtained at Rδ = 800, for comparison with
results presented in Schmid and Henningson (2001, pp. 507).
Subscripts ch, co, S/H denote the Chebyshev collocation, compound matrix, and
comparison values respectively.

α β cch cco cS/H

1.0000 0.0000 0.294402− 0.082410i 0.294403− 0.082410i 0.294402− 0.082410i
0.5000 0.1000 0.391929− 0.043498i 0.391929− 0.043498i 0.391929− 0.043498i
0.2500 0.2000 0.390612 + 0.002890i 0.390613 + 0.002890i 0.390654 + 0.002876i
0.0125 0.3000 0.429821− 0.015251i 0.429821− 0.015251i 0.429864− 0.015261i

Finally, in support of the accuracy of the results presented in Chapter 4, which

were obtained using the Chebyshev collocation approach, Fig. C.4 shows data for the

nonlinear coefficients and amplitude thresholds obtained at Rδ = 800 based on the

compound matrix method. The results are for comparison with Fig. 4.7.
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Figure C.3: Results obtained by compound matrix method [ ] and by Chebyshev
collocation [ ] for the OS eigenfunction v, adjoint v†, and Squire vorticity η.
Parameter values are Rδ = 800, α = 0.1, β = 0.05.
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Figure C.4: Results for the normalised rates of linear dissipation ǭ, initial growth rates
G, and amplitude thresholds U% as defined by (4.2.1, 4.2.6, 4.2.10) at Rδ = 800. Each
plot is for a specified value of θ−2, and the parameters shown on the horizontal and
vertical axes are θ0/

◦ and r2, respectively.
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