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ABSTRACT 21 

Quantitative geochemical modeling is today applied in a variety of geological environments 22 

from the petrogenesis of igneous rocks to radioactive waste disposal. In addition, the 23 

development of thermodynamic databases and computer programs to calculate equilibrium 24 

phase diagrams have greatly advanced our ability to model geodynamic processes. Combined 25 

with experimental data on elemental partitioning and isotopic fractionation, thermodynamic 26 

forward modeling unfolds enormous capacities that are far from exhausted.  27 

In metamorphic petrology the combination of thermodynamic and trace element forward 28 

modeling can be used to study and to quantify processes at spatial scales from µm to km. The 29 

thermodynamic forward models utilize Gibbs energy minimization to quantify mineralogical 30 

changes along a reaction path of a chemically open fluid/rock system. These results are 31 

combined with mass balanced trace element calculations to determine the trace element 32 

distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of 33 

mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the 34 

trace element and isotopic composition of minerals, rocks and percolating fluids or melts can 35 

be predicted.  36 

Here we illustrate the capacities of combined thermodynamic-geochemical modeling based on 37 

two examples relevant to mass transfer during metamorphism. The first example focuses on 38 

fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where 39 

fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic 40 

compositions in white mica are modeled. In the second example, fluid release from a 41 

subducted slab, the associated transport of B as well as variations in B concentrations and 42 

isotopic compositions in liberated fluids and residual rocks are modeled. We compare the 43 

modeled results of both examples to geochemical data of natural minerals and rocks and 44 

demonstrate that the combination of thermodynamic and geochemical models enables 45 

quantification of metamorphic processes and insights into element cycling that would have 46 

been unattainable if only one model approach was chosen. 47 

48 
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1. Introduction 49 

In geosciences, field-based observations are fundamental for our interpretations of geological 50 

processes. Quantitative models, which should be based on these observations, are essential to 51 

predict the evolution of geological systems and the outcome of geological processes 52 

(Albarède, 1995). As many disciplines in geosciences are faced with the fact that their study 53 

target, such as processes in the deep Earth, is either completely inaccessible, or that spatial or 54 

temporal scales at which the processes of interest operate do not allow direct observation, 55 

numerical and analogue models have become an indispensable tool to study, quantify and 56 

predict processes in Earth and environmental sciences. The development of high resolution - 57 

high precision analytical techniques to determine chemical and isotopic compositions of rocks 58 

and minerals, an increasing number of experimental data and advances in computational 59 

resources enhances our ability to simulate Earth processes and to test the results of these 60 

models against field-based observations. As demonstrated by Goldschmidt (1954), 61 

physicochemical principles determine systematic compositional changes in rocks and 62 

minerals and are hence the key to understand geological processes. The combination of 63 

thermodynamic and geochemical forward modeling (e.g., Hebert et al., 2009; Kimura et al., 64 

2009, 2010; Konrad-Schmolke et al., 2008b; Nagel et al., 2012) allows a more precise 65 

quantification of key geochemical parameters leading to an improved understanding of 66 

geodynamic mechanisms and enables to study and predict rates and kinematics of solid/fluid 67 

reactions. 68 

1.1. Thermodynamic equilibrium forward modeling in geosciences 69 

Predicting phase and chemical equilibria is extremely important in many industrial 70 

applications, such as gas distillation, cement production and the development of functional 71 

materials. Therefore, methods of calculation of phase diagrams (CALPHAD) have been 72 

successfully developed and constantly improved. Thermodynamic modeling is nowadays 73 

more frequently applied to geoscientific problems, although its application is far more 74 

complex than most approaches in material sciences. Challenges in geosciences arise from the 75 

fact that most geoscientific questions involve thermodynamic treatment of complex solid 76 

solution phases in multiphase systems, interaction of liquid and solid phases and 77 

consideration of open system behavior. The application of thermodynamic calculations to 78 

geoscientific problems became viable with the compilation of extensive datasets for 79 

thermodynamic standard state properties (e.g. Helgeson, 1978; Robie and Hemingway, 1995; 80 

Holland and Powell, 1998; Berman, 1988; Gottschalk, 1997), reliable equations of state for 81 
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geologically relevant phases and conditions (e.g., Kerrick and Jacobs, 1981; Berman, 1988, 82 

Stixrude and Lithgow-Bertelloni, 2005; Holland and Powell, 2011) and solid solution 83 

formulations for phases of geoscientific interest (e.g., Margules, 1895; van Laar, 1910; 84 

Holland and Blundy, 1984; Berman, 1990; Holland and Powell, 2003). Regarding the 85 

interpretation of thermodynamic calculations it is noteworthy that although many of the data 86 

incorporated in the available databases are based on experiments or have been numerically 87 

determined and are internally consistent, raw experimental data on standard state 88 

thermodynamic phase properties are still sparse and incomplete. The limited amount of 89 

experimental data together with an inappropriate use of thermodynamic variables (e.g., µH2O 90 

(chemical potential of water) vs. nH2O (amount of water)) can result in significant 91 

misinterpretations of modeled thermodynamic equilibria in geosciences (Essene 1989, Powell 92 

et al., 2005). Therefore, it is of utmost importance that the formulation of the problem to be 93 

solved using thermodynamic modeling complies with limitations induced by the uncertainties 94 

implicit in the thermodynamic data and that the thermodynamic variables used to extract 95 

information from such models are carefully chosen. 96 

In general, two different thermodynamic calculation approaches can be used to determine 97 

thermodynamic equilibria (GR = 0) among fluid and solid phase assemblages:  98 

1) Solving the equilibrium constant (K) 99 

 100 

where R = gas constant (in J K
-1

 mol
-1

), T = temperature (in K) and  free 101 

energy change for the reaction for the species in the standard state with  standard state 102 

molar chemical potential of species i and i = stoichiometric coefficient of species i in the 103 

reaction. The equilibrium constant is defined as 104 

  105 

where ai = activity of species i.  106 

2) Global Gibbs energy minimization 107 

minimize G =  108 
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where ni = molar amount of component i and µi = molar chemical potential of the i
th

 109 

component. 110 

Both approaches require knowledge about the Gibbs free energy of pure phases and a 111 

mathematical formulation of the relation between composition and activity/chemical potential 112 

in solution phases. Consequently, they both rely on thermodynamic data sets, which contain 113 

the standard state thermodynamic parameters and equations of state (EOS) for minerals, fluids 114 

and gases together with solution model formulations. The approach of solving the equilibrium 115 

constant furthermore requires that the phases among which the thermodynamic equilibria are 116 

calculated are pre-defined. This approach is widely utilized in aquatic geochemistry because 117 

the equilibrium constants of many aqueous reactions can be readily obtained from 118 

experiments (see Oelkers et al., 2009, and references therein). Several commercial and open 119 

source computer programs, such as PHREEQC (Parkhurst and Appelo, 1999), SUPCRT92 120 

(Johnson et al., 1992) and THERMOCALC (Powell and Holland, 1988), are available for this 121 

purpose. 122 

In metamorphic petrology, element fractionation processes, e.g. fractional crystallization (e.g., 123 

Spear 1988; Marmo et al., 2002; Konrad-Schmolke et al., 2006; 2008a), water liberation (e.g., 124 

Hacker, 2008; Dragovic et al., 2012) and reactive fluid flow (e.g., Ferry and Gerdes 1998; 125 

Beinlich et al., 2010) require thermodynamic modeling of chemically open systems (e.g., 126 

Korzhinskii, 1965). In such open systems, coexisting phases cannot be predicted a priori – a 127 

prerequisite of the equilibrium constant approach – because they are a function of the pressure 128 

(P), temperature (T) and chemical (X) evolution of the rock. Therefore, the approach of global 129 

Gibbs energy minimization is preferable as it allows the calculation of thermodynamically 130 

stable phase assemblages among all phases available in the database. The mathematical 131 

treatment of this approach involves (1) finding the phase assemblage with the lowest Gibbs 132 

energy among a large number of solid solution phases (so called global Gibbs energy 133 

minimum) and (2) finding the tangent plane that touches the G-X curves of all stable solid 134 

solution phases, which is prerequisite for finding the thermodynamically stable compositions 135 

of solution phases. For both aspects, different mathematical approaches are published (see 136 

Koukarri and Pajarre (2011) for a detailed review) and are implemented into a number of 137 

commercial and open source software packages, including MELTS (Ghiorso and Sack, 1995; 138 

Asimow and Ghiorso, 1998), pMELTS (Ghiorso et al., 2002) PERPLE_X (Connolly, 2005), 139 

THERIAK/DOMINO (de Capitani and Brown, 1987) and GEM-Selektor (Kulik et al., 2004; 140 

2013).  141 
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Several pioneering works in the 1980s (Spear, 1988; Spear and Menard, 1989; Spear and 142 

Selverstone, 1983; Connolly and Kerrick, 1987; de Capitani and Brown, 1987) established the 143 

use of Gibbs energy minimization in petrologic modeling. These studies successfully 144 

demonstrated modeling of different rock-forming processes utilizing Gibbs energy 145 

minimization and yielded new insight into metamorphism. In more recent publications, Gibbs 146 

energy minimization was used in a number of different contexts including precise correlations 147 

of the pressure-temperature evolution of metamorphic rocks with age determinations (e.g., 148 

Pollington and Baxter 2010), fluid-rock and melt-rock interaction (Nagel et al., 2012; Konrad-149 

Schmolke et al., 2011a), deformation (Pearce and Wheeler 2010), fluid expulsion during 150 

metamorphic reactions in subduction zones (Dragovic et al., 2012; Connolly, 2005; Kerrick 151 

and Connolly, 2001; Gorman et al., 2008), element transport properties of metamorphic rocks 152 

(Skora et al., 2006; Konrad-Schmolke et al., 2008b), the prediction of compositional trends in 153 

arc melts (Hebert et al. 2009; Nagel et al., 2012) as well as quantification of reactive fluid 154 

flow during metamorphism (Beinlich et al., 2010). 155 

1.2. Geochemical trace element modeling 156 

Trace elements (elements that are present at concentrations of less than 0.1 wt.%) commonly 157 

substitute for major elements in rock-forming minerals. They have a negligible influence on 158 

the outcome of a particular process, but instead are passive recorders of the processes that the 159 

system has experienced (e.g., Blundy and Wood, 2003). The distinct geochemical behavior of 160 

trace elements, which can be described by mathematical models, makes them particularly 161 

useful tracers. Depending on the process, trace elements behave in different, but predictable 162 

ways, which allows us to determine which processes have operated in a certain situation or 163 

setting. 164 

The low concentrations of trace elements cause them to be sufficiently diluted to follow 165 

simple relationships between composition and activity. For a wide range of trace element 166 

concentrations, Henry’s Law applies, stating that the activity of a trace element is directly 167 

proportional to its composition: 168 

, 169 

 170 
where  is the activity of the trace element in phase A,  is Henry’s Law constant (a 171 

proportionality constant or activity coefficient), and  is the composition of phase A. 172 

Commonly, the equilibrium distribution of trace elements between two phases is described by 173 

a distribution coefficient (or partition coefficient) (see White, 2013, for details). In 174 
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geochemical applications, the Nernst partition coefficient (D) is used, which defines D as the 175 

ratio of the concentrations (c) of an element i between two phases A and B:  176 

 177 

Although D values are known to depend on temperature, pressure, and the compositions of 178 

the phases involved, P and T independent distribution coefficients are commonly used in 179 

magmatic and metamorphic petrology. This simplification is partly due to the limited pressure 180 

dependence of many partition coefficients under lithospheric conditions (Taura et al. 1998) 181 

and partly due to the lack of experimental data. 182 

Quantitative models using trace elements were first applied in studies about the petrogenesis 183 

of igneous rocks. Gast (1968) and Shaw (1970) developed models for partial melting and 184 

fractional crystallization, in which they used concentrations of trace elements in liquid and 185 

solid phases in relation to the degree of partial melting of a rock and the degree of fractional 186 

crystallization, respectively. Later, assimilation of country rocks, combined assimilation – 187 

fractional crystallization processes, magma recharge, source rock heterogeneities and melt-188 

rock reactions were all investigated using trace elements (O’Hara, 1977; De Paolo, 1981; 189 

Kelemen et al., 1992; McKenzie and O’Nions, 1991; Weaver, 1991). In recent years, trace 190 

element models are combined with thermodynamic constraints to simulate the evolution of 191 

magmatic systems that simultaneously undergo a combination of fractional crystallization, 192 

recharge and assimilation processes (EC-AFC; Bohrson and Spera, 2001, 2007). 193 

Trace elements are also important petrogenetic tracers for the genesis of metamorphic rocks. 194 

Whole rock trace element concentrations are frequently used for the determination of protolith 195 

compositions and pre-metamorphic alteration processes (Pearce 2008; Altenberger et al., 196 

2008; Bebout, 2007; Becker et al., 2000; Halama et al., 2013; John et al., 2010; van der 197 

Straaten et al., 2012) and the quantification of fluid infiltration and element transport 198 

(Nabelek 1987; Ague, 2003, 2011; John et al., 2004; Beinlich et al., 2010). Many 199 

experimental studies have focused on the partitioning of trace elements between solid and 200 

liquid phases during subduction (Kessel et al., 2005; Ayers and Eggler, 1995; Brenan et al., 201 

1995), and these data were applied in numerous investigations about fluid-rock interaction 202 

during metamorphism (Bau, 1991; Brunsmann et al., 2001; Breeding et al., 2004; Beinlich et 203 

al., 2010). In metamorphic rocks, several phases of metamorphism may be recorded, and 204 

partial overprinting during metasomatism and/or retrogression may cause additional 205 
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complexities. Therefore, in situ measurements that help to trace specific reactions and discern 206 

different episodes of equilibration are often crucial.  207 

Significant advances in modeling were achieved by the combination of thermodynamically 208 

constrained equilibrium assemblage calculations with trace element fractionation models 209 

between fluid/melt and residual phases. With this approach, specific features in the trace 210 

element geochemistry of subduction-related rocks were successfully reproduced. Nagel et al. 211 

(2012) combined the calculation of equilibrium assemblages in partially molten, mafic rocks 212 

with subsequent modeling of trace element fractionation between melt and residual phases to 213 

explain the formation of the Earth’s oldest continental crust by melting arc tholeiites within a 214 

tectonically thickened mafic island-arc crust (Fig. 1a). Hebert et al. (2009) investigated slab 215 

fluid source lithologies and melt transport regimes in subduction zones using the GyPSM-S 216 

(Geodynamic and Petrological Synthesis Model for Subduction) modeling scheme, which 217 

couples a petrological with a thermal model to describe processes occurring in the supra-218 

subduction zone (SSZ) mantle wedge, supplemented with models for trace element 219 

partitioning in the fluid phase and melt transport regimes. They interpreted geochemical 220 

characteristics of across-arc and along-arc lavas in relation to distinct shallow and deep slab 221 

fluid sources and found that melt migration through the mantle wedge preserves spatial 222 

distinctions among melts initiated in different areas of the wedge (Hebert et al., 2009). 223 

Focusing on the distribution of fluids in the mantle adjacent to a subducting slab, Hebert and 224 

Montési (2013) modeled fluid transport and mantle hydration related to deep dehydration 225 

reactions in subducted serpentinized mantle and effects on hydration of the transition zone. 226 

Kimura et al. (2009) developed the Arc Basalt Simulator (ABS) modeling scheme to predict 227 

the composition of primitive arc magmas (Fig. 1b). This simulation scheme initially included 228 

slab dehydration and fluid-fluxed mantle melting and was subsequently modified to 229 

incorporate slab melting and melt-fluxed mantle melting (Kimura et al., 2010) and, most 230 

recently, separate P-T paths for distinct slab layers, yielding more liquid-solid interaction 231 

within the 1-D vertical column (Kimura et al., 2014). Application of the ABS models 232 

produced successful predictions of incompatible element and Sr-Nd-Pb isotopic compositions 233 

of distinct primitive magmas from the volcanic front and the rear-arc of the Izu arc (Kimura et 234 

al., 2010). 235 

 236 

1.3. Boron and boron stable isotopes as tracers of fluid-rock interaction 237 

One of the key aspects in metamorphic petrology is to trace and quantify liquid phases 238 

percolating through solid rocks. Liquid phases, such as aqueous fluids or melts, are the major 239 



 9 

transport agents in the solid Earth and thus quantification of the fluxes of liquid phases 240 

enables tracing of the mass transfer in the solid Earth. In contrast to a melt phase, which 241 

might crystallize in situ and can then be directly investigated, fluids can only be passively 242 

trapped as inclusions in solid phases and in most cases have left the rock at the time of 243 

investigation. Thus, indirect geochemical evidence for the presence of a fluid interacting with 244 

the host rock must be considered. Ideally, such indirect geochemical proxies for fluid-rock 245 

interaction are among the fluid mobile elements (FME), have quick equilibration times and 246 

small equilibration volumes. Subsequent to fluid-rock interaction, the geochemical proxy 247 

must be stable and not prone to later, e.g. diffusional, re-equilibration. Furthermore, the proxy 248 

must be present in major phases in measurable quantities. Elements often used for this 249 

purpose are Li, B, N, Cl, As, Rb, Sb, Cs, Ba as well as Pb and U (see Ryan and Chauvel 250 

2013). 251 

Boron is particularly useful for the investigation of fluid-rock interaction processes and 252 

dehydration because it is present in measurable quantities in several major mineral phases 253 

(white mica, tourmaline, amphibole, serpentine) as well as in hydrous fluids and its 254 

concentration is typically low enough to make it sensitive to fast equilibration at small fluid 255 

amounts. In most rock-forming minerals, including white mica, B substitutes for silica and 256 

occupies the tetrahedral position (Sanchez-Valle et al., 2005). If B diffuses similarly slow as 257 

Si, B concentrations are difficult to exchange after crystallization (Hervig et al., 2002), a 258 

prerequisite to preserve relevant information over geologic time scales. Furthermore, 259 

information from boron as fluid-mobile trace element can be combined with the isotopic 260 

information from B stable isotopes (e.g., Simon et al., 2006). 261 

The observation of variations in the atomic weight of boron in minerals, made by Briscoe and 262 

Robinson (1925), was crucial for the recognition that physiochemical processes can cause 263 

isotopic fractionation of light elements in natural substances. It was therefore proposed that 264 

geologically relevant processes, including melting, crystallization, solution and volatilization, 265 

would cause isotopic variations in nature (Briscoe and Robinson, 1925), leading the way for 266 

the widespread application of stable isotopes as tracers (Sharp, 2007). The value of the 267 

various stable isotope systems is based on the fact that distinct stable isotope signatures occur 268 

in different reservoirs, so that they can be used to trace the origin of rocks and fluids.   269 

Boron has two stable isotopes, 
10

B and 
11

B, with relative abundances of 19.8% and 80.2%, 270 

respectively. The large B isotopic variation in natural substances of almost 100‰ (Fig. 2; 271 

Deyhle and Kopf, 2005) is dominantly due to differences in coordination between tetrahedral 272 
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B(OH)4
-
 and trigonal B(OH)3. Moreover, the B isotopic composition is influenced by 273 

temperature-dependent equilibrium fractionation between solid and fluid phases (Peacock and 274 

Hervig 1999; Hervig et al., 2002; Wunder et al., 2005) and it is also sensitive to changes in 275 

the pH value (Deyhle and Kopf, 2005). Boron preferentially partitions into the fluid phase 276 

(Brenan et al., 1998) with a concomitant enrichment of the heavy isotope 
11

B relative to 
10

B. 277 

The most striking example of coupled trends of elemental and isotopic variations occurs in arc 278 

lavas, where systematic across-arc trends of decreasing and isotopically lighter B with 279 

increasing slab depths (Fig. 2; Ishikawa and Nakamura, 1994; Ishikawa et al., 2001; Moriguti 280 

et al., 2004) are attributed to contributions from a slab-derived agent that successively reflects 281 

increasing degrees of slab dehydration and decreasing slab-to-arc element transfer (Bebout et 282 

al., 1999; Rosner et al., 2003; Marschall et al., 2007). In addition, several studies have 283 

emphasized the role of serpentinized mantle rocks, both in the supra-subduction zone wedge 284 

and in the subducting slab mantle, for boron cycling in subduction zones (Tonarini et al., 285 

2007, 2011; Benton et al., 2001; Hattori and Guillot, 2003; Savov et al., 2007). Evidence for 286 

the sensitivity of the B system for fluid-rock interaction is provided by zoning patterns in 287 

various metamorphic minerals (white mica, amphibole, tourmaline), which retain information 288 

about the compositional evolution of metasomatic fluids through the metamorphic history 289 

(Bebout and Nakamura, 2003; Marschall et al., 2009; Konrad-Schmolke et al., 2011b; Halama 290 

et al., 2014). 291 

In the following sections we will show two examples of combined thermodynamic-292 

geochemical models that focus on the mass transfer in subduction zones at different spatial 293 

scales (Fig. 3). The first model simulates fluid-rock interaction at grain-scale and investigates 294 

the effect of fluid percolation on B concentrations and B isotopic compositions in partially 295 

overprinted phengites. In the second example, fluid release from a subducted slab, the 296 

associated transport of B and variations in B concentrations and isotopic compositions in 297 

liberated fluids and residual rocks are modeled. We compare the results of both examples 298 

with observations in natural minerals and rocks in order to quantify fluid fluxes and element 299 

cycling. 300 

2. Example 1: Boron and boron isotopes in white mica during high-pressure fluid-rock 301 

interaction 302 

2.1. Observations in natural samples 303 

Fluid-induced metasomatic overprinting is a common feature in many metamorphic terranes 304 
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(e.g., Sorensen and Grossman, 1989; John et al., 2004; Bebout, 2007; Beinlich et al., 2010; 305 

Halama et al., 2011). Partial re-equilibration of metamorphic rocks, immensely important to 306 

trace the rocks’ metamorphic evolution, results in whole rock geochemical and isotopic 307 

variations and in compositional changes in individual metamorphic minerals (Spear and 308 

Selverstone 1983; Thompson and England 1984; Yardley et al., 1991; Kohn 2003; Habler et 309 

al., 2007; Konrad-Schmolke et al., 2011a,b; Pearce and Wheeler, 2010; Goncalves et al., 310 

2012). Since white mica is ubiquitous in metamorphic rocks of both igneous and sedimentary 311 

origin and stable over a wide P-T range, especially in high pressure rocks (Domanik and 312 

Holloway, 1996; Hermann and Spandler, 2008), it is well suited to investigate fluid-rock 313 

interaction processes during metamorphism. Chemical variations in white mica depend on P-314 

T conditions, bulk rock composition and syn-kinematic mass transfer and fluid conditions 315 

(Velde, 1965; Massonne and Schreyer, 1987; Guidotti et al., 1994; Goncalves et al., 2012). 316 

Diffusion-controlled exchange reactions in white mica have relatively high closure 317 

temperatures below which major element exchange is effectively impossible, so that 318 

preserved chemical variations predominantly reflect deformation and recrystallization 319 

controlled equilibria (Dempster, 1992). Potassic white mica is also amenable to age dating 320 

using both the 
40

Ar/
39

Ar and Rb-Sr methods and hence provides a means to directly link age 321 

information to the metamorphic evolution of a rock (Di Vincenzo et al., 2001; Glodny et al., 322 

2002; Bröcker et al., 2013; Halama et al., 2014; Warren et al., 2011, 2012). White mica is also 323 

an important carrier of fluid-mobile trace elements including B, lithium (Li) and the large ion 324 

lithophile elements (LILE; K, Cs, Rb, Ba, Sr; Bebout et al., 1999, 2007, 2013; Konrad-325 

Schmolke et al. 2011b; Hermann and Rubatto, 2009). Boron is concentrated in white mica 326 

(phengite and paragonite), compared to all other major phases, except tourmaline (Domanik et 327 

al., 1993; Marschall et al., 2006). Hence, white mica dominates the B budget in most 328 

tourmaline-free rocks and its B isotopic composition can be considered as representative of 329 

the bulk rock (Peacock and Hervig, 1999). During subduction, the presence of white mica 330 

critically determines retention and release of B as well as the B isotopic composition of 331 

released fluids (Marschall et al., 2007). Therefore, B elemental and isotopic changes in white 332 

mica are ideally suited to trace compositional changes due to fluid-mediated metasomatism. 333 

However, B isotope data in white mica are still relatively rare (Peacock and Hervig, 1999; 334 

Pabst et al., 2012; Angiboust et al., 2014) as many B isotope studies concentrated on 335 

tourmaline (Bebout and Nakamura, 2003; Trumbull et al., 2008, 2009; Marschall et al., 2009).  336 

In this example, we present a detailed study of high-pressure metamorphosed felsic rocks of 337 

the Western Alpine Sesia Zone (SZ) that were exhumed from mantle depths on top of a 338 
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dehydrating subducted oceanic plate where they directly interacted with percolating fluids at 339 

blueschist-facies conditions. A sampling profile across a deformation gradient around a major 340 

blueschist-facies shear zone showed several remarkable compositional features in texturally 341 

different phengite grains and domains (Konrad-Schmolke et al., 2011a,b, Halama et al., 342 

2014). 343 

2.1.1. Phengite chemistry in the Sesia Zone samples 344 

Fluid infiltration in weakly deformed rocks modified primary phengite (3.3 - 3.5 Si p.f.u., XMg 345 

= 0.6 - 0.7) compositionally along fluid pathways (Fig. 4a and b). Fluid-induced retrograde 346 

major element equilibration of phengite involves a major decrease in XMg and is visible in 347 

high contrast BSE images, which show darker-colored cores surrounded by brighter zones 348 

that are concentrated at the tips and grain boundaries, around inclusions and in deformed parts 349 

(Fig. 4a). The BSE images show one, in some places two different replacement zones as well 350 

as areas with diffuse transitions, but oscillatory zoning is missing. 351 

Phengite cores in weakly deformed samples have variable δ
11

B values (-18 to -10‰) that 352 

were interpreted to reflect the lack of km scale B homogenization during HP crystallization 353 

(Fig. 4c). Corresponding overprinted phengite rims have lower B abundances but overlapping 354 

δ
11

B values (-15 to -9‰), thought to reflect predominantly internal redistribution of B and 355 

internal buffering of the B isotopic compositions during recrystallization of the rims (Halama 356 

et al., 2014). In contrast, fine-grained mylonitic phengites are compositionally homogeneous 357 

in their major and trace element concentrations. XMg and Si p.f.u. in the syn-kinematic 358 

phengites correspond to the values observed in the overprinted phengite rims of the weakly 359 

deformed samples. Boron is almost completely removed in the mylonitic phengites (1-10 360 

µg/g). The boron isotopic compositions in the mylonitic phengites are significantly heavier 361 

than in those from the weakly deformed samples, indicating an external control by a high-362 

δ
11

B fluid (δ
11

B = +7±4‰). The compositional trend leads from relict cores via overprinted 363 

rims towards the mylonitic phengites (Fig. 4c). Based on estimates of the time-integrated fluid 364 

fluxes, which are more than one order of magnitude higher in the mylonites (Konrad-365 

Schmolke et al. 2011b), the B removal was related to fluid-induced phengite recrystallization.  366 

The sample profile, with presumably unmodified peak P-T phengite cores in weakly 367 

deformed samples, a partial metasomatic overprint represented by the phengite rims, and a 368 

strong deformation coupled to intense fluid-rock interaction in the mylonitic phengite provide 369 

the conceptual basis for fluid-rock interaction modeling along a distnct P-T path (Fig. 5). In 370 
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particular, we focus on the apparent paradox of lower B contents at similar δ
11

B values in the 371 

overprinted areas. Moreover, we want to evaluate to which degree the accurate determination 372 

of the two parameters [B] and δ
11

B allows a quantification of fluid amounts that have 373 

interacted with the rock. 374 

2.2. Thermodynamic-geochemical modeling of B concentrations and isotopic compositions in 375 

phengite 376 

The boundary conditions for the thermodynamic model that has been performed with the 377 

THERIAK algorithm (de Capitani and Brown 1987) in the NCKFMASH chemical system 378 

comprise the following assumptions: Along the prograde P-T path, the samples underwent 379 

fractional garnet crystallization, indicated by large, compositionally zoned garnet 380 

porphyroblasts in the natural samples, and water fractionation due to devolatilization reactions 381 

(Konrad-Schmolke et al., 2011a). Thus, calculation of the effective bulk rock composition 382 

(EBC) at the start of the retrograde P-T trajectory must consider a prograde segment 383 

accounting for the element fractionation processes. Along the retrograde P-T path, from 2.0 384 

GPa and 575°C to 1.1 GPa and 500°C (Fig. 5), a fluid influx event occurs at about 1.35 GPa 385 

and 550°C, which causes water re-saturation in the affected areas of our samples.    386 

The mineralogical evolution of the samples in the P-T-X-space can be displayed with two 387 

compositionally constrained P-T equilibrium assemblage diagrams (P-T pseudosections) (Fig. 388 

5a) and a P-X diagram (Fig. 5b). Fractional garnet crystallization and water fractionation 389 

along the prograde P-T path continuously modified the EBC. At peak conditions (left 390 

diagrams in Fig. 5a), the rock is water-saturated and becomes water under-saturated along the 391 

first segment of the retrograde P-T trajectory. The diagram calculated for the EBC at peak 392 

conditions shows that there is no significant change in the phase assemblage 393 

(pg+gln+cpx+phng+qtz) along the retrogade path until fluid influx at 1.35 GPa and 550°C. 394 

The fluid influx causes water re-saturation of the EBC and changing phase relations (right 395 

diagrams in Fig. 5a) that are then applicable for the second part of the retrograde P-T 396 

trajectory. The P-H2O diagram (Fig. 5b) highlights the compositional plane in the P-T-X 397 

space together with the retrograde P-X trajectory of our samples (red arrow). Below the water 398 

saturation line (bold blue) XMg in phengite strongly depends on the H2O content indicated by 399 

the sub-vertical XMg isopleths. The compositional correlation between H2O content and XMg 400 

in phengite is reflected in the fluid-induced overprinting zones in the mica grains of the 401 

natural samples (Fig. 4a). The modeled phase relations and phengite compositions along the 402 

retrograde P-T trajectory demonstrate that the fluid influx causes drastic changes in both 403 
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modal mineralogy and phase chemistry (Fig. 6).  404 

Phengite amount decreases by about 10 wt.%, whereas the abundances of glaucophane and 405 

paragonite increase. Omphacite is no longer stable and epidote joins the stable phase 406 

assemblage. In phengite, the model indicates a slight decrease in SiT due to the fluid influx, 407 

unrelated to the continuous pressure decrease (Fig. 6a). The negative correlation between 408 

decreasing celadonite (XCel) and increasing ferroceladonite (XFcel) components reflects the 409 

sudden increase in XFe in the overprinted zones. These modal and chemical phase changes 410 

reflect the blueschist-facies overprint as observed in the shear zone (Konrad-Schmolke et al., 411 

2011a). 412 

Boron concentrations [B] and isotopic compositions (δ
11

B) of phengite (phng) are modeled 413 

along the retrograde P-T path. Boron distribution among fluid and stable mineral phases is 414 

calculated using partitioning data of Brenan et al. (1998) and Marschall et al. (2007). 415 

Specifically, the D
fluid-phng

 value was derived from D
cpx-fluid

 (Brenan et al., 1998) and D
cpx-phng

 416 

(Marschall et al., 2007). Experimentally determined B isotope fractionation data were taken 417 

from Wunder et al. (2005). Initial values for [B] and δ
11

B in the host rock are chosen to reflect 418 

the composition of the phengite cores, whereas [B] and δ
11

B in the infiltrating fluid (27 µg/g 419 

and +7‰) were calculated assuming chemical equilibrium with the mylonites in the shear 420 

zone. A detailed modeling description together with a software package including the Gibbs 421 

energy minimization algorithm THERIAK (de Capitani and Brown 1987) together with a 422 

MatLab
®
 script for B and δ

11
B calculations are given in the electronic supplementary 423 

material. 424 

2.3. Geochemical model results 425 

The modeling of [B] and δ
11

B in phengite relates the amount of water that percolated through 426 

the rock to the structural and textural characteristics of phengite in the natural samples (Fig. 427 

7). High-pressure conditions at P > 1.35 GPa – before the fluid influx – are represented by 428 

relict, unmodified phengite cores. Predominantly internal B redistribution and low amounts of 429 

water influx are mirrored in the overprinted rims, whereas high amounts of water reflect 430 

conditions in the shear zone. The model shows that with increasing water flux, [B] in phengite 431 

decreases (Fig. 7a) due to the preferential partitioning of B into the fluid. The redistribution of 432 

B is quite efficient even at low amounts of water influx, so that a constant [B] value is 433 

reached after only 0.5 wt.% accumulated water influx. The changes in δ
11

B, caused by the 434 

preferential partitioning of 
11

B into the fluid, are more sluggish (Fig. 7b). At very low water 435 
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fluxes the isotopic composition of white mica is even driven towards slightly lower δ
11

B 436 

values, a trend that is reversed after ~0.1 wt% water influx. About 1 wt.% H2O is required 437 

before a constant δ
11

B value is reached in the model. 438 

When distinct amounts of water influx (0, 0.09 and 1.5 wt.%) for the given P-T path are 439 

compared, the rapid chemical and isotopic changes of the predicted B equilibrium 440 

concentrations and isotope compositions become even more apparent (Fig. 7c,d). If no water 441 

is added, representing a completely internal redistribution of boron, the model predicts a small 442 

increase of [B] in phengite associated with unchanged δ
11

B compared to the pre-influx values. 443 

Low water influx (0.09 wt.%) causes a 20% decrease in [B], consistent with B concentrations 444 

measured in the overprinted rims. The modeled δ
11

B in phengite resulting from fluid-rock 445 

interaction at these low fluid fluxes is much less affected and changes by less than 1‰. The 446 

modeled B isotopic variation is within analytical uncertainty and natural inhomogeneity 447 

between different samples. Indeed, most samples do not show B isotopic differences between 448 

relict cores and rims, albeit a tendency towards higher δ
11

B values is recognizable for some. 449 

High fluid influx (1.5 wt.% accumulated water flux) results in an 80% decrease in [B], 450 

whereas δ
11

B increases toward the equilibrium value determined by the external fluid. Again, 451 

both features agree well with the field-based observations in the SZ. 452 

The interplay of the two parameters [B] and δ
11

B during progressive fluid influx allows a 453 

quantification of the amounts of fluid absorbed by the rocks. The evolution of [B] and δ
11

B in 454 

the percolating fluid are decoupled at low amounts of H2O. Whereas removal of B from the 455 

interacting host rock leads to a continuous decrease in [B] immediately after infiltration of the 456 

first increment of fluid, δ
11

B initially slightly decreases. With increasing fluid amount, the 457 

trend in δ
11

B reverses. In our example, the amount of water in the weakly deformed samples 458 

is limited to a maximum of ~0.25 wt.%. In the mylonites, at least 0.75 wt.% water must have 459 

been percolating through the rock to explain the changes in both [B] and δ
11

B. One of these 460 

parameters alone would not suffice to quantify fluid amounts. 461 

Decreasing B concentrations in minerals and rocks are commonly attributed to dehydration 462 

reactions as evident in figures 2 and 8 whereas in the chosen example decreasing B 463 

concentrations in phengite are the result of the fluid infiltration and fluid-rock interaction 464 

leading to a B redistribution and precipitation of phengite material with lower B 465 

concentration. In contrast to dehydration that is associated with decreasing δ
11

B values, fluid-466 

rock interaction in the investigated samples causes an increase in δ
11

B in the affected phengite 467 

grains, which demonstrates that only the combination of the two parameters [B] and δ
11

B 468 
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allows distinction between the two contrasting processes. 469 

It is notable that in our samples overprinted phengite areas are visible in BSE images due to 470 

their significantly higher Fe concentrations and B measurements can be correlated with these 471 

zones. To evaluate whether the B compositional and isotopic zoning in the investigated 472 

phengites fully correlates with the major element zonation, qualitative mappings of single 473 

grains are necessary. Such mappings of trace element compositional variations in 474 

metamorphic minerals are crucial to increase our knowledge about the fluid-rock interaction 475 

and associated processes in metamorphic phases (e.g., Papst et al., 2011; Valle et al., 2011). 476 

At present, relatively large analytical uncertainties for B isotope compositions measured in 477 

natural phengite (2s uncertainty = 1-5 ‰) make it difficult to detect intra-grain variations in 478 

samples with low B concentrations and small grain sizes (Aggarwal and Palmer, 1995; Jacob, 479 

2006; Rosner et al., 2008), but in contrast to B-rich phases, such as tourmaline, white mica 480 

has the advantage that it is a rock-forming phase in many metamorphic rocks and its 481 

compositional variations can easily linked with its metamorphic evolution (e.g., Massonne 482 

and Schreyer 1987). Our example shows the capacity of B concentrations and the isotopic 483 

composition of B in phengite to record fluid influx and fluid-rock interaction in metamorphic 484 

rocks (e.g., Angiboust et al., 2014). Qualitatively, the results of this example demonstrate that 485 

the effects of fluid-rock interaction during fluid percolation on the trace element transport 486 

may be profound and need to be considered in large-scale subduction zone models, which will 487 

be delineated below. 488 

3. Example 2: Boron release in subduction zones 489 

3.1. Observations in natural samples 490 

Subduction of hydrated oceanic lithosphere is the main process that allows element transfer 491 

from the Earth’s surface to the deeper mantle. Devolatilization of the subducted slab leads to 492 

partitioning of elements into the upward migrating fluid and subducting solid phases. 493 

Whereas the former are recycled into the upper plate or the atmosphere, the latter are deeply 494 

subducted and assimilated into the deep mantle (Elliott et al., 2004; Peacock and Hervig, 495 

1999; Hofmann, 1997; Hacker, 2008). Knowledge about and quantification of this element 496 

partitioning is crucial for the understanding of global scale element distribution between crust, 497 

mantle and atmosphere (e.g., Connolly, 2005; Kerrick and Connolly, 2001; Spandler and 498 

Pirard 2013). As we have no direct access to the subducting rocks, elemental and isotopic 499 

signatures in arc volcanic rocks are interpreted in terms of processes occurring in the 500 
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downgoing slab (Pearce and Peate, 1995), although the extent to which slab contributions 501 

control geochemical characteristics of arc magmas is disputed (Elliott, 2003). However, there 502 

are several examples where across-arc geochemical variations in arc lavas appear to reflect 503 

changes in the subducting slab as a function of depth (Fig. 2), which in turn control slab-to-504 

arc mass transfer (Ishikawa and Nakamura, 1994; Ryan et al., 1995, 1996; Moriguti and 505 

Nakamura, 1998). Geochemical reservoirs in the slab that potentially leave their imprints in 506 

arc volcanic signatures include all lithological layers of the subducting lithosphere: sediments, 507 

igneous oceanic crust and the hydrated slab mantle (Ryan et al., 1995; Plank and Langmuir, 508 

1993; Morris et al., 1990; John et al., 2004; Herms et al., 2012). If seawater is able to infiltrate 509 

the upper oceanic mantle (Ranero et al., 2003; Ranero and Sallarès, 2004; Garth and 510 

Rietbrock, 2014), serpentinites formed by this process can theoretically absorb up to 13 wt% 511 

of water and may therefore be effective carriers of water (Schmidt and Poli 1998; Rüpke et 512 

al., 2004; Hacker, 2008) and certain fluid-mobile elements (FME) to sub-arc depths (Ulmer 513 

and Trommsdorff, 1995; Scambelluri et al., 2001; Hattori and Guillot, 2003). Additionally, 514 

the supra subduction zone (SSZ) wedge mantle, which is hydrated by fluids liberated from the 515 

subducted slab, may also be an important reservoir of water and trace elements delivered to 516 

greater depth (Tatsumi, 1986; Hyndman and Peacock, 2003; Straub and Layne, 2002; Hattori 517 

and Guillot, 2003; Kawamoto et al., 2013), although both water and FME are originally 518 

derived from the slab itself. If SSZ mantle is dragged down along the slab-wedge interface 519 

towards sub-arc depth (Savov et al., 2005, 2007), and if temperatures remain cold enough so 520 

that relevant dehydration reactions are delayed until these depths are reached (Grove et al., 521 

2009; Till et al., 2012), geochemical signals from SSZ mantle-derived fluids may be 522 

incorporated into arc melt sources. A thermodynamic-geochemical model reflecting fluid 523 

liberation and reactive fluid flow (Zack and John 2007) in subduction zones must incorporate 524 

fluid production and fluid-rock interaction in all of the above-mentioned reservoirs. 525 

Regarding the use of B as tracer for subduction zone processes, Ryan and Langmuir (1993) 526 

first noted that B is a useful proxy in across-arc studies by observing systematically lower B 527 

contents in arcs where volcanoes sample deeper portions of the slab. As B concentrations in 528 

dry mantle rocks are extremely low (<1 µg/g), B is flushed through the SSZ mantle wedge 529 

without significant modification of the B slab signal during fluid ascent (Ryan and Langmuir, 530 

1993). Compared to the mantle wedge, B is concentrated in several slab lithologies, including 531 

subducted sediment (Ishikawa and Nakamura, 1993), altered oceanic crust (AOC) (Spivack 532 

and Edmond, 1987; Yamaoka et al., 2012) and serpentinized mantle rocks (Benton et al., 533 

2001; Boschi et al., 2008; Vils et al., 2009; Scambelluri et al. 2004). Arc lavas are generally 534 
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enriched in B, as shown by elevated B/Nb and B/Be ratios compared to oceanic basalts (Fig. 535 

2a). The B/Nb ratio is used as tracer of B enrichment because B/Nb is considered as 536 

unfractionated during partial melting based on similarity in mineral-melt partition coefficients 537 

(Brenan et al., 1998). Arc lavas are also relatively enriched in 
11

B (Fig. 2b), suggesting fluid-538 

mediated slab-to-arc B transfer via a B-rich, high-δ
11

B slab fluid (Scambelluri and Tonarini, 539 

2012). In many cases, the B isotopic compositions systematically vary with B enrichment as 540 

higher B/Nb ratios are coupled to higher δ
11

B values (Fig. 2a; Spandler and Pirard, 2013). 541 

Consequently, across-arc trends with increasingly lower B concentrations and isotopically 542 

lighter compositions with increasing slab-surface depths, as observed in many subduction 543 

zones (Fig. 8b; Ishikawa and Nakamura, 1994; Ishikawa et al., 2001; Ishikawa and Tera, 544 

1999; Rosner et al., 2003), are interpreted to directly reflect increasing degrees of slab 545 

dehydration and decreasing slab-to-arc element transfer. However, several subduction zones 546 

show unusually high δ
11

B and B/Nb values or reversals in the across-arc trends of these 547 

values (Moriguti et al., 2004; Ishikawa et al., 2001; Tonarini et al., 2001), but the reasons for 548 

these exceptions are still debated. Among the most interesting of the deviating examples are 549 

the South Sandwich Islands (SSI) arc and the Kamchatka subduction zone. In the SSI arc, 550 

anomalously high δ
11

B and B/Nb are observed throughout the entire volcanic arc and 551 

interpreted to reflect dehydration of the SSZ wedge mantle (Tonarini et al., 2011). Across the 552 

Kamchatka peninsula, arc volcanic rocks from three successive volcanic chains yield a 553 

complex δ
11

B and B/Nb pattern (Fig. 2; Ishikawa et al., 2001), the reason for this complexity 554 

being unclear so far, but possibly related to dehydration of subducted slab mantle. Slab 555 

mantle dehydration is difficult to detect in arc volcanic rocks by geochemical means because 556 

ultramafic rocks are typically poor in many trace elements. Arsenic, antimony and boron are 557 

among the few elements characteristic for serpentinites and geochemical trends of these 558 

elements (Spandler and Pirard, 2013) as well as the isotopic composition of boron in arc lavas 559 

are interpreted to reflect serpentinite dehydration (Tonarini et al., 2011). However, 560 

geochemical models alone cannot discriminate between dehydration of upper- and lower-plate 561 

serpentinites. If and to which degree slab mantle dehydration influences δ
11

B and B/Nb in 562 

across-arc profiles can be tested with a combined thermodynamic-geochemical model, which 563 

utilizes boron and its isotopic composition to model slab fluid release and fluid rock 564 

interaction in the downgoing slab and the mantle wedge.  565 

3.2. Modeling B concentrations and isotopic compositions in a subduction zone 566 

Marschall et al. (2007) modeled B concentrations in subducting rocks and released fluids 567 
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during subduction by combining the B distribution among the minerals present with 568 

temperature-dependent fractionation of B isotopes, corroborating the proposed continuous 569 

decrease in B and δ
11

B in both residual rocks and released fluids (Fig. 8). These one-570 

dimensional models predict that white mica plays a crucial role in the B geochemical cycling. 571 

The more white mica is present in the rock, the more B is retained in the slab down to subarc 572 

depths and beyond, and the more positive are the δ
11

B values of the released fluids (Marschall 573 

et al., 2007). Based on this pioneering work, our models additionally incorporate a 574 

sedimentary layer, a layer of oceanic mantle in the subducting slab as well as a SSZ mantle 575 

wedge layer (Fig. 9a), thus expanding the model to a second dimension (cf. Connolly, 2005; 576 

Rüpke et al., 2006). Moreover, interaction between the liberated water and the wall rock 577 

during the ascent of the fluid phase is taken into account because fluid-rock interaction within 578 

the slab, at the slab-wedge interface (Marschall et al., 2006) and in the overlying mantle 579 

wedge can lead to significant modifications of both percolating fluid and the affected wall 580 

rock with respect to [B] and δ
11

B. In our model, a thermal subduction zone pattern (Fig. 9a) of 581 

the Kamchatka subduction zone derived from finite element thermomechanical modeling 582 

(Manea and Manea, 2007) is used as pressure-temperature input for a Gibbs energy 583 

minimization algorithm (PERPLE_X; Connolly 2005) that simulates the passing of a vertical 584 

rock column within the subducted slab through the steady state thermal pattern. The thermal 585 

pattern is modeled with a finite element grid extending from 25 km seaward of the 586 

Kamchatkan trench up to 600 km landward of it. The numerical scheme solves a 2D Navier-587 

Stokes equation and a 2D steady state heat transfer equation. Shape and dip of the subducting 588 

plate beneath the active arc are constrained by the earthquake hypocenter distribution (see 589 

Manea and Manea 2007 for further details). Phase relations within the rock column that 590 

consists of a SSZ mantle wedge layer (10 km; Primitive Upper Mantle from Workman and 591 

Hart, 2005), a sediment pile (625 m; GLOSS from Plank and Langmuir, 1998), igneous 592 

basaltic crust (6.4 km; N-MORB from Workman and Hart, 2005) and a variably hydrated slab 593 

mantle (18.5 km; Depleted Mantle from Workman and Hart, 2005) are calculated with a 594 

resolution of 250 x 250m. A more detailed description of the model and input parameters 595 

together with a MatLab® script can be found in the electronic supplement. Water liberated by 596 

dehydration reactions is transported vertically upward, equilibrating at every calculated 597 

increment within the column, thus reflecting a high ratio of fluid/slab migration velocity. The 598 

modeled phase relations at every calculated increment are used for a coefficient-based mass-599 

balanced B distribution (Brenan et al., 1998)
 
and a temperature-dependent fluid-solid B 600 

isotope fractionation (Fig. 9b; Wunder et al., 2005). The model simulates fluid release, fluid 601 
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migration, fluid-rock interaction and boron transport in a subducted slab and the overlying 602 

mantle wedge. Comparison of modeled and observed B concentrations and isotopic patterns 603 

help to constrain initial hydration of the slab and the dehydration behavior of wedge mantle 604 

and slab during subduction. 605 

3.3. Model results 606 

The dehydration model of the subduction zone shows that water release from the slab is 607 

controlled by thermally induced breakdown of the hydrous minerals brucite, antigorite, 608 

chlorite and lawsonite (Figs. 10 and 11). In case of a dry slab mantle dehydration occurs up to 609 

250 km slab surface depth and is characterized by a continuous crustal signal and 610 

superimposed dehydration spikes resulting from discontinuous wedge mantle and slab crust 611 

dehydration (Fig. 11a). Breakdown of brucite and antigorite with minor contributions from 612 

chlorite and amphibole in the SSZ wedge mantle dominates water release in the fore-arc 613 

region. In the sub-arc region, water is delivered by continuous chlorite dehydration from the 614 

crust and the chlorite-out reaction in the SSZ mantle wedge that causes a characteristic 615 

dehydration peak at ~130 km slab surface depth. As predicted by the models of Marschall et 616 

al. (2007), continuous dehydration of the slab leads to a drastic decrease of the B 617 

concentrations (Fig. 11b) as well as to decreasing δ
11

B values (Fig. 11c) in the residual rocks. 618 

However, depending on the depth within the slab crust the B concentrations in different rocks 619 

from the same layer can have significantly different values and a concentration gradient 620 

within the slab is maintained up to 200 km slab surface depth. This circumstance is the result 621 

of the interplay between the predominantly temperature-controlled dehydration pattern that is 622 

skewed relative to the surfaces of the lithological layers and the leaching effect resulting from 623 

fluid percolation within the slab. The effect of fluid-rock interaction on the subducted rocks is 624 

also clearly visible in the δ
11

B values at different positions within the slab. Differences in the 625 

δ
11

B values between the slab surface and in the SSZ mantle wedge subsequent to fluid-rock 626 

interaction can be as large as 10‰ in shallower regions and are about 5‰ at greater slab 627 

surface depths. These results show the need for two or three-dimensional models regarding 628 

the prediction of B concentrations and δ
11

B values in subduction-related fluids and rocks. 629 

Utilizing the same model setup, the effect on [B] and δ
11

B values in the fluids released by slab 630 

mantle dehydration can be studied. In contrast to the preceding model, the slab mantle is now 631 

initially hydrated to a depth of 15 km perpendicular to the slab mantle surface. This is the 632 

maximum depth to which hydrous phases are thermodynamically stable at the beginning of 633 

the model run. The pseudosection (Fig. 10b) shows that chlorite and serpentine are the stable 634 
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hydrous phases in the slab mantle up to 175 km slab surface depth. Depending on the thermal 635 

pattern within the slab there is an overlap of the stability fields of antigorite and phase A, 636 

enabling the transfer of H2O into the deeper mantle beyond sub-arc depths (cf. Hacker, 2008). 637 

As there is no water release from the slab mantle at slab surface depths less than 175 km, the 638 

dehydration pattern of the hydrated slab mantle up to this depth is the same as in the dry slab 639 

mantle case (Fig. 12a). Water released by chlorite breakdown in the slab mantle is directly 640 

transferred into serpentine at slab depth of about 150 km. Subsequently, the antigorite 641 

breakdown reaction is the key factor regarding water release from the slab mantle (Fig. 12a). 642 

The antigorite-out reaction starts at the bottom of the hydrated slab mantle part at ~130 km 643 

slab surface depth. The liberated water migrates into the water-undersaturated overlying part 644 

of the slab mantle, where it is resorbed and dragged down until the thermal stability limit of 645 

antigorite is reached at ~175 km slab surface depth. The model shows that large amounts of 646 

water are liberated at the terminal antigorite-out reaction, causing a massive fluid flux into the 647 

overlying slab crust and wedge mantle. This dehydration burst is responsible for the second, 648 

most prominent peak superimposed on the crustal dehydration pattern (Fig. 12a). Beyond the 649 

antigorite-out reaction in the slab mantle, minor water release continues by lawsonite 650 

breakdown in the crustal part of the slab. Phengitic white mica remains stable in the crustal 651 

parts of the slab and does not significantly contribute to water release.  652 

Based on the mass balanced boron distribution, the mass of boron (kg B/m
3
 rock) released 653 

from the slab is calculated (Fig. 12b). These values show a drastic decrease across the profile 654 

down to ~170 km slab surface depth, followed by a characteristic and spike-like increase 655 

where antigorite dehydration takes place in the slab mantle. The continuous water release 656 

from SSZ wedge serpentinites and slab crust explains the strongly decreasing B supply with 657 

increasing slab depth because the fluid-mobile B is flushed out with the water. Thus, our 658 

model reproduces the decreasing B/Nb ratios observed in various across-arc trends that were 659 

attributed to continuous dehydration reactions in the oceanic crust
 
(Ryan et al., 1995; 660 

Marschall et al., 2007). At the tip of the antigorite-out reaction in the slab mantle, the transfer 661 

of large amounts of boron into the hanging wall plate is predicted, causing B enrichment in 662 

arc melts generated there. In terms of B isotope composition, our model shows high δ
11

B 663 

values in the fore-arc region, followed by a continuous linear decrease in δ
11

B from ~110 to 664 

~175 km slab surface depth and a distinct increase where the terminal antigorite-out reaction 665 

in the slab mantle is located (Fig. 12c). Initially, dehydration of sediments and SSZ wedge 666 

serpentinites releases extremely heavy boron into the fore-arc region, as observed in fore-arc 667 

slab fluids from serpentinite seamounts (Benton et al., 2001). Subsequently, dehydration of 668 
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the igneous oceanic crust exemplifies the continuous dehydration-induced 
11

B depletion in the 669 

residual rocks leading to a decreasing δ
11

B trend in the released fluids (Marschall et al., 2007; 670 

Rosner et al., 2003). This trend has not only been observed in Kamchatka, but also in the 671 

Kurile (Ishikawa and Tera, 1997), West Pacific (Ishikawa and Nakamura, 1994) and Chile 672 

(Rosner et al., 2003) subduction zones (Fig. 2). Finally, the high-B fluid released by antigorite 673 

breakdown in the slab mantle directly transfers a high-δ
11

B signature towards the surface due 674 

to the high water flux and the finite capability of the crust to incorporate B. Continuing 675 

dehydration of slab crust alone is not able to deliver any significant amounts of water or 676 

boron at that depth. A major implication of our model is that the absolute δ
11

B values 677 

expected where antigorite breaks down depend on the hydration state of the slab mantle. In 678 

the slab crust, refertilization leads to an additional decreasing δ
11

B trend caused by the 679 

lawsonite-out reaction between 200 and 250 km slab depth, although this trend is blurred at 680 

the model surface by fluid-rock interaction.  681 

If we assume unmodified transport of the B signal from the top of the model surface through 682 

the upper part of the SSZ wedge mantle and the continental crust, the distinct [B] – δ
11

B 683 

relationship of fluids derived from wedge mantle, crust and slab mantle may be used to 684 

identify fluid source lithologies in arc lavas (Fig. 13). It is notable that the position of the slab 685 

mantle dehydration is primarily dependent on the stability of antigorite. In our 686 

thermodynamic model we use a binary Fe-Mg, Al-free solid solution model of antigorite, 687 

which might underestimate the upper stability limit, as Al incorporation into antigorite can 688 

result in an increase of the maximum stability in the order of 30°C (Padrón-Navarta et al., 689 

2013). Regarding the spatial scale of our model, together with the fact that Al solution into 690 

antigorite has insignificant effects on the co-existing phase relations, we assume this 691 

uncertainty to be of minor importance for our interpretation. As pointed out by Scambelluri 692 

and Tonarini (2012), arc lavas with δ
11

B greater than that of slab fluids require serpentinite as 693 

source component. The relatively B-rich, high-δ
11

B nature of the South Sandwich lavas (Fig. 694 

2) was attributed to the influence of serpentinite-derived fluids from the mantle wedge 695 

(Tonarini et al., 2011), in agreement with the characteristics of the modeled mantle wedge – 696 

derived fluids. In contrast, slab-derived fluids are expected to have lower B contents. Fluids 697 

derived from the slab crust trend toward negative δ
11

B values, whereas those from the slab 698 

mantle have positive δ
11

B values (Fig. 13). For each individual subduction zone modeled, 699 

thermal constraints and variations in the input parameters need to be taken into account when 700 

evaluating the calculated values. Using the additional constraints of the location relative to the 701 

trench and the depth to the slab, which are available for natural samples, the pattern modeled 702 
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here may serve as a useful guide in evaluating fluid sources. For the Kamchatka subduction 703 

zone model, the difference in δ
11

B between fluids derived from slab crust compared to slab 704 

mantle is on average about 10‰, but importantly, at 175 km depth-to-slab where the CKD 705 

volcanoes are located, crustal fluids would have highly negative δ
11

B values. Hence, a fluid 706 

contribution from the hydrated slab mantle is indicated. Such serpentinite-derived fluid fluxes 707 

at eclogite-facies conditions from the subducted slab mantle have also been postulated in 708 

several case studies (Herms et al., 2012; John et al., 2004; Martin et al., 2014), corroborating 709 

our interpretation that hydrated slab mantle plays an important role for the water budget in 710 

subduction zones. 711 

4. Discussion and Outlook 712 

Both of the examples given in this paper show the immense capacity of combined 713 

thermodynamic and trace element models to investigate fluid-rock interaction processes in 714 

metamorphic geology. Further, we have shown that boron is a well-suited trace element to 715 

trace and quantify fluid-rock interaction at various scales. Our results therefore corroborate 716 

the findings of earlier investigations (Bebout and Nakamura 2003; Bebout et al., 2007; Boschi 717 

et al., 2008; Bouvier et al., 2008; Brenan et al., 1998; Deyhle et al., 2001; Halama et al., 2014; 718 

Ishikawa and Nakamura 1993; Ishikawa and Tera 1997; King et al., 2007; Konrad-Schmolke 719 

et al., 2011b; Leeman et al., 1994; Marschall et al., 2007; Nabelek et al., 1990; Pabst et al., 720 

2012; Paquin et al., 2004; Peacock and Hervig 1999; Rose et al., 2000; Sano et al., 2001; 721 

Scambelluri et al., 2004; Spivack and Edmond, 1987; Straub and Layne 2002; Tonarini et al., 722 

2001; Wunder et al., 2005) and emphasize the need of more detailed geochemical models that 723 

use trace elements and their isotopic composition as a proxy for fluid-rock interaction. At 724 

present such complex combined numerical models that focus on the simulation of mass 725 

transfer in the solid Earth are at the beginning of unfolding their capacities and more detailed 726 

experiments require integration of data and modeling techniques that are still under 727 

development. 728 

The two examples presented in this paper diverge in a pivotal aspect: whereas the results of 729 

the first example can be directly compared to natural rocks affected by the fluid-rock 730 

interaction process, and thus most model parameters can be linked to natural observations, 731 

this is not the case in the second, large scale example. Subduction zone models focusing on 732 

deep-seated processes, such as the thermal evolution of the subducted slab, the water release 733 

and water migration at elevated depth, have generally a large number of unknowns in the 734 
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boundary conditions of the models, which leads to a high degree of freedom with respect to 735 

the interpretation of the model results. Relevant parameters for the mechanical model that is 736 

used as basis for the thermodynamic-geochemical model of the Kamchatkan subduction zone 737 

comprise rheological parameters, lithological slab structure and the coupling between the slab 738 

and the overriding mantle, all of which are specifically discussed in Manea and Manea (2007) 739 

and generally in a number of recent papers that concentrate on benchmarking numerical 740 

subduction zone models in order to make different approaches comparable (Gerya and Yuen 741 

2007; Van Keken et al., 2008; Syracuse et al., 2010). It is beyond the scope of this 742 

contribution to test the influence of various parameters on the result of the thermo-mechanical 743 

model, but rather to demonstrate the potential of coupled geochemical-thermo-mechanical 744 

models to properly interpret geochemical data from arc volcanic rocks – data that is abundant 745 

in the literature, but has not yet been implemented into thermo-mechanical subduction zone 746 

models (Gerya 2011). As shown in our second example, the implementation of 747 

thermomechanical models into thermodynamic and geochemical calculations is crucial for the 748 

quantification large-scale elemental fluxes (e.g., Rüpke et al., 2004; Hacker, 2008; Van Keken 749 

et al., 2011). The striking coincidence between the water release pattern, the position of 750 

volcanic centers in the Kamchatkan arc as well as the B concentration and isotope patterns in 751 

the arc volcanic rocks should therefore be seen as stimulation for further research in that field, 752 

but also to point out the importance of the subducted slab mantle for the water budget in 753 

subduction zones. Furthermore we would like to stress that B and its isotopic composition 754 

serve as excellent tracer for these processes. However, the combination of thermomechanical, 755 

thermodynamic and trace element models still faces computational obstacles that hinder a 756 

complete implementation into a single model. Most thermomechanical models use 757 

thermodynamic lookup-tables to constrain mineralogically controlled rheological parameters 758 

(e.g., Iwamori, 2007; Arcay et al., 2005) and, in turn, thermodynamic and geochemical 759 

models use the thermal pattern from thermomechanical models as basis for their 760 

thermodynamic predictions (this study). However, in order to fully quantify mass transfer in 761 

three dimensions it will be a major task in geodynamic-geochemical modeling to implement 762 

fluid-mediated element transport into thermomechanical models. 763 

4.1. Constraints on fluid migration processes 764 

The mode of fluid transport, e.g. channelized vs. pervasive, as well as the volume and 765 

intensity of the fluid-rock interaction process predominantly control the amount and rate of 766 

transported solutes (Zack and John 2007). For a correct numerical formulation of 767 
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thermodynamic-geochemical models the fluid migration mechanism plays a crucial role. In 768 

turn, variation of the boundary conditions of such combined models can be used to constrain 769 

possible modes of fluid percolation in a particular setting. In nature there are examples of both 770 

highly channelized fluid flux in brittle and ductile shear zones (e.g., Bebout and Barton 1993, 771 

Austrheim 1987) as well as pervasive fluid flux by interconnected fluid films along grain 772 

boundaries (Keller et al., 2006; de Meer et al., 2005, Konrad-Schmolke et al., 2011a, example 773 

1 in this work; see also Oliver 1996 for a detailed review) reflecting a broad range of fluid 774 

flow mechanisms in natural rocks that might be active at the same time in a single sample 775 

(Fusseis and Handy 2008). Several works provide a theoretical background for fluid flux in 776 

metamorphic rocks (Connolly and Podlachikov 2007, Fusseis et al., 2009, Kruhl et al., 2013) 777 

and numerical thermomechanical models increasingly focus on the prediction and 778 

quantification of fluid fluxes in metamorphic rocks, especially in subduction zones (see Gerya 779 

2011 and references therein). As metamorphic porosity and thus permeability is transient in 780 

most rocks, unequivocal evidence for a certain fluid-migration mode is lacking in most 781 

natural samples. 782 

Besides experiments that provide insight into porosity development and fluid-induced mineral 783 

replacement mechanisms (Putnis and Mezger 2004), natural samples that preserve areas that 784 

are unaffected by fluid infiltration together with overprinted parts, such as the samples in our 785 

first example, are crucial for the investigation of fluid migration during metamorphism and 786 

for the validation of numerical models (Jamtveit et al., 2008; Putnis and Austrheim 2010; 787 

Konrad-Schmolke et al., 2011a). Although sensitivity tests allow determination of the critical 788 

parameters and give insight into the robustness and validity of numerical model results (e.g., 789 

Spakman and Wortel 2004; Martí et al., 2009; Gray and Pysklywec, 2012), comparison of the 790 

modeled processes with their effect on natural rocks is, whenever possible, indispensible. As 791 

fluid-rock interaction processes in natural rocks must be investigated from km- to nm-scale 792 

and comprise chemical effects that often require high precision combined with high spatial 793 

resolution scientific advances in this field are directly coupled with technical innovations 794 

(Gianuzzi and Stevie 1999; Albarède et al., 2004; Fusseis et al., 2009; Kylander-Clark et al., 795 

2013). For example, with high-resolution analytical techniques, such as TEM, X-ray 796 

tomography using synchrotron radiation or dual beam focused ion beam investigations, syn-797 

metamorphic porosity development can be visualized in natural samples and experiments 798 

(e.g., Fusseis et al., 2009, Kruhl et al., 2013) and the sites of fluid rock interaction can be 799 

chemically analyzed. However, proper sample selection is of utmost importance in order to 800 

trace the effects of fluid rock interaction at various scales. Fig. 14 shows an example of 801 
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porosity formation in a natural rock from the Franciscan mélange complex at Jenner, 802 

California. A metre-sized block of eclogite is partly transformed into blueschist with a clearly 803 

visible reaction front running through the block (Fig. 14a). The sharp reaction front separates 804 

a moderately affected area where the assemblage clinopyroxene+garnet+rutile is well 805 

preserved from a strongly overprinted part with the assemblage 806 

glaucophane+plagioclase+titanite (Fig. 14b). One of the strongly zoned clinopyroxene 807 

crystals points into the reacted part and the reaction front is running through the lowermost 808 

edge of the crystal (Fig. 14c). The electron transparent slice, taken perpendicular to the 809 

reaction front (red line in c), shows a µm-sized pore that comprises a dark rim, dark worm-810 

like precipitates and bright Ga precipitate from the FIB sectioning in its interior (Fig. 14d). 811 

The dark rim consists of amorphous Si-rich material and is connected with the worm-like 812 

material in the interior of the pore (Fig. 14e) that has approximately the same major element 813 

composition as the amorphous rim (Fig. 14f and Fig. 15). Precise measurements of major and 814 

trace element concentrations and the isotopic compositions in such µm- to nm-scale features 815 

displays a challenging task for future analytical developments as such features will reveal the 816 

connection between the processes of porosity formation, fluid migration, fluid-rock 817 

interaction and metamorphism. 818 

Regarding the quantification of element transport – often in the focus of combined 819 

thermodynamic-geochemical models – aqueous fluids and hydrous melts have a fundamental 820 

importance with respect to the mass transfer in geological systems (e.g., Hermann et al., 821 

2006). In many metamorphic environments, pressures and temperatures exceed the critical 822 

point of water resulting in a drastic increase of dissolved material in the transport agent 823 

compared to ambient pressures and temperatures (e.g., Manning 1994). Consequently, the 824 

thermodynamic and chemical properties of supercritical fluids and hydrous melts control 825 

large parts of the mass transfer in the lithosphere. Experiments have shown that the solubility 826 

of major and trace elements in supercritical fluids is also strongly dependent on fluid 827 

chemistry (e.g., Manning et al., 2008; Wilke et al., 2012). Moreover, solubilities of several 828 

elements are enhanced by the addition of ligands (Cl
-
, F

-
, CO3

2-
 and SO4

2-
) and by complexing 829 

with major rock-forming constituents (Antignano and Manning 2008; Tsay et al., 2014). In 830 

turn, the fluid chemistry might change along its migration path as a result of the interaction 831 

with the wall rock and/or due to changing chemistry of the rock column. Thus, the interaction 832 

between fluid chemistry – that may comprise a complete miscibility between hydrous melts 833 

and dilute aqueous solutions (Manning, 2004; Hermann et al., 2006) – soluble metal 834 

compounds, dissolved trace elements and host rock chemistry controls the fluid-mediated 835 
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mass transfer in metamorphic systems. Such reactive fluid flow systems can be quantified 836 

with combined thermodynamic-geochemical models. To develop more reliable models 837 

additional experimental data as well as knowledge of thermodynamic properties and 838 

equations of state of supercritical fluids and the solutes therein are needed (e.g., Hauthal, 839 

2001; Gottschalk et al., 2007; Dolejis and Manning, 2010). Improved analytical 840 

instrumentation and experimental setups will allow determination of more precise distribution 841 

coefficients, especially those between solid and liquid phases (e.g., Kessel et al., 2005), which 842 

are most critical for such trace element models. Determining and quantifying a potential 843 

pressure, temperature and host mineral chemistry dependence of the trace element distribution 844 

will be essential for forward models that span large pressure and temperature ranges, such as 845 

the subduction zone model shown above. Integrating these data in Gibbs energy minimization 846 

algorithms, reactive-flow models (e.g. Baumgartner and Ferry 1991) or combined 847 

thermodynamic-trace element models (this study) will enable a full quantification of reactive 848 

fluid flow and the associated mass transfer in the solid Earth. 849 

4.2. Constraints on thermodynamic and geochemical model parameters  850 

In contrast to most applications in material sciences, simulations of natural processes in 851 

geosystems are confronted with complications arising from multiphase-multicomponent 852 

chemically open systems that must be simplified in order to be mathematically feasible. In 853 

terms of the thermodynamic treatment of the envisaged process much attention must be paid 854 

to set appropriate simplified boundary conditions of the model. At first, this concerns the 855 

choice of an appropriate chemical system, the selection of thermodynamic datasets and 856 

solution models as well as the choice of appropriate thermodynamic variables, such that the 857 

boundary conditions of the model reflect the envisaged geological process (e.g., Connolly 858 

2005; Powell et al., 2005). In case of chemically open systems element fractionation 859 

processes, such as fluid percolation and fractional crystallization, must be reflected in the 860 

models. This circumstance is often disregarded, but has to be considered in order to avoid 861 

misinterpretations of thermodynamic equilibrium calculations (Marmo et al., 2002; Konrad-862 

Schmolke et al., 2008a).    863 

The increasing use of phase diagrams in progressively complex chemical systems in the 864 

geoscientific literature suggests a rapid development with respect to the understanding of the 865 

metamorphic evolution of rock samples. However, as concluded nicely in Powell and Holland 866 

(2005), thermodynamic models can be excellently used to solve metamorphic-geodynamic 867 

problems as long as the limitations of the available thermodynamic data are known. For 868 
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example, significant simplifications must be made with respect to the chemical composition 869 

of geosystems in order to make them feasible for mathematic treatment. On the other hand, 870 

constraining the chemical system has the disadvantage that the effects of omitted chemical 871 

components on the stability of solution phases cannot be predicted. This circumstance is well 872 

known for the garnet solid solution, where Mn has a profound influence on garnet stability 873 

(e.g., Marmo et al., 2002; Konrad-Schmolke et al., 2005). Furthermore, compositional 874 

simplifications of the investigated system often require omission of accessory phases that can 875 

play an important role for the trace element budget in metamorphic rocks (e.g., Hermann, 876 

2002). Since thermodynamic data as well trace element distribution coefficients for accessory 877 

phases are scarce and contain large uncertainties, incorporation of such phases into 878 

thermodynamic and trace element models remains an important task for the future (e.g., 879 

Kelsey and Powell, 2010; van Hinsberg et al., 2011). 880 

Many thermodynamic standard state data for chemical endmembers as well as reliable solid 881 

solution models for complex phases, such as amphibole and chlorite, are missing and research 882 

in this field is work in progress. Modern analytical technology allows determination of 883 

precise thermodynamic properties of geologically relevant phases (e.g., Dachs et al., 2009) in 884 

calorimetric experiments and improvements have been made to derive more precise activity-885 

composition relationships (e.g., Powell and Holland 2008 and references therein) and 886 

equations of state for different geologic environments (e.g., Stixrude and Lithgow-Bertelloni, 887 

2005; Holland and Powell, 2011; Holland et al., 2013). However, none of the published 888 

datasets covers the entire range of pressure-, temperature- and compositional variations in 889 

geosystems. Regarding the rapidly evolving computational capacities it seems likely that 890 

numerical simulations of geomaterials will enable significant developments in 891 

thermodynamic applications in geosciences (e.g., van Hinsberg et al., 2005). 892 

Especially in material science and industrial applications (e.g., Dixon and Gutowski 2005) the 893 

study of thermodynamic and physical properties of solid and liquid phases involves molecular 894 

dynamic and ab initio models (e.g., Prausnitz, 1969; Belonoshko and Saxena, 1991; 895 

Kalinichev 2001; Cygan, 2001). Both approaches minimize the energy of a given system that 896 

is controlled by the electromagnetic forces within and between molecules. Whereas molecular 897 

dynamic models require empirical data to model the intra- and intermolecular forces, ab initio 898 

or quantum mechanical models are directly based on wave functions that describe electron 899 

orbitals on the basis of the Schrödinger equations. Consequently, these mathematical 900 

approaches require a minimum of empirical data to obtain fundamental thermodynamic 901 
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properties of phases, equations of state, physico-chemical properties as well as trace element 902 

partition and isotope fractionation coefficients (e.g., Jahn and Wunder 2009; Ottonello et al., 903 

2010; Kowalski et al., 2013; Haigis et al., 2013). Especially the thermodynamic properties of 904 

fluids and aqueous species are increasingly simulated utilizing molecular dynamics or ab 905 

initio models (e.g., Kalinichev 2001 and references therein; Sedlbauer et al., 2000). Due to the 906 

immense computational resources needed for these simulations, recent research is focused on 907 

simple chemical systems, such as phases in the Earth’s mantle or core (e.g., Matsui et al., 908 

2000), but in the near future, numerical atomistic simulations will lead to a better 909 

understanding and a prediction of processes in more complex geosystems (e.g., Cruz et al., 910 

2005). In combination with the approach described in van Hinsberg et al., 2005, who derive 911 

thermodynamic properties of complex phases by combining the fractional properties of their 912 

constituent chemical compounds, ab inito models might soon become valuable sources of 913 

thermodynamic data for complex phases relevant for geological processes.  914 

Acknowledgements 915 

We thank Vlad Manea for generously providing the thermal model of the Kamchatkan 916 

subduction zone and Richard Wirth as well as Anja Schreiber for the TEM analyses and FIB 917 

sectioning, respectively. Further, we thank Marco Scambelluri for the invitation to that 918 

Review Article and for the editorial handling of the manuscript. We also thank Timm John 919 

and an anonymous reviewer for their critical and constructive comments that significantly 920 

improved the manuscript. Funding of this work by the Deutsche Forschungsgemeinschaft 921 

(grant KO-3750/2-1) is gratefully acknowledged. 922 

 923 

 924 

925 



 30 

 926 

 927 

Figure captions 928 

Fig. 1:  929 

Two examples of combined thermodynamic-geochemical modeling applied to the 930 

petrogenesis of Archean tonalite-trondhjemite-granodiorite (TTG) series rocks (a) and 931 

primitive arc magmas (b), respectively. (a) Primitive mantle–normalized trace element 932 

patterns of measured Archean TTG rocks from the Isua Supracrustal Belt (gray area) and 933 

modeled primitive melt compositions (modified from Nagel et al., 2012). Colored dashed 934 

lines represent trace element compositions of the two protoliths considered in the modeling, 935 

present-day normal mid-ocean ridge basalt (N-MORB) and Isua tholeiite. Colored solid lines 936 

indicate compositions of TTGs modeled for 10% melting at different melting pressures. 937 

Characteristic trace element features of natural TTG, including negative Ti and positive Zr-Hf 938 

anomalies, are best reproduced by melting of Archean tholeiite at 10-14 kbar, which was 939 

considered to represent the source lithology for Archean TTG rocks by Nagel et al. (2012). 940 

(b) N-MORB–normalized trace element patterns of arc basalts from the NE Japan arc (red 941 

circles) and modeled results from Arc Basalt Simulator (ABS) (modified from Kimura et al., 942 

2009). The thin blue lines mark the minimum and maximum fits calculated by the ABS 943 

algorithm. Compositions for the volcanic front were calculated using the Tohoku (NE Japan 944 

arc) slab surface trajectory (SST), whereas rear arc compositions were modeled using the 945 

Cascadia SST. 946 

Fig. 2: 947 

(a) Boron isotope data from volcanic arcs in relation to the depth of the subducting slab. 948 

Several arcs display decreasing δ
11

B values with increasing depth to slab. Notable exceptions 949 

are the South Sandwich Islands arc, for which a constant depth is assumed, and the 950 

Kamchatka arc, for which δ
11

B values are increasing following the typical δ
11

B decrease 951 

across the volcanic front. (b) Trend of decreasing δ
11

B with increasing Nb/B in arc volcanic 952 

rocks. The SSI arc deviates from the main trend due to elevated δ
11

B. Data sources: 953 

Kamchatka – Ishikawa et al., 2001; Izu – Ishikawa and Nakamura, 1994; Kuriles – Ishikawa 954 

& Tera, 1999; NE Japan – Moriguti et al., 2004; Central Andes – Rosner et al., 2003; South 955 

Sandwich Islands –Tonarini et al., 2011; Conical Seamount – Benton et al., 2001; Atlantis 956 

Massif – Boschi et al., 2008; MORB – Shaw et al., 2012; AOC – Yamaoka et al., 2012; 957 
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Marine sediments – Tonarini et al., 2011; Oceanic basalts – Turner et al., 2007. In (b), data of 958 

the other arcs include data shown in (a) and additional data from Smith et al. (1997) and 959 

Leeman et al. (2004). 960 

Fig. 3: 961 

Schematic cross section through a subduction zone (modified from Wunder et al., 2005) and 962 

sketches of the fluid-rock interaction scenario modeled in this study. Areas of interest are 963 

marked by rectangles in the upper sketch. The two lower images show fluid-rock interaction 964 

at the slab-wedge interface and recrystallization of phengite and amphibole on the µm to mm 965 

scale, as observed in samples from the Sesia Zone. Boron concentrations and δ
11

B values 966 

typical for natural reservoirs were taken from Wunder et al. (2005) with additional data from 967 

Leeman et al. (2004) and Tonarini et al. (2011) for marine sediments and from Spivack and 968 

Edmond (1987), Boschi et al. (2008) and Vils et al. (2009) for serpentinized oceanic mantle.  969 

 970 

Fig. 4: 971 

a) Back-scattered electron image of partially overprinted phengite from eclogites-facies rocks 972 

of the Sesia Zone. Phengite and sodic amphibole grains are compositionally modified along 973 

grain boundaries and other fluid pathways. b) Major element microprobe profile along the 974 

arrow shown in a). Compositional variations comprise predominantly a Fe-Mg exchange with 975 

the other elements being largely unaffected. c) Boron isotopic and concentration data from 976 

phengites of the EMS unit in the Sesia Zone (data from Konrad-Schmolke et al., 2011b and 977 

Halama et al., 2014). Overprinted areas have consistently lower B contents than the 978 

corresponding relict cores, but δ
11

B values are similar. Note the coupled decrease in [B] and 979 

increase in δ
11

B in mylonitic phengite from the shear zone (green arrow). 980 

 981 

Fig. 5: 982 

(a) Phase relations and water content in solids in equilibrium assemblage diagrams for sample 983 

MK-55 from the Eclogitic Micaschist unit of the Sesia Zone. The diagrams on the left hand 984 

side were calculated for peak P-T and water-saturated conditions. The diagrams on the right 985 

hand side were calculated with excess H2O, simulating the fluid influx at 1.35 GPa. (b) XMg in 986 

phengite depending on P and XH2O. The red arrow marks the retrograde path and the blue line 987 

represents the water saturation line. Initially, decompression leads to increasingly water-988 
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undersaturated conditions in the rock until fluid influx at 1.35 GPa occurs. At these pressures, 989 

increasing XH2O causes a significant decrease in XMg. Mineral abbreviations: qtz = quartz, 990 

phng = phengite, pg = paragonite, gln = glaucophane, cpx = clinopyroxene, ep = epidote, lws 991 

= lawsonite, pl = plagioclase, chl = chlorite, bt = biotite, cam = clinoamphibole, grt = garnet, 992 

mt = magnetite. 993 

Fig. 6: 994 

Compositional evolution in phengite and modal phase abundances along the retrograde P-T 995 

path from 1.45 to 1.1 GPa. Drastic compositional changes are associated with fluid influx at 996 

1.35 GPa, causing a decrease in SiT and XCel in phengite. Glaucophane, epidote and 997 

paragonite abundances increase, whereas omphacite and phengite abundances decrease due to 998 

the fluid influx. Mineral abbreviations as in Fig. 1. 999 

Fig. 7: 1000 

Fluid-rock interaction model. The evolution of [B]phng and δ
11

Bphng are shown depending on 1001 

the amount of accumulated water (left column) and with decreasing pressure along the 1002 

retrograde P-T path (middle column). The range of observed compositional features in relict 1003 

phengite cores (green), overprinted phengite rims (red) and mylonitic phengite (blue) are 1004 

shown for comparison. In the right column, the relevant parameters are combined to illustrate 1005 

how the curves shown in (a) and (b) are linked. The dashed line labeled “fluid influx” marks 1006 

the maximum amount of water available before the influx that is consistent with the 1007 

composition of the overprinted rims (left column) and the position of the influx on the 1008 

retrograde path (middle column).  1009 

Fig. 8: 1010 

Summary of modeled trends of B release and B isotope fractionation in a slab-derived fluid 1011 

during subduction of oceanic crust as modeled by Marschall et al. (2007). Solid lines are B 1012 

concentrations, dashed lines are δ
11

B values. During subduction, both B concentrations and 1013 

δ
11

B decrease with increasing pressure. The decrease is particularly strong if there is no 1014 

phengite present in the rock. 1015 

Fig. 9: 1016 

a) A thermal pattern for the Kamchatkan subduction zone derived from the thermomechanical 1017 

models of Manea and Manea (2007) was used as basis for the pressure and temperature 1018 
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relations in the thermodynamic model. The structure of the modeled slab includes all 1019 

lithologies relevant for the B budget in our models. b) Isotopic fractionation values calculated 1020 

for the thermal pattern in a) with the data from Wunder et al., 2005.  1021 

 1022 

Fig. 10:  1023 

Contoured pseudosection of the modeled slab, subdivided into SSZ wedge mantle, sediments, 1024 

igneous oceanic crust for dry (a) and hydrated (b) slab mantle. Colored contours show the 1025 

amount of water in solid phases. Mineral abbreviations as in Fig. 1.  1026 

Fig. 11:  1027 

Modeled (a) boron concentrations and (b) corresponding δ
11

Brock values assuming water-1028 

saturated sediments and oceanic crust and a dry slab mantle. The input parameters for wedge 1029 

mantle (50 µg/g B, δ
11

B = +15), sediments (40 µg/g B, δ
11

B = +5) and oceanic crust (25 µg/g 1030 

B, δ
11

B = +0.8‰) change during forward modeling due to the fluid-solid B elemental and 1031 

isotopic fractionation. For the slab mantle, constant values of 0.1 µg/g B and δ
11

B = -10‰ are 1032 

assumed. 1033 

Fig. 12:  1034 

Modeled dehydration, release of boron and corresponding δ
11

Bfluid values. (a) SSZ wedge 1035 

mantle dehydration dominates water release in the forearc. Chlorite breakdown in crust and 1036 

wedge mantle is the dominant water source at shallow depths down to ~150 km. The marked 1037 

peak at ~175 km slab surface depth results from serpentine breakdown in the slab mantle. (b) 1038 

The boron pattern mimics the water release, including high concentrations in the forearc and a 1039 

prominent peak at ~175 km slab surface depth. (c) High δ
11

Bfluid values characterize water 1040 

release into the forearc, followed by a systematic decrease in δ
11

Bfluid values, reflecting 1041 

continuous dehydration. The increase in δ
11

Bfluid at ~175 km slab surface depth is coupled to 1042 

serpentine dehydration in the slab mantle, and the height of the δ
11

B curve depends on water 1043 

contents in the slab mantle. For a slab mantle hydrated to a depth of 15 km, the best fit is 1044 

obtained for ~2.5 wt.% H2O. In all figures, a simplified topographic profile across Kamchatka 1045 

is shown for comparison. Boron concentration data in (b) are given as B/Nb ratios to 1046 

eliminate fractionation effects in natural samples. Data from Kamchatka samples are from 1047 

Ishikawa et al. (2001). Please note that the high frequency variations in the water release are 1048 

the result of the incremented thermal pattern and does not reflect distinct fluid pulses. 1049 
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Fig. 13: 1050 

Composition of fluids released at the upper boundary of the model into the overlying mantle 1051 

wedge. Distinct areas can be defined depending on the dominant water and boron source 1052 

lithologies. Fluids derived from the SSZ wedge mantle have the highest B concentrations and 1053 

the highest δ
11

B values, and all fluids released by mantle deserpentinization have strongly 1054 

positive δ
11

B values distinct from crustal fluids. 1055 

Fig. 14: 1056 

Investigation of fluid-rock interaction processes from m- to nm-scale, exemplified by a fluid-1057 

induced blueschist-facies overprint of eclogite from a subduction mélange (Jenner, California, 1058 

USA). See text for details. 1059 

Fig. 15: 1060 

TEM-EDX analyses from areas shown in Fig. 14f. Both the overprinted rim as well as worm-1061 

like structures in the pore interior consist of an amorphous silica-rich material with minor 1062 

concentrations of Al, Ca and Fe. Ga and Cu peaks result from the Ga-beam used for FIB 1063 

sectioning and the sample holder, respectively.     1064 

 1065 
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