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Abstract

Thermoacoustic instabilities are a mayor problem in industrial combustors, where they

can lead to catastrophic hardware damage. An industrial gas turbine combustion

chamber is a very complex and expensive system. Thus, a laboratory burner has been

built for research purposes, where a large number of parameters can be varied. This

study is part of the Marie Curie research network LIMOUSINE, which was set up

to model thermoacoustic instabilities in the combustor chamber of gas turbines. The

objective of the present thesis is to theoretically model and analyze thermoacoustic

instabilities in the LIMOUSINE laboratory burner.

A mathematical model of the laboratory burner has been developed. A more general

form of the wave equation has been derived in the time-domain, in which the mean

temperature gradient was taken into account. The governing differential equation has

been solved by applying the Green’s function approach, which allows separating the

effects of the unexcited burner and the fluctuating heat-release. Using perturbation

techniques general solutions are given for the cases when the temperature increase is

either small or large. Conclusions have been drawn about the necessary complexity of

thermoacoustic models by comparing increasingly complex configurations. The forcing

term of the wave equation is studied by investigating the kinematics of ducted premixed

flames theoretically, and a new heat-release law is derived. Instability criterion has

been derived by applying the non-linear source term. The stability parameter map

of the burner has been also investigated. Expressions for the limit-cycle amplitudes

and frequencies were derived using weakly non-linear theory. The predictions of the

mathematical model have been compared to measurements.
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Chapter 1

Introduction

In this chapter we give a brief introduction and outline the problem which

is going to be addressed in this thesis. We discuss the importance of

thermoacoustic instabilities and review previous studies. Thus, we will

identify the remaining open questions, and explain which ones of them

and why are going to be considered in the thesis.

1.1 Setting the problem

In order to meet strict emission regulations, combustors are operating in premixed

mode. This is beneficial for reducing emission, however premixed flames are partic-

ularly susceptible to self-excited oscillations. The prediction of these instabilities is

technologically very important. Under certain circumstances perturbations in the flow

affect the flame dynamics, hence the rate of heat released by the flame. This change in

the rate of heat-release affects the acoustic waves, creating a feedback loop between the

acoustic waves and the heat-release rate fluctuations (this is shown in Figure (1.1)).

This feedback between acoustics and combustion may lead to instability with highly

undesirable and often dangerous consequences. Prediction of combustion instabilities

requires a suitable description of the feedback of the flame to the incoming perturba-

tions, the geometry of the burner and the boundary conditions. This is a fundamental

problem of combustion of huge practical significance in the gas turbine industry [Cor-
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rea, 1998; Putnam, 1971].

fluctuation in the

heat-release rate

acoustic waves

Figure 1.1: Schematic loop of thermoacoustic excitations

1.2 Bibliographical review

Most of the experimental investigations of thermoacoustic systems aim at determining

the boundaries of instabilities as function of the system parameters and to study the

unstable regions in the parameter space. Theoretical investigations are focusing on

modelling the instability boundaries and the limit cycles in the parameter space. In this

section we review the most relevant papers on this subject. In most of the applications

the heat is provided by either a gauze or by a flame, therefore we review the studies

which describes these setups. Comprehensive reviews of earlier thermoacoustic studies

are given by [Candel, 1992; Culick, 1994; Harrje and Reardon, 1972; Raun et al., 1993].

These reviews are analyzed and extended with the results of the last decades. In the

first half of the following sections (both in case of gauze and flame heating) we review

the experimental investigations, in the second one we summarize the analytical studies.

1.2.1 Gauze heating

Rijke [1859] found that when he heated up wires inside a tube with open ends, a clear

tone was produced. The sound was nearly the fundamental tone of the tube, and

it stopped immediately when the top of the tube was closed or the tube was turned

horizontally, which indicated that current of air is necessary for the phenomenon. The
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sound stopped as the gauze cooled down, which showed that a gauze hot enough was

also necessary. Maximum of the sound intensity was measured when the gauze was

located in the middle of the lower half of the tube. Bosscha and Riess [1859] performed

a similar experiment in the same year, when he produced sound by forcing hot air

through a pipe with a refrigerated gauze and open ends. The location of maximum

sound intensity was found when the gauze was located in the middle of the upper half

of the tube, i.e. the opposite of Rijke’s experiment. Lord Rayleigh [1878] noted that

tones higher than the fundamental one could be excited for certain positions of the

heated gauze. He suggested a criterion for the instabilities of heat-driven oscillations:

pulsations can be triggered or sustained if the heat release is in phase with the pressure

fluctuations. This criterion has been widely quoted and applied for many different

setups. Richardson [1922] experimentally confirmed Rayleigh’s criterion.

Saito [1965] was the first to measure the growth rates of the oscillations in a Rijke-

tube, and developed a simple model, which was derived from linear conservation equa-

tions. He also explained the weak points of earlier models. Collyer and Ayres [1972]

extended experimental observations by measuring higher modes. They placed heated

wires into a Rijke-tube at certain locations. They found optimal triggering positions

for the second and third modes, and confirmed Rayleigh’s criterion for higher modes.

Katto and Sajiki [1977] performed a series of measurements with Rijke-tubes as well.

They investigated the dependence of the instability boundaries on the system param-

eters. They observed that the heat input has a minimum value for which instability

can build up and found the optimal locations to excite the first and the second modes.

This result (the heat input must have a minimum value) confirms the observation that

sound attenuates as the gauze cools down.

The first study to describe the heat-release rate of a hot wire was performed by King

[1914]. He introduced a non-linear relationship between the instantaneous velocity

and the heat-release, however, it was not widely applied to study the Rijke-tube until

Heckl [1990]. The first attempt to analyze the phenomenon analytically was carried
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out by Lehmann [1937]. He assumed that energy was added to the vibration only

during part of the cycle, when cold air layers crossed the gauze. Once the layers were

heated they no longer extracted energy during flow reversal. Feldman [1968] showed

the following error in Lehmann’s theory: the temperature of the air downstream of the

gauze is still lower than the one of the gauze, therefore during backflow the air can

extract energy when it passes through the heater second time. Flow reversal is not a

necessary condition but the consequence of thermoacoustic oscillations. Neuringer and

Hudson [1951] investigated under which conditions the sound might be maintained or

built up. Experiments showed that the velocity was critical for a given energy input

and gauze position, there was only a small range of velocities which would produce the

tone. They assumed that turbulence was the dominant source mechanism which leads

to instability. Carrier [1955] assumed that flow downstream from the heater was not

isentropic, and the viscous losses at the wall resulted in temperature fluctuations. He

assumed that viscosity is the most important source of instability.

Merk [1957a,b] created the basis of analytical studies by developing a general equa-

tion for predicting the excitations of duct oscillations. A new direction of thermoacous-

tic research was set, when he introduced the concept of the transfer function method

and calculated it for his setup. His analytical predictions showed good agreement with

the measurements of Katto and Sajiki [1977]. The first study which applied the wave

equation was carried out by Mailing [1963]. He assumed that the width of the heater

was small enough to be represented as a point source, and that the released heat was

proportional to the velocity fluctuation. The analysis using conservation equations led

to very complicated equations. The results showed good agreement with measurements

in the low frequencies, but high frequencies were overestimated.

Chu and Ying [1963] arrived theoretically at the conclusion that in their setup the

oscillating heat-source can be modeled as an oscillating piston. Rott [1980] arrived

theoretically at the same conclusion as Chu and Ying [1963] by using a different geom-

etry. Kwon and Lee [1985] emphasized that the criteria to get instability had been first

described by Rayleigh experimentally, and by Putnam and Dennis [1953] theoretically.
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They solved the equations of continuity, momentum and energy conservations numeri-

cally, and verified Rayleigh’s criterion. They showed that dissipation losses play a more

important role than radiation or convection losses even for low Mach numbers. Nicoli

and Pelce [1987] assumed that the heater was localized, therefore the heat transfer

occurred in a small region around the heater. Outside this region the temperature was

uniform and the flow disturbances were acoustic waves. They showed that for small

Mach number the mean pressure jump across the heat-release region can be neglected,

and therefore the tube can be considered isobaric. Their calculation of the heat transfer

function is very laborous since it involves the calculation of unsteady heat transfer in

a compressible flow of gas.

Culick [1987] provided a general mathematical derivation of Rayleigh’s criterion. He

extended the observations of [Chu and Ying, 1963; Rott, 1980] to a general geometry, i.e.

the effect of an oscillating heat source is analogous to the effect of an oscillating piston.

Heckl [1988] used active control to suppress oscillations in a Rijke tube. Pressure

oscillations were measured, phase shifted, amplified and fed to a loudspeaker, which

significantly reduced the noise level.

1.2.2 Flame heating

Higgins [1802] made the observation that flames might produce tones when a jet of

gas was ignited in a tube. The frequency of the tone was near the natural frequency

of the tube. Flame driven thermoacoustic oscillations gained attention first during the

development of rocket motors and jet propulsion engines in the United States, and later

during the development of gas turbines. An overview of the early era of the research

in solid propellant rocket motors is given by [Berl, 1963; Culick, 2006]. Instabilities

in liquid rockets are simpler than in solid rockets, largely because the geometry of the

combustion system is simpler. By the end of the 1940s, there was agreement among

researchers that combustion instabilities were present in rocket motors and they were

related to the waves in the combustion products. Since the 1950s, instabilities have

been observed in case of both small and large rockets. The basics of combustion insta-
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bilities had been discovered. Many of the relationships with acoustical properties were

identified. In the 1950s and 1960s, lot of theoretical works were published about the

oscillations in solid rockets (e.g. [Bird et al., 1963; Cantrell and Hart, 1964; Cheng,

1954, 1962; Hart and McClure, 1959, 1965; Reardon, 1961; Sirignano, 1964; Sirignano

and Crocco, 1964]). In this era the view of an instability as a perturbation of classical

acoustics was extensively investigated. During the 1960s, the major efforts on combus-

tion instabilities in liquid rockets were motivated by the Apollo vehicle. The research

interest was significant in the Cold War as well: launching spacecrafts and missiles,

furthermore changing their trajectories. Sub-scale and laboratory tests were the main

interests of a lot of research, since large-scale tests were very expensive. Although the

problem had been observed in ramjet engines after World War II, it became a mayor

problem in the 1970s and 1980s. New programs about instabilities of liquid rockets

appeared only in the 1980s ([Fang, 1984; Liang et al., 1986, 1987; Mitchell et al., 1987;

Nguyen, 1988; Philippart, 1987; Philippart and Moser, 1988]). In the 1990s, works on

instabilities of rocket motors were investigated in Europe mainly due to oscillations in

the boosters of Ariane 5.

Acoustic-flame interactions in premixed laminar flames were studied by [Blackshear,

1953; Chu, 1956; Kaskan, 1957; Merk, 1958, 1959; Putnam and Dennis, 1953, 1954,

1956]. Putnam and Dennis [1953] analyzed experimentally combustion driven ther-

moacoustic oscillations for premixed hydrogen flames. They measured the natural

frequencies of the system. The locations for maximum excitation showed good agree-

ment with Rayleigh’s criterion. Blackshear [1953] and Kaskan [1957] found that in case

of open premixed flames the main source of acoustic driving is the flame surface area

variation. This observation has been later widely applied in theoretical studies. Tsuji

and Takeno [1965] experimentally investigated the instability boundaries of a labora-

tory burner with rectangular cross section. They plotted the instability map for the

first three modes as a function of the mean pressure and the equivalence ratio. Their

plot shows symmetry for the equivalence ratio of 1.1.
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Merk [1958, 1959] studied premixed flames by applying the transfer function concept

which he had developed for the Rijke-tube. He obtained first order transfer functions

and calculated the stability regimes. He confirmed that fluctuation in the heat-release

rate is the consequence of the variation of the flame surface area. Thermoacoustic

instabilities were analytically investigated by Culick [1963]. He calculated the complex

eigenfrequencies by applying linearized equations. Culick [1976] was the first to derive

an analytical criterion to obtain instability and limit-cycle behavior.

The idea of a time-lag model was first suggested by von Karman for interpreting

instabilities discovered in experiments with liquid propellant rockets at Caltech (Sum-

merfield et al. [1951]). This representation, which became later well-known as the n-τ

model in the combustion literature, was a major breakthrough, and it was developed

most extensively by Crocco [1951, 1952, 1969]. It was found that the fluctuating heat-

release rate can be coupled to the acoustic velocity. Schimmer and Vortmeyer [1977]

performed measurements with premixed propane flames. The authors observed a mini-

mum period of oscillations, below which oscillations did not occur. Poinsot et al. [1986]

measured the reflection coefficients by microphones when the heat-source was a ducted

premixed flame. It was found that the maximum of the reflection coefficient coincides

with the resonant frequency of the flame.

The first attempt to describe the flame surface by using the level-set method (LSM)

was carried out by Williams [1985]. He derived an equation, which describes the

position of the flame, known as the G-Equation in the combustion literature. Since

then, the level-set method has become a widely accepted and applied analytical tool

to study premixed flame dynamics. Fleifil et al. [1996] studied the radial dependence

of the acoustic velocity on the flame kinematics theoretically by using the G-Equation.

It was found that the radial dependence of the acoustic velocity is negligible. Dowling

[1999] considered a premixed, ducted and bluff-body stabilized flame theoretically. She

applied the G-Equation to calculate the flame position and derived a linear transfer

function for small amplitude fluctuations analytically. The results of the model showed
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good agreement with experiments across a wide range of frequencies.

The linear interaction of the acoustic perturbations with flames was studied by

many authors, e.g. [Ducruix et al., 2000; Schuller et al., 2002, 2003]. They found that

when the phase-lag is around π, the gain of the transfer function decreases strongly,

and it is almost vanishing for phase-lags larger than 10π. The reduced cutoff frequency

was close to a frequency corresponding to a wavelength equal to the flame cone length.

It has been concluded that the linear model predicts the flame behavior correctly if the

phase-lag is less than approximately 2π, however for intermediate and large frequency

values the experimental phase-lag is significantly larger than that predicted by their

theory.

1.2.3 Non-linearity

1.2.3.1 Non-linearity of the heat release

Combustion instabilities are the dynamics of a self-excited nonlinear system (Culick

[2006]). When a combustion chamber is non-linearly unstable, the amplitude tends

to a finite value. Understanding the properties of the limit cycles will yield some

understanding of those variables which determine its behavior. It is common to model

the system as a non-linear oscillator, thereby simply adding a nonlinear term to the

acoustic wave equation, and assume that the instability involves only a single mode.

[Jensen, 1971; Jensen and Beckstead, 1972] applied this theory to the data taken in

laboratory devices. It was found that the data could not be matched with theory well,

and no particular kind of nonlinearity seemed to dominate the motions. As a result, the

single mode assumption was not successful, i.e. it seemed to be necessary to include at

least two modes in the mathematical model, with coupling due to nonlinear processes.

The work by [Jensen, 1971; Jensen and Beckstead, 1972] motivated the extension of

Galerkin’s method to treat nonlinear behavior in liquid rockets ([Powell and Zinn, 1971;

Zinn, 1968; Zinn and Lores, 1972; Zinn and Powell, 1970a,b]).

If the power transformed from the heat released to the acoustical motions exceeds

the losses, then instabilities grow until either non-linear factors limit this process or
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the device is destroyed. Dowling [1997] assumed that the main nonlinear mechanism

is the result of the ’saturation’ of the heat release rate. Dowling [1999] found that the

resulting amplitudes obtained by the numerical solutions of the level-set method are in

satisfactory agreement with experiments. She predicted flow reversal during part of the

limit-cycle oscillation, which means that the resulting acoustic velocity was larger than

the mean flow velocity. In this case the flame was not attached to the flame holder.

This property of the flame clearly exhibits the importance of the boundary conditions

when one is modeling the flame behavior.

Yoon et al. [2001] found that the non-linear convection becomes important in un-

stable situations. The heat transfer magnitude should approach zero at low mean flow

velocities, the phase shift, which is necessary for thermoacoustic energy conversion,

tends to zero at high mean flow velocities, therefore is it possible to have instability

only in the intermediate range, which was verified by experiments.

In their theoretical study Wu et al. [2001] used matched-asymptotic-expansion tech-

niques, assumed large activation energy and low Mach number. They gave a general

asymptotic formulation for the lower-frequency regime, for which the acoustic source is

found to be directly linked to the shape of the flame. This might be the reason why the

G-Equation yields results that are in a very good agreement with the measurements.

Schuller et al. [2002] showed that the flame motion observed in the experiments may

be calculated more accurately if one uses a suitable description of the velocity field in

the fresh mixture and a nonlinear flame model. It was found that the flame motion can

be accurately described if the acoustic velocity has a convective character. A radial

component turned out to be less important.

Matveev and Culick [2003b] argued that since the magnitude of the acoustic ve-

locity tends to be stabilized near the mean flow, and it grows slowly with increase of

supplied power, this suggests that flow reversal at the heater location is critical for

non-linear modeling. This is related to the convection from the gauze, hence temper-

ature difference must have an important role, and the assumption that the direction

of the flow is unimportant is not appropriate. Linear laws, which were obtained by
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correlation techniques, can be valid if there is no backflow, since when a particle is

crossing the heater more than once, correlation laws are not valid.

1.2.3.2 Other non-linear effects

Disselhorst and van Wijngaarden [1979] investigated the effect of the exit geometry on

the flow behavior. It was found that if the end of the tube was round, separation did not

occur at high frequencies. In case of a sharp edge, vortices were formed during inflow

and shed from the pipe during outflow. They emphasized that taking non-linear viscous

and thermal losses into account resulted in obtaining limit-cycles. Nonlinearity in waves

became effective only when velocity disturbances were taken into account up to third

order of the amplitude of the resulting standing wave. The showed that nonlinearity

can be linked to the Strouhal number. It has been confirmed by experiments that at

very large Strouhal numbers no vortex formation or separation takes place, the end

radiation tends to zero. In case of sharp edges viscosity and end radiation do not

contribute to end losses, it is only function of the Strouhal number.

Heckl [1990] described two nonlinear properties that had an important role in the

Rijke phenomenon. The first was the sound radiation from the open ends. At high

amplitudes the displacement of the particles becomes so large that the air particles

leave the tube in form of a jet, but sucked back from all directions and return with

a smaller velocity. Therefore the reflection coefficient should include the effect of two

different mechanisms, the one of end radiation and the one of non-linear losses.

Matveev and Culick [2002] showed that neither non-linear gas dynamics nor non-

linear boundary conditions at the tube ends are of importance for determining the limit

cycle properties.

1.2.4 Non-normality

A new direction of thermoacoustic research is non-normality, since recent studies

showed the existence of non-normal modes in thermoacoustic systems. In a non-normal

system linearly stable modes can trigger instability. An overview of the recent research
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in this area is given by Mariappan [2012]. Nicoud and Poinsot [2007] found that the

eigenmodes of thermoacoustic systems are non-normal if heat-source is present in the

flow and the boundary conditions are described by complex impedance. Kedia et al.

[2008] showed that the non-orthogonal property of the system changes the stability sig-

nificantly. Balasubramanian and Sujith [2008] analyzed the stability of a Rijke-tube us-

ing King’s law given in [Heckl, 1990; King, 1914]. They found transient growth even in

the linearly stable regime. Subramanian and Sujith [2011] performed similar study for

premixed flames using the G-Equation. Wieczorek et al. [2011] studied one-dimensional

flames and found that the eigenmodes of the system are not orthogonal. They con-

cluded that entropy fluctuation should be accounted in a stability analysis. Juniper

[2011a,b] studied the effect of initial conditions on the stability of a Rijke-tube. It was

observed that higher noise amplitudes at low frequencies can trigger instability and

limit-cycles. Recently, Magri et al. [2013] demonstrated that non-normality in combus-

tion systems is weak, however, Juniper [2011a] also showed that weak non-normality

can make a system more unstable. The exact role of non-normality in instabilities

therefore remains an interesting question.

1.3 Overview

The review of the literature allows us to summarize us the current understanding of

the potential sources for thermoacoustic instabilities:

1. Pulsating feed supply

Pressure oscillations in a combustion chamber can result in pulsation of the fuel

supply. If the heat release and pressure oscillations are in phase, then the oscil-

lations will be amplified. It is more important in case of diffusion flames, but it

may be also important in some cases of premixed flames. It can be eliminated

by creating a choked feed and therefore a large pressure drop.

2. Turbulence

Turbulence may occur when velocity is high or bluff body flame holders are
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used. Mugridge [1980] reported experimental and theoretical work on stability of

turbulent flames in a burner. Valk [1981] measured acoustic power and frequency

change in propane combustion.

3. Pressure coupling

Pressure coupling is common in high-pressure combustion systems operated with

undiluted oxidizer, such as in case of solid propellant rocket motors. It’s the

coupling between acoustic pressure oscillations at the surface of a burning solid

propellant and the combustion processes of the propellant, which can lead to the

amplification of the combustion process.

4. Pulsating laminar flame speed and variation of the flame surface area

Many of the studies confirmed that the variation in the heat-release rate is the

result of the oscillation of the flame surface area. For premixed flames the heat

release rate is usually coupled with the acoustic velocity.
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In the theoretical investigations the following assumptions have been widely used

(as reviewed in e.g. Raun et al. [1993]):

1. Constant properties in the cold and hot sections

In most of the studies uniform properties were assumed in the cold and hot

regions, with a jump in the region of the energy release.

2. One-dimensional flow without boundary layer effects

Usually the properties are assumed to be one-dimensional and uniform in the

cross section. The exception is the study by Carrier [1955], in which he included

the effects of the walls.

3. Small amplitude oscillations

This assumptions allows linearization of the governing equations.

4. Compact heat-source

Since usually the width of the heat-release region is much smaller than the acous-

tic wavelength, it is often treated as a discontinuity.

5. Negligible body forces

In most of the experimental setups current of air or mixture is forced to flow

through a duct, hence gravity is assumed to have negligible effects.

6. Small Mach number

Since the Mach number is usually of order O(10−2), interaction of the mean flow

and the acoustic field is neglected. The exception is Neuringer and Hudson [1951],

who did not neglect this effect.

In the thesis the assumptions (2-6) are applied. Assumption (1) is found restrictive

and it is not used, the effect of the non-uniform axial mean temperature is studied.
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1.4 Scope of the thesis

The scope of the present thesis is to extend the earlier models and draw conclusions

by comparing the analytical predictions to measurements.

It has been shown that the most important mechanism of thermoacoustic oscilla-

tions is the non-linear feedback of the flame, however, a general model has not been

derived yet, which separates the effects of the unexcited system and the non-linear

feedback of the heat-source. We focus on this problem by introducing the concept of

the Green’s function method. Using the Green’s function approach we aim at deriving

the governing equation of an active single mode of the acoustic velocity assuming a

general flame model.

Once the non-excited resonator is described accurately, we focus on the description

of the non-linear heat-release. It has been found by many authors experimentally

that the flame surface area variation is the primary reason of the fluctuations in the

heat-release rate. A general non-linear heat-release rate law has not been derived yet,

therefore we aim at analyzing the kinematics of flames theoretically, and deriving a

new non-linear heat-release law.

This non-linear heat-release law is applied to derive an analytical instability crite-

rion. At the last stage we aim at identifying a weakly non-linear regime in the pa-

rameter space, and describing the effect of the parameters on the resulting limit-cycle

amplitudes and frequencies.

1.5 Structure of the thesis

Earlier studies concluded that accurate modelling of thermoacoustic instabilities re-

quires the suitable description of the unexcited system and the non-linear feedback of

the flame. By applying this conclusion we focus on five main objectives in the thesis.

Each of them are addressed in separate chapters. The structure of the thesis is shown

in Figure (1.2).

In 2 an industrial gas turbine is presented and compared to the LIMOUSINE lab-
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Conclusions
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Figure 1.2: Structure of the thesis

oratory burner. The first objective is to set the mathematical model of the laboratory

burner, furthermore analyze the assumptions. In the mathematical model the effect of

the mean temperature gradient is included.

In 3 the governing differential equation of the acoustic pressure is derived in the

time-domain from the most general form of the conservation equations. Thus, a more

general form of the wave equation with heat-source and non-uniform mean temperature

is obtained. The simplifying assumptions and their consequences are discussed.

In 4 the Green’s function concept is introduced following the description of Heckl

and Howe [2007]. General solutions are derived and applied to solve the wave equation

with a heat source and non-uniform mean temperature. Five, increasingly complex

versions of the mathematical model are developed. Conclusions about the required

complexity of a mathematical model are drawn by comparing the results to measure-

ments.

In 5 the kinematics of the ducted premixed flames are analyzed by applying an
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analytical tool, the G-Equation. Non-linearities of different origins and the importance

of the boundary conditions are studied. The solutions are compared, and a new non-

linear heat-release rate law is derived.

In 6 the governing differential equation of an active single mode for an arbitrary

heat-release rate law is presented. By applying our non-linear model of 5, the crite-

rion of thermoacoustic instability in our laboratory burner is obtained. The stability

parameter map of the LIMOUSINE burner is derived as function of the system param-

eters. By applying weakly non-linear theory solutions are derived for the limit-cycle

amplitudes and frequencies. The effect of the parameters on these quantities are dis-

cussed.

In 7 the thesis is concluded by a short summary of the results, discussion of the

new questions that arise, and directions of further research.
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Chapter 2

Real and model burners

The objective of the present chapter is to introduce a real gas turbine com-

bustor, a laboratory burner, and the mathematical model of the laboratory

burner. A real burner is a very complex hence expensive system, therefore

a laboratory burner is more suitable for research purposes. We describe

a particular laboratory burner, the LIMOUSINE burner, and the details

of the measurements. We develop a mathematical model of the labora-

tory burner, and justify every simplification, which was applied during

the model building. We also show that our laboratory burner exhibits the

properties of a real burner, which are important from a thermoacoustic

point of view.

2.1 Real burners

First J. Barber proposed in 1791 that gas turbines may be used to produce energy,

however, the first industrial gas turbine was installed only around 1930 [Bohl and El-

mendorf, 2004, p.195]. At the beginning it was mostly applied for energy production in

mountains, because the energy producing capability of the internal combustion engines

drops significantly with increasing altitude. A real gas turbine and its components are

shown in Figure (2.1).

The thermodynamic process of the complete gas turbine is described in theory
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1 2 3

4

5

(a) Sectional view of a turbine

36
7

2

4

(b) Details of the combustor zone

Figure 2.1: Siemens SGT5-4000F gas turbine 1 - Inlet, 2 - Compressor, 3 - Combustion
chamber, 4 - Turbine, 5 - Exhaust, 6 - Fuel inlet, 7 - Swirler (image source:
www.siemens.com)

by the Brayton cycle (Figure (2.2)). A small pocket of working gas goes through an

adiabatic compression and expansion, and of an isobaric combustion and heat rejection.

pressure

specific volume

1 4

2 3

W

qin

qout

Figure 2.2: Brayton cycle, 1→2: compression, 2→3: combustion, 3→4: expansion, 4→1:
rejection, W: mechanical energy

The efficiency increases with higher temperature and pressure of the combustion

chamber, therefore the effect of increasing these two quantities has been the subject of

a lot of research. In modern gas turbines the temperature in the combustion chamber

is around 1600K. The temperature in the core of the flame is close to the adiabatic

flame temperature. The adiabatic flame temperature is a thermodynamic property

of fuels, for a wide range of practically applied gases it is approximately 2200K. The
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temperature changes at every stage of the Brayton cycle. It is increased during the

compression and combustion, and it is decreased during the expansion and rejection.

The pressure is increased in the compressor, decreased in the turbine, and it is ap-

proximately constant while combustion occurs. This property allows building a model

turbine operating under non-pressurized conditions and studying the underlying phe-

nomena in a laboratory.

As shown in Figure (2.1), an industrial gas turbine is a very complex, hence ex-

pensive system. To investigate such a system analytically and experimentally, sim-

plifications need to be made. These simplifications must be such, that they preserve

the important physical effects, but eliminate those, which are unimportant from a

thermoacoustic point of view.

This study is part of the Marie Curie research network LIMOUSINE, which was set

up to model thermoacoustic instabilities in gas turbines. LIMOUSINE is a multidisci-

plinary network of individual research projects that focus on the combustion chamber

of a gas turbine and model it with experimental, numerical and analytical approaches.

The core of the LIMOUSINE network is a laboratory burner, which has been specifi-

cally designed to simulate thermoacoustic instabilities in the combustion chamber of an

industrial gas turbine. The role of this PhD study was to model the laboratory burner

using largely analytical tools. A corresponding experimental study was performed by

Müller and Hermann, who built the model burner and provided experimental data

Kosztin et al. [2013].

2.2 The LIMOUSINE model burner

The model burner is shown in Figures (2.3) and (2.4). It consists of a rectangular tube

with a large aspect ratio. The flame is partially premixed and stabilized by a bluff

body. Air enters at the bottom of the combustor (1). The prismatic flame holder (7),

triangular in cross section, is placed at about one quarter of the height of the combustor.

The cross-sectional area is piecewise constant with a step at the flame-holder, where

it jumps to double the value of the upstream section. The combustor burns methane

19



at atmospheric pressure, which is injected at the flame holder through 2×33 holes of

1.2 mm diameter (2). The air required for combustion flows into the pre-combustion

chamber (1) through a 3mm thick injector plate with a grid of 3×22 holes of 0.8 mm

diameter (6). The rectangular walls are made from 1.5 mm stainless steel. There are

holes along the length of the combustor wall for sensors (4). These holes are closed

while performing the measurement. The burner is divided into two parts by the flame:

a cold upstream and a hot downstream region. The length of the cold and hot sections

are 0.324 m and 1.1 m respectively. The total length of the burner is 1.424 m.

1

2

4

5

(a) Ifta model burner

3

3

2

1

(b) Installation in the lab

Figure 2.3: Model gas turbine of IfTA GmbH 1 - Air inlet, 2 - Fuel inlet, 3 - Pressure
transducers, 4 - Measurement holes, 5 - Outlet

Thermoacoustic instability was observed and measured in the model combustor at an

operating point of P = 21 kW thermal power and an air ratio of 1.4, implying an air flow

of ṁ = 10 g/s. This operating point was chosen to guarantee combustion instability

at a relatively low power, while avoiding blow-out of the flame. Figure (2.6) shows

the time-history (a) and the corresponding spectrum (b) of the pressure oscillation,
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1

6

(a) Air inlet

7
8

2

(b) Flame holder

Figure 2.4: Model gas turbine of IfTA GmbH 1 - Air inlet, 2 - Fuel inlet, 6 - Grid, 7 -
Flame holder, 8 - Igniter

Figure 2.5: Cross-section of the burner at the height of the flame holder

measured 21.4 mm above the flame holder. The dominant frequency is 115 Hz, and

the pressure amplitude at that frequency is about 1800 Pa; this about 2% of the mean

pressure. The axial distribution of the mean temperature and the acoustic pressure

amplitude were measured. The data are plotted in Figure (2.7). The temperature

values have not been corrected to take account of the heat radiation by the wall and

by the flame on the thermocouple that was used for the measurements. Therefore,

there is a potential error in the plotted temperature values. The temperature profile is

approximately piecewise linear with positive gradient in the inlet section and a negative

gradient in the outlet section, due to the preheating and cooling effects of the wall.

The temperature inside the flame could not be measured.
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(a) Time history of the oscillation (b) Frequency response of the burner

Figure 2.6: Measurement results: (a) time history and (b) critical frequency of the
burner
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(a) Pressure
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Figure 2.7: (a) Normalized pressure and (b) axial temperature [K] in function of the
axial position [m] of the model burner (measurement by IfTA GmbH,
Gröbenzell near Munich, Germany)

Pressure reflection coefficients were measured directly in the unstable burner by apply-

ing the two-microphone method (Seybert [1988]) at the instability frequency of 115 Hz.

The two-microphone method involves measuring the sound pressure simultaneously at

two locations near the end of interest. The forward and backward traveling waves can

then be identified individually, and the ratio of their complex pressure amplitudes at

the end gives the reflection coefficient. At the lower end, the pressure was measured

with microphones at x = 180 mm and 80 mm; these positions were chosen because they
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have a relatively large difference in pressure amplitude, giving more accurate results for

the argument of the reflection coefficient. This was found to be R0 = 0.8 − i0.22. It is

quite similar to that of a rigidly closed end, where R = 1, but in this case there are also

losses, as indicated by ∣R0∣ = 0.83 < 1. At the upper end, the pressure was measured

at the positions of x=1426 mm and 1326 mm (to minimize the influence of the tem-

perature gradient), and the reflection coefficient turned out to be R1 = −0.95 + i0.14.

The magnitude is 0.964, indicating that only minor losses occur at this duct end. Also,

there is a pressure node just outside the tube at a distance of 66.5 mm. The wavelength

of the fundamental mode is approximately one quarter of the tube length. The mean

velocity in the burner is 2-4 m/s. Further details about the model burner can be found

in Kosztin et al. [2013].

2.3 The mathematical model for the LIMOUSINE

burner

In order to develop a mathematical model, several simplifying assumptions need to be

made. In this section we will describe the modelling assumptions and justify them. We

treat the fuel-air mixture as a perfect gas carrying linear acoustic waves. Non-linear

acoustic effects are neglected. The geometry of our model is shown in Figure (2.8).

The tube is divided into three regions: inlet region, flame region and outlet region,

and we assume one dimensional conditions in each of these regions. The combustor

extends from x = 0 (upstream end) to x = L (downstream end). The interfaces between

these three regions are at x = l1 and x = l2 (see Figure (2.8)). The locations of the

interfaces are fixed. We neglect the mean flow velocity. The axial mean temperature

is not uniform. We will apply 5 different mean temperature profiles. The ends of the

burner are modelled by complex pressure reflection coefficients.

We list and justify our modeling assumptions:

perfect gas. In thermoacoustics it is usually applied that the working fluid is
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Figure 2.8: Analytical model of the burner

perfect, which implicitly assumes that the molecules do not interact. It is more

valid at low pressure and high temperature. The compressibility factor based

on the state equation is defined as p/ρRT . For ideal gases it is unity, for real

gases it is non-unity and depends on the pressure and on the temperature. At

temperatures present in gas turbines the compressibility factor of air can be taken

as unity with less than 5 percent error even at extremely high pressure [Green,

1999, p.188].

low Mach number. The mean flow velocity in the model turbine is 2-4 m/s and

the speed of sound varies between 350 and 650 m/s, therefore the Mach number

is of the order of 10−2.

one dimensional wave propagation. The frequency of the fundamental mode is

approximately determined by the geometry. At frequencies where the acoustic

wavelength is of the order of the cross-section peripheral length, or less, interfer-

ence between wall reflections produces non-plane propagating forms of sound field

that are characteristic of the shape of the duct cross section, which are termed as

acoustic duct modes. In rectangular waveguides the condition for axially prop-

agating waves is that ωH/c > π, where H is the height of the waveguide [Fahy,

2001, p.220]. In the LIMOUSINE burner the maximal width is H = 0.18 m and

the minimal speed of sound is c = 350 m/s, therefore the cut-off frequency for

transverse mode propagation is approximately 1000 Hz, which is much larger than

the unstable frequency, therefore the one-dimensional assumption is reasonable.

constant axial mean pressure. Because the mean flow Mach number is small and
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waves are one-dimensional, we assume that the axial mean pressure is constant.

The mathematical justification is provided in the following chapter.

perfectly rigid walls. We assume that the walls of the model turbine are perfectly

rigid, i.e. the boundary condition is that the normal velocity component vanishes.

In real burners the walls might vibrate, the coupling of these vibrations with the

oscillations is however beyond the scope of this thesis.

locations of the interfaces are fixed. In the mathematical model we distinguish

regions with different mean temperatures and connect them by conservation laws.

We assume that the location of these interfaces are fixed and they are not influ-

enced by the oscillations.

linear acoustic waves. Measurement showed that the amplitude of the pressure

oscillation is two orders of magnitude smaller than its mean value. It is therefore

reasonable to neglect any non-linear effects in the purely acoustic realm.

turbulence. The flow and therefore the flame in the burner is turbulent, how-

ever we neglect it because we focus on analytic description of the phenomena,

furthermore we have no reliable measurement data for turbulence.

simplification of the geometry. Around the flame holder the real geometry has

been simplified, i.e. we focus on the change of the cross section only (see Figure

(2.5)). We also neglect the drag force acting on the flow from the flame holder.

axial mean temperature profile. The temperature and therefore the speed of

sound varies significantly as the working gas flows through the burner. To model

this we use 5 different versions of the mathematical model. The only difference

between these versions is the approximation of the measured axial mean temper-

ature profile in the inlet, flame and outlet regions.

1. In the first configuration we aim to give explicit analytical formulas for the

critical acoustic properties, such as the eigenfrequency and damping rate.

To this end we assume that the flame region is infinitely thin and located at
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the point where the cross section changes (x = l1 = l2). The temperature is

constant in the inlet and outlet regions. In the next chapter we show that if

there is no heat-source in the domain and neglect thermal conduction then

the axial mean temperature is constant for low mean flow Mach number.The

flame region of this version is modelled as a point in which the axial mean

temperature has a jump.

2. In the second configuration we take the width of the flame into account,

therefore the location of the jump in the cross-section (x = l1) and the

location of the jump in the mean temperature (x = l2 ≠ l1) differs. We

assume constant mean temperature in the inlet, flame and outlet regions.

We solve the governing equation for the eigenfrequency and damping rate

numerically.

3. In the third configuration we develop the second version by assuming that

the axial mean temperature in the flame region is linear. In the inlet and

outlet regions it remains constant.

4. In the fourth configuration we assume linear axial mean temperature in the

inlet, flame and outlet regions, i.e. we consider the pre-heating and cooling

effect of the walls. It can be shown that both in case of laminar and turbulent

flows that axial temperature profile is linear if there is constant heat flux

through the walls [Bird et al., 2002, pp.310-414.]. The non-uniformity is the

consequence of taking transverse heat conduction into account.

5. In the fifth configuration we use quadratic axial mean temperature profile

in the flame region, and linear profiles in the inlet and outlet regions.

We will compare the predictions of each configurations of the mathematical model

with the measurement data. Conclusions will be drawn about the applied tem-

perature profiles.

thermal conduction and viscosity. In order to neglect viscosity and thermal con-

duction the following conditions need to be satisfied [Blackstock, 2000, pp.304-
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310]:

µω

ρ0c
2
0

=
St

Re
Ma2 ≪ 1 (2.3.1a)

κω

ρ0c
2
0
cp
=

St

Re ⋅Pr
Ma2 =

St

Pé
Ma2 ≪ 1 (2.3.1b)

where St denotes the Strouhal number (ωl0/v0), Re is the Reynolds number

(l0v0ρ0/µ), Pr is the Prandtl number (cpµ/κ), Ma is the Mach number (v0/c0), and
Pé is the Péclet number (Re ⋅ Pr). Measurements showed that these conditions

are satisfied.

2.4 Conclusions

In this chapter an industrial turbine, an unstable laboratory burner and its mathe-

matical model were presented. A real gas turbine is a very complex, hence expensive

system, therefore a model combustor is more suitable for research purposes, in which

we can study the effect of varying a large number of parameters. Figure (2.9) shows

the modelling steps. The emphasis in this thesis is on the second step.

Real burner
Laboratory
burner

Mathematical
burner

1. step 2. step

Figure 2.9: Illustration of the modelling steps

We have also justified the simplifications of the second step. Figure (2.10) summarizes

the assumptions that have been applied through the analysis.
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Figure 2.10: Summary of assumptions and their consequences
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Chapter 3

Governing equation for

one-dimensional waves in a medium

with non-uniform temperature

In this chapter we derive the governing equation of the acoustic pressure

in a medium with non-uniform temperature. We show the consequences

of the simplifications which were discussed in the previous chapter. Exact

solutions of some special cases of the axial mean temperature profile will

be analyzed.

3.1 Derivation of the governing equation

In this chapter we derive the governing differential equation of the acoustic pressure,

in which the axial mean temperature gradient is taken into account. The starting

point is the most general form of the conservation of the extensive properties: mass,
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momentum and energy.

∂ρ

∂t
+∇ ⋅ (ρu) = 0 , (3.1.1a)

ρ
∂u

∂t
+ ρu ⋅ ∇u = −∇p + ρg −∇ ⋅ τ , (3.1.1b)

ρcp
∂T

∂t
+ ρcpu ⋅ ∇T = κ∇2T +Q − ( ∂ lnρ

∂ lnT
)(∂p

∂t
+u ⋅ ∇p) − τ ∶ ∇u , (3.1.1c)

where ρ is the density, u is the velocity vector, p is the pressure, cp is the specific

heat capacity at constant pressure, T is the temperature, κ is the thermal conduc-

tivity, Q is the local heat-release rate per unit volume, g is the body-force, τ is the

viscous momentum flux tensor, ∇ ⋅ τ is the divergence of tensor τ , and −τ ∶ ∇u is the

scalar product of tensors τ and ∇u, which describes the degradation of mechanical

energy into thermal energy, sometimes called viscous dissipation heating. Applying

the assumptions of Chapter 2 the conservation equations are simplified to

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (3.1.2a)

ρ
∂u

∂t
+ ρu

∂u

∂x
= −

∂p

∂x
, (3.1.2b)

ρcp
∂T

∂t
+ ρcpu

∂T

∂x
= Q +

∂p

∂t
+ u

∂p

∂x
. (3.1.2c)

There are 5 unknowns in the system of conservation equations (Eq. 3.1.2a - 3.1.2c),

therefore we need another 2 equations to calculate ρ, u, p, T and Q. We apply the state

equation of a perfect gas,

p = ρRT , (3.1.3)

where R is the specific gas constant. The fifth equation will be introduced later, which
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relates the heat-release rate per unit volume Q to the remaining quantities. We de-

compose all quantities into steady and time-dependent parts, for instance u(x, t) =
ū(x) + u′(x, t). Carrying out this procedure yields equations for the mean and fluctu-

ating quantities. For the mean quantities we get

ρ̄
∂ū

∂x
+ ū

∂ρ̄

∂x
= 0 , (3.1.4a)

ρ̄ū
∂ū

∂x
= −

∂p̄

∂x
, (3.1.4b)

cpρ̄ū
∂T̄

∂x
= Q̄ + ū

∂p̄

∂x
. (3.1.4c)

Combining the first two equations gives

∂

∂x
(ρ̄ū2

+ p̄) = 0 . (3.1.5)

The definition of the speed of sound is c = dp/dρ. The sound propagation in the burner

is an isentropic process (p/ργ=constant, where γ is the specific heat ratio), therefore

we can express the speed of sound squared as c̄2 = γp̄/ρ̄ = γRT̄ . We insert ρ̄ = γp̄/c̄2
into Eq. (3.1.5) to get

∂

∂x
[p̄ (1 + γMa2)] = 0 . (3.1.6)

Eq. (3.1.6) shows that if the mean flow Mach number is small enough, the axial mean

pressure is constant. Combining the mean momentum equation with the mean energy

equation yields

∂

∂x
[T̄ (1 + γ − 1

2
Ma2)] = γ − 1

γR

Q̄

ρ̄ū
. (3.1.7)
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We can see that for low mean flow Mach number the axial mean temperature (just

like the axial mean pressure) is constant if there is no heat-source present in the flow,

i.e. Q̄ = 0. In the equations which describe the fluctuating quantities we apply the

vanishing mean flow velocity and linear wave assumptions to get

ρ̄
∂u′

∂t
+
∂p′

∂x
= 0 , (3.1.8a)

∂p′

∂t
+ γp̄

∂u′

∂x
= (γ − 1)Q′ . (3.1.8b)

We take the spatial derivative of the first equation, the time-derivative of the second,

and subtract the first one from the second one:

1

c̄2
∂2p′

∂t2
−
∂ρ̄

∂x

∂u′

∂x
−
∂2p′

∂x2
=
γ − 1

c̄2
∂Q′

∂t
. (3.1.9)

We then substitute for ∂u′/∂x by using the momentum equation

1

c̄2
∂2p′

∂t2
+
1

ρ̄

∂ρ̄

∂x

∂p′

∂x
−
∂2p′

∂x2
=
γ − 1

c̄2
∂Q′

∂t
. (3.1.10)

Because the axial mean pressure gradient vanishes, taking the spatial derivative of the

mean component of Eq. (3.1.3) yields

1

ρ̄

∂ρ̄

∂x
= −

1

T̄

∂T̄

∂x
, (3.1.11)

and therefore the governing differential equation of the acoustic pressure at low Mach

number is
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1

c̄2
∂2p′

∂t2
−

1

T̄

∂T̄

∂x

∂p′

∂x
−

∂2p′

∂x2
=
γ − 1

c̄2
∂Q′

∂t
. (3.1.12)

This is the wave equation of the acoustic pressure in a fluid with non-uniform axial

mean temperature. The fluctuating heat-release rate appears as forcing term on the

R.H.S. . Sujith et al. [1995] focused on the exact analytical description of the effect

of the temperature gradient on the acoustic wave propagation. They assumed that

there is no heat-source in the flow (Q = 0), and derived the homogeneous form of Eq.

(3.1.12). This study was followed by Sujith [2001], in whose analysis the heat-source

term Q was included. He derived Eq. (3.1.12) in the frequency domain in a similar

way. He showed that the axial mean pressure is constant for a one-dimensional system,

if the mean flow Mach number is small. This is in line with our Eq. (3.1.6). We also

derived an equation for the axial mean temperature (Eq. (3.1.7)), and found that the

axial mean temperature is constant if there is no heat-source in the domain of interest,

and the mean flow Mach number is small.

3.2 Solutions of the governing equation without forc-

ing

There is no general solution of Eq. (3.1.12) for an arbitrary axial mean temperature

profile T̄ (x), therefore we consider three special cases. The homogeneous form of Eq.

(3.1.12) in the frequency domain is

T̄
d2p̂

dx2
+

dT̄

dx

dp̂

dx
+

ω2

γR
p̂ = 0. (3.2.1)

3.2.1 Uniform mean temperature profile

In case of vanishing temperature gradient Eq. (3.2.1) becomes the ordinary wave

equation:
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∂2p̂

∂x2
+
ω2

c̄2
p̂ = 0 . (3.2.2)

The solutions are complex exponentials.

p̂ = C0 exp(iω
c̄
x) +C1 exp(−iω

c̄
x) , (3.2.3)

where C0 and C1 are constants to be determined from the boundary conditions. Figure

(3.1) shows the real and imaginary parts of exp(iωx/c̄) in function of the axial position

x for typical values of laboratory burners, ω = 1000 1/s and c̄ = 500 m/s.

5 10 15 20

-1.0

-0.5

0.5

1.0

x [m]

p̂

Figure 3.1: Real and imaginary parts of exp(iωx/c̄) for typical values of laboratory
burners, ω = 1000 1/s and c̄ = 500 m/s ( : cosine, − − −: sine)

3.2.2 Linear mean temperature profile

If the mean temperature profile is linear (T̄ = T0 +mx, where T0 is the temperature

at x = 0, m is the temperature gradient, which is constant in this case), Eq. (3.2.1)

becomes

(T0 +mx)d2p̂
dx2

+m
dp̂

dx
+

ω2

γR
p̂ = 0 . (3.2.4)
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This is a zeroth order Bessel-equation. Applying complex notations the traveling wave

solutions are the zeroth order Hankel functions of the first and second kind

p̂ = C0H
(1)
0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ +C1H

(2)
0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ , (3.2.5)

where C0 and C1 are constants to be determined from the boundary conditions, H
(1)
0

andH
(2)
0

are the zeroth order Hankel functions of the first and second kind. The Hankel

functions are related to the Bessel functions as H1,2
0
(z) = J0(z) ± iY0(z), where J0(z)

and Y0(z) are the zeroth order Bessel functions of first and second kind respectively.

Figure (3.2) shows the real and imaginary parts of the Hankel function with argument

given in Eq. (3.2.5) in function of the axial position x. It was normalized by its

maximum absolute value in the region of 0 ≤ x ≤ 20. To demonstrate the effect of

the linear temperature increase we applied typical values of laboratory burners, i.e.

ω = 1000 1/s, T0 = 400 K and m = 500 K/m.

5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

x [m]

p̂/max(p̂)

Figure 3.2: Normalized Bessel function of the first and second kind for typical values
of laboratory burners, ω = 1000 1/s, T0 = 400 K and m = 500 K/m ( :
Bessel function of the first kind, −−−: Bessel function of the second kind)
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3.2.3 Quadratic mean temperature profile

For a quadratic axial mean temperature profile (T̄ = ax2 + bx + T0) Eq. (3.2.1) is a

Legendre differential equation

(ax2
+ bx + T0) d2p̂

dx2
+ (b + 2ax) dp̂

dx
+

ω2

γR
p̂ = 0 . (3.2.6)

The solutions are the Legendre functions of the first and second kind:

p̂ = C0PΦ

⎛
⎝i [

b

a
+ 2x]

%&&' b2 + 4aT0

16T 2
0
−

b4

a2

⎞
⎠ +C1QΦ

⎛
⎝i [

b

a
+ 2x]

%&&' b2 + 4aT0

16T 2
0
−

b4

a2

⎞
⎠ , (3.2.7)

where the order of the functions is given by

Φ = −
1

2
+ i ⋅

√
ω2

aRγ
−
1

4
. (3.2.8)

Figure (3.3) shows the normalized real and imaginary parts of Legendre function of

the first kind P for typical values of laboratory burners: T0 = 400 K, a = 36 K/m2,

b = 140 K/m, and ω = 1000 1/s. Legendre functions having the order of the form

−1/2 + i ⋅ α are called conical (α ∈ R). α ∈ R is a necessary condition to have an

oscillatory solution of Eq. (3.2.7).

Comparing Figure (3.3) and Figure (3.2) with Figure (3.1) shows that the wavelength

increases with increasing temperature.

3.3 Conclusions

In this chapter we derived the governing differential equation for the acoustic pressure

assuming low mean flow Mach number. We showed that the axial mean pressure and

36



5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

x [m]

p̂/max(p̂)

Figure 3.3: Normalized Legendre function of the first kind for a typical laboratory
burner, T0 = 400 K, a = 36 K/m2, b = 140 K/m, ω = 1000 1/s. ( : real
part, − − −: imaginary part)

temperature is constant if there is no heat-source in the flow. The solutions of the

unforced wave equation for constant, linear and quadratic axial mean temperature

profiles were provided.
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Chapter 4

Green’s function method

In this chapter we treat the burner as a passive resonator and study var-

ious configurations with different mean temperature profiles. To this end

we introduce the concept of the Green’s function method. First we derive

the solution of a linear problem in terms of the Green’s function, later

we present the solution of the acoustic pressure in integral form. We

calculate the Green’s functions for the LIMOUSINE burner both in the

frequency and time-domain. Conclusions will be drawn by comparing the

analytical results with measurements.

4.1 General description

Green’s function is a tool for solving problems involving linear partial and ordinary

differential equations subject to initial and boundary conditions. It is very similar to the

Transfer Function concept applied in control theory, i.e. the output of a linear system

can be investigated by the input and the system separately. The Green’s function

method consists of calculating an auxiliary function, which describes the system itself

only, independently of the forcing. The solution is written in terms of an integral

equation, in which the auxiliary function becomes the kernel. The main advantage of

this method is that the Green’s function is independent of the forcing, therefore it is

very powerful when one would like to compare systems which differ only in the forcing
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term. Another major advantage of providing the problem in integral form rather than

in differential form is that integral equations are easier to handle numerically.

responses

space-time

so
u
rc
e
fu
n
ct
io
n

1 2 3 n − 1 n

output= lim
n→∞

n∑
i=1

responsei

Figure 4.1: Concept of the Green’s function method

Figure (4.1) shows the concept of the Green’s function method. It calculates the system

response from one point of the space-time domain of the forcing function, and sums

the individual responses to get the response of the complete forcing.

4.1.1 The Dirac-delta function

One point of a domain can be picked by a special function, by the use of Dirac-delta

(δ) function, which has a value of infinity at zero, but vanishes everywhere else

δ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞ if t = 0 ,

0 if t ≠ 0 .
(4.1.1)

In physical studies, the δ function is used to represent a unit point force or a sudden

impulse. The point in which is does not vanish is called the singularity of the delta

function (t0). By definition

∞

∫
−∞

δ(t − t0)dt = 1 . (4.1.2)
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This function is not analytic, but can be obtained as a limit of analytical functions,

and it is useful only as part of an integrand, but not as an end result. It follows

from Eq. (4.1.2), that the dimension of the delta function depends on its argument as

[δ(t)] = 1/[t], where [. . .] denotes the dimension of a quantity. The sifting property of

the delta function for a function ϕ(t) can be derived from Eq. (4.1.2), using that for

an infinitesimal small interval ϕ(t) can be considered constant, therefore

∞

∫
−∞

ϕ(t)δ(t − t0)dt = ϕ(t0)
∞

∫
−∞

δ(t − t0)dt = ϕ(t0), (4.1.3)

i.e. the delta function picks a given point from the domain of ϕ, as it was shown in

Figure (4.1). Integration of the delta function yields the Heaviside function

∫ δ(t)dt = H(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if t > 0 ,

1

2
if t = 0 ,

0 if t < 0 ,

(4.1.4)

where the value of the Heaviside function is specified at t = 0 in such a way that its

Fourier Transform, Laplace Transform and their inverse are unique. One approach is

to view the delta function as the limit of a strongly peaked ordinary function. Figure

(4.2) shows how the function n/√π exp(−n2t2) approaches the delta-function as n goes

to infinity.

The limiting function satisfies Eq. (4.1.2)

∞

∫
−∞

n√
π
e−n

2t2dt = 1 ∀ n ∈ N . (4.1.5)

Detailed mathematical analysis of the delta function can be found in [Duffy, 2001;

Kythe, 2011; Meyberg and Vachenauer, 2001; Roach, 1982].
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n = 2.5

n = 1.5

n = 1.0

Figure 4.2: Approximation of the Dirac-delta function by n/√π exp(−n2t2)
( : n = 1, − − −: n = 1.5, ⋯⋯: n = 2.5)

4.1.2 The Green’s function as a mathematical tool

4.1.2.1 What is the Green’s function

As already mentioned, the Green’s function gives the systems response when it is

excited in a certain point of the domain at a given time. Mathematically a linear

differential problem generally can be written as

L[p′] = f , (4.1.6)

where f is the forcing function, p′ is the unknown quantity to be calculated, L is a

linear operator acting on p′. In this case the corresponding Green’s function can be

calculated by solving

L[G] = δ(x − ξ)δ(t − τ) , (4.1.7)

where x and t are the observer position vector and time, ξ and τ are the source position

vector and time respectively. Generally solving a problem by using the Green’s function

method consists of finding the corresponding adjoint operator, however in this thesis

the applied operators are self-adjoint. One can find problems involving not self-adjoint

operators in [Duffy, 2001; Kythe, 2011; Meyberg and Vachenauer, 2001; Roach, 1982].
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To find the solution we multiply Eq. (4.1.6) by G, Eq. (4.1.7) by p′ and subtract them

G ⋅L[p′] − p′ ⋅L[G] = G ⋅ f − p′ ⋅ δ(x − ξ)δ(t − τ) . (4.1.8)

We integrate Eq. (4.1.8) over the space-time domain of the problem Ω and apply the

sifting property of the delta function

∫
Ω

G ⋅L[p′] − p′ ⋅L[G]dΩ = ∫
Ω

G ⋅ fdΩ − p′(t,x) . (4.1.9)

The key step of the Green’s function method is to rewrite the integrand on the L.H.S.

of Eq. (4.1.9) as the divergence of a function of p′ and G

G ⋅L[p′] − p′ ⋅L[G] = ∇θ(p′,G) . (4.1.10)

θ depends on the operator L. Eq. (4.1.10) is called Lagrange’s identity. We substitute

with Eq. (4.1.10) for the integrand on the L.H.S. of Eq. (4.1.9) and apply Gauss’

theorem

p′(t,x) = ∫
Ω

G ⋅ fdΩ −∫
∂Ω

(θ ⋅n)dS , (4.1.11)

where ∂Ω is the boundary of domain Ω. Eq. (4.1.11) is called the superposition

integral or Duhamel’s integral. We present the output, the unknown function p′ as the

superposition of the systems response due to the forcing f , which is the first term in

Eq. (4.1.11), and the response due to the initial and boundary conditions (second term

on the R.H.S.). Using this method we split the differential problem of Eq. (4.1.6) into

an integral problem of Eq. (4.1.11) and to a differential problem of finding the solution

of Eq. (4.1.7).
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4.1.2.2 What is the tailored Green’s function

It is common to calculate the general Green’s function, in which case boundary condi-

tions are not specified for Eq. (4.1.7). In the thesis we require that the Green’s function

satisfies the same boundary condition as the unknown quantity p′. The Green’s func-

tion formulated in this way is called tailored.

4.2 Solution of the forced wave equation in terms

of the Green’s function

4.2.1 Time domain

Now we formulate the solution of the forced wave equation for a non-uniform axial mean

temperature profile Eq. (3.1.12), using the steps described in the previous section. The

governing equations for the acoustic pressure is

1

γR

∂2p′

∂t2
−
∂T̄

∂x

∂p′

∂x
− T̄

∂2p′

∂x2
=
γ − 1

γR

∂Q′

∂t
, (4.2.1)

and that for the corresponding Green’s function G(x, ξ, t, τ) is

1

γR

∂2G

∂t2
−
∂T̄

∂x

∂G

∂x
− T̄

∂2G

∂x2
= δ(x − ξ)δ(t − τ) , (4.2.2)

where x and t are the observer location and time respectively, ξ and τ are the source

location and time respectively. From Eq. (4.2.1) it follows that

Lτ,ξ =
1

γR

∂2

∂τ 2
−
∂T̄

∂ξ

∂

∂ξ
− T̄

∂2

∂ξ2
. (4.2.3)

We apply the operator L with respect to the variables τ and ξ because we are going to

sum the infinitesimally small responses at time τ and space ξ. We can write GL[p′] −
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p′L[G] as

G [ 1

γR

∂2p′

∂τ 2
−
∂T̄

∂ξ

∂p′

∂ξ
− T̄

∂2p′

∂ξ2
] − p′ [ 1

γR

∂2G

∂τ 2
−
∂T̄

∂ξ

∂G

∂ξ
− T̄

∂2G

∂ξ2
] =

=
1

γR

∂

∂τ
[G∂p′

∂τ
− p′

∂G

∂τ
] − ∂

∂ξ
(GT̄

∂p′

∂ξ
− p′T̄

∂G

∂ξ
) . (4.2.4)

Comparing Eq. (4.2.4) with Eq. (4.1.10) yields that θ is the R.H.S. of Eq. (4.2.4), i.e.

∇θ(p′,G) =
1

γR

∂

∂τ
[G∂p′

∂τ
− p′

∂G

∂τ
] − ∂

∂ξ
(GT̄

∂p′

∂ξ
− p′T̄

∂G

∂ξ
) . (4.2.5)

As we discussed in the general introduction, now we sum the responses, i.e. we integrate

the equation over the space-time domain [0, t] × [0, L] with respect to τ and ξ to get

t

∫
0

L

∫
0

[G( 1

γR

∂2p′

∂τ 2
−
∂T̄

∂ξ

∂p′

∂ξ
− T̄

∂2p′

∂ξ2
) − p′ ( 1

γR

∂2G

∂τ 2
−
∂T̄

∂ξ

∂G

∂ξ
− T̄

∂2G

∂ξ2
)]dτ dξ =

=

t

∫
0

L

∫
0

[ 1

γR

∂

∂τ
(G∂p′

∂τ
− p′

∂G

∂τ
) − ∂

∂ξ
(GT̄

∂p′

∂ξ
− p′T̄

∂G

∂ξ
)]dτ dξ . (4.2.6)

Substituting for the bracketed terms in the integral on the L.H.S. with Eq. (4.2.1) and

Eq. (4.2.2) gives

t

∫
0

L

∫
0

G
γ − 1

γR

∂Q′

∂τ
dτ dξ −

t

∫
0

L

∫
0

p′(ξ, τ)δ(t − τ)δ(x − ξ) dτ dξ =

=
1

γR

L

∫
0

(G∂p′

∂τ
− p′

∂G

∂τ
) ***********

τ=t

τ=0

dξ −

t

∫
0

(GT̄
∂p′

∂ξ
− p′T̄

∂G

∂ξ
) ***********

L

0

dτ . (4.2.7)

Before the impulse (t < τ) the system must be dormant, which is often referred to as
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the causality condition: the principle stating that an event cannot precede its cause.

Therefore we now require that the Green’s function possess the property of G(x, ξ, t, τ =

t) = 0 and ∂G(x, ξ, t, τ = t)/∂τ = 0. We assume that the boundary conditions at the

ends of the domain are linear, homogeneous and unmixed, i.e. that we can write them

as

(αp′ + β
∂p′

∂x
) ###########x=0,L

= 0 , (4.2.8)

where α and β are constants of the boundary conditions. In the thesis we use complex

pressure reflection coefficient boundary conditions. Are such boundary conditions of

homogeneous type? In order to answer this question we investigate a duct with uniform

mean temperature, therefore we can apply the solutions of Eq. (3.2.3). It can be

shown that the complex pressure reflection coefficient boundary conditions are indeed

of homogeneous type, therefore fulfill Eq. (4.2.8), if

α(R + 1) + βi
ω

c
(R − 1) = 0 , where R =

C0

C1

###########x=0
. (4.2.9)

C0 and C1 are the amplitudes of the reflected and the incident pressure waves respec-

tively. A boundary condition is said to be unmixed if it involves the function and its

derivative at only one boundary, i.e. at x = 0 or at x = L. The tailored Green’s function

satisfies the same boundary conditions. Then the last term on the R.H.S. of Eq. (4.2.7)

vanishes, therefore the solution is

p′(x, t) =
t

∫
0

L

∫
0

G
γ − 1

γR

∂Q′(ξ, τ)
∂τ

dτ dξ +
1

γR

L

∫
0

(G∂p′

∂τ
− p′

∂G

∂τ
) ###########τ=0

dξ . (4.2.10)

The first term on the R.H.S. is the systems response, the second one is due to the

initial conditions.
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4.2.2 Frequency domain

We would like to investigate the system independently of the initial conditions, there-

fore we apply Fourier Transform with respect to time and work in the frequency domain.

The frequency-domain equivalent of the governing Eq. (3.1.12) is

T̄
d2p̂

dx2
+
dT̄

dx

dp̂

dx
+

ω2

γR
p̂ = −

γ − 1

γR
iωQ̂ , (4.2.11)

and that of Eq. (4.2.2) for the Green’s function is

T̄
d2Ĝ

dx2
+
dT̄

dx

dĜ

dx
+

ω2

γR
Ĝ = δ(x − ξ) . (4.2.12)

We require that the Green’s function satisfies the given boundary conditions. From

Eq. (4.2.11) it follows that the operator L̂ξ acting on p̂ is

L̂ξ =
ω2

γR
+
∂T̄

∂ξ

∂

∂ξ
+ T̄

∂2

∂ξ2
. (4.2.13)

We apply Lagrange’s identity, i.e. we rewrite ĜL̂ξ[p̂] − p̂L̂ξ[Ĝ] as

Ĝ [ ω2

γR
p̂ +

∂T̄

∂ξ

∂p̂

∂ξ
+ T̄

∂2p̂

∂ξ2
] − p̂ [ ω2

γR
Ĝ +

∂T̄

∂ξ

∂Ĝ

∂ξ
+ T̄

∂2Ĝ

∂ξ2
] =

∂

∂ξ
(ĜT̄

∂p̂

∂ξ
− p̂T̄

∂Ĝ

∂ξ
) .

(4.2.14)

We integrate the equation over the space domain [0, L] with respect to ξ and substitute

for the bracketed terms on the L.H.S. with Eq. (4.2.11) and Eq. (4.2.12) to get

−

L

∫
0

Ĝiω
γ − 1

γR
Q̂′(ξ, ω) dξ −

L

∫
0

p̂(ξ, ω)δ(x − ξ) dξ = (ĜT̄
∂p̂

∂ξ
− p̂T̄

∂Ĝ

∂ξ
) $$$$$$$$$$$

L

0

. (4.2.15)
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For linear, homogeneous and unmixed boundary conditions the second term on the

R.H.S. vanishes, and the solution is

p̂(x,ω) =

L

∫
0

Ĝ(x, ξ, ω) [−γ − 1
γR

iωQ̂(ξ, ω)]dξ . (4.2.16)

4.3 Calculation of the tailored Green’s function

4.3.1 Eigenfrequencies and eigenfunctions

We consider a system described by a homogeneous differential equation and given

boundary conditions, for instance by Eq. (3.2.1) and Eq. (4.2.8). The non-trivial

solutions of the system are called the eigenfunctions. They represent the shape of the

vibrational modes. Parameter ω of an eigenfunction is its eigenfrequency. Physically,

at the eigenfrequencies (ω = ωn) the system can be perturbed out of its stable state if

forcing is absent.

4.3.2 The operator method applied to the wave equation

There are two techniques to find the Green’s function of an ordinary differential equa-

tion with given boundary conditions. The first is the operator method, when the

solution is constructed from the homogeneous solutions of the right and left regions of

the point of excitation, and pieced together to give the complete solution. The second

is the modal expansion, which represents the Green’s function as the superposition of

orthonormal eigenfunctions that are valid over the entire domain and satisfy the given

boundary conditions.

We are going to apply the operator method, as presented in Kosztin et al. [2011]. We

assume that the solutions of the homogeneous, i.e. source-free, equation are known as

p̂1 and p̂2 in the regions upstream and downstream respectively of the source. Because

p̂1 and p̂2 satisfy the boundary conditions, the resulting Green’s function is called

tailored. Hence the Green’s function over the entire domain can be written in terms of
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the Heaviside function as

Ĝ(x, ξ, ω) = H(ξ − x)A(ξ, ω)p̂1(x,ω) +H(x − ξ)C(ξ, ω)p̂2(x,ω) , (4.3.1)

where A(ξ, ω) and C(ξ, ω) are complex amplitudes which are going to be determined.

The derivatives of Eq. (4.3.1) are

dĜ

dx
(x, ξ, ω) =H(ξ − x)A(ξ, ω)dp̂1

dx
(x,ω) +H(x − ξ)C(ξ, ω)dp̂2

dx
(x,ω)

− δ(x − ξ)A(ξ, ω)p̂1(x,ω) + δ(x − ξ)C(ξ, ω)p̂2(x,ω) ,

(4.3.2)

and

d2Ĝ

dx2
(x, ξ, ω) =H(ξ − x)A(ξ, ω)d2p̂1

dx2
(x,ω) +H(x − ξ)C(ξ, ω)d2p̂2

dx2
(x,ω)

− δ(x − ξ)A(ξ, ω)dp̂1
dx

(x,ω) + δ(x − ξ)C(ξ, ω)dp̂2
dx

(x,ω)
−
dδ(x − ξ)

dx
A(ξ, ω)p̂1(x,ω) + dδ(x − ξ)

dx
C(ξ, ω)p̂2(x,ω) .

(4.3.3)

We substitute Eqs. (4.3.1), (4.3.2) and (4.3.3) into Eq. (4.2.12) using the fact that

the terms with the Heaviside function vanish since they are the solutions of the homo-

geneous equation. Equating the coefficients for dδ(x − ξ)/dx and δ(x − ξ) yields two

linear equations

T̄ (x) [−dδ(x − ξ)
dx

A(ξ, ω)p̂1(x,ω) + dδ(x − ξ)
dx

C(ξ, ω)p̂2(x,ω)] = 0 , (4.3.4a)

T̄ (x) [−δ(x − ξ)A(ξ, ω)dp̂1
dx

(x,ω) + δ(x − ξ)C(ξ, ω)dp̂2
dx

(x,ω)] = δ(x − ξ) , (4.3.4b)
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from which we can express the solutions A and C by using Cramer’s rule. It follows

that

C(ξ, ω) =
1

T̄ (ξ)
p̂1(ξ, ω)

p̂1(ξ, ω)dp̂2(ξ,ω)
dξ

− p̂2(ξ, ω)dp̂1(ξ,ω)
dξ

, (4.3.5a)

A(ξ, ω) =
1

T̄ (ξ)
p̂2(ξ, ω)

p̂1(ξ, ω)dp̂2(ξ,ω)
dξ

− p̂2(ξ, ω)dp̂1(ξ,ω)
dξ

, (4.3.5b)

and the Green’s function in the frequency domain can then be written in compact form

as Ĝ(x, ξ, ω) = ĜT (x, ξ, ω)/T̄ (ξ), where

ĜT (x, ξ, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p̂1(x,ω)p̂2(ξ, ω)
p̂1(ξ, ω)dp̂2(ξ,ω)

dξ
− p̂2(ξ, ω)dp̂1(ξ,ω)

dξ

, x < ξ

p̂2(x,ω)p̂1(ξ, ω)
p̂1(ξ, ω)dp̂2(ξ,ω)

dξ
− p̂2(ξ, ω)dp̂1(ξ,ω)

dξ

, x > ξ .

(4.3.6)

The symmetry of the Green’s function can be noticed, Ĝ(x, ξ, ω) = Ĝ(ξ, x, ω). This is
referred to as the reciprocity, which is the property of the Green’s functions of self-

adjoint operators. At x = ξ the Green’s function is continuous, and its derivative has

a jump of −1/T̄ (ξ). The denominator of the Green’s function is the Wronskian of the

homogeneous system. The frequency domain Green’s function does not exist at ω = ωn,

these poles are called the point spectrum of the Green’s function.
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4.3.3 Tailored Green’s function in the frequency-domain for

the LIMOUSINE burner

4.3.3.1 Configuration 1: constant mean temperature in the inlet and outlet

regions, jump in the cross-section and mean temperature at the

same point.

In the first configuration we would like to present explicit formulas for the key acoustic

properties, such as the eigenfrequency and damping rate. To this end we assume that

the flame region is infinitely thin and located at the point where the cross section

changes. The temperature is uniform in the inlet and outlet regions, and has a jump

at the point where the cross-section changes (x = x′). Reflection coefficients R0 and R1

are used to describe the boundary conditions at x = 0 and x = L, respectively. A0 and

A1 are the cross sectional area upstream and downstream of the flame respectively. In

our notation subscript 0 refers to the cold region, subscript 1 refers to the hot region.

x
x = x′x = 0 x = L

R0 R1A0 A1

T̄0

T̄1

cold region hot region

Figure 4.3: Schematic representation of the burner and temperature profile in Config-
uration 1

We use harmonic wave solutions with uniform mean temperature (Eq. (3.2.3)),
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p̂ =

⎧⎪⎪⎪⎪
⎨

⎪
⎪
⎪
⎪
⎩

p̂0 =Aeik0x +Be−ik0x x < x′ ,

p̂1 =Ceik1(x−L)
+De−ik1(x−L) x > x′ ,

(4.3.7)

where ki = ω/ci and the capitals A,B,C,D are complex amplitudes to be determined.

exp(ikix) represents a wave travelling in the positive x direction, exp(−ikix) represents

a wave travelling in the negative x direction. We describe the boundary conditions by

complex pressure reflection coefficients, therefore A = BR0 and D = CR1. Furthermore

we use continuous pressure (p̂0 = p̂1) and volume velocity (A0û0 = A1û1) at the interface

x = x′, which yields the following equation for the eigenfrequency

A1

ρ̄1c̄1
[R0e

ik0x
′

+ e−ik0x
′

][eik1(x
′
−L)

−R1e
−ik1(x

′
−L)

]−

−
A0

ρ̄0c̄0
[R0e

ik0x
′

− e−ik0x
′

][eik1(x
′
−L)

+R1e
−ik1(x

′
−L)

] = 0 . (4.3.8)

Eq. (4.3.8) gives the eigenfrequencies of configuration 1. In order to obtain the solutions

we divide the complex frequency into a real and imaginary part, i.e. ω = ωr + iωi,

furthermore we introduce the polar representation of the reflection coefficients, Ri =

∣Ri∣ exp(−iϕi). Performing the multiplications yields

∣R1∣ [

A0

ρ̄0c̄0
−

A1

ρ̄1c̄1
] θ(x′, ωr)φ0(x

′, ωr)µ
−
(x′, ωi)−∣R0∣ [

A0

ρ̄0c̄0
−

A1

ρ̄1c̄1
] θ(x′, ωr)

φ1(L − x′, ωr)

µ−
(x′, ωi)

+ [
A0

ρ̄0c̄0
+

A1

ρ1c1
]µ+

(x′, iωr)µ
+
(x′, ωi) − ∣R0∣∣R1∣ [

A0

ρ̄0c̄0
+

A1

ρ1c1
] θ(x′, ω)

1

µ+
(x′, ωi)

= 0 ,

(4.3.9)
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where θ(x′, ω), φ(x′, ω) and µ(x′, ω) are given by

θ(x′, ω) = exp [−i(ϕ0 +ϕ1 − ω
x′

c0
− ω

L − x′

c1
)] (4.3.10a)

φk(x′, ω) = exp [i(ϕk − 2ω
x′

ck
)] (4.3.10b)

µ±(x′, ω) = exp [ω (x′
c0
±

L − x′

c1
)] . (4.3.10c)

Asymptotic solutions for the eigenfrequency and damping rate can be calculated, if

the change in A /ρ̄c̄ is either small or large. This quantity is called characteristic

impedance. In case of the LIMOUSINE burner the value of this quantity in the hot

region is approximately four times its value in the cold region. To assume that this

jump is small, it should be smaller than 1.5, and to apply large jump asymptotic

solution it should be at least 100. Because the jump in the characteristic impedance is

closer to the criteria of being small, we treat it as small, but expect some discrepancy

from the measured results. We neglect terms with A0/ρ̄0c̄0−A1/ρ̄1c̄1 compared to terms

with A0/ρ̄0c̄0 +A1/ρ̄1c̄1 and Eq. (4.3.9) is simplified to

µ+(x′,2ωi) = ∣R0∣∣R1∣θ(x′,2ωr) . (4.3.11)

Eq. (4.3.11) is a complex equation, therefore in order to obtain a solution we divide

it into real and imaginary parts. Since the L.H.S. of Eq. (4.3.11) is purely real and

positive, the imaginary part of the R.H.S. vanishes

sin(ϕ0 +ϕ1 − 2ωr

x′

c0
− 2ωr

L − x′

c1
) = 0 . (4.3.12)

The imaginary part of the R.H.S. of Eq. (4.3.11) vanishes, therefore its real part is

±1. Without solving the real part of Eq. (4.3.11) we can see that µ+ represents a real
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exponential, therefore it is always positive. Hence the real part of the R.H.S. of Eq.

(4.3.11) must be positive as well, therefore the solution of Eq. (4.3.12) can be written

as

ωr

L

c̃
=
ϕ0 +ϕ1

2
+ nπ n ∈ N , where

1

c̃
=

1

c0

x′

L
+

1

c1

L − x′

L
. (4.3.13)

c̃ is the weighted average of the speed of sound in the cold and hot regions. The weights

are the length of the regions. Figure (4.4) shows the distribution of the eigenfrequencies

depending on the length of the burner, the weighted speed of sound and the average

phase of the reflections.

ωr

L
c̃

ϕ0+ϕ1

2

ϕ0+ϕ1

2
+ π

ϕ0+ϕ1

2
+ 2π

ϕ0+ϕ1

2
+ 3π

ω1 ω2 ω3 ω4

Figure 4.4: Schematic representation of the eigenfrequencies

Inserting Eq. (4.3.13) into Eq. (4.3.11) yields the damping rate

ωi

L

c̃
= ln [√∣R0∣∣R1∣] , (4.3.14)

where ln denotes the natural logarithm. The damping rate is negative, if ∣R0∣∣R1∣ < 1,
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which is the case if energy is lost at the boundaries. We introduce ∣Ri∣ = 1 − ηi and

linearize the R.H.S. of Eq. (4.3.14) for small losses as

ωi

L

c̃
= ln [√∣R0∣∣R1∣] = −

1

2
(η0 + η1) . (4.3.15)

The relative damping rate yields the damping over one period

ωi

ωr,n

= −
η0 + η1

ϕ0 +ϕ1 + nπ
. (4.3.16)

It is shown in Figure (4.5) that when η0 + η1 is less than approximately 25%, Eq.

(4.3.14) can be approximated by its linear form, Eq. (4.3.15).

η0 + η1 [%]

−
ωi

ωr
[%]

25 50 75 100

25

50

75

Figure 4.5: Effect of acoustic losses (η0 + η1) on the relative damping ( :exact,
⋯⋯:linearized)

We derived explicit expressions to calculate the eigenfrequency and damping rate of

a burner by assuming that the jump in the characteristic impedance is small and

approximating Eq. (4.3.9) accordingly. In order to get more accurate predictions,
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we consider configurations with a more realistic mean temperature profile, because

mode shapes and eigenfrequencies are very dependent on the temperature distribution

(Matveev and Culick [2003a]). The new configurations are explained in detail in the

next section.

4.3.3.2 More realistic configurations

In each of the following configurations the tube was divided into three regions: inlet,

flame, and outlet.
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Figure 4.6: Analytical versions

In configuration 2 the location of the jump in the cross-section (x = l1) and the location

of the jump in the mean temperature (x = l2 ≠ l1) differs. The mean temperature in

the inlet, flame and outlet regions is uniform.

Configuration 3 takes the effect of the flame length into account and assumes that

the temperature distribution along the flame is linear. However, outside the flame the

temperature takes the constant upstream and downstream values as in configuration 1

and 2.

Configuration 4 considers the preheating effect of the wall, therefore a piecewise linear

temperature profile is used. Outside the flame we assume linear profiles that fit the

measured temperature curve shown in Figure (2.7). The profile within the flame area
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is the same as that in configuration 3.

Configuration 5 considers the preheating effect of the walls as well. Outside the flame

we assume linear profiles that fit the measured temperature curve shown in Figure

(2.7), however the profile within the flame region is assumed to be quadratic.

For configurations 2-5 we solve the governing equation for the eigenfrequency and

damping rate numerically.

4.3.3.3 Boundary conditions in the presence of mean-temperature gradient

At the ends of the burner measured pressure reflection coefficients R0 and R1 were used.

In cases when the temperature-profile is constant, the reflection coefficient is simply

the ratio of the pressure amplitudes of the reflected and incident waves. However,

when the temperature is not constant, care must be taken and a more general form of

the reflection coefficient must be applied. The method we used was to introduce an

infinitesimally thin layer at each end (0 ≤ x ≤ ∆ and L−∆ ≤ x ≤ L), assuming constant

temperature inside the layers, and connecting them to the neighboring regions by

pressure and velocity continuity. The amplitude of the reflected wave was expressed as

a function of the incident wave amplitude. At the left boundary the pressure is given

by

p̂ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B [R0e

ikx
+ e−ikx] 0 < x < ∆ ,

Cp̂1 +Dp̂2 x > ∆ ,

(4.3.17)

where B is the amplitude of the incident wave approaching the boundary at x = 0. C

and D are the amplitudes outside the thin layer (x > ∆), where p̂2 is the travelling

wave towards the interface at x = ∆, p̂1 is the reflected one. In this region the mean

temperature is non-uniform. Since there is no change in the temperature and in the

cross-section across the interface at x = ∆, we require that the pressure and its axial
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derivative is continuous. This yields two equations

B [R0e
ik∆

+ e−ik∆] =Cp̂1

!!!!!!!!!!!x=∆
+Dp̂2

!!!!!!!!!!!x=∆
, (4.3.18a)

i
ω

c̄0
B [R0e

ik∆
− e−ik∆] =C

p̂1

dx

!!!!!!!!!!!x=∆
+D

p̂2

dx

!!!!!!!!!!!x=∆
. (4.3.18b)

The generalized reflection coefficient is RT
0
= C/D. Taking the limit of ∆→ 0 gives

RT
0 = −

(R0 + 1) 1

i ω
c̄0

dp̂2
dx
∣
x=0
− (R0 − 1)p̂2∣

x=0

(R0 + 1) 1

i ω
c̄0

dp̂1
dx
∣
x=0
− (R0 − 1)p̂1∣

x=0

. (4.3.19)

If the mean temperature profile is linear, we can apply the solutions given by (3.2.5),

and using the Hankel functions RT
0
can be written simply as

RT
0 = −

i m0

∣m0∣
(R0 + 1)H(2)1

( 2ω
∣m0∣

T0

c0
) − (R0 − 1)H(2)0

( 2ω
∣m0∣

T0

c0
)

i m0

∣m0∣
(R0 + 1)H(1)1

( 2ω
∣m0∣

T0

c0
) − (R0 − 1)H(1)0

( 2ω
∣m0∣

T0

c0
) . (4.3.20)

T0 is the inlet temperature, c0 is the speed of sound at T0, m0 is the temperature

gradient in the inlet region. To obtain the solution of (4.3.20) we have written the

derivative of the Hankel functions as

d

dx
H
(1,2)
0

(2q√α + βx) = −
qβ√
α + βx

H
(1,2)
1

(2q√α + βx) , (4.3.21)

where q,α, β are constants. We are going to apply these results in configuration 3.

Using the LIMOUSINE setup of Table (4.1) at the left boundary (x = 0) the ratio of

the amplitudes of the outgoing to the incoming wave is RT
0

= 0.79 + i ⋅ 0.246. At the

right boundary we have RT
1
= −0.94−i ⋅0.333. We can see that the temperature gradient

changes the pressure reflection coefficients significantly.
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quantity notation value

duct inlet temperature T0 340 K

duct outlet temperature T3 1120 K

reflection at inlet R0 0.80 + i 0.22
reflection at outlet R1 -0.954 - i 0.137

temperature gradient at inlet m0 185.2 K/m
temperature gradient at outlet m1 -181.82 K/m

frequency of the fundamental mode ω1 723 1/s
Table 4.1: Measured properties of the LIMOUSINE setup

4.3.3.4 Green’s function of configuration 3

We present the calculation of the Green’s function of configuration 3, the calculation

of the Green’s functions of the other configurations can be carried out in the same way.

We assume that the source lies in the flame region: l1 < ξ < l2. Therefore we assume

that the Green’s function of the pressure has the form

Ĝ(x, ξ, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2(ξ, ω){R1 exp[ik0x] + exp[−ik0x]} 0 ≤ x ≤ l1

B1(ξ, ω)H(1)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ +B2(ξ, ω)H(2)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ l1 ≤ x ≤ ξ

B̃1(ξ, ω)H(1)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ + B̃2(ξ, ω)H(2)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ ξ ≤ x ≤ l2

C1(ξ, ω){ exp[ik1(x −L)] +R2 exp[−ik1(x −L)]} l2 ≤ x ≤ L

(4.3.22)

where k0 and k1 are the wavenumbers of the inlet and outlet regions respectively.

Aj,Bj, B̃j, Cj are complex amplitudes, H
(1)
0

and H
(2)
0

are the zeroth order Hankel

functions of the first and second kind, and m is the temperature gradient in the flame.

First we start with the interface at x = l1. At this position the pressure and the volume

velocity are continuous. Continuity of pressure yields

A2{R0 exp[ik0l1] + exp[−ik0l1]} = B1H
(1)
0

( 2ω∣m∣
T0

c0
) +B2H

(2)
0

( 2ω∣m∣
T0

c0
) , (4.3.23)
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continuity of the volumetric flow rate gives

A0

A1

A2{R0 exp[ik0l1] − exp[−ik0l1]} = B1iH
(1)
1

( 2ω∣m∣
T0

c0
) + B2iH

(2)
1

( 2ω

∣m∣
T0

c0
) , (4.3.24)

where T̄0 and c0 are the mean temperature and speed of sound in the cold inlet region

respectively. The unknown amplitudes B1 and B2 can now be expressed as functions of

A2, say, B1 = β1(ω)A2 and B2 = β2(ω)A2. Next we consider the interface at x = l2. At

this position the pressure and the velocity is also continuous. Continuity of pressure

yields

B̃1H
(1)
0

( 2ω

∣m∣
T2

c2
) + B̃2H

(2)
0

( 2ω

∣m∣
T2

c2
) = C1{ exp[ik1(l2 −L)] +R1 exp[−ik1(l2 −L)]} ,

(4.3.25)

where T̄2 and c2 are the mean temperature and the speed of sound at x = l2. The

continuity of the velocity gives

B̃1iH
(1)
1

( 2ω

∣m∣
T2

c2
) + B̃2iH

(2)
1

( 2ω

∣m∣
T2

c2
) = C1{ exp[ik1(l2 −L)] −R1 exp[−ik1(l2 −L)]} .

(4.3.26)

Now we can express B̃1 and B̃2 as functions of C1, i.e. B̃1 = γ1(ω)C1 and B̃2 = γ2(ω)C1.

Using the Heaviside function we can write the Green’s function in the flame region as:
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G(x, ξ, ω) =H(ξ − x)A2(ξ, ω)
⎡⎢⎢⎢⎢⎣
β1(ω)H(1)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ + β2(ω)H(2)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠
⎤⎥⎥⎥⎥⎦
+

+H(x − ξ)C1(ξ, ω)
⎡⎢⎢⎢⎢⎣
γ1(ω)H(1)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ + γ2(ω)H(2)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠
⎤⎥⎥⎥⎥⎦
. (4.3.27)

Applying the method described in Subsection (4.3.2), the solution of the unknown

amplitudes A2 and C1 can be calculated from the following nonhomogeneous system

of linear equations:

A2(ξ, ω)
⎡⎢⎢⎢⎢⎣
β1(ω)H(1)0

⎛
⎝
2ω

∣m∣
√

T0 +mξ

γR

⎞
⎠ + β2(ω)H(2)0

⎛
⎝
2ω

∣m∣
√

T0 +mξ

γR

⎞
⎠
⎤⎥⎥⎥⎥⎦
+

−C1(ξ, ω)
⎡⎢⎢⎢⎢⎣
γ1(ω)H(1)0

⎛
⎝
2ω

∣m∣
√

T0 +mξ

γR

⎞
⎠ + γ2(ω)H(2)0

⎛
⎝
2ω

∣m∣
√

T0 +mξ

γR

⎞
⎠
⎤⎥⎥⎥⎥⎦
= 0 , (4.3.28a)

A2(ξ, ω) ω√
γR(T0 +mξ)

⎡⎢⎢⎢⎢⎣
β1(ω)H(1)1

⎛
⎝
2ω

∣m∣
√

T0 +mξ

γR

⎞
⎠ + β2(ω)H(2)1

⎛
⎝
2ω

∣m∣
√

T0 +mξ

γR

⎞
⎠
⎤⎥⎥⎥⎥⎦
−

C1(ξ, ω) ω√
γR(T0 +mξ)

⎡⎢⎢⎢⎢⎣
γ1(ω)H(1)1

⎛
⎝
2ω

∣m∣
√

T0 +mξ

γR

⎞
⎠ + γ2(ω)H(2)1

⎛
⎝
2ω

∣m∣
√

T0 +mξ

γR

⎞
⎠
⎤⎥⎥⎥⎥⎦
= 1 .

(4.3.28b)

We introduce the following abbreviations

A(x,ω) =R0 exp[ik0x] + exp[−ik0x] ,
B(x,ω) =γ1(ω)H(1)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ + γ2(ω)H(2)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ ,

C(x,ω) =β1(ω)H(1)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ + β2(ω)H(2)0

⎛
⎝
2ω

∣m∣
√

T0 +mx

γR

⎞
⎠ ,

D(x,ω) = exp[ik1(x −L)] +R1 exp[−ik1(x −L)] ,
F (x,ω) =

2i∣m∣
π(T0 +mx)[β2(ω)γ1(ω) − β1(ω)γ2(ω)] ,

(4.3.29)
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to write the Green’s function in a compact form

Ĝ(x, ξ, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(x,ω)B(ξ, ω)
F (ξ, ω) 0 ≤ x < l1 ,

C(x,ω)B(ξ, ω)
F (ξ, ω) l1 ≤ x ≤ ξ ,

B(x,ω)C(ξ, ω)
F (ξ, ω) ξ ≤ x ≤ l2 ,

D(x,ω)C(ξ, ω)
F (ξ, ω) l2 < x ≤ L .

(4.3.30)

Physically it is reasonable to assume that the point-source lies in the flame region. The

method described in this section also applies if it lies in the inlet or outlet regions. The

property of reciprocity is clearly satisfied within the region that contains the source.

4.3.3.5 Measurements

Each configuration was analyzed for a setup with properties listed in Table (4.2). In

configurations 2 and 3 the mean-temperature of the inlet and outlet regions were simply

the arithmetic means of T0, T1 and T2, T3 respectively. (See Figure (4.6))

quantity notation value

mean pressure p̄ 1 atm

duct inlet temperature T0 340 K

flame inlet temperature T1 400 K

flame outlet temperature T2 1320 K

duct outlet temperature T3 1120 K

specific heat ratio γ 1.35
gas constant of air R 286.9 J/(kgK)
length of the burner L 1.424 m

length of inlet l1 0.324 m

downstream end of the flame region l2 0.394 m

cross-sectional area of inlet A0 0.0045 m2

cross-sectional area of outlet A1 0.009 m2

reflection coefficient at inlet R1 0.80 + i 0.22
reflection coefficient at outlet R2 -0.954 - i 0.137

Table 4.2: LIMOUSINE setup
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4.3.3.6 Eigenfrequencies

The eigenfrequencies predicted for the five configurations were calculated. The results

ωn (n=1,2) are listed in Table (4.3). The real parts correspond to the frequencies of

the first and second mode; the (negative) imaginary parts are due to energy losses at

the tube ends.

mode no. Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5

1 530.35 - i 33.38 764.76 - i 32.50 760.34 - i 32.30 759.61 - i 30.66 758.07 - i 30.87
2 1468.3 - i 33.38 1720.8 - i 70.18 1738.6 - i 72.94 1755.7 - i 73.06 1741.3 - i 70.44

Table 4.3: Comparison of the eigenfrequencies in [rad/sec] (measurement: 723 s−1)

The first eigenfrequency of configurations 2,3,4,5 compares very well with the measured

frequency of 723 s−1. Configuration 1, which assumes a small jump in the characteristic

impedance, gives results with 25 % error, therefore the change in this quantity is large

enough to require numerical solutions. The reason why the linear and quadratic model

does not improve the result is that the flame width is approximately two orders of

magnitude smaller than the wavelength of the fundamental mode.

4.3.3.7 Pressure mode shape

The frequency domain tailored Green’s function of configurations 2,3 and 4 are shown

in Figure (4.7) at their eigenfrequencies respectively. We assumed that the point-source

is located at ξ = l2, where the axial mean temperature has its absolute maximum.

The agreement between the measured and predicted pressure mode shapes is remark-

able for configurations 2,3 and 4. This is despite the fact that we neglected mean flow

and preheating effects. Comparison of the configurations suggests that an abrupt jump

in mean-temperature results in no loss of accuracy when predicting the eigenfrequency

of the fundamental mode. The mode shapes are approximated very well by all config-

urations, there is no need to include temperature gradient even in the flame zone. In

the next subsection we study the dependence of the relative damping rate (ωi/ωr) on
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Figure 4.7: Comparison of the normalized pressure mode shapes (− ◾ −: measurement,
: configuration 2, − − −: configuration 3, − ⋅ −: configuration 4)

certain parameters, and if they give similar results in the total parameter space, we can

conclude that the configuration 2 is sufficient to capture the phenomena quantitatively.

4.3.3.8 Dependence of the eigenfrequency and growth rate on the param-

eters

The predicted eigenfrequencies and mode shapes agree very well for configurations

2,3,4. Now we investigate how certain parameters affect the relative damping rate

(∣ωi/ωr∣). We vary the following parameters:

the jump in the cross sectional area (A1/A0),

the total length of the burner (L), and

the total phase of the reflections (ϕ0 + ϕ1).

Figure (4.8) shows the effect of the jump in the cross-sectional area on the relative
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damping.

A1/A01 2 3

0.050

0.025

0.075

∣ωi/ωr∣

Figure 4.8: Relative damping as function of the area jump ( : configuration 2,
− − −: configuration 3, ⋯⋯: configuration 4)

Figure (4.9) shows the effect of changing the length of the hot upstream section (L−l2).

The relative damping rate is plotted as function of the total length of the burner (L).

L
1 2 3

0.025

0.050

0.075

∣ωi/ωr∣

Figure 4.9: Relative damping as function of the burner length ( : configuration 2,
− − −: configuration 3, ⋯⋯: configuration 4, l1 kept constant)

Figure (4.10) shows the effect of changing the phase of the reflection coefficient at the
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outlet (ϕ1). The relative damping rate is plotted as function of the total phase of the

reflections (ϕ0 + ϕ1).

ϕ0 + ϕ1

1 2 3

0.05

0.10

0.15

0.20

∣ωi/ωr∣

Figure 4.10: Relative damping as function of the total phase of reflections ( : con-
figuration 2, −−−: configuration 3, ⋯⋯: configuration 4, ϕ0 kept constant)

Comparing the figures shows that in Figures (4.8) and (4.9) the relative damping rate

covers only a small range, in Figure (4.10) however the relative damping covers a large

range. This property is reflected in Eq. (4.3.16). It shows that in a burner with (a

small) jump in the characteristic impedance the relative damping rate is not affected

to the leading order by changing the length of the burner or by changing the jump in

the cross-sections, but it is strongly affected by changing the phase of the reflections

at the boundaries. We can therefore conclude that the most efficient way to control

the relative damping rate is to control the phase of the reflections at the boundaries.

4.3.3.9 Small temperature gradient

We found that including the temperature gradient in the inlet and outlet regions did

not improve the results in case of the fundamental mode. To investigate under which

conditions it can be neglected we apply a perturbation technique: the method of mul-

tiple scales. The method is described in [Mickens, 1981; Nayfeh and Mook, 1995;

Zwillinger, 1998]. The technique consists of separating the time scale of the oscillation
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from the time scale of the change in the amplitude. We introduce a small parameter,

which is related to the temperature gradient: ǫ = (T1 − T0)/T0 ≪ 1, where T0 is the

temperature at the beginning of a region, T1 is the temperature at the end of a region.

We introduce the following non-dimensional quantities

x̃ =x
ω

c0
,

T̃ =
T̄ − T0

T1 − T0

.

(4.3.31)

Since 0 ≤ T̃ ≤ 1, we can write 1/(1 + ǫT̃ ) as 1 − ǫT̃ . We separate the scales, i.e.

x̃ =x̃0 + ǫx̃1 ,

p̃ =p̃0 + ǫp̃1 ,

d

dx̃
=

∂

∂x̃0

+ ǫ
∂

∂x̃1

.

(4.3.32)

Applying (4.3.32) for Eq. (3.2.1) yields

d2p̃

dx̃2
+ p̃ = ǫp̃T̃ − ǫ

dT̃

dx̃

dp̃

dx̃
. (4.3.33)

To the leading order we have a harmonic oscillation, i.e. p̃0 = A(x̃1) exp(ix̃0) + C.C. .

At the order of ǫ1 we have

∂2p̃1

∂x̃2
0

+ p̃1 = −2
∂2p̃0

∂x̃0∂x̃1

+ p̃0T̃0 −

∂T̃0

∂x̃0

∂p̃0

∂x̃0

. (4.3.34)

All terms on the R.H.S. are secular, therefore equating them to zero yields

∂A

∂x̃1

= −

1

2
A(iT̃0 +

∂T̃0

∂x̃0

) . (4.3.35)
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The solution for A(x̃1) is

A(x̃1) = a0 exp [−

1

2 ∫ (iT̃0 +

∂T̃0

∂x̃0

)dx̃1] = a0 exp [−i
1

2
T̃0ǫx̃0] exp [−

1

2

∂T̃0

∂x̃0

ǫx̃0] ,

(4.3.36)

where a0 is constant. So far we derived an asymptotic solution of Eq. (3.2.1) for small

temperature gradients. The investigation leading to Eq. (4.3.36) shows that the effect

of the temperature gradient can be neglected, if ∣ǫx̃0∣ is small

∣ǫx̃0∣ = ∣T1 − T0

T0

ωL

c0

x

L
∣ = ∣T1 − T0

T0

L

λ0

x

L
∣≪ 1 , (4.3.37)

where L is the length of the region. Eq. (4.3.37) shows that the temperature gradient

is negligible if the total change in the temperature relative to the initial temperature

is small enough, and if the wavelength at the initial temperature is larger than the

length of the region. In the LIMOUSINE setup ǫ in the cold inlet region is 0.3, and in

the hot outlet region it is 0.15, therefore the asymptotic solution of (4.3.36) is valid.

Furthermore the value of (T1 − T0)L/T0λ0 in (4.3.37) is 0.18 and 0.17 in the cold and

hot regions respectively, which shows that the temperature gradient can be neglected.

In the flame region ǫ is approximately 4, therefore we cannot assume negligible tem-

perature gradient there.

4.3.3.10 Large temperature gradient

Comparison of configuration 2 and 3 suggests that in case of the fundamental mode we

can model the abrupt change in the temperature as a jump. The scale separation and

the WKB methods are not applicable in this case, therefore we draw conclusions by

investigating, under which conditions configuration 3 reduces to configuration 2. The

pressure in the flame region of configuration 3 is described by the Hankel functions,

67



in configuration 2 by ± exp ik0(x − l1). Eq. (4.3.23) shows that the jump condition is

applicable if the argument of the Hankel function in Eq. (4.3.23) is small enough to

approximate it by 1

H
1,2
0

( 2ω∣m∣ T0

c0
) ≈ 1 . (4.3.38)

Eq. (4.3.38) holds, if

ω∣m∣ T0

c0
≪ 1 . (4.3.39)

Because the temperature gradient is m = (T1 − T0)/L, we can rewrite Eq. (4.3.39) as

∣ωL
c0

T0

T1 − T0

∣ = ∣ L
λ0

T0

T1 − T0

∣≪ 1 . (4.3.40)

The value of the expression given by (4.3.40) in the flame region is 0.08, which shows

the validity of modeling the temperature change as a jump. The same manipulation

can be carried out for a quadratic temperature profile. Expression (4.3.40) gives correct

results also for examples showed in Sujith [2001].

4.3.4 Tailored Green’s function in the time-domain for the

LIMOUSINE burner

We use Eq. (4.3.30) for the frequency-domain tailored Green’s function. In order to

obtain the Green’s function in the time-domain, we apply Inverse Fourier Transform

in the following form

G(x, ξ, t, τ) = − 1

2π

∞

∫
−∞

Ĝ(x, ξ, ω)e−iωtdω . (4.3.41)
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The integral with respect to ω, which yields the inverse transform, is calculated with

the residue theorem

−

1

2π

∞

∫
−∞

Ĝ(x, ξ, ω)e−iωtdω = −i∑
k

Res (Ĝ(x, ξ, ω)e−iωt)∣
ω=ωn

. (4.3.42)

For t < 0 we integrate along the closed path involving the semicircle in the upper half

plane (see Figure 4.11). No poles are enclosed by this path, hence

−

1

2π

∞

∫
−∞

Ĝ(x, ξ, ω)e−iωtdω = 0 if t < 0 . (4.3.43)

For t > 0 we integrate along the path involving the semicircle in the lower half plane.

All poles are enclosed by this curve. Using Eq. (4.3.30) we can see that the frequency

domain Green’s function can be written generally as p(ω)/q(ω). The residue of a

quotient p(ω)/q(ω) with simple poles can be obtained by [Osborne, 1999, p.158]

ω1 ω2 ω3 ω4ω0ω−1ω−2ω−3ω−4

t < 0

t > 0

Re(ω)

Im(ω)

Figure 4.11: Distribution of the complex eigenfrequencies and integration paths (− − −:
t > 0, ⋯⋯: t < 0)
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Res(p(ωn)
q(ωn)) =

p(ω)
∂q(ω)
∂ω

!!!!!!!!!!!ω=ωn

. (4.3.44)

We can then combine the results for t < 0 and t > 0 by using the Heaviside function,

−

1

2π

∞

∫
−∞

e−iωt
p(ω)
q(ω)dω = iH(t) ∞

∑
k=−∞

e−iωt
p(ω)
∂q(ω)
∂ω

!!!!!!!!!!!ω=ωn

. (4.3.45)

Sturm’s oscillation theorem states that the poles are simple, and the Green’s function

has infinite number of them. It can be shown that the pole of the trivial solution ω = 0

yields vanishing residue. The time-domain Green’s function can be therefore calculated

as

G(x, ξ, t, τ) =

∞

∑
k=−∞
k≠0

iH(t − τ)e−iωk(t−τ)ĝ(x, ξ, ωk) where ĝ(x, ξ, ωk) =
p(ω)
∂q(ω)
∂ω

!!!!!!!!!!!ω=ωk

.

(4.3.46)

The sum in Eq. (4.3.46) involves modes and their complex conjugate as well, because

the eigenfrequencies are symmetric to the imaginary axis. To show this we multiply

Eq. (3.2.1) by the complex conjugate of p̂

T̄ p̂∗
d2p̂

dx2
+

dT̄

dx
p̂∗

dp̂

dx
+

ω2

γR
p̂∗p̂ = 0 . (4.3.47)

We multiply the complex conjugate of Eq. (3.2.1) by p̂

T̄ p̂
d2p̂∗

dx2
+

dT̄

dx
p̂
dp̂∗

dx
+

ω∗2

γR
p̂p̂∗ = 0 . (4.3.48)
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We subtract Eq. (4.3.47) from Eq. (4.3.48) to get

d

dx
[c̄(p̂∗ dp̂

dx
− p̂

dp̂∗

dx
)] = (ω2

− ω∗2)p̂p̂∗ , (4.3.49)

then we integrate Eq. (4.3.49) over [0, L] with respect to x. Because the boundary

conditions are linear, homogeneous and unmixed, the L.H.S. vanishes, and therefore

we get

(ω2
− ω∗2)

L

∫
0

∣p̂∣2 dx = 0 , (4.3.50)

which is satisfied if ω = ±ω∗, i.e. the eigenfrequencies are symmetric to the imaginary

axis. Applying this property we can write the time-domain Green’s function in Eq.

(4.3.46) as

G(x, ξ, t, τ) =

∞

∑
n=1

iH(t − τ)e−iωn(t−τ)ĝ(x, ξ, ωn) + C.C. , (4.3.51)

where C.C. denotes the complex conjugate. One can pick a certain mode in Eq. (4.3.51)

by taking a certain mode number n.

4.4 Conclusions

We considered 5 configurations (to model the laboratory burner) with increasingly

complex mean temperature profiles and calculated the eigenfrequencies and pressure

distribution with a Green’s function approach. Comparing the results we found that

the simplest configuration (burner with uniform temperature in the cold inlet and hot

outlet regions, small jump in the mean temperature in the flame region) gave predic-

tions with a substantial error, while the other configurations all predicted very similar

results which agreed very well with the measurements. We can therefore conclude that
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configuration 2 (piecewise uniform temperature profile with a jump at the flame) cap-

tures all important properties of the fundamental mode and that there is no need for

more complex modelling.

We derived asymptotic solutions for the wave equation with non-uniform temper-

ature when the temperature increase across a region is either small or large. The

time-domain Green’s function was also presented by applying inverse Fourier Trans-

form. Summary of the chapter in keywords:

we reduced the problem to finding the corresponding Green’s function of the

governing equation,

we modelled realistic configurations,

in case of the fundamental mode a simple configuration with a mean temperature

jump gives accurate results in the total parameter space,

we identified quantities, which show when the temperature jump can be neglected

or modeled as a jump, and

we presented the Green’s function in the time-domain as superposition of the

modes.
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Chapter 5

Heat-release

In this chapter we extend our consideration from the passive resonator to

the active resonator by relating the fluctuating heat-release to the acoustic

quantities. We assume that the released heat is proportional to the flame

surface area, which is going to be therefore calculated. To this end we

apply an analytical approach: the level set method, which is capable to

track the evolution of geometrical shapes. We derive expressions for the

heat-release rate in the linear and weakly non-linear regimes.

5.1 Introduction

Several physical effects that occur in a combustion system act as sources of sound

[Crighton et al., 1992, p.381]: unsteady combustion, viscosity (Obermeier [1985]), heat

and mass diffusion (Kempton [1975]; Morfey [1973]; Obermeier [1975]), mean density

variation (e.g. turbulent two-phase flow Crighton and Ffowcs Williams [1969]), and

momentum changes of density inhomogeneities (Ffowcs Williams and Howe [1974]).

By far the dominant source mechanism is the unsteady combustion. Variations in the

heat-release rate produce temperature fluctuations, which in turn produce pressure

fluctuations. These pressure fluctuations travel away from the combustion zone as a

sound wave.

Unsteady combustion is a strong monopole source [Crighton et al., 1992, p.381]. The
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prototype of a monopole source is a body with oscillating volume.

The governing equation for combustion-driven sound waves is Eq. (3.1.12), which is the

wave equation for the acoustic pressure with a source term that is due to the unsteady

heat release rate. To solve Eq. (3.1.12) we need to close the acoustic loop, i.e. to relate

the volumetric heat-release rate Q′ to the acoustic properties.

5.2 G-Equation

5.2.1 Derivation of the G-equation

In this thesis we consider premixed flames. If the fuel has been homogeneously mixed

with the oxidizer and a heat source is supplied, it becomes possible for a flame to

propagate. The gas behind the flame rapidly approaches the burnt gas state, while the

mixture in front of the flame is in the unburnt state.

The flame can be considered as an interface, which separates the unburnt and burnt

mixtures. The flame speed is the rate of propagation of the flame. Laminar flame

speed is the speed at which a laminar flame propagates through a stationary unburnt

mixture. The laminar flame speed is the property of the mixture only, but this does not

hold for turbulent flames. As flow velocity and therefore turbulence increases, the flame

begins to wrinkle, then corrugate and eventually the flame front breaks up. Therefore,

the flame front of a turbulent flame propagates at a speed that does not only depend

on the mixture’s chemical properties, but also on the flow and on the turbulence. In

this thesis we consider only laminar flames, and neglect the effects of turbulence.

We assume that the flame sheet is infinitely thin and the released heat is constant

along the flame, therefore in our model the unsteady heat release rate depends on

the instantaneous area of the flame sheet only. To represent an infinitely thin flame

we apply the level set method (LSM), which is an analytical tool of mathematics for

tracking interfaces and shapes. It is capable of tracking shapes which change the

topology, for instance breaking down into two objects or the reverse of this process.

Application of LSM to model the flame sheet is described in [Peters, 2000, pp.91-119].
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Many authors have used this method, for example: Dowling [1997, 1999]; Ducruix et al.

[2000]; Lee and Lieuwen [2003]; Lieuwen [2005]; Lieuwen and Zinn [1998]; Schuller et al.

[2002, 2003].

The flame surface divides the region of the combustor into two separate zones. We

introduce a scalar quantity, G which is negative (G < 0) upstream of the flame in the

unburnt region, and positive (G > 0) downstream of the flame in the burnt region. This

is shown in Figure (5.1). We can write the Lagrangian derivative of the scalar G along

the flame surface as

∂G

∂t
+∇G ⋅

dx

dt
= 0 . (5.2.1)

x

r

G < 0

G > 0

Sl

v

flameunburnt mixture

burnt mixtureflame holder

Figure 5.1: Schematic representation of the flame by the level set method

The mass conservation across the flame yields the relation between the flow velocity and

the flame speed. The tangential component of the flow velocity is not affected by the

combustion, the normal velocity component however changes due to the temperature

jump across the flame sheet. Therefore we can write

dx

dt
= v + n ⋅ Sl , (5.2.2)

where Sl is the laminar flame speed, v is the flow velocity vector in the unburnt region

and n is the normal vector pointing towards the unburnt mixture. The normal vector
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is given by n = −∇G/∣∇G∣, where ∣ . . . ∣ indicates the Euclidean norm, and therefore the

equation which describes the flame sheet evolution is

∂G

∂t
+ v ⋅ ∇G = Sl∣∇G∣ . (5.2.3)

The R.H.S. of Eq. (5.2.3) is non-linear, this type of partial differential equations is

called Eikonal.

5.2.2 Laminar flame speed

The laminar flame speed Sl depends on several parameters. From [Peters, 2000, p.101]

Sl = S0

l −LS0

l κ , (5.2.4)

where S0

l is the flame speed of the uncurved flame and L is the Markstein length, which

characterizes the effect of the curvature on the flame speed, and κ is the curvature. The

flame curvature is defined in a standard mathematical way by κ = ∇ ⋅ n. Eq. (5.2.4)

shows that the flame speed of a curved flame differs from that of the corresponding

uncurved flame.

5.2.2.1 Dependence on temperature and pressure

Important factors that affect the uncurved laminar flame speed (S0

l ) are the temper-

ature and the pressure [Turns, 2000, p.278]. It is convenient to introduce here the

concept of ’equivalence ratio’. It is given by the expression

Φ =
(fuel/air)actual
(fuel/air)stoich , (5.2.5)

where (fuel/air)stoich is the stoichiometric fuel/air ratio. The terms lean and rich refer

to the case where Φ < 1 and Φ > 1 respectively. Adiabatic flame temperature is the
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characteristic temperature of a combustion process. The constant pressure adiabatic

flame temperature and constant volume adiabatic flame temperature are the tempera-

ture values that result from a complete combustion process which occurs without heat

loss at constant pressure and volume respectively.

0.5 1 1.5
1000

1250

1500

1750

2000

2250

Φ [−]

Tad [K]

Figure 5.2: Adiabatic flame temperature of methane as function of the stoichiometric
ratio measured at constant pressure of 1 atm. and 25 oC, from Law et al.
[2006]

Figure (5.2) shows how the adiabatic flame temperature of methane (the fuel used

in the LIMOUSINE burner) depends on the equivalence ratio. Using measurements

empirical relationships were introduced to calculate the flame speed. Andrews and

Bradley [1972] included only the effect of changing the temperature of the unburnt

mixture, and derived Eq. (5.2.6a). Metghalchi and Keck [1982] provided Eq. (5.2.6b)

which includes the effect of the equivalence ratio, the temperature of the unburnt

mixture (Tu) and the pressure (p). In this case the laminar flame speed is calculated

from a reference point [S0

l,ref ;Tu,ref ;pref] using the empirical coefficients α and β.

S0

l = 10 + 3.71 ⋅ 10−4 [Tu]2 , (5.2.6a)

S0

l = S0

l,ref(Φ)( Tu

Tu,ref

)
α

( p

pref
)
β

, (5.2.6b)
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where Tu is the temperature of the unburnt mixture and must be taken in Kelvin.

n

burntunburnt

G > 0G < 0

P

radius of curvature =
1

κ

κ > 0

κ < 0

Figure 5.3: Curved flame front (⋯: κ < 0, − − −: κ > 0)

5.2.2.2 Dependence on curvature

The flame speed also depends on the curvature (Markstein [1951]). Figure (5.3) shows a

curved flame front. The curvature term adds a second order derivative to the kinematic

G-equation. This avoids the formation of cusps and non-unique solutions that would

result from a constant value of the flame speed. The physical interpretation is that

the curvature affects the flame speed along the flame surface, i.e. positive curvature

results in smaller flame speed and vice versa.

5.2.2.3 Dependence on the Markstein length

The Markstein length is the product of the Markstein number (Mn) and the flame

thickness (lF ). The exact formula to calculate the Markstein number can be found
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in [Peters, 2000, p.90]. In the LIMOUSINE project methane is burnt in the test

combustor. For methane flames the expression reduces to (Bechtold and Matalon

[2001])

Mn =
L

lF
=
1

ϕ
ln

1

1 − ϕ
, (5.2.7)

where ϕ = (Tb − Tu)/Tb is the gas expansion parameter, Tb and Tu is the temperature

of the burnt and the unburnt gas respectively. The flame thickness can be calculated

by using a one-dimensional approach based on conservation equations [Turns, 2000,

pp.267-280]

lF = 2
k

ρucpS
0

l

. (5.2.8)

In the LIMOUSINE project using Eq. (5.2.8) the flame thickness is lF ≈ 2.2 mm, which

is in excellent agreement with the result of the measurement of 2 mm (LIMOUSINE

group [2011]). Using the measurement data of Table (4.2) Tb = 1320 K and Tu = 400

K, the Markstein length of our setup is L = 3.77 mm. This result is going to be used

later.

5.2.3 Non-linearities of the G-Equation model

The G-Equation involves two different types of non-linearities. This property is em-

phasized also by Lieuwen [2005]. In both cases, the nonlinearity is of geometric origin

and is introduced by the orthogonal flame-front propagation and by calculation of the

flame surface area.

1. orthogonal flame-front propagation, and

2. dependence of the flame area upon flame position gradient.
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Figure (5.4) shows the non-linearities of the G-Equation model.

Level-set
of a scalar

Flame position Heat release

Mathematically:
Nonlinear PDE

Physically: Or-
thogonal flame
propagation

Mathematically:
Nonlinear
integration

Physically:
Flame surface
area calculation

1. step 2. step

Figure 5.4: Non-linearities of the heat-release in the G-Equation approach

5.3 Solutions of the G-Equation

5.3.1 Curvature effects are neglected

We are going to solve the kinematic G-Equation in a cylindrical coordinate system.

At this stage we neglect the effect of the curvature. We consider two types of flames:

ducted flames Figure (5.5(a)), which are attached to a flame holder and the open flames

Figure (5.5(b)), in which case the flame is attached to the rim of a tube.

�

��

�� ����

(a) Axisymmetric ducted flame

�

�
� ����

(b) Axisymmetric open flame

Figure 5.5: (a) Axisymmetric ducted flame and (b) axisymmetric open flame

In a cylindrical coordinate system assuming rotational symmetry (∂/∂θ = 0) the G-

Equation is of the following form
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∂G

∂t
+ u

∂G

∂x
+ v

∂G

∂r
= S0

l

√
(∂G
∂x

)
2

+ (∂G
∂r

)
2

, (5.3.1)

where u is the velocity component parallel to the tube axis, and v is the radial one. We

assume that the radial velocity component is negligible, i.e. v = 0. In the LIMOUSINE

setup the width of the flame region is approximately two orders of magnitude smaller

than the wavelength of the fundamental mode, therefore we assume that the spatial

dependence of the fluctuating velocity component can be neglected inside the flame

region, i.e. ū(x) = ū = constant and u′(x, t) = u′(t). Eq. (5.3.1) then simplifies to

∂G

∂t
+ [ū + u′(t)]∂G

∂x
= S0

l

√
(∂G
∂x

)
2

+ (∂G
∂r

)
2

. (5.3.2)

5.3.1.1 Solution for the mean flame position

The mean component of Eq. (5.3.2) is

ū
∂Ḡ

∂x
= S0

l

"##$(∂Ḡ
∂x

)2 + (∂Ḡ
∂r

)2 . (5.3.3)

The boundary condition is that the flame is attached to the flame holder at the point

[x0, r0], i.e. Ḡ = 0 at [x0, r0]. We can write the solution in the following form

Ḡ(x, r) = (x − x0) ± (r − r0)
"##$( ū

S0

l

)2 − 1 . (5.3.4)

This solution is shown in Figure (5.6).

Eq. (5.3.4) describes a conical shape, and shows that the mean flow velocity must be

greater or equal than the laminar flame speed. Using implicit differentiation for Ḡ we

can see that 1/√(ū/S0

l )2 − 1 is the tangent of the angle (denoted by α in Figure (5.6))

between the mean flame position and the tube axis. When ū → S0

l , the flame is very
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x

r

G < 0

G > 0

Sl

ū

unburnt mixture

burnt mixtureflame holder

α

P0(x0, r0)

P1(x1, r1)

Figure 5.6: Mean position of a laminar flame for plug flow, i.e. ū=constant

short and its mean position is perpendicular to the tube axis. When ū≫ S0

l , the flame

is very long and its mean position is parallel to the tube axis. For the mean flame

position to be stationary, S0

l must be balanced with the component of the velocity,

which is perpendicular to the flame, i.e. S0

l = ū sinα.

5.3.1.2 Asymptotic solutions for the fluctuating flame position

In order to analyze Eq. (5.3.2) we introduce the following non-dimensional quantities

x̃ =
x − x0

x1 − x0

,

r̃ =
r − r0

r1 − r0
,

t̃ =t
S0

l√(x1 − x0)2 + (r1 − r0)2 ,

G̃ =
G√(x1 − x0)2 + (r1 − r0)2 .

(5.3.5)

[x1, r1] is the end point of the flame (see Figure (5.6)). G is divided by the mean length

of the flame, t is divided by the time, which is needed for a perturbation to travel along

the mean flame length with the flame speed S0

l . Eq. (5.3.2) can therefore be written

in the following form
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∂G̃

∂t̃
+

u′

S0

l

∂G̃

∂x̃
+

ū

S0

l

⎡⎢⎢⎢⎢⎣
√

1 + ( r1 − r0

x0 − x0

)2⎤⎥⎥⎥⎥⎦
∂G̃

∂x̃
=

=

())*[1 + ( r1 − r0

x1 − x0

)2](∂G̃
∂x̃

)2

+ [1 + (x1 − x0

r1 − r0
)2](∂G̃

∂r̃
)2

. (5.3.6)

We now use tanα = (r1 − r0)/(x1 − x0), S0

l /ū = sinα, and rewrite Eq. (5.3.6) as

∂G̃

∂t̃
+

u′

S0

l

∂G̃

∂x̃
+

√
1

sin2 α
+

1

cos2 α

∂G̃

∂x̃
=

()))*⎡⎢⎢⎢⎢⎣1 + tan2 α

⎤⎥⎥⎥⎥⎦(
∂G̃

∂x̃
)2

+

⎡⎢⎢⎢⎢⎣1 +
1

tan2 α

⎤⎥⎥⎥⎥⎦(
∂G̃

∂r̃
)2

.

(5.3.7)

We can see that in Eq. (5.3.7) the non-linearity is governed by tan2 α, i.e. by the

gradient of the mean position. If tan2 α is either larger or smaller than 1 by an order

of magnitude, the non-linearity is weak. This is the case if the angle α is larger

than approximately 70 degrees, or smaller than approximately 17 degrees. α = 70o

corresponds to ū/S0

l = 1.05 and α = 17o to ū/S0

l = 3. These regions are shown in Figure

(5.7). In a typical combustion rig the laminar flame speed is approximately 0.3 − 0.6

m/s, the mean flow velocity is larger than 1 m/s, which corresponds to region 2.

x

r

strongly nonlinear

weakly nonlinear

ū
S0

l

= 3

ū
S0

l

= 1.05
2

1

ū A B

Figure 5.7: Non-linear regimes of a laminar flame (regions 1,2: weakly non-linear; A,B:
strongly non-linear; ⋯: tanα = 1)
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In regions 1 and 2 the G-Equation exhibits weak non-linearity, i.e. to the leading order

it is linear, and non-linear terms appear at higher orders. In regions A and B the

G-Equation is strongly non-linear, and this case is discussed in Appendix (B.1). In

regions 1 and 2 we assume small amplitudes (i.e. u′ ≪ ū), therefore the dimensional

form of the fluctuating component of Eq. (5.3.7) to the leading order is

region 1 ∶
∂G′

1

∂t
+ (ū − S0

l sinα)∂G′1∂x
= u′(t) , (5.3.8a)

region 2 ∶
∂G′

2

∂t
+ ū

∂G′
2

∂x
+ S0

l cosα
∂G′

2

∂r
= u′(t) , (5.3.8b)

where G′
1
and G′

2
are the fluctuating components of G in regions 1 and 2 respectively.

x0

Fr(r, t)

r0

r1

r0

(a) G = x − x0 − Fr(r, t)
x0

Fx(x, t)
r0

r1

r0

(b) G = r − r0 − Fx(x, t)

Figure 5.8: Schematic representation of the trial solutions

To solve Eq. (5.3.2) it is common to apply the trial solution of G = x − x0 − Fr(r, t)
or G = r − r0 − Fx(x, t), which are shown in Figure (5.8). In the next section we will

show that seeking the solution in the form of G = x− x0 −Fr(r, t) results in loosing the

underlined term in Eq. (5.3.8b).
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5.3.1.3 Effects of the trial solutions

The advantage of seeking the solution of the G-Equation in either form of G = x − x0 −

Fr(r, t) or G = r − r0 − Fx(x, t) is that it gives solutions explicit in x or r respectively

(see Figure (5.8)). The linearized fluctuating components of the flame front position

are

∂G′

∂t
+ [ū + u′(t) − S0

l sinα]∂G′∂x
+ S0

l cosα
∂G′

∂r
= u′(t) , (5.3.9a)

∂F ′

r

∂t
+ S0

l cosα
∂F ′

r

∂r
= u′(t) , (5.3.9b)

∂F ′

x

∂t
+ [ū + u′(t) − S0

l sinα]∂F ′

x

∂x
= u′(t) , (5.3.9c)

where Eq. (5.3.9a) is the linearized dimensional form of Eq. (5.3.7). Eq. (5.3.9b) and

Eq. (5.3.9c) are the linearized dimensional fluctuating components of Eq. (5.3.7), if we

seek the solution in the form of G = x−x0 −Fr(r, t) or G = r − r0 −Fx(x, t) respectively.

Applying these trial solutions has the following consequences:

Since Fr and Fx must be well defined, the effect of introducing trial solutions of

these forms results in neglecting oscillations of the flame in the r or x directions

respectively. This can be seen in Figure (5.8) and (5.9).

Comparing Eq. (5.3.9c) with Eq. (5.3.8a) shows that introducing G = r − r0 −

Fx(x, t) yields no loss of accuracy to the leading order in region 1 for small values

of u′(t), i.e. if u′(t)≪ ū.

Comparing Eq. (5.3.9b) with Eq. (5.3.8b) shows that using G = x − x0 − Fr(r, t)
results in neglecting the underlined term in Eq. (5.3.8b).

Applying G = x−x0 −Fr(r, t) is implicitly a small amplitude approximation, since

the term u′ ⋅ ∂G′/∂x is not represented in Eq. (5.3.9b).

The partial time derivative and the forcing terms are independent of the trial
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solutions (these are indicated by the dashed boxes in Eqs. 5.3.9a-5.3.9c).

Eq. (5.3.9a) is valid to the leading order in region 1 and 2.

Eq. (5.3.9c) is valid to the leading order in region 1.

r0

r1
oscillations

x0

r0

(a) G = x − x0 − Fr(r, t)

r0

r1

oscillations

x0

r0

(b) G = r − r0 − Fx(x, t)

Figure 5.9: Effect of the trial solutions on the flame front behavior

5.3.1.4 Linear solution

To obtain a solution for the fluctuating component of the flame position, we assume

small amplitudes (u′ ≪ ū), which simplifies Eq. (5.3.9a) to the following form

∂G′

∂t
+

∂G′

∂x
(ū − S0

l sinα) + S0

l cosα
∂G′

∂r
= u′ . (5.3.10)

Eq. (5.3.10) reduces to Eq. (5.3.8a) and to Eq. (5.3.8b) for large and small α respec-

tively. The general solution of Eq. (5.3.10) can be obtained by performing a general

coordinate system transformation and Laplace Transform (see Appendix (B.2)) to get

G′(t, x, r) = G′(t − χ(x, r)) =H[t − χ(x, r)]G′(t − χ(x, r),0)+
+H[χ(x, r) − t]G′(0, χ(x, r) − t) +

t

∫
t−χ(x,r)

u′(τ)dτ ,

(5.3.11)
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where H is the Heaviside function, and χ(x, r) is a time-lag, i.e. it is the time required

for a perturbation to travel from the attachment point [x0, r0] to a point [x, r] of the
flame.

χ(x, r) =
η(x − x0) − ǫ(r − r0)

η (ū − S0

l sinα) − ǫS0

l cosα
η, ǫ ∈ R . (5.3.12)

Any η and ǫ represents a solution. Eq. (5.3.10) is satisfied by (5.3.12) for any η and

ǫ, i.e. Eq. (5.3.10) has an infinite number of travelling wave solutions. The first

term on the R.H.S. of Eq. (5.3.11) is due to the boundary condition at the point

of attachment, the second term is due to the initial condition. We can see that the

second term vanishes if t > χ, therefore neglecting the initial condition does not affect

the physics of the solution. The boundary condition however plays an important role

when solving the G-Equation. This is reflected in Eq. (5.3.11) as well. In case of

vanishing initial and boundary conditions the first two terms on the R.H.S. of Eq.

(5.3.10) vanish. Any unsteadiness in the oncoming velocity u′(t) forces perturbations

to the flame front which propagate from the attachment of the flame. Unique solutions

have been obtained by earlier researchers in two ways:

Introducing either of the trial solutions (G = x−x0−Fr(r, t) or G = r−r0−Fx(x, t))
yields a unique solution, which is equivalent to setting η = 0 or ǫ = 0 respectively.

This method was used in [Dowling, 1999; Ducruix et al., 2000; Lieuwen, 2005].

Rotating the coordinate system in such a way that one of the rotated axis lies

along the mean flame position. This method corresponds to setting η = cosα and

ǫ = − sinα (rotation by the angle π/2 − α clockwise) or to η = sinα and ǫ = cosα

(rotation by α anti-clockwise). The first case is shown in Figure (5.10). The

rotation matrix is given by

⎛
⎜⎜
⎝

w

z

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

cosα − sinα

sinα cosα

⎞
⎟⎟
⎠

⋅

⎛
⎜⎜
⎝

x

r

⎞
⎟⎟
⎠

. (5.3.13)
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Solving the G-Equation in a rotated coordinate system was done by [Lieuwen

et al., 2006; Schuller et al., 2003].

x

r

mean flame positionr′

w

z

x′

unburnt mixture

burnt mixture
flame holder

αP0(x0, r0)

Figure 5.10: Transformation of the coordinate system to the mean flame position

5.3.2 Summary of the solutions of the G-Equation without

curvature effects

5.3.2.1 Solutions for the mean and linearized fluctuating components of

the full G-Equation

The solution for the mean position of the flame is given by Eq. (5.3.4), i.e.

Ḡ = (x − x0) ± (r − r0)
 !� ( ū

S0

l

)
2

− 1 . (5.3.14)

The solution for the linearized fluctuating component for zero initial and boundary

condition is

G′(t, x, r) =

t

∫
t−χ(x,r)

u′(τ)dτ , (5.3.15)

where
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χ(x, r) =
η(x − x0) − ǫ(r − r0)

η (ū − S0

l sinα) − ǫS0

l cosα
η, ǫ ∈ R . (5.3.16)

5.3.2.2 Solutions in the form of G = r − r0 − Fx(x, t)

The solution for the mean flame position by applying G = r − r0 − Fx(x, t) is

F̄x = ±(x − x0) 1√( ū
S0

l

)2 − 1

, (5.3.17)

and the one for the linearized fluctuating component is

F ′

x(x, t) =
t

∫
t−χx

u′(τ)dτ , where χx =
x − x0

ū − S0

l sinα
. (5.3.18)

5.3.2.3 Solutions in the form of G = x − x0 − Fr(r, t)
The solution for the mean flame position by applying G = x − x0 − Fr(r, t) is

F̄r = ±(r − r0)
%&&'( ū

S0

l

)2 − 1 , (5.3.19)

and the one for the linearized fluctuating component is

F ′

r(r, t) =
t

∫
t−χr

u′(τ)dτ , where χr =
r − r0

S0

l cosα
. (5.3.20)

5.3.3 Curvature effects are considered

If we take curvature effects into account, the laminar flame speed is given by

Sl = S0

l −LS0

l κ , (5.3.21)

where S0

l is the laminar flame speed of the unwrinkled flame and L is the Markstein
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length, which was calculated in Section (5.2.2). The curvature of the flame sheet κ

can be calculated by ∇ ⋅n. By assuming constant mean flow (ū=constant), vanishing

radial velocity component (v = 0), and negligible spatial dependence of the acoustic

velocity (u′ = u′(t)) we can write the G-Equation in a cylindrical coordinate system

with curvature terms as

∂G

∂t
+ u

∂G

∂x
= S0

l

√
(∂G
∂x
)2 + (∂G

∂r
)2 − S0

l L
2∂G
∂x

∂G
∂r

∂2G

∂x∂r
− (∂G

∂r
)2 ∂2G

∂x2 − (∂G∂x)2 ∂2G

∂r2(∂G
∂x
)2 + (∂G

∂r
)2 . (5.3.22)

This is a second-order differential equation, in contrast to the case without curvature.

The advantage of introducing G = x−x0−Fr(r, t) rather than G = r−r0−Fx(x, t) is that
we can prescribe boundary conditions for specific r values, i.e. at r = r1 or at r = r0.

For an open flame the tip of the flame is rounded, therefore in this case the second

boundary condition is that ∂F̄r/∂r = 0 at r = 0.

5.3.3.1 Effect of curvature on the mean flame position

If we introduce G = x − x0 −Fr(r, t), we can write the mean component of Eq. (5.3.22)

in terms of Fr in the following form

ū

S0

l

=

&''*1 + (∂F̄r

∂r
)2 −L ∂2F̄r

∂r2

1 + (∂F̄r

∂r
)2 . (5.3.23)

The implicit solution of Eq. (5.3.23) can be obtained by introducing and integrating a

new function for arctan∂F̄r/∂r (for details see Appendix (B.3))

r − c0

2L

ū

S0

l

= arctan

⎡⎢⎢⎢⎢⎢⎣
∂F̄r

∂r

1 +
√
1 + (∂F̄r

∂r
)2
⎤⎥⎥⎥⎥⎥⎦
+

1√
ū2

S2

l

− 1
arctanh

⎡⎢⎢⎢⎢⎢⎣
&''* ū

Sl
+ 1

ū
Sl
− 1

∂F̄r

∂r

1 +
√
1 + (∂F̄r

∂r
)2
⎤⎥⎥⎥⎥⎥⎦
,

(5.3.24)
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where c0 is a constant to be determined from the boundary condition, by which we

prescribe ∂F̄r/∂r in a certain point, e.g. ∂F̄r/∂r = 0 at r = 0, which yields c0 = 0 for an

open flame. Eq. (5.3.24) shows that the solution is governed by 2 parameters, ū/S0

l

and (r − c0)/2L. The solution given by Eq. (5.3.24) is plotted in Figure (5.12) with

solid lines for certain values of ū/S0

l . Eq. (5.3.24) also shows that

lim
r−c0
2L
→±∞

∂F̄r

∂r
= ±

 !!"( ū

S0

l

)2

− 1 , (5.3.25)

i.e. the gradient of the mean flame position of a curved flame tends to the one of

an uncurved flame (given by the spatial derivative of Eq. (5.3.19)) as (r − c0)/2L
approaches infinity, i.e. either L tends to zero, or r to infinity. (see Figure (5.11)).

∣r∣→
∞

uncurved part

curved part

r

F̄r

wall

f low

Figure 5.11: Schematic representation of an axisymmetric open curved flame
( : uncurved part, − − −: curved part)

91



arctan and arctanh can be linearized for small arguments

arctan

⎡⎢⎢⎢⎢⎢⎣
∂F̄r

∂r

1 +

√
1 + (∂F̄r

∂r
)2
⎤⎥⎥⎥⎥⎥⎦
=

∂F̄r

∂r

1 +

√
1 + (∂F̄r

∂r
)2 , (5.3.26a)

arctanh

⎡⎢⎢⎢⎢⎢⎣
())* ū

Sl
+ 1

ū
Sl
− 1

∂F̄r

∂r

1 +
√
1 + (∂F̄r

∂r
)2
⎤⎥⎥⎥⎥⎥⎦
=

())* ū
Sl
+ 1

ū
Sl
− 1

∂F̄r

∂r

1 +
√
1 + (∂F̄r

∂r
)2 . (5.3.26b)

The curved part of the flame corresponds to the near-origin region of Figure (5.12).

We can see that in this regime the position gradient is linear. We substitute with Eq.

(5.3.26a) and Eq. (5.3.26b) for the R.H.S. of Eq. (5.3.24) to get the following explicit

approximation

∂F̄r

∂r
= 2 [ ū

S0

l

− 1] r−c0
2L

1 − [ r−c0
2L

( ū
S0

l

− 1)]2 . (5.3.27)

For large (r− c0)/2L the solution in Eq. (5.3.24) is dominated by the function arctanh

(since the maximum of arctan is π/2), therefore by using Eq. (5.3.25) we can see that

lim
r−c0
2L
→∞

arctan

⎡⎢⎢⎢⎢⎢⎣
∂F̄r

∂r

1 +
√
1 + (∂F̄r

∂r
)2
⎤⎥⎥⎥⎥⎥⎦
= arctan

⎛⎜⎝
()))* ū

S0

l

− 1

ū
S0

l

+ 1

⎞⎟⎠ . (5.3.28)

By substituting with Eq. (5.3.28) for the first term on the R.H.S. of Eq. (5.3.24) we

get the following asymptotic explicit solution for large (r − c0)/2L
∂F̄r

∂r
=

2ζ

1 − ζ2
, (5.3.29)

where ζ is given by
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ζ =

�   ! ū
S0

l

− 1

ū
S0

l

+ 1
tanh

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�  !( ū

S0

l

)2 − 1

⎡⎢⎢⎢⎢⎢⎣
ū

S0

l

r − c0

2L
− arctan

⎛⎜⎝
�   ! ū

S0

l

− 1

ū
S0

l

+ 1

⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5.3.30)

∂F̄r/∂r tends to
√(ū/S0

l )2 − 1, hence large (r − c0)/2L does not necessarily correspond

to large ∂F̄r/∂r. The exact implicit solution and the explicit approximations are shown

in Figure (5.12). In the grey region the explicit solutions given by Eq. (5.3.27) and

Eq. (5.3.29) yield more than 5 % error. The grey region in Figure (5.12) corresponds

to the strongly non-linear region of Figure (5.7).

∂F̄
∂r

r−c0
2L

ū
S0

l

= 1.1

ū
S0

l

= 1.5

ū
S0

l

= 2.0

ū
S0

l

= 3.0

ū
S0

l

= 4.0
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 5.12: Gradient of the mean flame position as function of (r − c0)/2L ( :
exact implicit solution by Eq. (5.3.24), − − −: approximation given by Eq.
(5.3.27), ⋯⋯: approximation given by Eq. (5.3.29))
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Figure (5.12) shows that increasing ū/S0

l reduces the region, in which curvature is im-

portant.

To obtain the flame position in the curved region of the flame we perform the in-

tegration of Eq. (5.3.27), and write it in the following form

F̄r

r1 − r0
= c1 −

2L

r1 − r0

1
ū
S0

l

− 1
ln{1 − [ r − c0

r1 − r0

r1 − r0

2L
]2} , (5.3.31)

where c1 is constant. r̃ = (r − c0)/(r1 − r0) is a nondimensional radial coordinate, and

lies in the interval of [−1; 1]. For an open flame ∂F̄r/∂r = 0 at r0 = 0, which gives c0 = 0,

and the nondimensional radial coordinate is r̃ = r/r1.
Integration of Eq. (5.3.29) yields the solution for the mean position far from the curved

part of the flame

F̄r

r1 − r0
= c2 −

2L

r1 − r0
[ ū

S0

l

( ū

S0

l

+ 1)]−1

ln

⎧⎪⎪⎨⎪⎪⎩2
ū
S0

l

ū
S0

l

+ 1
+

2
ū
S0

l

+ 1
cosh2Λ

⎫⎪⎪⎬⎪⎪⎭ , (5.3.32)

where c2 is constant, and Λ is given by

Λ =

1223( ū

S0

l

)2 − 1

⎡⎢⎢⎢⎢⎢⎣
ū

S0

l

r − c0

r1 − r0

r1 − r0

2L
− arctan

⎛⎜⎝
12223 ū

S0

l

− 1

ū
S0

l

+ 1

⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦
. (5.3.33)

Open flame shapes for different values of L/r1 and ū/S0

l are shown in Figure (5.13),

and a schlieren image by Ducruix et al. [2000] with ū/S0

l = 2 and L/r1 = 0.1.
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Figure 5.13: Axisymmetric open flame shapes using Eqs. (5.3.31) and (5.3.32) for (a)
ū/S0

l = 3, (b) ū/S0

l = 2, (c) Schlieren image from Ducruix et al. [2000] with
L

r1
= 0.1 and ū

S0

l

= 2 ( : L/r1 = 1, − − −: L/r1 = 0.1)

Figure (5.12) and (5.13) shows that curvature is important, if

L

r1 − r0
=
L

lF

lF

r1 − r0
= Mn

lF

r1 − r0
≤ O(1) . (5.3.34)

For methane combustion systems the Markstein number (Mn) is of the order of unity,

therefore Eq. (5.3.34) shows that the condition for the curvature to contribute to the

leading order solution is that the flame width is at least of the same order as the width

between the wall and the flame holder. In the LIMOUSINE burner L/(r1 − r0) is of

the order of 10−1, therefore we neglect the effects of curvature.
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5.4 Derivation of the heat release rate law

In our model the released heat is proportional to the flame surface area, which is

described by the scalar G

qr(t) = ρuS
0

l ∆qrA(t) , (5.4.1)

where qr(t) is the total global heat-release in a cylindrical system, ∆qr is the heat

released per unit mass by the chemical reaction, ρu is the density of the unburnt

mixture, and A(t) is the time-dependent flame surface area. The surface of the flame

can be obtained by rotation of the function Fx(x, t) around the x-axis or by rotation

of the function Fr(r, t) around r = 0, therefore it can be calculated by

A =

x1

∫
x0

2πFx

√
1 + (∂Fx

∂x
)2dx , (5.4.2a)

=

r1

∫
r0

2πr

√
1 + (∂Fr

∂r
)2dr . (5.4.2b)

5.4.1 Mean heat release rate

The mean heat-release rate can be obtained from Eq. (5.4.1)

q̄r = ρuS
0

l ∆qrĀ , (5.4.3)

where q̄r denotes the mean component of the global heat-release rate. To obtain the

mean flame surface area we substitute the equation for Ḡ (Eq. (5.3.14)) into the mean

of Eq. (5.4.2a) or Eq. (5.4.2b)
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Ā =

x1

∫
x0

2π

⎡⎢⎢⎢⎢⎢⎢⎢⎣
r0 + (x − x0) 1√( ū

S0

l

)2 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

*+++++,1 +

⎛⎜⎜⎝
1

( ū
S0

l

)2 − 1

⎞⎟⎟⎠

2

dx ,

=
ū

S0

l

[πr21 − πr20] .

(5.4.4)

We combine the expression (5.4.4) with Eq. (5.4.3) to get the mean global heat release

rate in the following form

q̄r = ρuS
0

l ∆qr
ū

S0

l

[πr21 − πr20] = m̄∆qr , (5.4.5)

where m̄ is the mean mass flow rate. This result shows that the mean heat-release rate

is proportional to the mass flow rate of the mixture.

5.4.2 Fluctuating heat release rate

5.4.2.1 Analyzing the applicability of the solutions of the G-Equation to

derive a heat-release law

We have shown that a unique solution can be obtained for the G-Equation if we either

apply a trial solution (G = x − x0 − Fr(r, t) or G = r − r0 − Fx(x, t)) or use rotation of

the coordinate system. If we use G = r − r0 − Fx(x, t), then to obtain the flame surface

area we have to integrate to the point (x = x1), where the oscillating flame sheet meets

the wall (at r = r1, see Figure (5.14)). The flame sheet oscillates, hence x1 will be a

function of time, and therefore its calculation requires one to find the inverse function

of u′.

Applying the solution of the rotated coordinate system requires parametrization, which

again involves finding the inverse function of u′. We can avoid making any assumption

about u′ a-priori by using G = x−x0−Fr(r, t), therefore we will apply the solution of the

97



r0

r1

x0

x1(t)

r0

Figure 5.14: Time dependence of the integration limit when G = r−r0 −Fx(x, t) is used
G-Equation of this form. Figure (5.15) summarizes the solutions of the G-Equation.
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Exact heat-
release requires
inverse function

of u′(t)
Exact heat-
release can
be obtained

Figure 5.15: Summary of the solutions of the G-Equation
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5.4.2.2 Fluctuating heat release rate in cylindrical coordinate system

We use G = x − x0 − Fr(r, t) to derive a heat-release rate law, by which we can treat u′

as an arbitrary function. The fluctuating part of the heat release rate can be written

in the following form

q′r(t) = ρuS
0

l ∆qr

r1

∫
r0

2πrσ(r, t)dr , (5.4.6)

where σ(r, t) is given by

σ(r, t) =

 !!"1 + (∂F̄r

∂r
+

∂F ′

r

∂r
)2 −

!""#1 + (∂F̄r

∂r
)2 , (5.4.7)

i.e. we express the fluctuating component of the flame surface area as the mean com-

ponent subtracted from the total one. The source term in Eq. (3.1.12) requires the

calculation of the partial time-derivative of the fluctuating heat release rate. We use

Eq. (5.3.20) to write the time-derivative of σ(r, t) as
∂σ(r, t)

∂t
= −S0

l cosα
∂σ(r, t)

∂r
. (5.4.8)

Using (5.4.8) and integration by parts we can rewrite Eq. (5.4.6) as

∂

∂t
q′r(t) = 2πρuS

0

l ∆qrS
0

l cosα
∂

∂r

r0

∫
r1

[rσ(r, t) + S0

l cosα∫ σ(r, t)dt]dr . (5.4.9)

By applying Eq. (5.4.5), introducing β = r0/r1 and χr = (r1 − r0)/S0

l cosα, we can

present the time-derivative of the non-dimensional heat-release rate fluctuation in the

following form
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∂

∂t

q′r
q̄

=
2

1 + β

1

χr

{βΨ(t) −Ψ(t − χr) + 1 − β

χr
∫ Ψ(t) −Ψ(t − χr)dt} , (5.4.10)

where the function Ψ(t) is given by

Ψ(t) =

!""#[1 + u′(t)
ū

]2 + tan2 α [u′(t)
ū

]2 − 1 . (5.4.11)

The axisymmetric open flame is in this case simply the limit of β → 0. Eq. (5.4.11)

shows that non-linearity of the heat-release is governed by tan2 α(u′/ū)2 in contrast to

the non-linearity of the G-Equation, which is governed by tan2 α. In the next chapter

we will perform a weakly non-linear analysis. This requires powers of u′/ū, so we

expand Eq. (5.4.10) up to cubic order and get

∂

∂t

q′r(t)
q̄

=
2

χr

1

1 + β

⎧⎪⎪⎨⎪⎪⎩[β
u′

ū
−
u′(t − χr)

ū
+
1 − β

χr
∫ u′

ū
−
u′(t − χr)

ū
dt]+

+
1

2
tan2 α [β (u′

ū
)2 − (u′(t − χr)

ū
)2 + 1 − β

χr
∫ (u′

ū
)2 − (u′(t − χr)

ū
)2 dt]−

−
1

2
tan2 α [β (u′

ū
)3 − (u′(t − χr)

ū
)3 + 1 − β

χr
∫ (u′

ū
)3 − (u′(t − χr)

ū
)3 dt]⎫⎪⎪⎬⎪⎪⎭ . (5.4.12)

5.4.2.3 Fluctuating heat release rate of a two-dimensional flame

Figure (5.16) shows the ducted and the open planar flames.

To obtain the heat release rate of a planar flame, similar derivation can be carried out

(see Appendix B.4) to get

∂

∂t

q′c
q̄

=
1

χc

{Ψ(t) −Ψ(t − χc)} , (5.4.13)
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Figure 5.16: (a) Planar ducted flame and (b) planar open flame

where Ψ is given by (5.4.11). Expanding Eq. (5.4.13) up to cubic terms yields

∂

∂t

q′c(t)
q̄/χc

= [u′
ū

−

u′(t − χc)
ū

] +

1

2
tan2 α [(u′

ū
)2 − (u′(t − χc)

ū
)2]−

−

1

2
tan2 α [(u′

ū
)3 − (u′(t − χc)

ū
)3] , (5.4.14)

where q′c(t) denotes the fluctuating global heat release rate in a Cartesian coordinate

system. As in case of a cylindrical coordinate system, the time-lag χc = (b−a)/Sl cosα

is the time it takes for a perturbation to propagate along the flame front. Eq. (5.4.13)

is the special case of Eq. (5.4.10) when β → 1, i.e. the flame is radially very thin.

5.5 Conclusions

Laminar flame propagation and small amplitude perturbation was applied to derive the

response of a ducted flame by the LSM. The weakly and strongly non-linear regions of

the G-Equation were analyzed and different solutions were presented. We have found

that the linearized G-Equation without curvature effects and trial solutions has an

infinite number of solutions for the attached flame boundary condition. By applying

trial solutions or rotation of the coordinate system we can get unique solutions for the

G-Equation, however, a trial solution neglects oscillations of the flame in one of the
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axis directions. We have investigated and compared the solutions of the G-Equation,

and found that in order to calculate the flame surface area applying the trial solution

of G = x−x0 −Fr(r, t) requires no a-priori assumptions about the acoustic velocity. We

derived a heat release law, which relates the rate of the released heat to the acoustic

velocity. Summary of the chapter in keywords:

the geometry has effect on the heat-release (described by β),

the two-dimensional flame is the special case of a cylindrical flame (β = 1),

weakly and strongly non-linear regions were identified,

curvature is important only if the flame width is comparable to the distance

between the wall and the flame holder,

advantages and disadvantages of the trial solutions were presented,

we derived a non-linear heat-release law,

we found that non-linearity is governed by different parameters in the G-Equation

and in the heat-release rate law,

we applied laminar flame propagation assumption, in contrast to the turbulent

flame present in the LIMOUSINE burner.
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Chapter 6

Stability regimes of the burner

In the present chapter we derive and solve the governing equation of the

acoustic velocity of an active single mode, i.e. the feedback of the flame

is included in the governing equation. We analyze the parameters and

investigate their effects on the stability map of the LIMOUSINE burner.

We will identify the weakly non-linear regions and by applying analytical

tools we give predictions about the resulting amplitude of the oscillations.

6.1 Derivation of the governing equation for an ac-

tive single mode

6.1.1 Derivation of the governing integral equation for the

acoustic velocity

In the frequency domain Eq. (4.2.16) and Eq. (4.3.6) give the solution of the acoustic

pressure in terms of the system’s Green’s function, i.e.

p̂(x,ω) =

L

∫
0

ĜT (x, ξ, ω) [−

γ − 1

γRT̄ (ξ)iωQ̂(ξ, ω)]dξ , (6.1.1)

where Q̂ is the local heat-release rate. In Eq. (6.1.1) we apply the linear momentum
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equation (Eq. (3.1.8a)) to get the acoustic velocity in the frequency domain in the

following form

û(x,ω) = −

1

ρ̄(x)
L

∫
0

∂ĜT (x, ξ, ω)
∂x

1

cpT̄ (ξ)Q̂(ξ, ω)dξ . (6.1.2)

In Eq. (6.1.2) we used that (γ − 1)/γR = 1/cp. We apply Inverse Fourier Transform to

write the acoustic velocity in the time-domain as

u′(x, t) = −

1

ρ̄(x)
∞

∫
−∞

L

∫
0

∂GT (x, ξ, t − τ)
∂x

1

cpT̄ (ξ)Q
′(ξ, τ)dτdξ . (6.1.3)

The Green’s function of the burner is given by Eq. (4.3.51), i.e.

GT (x, ξ, t − τ) =

∞

∑
n=1

iH(t − τ)e−iωn(t−τ)ĝ(x, ξ, ωn) + C.C. . (6.1.4)

Substitution with Eq. (6.1.4) into Eq. (6.1.3) yields

u′(x, t) = −

1

ρ̄(x)
t

∫
0

L

∫
0

∞

∑
n=1

ie−iωn(t−τ)
∂ĝ(x, ξ, ωn)

∂x

1

cpT̄ (ξ)Q
′(ξ, τ)dτ dξ + C.C. . (6.1.5)

Eq. (6.1.3) describes the acoustic velocity field of the burner. We make the following

assumptions:

1. The interaction between the modes is negligible. We can therefore consider a

single mode isolated from the others, say mode n, i.e. drop the summation sign

in Eq. (6.1.5).

2. The heat source is compact, i.e. the spatial dependence of the heat-release can

be approximated by δ(x − xq), where xq is the position of the flame.
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In Eq. (6.1.5) Q′ is the heat-release rate per unit volume, in Eq. (5.4.12) q′ is the

global heat-release, therefore

Q′
=
δ(x − xq)

Ā
q′r , (6.1.6)

where Ā is the mean surface area. We substitute for Ā with Eq. (5.4.4), and then use

Eq. (5.4.5) to rewrite the resulting expression,

Q′(x, t) =δ(x − xq)S0

l

ū

1

π(r2
1

− r2
0
) q̄ q

′

r(t)
q̄

, (6.1.7a)

=δ(x − xq)S0

l

ū

1

π(r2
1

− r2
0
) ρ̄uS0

l ∆qr
ū

S0

l

π(r21 − r20)q′r(t)q̄
, (6.1.7b)

=δ(x − xq)∆qrρ̄uS
0

l

q′r(t)
q̄

. (6.1.7c)

This is inserted for Q′(ξ, τ) in Eq. (6.1.5) to give the governing integral equation of

mode n at the position of the heat-source (x = xq)

u′(xq, t)
ū

= −

S0

l

ū

∆qr

cpT̄ (xq)
t

∫
0

ie−iωn(t−τ)
∂ĝ(x, xq, ωn)

∂x
∣
x=xq

q′r(τ)
q̄

dτ + C.C. . (6.1.8)

The heat-release rate can be obtained from Eq. (5.4.12), i.e.

F (t) =
q′r(t)
q̄

= ∫ 2

χr

1

1 + β

⎧⎪⎪⎨⎪⎪⎩[β
u′

ū
−
u′(t − χr)

ū
+
1 − β

χr
∫ u′

ū
−
u′(t − χr)

ū
dt]+

+
1

2
tan2 α [β (u′

ū
)2 − (u′(t − χr)

ū
)2 + 1 − β

χr
∫ (u′

ū
)2 − (u′(t − χr)

ū
)2 dt]−

−
1

2
tan2 α [β (u′

ū
)3 − (u′(t − χr)

ū
)3 + 1 − β

χr
∫ (u′

ū
)3 − (u′(t − χr)

ū
)3 dt]⎫⎪⎪⎬⎪⎪⎭dt . (6.1.9)
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Eq. (6.1.8) is an integral equation for the acoustic velocity at the position of the heat-

source. The heat-release is given by Eq. (6.1.9), which involves instantaneous and

time-lagged velocity both in linear and non-linear forms.

6.1.2 Derivation of the governing differential equation for a

single active mode of the acoustic velocity

For a numerical approach Eq. (6.1.8) is useful, however, for analytical studies (both

linear and non-linear) it is more useful to rewrite it into a differential equation. To this

end we show that an integral equation of the form

u′(t) = A1I1(t) + A2I2(t), where I1(t) =

t

∫
0

eλ1(t−τ)qdτ , I2(t) =

t

∫
0

eλ2(t−τ)qdτ

(6.1.10)

can be rewritten into a second order ordinary differential equation by differentiating it

with respect to t two times, expressing I1 and I2 from Eq. (6.1.10) and from its time-

derivative, and substituting them into the second order time-derivative of Eq. (6.1.10)

(the derivation is shown in details in Appendix (C)). A similar method is applied in

[Polyanin and Manzhirov, 2008, p.198]. Carrying out this procedure yields

d2u′

dt2
− (λ1 + λ2)du′

dt
+ λ1λ2u

′
= (A1 +A2)dq′

dt
− (A1λ2 +A2λ1)q′ . (6.1.11)

Applying it to our integral equation (6.1.8) yields a second order ordinary differential

equation, which describes the time-evolution of the acoustic velocity of a single mode
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d2

dt2
u′(x, t)

ū
− 2ωi

d

dt

u′(x, t)
ū

+ (ω2

r + ω2

i )u′(x, t)ū
=

=
ū

S0

l

∆qr

cpT̄ (xq)2Im
⎡
⎢
⎢
⎢
⎢
⎣

∂ĝ(x, xq, ωn)

∂x

⎤
⎥
⎥
⎥
⎥
⎦

dF

dt
−

ū

S0

l

∆qr

cpT̄ (xq)
2ωrRe

⎡
⎢
⎢
⎢
⎢
⎣

∂ĝ(x, xq, ωn)

∂x

⎤
⎥
⎥
⎥
⎥
⎦

F , (6.1.12)

where ωi and ωr are the imaginary and real part of the eigenfrequency of the non-

excited burner respectively, F is the heat-release rate given by Eq. (6.1.9). F and

dF /dt contains all of the nonlinearities of the system. This ordinary differential equa-

tion describes the nondimensional acoustic velocity fluctuation in a certain observer

position, furthermore it satisfies the boundary conditions through the tailored Green’s

function.

6.1.3 Calculation of the heat-release of the chemical reaction

The term ∆qr/cpT̄ (xq) in Eq. (6.1.8) is a thermodynamic property, which describes the

released heat by the chemical reaction of a unit mass of fuel-air mixture. We rewrite

this parameter to

∆qr

cpT̄ (xq)
=

T̄ad

T̄ (xq)

∆qr

cpT̄ad

=
1

ηT

∆qr

cpT̄ad

, (6.1.13)

where T̄ad is the adiabatic flame temperature at constant pressure. If no heat is lost

during the operation of the combustor, the combustion process takes place at the adia-

batic flame temperature. In the second part of Eq. (6.1.13) we separated ∆qr/cpT̄ (xq)

into two parameters: ηT and ∆qr/cpT̄ad. ηT is a measure for the heat loss of the com-

bustion system, ∆qr/cpT̄ad is a thermodynamic property of the fuel only.

The amount of heat release (∆qr) from combustion of the fuel will depend on the

phase of water in the products. If the water is in the gas phase, the value of the global
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heat release is denoted as the lower heating value (LHV). If the water is in the liquid

phase, additional energy can be extracted and the global energy release is called the

higher heating value (HHV). The value of the LHV can be calculated from the HHV by

subtracting the amount of energy released during the phase change of water from gas

to liquid. In the LIMOUSINE burner water leaves the burner in gas phase, therefore

we use the LHV. In Eq. (6.3.1) ∆qr is the heat released by a unit mass of fuel-air

mixture, i.e.

∆qr =
∆Qr,fuel

mair + mfuel

=
∆Qr,fuel

mfuel

1

1 +
mair

mfuel

=
1

1 + AFR
∆qr,fuel , (6.1.14)

where ∆qr,fuel is the heat released by a unit mass of fuel, mair and mfuel is the mass of

the air and the fuel respectively, and AFR is the air-fuel-ratio. 1/(1 + AFR) is called

the stoichiometric mixture fraction. Eq. (6.1.13) implicitly assumes that all of the

released heat is available for conversion into mechanical energy, however, measurements

showed that a fuel-air combustible mixture needs to be preheated for the chain-breaking

mechanism and therefore the chemical reaction to start [Drysdale, 1999, p.90]. This

critical temperature value is approximately 1000 K for a wide range of fuels, which

shows that the mixture needs ∆T = 700K temperature increase from the standard

conditions [Drysdale, 1999, p.90]. By taking this effect into account we can further

improve our model by subtracting the heat of the preheating process, i.e.

∆qr =
∆Qr,fuel −∆Qpreheat

mair +mfuel

,

=
∆Qr,fuel − cp,airmair∆T − cp,fuelmfuel∆T

mair +mfuel

,

=

∆Qr,fuel

mfuel
− cp,air

mair

mfuel
∆T − cp,fuel∆T

1 + mair

mfuel

,

=
∆qr,fuel − cp,air ⋅AFR ⋅∆T − cp,fuel∆T

1 +AFR
,

(6.1.15)

where ∆T is the temperature increase of the mixture from entering the combustion
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chamber to starting the combustion process. The specific heat capacity can be calcu-

lated in the standard way of gas mixtures [Bird et al., 2002, p.582]

cp =
maircp,air + mfuelcp,fuel

mair + mfuel

=

mair

mfuel
cp,air + cp,fuel

1 +
mair

mfuel

=
AFR ⋅ cp,air + cp,fuel

1 + AFR
. (6.1.16)

We can simplify Eq. (6.1.13), Eq. (6.1.15) and Eq. (6.1.16) using the facts that

1≪ AFR (in Table (6.1)) and the specific heat capacity of air is of the same order as

the one of the fuels. We introduce the equivalence ratio, i.e. Φ = AFRst/AFR, and

therefore we can write that

∆qr

cpT̄ad

= Φ
∆qr,fuel

AFRstcp,airT̄ad

−

∆T

T̄ad

. (6.1.17)

Eq. (6.1.17) is shown in Figure (6.1) assuming constant adiabatic flame temperature.

The dependence of the adiabatic flame temperature on the stoichiometric ratio is shown

in Figure (5.2). This model is valid in the range of [Φl;Φh], where Φl and Φh are the

lowest and highest value of the equivalence ratio, at which combustion occurs.

We compare some typical fuels by calculating their ∆qr/cpT̄ad values at stoichiomet-

ric conditions. Table (6.1) shows the thermodynamic properties of some common fuel

types, and calculates ∆qr/cpT̄ad by using Eq. (6.1.13) and Eq. (6.1.17). The specific

heat capacity of air was taken at 700 K as 1050 J/kgK. Table (6.1) shows that preheat-

ing the mixture significantly reduces the energy which is available for conversion into

mechanical energy. It also indicates that the type of fuel applied for the combustion

has an effect on the stability of the system.
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Φ

∆qr/cpT̄ad

Φl 1 Φh

−
∆T
T̄ad

lean rich

Figure 6.1: Specific heat release as function of the equivalence ratio for constant adia-
batic flame temperature (The dependence of the adiabatic flame tempera-
ture on the stoichiometric ratio is shown in Figure (5.2))

6.2 The method of multiple scales

To solve Eq. (6.1.12) we apply the method of scale separation (which is described in

[Mickens, 1981; Nayfeh and Mook, 1995; Zwillinger, 1998]), because it is applicable

to the linear and weakly non-linear case (i.e. when non-linearity is small) as well.

Another advantage of the multiple scales method is that it can treat damped systems

conveniently [Nayfeh and Mook, 1995, p.57]. Since the magnitude of a dimensional

constant or variable depends on the system of units, therefore to decide whether non-

linearity is small, the first step is to put the underlying differential equation into a

non-dimensional form. Discussion of units, dimensional and nondimensional constants

is given by de St. Q. Isaacson and de St. Q. Isaacson [1975]. The next step is to

identify a nondimensional small quantity, ǫ.

The idea of the multiple scales method is to assume that a periodic solution to Eq.

(6.1.12) can be written as power series of the small parameter ǫ, and the expansion

may be a function of multiple independent variables, or scales, instead of one single

variable. In this case we may consider the dependent and independent variables (i.e.
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fuel
AFRst LHV cp,fuel Tad (∆qr/cpT̄ad)st
[−] [MJ/kg] [J/kgK] [K] [−] [−]

∆T = 0K ∆T = 700K

hydrogen 34.3 120.3 14300 2483 0.96 0.68
methane 17.2 50.3 2220 2223 1.11 0.79
ethane 16.1 47.8 1745 2228 1.15 0.84
propane 15.7 46.35 1669 2268 1.12 0.82
butane 15.4 45.75 1694 2243 1.14 0.83

natural gas 17.2 48.6 2340 2223 1.07 0.76

Table 6.1: Heating values of some common fuel types without and with preheating
effects

ũ and t̃) as

ũ =u0(t0, t1, ..., tn) + ǫu1(t0, t1, ..., tn) + . . . + ǫnun(t0, t1, ..., tn) , (6.2.1a)

t̃ =t̃(t0, ǫt1, . . . , ǫntn) , (6.2.1b)

d

dt̃
=

∂

∂t0
+ ǫ

∂

∂t1
+ . . . + ǫn

∂

∂tn
, (6.2.1c)

and solve the resulting equations of the different orders in the sequence of the orders

separately. Since we require that higher terms in the expansion of (6.2.1a) provide

smaller corrections, we have to eliminate those terms, which does not satisfy this cri-

terion. They are usually referred to as secular terms and represent resonant forcing

(sin t, cos t). By applying (6.2.1a) and (6.2.1b) we can separate second and higher

order derivatives as well (see Appendix D.1). The number of the independent time

scales needed depends on the order to which the expansion is performed. In non-linear

analysis we carry out expansion up to O(ǫ3), therefore three time scales (t0, t1 and t2)

are needed.
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6.3 Stability analysis

As we discussed it in the previous section, in order to investigate the smallness of the

parameters, we have to present Eq. (6.1.12) in a nondimensional form. To this end we

introduce ũ = u′/ǫuū and t̃ = ωrt to get

d2ũ

dt̃2
− 2

ωi

ωr

dũ

dt̃
+ (1 +

ω2

i

ω2
r

) ũ =

=
ū

S0

l

1

ηT

∆qr

cpT̄ad

2Im

⎡⎢⎢⎢⎢⎣
1

ωr

∂ĝ(x, xq, ωn)
∂x

⎤⎥⎥⎥⎥⎦
dF

dt̃
−

ū

S0

l

1

ηT

∆qr

cpT̄ad

2Re

⎡⎢⎢⎢⎢⎣
1

ωr

∂ĝ(x, xq, ωn)
∂x

⎤⎥⎥⎥⎥⎦
F ,

(6.3.1)

where the function F can be obtained by applying ũ and t̃ in Eq. (5.4.12), i.e.

F (t̃) = ∫ 2

χrωr

1

1 + β

⎧⎪⎪⎨⎪⎪⎩
[βũ − ũ(t̃ − ωrχr) +

1 − β

ωrχr
∫ ũ − ũ(t̃ − ωrχ)dt̃]+

+ ǫu
1

2
tan2 α [βũ2

− ũ2(t̃ − ωrχr) +

1 − β

ωrχr
∫ ũ2

− ũ(t̃ − ωrχr)dt̃]−

− ǫ2u
1

2
tan2 α [βũ3

− ũ3(t̃ − ωrχr) +

1 − β

ωrχr
∫ ũ3

− ũ2(t̃ − ωrχr)dt̃]
⎫⎪⎪⎬⎪⎪⎭
dt̃ . (6.3.2)

In the linear stability analysis we consider the linear terms of the heat-release only

(first line in Eq. (6.3.2)), in the non-linear analysis we will include non-linear terms up

to cubic order as well.

6.3.1 Linear stability analysis

Linear stability analysis is capable to predict the stable and unstable regions of a

thermoacoustic system, however it gives no information about the amplitude of the

oscillation, since it tends exponentially either to infinity or to zero by time. In the

linear stability analysis we solve Eq. (6.3.1) by neglecting the non-linear terms in the
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heat-release rate, i.e.

d2ũ

dt̃2
− 2

ωi

ωr

dũ

dt̃
+ (1 +

ω2

i

ω2
r

) ũ =

=
ū

S0

l

1

ηT

∆qr

cpT̄ad

2Im

⎡⎢⎢⎢⎢⎣
1

ωr

∂ĝ(x, xq, ωn)
∂x

⎤⎥⎥⎥⎥⎦
dF

dt̃
−

ū

S0

l

1

ηT

∆qr

cpT̄ad

2Re

⎡⎢⎢⎢⎢⎣
1

ωr

∂ĝ(x, xq, ωn)
∂x

⎤⎥⎥⎥⎥⎦
F ,

(6.3.3)

where F contains only the linear terms

F = ∫ 2

χrωr

1

1 + β
[βũ − ũ(t̃ − ωrχr) +

1 − β

ωrχr
∫ ũ − ũ(t̃ − ωrχr)dt̃]dt̃ . (6.3.4)

We substitute with Eq. (6.3.4) for F in Eq. (6.3.3), and differentiate with respect to t̃

two times to get

d4ũ

dt̃4
− 2ǫω

d3ũ

dt̃3
+ (1 + ǫ2ω)d

2ũ

dt̃2
=

= 2ǫi
1

χrωr

2

1 + β
{βd2ũ

dt̃2
−

d2

dt̃2
ũ(t̃ − ωrχr) +

1 − β

ωrχr

[dũ
dt̃

−

d

dt̃
ũ(t̃ − ωrχ)]}−

− 2ǫr
1

χrωr

2

1 + β
{βdũ

dt̃
−

d

dt̃
ũ(t̃ − ωrχr) +

1 − β

ωrχr

[ũ − ũ(t̃ − ωrχr)]} . (6.3.5)
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The following abbreviations have been introduced in Eq. (6.3.5)

ǫω =
ωi

ωr

, (6.3.6a)

ǫr =
ū

S0

l

1

ηT

∆qr

cpT̄ad

Re

⎡⎢⎢⎢⎢⎣
1

ωr

∂ĝ(x, xq, ωn)
∂x

⎤
⎥
⎥
⎥
⎥
⎦

, (6.3.6b)

ǫi =
ū

S0

l

1

ηT

∆qr

cpT̄ad

Im

⎡
⎢
⎢
⎢
⎢
⎣

1

ωr

∂ĝ(x, xq, ωn)

∂x

⎤
⎥
⎥
⎥
⎥
⎦

. (6.3.6c)

Based on the magnitude of the reflection coefficients (given in Table (E.2)) we assume

small damping (see Figure (4.5)), i.e. ∣ωi∣≪ ∣ωr∣, which has the following consequences.

The relative damping rate, given by Eq. (6.3.6a), is small, ∣ǫω ∣≪ 1.

Since the imaginary part of the eigenfrequency is much smaller than the real part,

therefore we assume that the imaginary part of ∂ĝ/∂x is much smaller than its

real part, i.e. ∣ǫi∣≪ ∣ǫr∣.

An estimate for ǫω, ǫr and ǫi (calculated in Appendix (E.2) for the LIMOUSINE burner

with parameters listed in Appendix (E.1)) shows that ǫi is indeed much smaller than ǫr

and ǫω, therefore we can simplify Eq. (6.3.5) by dropping the first term on the R.H.S..

We introduce two time scales (t0 = t̃, t1 = ǫr t̃) and transform the terms in Eq.

(6.3.5). We then seek a solution in the form ũ = u0 + ǫru1, substitute it into Eq. (6.3.5)

and collect the coefficients of equal powers of ǫr.

To the leading order (at O(ǫ0r)) we have a harmonic oscillation, i.e.

∂4u0

∂t4
0

+

∂2u0

∂t2
0

= 0 , (6.3.7)

which has the solution
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u0 = A(t1) exp(−it0) + C.C. . (6.3.8)

At the order of O(ǫ1r) we get

ǫr
∂4u1

∂t4
0

+ 4ǫr
∂4u0

∂t3
0
∂t1

− 2ǫω
∂3u0

∂t3
0

+ ǫr
∂2u1

∂t2
0

+ 2ǫr
∂2u0

∂t0∂t1
=

= −2ǫr
1

χrωr

2

1 + β
[β∂u0

∂t0
−

∂u0(t0 − χrωr)
∂t0

] − 2ǫr
1

χrωr

2

1 + β

1 − β

χrωr

[u0 − u0(t0 − χrωr)] .

(6.3.9)

We rearrange Eq. (6.3.9) and eliminate the secular terms to obtain the following

equation for A(t1)

∂A

∂t1
= A [ǫω

ǫr
+ (ϕi − iϕr)] , (6.3.10)

where

ϕi(β,χrωr) =
βχrωr − χωr cos(χrωr) + (1 − β) sin(χrωr)

1+β

2
(χrωr)2 , (6.3.11a)

ϕr(β,χrωr) =
χrωr sin(χrωr) − (1 − β)[1 − cos(χrωr)]

1+β

2
(χrωr)2 . (6.3.11b)

Eq. (6.3.10) is of first order and linear in A. The solution is

A(t1) = c0 exp{t1 [ǫω
ǫr

+ (ϕi − iϕr)]} , (6.3.12)

where c0 is a complex constant, and with Eq. (6.3.8) we obtain
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u0 = a0 exp [t0 (ǫω + ǫrϕi)] sin [ζ0 + t0 (1 + ǫrϕr)] , (6.3.13)

where a0 and ζ0 are the initial conditions.

The growth rate in Eq. (6.3.13) (ǫω + ǫrϕi) has to be positive to get instability. We

substitute with Eqs. (6.3.6a)-(6.3.6b) for ǫω and ǫr in Eq. (6.3.13) to get the linear

instability condition

ωi

ωr

+

ū

S0

l

1

ηT

∆qr

cpTad

Re

⎡
⎢
⎢
⎢
⎢
⎣

1

ωr

∂ĝ(x, xq, ωn)

∂x

⎤
⎥
⎥
⎥
⎥
⎦

ϕi(β,χrωr) > 0 . (6.3.14)

ϕi and ϕr are plotted in Figure (6.2). Calculation, which includes ǫi is given in Ap-

pendix (D.2).
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Figure 6.2: Representation of (a) ϕi and (b) ϕr as function of the phase lag, χrωr

( ∶ β = 0, − − − ∶ β = 0.5, ⋯⋯ ∶ β = 1.0)

Eq. (6.3.14) shows that the negative growth rate due to the losses (ωi/ωr) must be

balanced by the positive growth rate due to heating to get instability.

It also shows that lean mixtures are more susceptible to thermoacoustic instabilities:

the primary effect of reducing the equivalence ratio is lower combustion temperature
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(see Figure (5.2)), which increases the magnitude of ǫr (through ∆qr/cpTad), and there-

fore a stable system can turn into an unstable one.

The unstable frequency can be smaller or larger than the stable one, which depends

on the sign of ǫrϕr.

It is interesting to see that for β = 1, i.e. for planar flames ϕi is always non-negative,

therefore instability does not depend on the phase-lag, but only on the geometry and

on the boundary conditions. This finding suggests that the planar flame model is not

realistic. To resolve this problem one might adopt the concept of the ’equivalent hy-

draulic radius’, often used in fluid dynamics: for non-circular geometries an equivalent

radius can be calculated by dividing the cross sectional area with the wetted perimeter

[Bird et al., 2002, p.190], which gives β = 0.56 for the LIMOUSINE setup.

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

β

χrωr

stable

unstable

(a) first mode

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

β

χrωr

stable

unstable

unstable

(b) second mode

Figure 6.3: Linear stability map of the LIMOUSINE burner for Φ = 1 and various
phase-lag, β and ū/S0

l ( :ū/S0

l = 3, − − −: ū/S0

l = 2, ⋯⋯: ū/S0

l = 1)

Figure (6.3) shows the linear stability map of the LIMOUSINE burner for different

ū/S0

l values as function of β and χrωr. It clearly indicates that for larger frequencies

the unstable regimes get smaller, which reflects the low-pass filter property of our flame

model.

We can also see that there is a minimum of the mean flow velocity to get instability.

This feature was also found for setups with gauze heating in Neuringer and Hudson
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[1951].

Our linear model predicts instability above a critical fuel-air ratio, which was ob-

served by others as well [Dowling, 1999; Langhorne, 1987].

From Eq. (6.3.14) and Figure (6.3) we can see that some fuel types are more

susceptible to thermoacoustic instabilities than others. This property was measured

by Allison et al. [2012].

Figure (6.3) shows significant difference in the stability of the first two modes.

They can be explained by comparing ∣ǫω ∣ with ∣ǫr∣: in case of the first mode ∣ǫω ∣ ≪ ∣ǫr∣,
therefore the stability map is mostly affected by ϕi. In case of the second mode,

however, ∣ǫω ∣ ∼ ∣ǫr∣ therefore the stabilizing effect of ǫω is reflected in the stability map.

There is a potential error in the results of the second mode, since we assumed frequency

independence of the reflection coefficients.

In order to meet emission regulations increasing the stoichiometric ratio is not in

the focus of industrial research. However, our model indicates that for rich mixtures we

get similar instability effects as for lean mixtures. This was shown by measurements,

e.g. Allison et al. [2012].

6.3.2 Non-linear stability analysis

In this section we perform a non-linear stability analysis, therefore include the non-

linear terms of the heat-release rate in the calculation of Eq. (6.3.1). The frequency

of a nonlinear system is not constant and it is coupled to the amplitude, in contrast

to a linear system. In the this case we have to substitute the heat-release rate in the

following form

118



F =
2

χrωr

1

1 + β
∫

⎧⎪⎪⎨⎪⎪⎩ [βũ − ũ(t̃ − χωr) + 1 − β

χrωr
∫ ũ − ũ(t̃ − χωr)dt̃]+

+ ǫu
1

2
tan2 α [βũ2

− (ũ(t̃ − χωr))2 + 1 − β

χrωr
∫ ũ2

− (ũ(t̃ − χωr))2 dt̃]−
− ǫ2u

1

2
tan2 α [βũ3

− (ũ(t̃ − χωr))3 + 1 − β

χrωr
∫ ũ3

− (ũ(t̃ − χωr))3 dt̃]
⎫⎪⎪⎬⎪⎪⎭
dt̃ . (6.3.15)

Substituting Eq. (6.3.15) in Eq. (6.3.1) yields

d2ũ

dt̃2
− 2ǫω

dũ

dt̃
+ ũ = 2ǫi

1

χωr

2

1 + β

⎧⎪⎪⎨⎪⎪⎩ [βũ − ũ(t̃ − χrωr) + 1 − β

χrωr
∫ ũ − ũ(t̃ − χrωr)dt̃]+

+ ǫΦǫu [βũ2
− (ũ(t̃ − χrωr))2 + 1 − β

χrωr
∫ ũ2

− (ũ(t̃ − χrωr))2 dt̃]−
− 3ǫΦǫ

2

u [βũ3
− (ũ(t̃ − χrωr))3 + 1 − β

χrωr
∫ ũ3

− (ũ(t̃ − χrωr))3]
⎫⎪⎪⎬⎪⎪⎭
−

− 2ǫr
1

χrωr

2

1 + β
∫

⎧⎪⎪⎨⎪⎪⎩ [βũ − ũ(t̃ − χrωr) + 1 − β

χrωr
∫ ũ − ũ(t̃ − χrωr)dt̃]+

+ ǫΦǫu [βũ2
− (ũ(t̃ − χrωr))2 + 1 − β

χrωr
∫ ũ2

− (ũ(t̃ − χrωr))2 dt̃]−
− ǫΦǫ

2

u [βũ3
− (ũ(t̃ − χrωr))3 + 1 − β

χrωr
∫ ũ3

− (ũ(t̃ − χrωr))3 dt̃]
⎫⎪⎪⎬⎪⎪⎭
dt̃ .

(6.3.16)
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Similarly to the linear case, we have introduced the following abbreviations

ǫu ∼ O (u′
ū
) , (6.3.17a)

ǫω =
ωi

ωr

, (6.3.17b)

ǫr =
ūu

Sl

∆qr

cpT̄ (xq)Re

⎡⎢⎢⎢⎢⎣
1

ωr

∂ĝ(x, xq, ωn)
∂x

⎤⎥⎥⎥⎥⎦
, (6.3.17c)

ǫi =
ūu

Sl

∆qr

cpT̄ (xq)Im
⎡⎢⎢⎢⎢⎣
1

ωr

∂ĝ(x, xq, ωn)
∂x

⎤⎥⎥⎥⎥⎦
, (6.3.17d)

ǫΦ =

1

2
tan2 α =

1

2

1

( ū
S0

l

)2 − 1
. (6.3.17e)

The assumptions of the linear analysis hold, and in order to obtain a weakly non-linear

regime, additional constrains have to be satisfied:

1. We assumed small amplitudes during the derivation of the heat-release law →

ǫu ≪ 1.

2. Cubic terms must be of the same order as the linear ones → ǫΦǫ2u ∼ O(1).
3. Quadratic terms must not appear in the leading order → ǫrǫΦǫu ≪ 1.

Figure (6.4) shows the relationships between the small parameters, which identifies

region 1 of Figure (5.7).

Figure (6.4) shows that in the non-linear analysis we should apply ǫ = ǫr/ǫu for our

small quantity in the power expansion. In the linear analysis we have seen that ǫi can

be neglected compared to ǫr, therefore we solve the following equation
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heat-
release law

weak non-
linearity

ǫu ≪ 1

cubic:
ǫΦǫ2u ∼ O(1)

quadratic:
ǫrǫΦǫu ≪ 1

ǫr ≪ ǫu

1 ≪ ǫΦ

ǫr ≪ ǫu ≪ 1 ≪ ǫΦ

Figure 6.4: Necessary conditions of the weakly non-linear regime which identifies region
1 in Figure (5.7)

d2ũ

dt̃2
−2ǫω

dũ

dt̃
+ũ = −2ǫr

1

χrωr

2

1 + β
∫

⎧⎪⎪⎨⎪⎪⎩[βũ − ũ(t̃ − χrωr) +

1 − β

χrωr
∫ ũ − ũ(t̃ − χrωr)dt̃]+

+ ǫΦǫu [βũ2
− (ũ(t̃ − χrωr))2 +

1 − β

χrωr
∫ ũ2

− (ũ(t̃ − χrωr))2 dt̃]−

− ǫΦǫ
2

u [βũ3
− (ũ(t̃ − χrωr))3 +

1 − β

χrωr
∫ ũ3

− (ũ(t̃ − χrωr))3 dt̃]
⎫⎪⎪⎬⎪⎪⎭dt̃ . (6.3.18)

To eliminate the integrals we perform differentiation with respect to t̃ two times to

obtain

d4ũ

dt̃4
−2ǫω

d3ũ

dt̃3
+

d2ũ

dt̃2
= −2ǫr

1

χrωr

2

1 + β
[β d

dt̃
ũ −

d

dt̃
ũ(t̃ − χrωr) +

1 − β

χrωr

(ũ − ũ(t̃ − χrωr))]−

− 2ǫΦǫuǫr
1

χrωr

2

1 + β
[β d

dt̃
ũ2

−

d

dt̃
(ũ(t̃ − χrωr))2 +

1 − β

χrωr

[ũ2
− (ũ(t̃ − χrωr))2]]+

+ 2ǫΦǫ
2

uǫr
1

χrωr

2

1 + β
[β d

dt̃
ũ3

−

d

dt̃
(ũ(t̃ − χrωr))3 +

1 − β

χrωr

[ũ3
− (ũ(t̃ − χrωr))3]] .

(6.3.19)

We introduce three time scales (t0 = t̃, t1 = ǫt̃, t2 = ǫ2t̃) and transform the terms in Eq.
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(6.3.19). We then seek a solution in the form ũ = u0 + ǫu1 + ǫ2u2, substitute it into Eq.

(6.3.19) and collect the coefficients of equal powers of ǫ.

To the leading order we have a harmonic oscillation

∂4u0

∂t4
0

+

∂2u0

∂t2
= 0 , (6.3.20)

which has the solution

u0 = A(t1, t2)e−it0
+ C.C. . (6.3.21)

At the next order (ǫ1) we get

∂4u1

∂t4
0

+ 4
∂4u0

∂t3
0
∂t1

+

∂2u1

∂t2
0

+ 2
∂2u0

∂t0∂t1
=

= −2
1

χrωr

2

1 + β
ǫΦǫ

2

u [β ∂

∂t0
u2

0 −
∂

∂t0
(u0(t0 − χrωr))2 + 1 − β

χrωr

[u2

0 − (u0(t0 − χrωr))2]] .

(6.3.22)

At this order (ǫ1) only the quadratic terms appear, which means that there are no

secular terms to eliminate, i.e. A doesn’t depend on t1, and ∂/∂t1 = 0. For u1 we get

therefore a non-zero particular solution, which is

u1 =
1

6
ǫΦǫ

2

u

1

χrωr

2

1 + β
A2e−2it0 [2i (e2iχrωr − β) + 1 − β

χrωr

(1 − e2iχrωr)] +C.C. . (6.3.23)

We write Eq. (6.3.23) in the following compact form:

u1 = δA2e−2it0 +C.C. . (6.3.24)
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δ is defined by

δ = −

2

3
ǫΦǫ

2

u[ϕr(β,2χrωr) + iϕi(β,2χrωr)] , (6.3.25)

where ϕr and ϕi are given in Eq. (6.3.11b) and (6.3.11a).

At ǫ2 order we get

ǫ2 [∂4u2

∂t4
0

+ 4
∂4u0

∂t3
0
∂t2

] − 2ǫω
∂3u0

∂t3
0

+ ǫ2 [2 ∂2u0

∂t0∂t2
+

∂2u2

∂t2
0

] =

= −2ǫr
1

χrωr

2

1 + β
[β ∂

∂t0
u0 −

∂

∂t0
u0(t0 − χrωr) +

1 − β

χrωr

(u0 − u0(t0 − χrωr))]−

− 2ǫΦǫ
2

uǫ
2

1

χrωr

2

1 + β

⎧⎪⎪⎨⎪⎪⎩2β
∂

∂t0
u0u1 − 2

∂

∂t0
u0(t0 − χrωr)u1(t0 − χrωr)+

+

1 − β

χrω
[2u0u1 − 2u0(t0 − χrωr)u1(t0 − χrωr)]

⎫⎪⎪⎬⎪⎪⎭+

+ 2ǫrǫΦǫ
2

u

1

χrωr

2

1 + β
[β ∂

∂t0
u3

0 −

∂

∂t0
(u0(t0 − χrωr))3 +

1 − β

χrωr

[u3

0 − (u0(t0 − χrωr))3]] ,

(6.3.26)

with the following quadratic and cubic terms

u0u1 = δA3e−3it0
+ δA2A∗e−it0

+ C.C. , (6.3.27a)

u0(t0 − χω)u1(t0 − χω) = δA3e3iχωe−3it0
+ δA2A∗eiχωe−it0

+ C.C. , (6.3.27b)

u3

0 = A3e−3it0
+ 3A2A∗e−it0

+ C.C. , (6.3.27c)

[u0(t0 − χω)]3 = A3e3iχωe−3it0 + 3A2A∗eiχωe−it0 +C.C. . (6.3.27d)

We substitute with Eqs. (6.3.27a)-(6.3.27d) in Eq. (6.3.26) and introduce a polar
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representation for A, i.e. A = aeiζ . Eliminating the secular terms yields

∂a

∂t2
+ ia

∂ζ

∂t2
= a [ǫω

ǫ2
+

ǫr

ǫ2
(ϕi − iϕr)] − a3ǫΦǫ

2

u [(3ǫrǫ2 − 2δ)(ϕi − iϕr)] . (6.3.28)

The real part of Eq. (6.3.28) gives a non-linear ordinary differential equation of

Bernoulli-type for the amplitude evolution

∂a

∂t2
= aθr1 − a3θr3 , (6.3.29)

where

θr1 =
ǫω

ǫ2
+ϕi

ǫr

ǫ2
, (6.3.30a)

θr3 =3ǫΦǫ
2

u [ǫrǫ2ϕi +
4

9
ǫΦǫ

2

uσ
r
ϕ] , (6.3.30b)

σr
ϕ =ϕr(β,2χrωr)ϕi(β,χrωr) +ϕi(β,2χrωr)ϕr(β,χrωr) . (6.3.30c)

Eq. (6.3.29) shows that neglecting cubic terms (θr
3
= 0) yields the linear solution. The

second term in Eq. (6.3.30b) is the contribution of the higher order quadratic terms.

We write the solution of Eq. (6.3.29) in the following form

a(t0) =
a0e(ǫω+ǫrϕi)t0√

1 + a2
0

θr
3

θr
1

[e2(ǫω+ǫrϕi)t0 − 1] , (6.3.31)

where a0 is the initial condition for the amplitude. We get the following values for

a(t0) for small and large times
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a(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 if t = 0

0 if ǫω + ǫrϕi < 0 for t→∞√
θr
1
/θr

3
if ǫω + ǫrϕi > 0 for t→∞ .

(6.3.32)

Eq. (6.3.32) shows that the amplitude of a limit cycle is
√
θr
1
/θr

3
. The growth rate

is ǫω + ǫrϕi, and its sign is an indicator for stability behavior. If it is positive , the

oscillation is unstable. The non-linear instability criterion is identical to the linear

one.

Figure (6.5) compares the evolution of the amplitude for the linear and non-linear

cases. It shows that non-linearity is of threshold nature, i.e. below a critical value

of the acoustic velocity the effects of nonlinear combustion are not present. This was

confirmed experimentally by Ma et al. [1991].

0 50 100 150 200

0.00
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a(t0)

Figure 6.5: Schematic representation of the evolution of the amplitude as function of
time in case of an instability ( :non-linear, − − −: linear)
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The imaginary part of Eq. (6.3.28) gives a non-linear ordinary differential equation

of Bernoulli-type for the phase evolution

∂ζ

∂t2
= −θi1 + θi3a

2 , (6.3.33)

where

θi1 =
ǫr

ǫ2
ϕr , (6.3.34a)

θi3 =3ǫΦǫ
2

u [ǫrǫ2ϕr +

4

9
ǫΦǫ

2

uσ
i
ϕ] , (6.3.34b)

σi
ϕ =ϕi(β,2χrωr)ϕi(β,χrωr) − ϕr(β,2χrωr)ϕr(β,χrωr) . (6.3.34c)

The solution of Eq. (6.3.33) is

ζ(t0) = ζ0 − ǫrϕrt0 +

θi
3

θr
3

ln

√
1 + a2

0

θr
3

θr
1

[e2(ǫω+ǫrϕi)t0 − 1] , (6.3.35)

where ζ0 is the initial condition of the phase.

Using Eq. (6.3.31) and Eq. (6.3.35) we can write the solution of Eq. (6.3.18) to the

leading order in the following form

u0 = a0 exp

⎧⎪⎪⎨⎪⎪⎩
t0[ǫω + ǫrϕi] − Σ(t0)⎫⎪⎪⎬⎪⎪⎭ ⋅ sin

⎧⎪⎪⎨⎪⎪⎩
ζ0 + t0[1 + ǫrϕr] −

θi
3

θr
3

Σ(t0)⎫⎪⎪⎬⎪⎪⎭ , (6.3.36)

where

Σ(t0) = ln

√
1 + a2

0

θr
3

θr
1

[e2t0(ǫω+ǫrϕi) − 1] . (6.3.37)
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Eq. (6.3.36) is of the form

u0 = a0e
t0Ωi(t0) sin [ζ0 + t0Ωr(t0)] , (6.3.38)

where

Ωi(t) =ǫω + ǫrϕi −Λ(t) , (6.3.39a)

Ωr(t) =1 + ǫrϕr −
θi
3

θr
3

Λ(t) , (6.3.39b)

with

Λ(t) =
Σ(t)
t

=
1

t
ln

√
1 + a2

0

θr
3

θr
1

[e2(ǫω+ǫrϕi)t − 1] . (6.3.40)

Ωi and Ωr are the non-linear growth rate and frequency respectively. They both evolve

with time. Eq. (6.3.39a) shows that Λ(t) = ǫω +ǫrϕi for t→∞. In case of an instability

for t→∞ we get

Ωi∣
t→∞

=0 , (6.3.41a)

Ωr∣
t→∞

=1 + ǫrϕr −
θi
3

θr
3

[ǫω + ǫrϕi] = 1 + ǫrϕr +∆Ωr . (6.3.41b)

Figure (6.6) shows the linear and non-linear growth rates and frequencies as function

of time for an unstable system.
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Figure 6.6: Time evolution of the nonlinear frequency Ωr(t) and growth rate Ωi(t) of
the first mode for β = 0.1 and χrωr = 6 ( :nonlinear frequency, − − −:
linear frequency, − ⋅ −: nonlinear growth rate ⋯⋯: linear growth rate)

Figure (6.6) reflects that the non-linear growth rate and frequency are governed by

the same function, Λ(t). Figure (6.7) represents the non-linear growth rate Ωi as

function of the non-linear frequency Ωr, where time is a parameter: (a) shows a general

scenario, (b) shows the first mode of the LIMOUSINE setup for different values of the

stoichiometric ratio and phase-lag with β = 0.1. The adiabatic flame temperature for

certain values of Φ were taken from Figure (5.2).
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Figure 6.7: Time evolution of the damping and the eigenfrequency: (a) general setup,
(b) first mode of LIMOUSINE setup, β = 0.1 ( :Φ = 1.00,χrωr = 6; −−−:
Φ = 0.75,χrωr = 6; ⋯⋯: Φ = 1.00,χrωr = 5.5; − ⋅ −: Φ = 0.75,χrωr = 5.5)

Figure (6.7) shows that lean systems are more susceptible to instabilities (higher

initial growth rate), and the frequency of the non-linear system can be lower or larger

(even by 5-10 %) than the one of the corresponding linear system, depending on the

system properties. Dhanuka et al. [2011] performed measurements at very low fre-

quencies in a premixed combustor and found that decreasing the stoichiometric ratio

reduces the frequency of the instabilities in their setup. Figure (6.8) shows the phase

plot of the first mode for stable and unstable cases.

6.3.2.1 Effect of the parameters on the resulting limit-cycle amplitudes

The amplitude of the solution given by Eq. (6.3.36) is
√
θr
1
/θr

3
(see Eq. (6.3.32)), i.e.

∣u′
ū
∣
t→∞

=

√
2

3
⋅

#$$%( ū
S0

l

)2 − 1 ⋅

√
ǫω + ǫrϕi

ǫrϕi +
4

9
ǫΦǫ2rσϕ

. (6.3.42)

We can see that if we do not include losses in our model (ǫω = 0) and neglect the

quadratic terms (σ = 0), then the amplitude is given by the following simple form
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∣u′
ū
∣t→∞
ǫω=0
σ=0

=

√
2

3
⋅

!""#( ū

S0

l

)
2

− 1 . (6.3.43)

We plot the amplitudes as function of ū/S0

l for different values of β, χ and ∆qr/cpT̄ad

at stoichiometric conditions, i.e. we investigate the effect of the type of fuel used in

the combustion chamber on the instabilities.
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Figure 6.8: Phase plot of (a) an unstable and (b) of a stable system for β = 0.1
( :nonlinear, − − −: linear)
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Figure (6.9) shows the resulting amplitudes of the first mode as function of ū/S0

l for the

phase-lag of 6, and for β = 0.1,0.2,0.3. Figure (6.10) shows the resulting amplitudes

of the second mode as function of ū/S0

l for the phase-lag of 2, and for β = 0.1,0.2,0.3.

They both indicate that decreasing β increases the amplitude in case of an instability.

1.00 1.01 1.02 1.03 1.04 1.05

0.00

0.05

0.10

0.15

0.20
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Figure 6.9: Amplitude of the first mode as function of ū/S0

l for χrωr = 6 ( :β = 0.1,
− − −: β = 0.2, ⋯⋯: β = 0.3)
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ū/S0

l

∣u′
ū
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Figure 6.10: Amplitude of the second mode as function of ū/S0

l for χrωr = 2 ( :β =

0.1, − − −: β = 0.2, ⋯⋯: β = 0.3)
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Figure (6.11) shows the resulting amplitudes of the first mode as function of ū/S0

l for

β = 0.1 and phase-lags of 5.5,6.0,6.5. Figure (6.12) shows the resulting amplitudes of

the second mode as function of ū/S0

l for β = 0.1 and phase-lags of 1.5,2.0,2.5. They

confirm that there is critical range of the phase-lag, where instability can be triggered.

This property can be also seen in the linear stability map.
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Figure 6.11: Amplitude of the first mode as function of ū/S0

l for β = 0.1 ( :χrωr =

5.5, − − −: χrωr = 6.0, ⋯⋯: χrωr = 6.5)
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Figure 6.12: Amplitude of the second mode as function of ū/S0

l for β = 0.1
( :χrωr = 1.5, − − −: χrωr = 2.0, ⋯⋯: χrωr = 2.5)
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Figure (6.13) shows the amplitudes of the first mode of certain fuel types as function of

ū/S0

l for β = 0.1 and phase-lag of 6. Figure (6.14) shows the amplitudes of the second

mode of certain fuel types as function of ū/S0

l for β = 0.1 and phase-lag of 2.
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Figure 6.13: Amplitude of the first mode of certain fuel types as function of ū/S0

l for
χrωr = 6 and β = 0.1 ( :hydrogen, − − −: methane, ⋯⋯: ethane)
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ū

∣

Figure 6.14: Amplitude of the second mode of certain fuel types as function of ū/S0

l

for χrωr = 2 and β = 0.1 ( :hydrogen, − − −: methane, ⋯⋯: ethane)
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The figures clearly show that close to a transition point a small change in any of the

parameters can result in large change of the amplitude, which explains the difficulty of

predicting the amplitudes of thermoacoustic oscillations.

6.4 Conclusions

In this chapter we derived the governing differential equation of an active single mode

by including the response of the flame into the model. We have identified important

parameters, which affects the instability of the system. We calculated the transition

points of the burner using linear theory. By applying non-linear theory we found that

weakly non-linear regime exists where the mean flow velocity tends to the laminar flame

speed. We have shown that the heat-release rate of the flame must be of correct phase

and magnitude in order to balance the losses of the system. We found that we can

get limit-cycles in the weakly non-linear regime, however, this regime exists in a very

narrow interval of ū/S0

l . We calculated and studied the resulting limit-cycle amplitudes

and frequencies of instabilities for various parameters.

The summary of the chapter in keywords:

we derived the governing differential equation for a general heat-release model,

by applying linear theory stable and unstable regions were identified,

we predicted the limit-cycle amplitudes for many system parameters,

some fuel types are more susceptible to thermoacoustic instabilities than others,

lean conditions increase the unstable regions,

a weakly non-linear region exists where the mean flow velocity tends to the lam-

inar flame speed,

most of the non-linear regimes are strongly non-linear, i.e. the acoustic velocity

is of the same order as the mean flow velocity.
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Chapter 7

Conclusions and future work

7.1 Conclusions

Here the short summary of the major results is presented:

1. Effects of the mean temperature profile

The governing differential equation of the acoustic pressure with axial mean tem-

perature gradient was derived in the time-domain from first principles and studied

in details. By using this more general form of the wave equation the effect of the

temperature increase on the wave propagation and wave reflection was included

into the mathematical model. By applying more, increasingly complex configu-

rations of the mathematical model the preheating and cooling effects of the wall

were analyzed.

2. Experimentally validated Green’s function

The Green’s function approach has been used to solve the wave equation with a

heat source and mean temperature gradient. The Green’s function of the labo-

ratory burner has been derived and compared to measurements, which showed

excellent agreement. In this way an experimentally validated tailored Green’s

function has been obtained. Using perturbation techniques we have showed when

the increase in the mean temperature can be neglected or modeled as a jump.

3. Kinematics of a premixed ducted flame
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The kinematics of a ducted premixed flame was studied analytically by applying

the level-set method (G-Equation). The weakly and strongly non-linear regions

were identified in the parameter space. The importance of the boundary condition

of the flame was also demonstrated, and different solutions of the G-Equation were

analyzed. The curvature effects of the flame were also investigated: solutions were

provided for the mean flame position, and conditions were obtained for neglecting

curvature effects in the G-Equation.

4. Non-linear heat-release model

A new non-linear heat-release rate law has been derived and applied to the labora-

tory burner, in which it was assumed that the instantaneous global heat-release is

proportional to the instantaneous flame surface area. A region of the parameter

space has been identified in which cubic terms are of the same order as the linear

ones.

5. Governing equation of the acoustic velocity of an active single mode

for arbitrary heat-release model and boundary conditions

The governing differential equation of an active single velocity mode has been

derived for an arbitrary heat-release model, i.e. the feedback of the flame was

included in the equation. The interaction of the modes was neglected. The

acoustic velocity obtained in this way satisfies the boundary conditions through

the tailored Green’s function.

6. Stability analysis

The stable and unstable regions in the parameter space of the burner were iden-

tified by using linear theory. In the applied model the instability criteria for the

linear and weakly non-linear cases are identical. By applying weakly non-linear

analysis the limit-cycle amplitudes and frequencies were predicted. The model

confirmed that lean combustion systems are more susceptible to thermoacoustic

oscillations and that the type of fuel burned in the rig affects thermoacoustic insta-

bilities. It has been shown that the difference between the limit-cycle frequency

137



and the passive (when there is no feedback of the flame) frequency can be as

large as 5-10 % (see Figure (6.7)).

7. Flexibility of the model

The range of the parameters of the developed mathematical model covers a wider

range than the one of the LIMOUSINE burner. Thus, we believe that it can be

applied to a wide range of thermoacoustic problems.

7.2 Future work

Here we outline different ways to improve the mathematical model by considering the

following open questions.

The non-linear heat-release model, which was derived in 5, needs to be validated

by comparing it to measurements.

In the derivation of the G-Equation it was found that non-linearities of this model

can be of kinematic and geometric origin. The kinematic non-linearity was ne-

glected by taking the linear solution of the G-Equation in the weakly non-linear

regime of the parameter space. Only the geometric non-linearity has been in-

cluded in the model by calculating the exact flame surface area of the linear solu-

tion of the G-Equation. This approach can be extended by including non-linear

terms up to cubic order in the weakly non-linear regimes of the G-Equation.

We found that weakly non-linear regime of the acoustic velocity exists in the

parameter space only in a very narrow interval of ū/S0

l , and in most of the cases

the acoustic velocity is comparable to the mean flow velocity, i.e. u′ ∼ ū. This

property does not affect the Green’s function calculation, but it needs to be

considered in the heat-release model by taking appropriate boundary conditions:

when the acoustic velocity is comparable to the mean flow velocity, the flame is

not attached. There is no agreement on the appropriate boundary condition of the

flame for large amplitude oscillations. Dowling [1997] used non-linear boundary
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conditions numerically, and obtained flow reversal. The numerical results show

good agreement with practical observations, however, a theoretical justification

of the results is still lacking.

We applied laminar flame assumption for deriving our heat-release rate law. Mea-

surements clearly indicated the existence of turbulence in the flow, accurate mod-

elling of the system would therefore require including the effects of turbulence.

It would be also very interesting to compare our analytical heat-release law to a

turbulent one.

In the thesis we worked with low frequencies. The model can be extended to

higher frequencies as well, which would be necessary when investigating the in-

teraction of the modes. In this case one should consider 2D acoustics, careful

consideration of the temperature profile, and the acoustical boundary conditions,

since the applied reflection coefficients were measured at the first unstable fre-

quency.

The interactions of the modes were neglected in the derivation of the governing

differential equation of the acoustic velocity. There might be regimes of the

parameter space in which modes interact. Thus, the theory can be extended by

considering the interactions of n modes, which will lead to a differential equation

of order 2n in this model.

During the derivation of the heat-release law we used plug-flow assumption, i.e.

the velocity was uniform in the cross-section. Works of [Schuller et al., 2002, 2003]

showed the importance of the convective character of a perturbation. Our heat-

release rate law can be therefore improved by including an axially propagating

wave.
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Appendix A

Energy equation

Assuming negligible viscous dissipation and thermal conduction the general form of

the one-dimensional energy equation is

ρcp (∂T
∂t

+ u
∂T

∂x
) = Q + (∂p

∂t
+ u

∂p

∂x
) . (A.0.1)

By using the state equation of a perfect gas (p = ρRT ) we can write the temporal and

spatial derivatives of the temperature in the following forms

∂T

∂t
=

1
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−
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−
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∂x
. (A.0.2b)

Substituting with Eq. (A.0.2a) and Eq. (A.0.2b) for the terms on the L.H.S. of Eq.

(A.0.1) yields

ρcp
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We rearrange the terms to get
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Using the momentum equation we substitute −ρ ∂u/∂x for the terms in the second

bracket of the L.H.S. of Eq. (A.0.4)

cp −R

R

∂p

∂t
+

cpp

Rρ
ρ
∂u

∂x
+ u

∂p

∂x

cp −R

R
= Q . (A.0.5)

We multiply Eq. (A.0.5) by R and divide it by cp −R to get

∂p

∂t
+

cp

cp −R
p
∂u

∂x
+ u

∂p

∂x
=
R

cp −R
Q . (A.0.6)

We introduce the ratio of the specific heats (γ = cp/cv) to write

cp

cp −R
=

cp

cp − (cp − cv) = γ ,

R

cp −R
=
cp − cv

cv
= γ − 1 ,

(A.0.7)

which leads to the following form of the energy equation

∂p

∂t
+ γp

∂u

∂x
+ u

∂p

∂x
= (γ − 1)Q . (A.0.8)
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Appendix B

Heat-release

B.1 Strongly non-linear regions of the G-Equation

In regions A and B of Figure (5.7) the G-Equation is strongly non-linear. In Eq. (5.3.7)

∂G̃/∂x̃ and ∂G̃/∂r̃ are of order 1, therefore to have G̃ explicit in r̃ or x̃ it is common

to introduce the following trial solutions [Ducruix et al., 2000; Schuller et al., 2003]:

G̃ = r̃ + F̃A(x̃, t̃) and G̃ = x̃ + F̃B(r̃, t̃). They are shown in Figure (5.8). Subscripts

A and B refer to the regions A and B respectively. If we use F̃A = FA/(r1 − r0) and

F̃B = FB/(x1 − x0), we can write Eq. (5.3.2) in region A and B in the following forms

region A ∶
∂FA

∂t
+ u

∂FA

∂x
= S0

l

√
(∂FA

∂x
)2 + 1 , (B.1.1a)

region B ∶
∂FB

∂t
+ u = S0

l

√
(∂FB

∂r
)2 + 1 . (B.1.1b)

We can see that Eq. (B.1.1a) reduces to Eq. (5.3.8a) for large α, and Eq. (B.1.1b)

reduces to Eq. (5.3.8b) for small α. Eq. (B.1.1a) and (B.1.1b) can be solved by taking

their spatial derivatives, and introducing a new function for the spatial gradients. In

this way we obtain homogeneous quasilinear PDEs. Implicit solutions can be obtained
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by the method of characteristics, which are

∂FA

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕ

⎛⎜⎜⎜⎜⎜⎝
t −

x − x0

ū − S0

l

∂FA
∂x√

( ∂FA
∂x

)2+1

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

, (B.1.2a)

∂FB

∂r
=ϕ

⎛⎜⎜⎜⎜⎜⎝
t −

r − r0

S0

l

∂FB
∂r√

( ∂FB
∂r

)2+1

⎞⎟⎟⎟⎟⎟⎠
. (B.1.2b)

The function ϕ generally is given by the boundary condition at [r0, x0]: ∂FA/∂x(t, x =

x0) = 1/ϕ(t) and ∂FB/∂r(t, r = r0) = ϕ(t) respectively. A similar solution was presented

for region B by Lieuwen [2005]. The general solutions Eq. (B.1.2a) and Eq. (B.1.2b)

do not contain u′ since we assumed that it has no spatial dependence.

B.1.1 Non-linear boundary conditions

Measurements indicated that at low acoustic velocity amplitudes the flame is attached

to the flame-holder. Since the flame does not move in the point of attachment, Lieuwen

[2005] proposed that ∂F /∂t = 0 at the point of attachment. This leads to the following

boundary conditions: ∂FA/∂t = 0 at x = x0 and ∂FB/∂t = 0 at r = r0 in Eq. (B.1.1a)

and Eq. (B.1.1b) respectively. Performing the substitution yields the following for ϕ(t)

∂FA

∂x
∣
x=x0

= ϕ−1(t) =

⎡⎢⎢⎢⎢⎢⎣
/001( ū + u′(t)

S0

l

)2

− 1

⎤⎥⎥⎥⎥⎥⎦
−1

, (B.1.3a)

∂FB

∂r
∣
r=r0

= ϕ(t) =

/001( ū + u′(t)
S0

l

)2

− 1 . (B.1.3b)

Eq. (B.1.3a) and (B.1.3b) also indicate that the flame cannot be attached when the

amplitude of the oscillation is comparable to the mean flow velocity. They also indicate
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that only implicit solutions can be obtained, however, we need solutions explicit in u′

to derive a heat-release law, which will be therefore also explicit in u′.
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B.2 Solution of the linearized G-Equation without

curvature

To solve Eq. (5.3.10) we introduce new coordinates

x − x0 =a1w + a2z , (B.2.1a)

r − r0 =a3w + a4z , (B.2.1b)

and we write the spatial derivatives in the following forms

∂

∂x
=

−a2

a1a4 − a2a3

∂

∂w
+

a1

a1a4 − a2a3

∂

∂z
, (B.2.2a)

∂

∂x
=

a4

a1a4 − a2a3

∂

∂w
+

−a3

a1a4 − a2a3

∂

∂z
. (B.2.2b)

We substitute the coordinate transformation into Eq. (5.3.10) to get

∂G′

∂t
+ [(ū − S0

l sinα) −a2

a1a4 − a2a3
+ S0

l cosα
a4

a1a4 − a2a3
] ∂G′
∂w

+

+ [(ū − S0

l sinα) a1

a1a4 − a2a3
+ S0

l cosα
−a3

a1a4 − a2a3
] ∂G′

∂z
= u′(t) . (B.2.3)

The boundary condition is given in a point, therefore we eliminate one of the spatial
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derivatives. This can be done in 2 ways:

ū − S0

l sinα

S0

l cosα
=
a2

a4
, or (B.2.4a)

ū − S0

l sinα

S0

l cosα
=
a1

a3
. (B.2.4b)

We use the fact that ū = S0

l / sinα, and write ū − S0

l sinα/S0

l cosα = cosα/ sinα. By

applying either of (B.2.4a) or (B.2.4b) Eq. (5.3.10) can be reduced to

∂G′

∂t
+ c0

∂G′

∂p
= u′(t) , (B.2.5)

where p is a spatial coordinate (w or z), and c0 is a constant. We apply Laplace

Transform to transform Eq. (B.2.5) into the following ODE

sĜ′ + c0
∂Ĝ′

∂p
= u′(s) + f(p) , (B.2.6)

where s is the Laplace variable and f(p) is the initial condition. The solution in the

(s, p) domain is given by

G′(t, p) = H[t − p/c0]G′(t, p)
"""""""""""t=t−p/c0

p=0

+ H[p − c0t]G′(t, p)
""""""""""" t=0
p=p−c0t

+

t

∫
t−p/c0

u′(τ)dτ . (B.2.7)
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B.3 Solution for the mean position of the G-Equation

with curvature

To solve Eq. (5.3.23) we introduce a new variable for the gradient of the mean position,

i.e. Λ = arctan(∂F̄r/∂r). We can write Eq. (5.3.23) in terms of Λ as

ū

S0

l

=
1

cosΛ
−L

∂Λ

∂r
. (B.3.1)

We express ∂r/∂Λ and perform integration with respect to Λ to get the following

implicit solution

r = c0 −

LS0

l

ū
Λ − 2

LS0

l

ū

1√
ū2

S2

l

− 1
arctanh

⎡⎢⎢⎢⎢⎣
%&&' ū

Sl
+ 1

ū
Sl

− 1
tan(1

2
Λ)⎤⎥⎥⎥⎥⎦ , (B.3.2)

where c0 is a constant to be determined from a boundary condition. We are going to

use the following trigonometric identities:

tan(1
2
Λ) =

tanΛ

1 +

√
1 + tan2Λ

=

∂F̄r

∂r

1 +

√
1 + (∂F̄r

∂r
)2 , (B.3.3a)

arctan(∂F̄r

∂r
) =2arctan

⎛⎜⎝
∂F̄r

∂r

1 +

√
1 + (∂F̄r

∂r
)2
⎞⎟⎠ . (B.3.3b)

We substitute with (B.3.3a) and (B.3.3b) for the R.H.S. of Eq. (B.3.2) to get

r − c0

2L

ū

S0

l

= arctan

⎡⎢⎢⎢⎢⎢⎣
∂F̄r

∂r

1 +

√
1 + (∂F̄r

∂r
)2
⎤⎥⎥⎥⎥⎥⎦

+

1√
ū2

S2

l

− 1
arctanh

⎡⎢⎢⎢⎢⎢⎣
%&&' ū

Sl
+ 1

ū
Sl

− 1

∂F̄r

∂r

1 +

√
1 + (∂F̄r

∂r
)2
⎤⎥⎥⎥⎥⎥⎦
.

(B.3.4)
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B.4 Fluctuating heat release rate in Cartesian co-

ordinate system

If the flame is two-dimensional, we can write the mean component of the global heat-

release rate as

q̄c = ρuSl∆qrĀ = 2DρuSl∆qr

b

∫
a

�  !1 + (∂F̄
∂y

)
2

dy = m̄∆qr , (B.4.1)

where D is the depth of the burner. The mean heat release rate is directly proportional

to the mass flow rate and unit heat released by the chemical reaction, just like in case

of an axisymmetric flame. We can write the fluctuating part of the heat-release rate

up to third order as the following

q′c(t) = 2DρuSl∆qr

b

∫
a

[a1∂F ′

∂y
+ a2 (∂F ′

∂y
)2 + a3 (∂F ′

∂y
)3]dy , (B.4.2)

where a1, a2, a3 are constants (the same ones as in the cylindrical case) of the Taylor-

series expansion. We use the fact that the general solution is of the form F ′(t, y) =

F ′(t− y/c), where c = Sl cosα is the phase velocity. We can rewrite the time-derivative

of the powers of the fluctuating flame position gradient as

∂

∂t
(∂F ′

∂y
)n = −c

∂

∂y
(∂F ′

∂y
)n , (B.4.3)

and therefore

∂

∂t

b

∫
a

(∂F ′

∂y
)n dy = −c(∂F ′

∂y
)n +++++++++++

b

a

= c

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎣
1

c
u′(t)

⎤⎥⎥⎥⎥⎦
n

−

⎡⎢⎢⎢⎢⎣
1

c
u′ (t − b − a

c
)
⎤⎥⎥⎥⎥⎦
n⎫⎪⎪⎬⎪⎪⎭ . (B.4.4)
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Using Eq. (B.4.4) we write the nondimensional form of the heat release rate law as

∂

∂t

qc(t)
q̄/χc

= [u′
ū

−

u′(t − χc)
ū

] +

1

2
tan2 α [(u′

ū
)2 − (u′(t − χc)

ū
)2]−

−

1

2
tan2 α [(u′

ū
)3 − (u′(t − χc)

ū
)3] , (B.4.5)

where the time-lag χc = (b − a)/Sl cosα is the time it takes for a perturbation to

propagate along the flame front, just like in the cylindrical case.
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Appendix C

Rewriting an integral equation into

a differential equation

A similar method is applied in [Polyanin and Manzhirov, 2008, p.198]. An integral

equation is given in the form of

u(t) = A1I1(t) + A2I2(t) , (C.0.1)

where I1 and I2 are defined in the following way

I1 =

t

∫
0

eλ1(t−t
′)q(t′)dt′ ,

I2 =

t

∫
0

eλ2(t−t
′)q(t′)dt′ .

(C.0.2)

In order to rewrite the integral equation (C.0.1) into a differential one, we differentiate
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Eq. (C.0.1) with respect to t two times

du

dt
=A1

dI1

dt
+ A2

dI2

dt
, (C.0.3a)

d2u

dt2
=A1

d2I1

dt2
+ A2

d2I2

dt2
. (C.0.3b)

We can write the first and second order time-derivatives of I1 as

dI1

dt
=q(t) + λ1

t

∫
0

eλ1(t−t
′)q(t′)dt′ = q + λ1I1 , (C.0.4a)

d2I1

dt2
=
dq

dt
+ λ1

dI1

dt
=
dq

dt
+ λ1 [q + λ1I1] = dq

dt
+ λ1q + λ2

1I1 . (C.0.4b)

We substitute with the last part of Eq. (C.0.4a) and Eq. (C.0.4b) for the R.H.S. in

Eq. (C.0.3a) and (C.0.3b) to get

du

dt
=A1(q + λ1I1) + A2(q + λ2I2) = q(A1 + A2) + (λ1A1I1 + λ2A2I2) , (C.0.5a)

d2u

dt2
=A1 (dq

dt
+ λ1q + λ2

1I1) + A2 (dq
dt

+ λ2q + λ2

2I2) . (C.0.5b)

We substitute with A2I2 = u −A1I1 in Eq. (C.0.5a) and rewrite it

du

dt
=q(A1 +A2) + [λ1A1I1 + λ2(u −A1I1)] , (C.0.6a)

du

dt
=q(A1 +A2) + [λ1A1I1 − λ2A1I1 + λ2u] , (C.0.6b)

du

dt
− λ2u − q(A1 +A2) =A1I1(λ1 − λ2) , (C.0.6c)
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then, again, we substitute with A2I2 = u − A1I1 in Eq. (C.0.5b) as well and write it in

the following forms

d2u

dt2
=
dq

dt
(A1 + A2) + q(A1λ1 + A2λ2) + (λ2

1A1I1 + λ2

2A2I2) , (C.0.7a)

d2u

dt2
=
dq

dt
(A1 + A2) + q(A1λ1 + A2λ2) + [λ2

1A1I1 + λ2

2(u − A1I1)] , (C.0.7b)

d2u

dt2
=
dq

dt
(A1 + A2) + q(A1λ1 + A2λ2) + [λ2

1A1I1 − λ2

2A1I1] + λ2

2u , (C.0.7c)

d2u

dt2
=
dq

dt
(A1 + A2) + q(A1λ1 + A2λ2) − A1I1 (λ1 − λ2) (λ1 + λ2) + λ2

2u . (C.0.7d)

We substitute with (C.0.6c) for A1I1 (λ1 − λ2) in Eq. (C.0.7d) to get

d2u

dt2
− (λ1 + λ2)du

dt
+ λ1λ2u = (A1 + A2)dq

dt
− (A1λ2 + A2λ1)q . (C.0.8)

Including the second mode in the transformation results in a fourth order ODE. In-

cluding n modes yields a 2nth order ordinary differential equation.
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Appendix D

Stability analysis

D.1 Scale separation

Scale separation consists of seeking a periodic solution in terms of power series of a

small quantity

ũ =u0(t0, t1, . . . , tn) + ǫu1(t0, t1, . . . , tn) + . . . + ǫnun(t0, t1, . . . , tn) , (D.1.1a)

t̃ =t̃(t0, ǫt1, . . . , ǫntn) , (D.1.1b)

d

dt̃
=

∂

∂t0
+ ǫ

∂

∂t1
+ . . . + ǫn

∂

∂tn
. (D.1.1c)

By applying (D.1.1a) and (D.1.1b) we can separate higher order derivatives as well.

They are listed in (D.1.2).
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d2

dt̃2
=
∂2

∂t̃2
0

+ ǫ2
∂2

∂t̃2
1

+ 2ǫ
∂2

∂t̃0∂t̃1
+ 2ǫ2

∂2

∂t̃0∂t̃2
+ 2ǫ3

∂2

∂t̃1∂t̃2
+ 2ǫ3

∂2

∂t̃0∂t̃3
+O(ǫ4)

dũ

dt̃
=
∂ũ0

∂t̃0
+ ǫ [∂ũ0

∂t̃1
+

∂ũ1

∂t̃0
] + ǫ2 [∂ũ0

∂t̃2
+

∂ũ1

∂t̃1
+

∂ũ2

∂t̃0
] + ǫ3 [∂ũ0

∂t̃3
+

∂ũ1

∂t̃2
+

∂ũ2

∂t̃1
+

∂ũ3

∂t̃0
] +O(ǫ4)

d2ũ

dt̃2
=
∂2ũ0

∂t̃2
0

+ ǫ [∂2ũ1

∂t̃2
0

+ 2
∂2ũ0

∂t̃0∂t̃1
] + ǫ2 [∂2ũ0

∂t̃2
1

+ 2
∂2ũ0

∂t̃0∂t̃2
+

∂2ũ2

∂t̃2
0

+ 2
∂2ũ1

∂t̃0∂t̃1
]+

+ ǫ3 [∂2ũ1

∂t̃2
1

+ 2
∂2ũ0

∂t̃1∂t̃2
+ 2

∂2ũ0

∂t̃0∂t̃3
+ 2

∂2ũ1

∂t̃0∂t̃2
+ 2

∂2ũ2

∂t̃0∂t̃1
+

∂2ũ3

∂t̃2
0

] +O(ǫ4)
d3ũ

dt̃3
=
∂3ũ0

∂t̃3
0

+ ǫ [∂3u1

∂t3
0

+ 3
∂3u0

∂t2
0
∂t1

]
d4ũ

dt̃4
=
∂4ũ0

∂t̃4
0

+ ǫ [∂4u1

∂t4
0

+ 4
∂4u0

∂t3
0
∂t1

] + ǫ2 [∂4u2

∂t4
0

+ 4
∂4u1

∂t3
0
∂t1

+ 4
∂4u0

∂t3
0
∂t2

+ 6
∂4u0

∂t2
0
∂t2

1

]+
+ ǫ3 [∂4u3

∂t4
0

+ 4
∂4u0

∂t0∂t
3

1

+ 12
∂4u0

∂t2
0
∂t1∂t2

+ 6
∂4u1

∂t2
0
∂t2

1

+ 4
∂4u1

∂t3
0
∂t2

+ 4
∂4u2

∂t3
0
∂t1

+ 4
∂4u0

∂t3
0
∂t3

] +O(ǫ4)
ũ(t̃ − χωr) =u0(t0 − χωr) + ǫ [u1(t0 − χωr) − χωr

∂

∂t1
u0(t0 − χωr)]+

+ǫ2 [u2(t0 − χω) − χω
∂

∂t1
u1(t0 − χω) − χω

∂

∂t2
u2(t0 − χω) + 1

2
(χω)2 ∂2

∂t2
1

u0(t0 − χω)]
d

dt̃
ũ(t̃ − χωr) = ∂

∂t0
u0(t0 − χωr) + ǫ [ ∂

∂t0
u1(t0 − χωr) + ∂

∂t1
u0(t0 − χωr) − χωr

∂2

∂t0∂t1
u0(t0 − χωr)]

+ ǫ2
⎡⎢⎢⎢⎢⎣

∂

∂t1
u1(t0 − χωr) + ∂

∂t0
u2(t0 − χωr) + ∂

∂t2
u0(t0 − χωr) − χωr

∂2

∂t0∂t1
u1(t0 − χωr)

− χωr

∂2

∂t0∂t2
u0(t0 − χωr) − χωr

∂2

∂t2
1

u0(t0 − χωr) + 1

2
(χωr)2 ∂3

∂t0∂t
2

1

u0(t0 − χω)
⎤⎥⎥⎥⎥⎦

ǫ2ũ
dũ

dt̃
=ǫ2ũ0

∂ũ0

∂t̃0
+ ǫ3 [ũ1

∂ũ0

∂t̃0
+ ũ0

∂ũ0

∂t̃1
+ ũ0

∂ũ1

∂t̃0
] +O(ǫ4) ,

ǫ2ũ2
=ǫ2u2

0
+ ǫ32u0u1 +O(ǫ4) ,

ǫ2 (dũ
dt̃

)2 =ǫ2 (∂u0

∂t0
)2 + ǫ3 [2∂u0

∂t0

∂u0

∂t1
+ 2

∂u0

∂t0

∂u1

∂t0
] +O(ǫ4) .

(D.1.2)
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D.2 Instability of a burner with strong losses

If we include all of the small parameters into the linear stability analysis, we have to

solve the following equation

d4ũ

dt̃4
− 2ǫω

d3ũ

dt̃3
+ (1 + ǫ2ω)d2ũ

dt̃2
=

= 2ǫi
1

χrωr

2

1 + β
{βd2ũ

dt̃2
−

d2

dt̃2
ũ(t̃ − ωrχr) +

1 − β

ωrχr

[dũ
dt̃

−

d

dt̃
ũ(t̃ − ωrχ)]}−

− 2ǫr
1

χrωr

2

1 + β
{βdũ

dt̃
−

d

dt̃
ũ(t̃ − ωrχr) +

1 − β

ωrχr

[ũ − ũ(t̃ − ωrχr)]} , (D.2.1)

where ǫr, ǫi and ǫω are given in Eqs. (6.3.6a)-(6.3.6c). We perform the similar steps

which are described in Section (6.3.1), i.e. we introduce two time scales (t0 = t̃, t1 = ǫr t̃)

and transform the terms in Eq. (D.2.1). We then seek a solution in powers of ǫr in the

form ũ = u0 + ǫru1, substitute it into Eq. (D.2.1) and collect coefficient of equal powers

of ǫr. To the leading order (at O(ǫ0r)) we have a harmonic oscillation, i.e.

∂2u0

∂t2
0

+ u0 = 0 , (D.2.2)

which has the solution

u0 = A(t1) exp(−it0) + C.C. . (D.2.3)

At the order of O(ǫ1r) we get
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ǫr
∂4u1

∂t4
0

+ 4ǫr
∂4u0

∂t3
0
∂t1

− 2ǫω
∂3u0

∂t3
0

+ ǫr
∂2u1

∂t2
0

+ 2ǫr
∂2u0

∂t0∂t1
=

= −2ǫr
1

χrωr

2

1 + β
[β∂u0

∂t0
−

∂u0(t0 − χrωr)
∂t0

] − 2ǫr
1

χrωr

2

1 + β

1 − β

χrωr

[u0 − u0(t0 − χrωr)]
+2ǫi

1

χrωr

2

1 + β
[β∂2u0

∂t2
0

−

∂2u0(t0 − χrωr)
∂t2

0

]−2ǫr
1

χrωr

2

1 + β

1 − β

χrωr

[∂u0

∂t0
−

∂u0(t0 − χrωr)
∂t0

] .
(D.2.4)

We rearrange Eq. (D.2.4) and eliminate the secular terms to obtain the following

equation for A(t1)

∂A

∂t1
= A [ǫω

ǫr
+ (ϕi − iϕr) +

ǫi

ǫr
(ϕr + iϕi)] , (D.2.5)

where ϕi and ϕr are given in Eqs. (6.3.11a)-(6.3.11b). Eq. (D.2.5) is of first order and

linear in A. The solution is

A(t1) = c0 exp{t1 [ǫω
ǫr

+ (ϕi − iϕr) +

ǫi

ǫr
(ϕr + iϕi)]} , (D.2.6)

where c0 is a constant and with Eq. (D.2.3) we obtain

u0 = a0 exp [t0 (ǫω + ǫrϕi + ǫiϕr)] sin [ζ0 + t0 (1 + ǫrϕr − ǫiϕi)] , (D.2.7)

where a0 and ζ0 are the initial conditions. The terms ǫiϕr and ǫiϕi represents small

corrections in the gain and the phase respectively.
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Appendix E

Properties of the LIMOUSINE

burner

E.1 Measured properties of the LIMOUSINE burner

quantity notation value [dimension]

adiabatic flame temperature T̄ad 2200 [K]
maximum measured temperature T̄ (xq) 1320 [K]

reflection at the inlet R0 0.80+i0.22
reflection at the outlet R1 -0.954-i0.137

length of the inlet region l1 0.324 [m]
length of the flame region l2 − l1 0.070 [m]

length of burner L 1.424 [m]
temperature at the inlet T0 340 [K]
temperature at x = l1 T1 400 [K]
temperature at x = l2 T2 1320 [K]

temperature at the outlet T3 1120 [K]
specific gas constant R 286.9 [J/kgK]
heat capacity ratio γ 1.35

operating mean pressure p̄ 1 [atm]
cross sectional area of inlet A0 0.0045 [m2]
cross sectional area of outlet A1 0.0090 [m2]

Table E.1: Measured properties of the LIMOUSINE burner
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E.2 Calculated properties of the LIMOUSINE burner

quantity notation
value [dimension]

first mode second mode

passive damping rate ωi −32.3 [1/s] −72.98 [1/s]
passive eigenfrequency ωr 760.3 [1/s] 1757.0 [1/s]
real part of ∂ĝ/∂x Re[∂ĝ/∂x] −152.6 [1/s] 83.5 [1/s]

imaginary part of ∂ĝ/∂x Im[∂ĝ/∂x] −6.2 [1/s] 15.32 [1/s]
relative damping ǫω −0.04 −0.04

real part of ∂ĝ/∂x/ωr ǫr −0.2 0.05
imaginary part of ∂ĝ/∂x/ωr ǫi −0.01 0.01

heat-loss coefficient ηT 0.60
flame holder radii ratio β 1

hydraulic flame holder radii ratio βh 0.56
combustion enthalpy of methane (∆qr/cpTad)st 0.78

Table E.2: Calculated properties of the LIMOUSINE burner
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