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Abstract

To begin understanding how the architecture of hot Jupiter planetary systems can be so

radically different from that of our own solar system, requires the dynamical evolution

of planets to be known. By measuring the sky-projected obliquity λ of a system it is

possible to determine the dominant process in the dynamical evolution.

If a transiting exoplanet that crosses the disc of its host star passes over a starspot,

then the amount of received intensity from the star will change. By modelling the

position of the anomaly in the lightcurve it is possible to precisely determine the

position of the starspot on the stellar disc. If the position of the starspot can be

found at two distinct times using two closely spaced transits, then it is possible to

measure λ. Before now there was no definitive model capable of accurately modelling

both a planetary transit and a starspot.

This research focuses on the development of prism which is capable of accurately

modelling a transit containing a starspot anomaly. Due to the nature of the parameter

space a new optimisation algorithm was developed, gemc, which is a hybrid between

a genetic algorithm and MCMC.

prism and gemc were then used to model transit data of WASP-19, WASP-6

and WASP-50. From this it was then possible to determine λ = 1.0◦± 1.2◦ for WASP-

19 b and λ = 6.4◦ ± 2.3◦ for WASP-6 b. These values imply that both WASP-19 b

and WASP-6 b formed beyond the snowline and migrated in towards their host stars

though tidal interactions with the protoplanetary discs.

No starspot anomalies were detected in the WASP-50 lightcurves but, due to

the record-breaking photometric precision of the data, it was possible to reduce the

uncertainties in the properties of WASP-50 b from 6% (mass), 4% (radius), 9% (density)

and 6% (surface gravity) to 5%, 2%, 4% and 2%, respectively.
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1 Introduction

The research of this thesis explores starspot anomalies in the lightcurves of transiting

exoplanets and how accurately modelling the starspots can help probe the dynamical

evolution of transiting exoplanetary systems. Chapter 1 begins with an introduction to

exoplanets including the various observational techniques available to study them, then

describes the dynamical evolution of hot-Jupiters and how measuring the spin-orbit

alignment of the planetary system can lead to better understanding of the dynami-

cal evolution of the system. Chapter 2 explains the methodology used in the research

for this thesis. This includes the data reduction pipeline used and the creation of

prism and gemc, the codes used to model and optimise transit lightcurves containing

a starspot anomaly. Chapters 3 and 4 give the results and analysis from using prism

and gemc on transits and starspots of WASP-19 and WASP-6, respectively. Chapter 5

presents two transits of WASP-50 taken using the ESO NTT and is an excellent ex-

ample of how using defocused photometry can drive down photometric uncertainties.

Chapter 6 then gives the final conclusions and discussion of the work carried out in this

thesis and potential further work.

This chapter begins with Section 1.1, which gives a brief historical overview on the

field of exoplanet research. Section 1.2 describes the four main observational techniques

used to study exoplanets, including radial velocity (RV) and photometric observational

techniques. Section 1.3 reviews the measured physical properties of the population of

known transiting planets with emphasis on hot-Jupiters and correlations between their

physical properties. Section 1.4 discusses the dynamical evolution of exoplanets and

the artifacts that these processes leave on the planetary system’s architecture. It then

describes the Rossiter-McLaughlin effect and how it can be used to measure the sky-

projected stellar obliquity, which can lead to understanding the dynamical evolution of

the planetary system. Section 1.5 explains the effect of starspots on transit lightcurves

and the current available techniques to model them. It also explains how starspots in

transit lightcurves can be used to measure the sky-projected stellar obliquity.
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1.1 Historical Overview

Since the dawn of mankind one of the fundamental philosophical questions has been

‘Are we alone?’. To begin answering this question astronomers have looked to the solar

system and our planetary neighbours. In recent times planetary scientists and astrobi-

ologists have begun to speculate over the possibilities of finding microbial communities

below the surface of Mars, protected from the harmful effects of the solar wind and

cosmic rays (Boston et al., 1992; Dartnell et al., 2007). Mankind has also begun to look

at one of the Galilean moons of Jupiter, Europa. Measurements of Europa’s magnetic

field suggest that a subsurface liquid water ocean may exist (Kivelson et al., 2000).

This ocean can remain as a liquid by receiving thermal energy from tidal flexing of

the moon from the eccentric orbit around Jupiter (Ross & Schubert, 1987). Another

theory for the generation of thermal energy to form Europa’s subsurface ocean is from

the obliquity of Europa (the axial tilt of the moon with respect to its orbital plane)

which has the right form and frequency to resonantly excite large-amplitude Rossby

waves in Europa’s subsurface ocean (Tyler, 2008). After exhausting the possibilities of

finding intelligent life in our own solar system, astronomers started to look further out

into the universe, but before they could even attempt to find intelligent life they had

to find planets outside of our own solar system.

Wolszczan & Frail (1992) discovered the first planets outside of our solar system.

They found two Earth mass planets orbiting the pulsar PSR1257+12 through pulsar

timing variations. Pulsar planets are second generation planets formed after a super-

nova (Wolszczan & Frail, 1992). This tells us that planet formation may be physically

possible in a range of environments. Then, Mayor & Queloz (1995) discovered the first

planet around a sun-like star, 51Peg, using radial velocity (RV) measurements (see

Section 1.2.1 for details). This discovery was vitally important due to the fact that our

own Sun is a main-sequence star and so 51Peg can be viewed as an analogue to our

own solar system. 51Peg b was found to be a Jupiter-class planet (i.e comparable mass

to Jupiter) orbiting the host star with a semimajor axis of approximately 8 × 106 km
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or 0.05 astronomical units1 (AU) (Mayor & Queloz, 1995). This contradicted our un-

derstanding of the evolution of our own solar system due to a distinct difference in

the system architecture. The biggest gas giant in our solar system is Jupiter lying

at a distance of 5AU from the Sun. All the other gas giants lie outside of Jupiter’s

orbit while all the rocky terrestrial planets lie within Jupiter’s orbit. Two compet-

ing planetary evolution models were put forward to explain how Jupiter-class planets

come to orbit so close to their host stars: disc-migration in a protoplanetary disc

which also explained low obliquities and eccentricities (Goldreich & Tremaine, 1980;

Papaloizou & Larwood, 2000), and planet–planet interactions combined with tidal dis-

sipation (Matsumura et al., 2010). An example of planetary migration is that the gas

giant formed beyond the snow line and through tidal interactions with the protoplane-

tary disc migrated in towards the host star (see Section 1.4 for more details). The snow

line represents a distance in a solar/stellar nebula from the protostar where hydrogen

compounds such as water, methane and ammonia can condense to form ice grains. The

typical temperature at the snow line is around 150–170K. There are two possible types

of disc-migration which can occur. Type I migration is due to a differential torque

exerted on the planet from the interior and exterior portions of the protoplanetary disc

(Ward, 1997a). Type II migration is caused when the planet clears its orbit of the disc

material, creating a density discontinuity which locks the planet into the disc viscous

evolution (Ward, 1997a). For the planet–planet interactions model the gas giant’s or-

bit is altered gravitationally due to another planet/planetoid in the system. The gas

giant’s orbit then aligns and circularises due to tidal dissipation (Matsumura et al.,

2010).

Henry et al. (2000) and Charbonneau et al. (2000) found the first transit from

photometric observations (Section 1.2.2) of an exoplanet, HD209458 b. The HD209458

system was already known to contain an exoplanet from RV measurements (Henry

et al., 2000). The first planet discovered using followup of a photometric detection of

1An AU is the mean distance from the Earth and the Sun, where one AU = 1.495978707× 1011

m. (IAU resolution B2 at the 2012 General Assembly.)
(http://www.iau.org/static/resolutions/IAU2012 English.pdf)
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a transit was OGLE-TR-56 (Udalski et al., 2002; Konacki et al., 2003). An offshoot

from transit photometry that was theorised by Holman & Murray (2005) is transit

timing variations (TTVs see Section 1.2.4). The first discovery of an exoplanet from

TTVs was Kepler 9 d (Holman et al., 2010). Furthermore in recent years it has become

possible to directly image planets. Chauvin et al. (2004) performed the first direct

imaging of a 5 ± 2 MJup planet at a distance of 55AU from its brown dwarf host star

(2MASSWJ 1207334-393254). Then Marois et al. (2008) directly imaged two planets

around the star HR8799 and in a later observation discovered a third planet orbiting

HR8799 (Marois et al., 2008). The projected separations of these new planets were

found to be 24, 38 and 68AU with a mass range of between 5–13 MJup.

So far to date2 a total of 1810 planets (Schneider et al., 2011) outside of our own

solar system have been discovered using the methods discussed above. These planets

have been found using RV surveys (Butler et al., 1996, 1999; Queloz et al., 2000) coupled

with both ground-based (e.g SuperWasp and HAT) (Pollacco et al., 2006; Bakos et al.,

2004) and space-based (CoRoT and Kepler) (Baglin et al., 2006; Borucki et al., 2010)

transit detection surveys. The NASA Kepler space satellite has detected Earth-size

planets in the Habitable Zone (HZ) of their parent star, potentially indicating new

habitable worlds similar to our own Earth (Borucki et al., 2012; Borucki et al., 2013).

Once sufficiently sized ground-based telescopes such as the European Extremely Large

Telescope (E-ELT) are built, it will be possible to perform high-dispersion spectroscopy

and RV measurements on these planets in the effort of answering the question ‘Are we

alone?’ (Snellen et al., 2013). High-dispersion spectroscopy is a technique which takes

advantage of the relative velocity of an exoplanet with respect to the Earth, the lines

in the exoplanet spectrum will be slightly Doppler shifted and the Doppler shift varies

continuously based on the orbital positions of the Earth and the planet. Because of

this it may be possible to separate the molecular oxygen in the planet’s atmosphere

from the molecular oxygen found in the Earth’s atmosphere (Snellen et al., 2013).

With such an ensemble of planets known, the field of exoplanetary research has

2(http://exoplanet.eu) accessed on 2014/07/18
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become an independent field of its own. It is also becoming important to ascertain

the physical properties of exoplanets to a high-precision. This will allow the statistical

characterisation of exoplanets and their formation, coupled with evolution channels, to

be studied in great depth furthering our knowledge of these planets.

The present trend of exoplanets discovered so far tends toward Jupiter-sized

planets in orbits of only a few stellar radii from their parent star. This trend is skewed

away from the observational limits of ground-based detection surveys. While space

detection surveys are finding Earth sized planets it is nearly impossible to perform

detailed ground-based follow up observations of these ‘Super-Earths’. Because of this

the majority of research in the field is towards hot-Jupiters. The term hot-Jupiter refers

to Jupiter mass planets with orbital periods of less than 10 days. Many unanswered

questions remain, for example, how did these planets form and how did they come to

orbit so close to their host star? Also, do they contain a rocky or liquid core or even

no core at all? To help answer these questions we need high-precision measurements

of the planet’s radius and mass. While the mass of a planet can be found from RV

measurements its radius can be found from transit photometry. Many lightcurves for

known exoplanets are of medium to poor quality, with uncertainties in the radii of the

planet around 10-15%. To answer the questions listed above requires uncertainties in

the measurements of the planetary radius of 1-3%, for example a hot-Jupiter with a

rocky core will have a slightly smaller radius compared to an equal mass hot-Jupiter

without a core (Fortney et al., 2007). Using 51Peg b as an example and by comparing

it to Figure 1.1 we can see that if 51Peg b was coreless its radius would be 1.12 RJup

while by having a 25M⊕ core its radius would be at 1.05 RJup, a decrease of 7%.

Fortney et al. (2007) explains that the difference in radii due to having a core is from

the stronger gravitational force exerted by the core on the outer layers of the gas giant.

Two different models, core accretion (Pollack et al., 1996) and gravitational instability

(Boss, 1997) both predict different core masses. As such, a precise measurement of a

Transiting Extrasolar Planet’s (TEP) radius is important in determining the dominant

formation process.

Another reason why high-precision measurement of planetary radii are important
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Figure 1.1: Planetary radii at 4.5Gyr as a function of orbital distance from a Sun-like
star (Fortney et al., 2007). The radii of four planets are calculated both with and
without a core. The masses are 0.1, 0.3, 1.0 and 3.0MJup. The fine lines represent a
coreless planet while the thick lines represent planets with a 25M⊕ core comprised of
heavy elements. It should be noted that the 0.1 MJup planet with a core is off the plot
at ∼ 0.5RJup.

is that they can help us to determine the chemical composition of the outer layers of a

hot-Jupiter. Fortney et al. (2008) defines two different types of hot-Jupiters using the

chemicals TiO and VO. The pM class planet is thermally hot enough to allow both

TiO and VO to be gases and hence allow the outer atmosphere to become slightly

opaque. For cooler planets, on the other-hand, TiO and VO are predominantly in solid

condensates and such planets are called pL class planets. Because of this the observed

radii of hot-Jupiters will be dependent on which class they are (see Figure 1.2). This

variation of the planet’s radii is also wavelength dependent and observing a transit in

multiple wavelengths would help reduce the uncertainties in the determination of the

planet’s class.

Therefore it is important to measure the radii of hot-Jupiters to high-precision
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Figure 1.2: Radius as a function of wavelength for both a pM and pL class planet
(Fortney et al., 2008). They have a 1 bar radius of 1.2 RJup and a surface gravity of
g = 15ms−2.

to allow us to help constrain their structure and formation channels. To this end it is

necessary to obtain precise transit photometry for the TEPs in question and through

careful analysis determine their properties.

1.2 Observational Methods for Discovering Exo-

planets

There are two main observational techniques used to both discover and measure the

properties of exoplanets. The first uses radial velocity observations to measure the

Doppler shift in the emitted light of the host star due to the rotational dynamics of

the system. The second uses photometry to measure changes in the received intensity

from a star as a function of time, from either a planet crossing the stellar disc or from

gravitational bending of light from a lens star and planet.
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1.2.1 Radial Velocity

In a planetary system both the planet and the star orbit around a point called the

centre-of-mass. If m1 and m2 are the masses of the star and planet, respectively,

a is the semimajor axis (average distance between the star and planet) and r is the

distance from the centre of the star and the centre-of-mass, then the following equation

(Hilditch, 2001) shows that when m1 ≫ m2 then r ≈ 0.

r =
a

1 +m1/m2

(1.1)

So if m2 is small enough then the centre-of-mass will lie within the star and the star’s

rotational axis will orbit around the centre-of-mass. This rotation can be observed by

measuring the Doppler shift of the light emitted from the star. Figure 1.3 shows an

example of radial velocity (RV) measurements for WASP-1 and WASP-2 taken with

the SOPHIE spectrograph (Collier Cameron et al., 2007b).

Figure 1.3: Radial velocity curves for WASP-1 and WASP-2 using the SOPHIE spec-
trograph (Collier Cameron et al., 2007b).

The first step in determining the minimum mass of the planet requires finding the

RV of the star orbiting around the centre-of-mass. This is done by using a spectrograph
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to observe the spectrum of a star. Then the wavelengths of the emission/absorption

spectral features are found and compared to a stationary source. This comparison is

done to measure the fractional shift in wavelength for a moving source. If an object is

moving towards us then the emitted light is blue-shifted as the wavelength is shortened.

Conversely if the object is moving away from us the light is red-shifted due to the

wavelength being stretched. Assuming λobs is the observed wavelength and λ0 is the

wavelength from a stationary source (using the same spectral line) then the RV of the

star, v, coupled with the speed of light, c, can be calculated:

v

c
=
λobs
λ0

− 1 (1.2)

Once the RV of the star has been found for the individual data points a RV plot similar

to Figure 1.3 can be created. This then allows the RV semi-amplitude of the star K, the

orbital period P (the time difference between two peaks) and the orbital eccentricity

e to be calculated. Eccentricity is a mathematical term used to describe the deviation

from a circle into an ellipse, where e = 0 denotes a pure circle while e = 1 denotes an

ellipse in which the longest axis is stretched out into infinity. The eccentricity can be

found by the shape of the RV plot. If e = 0 then the shape would be purely a sine wave

while as e increases the sine curve would become deformed. The following equation

relates the above properties and allows us to determine the projected semimajor axis

between the star and the centre-of-mass a1 (e.g. Hilditch, 2001):

K =
2πa1 sin i

P
√
1− e2

(1.3)

The above equation also introduces a new variable i, the inclination of the planetary

system. As can be seen sin i is a scalar and as such only affects the magnitude of

the velocity amplitude and not the shape. If i = 0 then it would not be possible to

perform a RV measurement of the system due to the plane of the orbit being aligned

with the plane of the sky and as such the wavelength of the spectra observed along our

line-of-sight would not be affected. The inclination of a planetary system can be found

from photometric means (see Section 1.2.2). It is because of this unknown quantity
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that we can only determine the lower mass limit of a planet using solely spectroscopic

means (see Equation 1.11). The argument of periastron ω and the true anomaly θ (the

angle between the periastron and the position of the planet) can also be found from

the RV (Hilditch, 2001), where:

v =
2πa1 sin i

P
√
1− e2

[cos (θ + ω) + e cosω] (1.4)

By combining equations 1.3 and 1.4 we can obtain ω and θ in terms of v and K and

hence can directly measure them from a RV plot.

v = K [cos (θ + ω) + e cosω] (1.5)

To maintain convention if we re-write our variables from Equation 1.1 to be r = a1 and

a = a1+a2 (where a2 is the semimajor axis between the planet and the centre-of-mass)

we can then express Equation 1.1 as follows:

m1a1 = m2a2 (1.6)

This then allows us to write the projected semimajor axis between the star and the

centre-of-mass, a1, as a function of mass:

a1 =
m2

m1
a2 (1.7)

Then, by combining Equations 1.3 and 1.7 we can write K in terms of the planet/star

mass-ratio and the projected planet semimajor axis a2:

K =
2πa2 sin i

P
√
1− e2

(

m2

m1

)

(1.8)

The next stage in detailing the system makes use of Kepler’s 3rd law,

P 2 =
4π2a32
GM

(1.9)

By using the total massM = m1+m2, the orbital period of the planet P , the semimajor

axis of the planet a2 and the gravitational constant G. Then, by rearranging for the
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planet’s semimajor axis a2, we arrive at:

a2 =

(

GMP 2

4π2

)1/3

(1.10)

Using this we can then combine Equations 1.8 and 1.10 to derive the mass function

which allows the lower bound of the planetary mass to be found once the stellar mass

is known:

K =

(

2πG

P

)
1

3 m2 sin i

m
2/3
1

1√
1− e2

(1.11)

In this case i is the inclination of the planetary orbit and hence only allows us to

determine the lower bound of the planetary mass as discussed before. But when coupled

with photometry it is possible to find a value for i, enabling a precise value for the

planetary mass to be obtained.

The final stage in determining the lower bound of the planetary mass is to examine

the line spectra from the star itself. This is accomplished using models of main-sequence

stellar atmospheres (see Gray, 2008) to ascertain the effective temperature Teff , surface

gravity log (g) and metal abundance of the star [Fe/H ]. The effective temperature of a

star is that of a black body emitting an equal amount of electromagnetic radiation and

the surface gravity is the net gravitational acceleration at the surface of the star. While

the metal abundance of the star is the logarithmic ratio of metal to hydrogen of the

star compared to that of the Sun. Different stellar atmospheric models (e.g. ATLAS9

(Kurucz, 1979; Castelli & Kurucz, 2003) and MARCS (Gustafsson et al., 1975, 2008))

predict different spectral line equivalent widths based on input parameters such as

Teff , log (g) and [Fe/H ]. The equivalent width of a spectral line is the measure of

the area within the spectral line on a plot of wavelength vs. intensity. Researchers

can then use one of two different types of fitting algorithms. The first method used

fits the observed spectra with synthetic spectra generated from the input parameters

and stellar atmospheric models such as SME (Spectroscopy Made Easy)-(Valenti &

Piskunov, 1996). The second method compares the spectral line equivalent widths

between synthetic and observed spectra (e.g. GALA (Mucciarelli et al., 2013)). Both
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Figure 1.4: Panels comparing a synthetic spectrum (solid, thick line) to the observed
spectrum (grey) of WASP-1 taken from Stempels et al. (2007). The top panel shows
the temperature sensitive Hα 6563 Å line. The middle panel shows the log (g) sensitive
Mgb 5175 Å triplet (the wavelengths are at 5167 Å, 5172 Å and 5183 Å (Aldenius et al.,
2007)) spectral line. The bottom panel shows a section containing many lines which
are sensitive to [M/H ].

methods work by varying the input parameters and inserting them into the different

atmospheric models to produce synthetic spectra, which are then compared to the

observed spectra either by using the spectral line equivalent widths or sections of the

spectrum containing spectral lines sensitive to certain parameters (see Figure 1.4).

To find the values of Teff , log (g) and [Fe/H ] for the observed star, spectral

lines that are sensitive to these parameters are studied. For example, Stempels et al.

(2007) used the Hα 6563 Å line to measure Teff and the Mgb 5175 Å triplet lines (the

wavelengths are at 5167 Å, 5172 Å and 5183 Å (Aldenius et al., 2007)) to measure

log (g). It is also possible to measure log (g) from the Ca I 6122 Å and Ca I 6162 Å
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Figure 1.5: H-R diagram of effective temperature versus log (g) from Ribas et al.
(1999).Here we see the zero-age main-sequence (ZAMS) line and the 2.6Gyr isochrone
indicating changing mass with respect to changing surface gravity and effective tem-
perature. The isochrones marked A and B represent constant mass with changing age.
The two points with error bars represent the two components of the detached eclipsing
binary CD Tau A and B. This plot indicates that both stars are 2.6Gyr old within the
uncertainties.

spectral lines (Stempels et al., 2007).

Once this has been achieved the parameters are plotted on a H-R diagram of

log (g) versus Teff and are compared to theoretical stellar evolution models to ascertain

the age and mass of the star (see Figure 1.5). It is worth pointing out that most

researchers in the field of exoplanets plot a H-R diagram of effective temperature versus

stellar density to ascertain the stellar age and mass (see Figure 1.6). To accomplish

this would require the density of the star to be known and this can be found to high-

precision from transit photometry (see Section 1.2.2 for more details).

There are different stellar evolution models available to find the age and mass

of a star, these include Claret (Claret, 2004b, 2005, 2006, 2007), Yonsei-Yale (Y2)
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Figure 1.6: H-R diagram of effective temperature versus (ρ/ρ⊙)
−1/3 for WASP-56 from

Faedi et al. (2013). Here we see isochrone tracks from the Yonsei-Yale (Y2) model
(Demarque et al., 2004) for WASP-56 using a metallicity of [Fe/H ] = 0.12 dex and
stellar density of ρ∗ = 0.88ρ⊙. From left to right the solid lines are for isochrones
ranging from 1.8-14.0Gyr. From left to right the red dashed lines are for mass tracks
ranging from 1.2-0.8 M⊙. This gives a stellar mass of 1.01+0.03

−0.04 M⊙ and a stellar age of
6.2+3.0

−2.1Gyr.

(Demarque et al., 2004) and Padova (Girardi et al., 2000). The final results for the age

and mass of a star are either taken from a single model (e.g. Bakos et al. (2010, 2012);

Hellier et al. (2012); Faedi et al. (2013)) or statistically derived from the individual

results from multiple models (e.g. Southworth et al. (2009a,b, 2010); Southworth (2008,

2009, 2010, 2011)). The models are started from the zero-age of the main-sequence

(ZAMS) for various starting masses and chemical compositions and are evolved through

to the asymptotic giant branch or carbon burning stage. This generates isochrones that
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can be directly compared to the Teff and either log (g) or the stellar density log (ρ∗)

of the star. Through this method it is possible to ascertain both the age and mass of

the host star.

In summary, by using spectroscopy to observe exoplanets it is possible to not only

deduce the lower bound of the planetary mass but ascertain key features of the host star

and system. It is also possible to determine the effective temperature of the star coupled

with the surface gravity and metal abundance. These in turn can allow us to determine

the mass and age of the star within the model-dependent theoretical uncertainties. The

orbital properties of the planet can also be deduced from spectroscopic methods. We

can see from Kepler’s 3rd law that the orbital period in conjunction with the stellar

mass can be used to find the orbital separation between the planet and host star (the

sum of a1 and a2 found from Equations 1.3 and 1.10, respectively), while the eccentricity

of the orbit can be found from direct analysis of the RV curve.

1.2.2 Photometry

As a planet transits the disc of its parent/host star the amount of received flux from

the star decreases. This is in fact the same process seen when Venus transits the solar

disc. For a planet to transit the disc of the parent/host star its orbital inclination i

must be close to 90◦. Photometry is in essence measuring the change in flux received

from the target star with respect to time and creating a lightcurve. A lightcurve is a

plot of flux as a function of time. The angular diameter θ of a celestial object in the

sky is given by Equation 1.12, where R is the radius of the object and d is the distance

between the observer and the object.

θ = 2 arctan

(

R

d

)

(1.12)

For a transiting planet the distance between the Earth and the planet is approximately

the same as the distance between the Earth and the parent/host star. Because of this

any change in flux ∆F due to the planet crossing the disc of the star is a direct indicator
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of the square of the ratio between the radii of the planet Rp and star R∗ as seen in

Equation 1.13 for a uniformly illuminated disc (see Section 1.2.2.1).

∆F =

(

Rp

R∗

)2

(1.13)

The ratio between the radii of the planet and star is usually denoted with the symbol

k such that Rp/R∗ = k. Hence Equation 1.13 can be written as:-

∆F = k2 (1.14)

By examining the shape of a lightcurve (see Figure 1.7) we can find an abundance of

information about the planetary system not ascertainable from RV measurements (Sec-

tion 1.2.1). The orbital period of the planet can be found from either RV measurements

or from phase-folding multiple transits to ascertain the orbital period (Pollacco et al.,

2008; Pepper et al., 2013). The inclination of the planetary orbit i can be written as

the impact parameter b, which is the sky-projected distance from the stellar equator

at mid-transit in units of the stellar radius. By using the semimajor axis of the system

a, the eccentricity e and the argument of periastron ω found from RV measurements,

Equations 1.15 and 1.16 give b for the transit and occultation, respectively (the transit

is when the planet crosses in front of the star and the occultation is when the planet

passes behind the star) (Winn, 2011).

btra =
a cos i

R∗

(

1− e2

1 + e sinω

)

(1.15)

bocc =
a cos i

R∗

(

1− e2

1− e sinω

)

(1.16)

For a circular orbit where e = 0 equations 1.15 and 1.16 can be simplified to the fol-

lowing:

b =
a cos i

R∗

(1.17)

In the case of a circular orbit b is the same for both the transit and occultation. It

is shown in the literature that in general transiting exoplanets tend to have small
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eccentricities (see Section 1.3.4) as a consequence in the event when e is not known,

Equation 1.17 can be used to give a good approximation for the impact parameter. In

the case of WASP-26 neglecting the eccentricity would increase the impact parameter

of the transit by 0.1% (Mahtani et al., 2013).

The total transit length Ttot is used to describe the time from when the planet

disc starts to touch the stellar disc to when the planet disc no longer is in contact with

Figure 1.7: Illustration of a transit and corresponding lightcurve taken from Winn
(2011). In this particular case the limb-darkening effect is being ignored. limb-
darkening adds a curvature or rounding to the transit. b is the impact parameter,
δ is the transit depth, τ is the duration of egress/ingress and tI , tII , tIII and tIV are
the four contact points.
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the stellar disc (points tI and tIV from Figure 1.7) and is given by Equation 1.18 (Winn,

2011). The full transit length Tfull is used to describe the time from when the planet

disc is fully within the stellar disc to the point where it begins to leave the stellar disc

(points tII and tIII in Figure 1.7) and is given by Equation 1.19 (Winn, 2011).

Ttot ≡ tIV − tI =
P

π
sin−1





R∗

a

√

(1 + k)2 − b2

sin i



 (1.18)

Tfull ≡ tIII − tII =
P

π
sin−1





R∗

a

√

(1− k)2 − b2

sin i



 (1.19)

One of the drawbacks from transit photometry is that it is not possible to discern the

semimajor axis a, unless coupled with RV measurements. To deal with this during

the modelling the radii of both the planet and star are scaled to units of a, where

rp = Rp/a and r∗ = R∗/a are the fractional radii. This removes the dependence on a

in Equations (1.15 to 1.19).

In summary, by measuring the length of totality, length of full transit, duration

and depth of a planetary transit from transit photometry we can ascertain the orbital

inclination and scaled radii of the planet and star. If the inclination is then combined

with RV data and used in Equation 1.11 coupled with the stellar mass from stellar

models, we can determine a precise measurement of the planetary mass. Using Equa-

tions 1.3 and 1.8 we can also ascertain the true semimajor axis by using the inclination.

This in turn will then allow the radii of the planet and star to be calculated. With the

radii and masses of the planet and star known it would then be possible to find their

respective mean densities, which is important for structure and formation models.

As pointed out in Section 1.2.1 it is possible to directly determine the stellar

density from transit photometry. If we combine the identity R∗ = a r∗ with Kepler’s

3rd law (Equation 1.9) we get:

R3
∗
=
GMP 2

4π2
r3
∗

(1.20)
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As the total mass M is equal to m∗ +mp and density ρ for a sphere equals mass over

volume:

ρ =
M

V
=

3M

4πR3
(1.21)

We can then combine Equations 1.20 and 1.21 into:

ρ∗ + k3ρp =
3π

GP 2
r−3
∗

(1.22)

Since k3 is usually small (for example, the k value for WASP-19 is k = 0.1428 (see

Chapter 3) which equates to a value of k3 = 0.002911955, which renders the contribu-

tion from the planetary density insignificant) the planet’s density term can be dropped

to allow the stellar density to be directly calculated.

Independently both the RV and transit photometry methods can help us under-

stand the planetary system in great detail but only to a certain extent. When combined

to study a system, however, they both complement each other by filling in the gaps

that the other method cannot address.

1.2.2.1 limb-darkening

In reality, lightcurves do not look like the one in Figure 1.7, but in fact the transit shape

is more rounded (see Figure 1.8). This is caused by limb-darkening (LD). When stars

are observed they do not appear as a uniform disc. The limb (the edge of the disc)

appears to be fainter. Viewing the central region of a star allows us to see to deeper

layers as compared to the limb of the star, which can be understood by the fact that

our line-of-sight is along the surface normal n̂ at the stellar centre but is perpendicular

to n̂ at the edge of the stellar disc. These deeper layers are hotter and hence produce

more light than the cooler outer layers.

There are many different functions used to model LD, based on theoretical model

atmospheres. Each LD law uses a set of coefficients that have been tabulated based on

theoretical model atmospheres (e.g. Claret, 2004a). All the LD laws take into account
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Figure 1.8: Phased light curve of two transits of WASP-5 (Southworth et al., 2009a).
The data are compared to the best-fitting model (Blue solid line). The transit is
rounded due to limb-darkening, which in this case is modelled using the quadratic law.
The residuals of the fit are seen at the bottom of the figure.

the angle, µ, between the line-of-sight and n̂ where µ = cos θ. They also give the

received intensity I (µ) at an angle θ in units of received intensity from the centre of

the star I0. The linear LD law (Equation 1.23) uses a single coefficient u, which if the

lightcurve is of sufficient quality can be fitted for or fixed during the modelling process.

I (µ)

I0
= 1− u (1− µ) (1.23)

The quadratic LD law (Equation 1.24) uses two coefficients a and b.

I (µ)

I0
= 1− a (1− µ)− b (1− µ)2 (1.24)

The cubic LD law (Equation 1.25) uses three coefficients p, q and r (Barban et al.,

2003).
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I (µ)

I0
= 1− p (1− µ)− q (1− µ)2 − r (1− µ)3 (1.25)

A second cubic LD law (Equation 1.26) uses only two coefficients p and r (Van’t Veer,

1960).

I (µ)

I0
= 1− p (1− µ)− r (1− µ)3 (1.26)

The square-root LD law (Equation 1.27) uses two coefficients e and f (Diaz-Cordoves

& Gimenez, 1992).

I (µ)

I0
= 1− e (1− µ)− f (1−√

µ) (1.27)

The Logarithmic LD law (Equation 1.28) uses the two coefficients c and d (Klinglesmith

& Sobieski, 1970).

I (µ)

I0
= 1− c (1− µ)− dµ lnµ (1.28)

The fourth order LD law (Equation 1.29) uses the coefficient a subscripted between 1

to 4 (Claret, 2000, 2003).

I (µ)

I0
= 1−

4
∑

k=1

ak
(

1− µk/2
)

(1.29)

The exponential LD law (Equation 1.30) uses the coefficients g and h (Claret &

Hauschildt, 2003).

I (µ)

I0
= 1− g (1− µ)− h

(1− eµ)
(1.30)

Southworth (2008) showed that to model a TEP accurately a non-linear LD law should

be used while a LD law using three or more coefficients is unnecessary when data is of

the accuracy of ground-based observations. It is obvious in the literature (e.g. Mandel

& Agol, 2002; Bakos et al., 2009; Krejčová et al., 2010; Boisse et al., 2013; Hartman

et al., 2012; Howard et al., 2012; Pepper et al., 2013; Bean et al., 2013; Mancini et al.,
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2013a) that many TEP researchers use the quadratic LD law (Equation 1.24) when

modelling ground-based transits of TEPs around main-sequence stars. To determine

the effectiveness of a LD law for a particular star, the fitted coefficients are compared

to the theoretical values. If the data are of insufficient quality the uncertainty interval

for the LD coefficients will be large and as such the theoretical coefficients should be

used. Howarth (2011) showed that the LD coefficients derived from transit photometry

do not always agree with their tabulated counterparts and, in fact, the LD coefficients

from transit photometry are biased away from the true values. This is due to trying

to compare two different methods. The tabulated coefficients are calculated using

theoretical stellar atmosphere models while the coefficients derived from transits have

a degeneracy with the impact parameter. To derive the theoretical LD values requires

the effective temperature Teff , surface gravity log (g), metal abundance of the star

[Fe/H ] and microturbulence to be known. Microturbulence is a form of turbulence

which varies over small scales. Inside stars it is the micro-scale non-thermal gas velocity

in the region of where the spectral line is formed and therefore, effects the width and

strength of the absorption lines. The size of the cell is less than the mean-free path

of a photon (Doyle et al., 2013). As discussed in Section 1.2.1 these values can be

calculated from comparing spectral lines and synthetic spectra generated from model

atmospheres.

There are various theoretical LD models to cover the range of LD laws and

wavelengths. Claret (2004a) calculated theoretical LD coefficients for the linear, log,

quadratic, square-root and fourth order laws in the Sloan u’, g’, r’, i’ and z’ passbands.

Klinglesmith & Sobieski (1970) produced coefficients for the linear and logarithmic laws

for stars with a Teff ≥ 10000K. Diaz-Cordoves et al. (1995) calculated LD coefficients

for the Strömgren u, v, b and y bands and the Johnson U, B and V. Both Sing (2010)

and Claret & Bloemen (2011) calculated the coefficients for the CoRoT and Kepler

space satellite passbands. Claret & Bloemen (2011) also produced coefficients for the

Spitzer satellite and the Sloan filters.
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1.2.3 Gravitational Microlensing

Gravitational microlensing uses a lens star with a mass approximately 0.1 to 1.0M⊙

(Steves et al., 2011) to bend the light of a distant star. This causes the source star to

brighten, in some cases by a couple of magnitudes, in the case of OGLE-2005-BLG-390

(see Figure 1.9) the source star’s intensity was magnified by a factor of three (Beaulieu

et al., 2006). A planet orbiting the lens star creates an anomaly in the light curve which

can last a matter of hours or weeks depending on the planets size and the angular size

of the source star (Steves et al., 2011). The use of gravitational microlensing to detect

planets was put forward by Mao & Paczynski (1991) and Gould & Loeb (1992). They

theorised about detecting planets around galactic disc stars through microlensing from

stars in the galactic bulge. This technique can detect planets with a range of masses,

Figure 1.9: The observed lightcurve of the OGLE-2005-BLG-390 microlensing event
and best fit model plotted as a function of time (Beaulieu et al., 2006). The top left
inset shows the OGLE light curve extending over the previous 4 years, whereas the
top right one shows a zoom of the planetary deviation, covering a time interval of 1.5
days. The solid curve is the best star-planet lens model. The dashed grey curve is the
best binary source model that is rejected by the data, while the dashed orange line is
the best single lens model.
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from Jupiter to Earth mass (Bennett & Rhie, 1996).

To detect a planet in a microlensing event the planet must be within the lensing

zone which can lie between 1 and 4AU (Bennett & Rhie, 1996). In 2003 the first planet

detected from gravitational microlensing was discovered, OGLE 2003BLG235/MOA

2003BLG53 (Bond et al., 2004). The planet of 1.5 Jupiter masses orbiting at a dis-

tance of 3AU was detected by two separate gravitational microlensing surveys: the

Optical Gravitational Lensing Experiment (OGLE) (Udalski, 2003) and Microlensing

Observations in Astrophysics (MOA) (Bond et al., 2001). Both surveys were originally

designed to observe gravitational microlensing events of the galactic bulge to find dark

matter. It was later found, however, that the same technique could be used to find

planets. During a microlensing event for a single point mass the lightcurve is sym-

metrical around a peak. The peak in the received intensity happens at the minimal

angular impact parameter between lens and source star. But when the lensing object

is a binary system a short deviation can be seen in the lightcurve (see Figure 1.9). The

amplitude of the deviation indicates the mass ratio and orbital separation of the two

objects.

1.2.4 Transit Timing Variations

By performing precise photometry of a transiting exoplanet for multiple transits it is

possible to precisely measure variations in the transit timing. These variations, called

Transit Timing Variations (TTVs), can be used to detect other planets in the system

(Miralda-Escudé, 2002; Agol et al., 2005; Holman & Murray, 2005). In a planetary

system with a single planet the measured transit time of the planet is non-variant

(when ignoring stellar activity such as starspots, see Section 1.5.1). If a second planet

is present it gravitationally interacts with both the star and the first planet. Through

this interaction the first planet’s angular momentum is varied and this variation can be

measured through changes in the orbital period of the primary planet. TTV’s have the

potential to discover Earth-mass planets (Agol et al., 2005), for example a Earth-mass

planet in a 2:1 orbital resonance with a transiting hot-Jupiter with an orbital period
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of three days would cause an eight minute variation over a period of a year.

Holman et al. (2010) announced the first discovery of planets from the TTV

method, Kepler-9 d and Kepler-9 e. From data collected from the Kepler satellite they

discovered two Saturn sized planets (Kepler-9 b and Kepler-9 c) transiting the host star.

They then detected variations in the orbital periods of the planets caused by two further

planets in a 2:1 orbital resonance. Ballard et al. (2011) detected a TTV signature

for another Kepler target, Kepler 19 b. While there are many different dynamical

mechanisms which match the period, amplitude and shape of the transit timing signal

(see Figure 1.10), they were able to confirm the existence of a second planet, Kepler 19 c.

They deduced that the planet has a mass of ≤ 6MJup coupled with an orbital period

of ≤ 160 days. Kepler 88 b was also found to harbour a TTV (Nesvorný et al., 2013).

This TTV signal was the largest ever discovered and Kepler 88 c was nicknamed the

king of TTVs. They were able to detect a second non-transiting planet in the system

with a mass of 0.626 ± 0.03 MJup and an orbital period of 22.3397+0.0021
−0.0018 days. Barros

et al. (2014) later confirmed Kepler 88 c using RV measurements and determined the

Figure 1.10: Kepler transit times for Kepler 19 b, as compared to a best fit linear
ephemeris (Ballard et al., 2011). The sinusoidal pattern indicates that Kepler 19 b is
undergoing a form of TTV. The dotted line denotes the change between long and short
cadence from the Kepler satellite.
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minimum mass to be 0.76+0.32
−0.16 MJup and found an orbital period of 22.10± 0.25 days.

Lissauer et al. (2011) also used TTVs in the Kepler-11 system. They discovered

six planets transiting the host star and used TTV’s to validate the planetary nature of

the transits by determining the masses for five of the planets (Kepler-11 b, c, d, e and f).

The masses of the five inner planets range from 2M⊕ to 13M⊕. Lissauer et al. (2011)

was only able to determine the upper limit on the mass of the outer planet Kepler-11 g

to be < 300M⊕.

1.3 Properties of Known Transiting Exoplanets

TEPs are the only planets outside of our own solar system for which we can directly

measure the mass and radius. Through understanding these core attributes we can un-

cover further properties (e.g. density and surface gravity) which allow us to understand

the formation and evolution of these systems and begin to answer how the architecture

of these systems are so radically different from that of our own solar system. At present

there are 372 published TEPs3. Due to such a large sample it is possible to statistically

compare the physical properties of these systems. We can then look for trends to help

improve existing theoretical models.

1.3.1 Mass-Radius Relations

Figures 1.11 and 1.12 show that there is a large concentration of TEPs centred around

the 1.00 MJup and 1.25 RJup area. The reason for this large concentration is due to

observational constraints. The detection of a transit is dependent on the amount of

intensity lost, therefore Jovian planets around small stars will give deeper transits than

3All measured physical properties of the known TEPs were obtained from the 29/11/2013 version
of the TEPCat catalogue (Southworth, 2011).
(http://www.astro.keele.ac.uk/∼jkt/tepcat/)
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Figure 1.11: Plot of mass against radius for 372 TEPs from TEPcat. The circles
represent TEPs with periods less than 10 days while the triangles represent TEPs with
periods greater than 10 days.

Earth-like planets around giant stars. As many TEPs have been discovered by ground-

based transit surveys that are not sensitive to Earth-size planets, this will place limits

on the types of planets discovered. The planets that are in the bottom left corner of

Figure 1.11 are super Earths. A super Earth is an exoplanet whose mass lies between

1.9–10.0M⊕ (Charbonneau et al., 2009). Further to the right in the figure are the super-

Neptune planets and then the Jupiter-class planets. The Brown dwarf zone is to the

right of the 13 MJup mark (Spiegel et al., 2011). The collection of hot-Jupiters around

1 MJup and above 1.5 RJup are the inflated hot-Jupiters (e.g. WASP-17 b (Anderson

et al., 2010b; Southworth et al., 2012b)).
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Figure 1.12: Plot of mass against radius between 0.1MJup and 3.1MJup for 372 TEPs
from TEPcat. The circles represent TEPs with periods less than 10 days while the
triangles represent TEPs with periods greater than 10 days.

Figure 1.12 allows us to see with better clarity that almost all of the TEPs with

a mass of 1.0MJup have radii larger than 1.0RJup. This is because these TEPs are

hot-Jupiters and due to being in close proximity to their host stars their outer layers

are blasted by stellar radiation which causes the outer layers to inflate. There are other

possible mechanisms for planetary inflation. After the formation of a gas giant the core

begins to cool and the planet contracts. But there are certain atmospheric processes

which can block the energy dissipation of the core and hence reduce the contraction

of the planet (e.g. Burrows et al., 2007). Likewise the planetary atmosphere can also

dump energy onto the planetary core and therefore reduce the rate of cooling and
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Figure 1.13: Plot of stellar mass against stellar radius for 372 TEPs host stars from
TEPcat. The circles represent TEPs with periods less than 10 days while the triangles
represent TEPs with periods greater than 10 days.

thus contraction (e.g. Showman & Guillot, 2002; Arras & Socrates, 2010; Batygin &

Stevenson, 2010; Youdin & Mitchell, 2010). It is also possible to inflate a gas giant

from the tidal dissipation onto the interior of the gas giant though eccentricity damping

(Ibgui & Burrows, 2009; Miller et al., 2009).

Figure 1.13 shows the relationship between the stellar mass and the stellar radius

for the 372 TEP systems. The stars on the left hand side (less than 0.7M⊙) are all

unevolved and are on the main-sequence. The stars in the centre (between 0.7M⊙ and

1.7M⊙) are a mixture of both evolved and unevolved stars. The cut off above 1.7M⊙

is due to the stars being too hot to have many spectral lines, making RV confirmation
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Figure 1.14: Plot of planetary radius against stellar radius for 372 TEPs from TEPcat
courtesy of Dr John Taylor. The open circles represent the Kepler TEPs while the
crossed circles represent ground-based detection of TEPs. The black circles represent
systems where the sub-stellar companion is a brown dwarf. The dashed red lines
represent fixed transit depths.

of planets difficult.

Figure 1.14 shows the relationship between the stellar and planetary radii (cour-

tesy of Dr John Taylor). Two concentrations are clearly seen around the 0.25 RJup

(lower section) and 1.25 RJup (upper section) marks. Planetary radii are measured

from transit photometry where the transit depth is dependent on the ratio between

the planetary and stellar radii. As a consequence the size in planetary radii discov-

ered is dependent on both the observational efficiency of the telescope used and on
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Figure 1.15: Plot of planetary mass against stellar radius for 372 TEPs from TEPcat.
The circles represent TEPs with periods less than 10 days while the triangles represent
TEPs with periods greater than 10 days.

the size of the star (the smaller the star the smaller the planet that can be detected).

The first group around the 0.25 RJup mark are planets detected by the Kepler space

satellite while the second group around the 1.25 RJup mark are planets detected by

ground-based transit surveys.

Figure 1.15 shows the relationship between the planetary and stellar masses. It

shows a similar pattern seen in Figure 1.14 with the exception that there is only one

concentration around the 1 MJup mark. To discover the mass of a planet requires RV

data (see Section 1.2.1) and planets discovered from ground-based transit surveys are

ideal candidates for RV follow up observations. This is not always the case for planets
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discovered from the Kepler satellite. This is because the target stars are too faint

to be able to perform the precise ground-based RV measurements needed to measure

the planets mass, though TTVs have allowed some Kepler planets to be validated by

measuring the upper limit on their mass (Xie, 2013a,b).

1.3.2 Period-Planetary Surface Gravity Relationship

Southworth et al. (2007b) shows a correlation between the orbital period and the surface

gravity of TEPs. The idea is that surface gravity has an influence on the evaporation

rates of the outer atmospheres of hot-Jupiters. Figure 1.16 shows the same correlation

within the hot-Jupiter zone. As the period increases the surface gravity reduces. To

Figure 1.16: Plot of orbital period against surface gravity for 372 TEPs from TEPcat.
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determine the confidence in the correlation the rank correlation test of Spearman (1904)

was used. The test was used on the population of gaseous TEPs (i.e. having a mass

between 10M⊕ and 13MJup). The test returned a probability of 99.836% (3.1σ) for

the gaseous population. This shows that the correlation between the orbital period

and surface gravity of hot-Jupiters is real and that it is supported by current data.

It is possible to calculate the surface gravity of a TEP using only observable

quantities (Southworth et al., 2007b).

gp =
2π

P

(1− e2)
1

2 K∗

r2p sin i
(1.31)

Equation 1.31 (Southworth et al., 2007b) shows all that is required to calculate the

planets surface gravity gp, is P , rp, i, e and K∗. P can be found from either transit

photometry of multiple transits or from RV observations. rp and i are both found from

transit photometry, while e and K∗ are found from RV observations.

1.3.3 Planet Mass-Orbital Period Relationship

Figure 1.17 shows the relationship between the mass of a TEP and its orbital period. By

studying Figure 1.17 we can see a correlation in the hot-Jupiter zone. As the planet’s

mass increases the orbital period decreases. Kepler’s 3rd law (Equation 1.9) shows that

the orbital period increases as the orbital separation increases. Because a planet’s

surface gravity is directly related to the mass of the planet then we expect Figure 1.17

to show the same correlation for hot-Jupiters that is seen in Figure 1.16. Mazeh et al.

(2005) also mentioned the same relationship between a planets mass and its semimajor

axis. They explained that the underlying process for this correlation is due to thermal

evaporation from extreme UV flux from the parent star. Thermal evaporation (Lammer

et al., 2003) will affect planets with masses below a critical mass. Here the evaporation

time scale is shorter than the planets thermal time scale. As such, below this critical

mass the planets survival time is relatively short. At greater distances from the host

star the amount of extreme UV flux reduces hence increasing the critical mass limit.
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Figure 1.17: Plot of orbital period against planet mass for 372 TEPs from TEPcat.

To determine the confidence in the correlation the rank correlation test of Spearman

(1904) was used. The test was used on the population of gaseous TEPs (i.e. having a

mass between 10M⊕ and 13MJup). The test returned a probability of 99.999% (5.4σ)

for the gaseous population. This shows that the correlation between the orbital period

and planetary mass of hot-Jupiters is real and that it is supported by current data. The

relationship between the orbital period and planetary mass is more correlated than the

relationship between the orbital period and the surface gravity (see previous Section).

This is expected because the surface gravity is dependent on both the mass and radius

of the planet. By including the radius, extra scatter is included into the correlation

between the orbital period and surface gravity. However, both of these correlations
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explain why stars with a high UV flux have dense planets. To survive the high UV flux

the planet requires a high mass but also requires a high surface gravity. To obtain a

high surface gravity requires the planetary radius to be smaller which causes the planet

to increase in density.

1.3.4 Orbital Eccentricity-Semimajor Axis Relationship

Figure 1.18 shows the relationship between the orbital eccentricity and the semimajor

axis of 372 currently known TEPs. 272 TEPs in the catalogue have either a value of

e = 0 or an unmeasured value. Most TEP systems have an assumed eccentricity of

Figure 1.18: Plot of semimajor axis against orbital eccentricity for 372 TEPs from
TEPcat.
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zero (Anderson et al., 2012). It also suggests that the magnitude of the eccentricity is

weakly dependent on the size of the semimajor axis. The closer the planet is to the host

star the greater the probability that the orbit is circular. This is due to the interaction

between the planet and the convective envelope of the host star, which circularises the

planetary orbit (e.g. Jackson et al., 2009).

To determine the confidence in the correlation the rank correlation test of Spear-

man (1904) was used. The test was used on the population of gaseous TEPs (i.e.

having a mass between 10M⊕ and 13MJup) of which had orbital eccentricities greater

than zero. The test returned a probability of 97.409% (2.2σ) for this population. This

shows that the correlation between the orbital eccentricity and the semimajor axis of

hot-Jupiters is real and that it is supported by current data. Compared to previous

Sections this correlation has the greatest scatter. This is due to the fact that the cir-

cularisation of the planetary orbit is dependant on the interaction between the planet

with the convective envelope of the star. Hot stars (i.e. Teff > 6250K) have a thinner

convective envelope compared to cooler stars and therefore the time frame required to

circularise an eccentric orbit will be longer. From this it is possible to see that the

relationship between the orbital eccentricity and the semimajor axis is dependent on

both the stellar Teff and the age of the system.

1.4 Dynamical Evolution of Hot Jupiters

Prior to the discovery of 51Peg b (Mayor & Queloz, 1995) the general belief was that

gas giant planets formed beyond the snow line and evolved into stable orbits close

to their formation orbit. For our own solar system this is thought to be at 5AU

(Mumma et al., 2003). The discovery of 51Peg b and consequent further discoveries of

hot Jupiters, meant that new dynamical evolution models had to be created.

Goldreich & Tremaine (1980) showed that the evolution of a planet’s orbital

eccentricity depended on the ratio between the torque exerted by the planet interacting

with the disc on both the corotation and Lindblad resonance sites. If the orbit was
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circular then the only torque exerted would be close to the Lindblad resonance site

and the transport of angular momentum would be outward. On the other-hand if the

planetary orbit was eccentric then the torque exerted on the corotation resonance site

would create a damping effect to the eccentricity and circularise the orbit, while the

torque generated at the Lindblad resonance site increases the eccentricity of the planets

orbit. It was also shown that, for a Keplerian disc, and for when the resonances sites are

not saturated, the net result is that the eccentricity of the planet is damped, therefore

allowing the planet’s orbit to circularise while the protoplanetary disc remains. As

the planetary orbit becomes circular, the torque exerted on the corotation resonance

site decreases, therefore reducing the damping effect and the transport of angular

momentum would become more outward. Using these models, Goldreich & Tremaine

(1980) calculated that Jupiter’s semimajor axis evolved over an extremely small time

scale of a few thousand years.

Ward (1997a) put forward the idea of Type I and Type II migration. These two

distinct processes have the same end result in that the planet suffers from orbital decay

through interactions with the protoplanetary disc and spirals in towards the host star.

Type I migration occurs when the planet is not yet large enough to clear its orbit of

disc material. The planet therefore interacts with the surrounding protoplanetary disc

through interactions at the Lindblad resonance sites. Since the net torque from the

disc is not zero (Goldreich & Tremaine, 1980) there will be intrinsic asymmetries in

the planets interaction with the protoplanetary disc. The outer resonances will become

systematically stronger and the resulting differential torque will push the planet in

towards the star. The rate for this type I migration dr/dt1 can be calculated using

the mass of the planet Mp, the mass of the star M∗, the orbital frequency of the disc

Ω, at a distance r, the gas sound speed c and the surface density of the disc σ (Ward,

1997b).

dr

dt1
∼ c1

(

Mp

M∗

)(

σr2

M∗

)(

rΩ

c

)3

rΩ (1.32)

The leading coefficient c1 is of order unity and since the outer resonances are normally
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dominant the coefficient is negative and the orbit decays. If the disc lifetime is longer

than the orbital decay time the planet will collide with the host star. If it is shorter

then once the disc dissipates the planet will stop migrating towards the star (Ward,

1997b).

Type II migration occurs when the planet is large enough to clear its surrounding

orbit of material, creating a gap in the protoplanetary disc. The planet then becomes

tidally locked with the disc and migrates with the disc. The conservation of angular mo-

mentum shows that the bulk of the disc mass will migrate inward while a small fraction

containing the majority of the angular momentum will migrate outward (Lynden-Bell

& Pringle, 1974). The rate of Type II migration dr/dt2 is therefore dependent only on

the disc’s viscosity ν and not the mass of the planet (Ward, 1997b) described by:

dr

dt2
∼ ν

r
∼ c2α

( c

rΩ

)2

rΩ (1.33)

where α is a free parameter between the values of zero and one, where zero denotes

zero accretion. The viscosity used in Equation 1.33 is based on the Sakura-Sunyaev

viscosity law (ν ∼ αc2/Ω). The coefficient c2 is of order unity and the sign denotes

the directional flow of the surrounding disc material. By inspecting Equations 1.32

and 1.33 we can clearly see that the rate of Type I migration is faster than Type II

migration. By combining Equations 1.32 and 1.33 we can see that this is the case:-

dr

dt1
∼ c1
c2α

(

Mp

M∗

)(

σr2

M∗

)(

rΩ

c

)5
dr

dt2
(1.34)

Through both Type I and II migration the planet’s orbit decays and the inclination and

orbital eccentricity is damped (Goldreich & Tremaine, 1980; Papaloizou & Larwood,

2000; Matsumura et al., 2010). However, it has been shown that some exoplanets have

high eccentricities (e.g. CoRoT-10, CoRoT-16, HAT-P-17, HAT-P-21 and HAT-P-34)

and retrograde orbits (e.g. WASP-17 and HAT-P-7). Gravitational scattering, ejection

and Kozai cycles (Kozai, 1962; Lidov, 1962; Fabrycky & Tremaine, 2007) can increase

the orbital eccentricity and modify the alignment between the planetary orbit and

the host star’s rotation axis (Matsumura et al., 2010). In a three-body model it was
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shown that it is possible for a planet to achieve a retrograde orbit via gravitational

planet–planet scattering (Chatterjee et al., 2008). Kozai migration occurs when the

Kozai cycles increase the orbital eccentricity of a planet (Wu & Murray, 2003). While

these processes can increase the orbital eccentricity of a planet they alone do not

explain how these planets come to orbit so close to their host stars. The answer to

this is tidal dissipation (Matsumura et al., 2010). After the protoplanetary disc has

dissipated the planet can undergo strong planet-planet scattering to achieve a highly

eccentric orbit. Due to the high eccentricity the distance between the planet and the

host star at periastron can become slightly larger than twice the Roche limit and tidal

circularization can occur (Rasio & Ford, 1996; Chatterjee et al., 2008). Over the course

of the stellar lifetime an alignment between the planet’s orbit and the stellar rotation

axis will take place (Matsumura et al., 2010).

While both disc-migration and gravitational scattering coupled with tidal dissipa-

tion can form close-in hot-Jupiter planets, the two different models produce differences

in both the eccentricity and alignment of the planetary orbit. Therefore, it is possible

to determine the type of dynamical evolution which took place in a particular planetary

system, by measuring the alignment between the stellar rotation axis and the orbital

axis of the planet which is more commonly known as the stellar obliquity.

1.4.1 Stellar Obliquity

The stellar obliquity ψ of a planetary system is a fundamental geometric property.

It is the angle of alignment between the stellar rotation axis and the orbital plane

of a planet. Coupled with the semimajor axis, the eccentricity of the orbit and the

orbital inclination it allows us to build a complete geometric model of the planetary

system. While in general it is not possible to measure ψ it is possible to measure the

sky-projected obliquity λ, for transiting exoplanets, which can then be used to derive

statistical constraints on ψ.

We choose a coordinate system where the Ẑ axis points towards the observer

and the X̂-Ŷ plane is the plane of the sky (see Figure 1.19). Then no lies in the Ŷ -Ẑ
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Figure 1.19: Coordinate system defining the sky projected obliquity angle (Fabrycky
& Winn, 2009). The Ẑ axis points towards the observer, while the X̂-Ŷ plane is the
plane of the sky, io is the orbital inclination, is is the stellar inclination and λ is the
sky projected obliquity.

plane and denotes the normal vector of the orbital plane and is found by the orbital

inclination angle io = arccos
(

no · Ẑ
)

. The normal vector of the stellar inclination ns

is generated by two components: the stellar inclination angle4 I = arccos
(

ns · Ẑ
)

and

the azimuthal angle, which in this case is the sky-projected obliquity λ. From this we

can then generate equations for the normal vectors of the system.

no = Ŷ sin io + Ẑ cos io (1.35)

ns = X̂ sin I sinλ+ Ŷ sin I cosλ+ Ẑ cos I (1.36)

By using the following identity:-

cosψ =
no · ns

|no| · |ns|
(1.37)

4It should be noted that is ≡ I in Figure 1.19
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we can then calculate ψ from the angle between the two vectors no and ns where

cosψ = sin I cosλ sin io + cos I cos io (1.38)

In reality io can be measured from transit photometry and λ can be measured using

the Rossiter-McLaughlin effect and/or starspot occultations (see Sections 1.4.2 & 1.5.2,

respectively). Unfortunately, I is not directly measurable but it is possible to place

constraints on the value from asteroseismology (Gizon & Solanki, 2003). Alternatively

Winn et al. (2007b); Schlaufman (2010) showed that it is possible to infer the value of I

from estimates of the stellar rotation period, stellar radius and the projected rotational

velocity v sin I. For a transiting planetary system io is close to 90 degrees and as such

the second term in Equation 1.38 can be approximated to zero and the sin io in the first

term can be approximated to one. As I is unknown then sin I can range from −1 to 1

this then gives

cosψ ≥ cosλ (1.39)

By inspecting Equation 1.39 we can see that for a small value of λ the range of ψ is large,

while as λ approaches 90 degrees the range for ψ reduces. This adds an interesting

situation, where if a large value of λ is found then the system is misaligned but if a

small value of λ is discovered then it is unknown whether the system is truly aligned or

not, unless information on I is available from other sources. Fabrycky & Winn (2009)

came to the same conclusion via a different set of calculations.

It is in fact possible to directly determine ψ from transit photometry coupled

with starspots (see Section 1.5.2). Apart from the benefit of identifying the dominant

dynamical evolution process in the system it also allows I to be modelled for the host

star. Since I is not directly observable this would be an important step in better

understanding the stellar properties.
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1.4.2 The Rossiter-McLaughlin Effect

As a star rotates, half of the hemisphere is rotating towards us while the other half

is rotating away from us. During Doppler spectroscopy the spectral lines from the

hemisphere that is rotating towards us are blue-shifted while the same spectral lines

from the hemisphere rotating away from us are red-shifted. While the effect of rotation

does broaden the spectral line widths, it does not have an effect on the net Doppler shift

of the integrated starlight (Winn, 2011). When a transiting planet crosses in front of

the stellar disc, however, it blocks out a portion of a hemisphere. This then destabilises

the balance between the integrated starlight from the two hemispheres and allows a

net blue-shift (when the planet is crossing the hemisphere rotating away from us) or

a net red-shift (when the planet is crossing the hemisphere rotating towards us) to be

observed in the spectra. This effect is known as the Rossiter-Mclaughlin (RM) effect

(Holt, 1893; Schlesinger, 1910, 1916; Rossiter, 1924; McLaughlin, 1924). The RM effect

appears as a RV anomaly for which the maximum amplitude can be calculated. Using

b for the impact parameter, the ratio of the planetary and stellar radii k and v∗ sin I∗

as the line-of-sight component of the stellar equatorial rotational velocity, Winn (2011)

gives an approximation to find the maximum amplitude.

∆VRM ≈ k
√
1− b2 (v∗ sin I∗) (1.40)

Gaudi & Winn (2007) gives an equivalence relation for the change in the RV semi-

amplitude K due to the RM effect and using k = rp/r∗.

KR ≡ v∗ sin I∗
k

1− k
(1.41)

The shape of the RV anomaly can be seen in Figure 1.20. The shape of the RM anomaly

is dependent on the sky-projected obliquity of the system. In the case of λ = 0◦ the

anomaly is equal in magnitude both above and below the normal RV line. This is due

to the planet spending equal amounts of time crossing both hemispheres of the star. In

the second case λ = 30◦ and we can see that the upper magnitude of the anomaly has

reduced while the lower magnitude of the anomaly has increased. By inspecting the
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Figure 1.20: The dependence of the RM anomaly shape on λ (Gaudi & Winn, 2007).
The top panels show three different trajectories of a transiting exoplanet and the bot-
tom panels show the corresponding RM anomaly shape. All three trajectories have the
same impact parameter but have different values for λ. The effect on the shape of the
RM anomaly can be seen in the bottom panels. In the bottom panels the dotted line
represents a stellar disc with no limb-darkening while the solid line represents linear
limb-darkening.

second trajectory in the upper panel in Figure 1.20 we can see that the planet spends

the majority of the transit crossing the hemisphere that is rotating away from us. In

the final case where λ = 60◦ the planet only crosses one hemisphere and as such the

magnitude of the RM anomaly is only below the RV line. If the impact parameter of

the transiting planet is zero (i.e. it passes across the centre of the star) and λ ≈ 90◦

then the amplitude of the RV anomaly will be negligible and the shape will have hardly

any asymmetry (Gaudi & Winn, 2007; Albrecht et al., 2011).

At present, obtaining precise measurements for λ from the RM effect is not always

possible. For example, Albrecht et al. (2012) found for WASP-18 that λ = 13 ± 7◦

(see Figure 1.21) and for WASP-19 Albrecht et al. (2012) found λ = 15 ± 11◦ (see

Figure 1.22).
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Figure 1.21: Spectroscopy of a WASP-18 transit (Albrecht et al., 2012). The top
panel shows the RV measurements taken for WASP-18 plotted as a function of time
from inferior conjunction with the best-fitting model. The middle panel shows the RM
component of the RV after the orbital component had been removed. The bottom
panel shows the residuals.

One of the causes of the large uncertainties is from performing RM measurements

of partially eclipsing planets (Gaudi & Winn, 2007). Another cause is from RV jitter.

If the signal-to-noise ratio (SNR) is low then this can cause large uncertainties in the

measurement of λ (Gaudi & Winn, 2007; Albrecht et al., 2011, 2012). The cause of

stellar jitter is due to stellar activity. If the star is magnetically active its surface will

show evidence of starspot activity. If a starspot lies on the transit cord (a path traced

out by the orbit of the planet over the surface of the stellar disc) then, due to the



45

Figure 1.22: Spectroscopy of a WASP-19 transit (Albrecht et al., 2012). The top
panel shows the RV measurements taken for WASP-19 plotted as a function of time
from inferior conjunction with the best-fitting model. The middle panel shows the RM
component of the RV after the orbital component had been removed. The bottom
panel shows the residuals.

difference in temperature and thus surface brightness, a spectral distortion is caused

in the resulting RV measurement (Hatzes, 1999). These variations are modulated with

the rotation of the star. Upon reviewing Figure 1.23 the shape of the RV distortion is

identical to that of the RM effect for a planet with a value of λ = 0◦ but the distortion

will last much longer, due to the time taken for the spot to rotate round 180 degrees.

The reason why the shape of RV distortion for the RM effect and starspots

is similar, is that they are due to the same underlying process. In the case of a



46

single starspot being on a particular hemisphere the overall integrated starlight will

show either a blue or red shift in the Doppler measurements. Because the starspot

is at a different temperature compared to the surrounding photosphere it will radiate

a different amount of flux. This will therefore make the hemisphere with the spot

brighter or darker when compared to the spot free hemisphere and hence create a shift

in the spectral lines (due to making either the blue or red shifted component of the

spectral line brighter or darker) of the observed integrated starlight.

The RM effect can also be used to find the sky projected equatorial rotation

velocity (Gaudi & Winn, 2007; Winn, 2011). Equations 1.40 and 1.41 show how v∗ sin I∗

can be calculated from the amplitude of the RV anomaly. Because of this the RM effect

can be used to discover two important properties for the transiting system. If the true

rotational velocity of the host star is known then it is possible to infer the true obliquity

Figure 1.23: RV variations due to starspots (Hatzes, 1999). The open circles repre-
sent the RV measurements using a random distribution of six starspots. The filled
circles represent the corrected RV measurements. This data was generated using the
Fe i 6430 Å spectral line.
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of the system from v∗ sin I∗ and λ (Winn et al., 2007b; Anderson et al., 2011; Hellier

et al., 2011).

Winn et al. (2010a) also showed that for hot stars ψ will be large and for cool

stars ψ will be small. This is due to cooler stars having larger convective envelopes.

Through this the tidal dissipation effects from cooler stars have a greater effect on

aligning the planetary orbit. However, since cool stars exhibit greater stellar activity

(Berdyugina, 2005) then the precise measurements required to observe a low λ are

hindered by increased uncertainties in the RV measurements due to increased starspot

activity on the stellar disc.

1.5 Starspot Anomalies in Exoplanet Lightcurves

Stellar rotation coupled with convective motions in the stellar interior, create strong

magnetic fields which can lead to starspots in the photosphere of the star (Berdyugina,

2005). In the convection zone of a star, heat is transported by the motion of heated

ionised plasma rising and then cooling. Once cooled the ionised plasma then sinks

which forms a convective loop. By creating a loop of charged plasma a magnetic field

is created. When this field covers a large enough area the differential rotation of the

star will cause different sections of the magnetic loop (sometimes called magnetic flux

tube) to rotate around the star at different velocities. This then has the effect of

warping the magnetic loop and when the stress of the loop reaches a critical point the

loop breaks and punctures the stellar surface creating a starspot.

At the surface of a star where a starspot lies the magnetic flux tube which has

punctured the surface inhibits convective motions under the spot and therefore de-

creases the energy flux from the star’s interior. Because of this the temperature of the

starspot is reduced compared to the surrounding photosphere and appears dark.

As is the case for the Sun, the number of spots on the photosphere are indicative

of the level of magnetic activity. For a main-sequence star, the amount of stellar activity

is related to the age of the star where an older star will rotate slower than a younger
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star due to the loss of angular momentum (i.e.magnetic braking) during its lifetime

(Skumanich, 1972; Noyes et al., 1984; Baliunas et al., 1995; Güedel et al., 1997).

During a planetary transit, the planet follows a path (called the transit cord)

across the surface of the stellar disc and can be used to probe changes in surface

brightness on the stellar surface (Silva, 2003). Starspots have different temperatures

compared to the surrounding photosphere and as a consequence emit a different amount

of flux. As photometry measures the change in intensity as a function of time, then if

the planet crosses a starspot during a transit an anomaly can be seen in the resulting

lightcurve (Silva, 2003). The anomaly is either an increase or decrease in the amount

of received intensity from the star (see Figure 1.24). If the starspot is a cool spot then

the amount of received intensity from the star will increase when the planet crosses

the starspot (Rabus et al., 2009; Pont et al., 2007; Winn et al., 2010b). Conversely if

the starspot is a hot spot then the amount of intensity measured will reduce when the

planet crosses over the spot.

Figure 1.24: Lightcurve of HD209458 containing a starspot anomaly (Silva, 2003). The
original data (Deeg et al., 2001) show a clear flux increase just after mid-transit. The
solid line shows the best fit model from Silva (2003) and the dotted line shows the
spot-free model.
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1.5.1 Current Methods of Modelling Starspot Anomalies

At present when a lightcurve of a transiting exoplanet is observed to have a starspot

anomaly, the transit and the spot are generally modelled separately (e.g Désert et al.,

2011; Maciejewski et al., 2011; Nutzman et al., 2011; Sanchis-Ojeda et al., 2011). First

the data points affected by the starspot anomaly are removed from the data and the

rest of the data are modelled using a transit model (see Figures 1.25 and 1.26). After

this the residuals are compared to the best-fitting model to allow the spot anomaly to

be modelled using a Gaussian function (e.g. Sanchis-Ojeda et al., 2011; Sanchis-Ojeda

& Winn, 2011). There is a problem with this method in respect that the starspot

affects the entire transit shape and not just the section where the planet crosses the

spot (Ballerini et al., 2012). Carter et al. (2011) use the idea that a starspot on the

stellar disc will affect the transit depth to explain the change in transit depth for each

observed transit of GJ-1214. This is due to the change in intensity received from the

star when starspots rotate on and off the stellar disc.

Let say there are two identical stars, one of which is spotted while the other is

un-spotted. The spotted star will therefore have a lower intensity compared to the un-

spotted star. Now if both stars are transited by the same planet with identical system

parameters and in the case of the spotted star the transit cord does not occult any of

the spots, then in the absence of limb-darkening the scale of the transit depth for the

two lightcurves would be the same (but for the spotted star all the data points will

be equally shifted down in intensity). The problem arises due to the data reduction

technique used. During data reduction the out-of-transit data is normalised to zero

differential magnitude (see Section 2.5.1). This normalisation therefore scales all the

data points so that the out-of-transit data points have a value of zero differential

magnitude for both stars. In the case of the spotted star this scaling will be larger due

to all the data points being shifted down in intensity compared to the un-spotted star.

This therefore causes the scale of the transit depth for the spotted star to be larger

than the scale of the transit depth of the un-spotted star. Because of this the transit

depth of the spotted star will appear deeper than that of the un-spotted star.
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Figure 1.25: Three lightcurves of WASP-10 containing starspot anomalies (Maciejewski
et al., 2011). The grey data points represent the data affected by starspots. Below
each transit are two sets of residuals. The upper residuals show the data versus the
best transit model and the spot anomaly is clearly seen. The bottom residuals show
the data versus the best-fitting transit model coupled with the spot model.
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Figure 1.26: Two lightcurves of GJ-1214 each containing a starspot anomaly (Carter
et al., 2011). The solid line represents the best-fitting transit model. The open circles
represent the data points affected by a starspot, they were assigned a zero weight in
the fitting process.

The transit depth is not the only property of a transit lightcurve that the starspot

affects, it also affects the determination of the stellar radii, inclination and LD coef-

ficients (Ballerini et al., 2012). The LD coefficients are wavelength dependent (see

Section 1.2.2.1) and because a starspot has a different temperature compared to the

surrounding photosphere, spots will radiate a different amount of flux. Due to this,

the flux emitted by the starspot will be at a different wavelength compared to the sur-

rounding photosphere. Therefore by applying a LD law with a set of coefficients to the

entire stellar surface uncertainties will be created in the modelling process (Ballerini

et al., 2012). The difference in LD coefficients in the UV-band between the spot and the

photosphere can be as much as 30%. The effects on the stellar radii and the inclination

of the system are artifacts from errors in the planetary radii. When examining Equa-

tion 1.16 we can see that the planetary radii is directly used to calculate the impact

parameter and thus the inclination, while Equations 1.18 and 1.19 both use k the ratio

between the planetary and stellar radii. The transit durations have to be considered
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constant for a single transit but if k increases due to a deeper transit then either the

stellar radius reduces or the semimajor axis must increase to compensate. Starspots

can also affect the measured transit midpoint (Sanchis-Ojeda et al., 2011; Barros et al.,

2013) and create false positives in transit timing measurements. Sanchis-Ojeda et al.

(2011) calculated that a starspot anomaly in a transit of WASP-4 with an amplitude

of 0.3 to 0.5mmag could produce a timing noise of five to ten seconds.

Therefore, to accurately and correctly model a starspot in a transit lightcurve

both the transit and spot must be modelled with a physically realistic model. Silva

(2003) produced a model that allowed the physical properties of a starspot inside a

transit to be found. These properties are the spot’s position, size and temperature

(contrast). The model worked by producing a two dimensional image of the star with

either a linear or a quadratic LD law. An opaque disk representing a planet then

transits across the star in an orbit which crosses over a starspot. While the model

shows some degree of success it lacks the ability to fit data (Silva-Valio, 2008). Instead

the model requires the user to input pre-determined values of the transit parameters

(i.e. ratio of the radii, inclination and LD coefficients). Once this is done the model

produces a spot free transit for the user to subtract from the data. This is in essence

the same as examining the residuals but with the ability to see the overall change in

the shape of the lightcurve due to the starspot. The model then moves the position

of the spot along the transit cord in steps and produces comparison lightcurves with

a standard deviation for the difference between the data points and the model. While

this model allows the physical properties of the spot to be determined it does not allow

the extraction of the transit parameters from the data.

Another code developed to model starspot anomalies is the Spot Oscillation And

Planet (soap) algorithm (Boisse et al., 2012) as well as the improved version soap-t

(Oshagh et al., 2013). soap models RV data while soap-tmodels photometric and RV

data using analytical equations. The strength of soap-t is the fact that it models both

the transit and starspot simultaneously. The down side is that soap and soap-t are
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web based applications5 and the authors did not make the source code available. As a

result of this, users first upload an input file to the site and then the code creates a model

based on the pre-selected input parameters. This creates a problem for researchers as

it is not possible to check or alter any parts of the code which may not be running

correctly. At present the codes can only fit RV data and users must know beforehand

the photometric parameters of the transiting system. This is due to the full model

using 18 parameters, and by using Markov Chain Monte Carlo (MCMC) simulations

to fit the data results in poor convergence due to the chains getting trapped in local

solutions (Oshagh et al., 2013). Therefore both soap and soap-t are not applicable

to fitting transit photometry data containing a starspot anomaly.

Moulds et al. (2013) produced a model Clearing Activity Signals In Line-profiles

(ClearASIL) to model the effects of starspots on stellar line profiles for moderately

rotating active stars. The idea is to remove the spot signature from RV data to allow

the planetary RV signal to be seen. This has the potential to allow detailed RV studies

of young active stars in the bid to detect new hot-Jupiter planets. Due to ClearASIL

only modelling stellar line profiles and not transit photometry it is not viable to use

this code for starspots in transit photometry.

1.5.2 Starspots and Stellar Obliquity

When a starspot anomaly is found in transit photometry it can allow a wealth of

information to be discovered. When modelled it is possible to precisely determine the

spot’s longitude and latitude position on the stellar photosphere (Silva, 2003; Silva-

Valio, 2008; Sanchis-Ojeda et al., 2011; Sanchis-Ojeda &Winn, 2011; Maciejewski et al.,

2011). Silva-Valio (2008) shows that it is also possible to measure the rotation period

of the star using starspot anomalies in transit lightcurves. If two or more planetary

transits in close succession6 are observed and both contain a starspot anomaly due to

5soap and soap-t can be used at http://www.astro.up.pt/soap/
6Over time starspots evolve and as such their size and intensity can dramatically change. Therefore

the greater amount of time between the anomalies will increase the uncertainty in whether the second
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the same spot it is possible to calculate the stellar rotation period. Each transit allows

the precise position of the starspot to be known at a certain time. Therefore, with just

two transits each containing a starspot anomaly, it is possible to ascertain a change in

position as a function of time. This then allows the stellar rotation period at a given

latitude of the star to be calculated. It is important to stress that the rotation period

discovered using this method is in fact a rotation period at the latitude of the spot

and not the whole star due to differential rotation (i.e. different latitudes of the star

have different rotation periods). If the system is not aligned then it may be hard to

detect the same spot in different transits and therefore two transits will not be enough

to calculate the latitudinal rotation period. For a non-aligned system the planet will

transit across different latitudes and as such a number of transits will be required to

calculate the latitudinal rotation period. It would also be possible to measure the

rotation period for these different latitudes.

Measuring the position of a starspot at a given time allows the sky projected λ

and the stellar ψ obliquities to be calculated (Désert et al., 2011; Nutzman et al., 2011;

Sanchis-Ojeda et al., 2011; Sanchis-Ojeda & Winn, 2011; Sanchis-Ojeda et al., 2012).

In a sky projected image of a stellar disc the rotation vector appears linear when the

inclination of the stellar rotation axis I is 0◦ (see Figure 1.27 a). If I > 0◦ then the

rotation vector becomes circularised (see Figure 1.27 b, c, d). Therefore measuring the

rotation path taken by a starspot it is possible to measure λ and ψ. Sanchis-Ojeda

et al. (2011) concluded that for WASP-4 λ = −1+14
−12 degrees. They determined this

value by a concatenation of the four best-fitting solutions (see Figure 1.27).

Given a set of consecutive transits a starspot anomaly would be seen moving from

ingress to egress over the course of the transits and would indicate an aligned system.

Conversely if the system was mis-aligned so that the transit cord was not confined to a

single latitude on the stellar disc, the appearance of starspot anomalies would appear

random in the consecutive transits (see Figure 1.28).

Sanchis-Ojeda & Winn (2011) looked at 26 consecutive transits of HAT-P-11

anomaly is in fact the same or a different spot.
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Figure 1.27: Stellar rotation angles of WASP-4 using starspots (Sanchis-Ojeda et al.,
2011). The circles represent the positions of the starspot in the Sanchis-Ojeda et al.
(2011) transits, while the squares represent positions of a starspot in the Southworth
et al. (2009b) transits. The dark symbols represent spot detections and the light sym-
bols represent non-detections. The red band represents the transit cord. All four
orientations can explain the transits with or without spot anomalies. The stellar ro-
tation axis lies at the centre of the grey rings. Sanchis-Ojeda et al. (2011) gives the
angle of the stellar rotation axis in terms of λ and I. For (a) λ = −0.3◦ ± 4.3◦ and
I = 88◦±19◦, (b) λ = −11.5◦±3.9◦ and I = 43◦±5◦, (c) λ = 13◦±7◦ and I = 144◦±5◦

and (d) λ = −13◦ ± 5◦ and I = 38◦ ± 5◦.

observed by the Kepler satellite. Starspot anomalies were seen in the transits but did

not appear in consecutive transits (see Figure 1.28). The spot anomalies appeared at

two distinct points in the transits indicating that the planet was misaligned and crossing

two distinctive active latitudes. Their analysis confirmed a previous RM measurement
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Figure 1.28: Consecutive Kepler observations of transits of HAT-P-11 (Sanchis-Ojeda
& Winn, 2011). The thin grey lines represent the best-fitting model. The red data
points are believed to be starspot anomalies and were assigned a zero weight in the
fitting process. Due to the starspot anomalies not appearing to reproduce from transit
to transit it is believed that HAT-P-11 is a misaligned system.

of λ taken of HAT-P-11 (Winn et al., 2010b; Hirano et al., 2011) with two potential

solutions, equator edge on and pole on. Both solutions agreed on both λ and ψ but
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they differed on the spot latitudes. For HAT-P-11 Sanchis-Ojeda & Winn (2011) found

λ ≈ 90◦ and ψ ≈ 90◦ indicating that HAT-P-11 was not aligned.

This showed that it is possible to measure both the sky projected and the true

stellar obliquity using the starspot method as opposed to the RM effect in which only

λ could be measured. In the simple case in which the system is aligned, potentially

only two lightcurves separated by a small amount of time could be used to determine

the dynamical evolution of the system. Misaligned systems, however, will require a

larger number of lightcurves. A further obvious consideration is that for this method

to be effective transit observations of active stars are required, and the transit cord

must occult active regions on the stellar disc.

Finally another interesting case is Kepler-30 (Fabrycky et al., 2012). Kepler-30

is a multi-planetary system with three confirmed planets with radii ranging from 4R⊕

to 13R⊕. By using starspots Sanchis-Ojeda et al. (2012) were able to measure the sky

projected obliquity of the system. They found that λ = −1± 10 degrees and that the

planets are coplanar.

1.6 Summary

One of the primary research focus in exoplanets at present is in hot-Jupiters. They

allow us to study planetary formation, evolution and to understand the processes of

the dynamical evolution of planetary systems. While dedicated planet hunter space

telescopes such as the Kepler satellite (Borucki et al., 2010) have the ability to de-

tect rocky planets in the habitable zone7 in star systems, ground-based spectroscopic

follow up is not always possible. The two major methods of observing exoplanets are

spectroscopic measurements and transit photometry. Each method has its strengths

and weaknesses, spectroscopic measurements combined with theoretical stellar models

7The habitable zone is loosely defined as where a planet can sustain liquid water on its surface and
depends on its distance from the host star as well as the host star’s luminosity (Kasting et al., 1993;
Kopparapu et al., 2013)
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allows the minimum mass of the planet, the stellar radius, the orbital period, eccen-

tricity, semimajor axis, the stellar age and mass to be known. Transit photometry can

allow the precise radius of the planet to be determined in units of the stellar radii, as

well as the orbital inclination, the stellar density and the orbital period. By combining

these two observational methods we can deduce the full set of fundamental physical

properties of the planetary system. For example, Equation 1.11 gives the minimum

mass of the planet but transit photometry gives the orbital inclination which allows

Equation 1.11 to be solved for the exact planetary mass.

The dominant form of dynamical evolution for a TEP can leave traces in the

geometry of the system. Disc-migration (Ward, 1997a) leaves a planet in a circular

orbit aligned with the rotation axis of the host star. Gravitational scattering coupled

with tidal dissipation (Matsumura et al., 2010) can leave planets with eccentric orbits

which are misaligned with the stellar rotation axis. Though the eccentricity of the orbit

will reduce if the planet comes close enough to the host star during periastron when the

planet will interact with the convective envelope of the star via tidal effects. Therefore,

by measuring the alignment between the planetary orbit and the stellar rotation axis

(stellar obliquity, ψ) it is possible to decipher the dominant process in the dynamical

evolution of the system.

There are two possible methods to measure the sky-projected stellar obliquity λ

of a system. One method relies on spectroscopic measurements while the other is a

photometric method. Each method has its own strengths and weaknesses but the two

methods complement each other in terms of the type of targets they can be applied to.

The Rossiter Mclaughlin (RM) effect (Rossiter, 1924; McLaughlin, 1924) is a measure

of RV changes in the spectral lines when a planet transits across a star. From this

it is possible to measure the sky-projected equatorial rotation velocity and λ. The

downside is that this method is affected by stellar activity, namely starspots lying on

the transit cord (Hatzes, 1999). The second method relies on starspots being on the

transit cord. During transit photometry if a planet occults a starspot on the stellar

surface there will be a change in the received intensity from the star (Rabus et al., 2009;

Pont et al., 2007; Winn et al., 2010b). If multiple transits in close proximity contain a
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starspot anomaly that can be deduced as being generated by the same starspot then it

is possible to measure the latitudinal rotation period of the star (Silva-Valio, 2008). It

is also possible to measure λ and in some cases ψ (Sanchis-Ojeda et al., 2011; Sanchis-

Ojeda & Winn, 2011; Désert et al., 2011; Nutzman et al., 2011). This is possible due

to being able to measure the position of a starspot at different points in time. From

this it is then possible to determine the starspot’s trajectory across the stellar surface.

The downside to this method is the fact that it relies on starspots being on the transit

cord. As a consequence, the RM effect and transit photometry containing starspot

anomalies compliment each other in the respect that the RM effect is ideal to be used

on magnetically quiet stars and starspot anomalies are best used on magnetically active

stars.

Currently there is another downside to using starspot anomalies in transit pho-

tometry to measure both λ and ψ. At present there is a lack of an ability to correctly

model starspot anomalies in transit photometry. Apart from the fact that starspots on

the stellar disc affect the transit shape (Carter et al., 2011; Ballerini et al., 2012), there

is also no complete model or optimisation package with the capability to determine

the properties of both the transit and the starspot. As a consequence, researchers re-

move the affected data points from the transit and then model the transit. After this

they then model the affected data points from the residuals using a simple function

(Sanchis-Ojeda et al., 2011). Because of this systematic uncertainties are introduced

to the final physical properties of the planetary system. There are currently models

able to fit the properties of a starspot but this requires the properties of the transiting

system to be known beforehand (e.g. Silva, 2003; Oshagh et al., 2013). The logic of

this method is also flawed because if a starspot anomaly is seen in a lightcurve of a

particular planetary system then the chance that a previous lightcurve has been af-

fected by a starspot (either on of off the transit cord) is relatively high. As such any

previous measurements of the properties of the contaminated system will potentially

contain systematic uncertainties and therefore cannot reliably be used in the process

to model the starspot. For these reasons it is imperative to model both the transit and

the starspot with a physically realistic model using the same data set.
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2 Methodology

This chapter explains the methodology used in my research. It begins with Sections 2.1

and 2.2 by explaining how raw photometric data is collected and reduced. Sections 2.3

and 2.4 explain the principles behind aperture photometry and how defocused pho-

tometry can be used to drive down the uncertainties in transit photometry. Section 2.5

explains how a transit lightcurve is produced and the details of the data reduction

pipeline used in this research coupled with the different variations of the Julian date

that can be used. Then, in Section 2.6, there is a short discussion on the three dif-

ferent methods used to model transit lightcurves. Section 2.7 then explains my model

prism, which can be used to model a planetary transit containing a starspot anomaly.

Finally Section 2.8 discusses two different optimisation algorithms used for prism and

the difficulties in using them for a large and rugged parameter space. It then intro-

duces my new hybrid optimisation algorithm gemc, created to reduce the computation

time required for optimising prism. Part of Sections 2.7 and 2.8 were published as first

author in Monthly Notices of the Royal Astronomical Society (see AppendixA.1 for

publication details).

2.1 CCD Cameras

The Charged Coupled Devise (CCD), invented by Boyle & Smith (1970), is a semicon-

ductor device that uses potential wells (known as pixels) on its surface to store charge.

The charge is then moved across the surface by moving the potential wells. This allows

information to be transmitted across the CCD (Boyle & Smith, 1970). When a photon

interacts with a pixel the pixel generates an electron through the photoelectric effect.

The charge is then stored until the CCD is read-out whereby the electrons are digitised

by being converted to a voltage and the voltage is read as an Analogue Digital Units

(ADU). Different CCD cameras have different gains, where a gain of three equates to

one electron per three ADUs. During the readout of a CCD, uncorrelated noise can be
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introduced as the image is read from the CCD chip (see Section 2.4.1). At low counts a

CCD camera behaves linearly, but as the charge builds up in each pixel/potential well

a repulsive electric field is generated reducing the efficiency of the photoelectric effect.

The efficiency of the photoelectric effect is therefore proportional to the strength of

the electric field. At this point the CCD camera deviates away from linearity. Each

pixel/potential well can only contain a maximum amount of electrons, beyond this

point the pixel is said to be saturated and all further electrons generated spill over

into the surrounding pixels. Also, another factor which can reduce the maximum ADU

count is from the digitisation limit. For example, a 16-bit controller will only allow a

maximum count of 216 − 1 = 65535 ADU per pixel.

2.2 Data Acquisition

Once an image has been read from a CCD a Flexible Image Transport System (FITS)

file is created to store the image (Wells et al., 1981). The FITS file also contains a

header containing extra information including, but not limited to, exposure length,

the mean Julian date of the image, number of pixels, and both the telescope’s and

instrument’s name and status. Because of this a FITS file not only contains the total

intensity of each star in the image but it also contains a time stamp of when the image

was taken. Therefore a series of FITS files can allow any changes in intensity to be

seen as a function of time.

2.2.1 Bias Frames

A bias voltage is applied to a CCD chip to move the charge generated from the photo-

electric effect across the surface of the CCD. A way to remove this voltage is to ‘clean’

the science images with a master bias image. If an image is created with the shutter

of the CCD camera closed with an exposure time of zero seconds then only the bias

voltage is collected. In general, 5 to 100 bias images are taken at the start of each ob-
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serving night. Then the master bias image is created by median combining the images.

A master bias image is created to reduce the read-out noise from the bias images by a

factor of
√
N , where N is the number of bias images. Once the master bias image has

been created it is applied to the science images. This is done by subtracting the master

bias image from both the science images and flat-field frames, therefore removing the

bias voltage. If the master bias frame is not applied to the science images then the bias

voltage from the CCD camera would contaminate the sky-background of the science

images.

2.2.2 Flat Field Frames

A CCD camera is used to collect photons from a target and is made from an array of

pixels. In general the pixels have slightly different efficiencies and as such the CCD

does not produce a uniform image. To remove this effect from the science images the

CCD camera is used to create images of a uniformly light background (either the sky

during twilight or a white screen illuminated by a lamp). Usually a large number of

sky flat images are taken at the start of each observing night for each filter being used.

The flat field images are then de-biased by subtracting the master bias image before

the master flat image is created by scaled median combining the images. Once the

master flat image has been created it is applied to the science images by dividing the

science images by the master flat frame. This process removes the difference in pixel

efficiencies from the science images but it does not fully remove the effects of dead

pixels and pixels which are severely under efficient.

2.3 Aperture Photometry

To measure the change in intensity from the target star, aperture photometry is per-

formed to the set of FITS files. Three aperture rings are set around the target and

comparison stars. The inner ring is used to set the star boundary the second ring
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indicates the start of the sky background boundary, while the third ring represents the

outer limit of the sky background boundary. This creates a gap between the pixels be-

ing used for the star and the sky background that helps ensure that none of the star’s

intensity contaminates the sky background count. This is done for each star being

analysed in order to create a local sky background count for each star’s position. This

is done under the assumption that the sky background count near the star is the same

as that at the position of the star. The mean pixel value is then calculated from the sky

background and is subtracted from each of the pixel values inside the star boundary.

This is to remove the intensity from the sky background from the pixels on which the

star is centred. After this the sum of the pixel values within the star is calculated and

the instrumental magnitude of the target star and each of the comparison stars is then

calculated. The calculated instrumental magnitude, Minst, is the counts c of the star

corrected for the exposure time t (see Equation 2.1). This ensures that the magnitude

of the stars are always the same irrespective of the exposure times. This is done for

each FITS file to build a profile of instrumental magnitudes as a function of time.

Minst = −2.5 log
(c

t

)

(2.1)

The comparison stars are used to help determine that any variation in the intensity

from the target star is due to the star and not an environmental effect such as clouds

or changing airmass. If a thin cloud passes over the field of view then the intensity

received from the target star and the comparison stars will be reduced.

2.4 Defocused Photometry

To better understand the formation and evolution of transiting exoplanets (TEPs)

requires precise measurements of their mass and radii (see Chapter 1 for full details).

In particular a radius measurement with a precision of 1-3% can allow the distinction

between whether or not a hot-Jupiter will have a rocky core. This is because hot-Jupiter

planets with cores will have a slightly smaller radius when compared to an equal-mass
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coreless planet (Bodenheimer et al., 2003; Fortney et al., 2007). Two different models,

core accretion (Pollack et al., 1996) and gravitational instability (Boss, 1997) both

predict different core masses. As such a precise measurement of a TEPs radius is

important in determining the dominant formation process. As discussed in Section 1.2.2

transit photometry is an observational technique which can be used to measure the

radius of a TEP. For a uniformly illuminated stellar disc the transit depth (the change

in received flux ∆F ) is equal to the squared ratio between the planetary and stellar radii

(Rp/R∗)
2. Transits can also allow the stellar density to be found (see Equation 1.22),

this is vital because when it is combined with the stellar effective temperature it allows

Figure 2.1: Focused image of WASP-19 (top right corner) and surrounding field of
view. Observed using the ESO NTT. Due to being a focused image the stars appear
point-like and each cover only a few pixels.
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the stellar mass and age to be calculated from theoretical stellar evolution models (see

Section 1.2.1). Therefore obtaining a precise measurement of the transit depth and

duration is important.

Figure 2.2: Defocused image of WASP-19 (top right corner) and surrounding field of
view. Observed using the ESO NTT. Due to being a defocused image the stars appear
as ringed doughnuts and cover thousands of pixels.

To obtain a precise measurement of a transit requires either a strong signal

strength or low observational noise. Both of these will give a high SNR. To increase

the signal strength requires either the use of a large ground-based telescope such as the

ESO VLT or a space-based telescope such as NASA’s HST. Another way to increase

the SNR is to use the defocused photometry technique (Southworth et al., 2009a,b,

2010). Whilst defocused photometry does increase the amount of observational noise

it also increases the signal by a greater factor and therefore the SNR increases (see
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Section 2.4.1). When viewing a star though a defocused telescope the star no longer

appears as a circular point source (see Figure 2.1) covering only a few pixels but in-

stead appears as a round doughnut shape (see Figure 2.2) covering many hundreds if

not thousands of pixels. The doughnut shape is roughly the image of the primary

mirror as illuminated by each star.

Figure 2.3: Surface plot of the defocused PSF of WASP-4 (Southworth et al., 2009b).
The x and y axes are in pixels and the z axis is in ADUs and is linear. The minimum
and maximum ADUs are 587 and 25823, respectively. Due to being a defocused image
we can see that the PSF is a circular ring with a base with an approximate radius of
15 pixels.

When a surface plot of the Point Spread Function (PSF) of a defocused star is

viewed, it shows a circular ring of pixels containing a high level of ADUs (see Figure 2.3),

compared to a focused image where the PSF is a single peak (see Figure 2.4). As can

be seen from examining Figures 2.1 and 2.2 by using defocused photometry a star’s

PSF is increased in size and hence increases the total number of pixels collecting the

star’s intensity. As each pixel can only hold a set number of electrons before becoming

saturated, increasing the total number of pixels covered by the target will allow for
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longer exposure times without saturation, which therefore increases the observation

efficiency due to the lower percentage of time spent during readouts (which may take

∼ 1minute). In the case of Figures 2.3 and 2.4 we can see that the radius of the circular

base has more than doubled, which has increased the number of pixels within the PSF

by a factor of five to six. This in turn will allow the exposure time of one image to

increase by roughly a factor of five to six depending on the situation of the observations.

Figure 2.4: Surface plot of the focused PSF of WASP-4 courtesy of Dr J. Taylor. The
x and y axis are in pixels and the z axis is in ADUs and is linear. Due to being a
focused image we can see that the PSF is a single peak with a circular base with an
approximate radius of seven pixels.

As shown in Section 2.4.1 by increasing both the number of pixels and the ex-

posure time of photometric observations it is possible to increase the SNR to allow

precise measurements of the photometric properties of TEPs. As such using defocused

photometry on a small telescope can achieve high levels of precision compared to con-

ventional photometry on large telescopes. An example of the precision achievable from

defocused photometry can be seen in Chapter 5 where it was possible to achieve a rms

scatter of 211 parts per million (ppm) for a transit of WASP-50 using the 3.58m NTT,
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compared to a rms scatter of 479 ppm for CoRoT-1 using the 8.2m VLT (Pont et al.,

2010).

2.4.1 Photometric Uncertainties

There are different causes of uncertainties in photometry. These uncertainties are

generated by observational noise and therefore if the noise is high then the uncertainties

will increase.

Scintillation is caused by changing atmospheric effects. As starlight passes through

the atmosphere it passes through small-scale fluctuations in the air density, caused by

temperature gradients in the atmosphere. This causes the starlight to be refracted. As

such, the intensity received from a star will vary over very short timescales. Dravins

et al. (1998) gives an equation to calculate the amount of scintillation noise σscint in

magnitude units for a telescope with an aperture D (m), at an altitude h (m),

σscint = 0.004D−2/3X7/4e−h/H (2texp)
−1/2 (2.2)

where X is the airmass, H = 8000m and is the scale height of the atmosphere and texp

is the exposure time. From this we can see that by increasing either D, h or texp we

can decrease σscint. It also shows that the noise from scintillation reduces the closer

the target is to the zenith (i.e. X = 1). It should be noted that the exponent of X

changes from 1.5 to 2 dependent on wind direction (Dravins et al., 1998).

Flat-fielding also introduces noise Nflat into photometry (Southworth et al.,

2009a). If the intensity of a star is centred on ten pixels and two of the pixels are

operating far below the efficiency of the remaining eight pixels then at least 20% of

the collected intensity is being severely affected. A way to counter this is to produce

flat-field images (see Section 2.2.2). These images highlight the affected pixels. A mas-

ter flat-field image is created and is applied to the science images (see Section 2.2.2 for

more details) to reduce the flat-field noise. The following equation approximates the

noise from flat fielding (corrected from Southworth et al., 2009a).



69

Nflat =

√

[

fflat

(

Starget + Ssky

npix

)]2

nflat (2.3)

where fflat is the approximate flat field noise per pixel, expressed as a fraction of the

electrons in a pixel. Starget is the total number of electrons from the target. npix is

the number of pixels that the target lies on. Ssky is the total number of electrons

from the sky in the PSF and nflat is the number of flat field pixels where nflat ≤ npix.

Equation 2.3 shows that increasing npix will reduce the flat field noise. Using the

previous example, if the star is now centred over 100 pixels then the two pixels which

are operating far below the efficiency of the remaining 98 pixels will only at least affect

2% of the total intensity.

Southworth et al. (2009a) also gives equations describing the noise from the inten-

sity of the star, Ntarget, (Equation 2.4) and the sky background, Nsky, (Equation 2.5).

Both of these are Poisson noise and as such are the roots of the signal.

Ntarget =
√

texpCtarget (2.4)

where Ctarget is the total number of electrons per second from the target.

Nsky =
√

texpnpixCsky (2.5)

where Csky is the number of electrons per second per pixel due to the sky background.

Since both Equations 2.4 and 2.5 represent Poisson noise then increasing texp will in-

crease the SNR for the target due to texp being proportional to the signal. Increasing

texp will also improve the SNR for the sky background plus increasing npix will also im-

prove the SNR. Therefore, to improve the SNR requires either an increase in the signal

strength from using a larger telescope or an increase of the exposure times and/or the

number of pixels that the target lies on the CCD camera.

(Southworth et al., 2009a) also quantified the total amount of readout noise Nron

using the readout noise per pixel nron

Nron = nron
√
npix (2.6)
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As a consequence by increasing the number of pixels in the PSF, the readout noise will

increase and will act to deteriorate the SNR.

The dominant source of error in photometry is from systematics caused by flat-

fielding noise, such as tracking errors. These enter because tracking issues (or changes

in seeing) mean the PSF moves on to different pixels with different efficiencies. Defo-

cused photometry can greatly reduce these systematics. With defocussing, changes in

telescope pointing will in general affect more pixels, but these will be a smaller fraction

of the overall number of pixels in the PSF. The real gain is that flat-fielding noise goes

down with the square root of the number of pixels (Nflat ∝ (npix)
−0.5), so the more

pixels that are used the more the noise averages down.

2.5 Lightcurve Photometry

A lightcurve is in essence the change in intensity of the target star relative to the

intensity of the comparison star(s) as a function of time. As mentioned in Section 2.3,

by performing aperture photometry the instrumental magnitudes of the target and the

comparison stars is measured from the FITS files. In order to produce a lightcurve

we need to know how the instrumental magnitude of the target star compares to the

comparison stars. This is, in essence, the differential magnitude. First, the mean

instrumental magnitude of the comparison stars are calculated. This mean value is

then subtracted from the instrumental magnitude of the target star, giving a differential

magnitude for the target star against the different comparison stars at a specific time

period. Therefore, it is important to use a large number of comparison stars to reduce

the uncertainties in the comparison star’s instrumental magnitude.

The differential magnitudes between the target and comparison stars are then

plotted as a function of time. In the case of a TEP the plot contains two parts, the

transit and the out-of-transit data. The out-of-transit data sometimes contain either a

positive or negative trend. This trend is often caused by the increasing or decreasing

airmass during the observation night. The trend could also be caused by changes in
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the sky transparency, variability in either or both the target and comparison stars

or telescope pointing shifts. As the Earth rotates the positions of the stars slowly

drift across the sky. When a target is at 30◦ above the horizon the airmass is twice

the amount of when the target is at 90◦ (zenith). As such, during the course of the

observing night the target passes across different values of airmass and the received

intensity changes accordingly. This can be removed by fitting a polynomial to the out-

of-transit data then subtracting it from the data. This then leaves a normalised transit

lightcurve ready for fitting. When normalising a transit, the lowest order polynomial

that gives a good fit to the out-of-transit data should be used. Lendl et al. (2013)

explains that higher order polynomials provide better quality lightcurves due to taking

into account the time, FWHM, coordinate shifts, and background variations. In general

it is best to use multiple types of polynomials and to select the one which provides the

highest quality lightcurve.

2.5.1 Data Reduction Pipeline

The data reduction pipeline used in this thesis (defot) to reduce the data in Chap-

ters 3, 4 and 5 was written in idl1 by Dr John Taylor and uses the daophot package

(Stetson, 1987). This package comes as part of the astrolib2 library. From this,

aperture photometry (see Section 2.3) was performed on the defocused images (see

Section 2.4). During this process the aperture ring sizes can be manually altered to

achieve the lowest out-of-transit scatter. After this the astrolib/aper routine is run

to perform the aperture photometry on the target star and all the selected comparison

stars. It was mentioned in Section 2.3 that the instrumental magnitude is calculated

using the exposure time of the images (Equation 2.1). However the aper routine does

1idl stands for Interactive Data Language. It is a trademark of ITT Visual Information Systems.
For more details see http://www.exelisvis.com/ProductsServices/IDL.aspx

2The astrolib library is distributed though NASA.
For more information see http://idlastro.gsfc.nasa.gov/
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not use the exposure time as an input parameter, as such defot calculates the instru-

mental magnitudes using Equation 2.7 instead of Equation 2.1,

Minst = −2.5 log (c) (2.7)

This results in the generation of a differential magnitude lightcurve for the target

star. As such, if five comparison stars are used then this process will create a mean

instrumental magnitude from the five comparison stars and use this mean value with the

target star’s instrumental magnitude to create the differential magnitude lightcurve.

The data reduction pipeline written by Dr John Taylor also allows the differential

magnitude of each comparison star to be calculated, this allows the comparison stars

to be checked for variability which would contaminate the transit lightcurve and to be

removed from the final analysis. Non variable comparison stars will still show signs of

slow variability due to atmospheric effects (Southworth et al., 2009a). Before the data

can be modelled this trend needs to be removed. This is done by fitting a polynomial

to the out-of-transit data by using the idl/amoeba routine. This minimises the sum

of the squares of the magnitudes in the out-of-transit data, and then normalises the

transit lightcurve to zero differential magnitude. Each comparison star is then weighted

against the first comparison star. The comparison stars which are considered good are

combined using a weighted intensity summation, to create a differential magnitude

lightcurve.

Apart from using defocused photometry to increase the SNR, sky flats and bias

images are also taken to help reduce the associated noise. In general 20 sky flats and

20 bias images are taken at the start of each observing night. Then the master flat and

bias images are created by median combining the images, this is done using defot.

Once the master flat and master bias images are created they are applied to the science

images. The master bias is subtracted from each of the science and flat-field images

while the science images are divided by the master flat image. Under normal focused

aperture photometry applying the master flat and bias images to the science images

is important to help reduce both the electronic and flat fielding noise. When they are
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applied to defocused images, however, the master bias correction has a negligible effect,

while the master flat correction does have a small but noticeable effect (Southworth

et al., 2009a).

2.5.2 Julian Date

The header of a FITS file contains the Julian date (see Section 2.2) of when the image

was taken. The Julian date is the number of continuous days with the starting Julian

date (0 JD) being set at mean noon (GMT) on the 1st January 4713 BC, Julian

proleptic calendar −47123. This reference system would be fine if the Earth was a

static object in space but it both rotates on its axis and orbits around the Sun. This

then creates problems when trying to precisely time certain astronomical events (such

as the transit midpoint of TEPs and pulsar timings). Because the speed of light is

finite it will have a different travel time to different points along the Earth’s orbit.

This is called the Rømer delay (Eastman et al., 2010). Because of this astronomers

started using the Heliocentric Julian date (HJD) which is centred on the Sun and could

produce precise timing measurements to ∼ 8 s (Eastman et al., 2010). Using HJD still

can not produce the necessary precision needed in TTV measurements because the Sun

is not the centre of the solar system. The Sun wobbles around its rotation axis due to

gravitational forces from Jupiter and the other planets in the solar system. Therefore

it is best practice to use the barycentre of the solar system as the reference point when

precise time measurements are needed. Barycentric Julian date (BJD) is therefore set

to the centre of the solar system and not the centre of the Sun (Eastman et al., 2010).

It is also important to take into account different time standards. The JD read at

different time standards can introduce uncertainties of over a minute (Eastman et al.,

2010). Therefore, it is advisable to convert all time standards to an absolute time

frame. FITS file headers contain the time of the exposure in Coordinate Universal

3IAU resolution B1 at the 1997 General Assembly)
(http://www.iau.org/static/resolutions/IAU1997 French.pdf)
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Time (UTC). UTC runs at the same rate as the International Atomic Time4 (TAI)

but is modified by adding or subtracting a leap second on both the 31st December

and the 30th June. This causes UTC to drift relative to TAI with the slowing of the

Earth’s rotation due to the Moon (Eastman et al., 2010). As mentioned UTC should

be converted to an absolute time reference, this is usually the Barycentric Dynamical

Time (TDB). TDB takes into account the delay due to the gravitational redshift and

the time dilation effect due to the motions of the Sun and other bodies in the Solar

system. This delay is referred to as the Einstein Delay and is taken to the geocenter

of the Earth (Eastman et al., 2010).

2.6 Transit Modelling

In the case of a TEP the type of variation in a lightcurve is a transit dip where the

planet crosses the disc of the star and blocks out a portion of the stellar intensity

(see Figure 2.5). When a planet transits the star the observed brightness of the star is

reduced. For example, in Figure 2.5 this drop is approximately 2.25%. As such to see

the transit signal the background noise must be less than this.

The transit properties of a TEP can be derived from modelling its lightcurve.

This is done in essence by using a model with a set of input parameters resulting in

an output lightcurve. The model lightcurve is then compared to the data lightcurve

and a goodness of fit is calculated. The input parameters are then varied using an

optimisation algorithm (e.g. Markov Chain Monte Carlo) to find a model lightcurve

with the best fit to the data lightcurve. There are three main ways to model a TEP

system. The first is an analytical approach using a set of equations to describe the

observed/received intensity of a star during the planetary orbit at specific times during

the transit (e.g. Mandel & Agol, 2002; Giménez, 2006). The second approach is to

model the TEP using a geometrical model (e.g. jktebop (Southworth et al., 2004a)).

4based on the decay rate of the caesium 133 atom (Eastman et al., 2010)
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Figure 2.5: Transit and best-fitting model of WASP-19 b (Hellier et al., 2011).

A third approach uses a pixellation method to describe the surface of the host star

(e.g. Silva, 2003). Each approach has both its advantages and disadvantages, which

are now discussed in more detail.

2.6.1 Analytical Approach

The analytical approach provides a fast computational option which can find the best-

fitting parameters and the associated uncertainties of the TEP. It can also model

different types of LD laws (see Section 1.2.2.1) by applying these laws to the received

intensity from the star. For the case of the analytical approach the transit is split up

into sections where each section is governed by a different equation to calculate the

received intensity from the star. In the case of a limb-darkened transit, the transit is

split up into three sections (Mandel & Agol, 2002). The disadvantage to this approach

lies in the difficulty in modelling structures on the stellar disc (i.e. starspots). As a

consequence, to add a starspot would make the model very complex by requiring a new

set of equations to describe a planet occulting a starspot on a curved stellar disc. This

would also require the transit to be split up into further different sections.



76

2.6.2 Geometrical Approach

A geometrical model provides a fast and efficient method to find the best-fitting pa-

rameters from transit photometry. An example of a geometrical model is jktebop,

written by Southworth et al. (2004a) and based on the model ebop (Nelson & Davis,

1972; Popper & Etzel, 1981; Etzel, 1981). jktebop is a geometrical model using bi-

axial ellipsoids to model eclipsing binary stars and planetary transits. To minimise

the amount of degeneracy between the transit parameters requires the selection and

parametrisation of the transit parameters. Here the major parameters that jktebop

uses are both the sum and the ratio of the fractional planetary and stellar radii (see

Section 1.2.2), the orbital inclination, LD coefficients, transit midpoint and the orbital

period. jktebop works by reading in an input file and the transit data. The input

file contains the initial guesses of the parameter values and which parameters to vary

during the optimisation. The input file also contains which LD law to use ranging

from the linear law to the cubic law (Equations 1.23 and 1.26 respectively). Once the

input file has been read jktebop then uses the Levenberg-Marquardt (Levenberg,

1944; Marquardt, 1963) optimisation algorithm to converge on the best-fitting solution

by using the mrqmin subroutine from Press et al. (1993). The Levenberg-Marquardt

algorithm uses a form of gradient descent to solve non-linear least squares problems

(i.e. it looks to minimises the sum of the squares between the model and the data).

This makes the algorithm very fast at converging on a solution, but because of this the

Levenberg-Marquardt algorithm will find the closest solution to the starting location of

the parameters. Hence, if the parameter space contains multiple local solutions, then

the algorithm will only find the global solution if the initial guess of the parameters is

close to this solution.

jktebop then outputs the best-fitting model and best-fitting parameters to-

gether with the parameter uncertainties derived from the covariance matrix in the

mrqmin subroutine. Since these are not the overall uncertainties it is required to re-

run jktebop using Monte Carlo simulations to estimate the parameter uncertainties

(see Press et al., 1993, chapter 15). By performing these two steps jktebop can be
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used to find the best fit and the associated uncertainties to a lightcurve of both a TEP

and an eclipsing binary in a fast and efficient manner.

2.6.3 Pixellation Approach

In the pixellation approach the stellar disc is modelled in a two-dimensional array

by subdividing the star into many individual elements. These elements can then be

described by a two-dimensional vector in either polar or Cartesian coordinates. Each

element is then assigned a intensity value using a LD law and the planet is then set

to transit the star (e.g. Silva, 2003). At certain points in the transit the total received

intensity is calculated based on which elements of the star are visible. The pixellation

method is an ideal type of model to introduce stellar features to the disc of the star due

to the fact that the model re-creates the stellar disc and allows individual intensities to

be assigned at specific coordinates. The disadvantage to this approach is the amount

of computations required to calculate the intensity of each element and to determine

which elements are visible at each point in the transit.

2.7 PRISM

Before designing a model capable of modelling both a planetary transit and starspots

on the stellar surface it was important to decide on both an approach and computer

modelling language. As discussed in Section 2.6, while an analytical approach would

produce a fast and efficient model, the difficulty in introducing starspots into a plan-

etary transit would be quite difficult and time consuming. Using the pixellation ap-

proach would be the ideal option as it allows starspots to be placed directly on the

stellar disc, with minimal coding time required. Because this approach would produce

a slower model, a further investigation into potential optimisation algorithms beyond

MCMC was required (see Section 2.8).

Due to the nature of the pixellation approach the model will be making extensive
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use of arrays. In particular an array will be required to hold the individual intensity

values of the star. This primary array will also be used at each iteration of the planetary

orbit. Therefore a computing language which is optimised for use with vectors and

arrays would be best suited to this type of problem. It was therefore decided to use

idl5 due to the fact that idl is a dynamical computing language and is optimised

for use with arrays and vectors. idl also comes with built in multi-threading with

certain array commands allowing automatic parallel programming when running large

calculations using arrays.

2.7.1 Modelling the Stellar Disc and Transit

Before modelling a planetary transit, a set of transit parameters need to be selected

to help reduce any degeneracy between the parameters. It was decided to use the

same transit parameters that are used in jktebop, to not only reduce the degeneracy

between the parameters (Southworth, 2008) but to also allow a direct comparison be-

tween the output lightcurves when performing tests and validating the model. Because

of this, prism (Planetary Retrospective Integrated Starspot Model) uses six parame-

ters to model the transit. Both the planetary (Rp) and stellar radii (R∗) are reduced

to the fractional radii by the semimajor axis a where rp = Rp/a and r∗ = R∗/a. prism

then uses the sum rp + r∗ (Equation 2.8) and the ratio k (Equation 2.9) of rp and r∗.

rp + r∗ =
Rp +R∗

a
(2.8)

k =
rp
r∗

=
Rp

R∗

(2.9)

The three major measurable qualities of a transit lightcurve are the transit depth,

the overall duration of the transit and the duration of totality. Coupled with k and

rp + r∗, a third parameter is needed to help describe the three measurable properties

5See http://www.exelisvis.com/ProductsServices/IDL.aspx
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of a transit. This third parameter used is the orbital inclination i. In reality because

of LD both k and i affect the transit depth6, while by looking at both Equations 1.18

and 1.19 we can see that the overall transit duration and the duration of totality are

governed by k, i and rp + r∗. The impact parameter b in Equations 1.18 and 1.19 can

also be rewritten in terms of r∗ by substituting r∗ = R∗/a into Equation 1.17 and by

assuming zero eccentricity,

b =
cos i

r∗
(2.10)

r∗ can be calculated from both k and rp + r∗ using equation 2.12. The only other un-

known variable in the Equations 1.18 and 1.19 is the orbital period P but as mentioned

by Southworth (2008) P is usually known to a high-precision from either the detection

or confirmation of the planetary system though phase-folding of a large number of

transits (see Figure 3.1 for an example of a phase-folded lightcurve).

The next two parameters that prism uses are the LD coefficients. As mentioned

in Section 1.2.2.1 the quadratic LD law (Equation 1.24) is most suited for ground-based

transit photometry and as such prism is programmed to use the quadratic law requiring

only two coefficients u1 and u2.

The final parameter for modelling a planetary transit in prism is the reference

transit midpoint T0. This parameter refers to the inferior conjunction7. This parameter

is used when fitting prism to data and this is done by fitting t0 to the point where the

orbital phase equals zero (i.e. when the planet is at minimum light).

To aid in the reduction of the time required to develop prism it was decided to not

include the orbital eccentricity but to add it at a later date (see Section 6.2.1). This was

considered acceptable as the majority of TEPs have circular orbits (see Section 1.3.4).

Because prism models transit photometry then unless the transit and an occultation

are both observed it is not possible to derive the orbital eccentricity alone (Kipping

6At i = 90◦ the planet crosses the centre of the star and therefore the brightest part, while at
higher latitudes the planet crosses fainter sections of the star and therefore blocks out a lower amount
of intensity.

7This is sometimes referred to as the point of minimum light.
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et al., 2012). Therefore any addition of eccentricity to prism will have to be treated

as a fixed value rather than as a fitted parameter.

prism also does not take into account the reflex motion of the star. The reflex

motion of the star is when the star’s rotational axis orbits around the centre-of-mass

and is detected in RV measurements. Because the length of the transit is a fraction of

the full orbital period then the effect of the stellar reflex motion will be small. Coupled

with the added difficulties of modelling a moving star on a pixel grid it was decided to

not add the reflex motion of the star to prism.

Once the input transit parameters have been selected prism then creates the

main 2D array which contains the stellar disc. There were two options available, to

either have a fixed grid size for all possible planetary radii or to have a variable grid

size based on a fixed planetary radii. It was decided to have a variable grid size by

using a fixed planetary radius of 50 pixels. This was done to make sure that prism

maintained a certain level of numerical accuracy. For example, if a fixed stellar grid of

100 by 100 pixels was used and the planetary radius was one tenth of the stellar radius

it would mean that the planet would only have a radius of five pixels. The stellar grid

that contains the stellar disc is set to have each side n equal to two stellar radii with

the centre of the star being set at the centre of the grid. Because the planet’s diameter

in pixels is preset to be 100 pixels then n is simply:

n = 100
r∗
rp

=
100

k
(2.11)

This expresses n as the diameter of the star in units of planetary diameter. Next prism

needs to calculate the value for r∗, this is done using Equation 2.12 while to calculate

the value of rp is a simple matter of subtracting r∗ from the sum of the radii.

r∗ =
rp + r∗
k + 1

(2.12)

With the stellar grid created prism then runs though each element of the grid to check

to see if the element is within the star’s disc. If the element is within the disc it assigns

a intensity value between zero and one based on the pixel’s angular distance from the
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centre of the star using the quadratic LD law. If the pixel falls outside of the stellar

boundary then it is assigned a intensity value of zero.

Once the stellar grid has been created prism then creates the planet’s grid. The

planet grid has the same dimensions as the stellar grid and all the pixels are assigned

a value of one. The pixels that are covered by the planet are then re-assigned a value

of zero and the two grids are multiplied by each other to create the final intensity

grid. The y-coordinate of the planet’s centre is simply b (Equation 2.10), while the

x-coordinate of the planet’s centre is based on the planet’s orbital phase. prism uses

Equation 2.13 to calculate the x-coordinate of the planet, where θ = 0◦ is when the

planet is at inferior conjunction.

x = a sin θ (2.13)

To calculate x we do not need to know the absolute value of a. We can instead adopt

the idea that if R∗ is set to one (i.e. the planetary system is converted into units of

stellar radii) then by using the fact that r∗ = R∗/a then we can say that a = 1/r∗

which allows us to rewrite Equation 2.13 into,

x =
sin θ

r∗
(2.14)

This then gives us a value for x without a dependence on a. The next step in determin-

ing the x-coordinate of the planet’s centre is to determine θ. Because prism models a

circular orbit then θ can be directly calculated from the orbital period. For example,

if the time step between two points is one tenth of the orbital period then the change

in angle is only 36◦.

When fitting prism to transit data the planet’s position is calculated only at the

orbital points which match the data. Therefore, if there are 67 data points within the

transit then prism will only calculate the position of the planet 67 times. This is done

to help improve the computational efficiency. prism then creates a new final intensity

grid at each point.

With each final intensity grid prism then calculates the total intensity value for
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the grid and takes the ratio between the value calculated and the original total intensity

value from the stellar grid. prism then outputs a vector containing the total intensity

values at each point in the transit.

2.7.1.1 Model Testing and Validation

prism’s ability to model the stellar disc and transit was tested by using jktebop as a

benchmark transit modelling program. For this a series of lightcurves were generated

by both prism and jktebop using the same transit parameter values. The lightcurves

were then directly compared first by eye and then numerically. Figure 2.6 shows an

Figure 2.6: Comparison between models from prism and jktebop. The parameter
values used were k = 0.14, rp + r∗ = 0.3, u1 = 0.3, u2 = 0.1 and i = 79◦. The red line
represents the output model from prism and the blue line represents the output model
from jktebop. The top panel show the full transit while the bottom panel shows a
close up of the inferior conjunction and the difference between the two models can be
seen. The mean difference between the two models equates to only 16 ppm.
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example of one of the tests. Here we can see by eye that the two different model outputs

are almost identical (in the top panel) with the exception that the jktebop transit

is slightly (a line width) deeper (bottom panel) and numerically there is a difference

of only 16 ppm. Each test produced a fitness number which was calculated by taking

the root mean squared (rms) difference between each point in the two lightcurves. It

was expected that there would be some slight differences between the two models due

to the two different approaches used. The average difference between the two models

for all the tests was ∼ 10 ppm. In contrast, a typical transit depth of a hot-Jupiter

is 15000 ppm and the precision obtained from defocused photometry is approximately

500 ppm. As such the differences between the two models is within the noise of the

highest ground-based precision. If the two models were used on the same set of data any

differences in the best-fitting parameters would be within the 1-σ confidence level. By

performing these tests it was possible to ascertain the validity of prism in accurately

modelling a planet transiting across a limb-darkened stellar disc.

2.7.2 Modelling Starspots

To enable prism to model starspots in lightcurves first required deciding on the spot

parameters. Four parameters were chosen, the longitude and co-latitude coordinates of

the spot centre on the stellar disc θ and φ, the spot’s angular size in degrees rspot and

the spot’s contrast as compared to the immaculate photosphere ρspot. It was decided to

set the spot’s coordinate system so that the left hand limb of the star was at −90◦ and

the right hand limb was at 90◦. This meant that a longitude position of 0◦ would place

the spot at the point of maximum light for the stellar disc. The co-latitude coordinate

system is set so that the north pole of the star was at 0◦ and the stellar equator is at

90◦.

Due to the nature of prism, modelling starspots would just require modifying

individual pixels on the main stellar grid within the spot’s boundary. The difficulty lay

in determining which pixels were within the spot. Silva (2003) placed a small circular

spot on the stellar disc (see Figure 2.7), but this method did not take into account that
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Figure 2.7: Model showing the solar disc, a model planet, sunspots and a model spot
(Silva, 2003). Here Silva (2003) places a circular model starspot directly on the stellar
disc.

the stellar disc is a curved surface and when the spot moves closer to the limb of the

star its circular shape distorts into an elliptical shape.

To project a circular spot on a curved stellar surface prism first calculates the

plane which intercepts the stellar surface at the spot’s boundary. The centre of this

plane lies directly below the central point of the spot at a distance of r∗ sin rspot from

the stellar core (see Figure 2.8). prism then scans an area slightly larger than the

expected spot and calculates all the vectors V between the centre of the spot plane

and each pixel. prism then calculates the angle θ between V and the vertical line

passing though the centre of the star, spot and plane. If θ = 90◦ then the pixel must

lie on the spot boundary, while if θ < 90◦ then the pixel lies within the starspot. All
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Figure 2.8: Diagram showing how prism calculates the pixel vectors for spots. prism
calculates the vector V of each pixel element and then determines the angle between
V and the centre of the spot plane θ.

pixels that lie outside the starspot will have θ > 90◦. By testing θ, prism can find

which pixels are affected by the starspot and multiply their intensity value by ρspot.

Using this method for modelling starspots and combining it with the approach

to model the stellar disc and transit as shown in Section 2.7.1, it is possible to build

an array containing hundreds of thousands of pixels to map out the stellar disc, limb-

darkening, starspots and the position of the planet at specific intervals (see Figure 2.9).

By calculating the total intensity from each array prism is then able to model a transit

lightcurve containing a starspot both physically and realistically without introducing

any of the transit shape uncertainties that were mentioned in Section 1.5.1.

It was decided to only let prismmodel circular spots. The reason behind this idea

was that a starspot anomaly appearing in a transit lightcurve is in fact a measurement

of the change in intensity from the star. The only things that the anomaly can give

us is the position of the spot and a difference in intensity (i.e. size and contrast).

At present using current technology and techniques it is not possible to achieve the

required precision to map out in detail the exact shape of the starspot. Therefore it
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Figure 2.9: An output model of a transit and a starspot using prism. The transit
cord are the two black horizontal lines and the black disc in the top left represents the
planet. A starspot is also shown to the top right. This shows how prism projects an
elliptical shape for a circular spot on a curved surface.

was decided to use a circle as an approximation to the shape of the starspot, just like

how Sunspots appear circular in low resolution images of the solar disc.

2.7.2.1 Model Testing and Validation

Unlike when testing the transit modelling component of prism with another transit

model (jktebop) the starspot modelling component of prism has no other model to

be compared to. Therefore, to test prism’s ability to accurately model a starspot on

the stellar disc required viewing the stellar grid. prism was set to create starspots at

the centre of the star and at each pole. This was to check that prism was properly

modelling the spots. Another test (see Figure 2.10) was to to place a spot on the limb

of the star at a high altitude and to then shift its longitudinal position by 20◦. The

position of the spot was shifted in eight steps to allow the spot to rotate around the
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Figure 2.10: Output models from prism showing a starspot rotating around a star.
The stellar rotation axis lies in the plane of the page and points upwards. The images
move from left to right. The starting longitude of the spot’s centre is at −90◦ and with
each image rotates around the star by 20◦. The longitude angle of the spot’s centre
is displayed for each image. These images shows how prism can accurately model an
elliptical projection of a circular spot.
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Figure 2.11: Output model from prism showing a 90◦ starspot. The centre of the spot
is behind the star. The physical properties of the simulated spot are θ = 120◦, φ = 80◦,
rspot = 90◦ and ρ = 0.2.

surface of the star by 160◦. Each of the images was then checked and used to create a

two second animation. The purpose of this was to check that the projected elliptical

shape of the spot was maintained while viewing the spot at different angles. As can

be seen in Figure 2.10 prism successfully passed this test. Another test was to use a

spot with an angular diameter of 90◦. This size of spot equates to an area of a single

hemisphere (50% surface coverage). The spot’s centre was then placed just behind the

stellar disc. In reality we would still be able to observe a section of the starspot that

covers a section of the stellar disc in our field of view. Figure 2.11 shows the output

from prism and as can be seen prism correctly models the position and shape of the

elliptical projection of the starspot.

2.7.3 Sample Lightcurves

When a spot anomaly is viewed during a transit the total intensity received increases

for a dark spot. The total change in intensity is based on the surface area and contrast
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Figure 2.12: Five light curves showing how the shape of the spot anomaly changes with
the size of the spot relative to that of the planet. The spot contrast was also modified
for each light curve to maintain an approximately constant spot anomaly amplitude.
This amplitude gives a lower limit for the size of the spot. The spot sizes are labelled
on the left of the plot and the spot contrasts on the right. The 8.5◦ spot (green solid
line) is the representation of when the spot is of equal size to the transiting planet.
There is a degeneracy between the spot radius and contrast, which can be broken when
modelling data of sufficiently high-precision and cadence.
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of the spot (Silva, 2003). Therefore there is a degeneracy between these two parame-

ters. Figure 2.12 shows example light curves for anomalies of approximately the same

amplitude and due to a range of spot sizes and contrast. It is possible to discern three

regimes from this diagram. First, when the spot is of a similar size to the planet the

shape of the spot-occultation is an inverted ‘V’. This is due to the fact that the amount

of time the planet spends fully eclipsing the spot is very small compared to the duration

of the partial eclipse phases. Second, for a larger spot, both the peak and base of the

spot-transit increase, because the planet reaches the spot earlier and spends more time

fully eclipsing the spot. Third, for a smaller spot, the peak broadens due to the planet

fully eclipsing the spot for longer, while the base shortens due to the fact that the total

duration is shorter. These three distinct shapes allow the degeneracy between the spot

radius and contrast to be broken for data of sufficient precision and time sampling.

It is also apparent that the amplitude of the spot-transit gives a lower limit on

the size of the spot, below which the spot is too small to give such an amplitude even

if its contrast is zero. In Figure 2.12 the 2.5◦ spot has a contrast of zero and is still

unable to achieve the same change in intensity as the other spots.

2.8 Optimisation Algorithms

We now have a model (prism) capable of modelling both a planetary transit and

starspots on the stellar surface, using ten different parameters. The next step is to de-

velop an optimisation algorithm to allow prism to fit transit data. The first optimisa-

tion algorithm used was a Markov Chain Monte Carlo (MCMC). MCMC (Section 2.8.1)

is similar to the Levenberg-Marquardt algorithm in the respect that they are both local

optimisers. As such, when using MCMC to determine the best-fitting values of the ten

parameters, the chains regularly became stuck in local solutions. This forced a large

number of chains to run for over 106 iterations to find the global best-fitting solution.

The next algorithm used was a Genetic Algorithm (GA). The GA (Section 2.8.2) is

considered as a global optimiser but due to its nature it is unable to perform Bayesian
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statistics to ascertain the uncertainties in the parameter values. The final optimisation

algorithm used to fit the transit data is a hybrid between a GA and MCMC. gemc

(Section 2.8.3) is based on Differential Evolution Markov Chain (DE-MC) developed

by Ter Braak (2006). DE-MC runs by allowing multiple MC chains to run parallel and

to learn from each other, resulting in the chains evolving (converging) to the optimal

solution.

2.8.1 Markov Chain Monte Carlo Simulations

The MCMC algorithm is a type of random walk around a given parameter space. Each

MCMC chain begins at a randomly generated set of parameter values and is evaluated

and assigned a goodness of fit value. At each next step the parameters are randomly

perturbed and the chain is re-evaluated using the new parameter values and assigned

a new goodness of fit. If the goodness of fit has improved then the new parameters

are accepted, while if the fitness has deteriorated then the new parameters are either

accepted or rejected based on a Gaussian probability function (see Equation 2.17). This

form of MCMC is classified as the Metropolis-Hastings random walk (Metropolis et al.,

1953; Hastings, 1970) and is also widely used in the exoplanet community (e.g. Collier

Cameron et al., 2007a; Winn et al., 2007a; Pollacco et al., 2008; Anderson et al., 2011;

Hellier et al., 2011; Sanchis-Ojeda et al., 2011; Pepper et al., 2013).

When fitting transit data the goodness of fit is evaluated as the Chi squared, χ2,

χ2 =
n

∑

i=1

(

xi − yi
σi

)2

(2.15)

where n is the number of data points, xi is the value of the ith data point, yi is the

value of the model at the ith data point and σi is the uncertainty in the ith data point.

Another way to measure the fitness of a set of parameters is to use the reduced Chi

squared, χ2
ν ,

χ2
ν =

χ2

ndata − npara
(2.16)
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Here ndata is the number of data points and npara is the number of free parameters.

ndata − npara is also called the number of degrees of freedom. When χ2 is being used

by an optimisation algorithm as a measure for the fitness of a set of parameters the

algorithm tries to find the set of parameters which produce the lowest value for χ2.

Using Equation 2.15 we can see that having a low χ2 value would imply that the model

produced from a set of parameter values is close to the actual data.

As discussed earlier when the parameters in the MCMC are perturbed their fitness

is calculated using χ2. There are two ways in which the parameters can be perturbed.

The first uses a fixed maximum perturbation size and randomly selects the size of the

perturbation between zero and some maximum size. The maximum size is selected to

allow a 20% acceptance rate (Winn et al., 2007a). The second method uses a step size

controller (Collier Cameron et al., 2007a) to ensure that the acceptance rate remains

close to the desired value. In the case of Collier Cameron et al. (2007a) the acceptance

rate was measured for the previous 100 accepted values and by using a linear equation

the step size controller was adjusted to achieve an acceptance rate close to 25%. This

new χ2 value is then compared to the previous value and if it has been improved then

the new set of parameters are accepted. On the other-hand, if the χ2 has increased

(i.e. degraded) then the probability p that the new parameters are accepted is,

p = exp





(

χ2
(n−1) − χ2

n

)

2



 (2.17)

where χ2
(n−1) is the χ2 value from before the perturbation and χ2

n is the current χ2

being evaluated. Because χ2
n is larger than χ2

(n−1) this results in p ranging between

zero and one (where one would mean a 100% probability). In the event that the new

parameters are rejected then the parameters from the previous iteration are added into

the chain. This is an integral part of MCMC.

Sometimes, depending on the data being fitted, a prior is attached in calculating

p. For example, Collier Cameron et al. (2007a) uses a prior for the stellar mass and

radius based on the mass-radius relation for main-sequence stars. They then replace

χ2 with the logarithm of the posterior probability distribution. Winn et al. (2007a)
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also used a prior for the stellar limb-darkening based on the LD models from Claret

(2000).

Once a MCMC chain has been completed it is split into two sections with the first

being discarded. This is called the ‘burn in’ stage. This is because it takes a certain

number of iterations before the chain reaches the global solution. To estimate the

uncertainties in the parameters requires taking the standard deviation of the parameter

values and if these values contain random values that have no reflection on the actual

values, this will affect the measurement of the parameter uncertainties.

There have been a few diagnostic tools developed to help ascertain if the results

from an MCMC analysis are for the global solution and not a local solution. Gelman

& Rubin (1992) proposed a diagnostic to test the variance within an MCMC chain

and the global variance of multiple chains. The idea is that if multiple chains are run

then they should all reach the global solution after a certain number of iterations. The

Gelman-Rubin statistic R is used to test the variance of the stationary distribution

σ̂2. This statistic is comprised from measuring the variance of a single parameter both

within a chain and the overall variance of the parameter for all the combined chains.

If R is close to one then the chains are thought to have converged and are well mixed.

2.8.1.1 Application of MCMC to PRISM

The first attempt at fitting real data with prism utilised a MCMC algorithm. Both

a constant and an adaptive step size was used. This was introduced in order to use

Bayesian methods to find the best fit and associated uncertainties. The problem with

this approach was that there were many local solutions in the parameter space, which

tended to trap the MCMC chains, resulting in poor mixing and convergence according

to testing with the Gelman-Rubin statistic. This could be solved by using a large

number of iterations, but such an approach was ill-suited to prism due to the sig-

nificant amount of processing time required per iteration. A single evaluation of a

model appropriate for WASP-19, with 70 datapoints, takes prism typically 0.7 s using

a 2.7GHz dual-core desktop computer. We found that MCMC chains required up to
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106 iterations to converge properly, depending on how often they got stuck in the local

solutions, which equated to about a week of calculation time. Using individual step

sizes for each of the parameters (instead of a global step size) only slightly helped in

improving the ability of the MCMC to converge properly, which resulted in reducing

the calculation time by a few hours.

2.8.2 Genetic Algorithms

A Genetic Algorithm (GA) mimics biological processes by spawning successive gen-

erations of solutions based on breeding and mutation operators from the previous

generation. By performing these operations the new solutions are generated based on

the fitness of the parent solutions, not a perturbation of their parameters. Because

of this a GA can be considered as a global optimiser where solutions can jump large

distances across the solution space.

Because the GA optimiser mimics the natural selection process, its foundation

should also represent the foundation of natural selection and therefore it is ideal to

base the solutions (members of the population) on a population of living individuals

(phenotypes). The ability of the individuals to successfully breed and subsequently pass

on their genetic material to the next generation depends on their genes (genotypes).

Charbonneau (1995) explains the difference between the genotype and the phenotype

from a biological stand point. The genotype contains the genetic material stored in

chromosomes in the form of linear gene sequences, while the phenotype is the outward

manifestation of the genotype (i.e. the individual) that feeds and breeds in real space.

During breeding genetic material from both parents is used in constructing a new set

of genes, which gives rise to a new individual. Therefore the phenotype is the decoded

version of the genotype. To this end each solution will be considered a phenotype

and will require a corresponding coded genotype. Charbonneau (1995) explains that

in terms of optimisation problems the phenotype is the list of parameter values that

make up a solution or population member and the genotype is the encoded parameter

values, usually as a linear string of digits. It is this linear string of digits that is used by
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all of the GA operators, which afterwards are decoded to give rise to new solutions. In

essence the genotype contains a list of instructions on how to build the corresponding

phenotype just like in the biological world. The GA operators are used on the genotype

and are then decoded to create new solutions with each generation (see Figure 2.13).

When a new generation is being created (bred) the parents are selected based on their

fitness (just like in natural selection). This helps to increase the probability that

the best-fitting members of a population go on to spawn a population with a higher

proportion of high fitness members.

As seen in Figure 2.13 to evolve a population to the next generation requires

the use of breeding and mutation operators (see Section 2.8.2.1). Before a population

can be used to breed the next generation the genotypes need to be encoded from the

phenotypes in the population. To begin with, an initial population is drawn from a

random Gaussian distribution. From this point on each GA needs to be tailored for

each model the GA is being used to optimise. In the example used by Charbonneau

(1995) the two parameters ranged from zero to one and therefore the decimal point

was known to come after the first digit. For transit lightcurves, however the decimal

point comes after the first digit for k but comes after the second digit for i. Therefore

the encoding of the genotypes needs to be designed based on the type of problem to

be solved. Once this has been achieved then to encode the genotypes requires the

digits of each parameter to be combined into a single string. In the example given

by Charbonneau (1995) this equated to a 16-digit string due to using two 8 decimal

point numbers (one for each parameter). It should be mentioned that the encoded

genotypes are sometimes in binary form (Rajpaul, 2012b,a). However, as mentioned

by Charbonneau (1995), encoding the genotypes in binary or base 10 has little impact

on the efficiency of the GA in finding the global solution.

Once the genotypes have been encoded the next step is to assign a fitness to each

population (solution) member. This is achieved in the same manner as in MCMC (see

Section 2.8.1) by which a χ2 value is determined for each population member using

the parameter values contained in the phenotype (Charbonneau, 1995). When picking

a pair of solutions (parents) to generate two new solutions (offspring) a bias random
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selection is used. In an unbiased random selection the probability of selecting each

individual is equal, while in a biased random selection the solutions with the lowest χ2

values have a greater probability of being selected. For example, if one solution has

χ2 = 800 while another has χ2 = 400, the latter solution is therefore twice as likely to

be selected as the first. Two different selection methods can be used to select which two

solutions go on to breed. The first method selects just two members of the population

to become parents, while the second method draws n solutions (Tournament selection)

Figure 2.13: Encoding, breeding and decoding in genetic algorithms (Charbonneau,
1995). Phenotypes are defined as two real numbers and are encoded into a 16 digit
number (8 from each real number). ‘Ph’ means phenotype, ‘Gn’ means genotype, ‘P’
means parent and ‘O’ means offspring. The encoding and decoding are only shown
for the the second parent and offspring. The crossover and mutation operators are
performed based on a probability test.



97

and selects the two best-fitting to become parents (Miller & Goldberg, 1995). The

second method increases the probability that better fitting solutions are selected to

become parents8 and a mixture of the two methods can allow the sensitivity of the

GA to alter from probing a global (large) parameter space to probing a local (smaller

confined) parameter space. Once the parents of the population have been selected,

breeding and mutation operations are performed to generate the next generation of

solutions.

2.8.2.1 Breeding, Mutation and Extinction Operators

When two parents have been selected their genotypes undergo a breeding operation.

Figure 2.13 shows an example when a single crossover point is used but multiple

crossover points may be used. For example, if two crossover points are specified then

the digits between the two points are swapped between the parents to form the two

offspring. In the single crossover point method a position in the genotype string is ran-

domly selected as the crossover point. This creates two sections in the parent genotype

strings. The sections are then swapped to create two new offspring. This creates the

initial offspring genotypes, ready to be tested for any mutations. Mutations in a GA

mimic mutations in biological process. Depending on the position of the mutation in

the genotype they can cause either a small or large alteration in the phenotype. For

an eight digit parameter a mutation on the first digit can alter the parameter value by

a 1st order factor or if the last digit is altered the parameter is only affect by one part

in 108. There are two main types of point (single-digit) mutations, creep and jump

mutations. Charbonneau (1995) uses a jump mutation in which the digit selected to

mutate is replaced with a new randomly generated digit. Creep mutation causes the

selected digit to undergo a ±1 perturbation (Metcalfe & Charbonneau, 2003). In either

case a mutation rate is set in which there is a probability that a digit will undergo a

mutation. If the digit selected for creep mutation is at the numerical boundary (i.e.

8This probability is refereed to as the selection pressure (Miller & Goldberg, 1995).
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using a base 10 system the numerical boundary is either a 0 or a 9) then the one is car-

ried over. Once each digit of the offspring genotypes have been tested for mutation and

any mutation operators have been used the offspring genotypes are then decoded into

the offspring’s phenotype. The new phenotypes describe the new parameter values for

the next generation of solutions, ready to be evaluated by the model being optimised

and assigned a new fitness value.

A mutation operator is used in a GA to help maintain variance in the population

and to help prevent the population getting stuck in a local solution (Charbonneau,

1995; Metcalfe & Charbonneau, 2003). Another method to use instead of a mutation

operator is an extinction operator (Yao & Sethares, 1994). When the variance within a

population falls below a threshold the population is deemed to have congregated around

either a global or local solution. To check whether this is a global or local solution the

population is killed off and replaced by an entirely new randomly generated population.

Some GA’s (e.g. Yao & Sethares, 1994) allow the highest fitting population member

to survive the extinction. This process allows a GA to sample many different local

solutions while still being able to determine the global solution.

Through breeding, mutation and extinction the population of a GA is able to

sample a large parameter space and converge on the global solution rapidly. Due to

the nature of how the population members are evolved into the next generation through

modifying the genotypes, a GA is capable of traversing a parameter space cluttered

with many local solutions without getting stuck, unlike MCMC.

2.8.2.2 Performance of the GA

Charbonneau (1995) describes the use of a GA called pikaia. To test the performance

of pikaia the function

f(x, y) = [16x(1− x)y(1− y) sin(nπx) sin(nπy)]2

x, y ∈ [0, 1], n = 1, 2, ... (2.18)
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was used, where x and y range between zero and one. There is a central global solution

to this function that lies at the centre (f(0.5, 0.5) = 1) and there are n2 − 1 local

solutions. This function was selected as it proves difficult to find the global solution

with MCMC and other optimisers that use potential gradients in the parameter space

to find the best-fitting solutions. When the amoeba subroutine (Press et al., 1993) was

used, it found the global peak quite efficiently. Charbonneau (1995) states that this is

due to the low dimensionality of the problem being tested and in higher dimensional

problems linear optimisers are not truly effective.

Figure 2.14: Surface and contour plots of the function used to test pikaia (Charbon-
neau, 1995). The function defined by Equation 2.18 is set with n = 9. There are 81
local solutions with the global solution at f(0.5, 0.5) = 1.
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To test pikaia, Charbonneau (1995) used n = 9 to give 80 local solutions and

one global solution (see Figure 2.14). The GA was setup with a population of 100

members and was designed to run for 100 generations. The crossover and mutation

operators were set at 0.65 and 0.003, respectively. This meant that there was a 65%

chance that the parents genotypes were crossed over and for those which did not the

offspring were exact replicas of the parents. The mutation rate meant that on average

0.3% of the digits in the offspring were mutated using the jump mutation.

Figure 2.15 shows the population distribution in the parameter space for five gen-

erations. After 100 generations the maximum function value found was approximately

0.99 with both the parameters close to 0.5. By studying Figure 2.15 we can see how a

GA can cluster around local solutions (panel b) and migrate towards the global solu-

tion (panels c and d). By the 20th generation the GA has found the central peak where

the global solution lies. This equates to 2000 function iterations. However, even by

the 100th generation (10000 function iterations) the GA had still not found the exact

optimal solution, but 100 generations is a short evolutionary run.

Charbonneau (1995) states that the initial 20 generations are when the GA is

probing the parameter space and then after this as the variance in the population

declines due to more members of the population evolving onto the central peak the

rate of evolution of the population becomes slower which leads to slow incremental

improvements. Figure 2.15 is only representative of a single run and Charbonneau

(1995) states that its performance is worse than typical runs using pikaia on this

function but it was selected to show that a GA can jump from a local solution to the

global solution.

Charbonneau (1995) also experimented with various values for the mutation,

crossover, selection pressures and population sizes (see Figure 2.16). They chose three

values for each property and ran pikaia 100 times and took the average fittest member.

For the mutation they chose the values 1.4%, 0.3% and 0.1%. From examining Fig-

ure 2.16 it can seen that high mutation rates can increase the GA’s efficiency at finding

the global solution. This is due to the fact that random mutation can help a population

explore the parameter space as it can shoot a member into a more favourable position.
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Figure 2.15: A genetic solution to the model optimisation problem (Charbonneau,
1995). The first five panels show the population distribution in space, with the func-
tion contours overlaid. Starting with the initial population in panel (a) and proceeding
to the 90th generation in panel (e). Panel (f) shows the evolution of the fittest popu-
lation member (solid line) and the median fitness population member (dashed line) as
measured by 1− f(x, y).



102

The crossover values chosen were 100%, 65% and 6%. Figure 2.16 helps to show

that high crossover rates are required to allow the GA to find the global solution. If

crossover is low then each generation will be a direct copy of itself and there would be

little to no evolution over the generations.

As mentioned by Miller & Goldberg (1995), selective pressure is a term used to

describe the probability of the fittest members of the population being bred. Charbon-

neau (1995) states that a high, medium and low selective pressure are used. Where

Figure 2.16: Fitness as measured by 1 − f(x, y) against generation count for pikaia
(Charbonneau, 1995). Panel (a) is using various mutation rates. Panel (b) is for
different crossover points. Panel (c) is for three different selection pressures and panel
(d) is for various population sizes. The curves represent the fittest individual averaged
over 100 runs of the GA.
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the high selective pressure is used then the probability distribution is heavily biased

for the fittest members of the population, while the low selective pressure gives the

less fit members greater probability of being selected to breed. Figure 2.16 shows that,

while a high selective pressure increases the convergence rate, a low selective pressure

is more likely to find the global fit. This is because when a population cluster forms

over a local solution and they contain the fittest members then the offspring of the next

generation will be made solely from these parents, while with a low selection pressure

the fittest members can breed with less fit members allowing for a larger variance in

the next generation, but at the expense of a slower convergence rate.

For the population sizes Charbonneau (1995) chose 20, 100 and 500 population

members. The outcome was that the population of 500 members was able to reach

a fitness of 0.001, ten times smaller than the population of only 100 members. This

seems to indicate that larger population sizes allows both faster and better convergence.

Charbonneau (1995) states that the reason why having a larger population gives a

better convergence is due to the initial population covering a larger area and thus

increases the probability that an initial solution starts close to the optimal solution.

Each of the GA runs in Figure 2.16 was allowed to run for 500 generations. Using

a population size of 100 meant that in total 50000 function iterations were undertaken

in each run. By testing pikaia against this function, Charbonneau (1995) was able to

show the global optimisation power of the GA in a parameter space filled with a large

number of local solutions, but the tests also highlighted a weakness. While a GA can

find where the global solution is, it is poor at locating its exact position (Charbonneau,

1995; Rajpaul, 2012b). Once the GA has finished, its result should be used as a starting

point for a local optimisation algorithm (e.g. a Levenberg-Marquardt algorithm).

2.8.2.3 Estimating the Parameter Uncertainties from a GA

Due to the nature of the GA it is not possible to perform a Bayesian statistical analysis

to determine the posterior distribution of the parameters. However, as mentioned

in the previous section, the GA gives an area of where the best-fitting solution is.
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Charbonneau (1995) also mentions the use of hybrid optimisation algorithms where a

GA is used to find the global best fit and a rapid convergence algorithm then takes over

to find the exact position. To estimate the parameter uncertainties once the GA has

found the global best fit an MCMC algorithm can then take over to explore the local

parameter space to find not just the exact position of the best fit but to also estimate

the parameter uncertainties. The initial starting point of the MCMC chain would have

the same parameter values as the best-fitting solution found from the GA. Because of

this, convergence tests such as the Gelman and Rubin statistic are not needed as the

chains are already starting at the global solution and hence begin converging on the

global solution. A burn-in period may still be required while the parameter step size

is being refined to give a 20% acceptance rate.

By combining the GA with MCMC it is possible to efficiently explore a large

parameter space filled with many local solutions and find the exact position of the

global best fit. Once found it is then possible to perform a Bayesian analysis of the

posterior distribution to ascertain the parameter uncertainties.

2.8.2.4 Application of a GA to PRISM

A GA was used to find and constrain the global solution for prism with a data set, then

a MCMC algorithm was used to perform the error analysis for this solution. The GA

was set to use both mutation and extinction operators with a population size of 5000.

The crossover rate was set at 100% but the GA also used eight crossover points. This

was due to the fact that when prism is modelling a starspot there are 10 parameters

that need to be optimised. During the encoding of the genotype each parameter would

contribute eight digits thus creating an 80-digit string. Using a single crossover point

would therefore not produce an efficient exploration of the parameter space. When a

pair of parents had been selected eight random numbers were generated ranging from

0 to 79 representing which digits were the crossover points in the genotype string.

A tournament selection process was used and was proportional to the variance

in the population. For a large variance, 5% of the population was randomly selected
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and the two fittest individuals in the selection went on to become parents. When the

variance was low only two members were randomly selected to become parents. This

was done to allow the GA to rapidly converge on the global best fit and to increase the

GA’s ability to explore the local parameter space and increase the likelihood of finding

the best fit. Two types of mutation were also used, creep and jump mutations. Jump

mutations were set at 0.1%, while creep mutations were set at 0.5%.

Multiple runs of the GA were completed. Half of the runs used mutation while the

other half used an extinction operator. When the variance in the population fell below

1% the population was killed off and a new randomly generated population was created.

The parameter values of the extinct population were then recorded for comparison with

both other extinct populations and the final population to help determine the global

solution.

Once the global solution had been found an MCMC analysis was conducted with

a starting location randomly selected within the parameter range of the population

containing the best-fitting individual. The final best-fitting model and the param-

eter uncertainties was then taken from the MCMC results. In essence the GA was

used to reduce a large parameter search space filled with local solutions, into a small

manageable search space containing only the global solution.

Forward modelling tests of a simulated transit containing a starspot anomaly

generated by prism were conducted. In each case the GA recovered the initial model

parameters within the 1-σ confidence limit. The same tests were also conducted using

gemc and further details can be found in Section 2.8.3.4.

The GA was tested on fitting prism to three sets of transit data of WASP-

19, two of which contained a starspot anomaly (see Chapter 3). The fitness of each

solution was measured using χ2
ν . A good fit should have a χ2

ν value close to unity

(Taylor, 1997; Southworth et al., 2007a), but the best-fitting solutions from both the

GA and the MCMC had χ2
ν values close to seven. The reason for such a large χ2

ν

was not due to bad fits of the model, but was due to underestimated observational

error bars in the data (Taylor, 1997; Bruntt et al., 2006; Southworth et al., 2007a).

This underestimation is caused by small systematic contributions to the photometric
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errors from the observations. When the root mean squared (rms) scatters between the

best-fitting model and the data using the GA and MCMC were compared to the rms

residuals from jktebop they were the same. Also, the χ2
ν for the best fit from jktebop

was also close to seven. This indicated that it was indeed due to underestimated

observational error bars in the data and not the model or the optimisation algorithms

used. To solve this the errors in the data were multiplied by
√

χ2
ν to give a χ2

ν value

of one for the best fit.

This allowed a reduction in the computation time from seven to five days com-

pared to solely using an MCMC algorithm. Dissatisfied with the fact that two different

optimisation algorithms had to be used, one to locate the global solution and the other

to obtain the parameter uncertainties, a new optimisation algorithm was developed,

that combined the global optimisation power of the GA but was also able to perform

Bayesian statistics on the solutions.

2.8.3 A New Hybrid: Genetic Evolutionary Markov Chains

In an attempt to produce an optimisation algorithm which combined the global opti-

misation power of a GA and the Bayesian statistical analysis of MCMC it was decided

to create an algorithm called Genetic Evolutionary Markov Chains (gemc). gemc is

based on DE-MC, an idea put forward by Ter Braak (2006). gemc begins by ran-

domly generating parameters for N chains, within the user-defined parameter space,

and then simultaneously evolves the chains for X generations. At each generation the

chains are evaluated for their fitness. During the ‘burn in’ phase the perturbation of

each chain is determined by the best-fitting chain in the population. Once the ‘burn in’

has completed the chains cease communication and begin independent MCMC runs.

2.8.3.1 DE-MC

DE-MC (Ter Braak, 2006) combines the GA Differential Evolution (DE) (Price &

Storn, 1997; Storn & Price, 1997) with MCMC. The combination of DE and MCMC is
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used to solve a problem in MCMC by determining the orientation and the scale of the

step sizes. Adaptive directional sampling in MCMC does solve the orientation problem,

but not the scale (Ter Braak, 2006). DE-MC works by creating a population of MCMC

chains whose starting points are initialised from overdispersed states and instead of

letting the chains run independently and checking for convergence (Gelman & Rubin,

1992) they are instead run in parallel and learn from each other. The perturbation steps

taken by each chain is given by Equation 2.19. Assuming a d dimensional parameter

space and using N chains then the population X is a N × d matrix, with the chains

labelled x1,x2, ...xN . Therefore the proposal vector xp is generated by:

xp = xi + γ (xR1 − xR2) + e (2.19)

where xi is the current i
th chain, γ is the scale factor calculated from γ = 2.4/

√
2d, xR1

and xR2 are two randomly selected chains and e is drawn from a symmetric distribution

with a small variance compared to that of the target. xp is then tested for fitness and

if accepted it is used as the next step in xi.

For example, in a two dimensional parameter space (d = 2) there are 40 chains

(N = 40) (see Figure 2.17). At each step, for each chain, a proposal vector is generated.

A difference vector between two randomly drawn chains is calculated (xR1 − xR2) and

multiplied by γ (in this case γ = 1.2). This new vector is then added to the current

step in the chain and is evaluated for its fitness. In the example given e is equal to zero

but Ter Braak (2006) gives e ∼ N (0, b)d. Therefore the addition of e to the proposal

vector adds a different random number to each element of the proposal vector. From

this method the proposal vector contains information on both the orientation and on

the scale.

After the ‘burn in’ stage of a MCMC chain, determining the required step size

to allow a 20-25% acceptance rate can be difficult. For a transit lightcurve altering

i by 0.05% should only cause a small increase in χ2 but a 0.05% alteration in T0

could cause a large increase in χ2. Using DE-MC can solve this problem. Because the

chains are clustered around the global solution after the ‘burn in’, then the difference
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Figure 2.17: Differential evolution in two dimensions, with 40 population members
(Ter Braak, 2006). The proposal vector xp to update the ith member is generated from
xi and the randomly drawn members xR1 and xR2. The dashed arrow represents the
proposal vector if xR1 and xR2 had been selected in opposite order.

vector between two randomly selected chains will contain the individual scale for each

parameter (i.e. 0.05% for i and 0.00001% for T0). Ter Braak (2006) argues that DE-

MC is a single N -chain that is simply a single random walk Markov Chain in a N × d

dimensional space. The use of DE-MC in the exoplanet community is increasing. At

present DE-MC is being used to fit models of transiting circumbinary planets which

contain over 30 parameters (e.g. Doyle et al., 2011; Orosz et al., 2012; Welsh et al.,

2012; Schwamb et al., 2013).

2.8.3.2 Conceptual Workings of GEMC

It was decided to try and improve upon DE-MC by increasing the efficiency in which

the algorithm converged on the global solution. This new algorithm called gemc uses

multiple Markov Chains but the generation of the proposal vector was altered. Instead

of randomly selecting two different chains, the chains used in generating the difference

vector are the current best-fitting chain and the chain undergoing the perturbation.
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This causes the direction of the proposal vector to be biased towards the current best

fit. When the population is being evaluated the parameters of the fittest member

undergo up to a ±1% perturbation and its fitness is then re-evaluated. If the fitness

has improved it is accepted but if the fitness has deteriorated it is accepted based on a

Gaussian probability distribution (see Equation 2.17). The next step is to then evolve

the other chains. This is accomplished in a similar way as a GA, in that the chain

parameters are modified by incorporating the parameters of another chain. However,

unlike a GA where a member is picked by a weighted random number and then the

digits of each parameter are crossed over with the digits from a different member,

gemc directly perturbs the parameters of each chain in a vector towards the best-

fitting chain. The size of this perturbation is between zero and twice the distance to

the best-fitting chain, allowing the chain to not only move towards but also to overshoot

the position of the best-fitting chain. While DE-MC multiplies the difference vector

by a pre-determined γ value and adds a random number, gemc just multiplies the

parameters in the difference vector by a random number.

An example would be a two-dimensional function f(x, y) (see Figure 2.18). The

difference vector between a given chain and the best-fitting chain in this case is

(∆x,∆y). This difference is then multiplied by a random scalar γ for each param-

eter, where γ is in the interval [0,2], and then added to the given chain’s parameters

(x0, y0) to form the new potential solution f(x1, y1).

x1 = x0 + γx∆x (2.20)

y1 = y0 + γy∆y (2.21)

When γ = 0 the parameter is not perturbed, γ = 1 the parameter equals the current

best-fitting value and when γ = 2 the parameter is perturbed to the opposite position

of the current best-fitting value. This allows the potential solution to travel large

distances across the parameter space unimpeded by local peaks. After the parameters

have been perturbed the chain is then re-evaluated and is selected using the same

method as the best-fitting chain. Figure 2.18 shows an example of two chains operating
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Figure 2.18: Potential perturbation space for a 2D function using gemc. Here just two
chains are shown, the best-fitting chain (xbest, ybest) and the chain whose proposal vector
is being generated (x0, y0). The best-fitting chain lies at the centre of the potential
perturbation space (blue box). Depending on the size of γx and γy in the interval [0,2]
the solution (x0, y0) can be perturbed to any position within the blue box.

in a two-dimensional space. The required number of chains needed depends on both

the size and the number of dimensions of the parameter space (see Section 2.8.3.3), but

potentially there can be hundreds if not thousands of chains operating and covering a

huge area of the parameter space in a few generations.

gemc runs in two stages. The first stage, called the ‘burn in’, is used to find the

optimal solution to the data using the above method. After this the second stage starts

in which each chain undertakes an independent MCMC run. The starting points for

each MCMC chain lie close but not exactly at the optimal solution. In essence what

we have is the same outcome from running a GA to find the best-fitting solution and

to use this to tightly constrain the starting parameter range of an MCMC run.
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2.8.3.3 Performance of GEMC

To test the performance of gemc it was decided to use the same function (Equa-

tion 2.18) that Charbonneau (1995) used to test the GA pikaia. Charbonneau (1995)

showed that it took pikaia with a population of 100 solutions up to 20 generations

to find the global maximum peak but even after 100 generations it still had not found

the global maximum point, confirming the GA inability to find best solutions with

precision.

Figure 2.19 is an output from a run using gemc on the function (Equation 2.18)

with n = 9 creating 80 local solutions. We can clearly see that gemc, using a popula-

tion of only 40 chains, has found the global maximum peak within 10 generations and

then went on to find the global maximum point within 20 generations. We can also

see from Fig. 2.20 the power of gemc. The global maximum peak was actually found

at the fifth generation and all solutions were very close to the global maximum point

by the twentieth generation. This performance indicates that the required burn-in for

gemc is extremely short and as such greatly reduces the computing time required to

find the global solution.

Using the results generated from the gemc run in Figures 2.19 and 2.20 we can

see that it only took 200 function iterations for gemc to find the global maximum

peak, while pikaia took 2000 function iterations to do the same (see Section 2.8.2.2).

This equates to a 10-fold increase in efficiency. It also only took gemc less than 400

function iterations to find the optimal solution and less than 1200 function iterations

for full convergence on the optimal solution.

Due to the nature of gemc the choice of the number of chains to use is important,

just like a GA, if the population size is too small then the probability of finding the

global solution drops. Conversely if the population size is too large then the parameter

space is saturated and results in wasted processing time. To demonstrate this, gemc

was used with the function (Equation 2.18) and success rates were calculated. A value

for N was selected and an initial number of chains was selected. gemc was then run

1000 times and the success at finding the central peak was measured. After this the
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Figure 2.19: gemc results for N = 40 chains and for X = 100 generations. The global
maximum peak and global maximum point have been discovered by the 10th and 20th
generations, respectively. By the 40th generation all 40 chains have found the global
maximum point.
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Figure 2.20: The evolution of the fittest chain (solid line) and the mean fitness chain
(dashed line) from each generation. The maximum peak was found in five generations.
The fitness is measured as 1− f(x, y).

number of chains that were used was increased and the test was repeated. This was

done for a range of different chain numbers each for three different values of N . The

results can be found in Table 2.1

These results indicate that the number of chains required for a success rate of

100% at finding the optimal solution depends on the complexity of the parameter space

in terms of the number of local solutions. For these tests gemc was modified to only

accept a new proposal solution if the fitness was improved. As a consequence, when

the population begins to cluster around a local solution the chances that it will evolve

to find the global solution is almost non-existent. Allowing a certain probability of

accepting a degraded fitness would increase the success rate for gemc in these tests by

increasing the number of allowed generations. This behaviour is evident in optimising

transit data (see Section 2.8.3.4) where if the population gets stuck at a local solution
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Table 2.1: gemc success rates for increasing number of chains and values of N .
Number of Chains 5 10 20 30 40 50 60 100 200 500

N = 5
Success Rate 2.9% 49.9% 84.8% 93.1% 97.7% 99.1% 99.6% 100.0% 100.0% 100.0%

N = 9
Success Rate 2.0% 32.3% 58.5% 77.0% 86.3% 93.1% 95.9% 99.2% 100.0% 100.0%

N = 15
Success Rate 0.4% 14.1% 41.5% 59.5% 71.8% 81.5% 86.4% 97.2% 99.9% 100.0%

it will eventually move away towards the global solution if enough generations are

allowed to pass. From the results of these tests it was decided that when gemc was

used to optimise transit data a large number of chains would be used (over 1000). This

was decided because prism uses 10 parameters and there would be an untold number

of potential solutions within the parameter space. While this may seem like a large

number of chains it is still five times smaller than the population sizes used in the GA

discussed in Section 2.8.2.4.

By testing the performance of gemc against the performance of pikaia it was

possible to determine the effectiveness of gemc as a global optimiser. The results

are astonishing with a 10-fold increase in the efficiency at finding the central peak.

Coupled with the fact that gemc was also able to find the exact location of the central

point which pikaia was not able to accomplish, this suggests that gemc is capable of

optimising prism with transit data at a more efficient rate. Also, because after the

‘burn in’ stage the chains become independent, gemc solves the problem of needing

two different optimisation algorithms by being able to perform Bayesian statistics.

2.8.3.4 Application of GEMC to PRISM

After testing gemc on the function used by pikaia, the next step was to use gemc with

prism to model simulated transit data containing a starspot anomaly. For this test

prism was used to create multiple simulated transits with a range of parameters. Once

this was done noise was then added to the lightcurves so that the rms scatter between

the original simulated lightcurves and the lightcurves with added noise was ≈ 500 ppm.
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This was to approximate a realistic level of noise found in transit lightcurves observed

using the defocused photometry technique. The error bars were then assigned to each

data point to give the original noise-free models a χ2
ν = 1.

Once a simulated transit lightcurve had been created, gemc and prism was then

used in an attempt to recover the initial input parameters. Table 2.2 shows the results

for one of the tests, while Figure 2.21 shows the simulated transit lightcurve together

with the original and recovered models for the same test.

Table 2.2: Original & recovered parameters from a simulated transit lightcurve, plus the
interval within which the best fit was searched for using gemc.

Parameter Original value Search interval Recovered value
Radius ratio 0.15 0.05 to 0.30 0.1496 ± 0.0013
Sum of fractional radii 0.25 0.10 to 0.50 0.2486 ± 0.0024
Linear LD coefficient 0.3 0.0 to 1.0 0.291 ± 0.104
Quadratic LD coefficient 0.2 0.0 to 1.0 0.192 ± 0.042
Inclination (degrees) 85.0 70.0 to 90.0 85.16 ± 0.46
Longitude of spot (degrees) 30.0 -90 to +90 30.50 ± 1.17
Co-latitude of spot (degrees) 65.0 0.0 to 90.0 64.51 ± 5.83
Spot angular radius (degrees) 12.0 0.0 to 30.0 12.73 ± 2.00
Spot contrast 0.8 0.0 to 1.0 0.797 ± 0.057

From studying both Table 2.2 and Figure 2.21, it can seen that the recovered

parameter values agree with the original values within their 1-σ uncertainties. For

some of the parameters the difference is as small as 0.08-σ. Interestingly the rms

scatter of the recovered model was found to be 499 ppm while the rms scatter of the

original model is at 511 ppm. This showed that gemc not only explored the large

parameter search space but it also scanned the local area around the global solution

to find the best possible fit9 to the simulated data. This result is expected and a

testament to an optimisation algorithm designed to find the lowest achievable χ2
ν (the

recovered solution in this case had a χ2
ν = 0.94) in a given parameter space. Similar

results were found on all the simulation tests and therefore help to conclude that both

9This best-fit is in fact a phantom solution generated by the addition of noise.
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Figure 2.21: Recovered and original models to simulated transit data created by prism
and recovered by gemc and prism. The residuals are shown at the bottom.

gemc and prism are capable of accurately and precisely determining the properties of

transit lightcurves.

After testing gemc on the simulated transits the next step was to use gemc and

prism to model real transit data. This was originally done on the spot-free WASP-19

transit data (Chapter 3) and then on the WASP-19 transit data containing starspot

anomalies. Figure 2.22 shows an example of a best-fitting prism model to a set of

WASP-19 data (see Section 3.4).

When gemc was used in conjunction with prism to find the best-fitting solution

to the WASP-19 data set, the computational time reduced dramatically, from five days

to 14 hours using a large parameter range (see Section 3.3). When the parameter range
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Figure 2.22: Best-fitting model and transit data for WASP-19. The residuals are shown
at the bottom. The model (prism) was optimised by using gemc. The data and model
was later used by Mancini et al. (2013c).

was set to the same as used by the GA or the MCMC, gemc was able to produce the

best-fitting solution and similar uncertainties in the fitted parameters as the MCMC

within 10 hours.

In Section 2.8.2.4 it was mentioned that the error bars in the WASP-19 data were

scaled to allow the best fit to the data to have χ2
ν = 1. This was done as it was assumed

that both the MCMC and the GA algorithms had found the best fits to the three data

sets. Upon running gemc on the first WASP-19 data set, χ2
ν was found to be 0.478

for the best-fitting model. This meant that gemc was able to find a new solution for

which both MCMC and the GA could not find. Similar χ2
ν values were also found for

the other WASP-19 data sets indicating the power of gemc’s ability to converge on

the optimal solution.

It is possible to measure the success of gemc from these tests and applications.
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Apart from being able to find the global maximum peak in the pikaia test function

10 times quicker than pikaia, gemc is also able to find the global solution to transit

data 12 times faster than using a GA. Coupled with the fact that gemc was able to

find a new solution with twice the fitness of the best-fitting solution found by the GA

or MCMC, this shows just how well suited gemc is at finding the global solution in a

large parameter space filled with many local solutions fast and efficiently.
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3 The WASP-19 Planetary System

This Chapter describes the WASP-19 planetary system and the collection and analysis

of three transit lightcurves. Section 3.1 begins with an overview of WASP-19 from the

discovery of WASP-19 b to recent observations of the planet’s transmission spectrum.

Section 3.2 describes the data collection and reduction for three transits of WASP-

19 using the ESO NTT. Then, in Section 3.3, the data analysis is presented along

with both the photometric and the physical results. The photometric results of the

starspots are also given together with the latitudinal rotation period of WASP-19 and

the system’s sky-projected spin orbit alignment (λ) value. Section 3.4 explains my work

on a set of multiband photometry collected from the 2.2m ESO-MPG telescope using

the GROND instrument. These data contained a starspot anomaly and my analysis has

since been published in Mancini et al. (2013c). Section 3.5 then ends the chapter with

a brief discussion and conclusions. Sections 3.2 and 3.3 were published as first author

in Monthly Notices of the Royal Astronomical Society and as a poster at the 2012

IAU general Assembly (see AppendixA.1 for publication details). While Section 3.4

was published as co-author in Monthly Notices of the Royal Astronomical Society (see

AppendixA.2 for publication details).

3.1 Overview of the WASP-19 Planetary System

The WASP-19 b planet was discovered by Hebb et al. (2010) using photometry from the

WASP-South telescope (see Figure 3.1). Subsequent photometric followup observations

(Hebb et al., 2010) were done using the 2m Faulkes Telescope South (FTS) and RV

followup observations using the CORALIE spectrograph (Baranne et al., 1996; Queloz

et al., 2000) on the 1.2m Euler telescope. At the time of discovery WASP-19 b had

the shortest orbital period known, 0.78883999 days or 19 hours (Hebb et al., 2010).

Through the analysis of the data they determined the mass and radius of WASP-19 b to

be 1.15± 0.08MJup and 1.31± 0.06RJup, respectively. From the spectroscopic analysis
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Figure 3.1: WASP-South discovery photometry of WASP-19 b (Hebb et al., 2010). The
data are phase folded using T0 = 54775.3372 and a period of P = 0.78883999 days.

they determined that the host star has a slightly super-solar metallicity of [M/H] =

0.1± 0.1 dex and is a G-type dwarf with an effective temperature of 5500± 100K.

Hebb et al. (2010) also searched for variability in the WASP-South data due to

starspots rotating on and off the stellar disc. This variability can allow a determination

of the stellar rotation period. They found a sinusoidal signal in the data corresponding

to a rotation period of Prot = 10.5±0.2 days (see Figure 3.2). They removed the transit

from the WASP-South lightcurve data and phase folded the data at multiple periods.

Figure 3.3 shows the periodogram of normalised ∆χ2 and indicates a strong signal at

Prot = 10.5 days with a False Alarm Probability (FAP) of 10−7.

When a planet is occulted by its host star it is possible to measure the planet’s

brightness temperature (e.g. Charbonneau et al., 2005; Deming et al., 2005). Anderson

et al. (2010a) measured a H-band occultation of WASP-19 b using the HAWK-I on the

VLT (see Figure 3.4). They found WASP-19 b to have a H-band brightness temperature

of TH = 2580 ± 125K. The analysis also indicated that WASP-19 b followed a non-

circular orbit at the 2.6-σ confidence level.

Gibson et al. (2010) also performed occultation photometry on WASP-19 using

the HAWK-I instrument on the VLT. They measured a K-band brightness temperature
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Figure 3.2: WASP-South lightcurve data from 2007 of WASP-19 (Hebb et al., 2010).
The data are phase folded on the rotation period detected in the sine fitting (red sine
wave) Prot = 10.5 days.

Figure 3.3: Periodogram of ∆χ2/χ2
best versus frequency, resulting from fitting a sine

wave to the WASP-South lightcurve data from 2007 for WASP-19 (Hebb et al., 2010).
The highest peak has a FAP of 10−7 and occurs at Prot = 10.5 days. This indicates the
stellar rotation period for WASP-19.
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Figure 3.4: H-band occultation of WASP-19 b (Anderson et al., 2010a). This data was
collected using HAWK-I on the VLT. The top panel shows the data and the best fit
model, while the bottom panel shows the data binned every ten data points.

of TK = 2540± 180K, and showed that this temperature is higher than the calculated

equilibrium temperature that could indicate the planet’s inability to redistribute heat to

the night side, consistent with irradiated planet models. Gibson et al. (2010) measured

the central transit time and, coupled with the ephemeris from Hebb et al. (2010),

concluded that the planet’s orbit is circular.

Hellier et al. (2011) performed Rossiter-McLaughlin measurements on spectro-
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Figure 3.5: RV and RM measurements of WASP-19 b (Hellier et al., 2011). The top
panel shows RV data and the best-fitting model. The middle panel shows the RV data
and the best-fitting model for the transit region. The bottom panel shows transit data
and the best-fitting model.
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scopic data collected during a transit of WASP-19 b using the HARPS spectrograph

on the ESO 3.6m telescope and the CORALIE spectrograph on the 1.2m Euler tele-

scope (see Figure 3.5). They deduced that the orbit is aligned, with the sky-projected

spin orbit alignment being λ = 4.6± 5.2◦. Coupled with a measurement of v sin I and

the stellar rotation period from Hebb et al. (2010) they conclude that the true spin

orbit alignment is ψ < 20◦. To help improve the RM measurements they included a

transit of WASP-19 in their analysis (see Figure 3.5). This transit was observed with

the ESO NTT and the transit data are also used in the analysis of this Chapter (see

Section 3.2). Albrecht et al. (2012) also performed RM measurements of WASP-19 and

found λ = 15 ± 11◦ coupled with v sin I = 4.4 ± 0.9 km s−1. They attributed the high

uncertainty in λ to the low SNR in the data.

Anderson et al. (2013) used the Spitzer satellite to detect the thermal emission

of WASP-19 b by observing two occultations of WASP-19 b by its host star. The

emission was observed in the 3.6, 4.5, 5.8 and 8.0µm passbands. They then constructed

a spectral energy distribution of the planet’s dayside atmosphere. They concluded

that the atmosphere of WASP-19 b lacks a strong temperature inversion. They also

measured the CaII H + K emissions lines and determined that the WASP-19 star is

magnetically active. This would help explain the difficulty in obtaining a high SNR

for the RM observation from Albrecht et al. (2012). This also improves the likelihood

of detecting starspot anomalies in transit lightcurves of WASP-19.

An occultation of WASP-19 b by its host star has also been observed in the z-

band (Burton et al., 2012). The ultracam instrument on the ESO NTT was used to

obtain the occultation data. They measured an occultation depth of 0.088 ± 0.019%

and found the centre of the occultation occurred at Tocc = 2455578.7676HJD. Burton

et al. (2012) used the measurement of Tocc to determine that WASP-19 b follows a

circular orbit.

Doyle et al. (2013) performed a detailed spectral analysis of 11 WASP planet host

stars. They used high SNR spectra from the HARPS spectrograph. They determined

the mass and radius of WASP-19 to be 1.01±0.08M⊙ and 1.07±0.19R⊙, respectively.

They also found a sky-projected rotational velocity of v sin I = 5.1± 0.3 km s−1 which
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is in agreement with previous measurements (e.g. Hellier et al., 2011; Albrecht et al.,

2012).

Since the completion of the analysis of the WASP-19 transit data (see Section 3.3)

there have been further publications on the WASP-19 planetary system. This also

includes transit data from multiband transit photometry containing a starspot anomaly

(see Section 3.4).

Lendl et al. (2013) obtained 14 transit lightcurves of WASP-19 observed in the r’-

Gunn, I-Cousins and z’-Gunn filters (Figure 3.6), coupled with 10 occultations in the z’-

Gunn filter. They were able to refine the planet’s mass and radius to 1.165±0.068MJup

and 1.376± 0.046RJup, respectively. They also determined a value for the eccentricity

of the orbit with e = 0.0077+0.0068
−0.0032 which is compatible with a circular orbit.

Abe et al. (2013) used the ASTEP (Antarctica Search for Transiting ExoPlanets)

400 telescope in Antarctica to observe both transits and occultations of WASP-19 for

24 nights. They determined the stellar rotation period of the star from rotational

modulation to be Prot = 10.7±0.5 days, which agrees with the measurement from (Hebb

et al., 2010). From the occultation data they found a K -band brightness temperature

of TK = 2690+150
−220K agreeing with previous brightness temperature observations. They

concluded that the brightness temperature is indicative of either that WASP-19 b has

little thermal redistribution to the night side or that the planet is directly reflecting

the starlight.

WASP-19 has also been observed using the Hubble Space Telescope (HST) (Huit-

son et al., 2013). They measured the transmission spectrum of WASP-19 b using low

resolution spectroscopy with the Space Telescope Imaging Spectrograph (STIS). Huit-

son et al. (2013) combined their data with transits in the near-IR archival data from

the HST Wide Field Camera 3 (WFC3). Due to WASP-19 being active they corrected

the lightcurves for starspots by using ground-based activity monitoring. They com-

pared their results to transmission spectrum models from Burrows et al. (2010), Howe

& Burrows (2012) and Fortney et al. (2008, 2010). Their results showed a lack of TiO

in the atmosphere of WASP-19 b but they found strong H2O absorption features in the

WFC3 transmission spectrum (see Figure 3.7).
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Figure 3.6: 14 transits of WASP-19 b together with their models and residuals (Lendl
et al., 2013). The data are binned into two minute intervals and the instrument and
filter used to observe the transit is displayed.
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Figure 3.7: Transmission spectrum of WASP-19 b between 1.1 and 1.7µm (Huitson
et al., 2013). WFC3 data (black data points) combined with two models (green Burrows
et al., 2010; Howe & Burrows, 2012) and (blue Fortney et al., 2008, 2010) for water
opacities but no TiO opacities.

3.1.1 WASP-19 and Starspots

After observing three light curves of WASP-19 with the aim of obtaining accurate

physical properties, it was discovered that two of the datasets contained a starspot

anomaly. With a precisely known position of the starspot at two close but distinct

times it was possible to calculate the obliquity of the system and compare this to the

values found from measurement of the Rossiter-McLaughlin effect (Hellier et al., 2011;

Albrecht et al., 2012) and check if WASP-19 follows the theory put forward by Winn

et al. (2010a) that ‘cool’ systems will have low obliquities (see also Triaud 2011a). This

would also allow the rotation period of the star to be measured and compared to the

value found by photometric modulation (Hebb et al., 2010).
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3.2 Observations and Data Reduction

Three transits of WASP-19 were observed in February 2010 by Dr Claus Tappert using

the 3.6m New Technology Telescope (NTT) operated at ESO La Silla, Chile. The

instrument used was EFOSC2, operated in imaging mode and with a Gunn r filter (ESO

filter #786). In this setup the CCD covered a field of view of (4.1′)2 with a pixel scale

of 0.12′′ pixel−1. No binning or windowing was used, resulting in a dead time between

consecutive images of 83 s. The exposure times were 60–90 s. The Moon was bright and

relatively close to the target star. The amount of defocus applied caused the resulting

PSFs to have a diameter of 78 pixels for the night of 2010/02/24, 88 pixels for the night

of 2010/02/25 and 80 pixels for the night of 2010/02/28. The pointing of the telescope

was adjusted to allow five good comparison stars to be observed simultaneously with

WASP-19 itself (see Figure 2.1). The telescope autoguiding was maintained through

all observations. An observing log is given in Table 3.1.

Table 3.1: Log of the observations presented for WASP-19. Nobs is the number of
observations.

Date 2010/02/24 2010/02/25 2010/02/28
Start time (UT) 06:18 00:44 04:01
End time (UT) 09:34 04:26 07:41
Nobs 68 76 74
Exposure time (s) 90 60–90 90
Filter Gunn r Gunn r Gunn r
Airmass 1.14 → 2.30 1.40 → 1.04 1.04 → 1.42
Fractional Moon illumination 0.742 0.818 0.996
Moon distance (◦) 85.5 78.1 53.0
Aperture sizes (pixel) 42, 60, 100 52, 70, 90 44, 64, 88
Scatter (mmag) 0.573 0.464 0.499

These observations were experimental for two reasons. First, the NTT is an alt-az

telescope fitted with an image derotator. This means that the path of light from each

star through the telescope is continually changing, raising the possibility of correlated
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noise due to any optical imperfections. Second, the NTT is fitted with an actively

controlled thin primary mirror designed to provide the best possible focus for normal

observing strategies. Defocussing such a telescope might lead to a point spread function

(PSF) which is variable in time, and thus correlated noise via flat-fielding errors.

In practise it was found that, whilst careful attention had to be paid to the

amount of defocussing, the NTT is perfectly capable of producing high-quality light

curves whilst a long way out of focus due to stable symmetric PSFs. The observations

that used this approach are not plagued by correlated noise. This situation is similar

to that of Winn et al. (2009), who successfully observed WASP-4 using the Magellan

Baade telescope. By contrast, Gillon et al. (2009b) encountered serious problems in

obtaining photometry of WASP-4 and WASP-5 with the ESO Very Large Telescope.

This problem was attributed to the need to turn off the active optics system in order

to achieve strong defocussing, and our results support the contention that this is not

a general problem with alt-az telescopes or active-optics systems.

The data were reduced using the data reduction pipeline discussed in Section 2.5.1

and in an identical fashion to Southworth et al. (2009a,b,c, 2010). In short, aperture

photometry using an idl implementation of daophot (Stetson, 1987) was used and

the aperture sizes were adjusted to obtain the best results (see Table 3.1). A first order

polynomial was then fitted to the outside-transit data whilst simultaneously optimising

the weights of the comparison stars. The resulting data have scatters ranging from

0.464 to 0.573 mmag per point versus a transit fit using prism. The timescale from

the fits files was converted to HJD/UTC.

3.3 Data Analysis

The data were modelled using prism and gemc. To do this a large parameter search

space was selected to allow the global best fit solution to be found. As discussed in

Section 2.8.3.4, the ability of gemc to find the global minimum in a short amount of

computing time meant that it was possible to search a large area of the parameter
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space to avoid the possibility of missing the best solution. The parameter search range

used in analysing the WASP-19 datasets are given in Tables 3.2, 3.3 and 3.4.

Table 3.2: Derived photometric parameters from the lightcurve taken on 2010/02/24, plus
the interval within which the best fit was searched for using gemc.

Parameter Symbol Search interval 2010/02/24
Radius ratio rp/rs 0.05 to 0.30 0.1435 ± 0.0014
Sum of fractional radii rs + rp 0.10 to 0.50 0.3298 ± 0.0041
Linear LD coefficient u1 0.0 to 1.0 0.314 ± 0.095
Quadratic LD coefficient u2 0.0 to 1.0 0.192 ± 0.023
Inclination (degrees) i 70.0 to 90.0 78.97 ± 0.39
Transit epoch (HJD/UTC) T0 ±0.5 in phase 2455251.79628 ± 0.00014
Longitude of spot (degrees) θ -90 to +90 -9.54 ± 0.15
Co-latitude of spot (degrees) φ 0.0 to 90.0 64.93 ± 0.32
Spot angular radius (degrees) rspot 0.0 to 30.0 15.01 ± 0.21
Spot contrast ρspot 0.0 to 1.0 0.777 ± 0.011

Table 3.3: Derived photometric parameters from the lightcurve taken on 2010/02/25, plus
the interval within which the best fit was searched for using gemc.

Parameter Symbol Search interval 2010/02/25
Radius ratio rp/rs 0.05 to 0.30 0.1417 ± 0.0013
Sum of fractional radii rs + rp 0.10 to 0.50 0.3300 ± 0.0025
Linear LD coefficient u1 0.0 to 1.0 0.501 ± 0.083
Quadratic LD coefficient u2 0.0 to 1.0 0.222 ± 0.019
Inclination (degrees) i 70.0 to 90.0 78.92 ± 0.37
Transit epoch (HJD/UTC) T0 ±0.5 in phase 2455252.58506 ± 0.00010
Longitude of spot (degrees) θ -90 to +90 14.98 ± 0.13
Co-latitude of spot (degrees) φ 0.0 to 90.0 65.37 ± 0.21
Spot angular radius (degrees) rspot 0.0 to 30.0 15.18 ± 0.15
Spot contrast ρspot 0.0 to 1.0 0.760 ± 0.017

First, the three datasets of WASP-19 were modelled separately using prism, find-

ing that the modelled parameters were within 1-σ of each other (Table 3.2, 3.3 and 3.4).

The three datasets were then modelled simultaneously. The ensuing parameters agreed

with the individual results found previously, but it was not possible to get as good a fit

to the data. The reason for this seems to be the LD coefficients, which are in compar-

atively poor agreement when the three light curves are fitted individually. The scatter
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Table 3.4: Derived photometric parameters from the lightcurve taken on 2010/02/28, plus
the interval within which the best fit was searched for using gemc.

Parameter Symbol Search interval 2010/02/28
Radius ratio rp/rs 0.05 to 0.30 0.1430 ± 0.0008
Sum of fractional radii rs + rp 0.10 to 0.50 0.3311 ± 0.0044
Linear LD coefficient u1 0.0 to 1.0 0.438 ± 0.077
Quadratic LD coefficient u2 0.0 to 1.0 0.226 ± 0.009
Inclination (degrees) i 70.0 to 90.0 78.91 ± 0.44
Transit epoch (HJD/UTC) T0 ±0.5 in phase 2455255.74045 ± 0.00012

around the weighted mean is χ2
ν = 2.2 for the linear coefficient and 1.9 for the quadratic

coefficient. This situation could be caused by the influence of the starspot on the LD

coefficients. Ballerini et al. (2012) found that starspots can affect LD coefficients by

up to 30% in the ultraviolet, with a weaker effect expected at redder wavelengths. If

we assume a 10% variation in the LD coefficients for the r-band data, the coefficients

move into 1-σ agreement between the datasets.

3.3.1 Photometric Results

Since the combined fit to the three datasets had significantly larger residuals than the

individual fits, the final results were based on the individual fits to the data. The

final photometric parameters for the WASP-19 system are given in Table 3.5 and are

weighted means plus 1-σ uncertainties of the results from the three individual fits.

Figure 3.8 compares the light curves to the best-fitting models, including the residuals.

The results from modelling the spot anomalies on the nights of 2010/02/24 and

2010/02/25 confirm that they are due to the same spot rotating around the surface

of the star, as the spot sizes and contrasts are in good agreement. Figure. 3.9 is a

representation of the stellar disc, the spot and the transit chord for the two nights of

observations.

From the positions of the starspot at the time of the transits on the nights of

2010/02/24 and 2010/02/25, it is possible to calculate the rotational period of the star

and the sky-projected spin orbit alignment of the system using simple geometry. The
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Figure 3.8: Transit light curves and the best-fitting models of WASP-19. The residuals
are displayed at the base of the figure.
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Figure 3.9: Representation of the stellar disc, starspot, transit chord and equator for
the two datasets of WASP-19, containing spot anomalies. The axis of stellar rotation
lies in the plane of the page and points upwards.

Table 3.5: Combined system and spot parameters for WASP-19. The system parame-
ters are the weighted means from all three data sets. The spot angular size and contrast
are the weighted mean from the two transits containing a starspot anomaly.

Parameter Symbol Value
Radius ratio rp/rs 0.1428 ± 0.0006
Sum of fractional radii rs + rp 0.3301 ± 0.0019
Linear LD coefficient u1 0.427 ± 0.049
Quadratic LD coefficient u2 0.222 ± 0.008
Inclination (degrees) i 78.94 ± 0.23
Spot angular radius (degrees) rspot 15.13 ± 0.12
Spot contrast ρspot 0.771 ± 0.010
Stellar rotation period (d) Prot 11.76 ± 0.09
Projected spin orbit alignment (degrees) λ 1.0 ± 1.2
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Table 3.6: Times of minimum light of WASP-19 and their residuals versus the ephemeris
derived in this work.

Time of minimum Cycle Residual Reference
(HJD/TDB − 2400000) no. (HJD)
54775.33757±0.00020 0.0 0.00004 1
55168.96839±0.00011 499.0 -0.00001 2
55183.16748±0.00007 517.0 -0.00003 3
55251.79657±0.00014 604.0 0.00003 4
55252.58544±0.00010 605.0 0.00005 4
55255.74077±0.00012 609.0 0.00003 4
55580.74238±0.00058 1021.0 -0.00020 5

References: (1) Hebb et al. (2010); (2) Albrecht et al. (2012); (3) Anderson et al.
(2013); (4) This work; (5) Dragomir et al. (2011).

spot has travelled 24.52◦ ± 0.28◦ in 1.015 ± 0.001 orbital periods, giving a rotational

period of Prot = 11.76± 0.09 d at a co-latitude of 65◦. Combining this with the stellar

radius (see Table 3.7), the latitudinal rotational velocity of the star was calculated to

be v(65◦) = 3.88± 0.15 km s−1. The positions of the spot finally yielded a sky-projected

spin orbit alignment of λ = 1.0◦ ± 1.2◦ for WASP-19.

The available times of mid-transit for WASP-19 were collected from the literature

(Hebb et al., 2010; Dragomir et al., 2011; Albrecht et al., 2012; Anderson et al., 2013).

All timings were converted to the HJD/TDB timescale and used to obtain a new orbital

ephemeris:

T0 = HJD/TDB 2 454 775.33754(18) + 0.78883942(33)×E

where E represents the cycle count with respect to the reference epoch and the brack-

eted quantities represent the uncertainty in the final digit of the preceding number.

Figure 3.10 and Table 3.6 show the residuals of these times against the ephemeris. Fig-

ure 3.10 shows no evidence for transit timing variations in the system.
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Figure 3.10: Residuals of the available times of mid-transit versus the orbital ephemeris
found in this work. The three timings from this work are the cluster of three points
around cycle number 600.

3.3.2 Physical Properties of the WASP-19 System

The work in this subsection was performed by Dr John Taylor and is included here

because it is an integral part of the analysis of WASP-19.

With the photometric properties of WASP-19 measured the physical characteris-

tics could be determined. The analysis followed the method of Southworth (2009),

which uses the parameters measured from the light curves and spectra, plus tab-

ulated predictions of theoretical models. The values of i, rp/rs and rs + rp were

adopted from Table 3.5 and coupled with the stellar properties of effective temper-

ature Teff = 5440± 60K (Maxted et al., 2011a), velocity amplitude Ks = 257± 3m s−1

(Hellier et al., 2011) and metal abundance [Fe/H] = 0.02± 0.09 (Hellier et al., 2011).

An initial value of the velocity amplitude of the planet, Kp, was used to calcu-

late the physical properties of the system using standard formulae and the physical

constants listed by Southworth (2011). The mass and [Fe/H] of the star were then

used to obtain the expected Teff and radius, by interpolation within a set of tabulated

predictions from stellar theoretical models. Kp was iteratively refined until the best

agreement was found between the observed and expected Teff , and the measured rs and

expected Rs

a
. This was performed for ages ranging from the zero-age to the terminal-age

main-sequence, in steps of 0.01Gyr. The overall best fit was found, yielding estimates

of the system parameters and the evolutionary age of the star.
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This procedure was performed separately using five different sets of stellar the-

oretical models (see Southworth, 2010), and the spread of values for each output pa-

rameter was used to assign a systematic error. Statistical errors were propagated using

a perturbation algorithm.

Table 3.7: Physical properties of the WASP-19 system. Both statistical and systematic
uncertainties are given. The first uncertainty is the statistical uncertainty and the
second is the systematic uncertainty.

Parameter Value
Stellar mass (M⊙) 0.904± 0.040 ± 0.021
Stellar radius ( R⊙) 1.004± 0.016 ± 0.008
Stellar surface gravity (cgs) 4.391± 0.008 ± 0.003
Stellar density ( ρ⊙) 0.893± 0.015
Planet mass (MJup) 1.114± 0.036 ± 0.017
Planet radius ( RJup) 1.395± 0.023 ± 0.011
Planet surface gravity (m s−2) 14.19± 0.26
Planet density ( ρJup) 0.384± 0.011 ± 0.003
Equilibrium temperature 2067± 23
Safronov number 0.02852±0.00057± 0.00023
Semimajor axis (AU) 0.01616±0.00024± 0.00013
Age (Gyr) 11.5 +2.7

−2.3
+0.7
−1.5

The final results of this process are in reasonable agreement with themselves

and with published results for WASP-19. The final physical properties are given in

Table 3.7 and incorporate separate statistical and systematic errorbars for those pa-

rameters which depend on the theoretical models. The final statistical errorbar for

each parameter is the largest of the individual ones from the solutions using each of

the five different stellar models. The systematic errorbar is the largest difference be-

tween the mean and the individual values of the parameter from the five solutions.

One point to note is that the inferred age of the star is rather large, particularly given

its rotation period and activity level. The age is governed primarily by the input Teff

and [Fe/H], so a check of these spectroscopic parameters would be useful.
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3.4 Multiband Defocused Photometry

WASP-19 was observed using the Gamma Ray burst Optical and Near-infrared Detec-

tor (GROND) instrument on the ESO-MPG 2.2m telescope (Mancini et al., 2013c).

From this a transit was observed simultaneously in four optical bands (similar to Sloan

g’, r’, i’ and z’) and three near-infrared (J, H, K ) passbands (Greiner et al., 2008).

The optical transit data showed an anomaly typical in amplitude to that of a starspot

(see Figure 3.11). The amplitude of the anomaly reduces with increasing wavelength,

which would be expected for a dark spot with a cooler temperature compared to that

of the surrounding photosphere. The spot anomaly was not visible in the NIR transits

and as such the NIR transit data were modelled using jktebop.

The optical transit data allows for a rare opportunity to view a starspot simul-

taneously in four different passbands. It was mentioned in Section 2.7.3 that there is a

degeneracy between the size and contrast of a starspot in a transit lightcurve. Because

a dark starspot will appear darker in the ultraviolet compared to the infrared, then

Figure 3.11: Superimposed optical light curves of WASP-19 obtained using GROND
(Mancini et al., 2013c). The starspot anomaly can be seen approximately at the transit
midpoint.
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viewing a starspot in multiple wavelengths will allow the degeneracy to be broken by

obtaining different contrast values at different wavelengths.

As a consequence it was tasked to prism and gemc to model and fit the op-

tical GROND data. prism was first modified to allow the optical data to be fitted

simultaneously. This, though, did not produce good fits. Upon examining the individ-

ual lightcurves it was seen that the spot position in the different bands was not well

constrained due to the noise in the data.

To model the starspot it was necessary to determine the common value for the

spot position (θ and φ) from all four transits. The first step was to combine all four

transits into a single transit. This was done by calculating the mean of each corre-

sponding data point. The new lightcurve was then modelled and fitted and common

values were determined: θ = 3.36◦ ± 0.08◦ and φ = 59.98◦ ± 0.80◦. The co-latitude

coordinate of the spot is similar to that found from Section 3.3 which is expected due

the transit cord being the same. Once this was completed the four lightcurves were

then modelled individually but with the values of θ and φ fixed at the determined val-

ues. This then allowed the determination of the values rspot and ρspot for each different

passband.

3.4.1 Multiband Defocused Photometry Results

The four optical transits from GROND were modelled separately and the system pa-

rameters were then determined. The final results for each passband can be found in

Table 3.8. The different transit depths from each of the four lightcurves were then

used together with the NIR data to produce a broadband transmission spectrum (see

Mancini et al., 2013c).

Once a common value for the position of the starspot had been found the indi-

vidual GROND optical transits were then modelled and fitted using prism to find the

size and contrast of the starspot (see Figure 3.12 and Table 3.9).

The final spot size is taken from the weighted mean of the results from each

optical band, where rspot = 9.46◦ ± 0.26◦. The size of the starspot in the GROND
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Figure 3.12: Simultaneous optical and NIR transits of WASP-19 observed using
GROND (Mancini et al., 2013c). The left panel shows the transits and best-fitting
models and the right panel shows the residuals. The four optical transits were modelled
using prism and gemc. The three NIR light curves were modelled using jktebop.
The passband and central wavelengths are given for each transit. The amplitude of
the starspot anomaly can be seen to decrease when moving down through the transits.

Table 3.8: Parameters of the fits for WASP-19 from GROND using prism.
Filter rs + rp rp/rs i
g’ 0.33106± 0.00085 0.14206± 0.00038 78.39± 0.42
r’ 0.33437± 0.00374 0.14372± 0.00056 78.37± 0.28
i’ 0.32958± 0.00450 0.14386± 0.00080 78.98± 0.36
z’ 0.32983± 0.00410 0.14207± 0.00058 78.95± 0.31
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Table 3.9: Starspot parameters from the optical GROND lightcurves, fitted using
prism. The common spot position is at θ = 3.36◦ ± 0.08◦ and φ = 59.98◦ ± 0.80◦.
Parameter Symbol g’ r’ i’ z’
Starspot angular radius (◦) rspot 9.37± 0.45 9.65± 0.50 10.50± 0.67 8.60± 0.57
Starspot contrast ρspot 0.347± 0.050 0.590± 0.037 0.638± 0.020 0.618± 0.040

data is approximately 60% of the size of the starspot in the NTT data. Because

rspot is the angular size of the starspot it is possible to combine R∗ to find Rspot =

116900 ± 3220 km, therefore the starspot covers only 2.7% of the stellar disc. This

measurement is in agreement with other measurements of starspots from G-type stars

and is also comparable to large Sunspots (Mancini et al., 2013c).

3.4.2 Starspot Temperature

With the contrast of the starspot known in four different wavelengths it is then possible

to calculate the temperature of the starspot. This is done by modelling both the

starspot and the photosphere as black bodies (Rabus et al., 2009; Sanchis-Ojeda &

Winn, 2011). Silva (2003) gives an equation to find the temperature of a starspot Tspot

using the starspots contrast ρspot and the effective temperature of the photosphere Teff ,

ρspot =
exp (hν/KBTeff )− 1

exp (hν/KBTspot)− 1
(3.1)

where h is Planck’s constant, ν is the frequency of the observation and KB is the

Boltzmann constant. When calculating the temperature of the starspot a value of

Teff = 5460 ± 90K was used (Doyle et al., 2013). It was found that the starspot’s

temperature in each of the passbands was: Tspot,g = 4595±118K, Tspot,r = 4864±96K,

Tspot,i = 4842±81K and Tspot,z = 4698±112K. The temperature of the starspot in the

four different bands are in good agreement and were combined using a weighted mean to

find the overall temperature, Tspot = 4777±80K. This measurement of the temperature

of the starspot seen in the GROND data of WASP-19 is consistent with measurements

of starspot temperatures for other stars (see Figure 3.13). The temperature is also
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Figure 3.13: Starspot temperature contrast compared to effective temperature of the
photosphere for several stars (Mancini et al., 2013c). The names and spectral class for
the majority of the stars are given.

consistent with starspot temperature measurements taken for stars harbouring a TEP

(e.g. TrES-1, Rabus et al. 2009; HD189733, Sing et al. 2011; and HATS-2, Mohler-

Fischer et al. 2013).

3.5 Discussion and Conclusions

The three transits of WASP-19 coupled with the GROND optical transits were the first

real data tests of the modelling and optimisation codes prism and gemc. The results

show that both of these codes are capable of being used to model and fit real transit

data containing a starspot anomaly.

prism and gemc were applied to three transit light curves of the WASP-19 plan-

etary system. Two of the light curves are of consecutive transits and show anomalies
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due to the occultation of a starspot by the planet. The measured co-latitudes and lon-

gitudes of the spot during the two transits were used to calculate the rotation period

of the star and the sky-projected obliquity of the system. The model assumes that the

spot anomaly can be represented by a circular spot of uniform brightness. It is quite

likely that the “spot” is in fact a group of smaller spots with higher contrasts (i.e.

between the values found in the model and one), but investigation of this puts extreme

demands on data quality and quantity which are practically impossible to satisfy for

ground-based observations.

The rotation period of Prot = 11.76 ± 0.09 d at a co-latitude of 65◦ was found,

whereas Hebb et al. (2010) found a Prot of 10.5 ± 0.2 d from rotational modulation of

the star’s brightness over several years. The latter value comes from the spot activity

over the whole visible surface of the star, whereas the value from this work is for a

specific co-latitude. The difference between these two numbers may therefore indicate

differential rotation. Anderson et al. (2013) used the measured CaH&K line activity

index, logR′

HK, to infer Prot = 12.3 ± 1.5 d using the activity–rotation calibration by

Mamajek & Hillenbrand (2008), which is in good agreement with the values measured

in this Chapter and by Hebb et al. (2010).

A rotational velocity of v(65◦) = 3.88±0.15 km s−1 for WASP-19 was found, which

in the absence of differential rotation would yield an equatorial rotation velocity of

v(90◦) = 4.30± 0.15 km s−1. Hellier et al. (2011) reported a spectroscopic measurement

for v sin I of 5.0±0.3 km s−1 and assumed this value represented the equatorial velocity.

They included it as a prior when modelling the Rossiter-McLaughlin effect, finding a

final value of v sin I = 4.6 ± 0.3 km s−1. This last measurement is appropriate for the

co-latitude at which the planet transits, and may differ from this result due to the

effect of starspots on radial velocity measurements taken during transit.

The results show a sky-projected obliquity of λ = 1.0◦±1.2◦ for WASP-19, which

is in agreement with, but more precise than, published values based on observations

of the Rossiter-McLaughlin effect (4.6◦ ± 5.2◦, Hellier et al. 2011; 15◦ ± 11◦, Albrecht

et al. 2012). λ gives the lower boundary of the true spin-orbit angle, ψ. As stated

in Section 1.4.1 and by Fabrycky & Winn (2009), finding a small value for λ can be
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interpreted in different ways. The spot method could allow the determination of ψ,

rather than just λ, given light curves of three or more transits all showing anomalies

due to the same spot. unfortunately with only two light curves it is difficult to be sure

that ψ lies close to λ. If the stellar rotation axis is pointed along the line-of-sight of the

observer, then the path taken by the starspot would be circular. In this scenario the

stellar rotation period would equate to only 5.5 days. This result greatly disagrees with

previous measurements (Hebb et al., 2010; Anderson et al., 2013) and is an indication

that ψ does in fact lie close to λ. Whilst it is not possible to determine the true value

of ψ with the data in hand, there is no evidence for a spin-orbit misalignment in the

WASP-19 system. With a low obliquity and a cool host star, WASP-19 follows the idea

put forward by Winn et al. (2010a) that planetary systems with cool stars will have

a low obliquity. It also lends weight to the idea that WASP-19 b formed at a much

greater distance from host star and suffered orbital decay through tidal interactions

with the protoplanetary disc (i.e. either Type I or Type II disc-migration, Ward 1997a).

The transit containing a starspot anomaly observed in four optical passbands

with GROND allowed the temperature of the starspot to be determined with Tspot =

4777± 80K. The extra data also allowed a comparison of the spot properties for two

different spots from the same star. The co-latitude position of the two starspots are

in agreement along with the angular dimensions. This could be an indication of an

active zone on WASP-19 at a co-latitude between 60◦ and 65◦. The GROND data

also shows that dark starspots appear darker at UV wavelengths, which is expected

for a black body model due to the dark starspot being cooler than the surrounding

photosphere. Both WASP-19 and the Sun are G type dwarf stars. As such finding

a starspot on WASP-19 that is consistent in both size and temperature to that of a

Sunspot is encouraging in that the data, the analysis and modelling of the transits

containing the starspot anomaly has been performed correctly.
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4 The WASP-6 Planetary System

This Chapter describes the WASP-6 planetary system and the collection and analysis

of four transit lightcurves. Section 4.1 presents an overview of WASP-6 beginning with

the discovery of WASP-6 b to recent observations of the planet’s optical transmission

spectrum. Section 4.2 describes the data collection and reduction for four transits of

WASP-6 using the Danish 1.54m telescope in La Silla. In Section 4.3 the data analysis

is presented along with the photometric results and measured physical properties. The

photometric results of the starspots are also given together with the latitudinal rota-

tion period of WASP-6 and the system’s sky-projected spin orbit alignment (λ) value.

Section 4.4 then ends the chapter with a brief discussion and conclusions.

4.1 Overview of the WASP-6 Planetary System

The WASP-6 b planet was discovered by Gillon et al. (2009a) using photometry from

the WASP-South telescope (see Figure 4.1).

Figure 4.1: WASP-South discovery photometry of WASP-6 b (Gillon et al., 2009a).
The data are phase folded using a period of P = 3.361 days.
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Figure 4.2: Transit photometry for WASP-6 using the FTS and the LT (Gillon et al.,
2009a). The top panel shows the transit and best-fitting model coupled with the
residuals from the FTS obtained in the i’-band. The bottom panel shows the transit
and best-fitting model coupled with the residuals from the LT/RISE in the V + R
filter.
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They determined an orbital period of P = 3.361 days for WASP-6 b. Followup

photometric observations (see Figure 4.2) were then performed in the i’-band using

the 2m Faulkes Telescope South (FTS) and a second set of photometric observations

performed in a broad band filter with a response approximately that of Cousins V +

R using RISE (Rapid Imaging Search for Exoplanets) (Steele et al., 2008) on the 2m

Liverpool Telescope (LT) in La Palma.

Followup RV observations were performed using the CORALIE spectrograph

(Baranne et al., 1996; Queloz et al., 2000) on the 1.2m Euler telescope. RV observations

were also taken using the HARPS (High-Accuracy Radial velocity Planetary Searcher)

spectrograph (Mayor et al., 2003) on the ESO 3.6m telescope. Through the analysis

of the data Gillon et al. (2009a) determined the stellar mass and radius to be M∗ =

0.88+0.05
−0.08M⊙ and R∗ = 0.870+0.025

−0.036R⊙, respectively. They found the planetary mass

and radius to be Mp = 0.503+0.019
−0.038MJup and Rp = 1.224+0.051

−0.052RJup.

Whilst Gillon et al. (2009a) did not look for variability in the WASP-South data

due to starspots to determine a rotational period of WASP-6 they did determine a

value for v sin I of 1.4 ± 1.0 km s−1 from line width measurements in high resolution

spectra with a macroturbulence (vmac) value of 2 km s−1. They noted that if a value

of vmac = 0kms−1 is used then v sin I = 3.0± 0.5 km s−1, while if vmac became slightly

larger than 2 km s−1 then v sin I would drop to zero. Macroturbulence represents the

non-thermal gas velocities that occur in the region of where the spectral line is formed.

But unlike microturbulence the cell size is larger than the unit optical depth (Howarth,

2004). Macroturbulence only causes the broadening of the spectral lines and not their

strengths (Doyle et al., 2013).

From performing RV measurements of WASP-6 Gillon et al. (2009a) measured

the Rossiter-McLaughlin (RM) effect (see Figure 4.3). They found that the system is

in alignment with a sky-projected spin orbit alignment, λ = 11◦ +14
−18.

The spectral analysis of 11 WASP host stars by Doyle et al. (2013) included

WASP-6. Doyle et al. (2013) derived new values for the stellar mass and radius of

M∗ = 0.87± 0.06M⊙ and R∗ = 0.77± 0.07R⊙, these new measurements of the stellar

mass and radius are in agreement with that of Gillon et al. (2009a). Doyle et al. (2013)
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Figure 4.3: RV measurements of WASP-6 using CORALIE and HARPS (Gillon et al.,
2009a). The green squares represent data from HARPS while the red triangles represent
data from CORALIE. The top panel shows the RV measurements with the best-fitting
model while the bottom panel is a close up during transit, which shows the RM effect.
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determined a new value for the macroturbulence with vmac = 1.4 ± 0.3 km s−1 and a

new v sin I of 2.4 ± 0.5 km s−1. They also measured an effective temperature of the

photosphere of WASP-6, finding Teff = 5375± 65K.

An optical transmission spectrum for WASP-6 b has also been constructed us-

ing multi-object differential spectrophotometry with the IMACS spectrograph on the

Magellan Baade telescope (Jordán et al., 2013). The observations comprised 91 spec-

tra in the spectral range of 480 to 860 nm. The analysis yielded a mostly featureless

transmission spectrum with evidence of atmospheric hazes and condensates.

4.1.1 WASP-6 and Starspots

Four transits of WASP-6 were observed using the Danish 1.54m telescope. The

lightcurves were observed between 2009/06/26 and 2010/07/31, with two lightcurves

observed on the 2009/08/02 and 2009/08/29 containing a starspot anomaly. Due to a

27 day gap between these two lightcurves it is not possible to conclusively determine

if the spot anomaly is due to the same spot. However, if the two spot anomalies are

due to the same starspot then the stellar rotation period and sky-projected spin orbit

alignment can be calculated and compared to the values found by Gillon et al. (2009a)

and Doyle et al. (2013). This provides an indirect check to see if the two spot anomalies

are due to the same starspot. Another issue is whether the spot could last for a 27

day period. On the Sun a spot’s lifetime T is proportional to its size A0 following the

Gnevyshev-Waldmeier relation (Gnevyshev, 1938; Waldmeier, 1955),

A0 =WT (4.1)

where A0 is measured in MSH (Micro-Solar Hemispheres) and T is in days. Petrovay &

van Driel-Gesztelyi (1997) state that W = 10.89±0.18. Henwood et al. (2010) showed

that large Sunspots also followed the Gnevyshev-Waldmeier relationship. If the same

relationship is extrapolated to starspots then, for a starspot to have a minimum lifetime

of 30 days, using Equation 4.1 would give a minimum size for the starspot of 327MSH
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or an angular radius of just greater than 1◦. Inspecting the amplitude of the starspot

anomalies in the WASP-6 lightcurves it can be seen that the starspot(s) would be much

greater than 1◦ and as such the starspot which caused the first anomaly would still be

visible during the second transit if it is on the visible stellar hemisphere.

4.2 Observations and Data Reduction

Four transits of WASP-6 were observed on 2009/06/26, 2009/08/02, 2009/08/29 and

2010/07/31 by the MiNDSTEp (Microlensing Network for the Detection of Small Ter-

restrial Exoplanets) consortium using the Danish 1.54m Telescope operated at ESO

La Silla, Chile. The instrument used was the DFOSC imager, operated with a Bessell

R filter. In this setup the CCD covers a field of view of (13.7′)2 with a pixel scale

of 0.39′′ pixel−1. The images were windowed down (see Table 4.1 for the individual

window sizes for each data set) and were not binned, resulting in a dead time between

consecutive images of between 22 and 35 s depending on each observing night. The ex-

posure times ranged between 80–120 s depending on each observing night. The Moon

brightness and distance to the target star is given in Table 4.1. The telescope was

Table 4.1: Log of the observations presented for WASP-6. Nobs is the number of
observations.
Date 2009/06/26 2009/08/02 2009/08/29 2010/07/31

Start time (UT) 06:33 04:18 02:32 03:51
End time (UT) 10:43 10:31 07:47 10:20
Nobs 91 175 129 193
Exposure time (s) 120 90–120 120 80
Filter Bessell R Bessell R Bessell R Bessell R
Airmass 1.32 → 1.05 1.28 → 1.44 1.28 → 1.20 1.45 → 1.34
Fractional Moon illumination 0.271 0.934 0.750 0.686
Moon distance (◦) 160.5 59.6 63.8 42.4
Window size (pixel) 1650 × 950 1600 × 800 1485 × 650 1700 × 1000
Aperture sizes (pixel) 45, 65, 70 20, 30, 40 25, 45, 90 20, 30, 40
Scatter (mmag) 1.178 1.138 0.597 0.662
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defocused and the autoguiding was maintained through all observations. The amount

of defocus applied caused the resulting PSFs to have a diameter of 86 pixels for the

night of 2009/06/26, 32 pixels for the night of 2009/08/02, 44 pixels for the night of

2009/08/29 and 37 pixels for the night of 2010/07/31.

The data were reduced using the data reduction pipeline discussed in Section 2.5.1

and 3.2 and in an identical fashion to Southworth et al. (2009a,b,c, 2010). In short,

aperture photometry using an idl implementation of daophot (Stetson, 1987) was

used and the aperture sizes were adjusted to obtain the best results (see Table 4.1).

A first order polynomial was then fitted to the outside-transit data whilst simultane-

ously optimising the weights of the comparison stars. The resulting data have scatters

ranging from 0.597 to 1.178 mmag per point versus a transit fit using prism. The

timestamps from the fits files were converted to BJD/TDB (see Section 2.5.2).

4.3 Data Analysis

The spot-free data were modelled first using jktebop and then prism and gemc. This

was done to check that prism and gemc were obtaining the best-fitting solution. The

two datasets containing a starspot anomaly were modelled using prism and gemc.

To do this a large parameter search space was selected to allow the global best fit

solution to be found. As discussed in Section 2.8.3.4, the ability of gemc to find the

global minimum in a short amount of computing time meant that it was possible to

search a large area of the parameter space to avoid the possibility of missing the best

solution. The parameter search range used in analysing the WASP-6 datasets are given

in Tables 4.2, 4.3, 4.4 and 4.5.

It was decided to model the two datasets containing a starspot anomaly indepen-

dently due to the fact that it is not precisely known if the two anomalies were generated

by the same starspot.

The four datasets of WASP-6 were modelled separately using prism, finding that

the modelled parameters were within 1-σ of each other (Table 4.2, 4.3, 4.4 and 4.5). It
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Table 4.2: Derived photometric parameters from the lightcurve taken on 2009/06/26, plus
the interval within which the best fit was searched for using gemc.

Parameter Symbol Search interval 2009/06/26
Radius ratio rp/rs 0.05 to 0.30 0.1458 ± 0.0052
Sum of fractional radii rs + rp 0.10 to 0.50 0.1096 ± 0.0056
Linear LD coefficient u1 0.0 to 1.0 0.386 ± 0.123
Quadratic LD coefficient u2 0.0 to 1.0 0.256 ± 0.035
Inclination (degrees) i 70.0 to 90.0 87.64 ± 1.01
Transit epoch (BJD/TDB) T0 ±0.5 in phase 2455009.83623 ± 0.00016

Table 4.3: Derived photometric parameters from the lightcurve taken on 2009/08/02, plus
the interval within which the best fit was searched for using gemc.

Parameter Symbol Search interval 2009/08/02
Radius ratio rp/rs 0.05 to 0.30 0.1461 ± 0.0043
Sum of fractional radii rs + rp 0.10 to 0.50 0.1091 ± 0.0039
Linear LD coefficient u1 0.0 to 1.0 0.333 ± 0.116
Quadratic LD coefficient u2 0.0 to 1.0 0.280 ± 0.034
Inclination (degrees) i 70.0 to 90.0 87.68 ± 0.77
Transit epoch (BJD/TDB) T0 ±0.5 in phase 2455046.80720 ± 0.00020
Longitude of spot (degrees) θ -90 to +90 -28.24 ± 0.56
Co-latitude of spot (degrees) φ 0.0 to 90.0 79.66 ± 1.23
Spot angular radius (degrees) rspot 0.0 to 30.0 13.53 ± 0.48
Spot contrast ρspot 0.0 to 1.0 0.679 ± 0.033

Table 4.4: Derived photometric parameters from the lightcurve taken on 2009/08/29, plus
the interval within which the best fit was searched for using gemc.

Parameter Symbol Search interval 2009/08/29
Radius ratio rp/rs 0.05 to 0.30 0.1476 ± 0.0014
Sum of fractional radii rs + rp 0.10 to 0.50 0.1113 ± 0.0022
Linear LD coefficient u1 0.0 to 1.0 0.380 ± 0.098
Quadratic LD coefficient u2 0.0 to 1.0 0.289 ± 0.028
Inclination (degrees) i 70.0 to 90.0 87.89 ± 0.47
Transit epoch (BJD/TDB) T0 ±0.5 in phase 2455073.69529 ± 0.00012
Longitude of spot (degrees) θ -90 to +90 22.59 ± 0.37
Co-latitude of spot (degrees) φ 0.0 to 90.0 73.91 ± 0.93
Spot angular radius (degrees) rspot 0.0 to 30.0 13.67 ± 0.34
Spot contrast ρspot 0.0 to 1.0 0.790 ± 0.015

was mentioned in Section 3.3 that starspots can affect the LD coefficients by up to 10%

in the R band. This is not seen in the WASP-6 data. The scatter around the weighted
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Table 4.5: Derived photometric parameters from the lightcurve taken on 2010/07/31, plus
the interval within which the best fit was searched for using gemc.

Parameter Symbol Search interval 2010/07/31
Radius ratio rp/rs 0.05 to 0.30 0.1444 ± 0.0022
Sum of fractional radii rs + rp 0.10 to 0.50 0.1114 ± 0.0027
Linear LD coefficient u1 0.0 to 1.0 0.420 ± 0.103
Quadratic LD coefficient u2 0.0 to 1.0 0.274 ± 0.031
Inclination (degrees) i 70.0 to 90.0 87.60 ± 0.51
Transit epoch (BJD/TDB) T0 ±0.5 in phase 2455409.79517 ± 0.00008

mean is χ2
ν = 0.316 for the linear coefficient and 0.560 for the quadratic coefficient.

The error bars on the LD coefficients are therefore too large to allow the effects of

starspots to be detected due to the lower quality of the data compared to WASP-19 in

Chapter 3.

4.3.1 Photometric Results

The final photometric parameters for the WASP-6 system are given in Table 4.6 and

are weighted means plus 1-σ uncertainties of the results from the four individual fits.

Figure 4.4 compares the lightcurves to the best-fitting models, including the residuals.

Table 4.6: Combined system and spot parameters for WASP-6. The system parameters
are the weighted means from all four data sets. The spot angular size and contrast are
the weighted mean from the two transits containing a starspot anomaly.

Parameter Symbol Value
Radius ratio rp/rs 0.1466 ± 0.0011
Sum of fractional radii rs + rp 0.1109 ± 0.0015
Linear LD coefficient u1 0.383 ± 0.054
Quadratic LD coefficient u2 0.276 ± 0.016
Inclination (degrees) i 87.73 ± 0.30
Spot angular radius (degrees) rspot 13.62 ± 0.28
Spot contrast ρspot 0.771 ± 0.014
Stellar rotation period (d) Prot 23.56 ± 0.13
Projected spin orbit alignment (degrees) λ 6.4 ± 2.3
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Figure 4.4: Transit lightcurves and the best-fitting models of WASP-6. The residuals
are displayed at the base of the figure.
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The results from modelling the spot anomalies on the nights of 2009/08/02 and

2009/08/29 suggest that they are due to the same spot rotating around the surface

of the star, as the spot sizes are in good agreement. The difference in ρspot between

the two nights can be explained by the evolution of the spot. Because the size of the

spot anomaly is much greater than 1◦ (see Section 4.1.1), then the spot observed in the

2009/08/02 transit should still exist on the stellar surface. Figure 4.5 is a representation

of the stellar disc, the spot and the transit chord for the two nights of observations.

Figure 4.5: Representation of the stellar disc, starspot, transit chord and equator for
the two datasets of WASP-6 containing spot anomalies. The axis of stellar rotation
lies in the plane of the page and points upwards.

By assuming that the two spot anomalies are indeed caused by the same spot

then by using the positions of the starspot at the time of the transits on the nights

of 2009/08/02 and 2009/08/29, it is possible to calculate the rotational period of the

star and the sky-projected spin orbit alignment of the system using simple geometry.

To calculate the rotation period, different cases need to be examined. Due to the

27 day gap between the lightcurves the star could have rotated N full rotations plus

50.83◦ ± 0.93◦. If N = 0 then this would imply that WASP-6 has a rotation period
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of approximately 200 days and would imply that WASP-6 is older than the age of the

universe. If N = 1 then the spot has travelled 410.83◦±0.93◦ in 26.8875±0.0003 days,

giving a rotational period of Prot = 23.56± 0.13 d at a co-latitude of 77.5◦. Combining

this with the stellar radius (see Table 4.8), the latitudinal rotational velocity of the star

was calculated to be v(77.5◦) = 1.80±0.19 km s−1. This is in agreement with both Gillon

et al. (2009a) and Doyle et al. (2013). If N = 2 then the spot has travelled 770.83◦ ±
0.93◦ in 26.8875± 0.0003 days, giving a rotational period of Prot = 12.56± 0.13 d at a

co-latitude of 77.5◦. (or v(77.5◦) = 3.38±0.19 km s−1). This also agrees with both Gillon

et al. (2009a) and Doyle et al. (2013). Because of this there is a degeneracy between

the possible stellar rotation periods, which is discussed later in Section 4.4. In either

case the positions of the spot finally yielded a sky-projected spin orbit alignment of

λ = 6.4◦ ± 2.3◦ for WASP-6.

The available times of mid-transit for WASP-6 were collected from the literature

(Gillon et al., 2009a; Dragomir et al., 2011; Sada et al., 2012). All timings were con-

verted to the BJD/TDB timescale and used to obtain an improved orbital ephemeris:

T0 = BJD/TDB 2 454 596.43337(12) + 3.36099922(63)×E

where E represents the cycle count with respect to the reference epoch and the brack-

eted quantities represent the uncertainty in the final digit of the preceding number.

Figure 4.6 and Table 4.7 show the residuals of these times against the ephemeris. Ex-

Figure 4.6: Residuals of the available times of mid-transit versus the orbital ephemeris
found for WASP-6. The four timings from this work are the cluster of three points
between the cycle numbers 120-150 and the point close to the 240 cycle count.
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Table 4.7: Times of minimum light of WASP-6 and their residuals versus the ephemeris
derived in this work.

Time of minimum Cycle Residual Reference
(BJD/TDB − 2400000) no. (BJD)
54596.43341±0.00015 0.0 0.00004 1
55009.83622±0.00016 123.0 -0.00005 2
55046.80720±0.00020 134.0 -0.00007 2
55073.69529±0.00012 142.0 0.00003 2
55409.79517±0.00008 242.0 -0.00001 2
55446.76621±0.00058 253.0 0.00004 3
55846.72540±0.00045 372.0 0.00032 4

References: (1) Gillon et al. (2009a); (3) Dragomir et al. (2011); (4) Sada et al.
(2012); (2) This work.

amining the results show no evidence for transit timing variations in the WASP-6

planetary system.

The time of mid-transit from Jordán et al. (2013) was not used in this analysis.

The value T0 = 2455473.15364±0.00016 is given in MHJD (Modified Heliocentric Julian

Date) but no time system is given. If we assume that the time system being used is

UTC and convert it to TDB the data point is a poor fit and is out by approximately

257 s (19-σ). If we assumed that the T0 by Jordán et al. (2013) is already in the TDB

time system then the data point is still a poor fit and is out by 191 s (14-σ). Until

confirmation from the author on which time system was used it was decided to leave

the Jordán et al. (2013) T0 value out of the analysis.

4.3.2 Physical Properties of the WASP-6 System

It should be mentioned that at present prism only models a circular orbit (i.e. e = 0).

While this allows prism to accurately model the majority of TEPs, in the case of

WASP-6 the eccentricity will cause a small perturbation of the stellar radius. Using

the equation to calculate the impact parameter b (see Equation 1.15) the effect of having
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an eccentricity of e = 0.054+0.018
−0.015 (Gillon et al., 2009a) and the argument of periastron

ω = 97.4+6.9
−13.2 degrees (Gillon et al., 2009a) alters the values for the sum of the fractional

radii to rs+rp = 0.11672±0.00158 and the inclination to i = 87.841◦±0.313◦. k is not

affected as it is determined directly from the transit lightcurve, therefore rp is scaled

by the same amount as rs to allow k to remain unaffected.

The rest of the work in this subsection was performed by Dr John Taylor and is

included here because it is an integral part of the analysis of WASP-6.

With the photometric properties of WASP-6 measured the physical characteris-

tics could be determined. The analysis followed the method of Southworth (2009),

which uses the parameters measured from the light curves and spectra, plus tab-

ulated predictions of theoretical models. The values of i = 87.841◦ ± 0.313◦ and

rs + rp = 0.11672 ± 0.00158 were used in conjunction with rp/rs from Table 4.6 and

coupled with the stellar properties of effective temperature Teff = 5375 ± 65K (Doyle

et al., 2013), velocity amplitude Ks = 74.3+1.7
−1.4ms−1 (Gillon et al., 2009a), eccentricity

e = 0.054+0.018
−0.015 (Gillon et al., 2009a) and metal abundance [Fe/H] = −0.15 ± 0.09

(Doyle et al., 2013).

An initial value of the velocity amplitude of the planet, Kp, was used to calcu-

late the physical properties of the system using standard formulae and the physical

constants listed by Southworth (2011). The mass and [Fe/H] of the star were then

used to obtain the expected Teff and radius, by interpolation within a set of tabulated

predictions from stellar theoretical models. Kp was iteratively refined until the best

agreement was found between the observed and expected Teff , and the measured rs and

expected Rs

a
. This was performed for ages ranging from the zero-age to the terminal-age

main-sequence, in steps of 0.01Gyr. The overall best fit was found, yielding estimates

of the system parameters and the evolutionary age of the star.

This procedure was performed separately using five different sets of stellar the-

oretical models (see Southworth, 2010), and the spread of values for each output pa-

rameter was used to assign a systematic error. Statistical errors were propagated using

a perturbation algorithm.

The final results of this process are in reasonable agreement with themselves and
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Table 4.8: Physical properties of the WASP-6 system. Both statistical and systematic
uncertainties are given. The first uncertainty is the statistical uncertainty and the
second is the systematic uncertainty.

Parameter Value
MA (M⊙) 0.833± 0.038 ± 0.021
RA ( R⊙) 0.905± 0.019 ± 0.008
log gA (cgs) 4.446± 0.014 ± 0.004
ρA ( ρ⊙) 1.125± 0.046

Mb (MJup) 0.485± 0.018 ± 0.008
Rb ( RJup) 1.291± 0.028 ± 0.011
gb (m s−2) 7.21± 0.27
ρb ( ρJup) 0.211± 0.011 ± 0.002

T ′

eq (K) 1212± 16
Θ 0.0372± 0.0012 ± 0.0003
a (AU) 0.04133± 0.00064± 0.00035
Age (Gyr) 12.3 +5.3

−11.1
+2.3
−3.4

with published results for WASP-6. The stellar radius RA = 0.905±0.019 does disagree

with the value determined by Doyle et al. (2013). This disagreement is most likely due

to the fact that Doyle et al. (2013) used the Torres calibrations versus eclipsing binaries

(Torres et al., 2010), which is a much simpler method to that used in this analysis. The

final physical properties are given in Table 4.8 and incorporate separate statistical and

systematic errorbars for those parameters which depend on the theoretical models. The

final statistical errorbar for each parameter is the largest of the individual ones from

the solutions using each of the five different stellar models. The systematic errorbar

is the largest difference between the mean and the individual values of the parameter

from the five solutions.

4.4 Discussion and Conclusions

Four transits of WASP-6 were modelled using both prism and gemc. Two of the

transits contained a starspot anomaly but are separated by 27 days, unlike the two



159

consecutive transits of WASP-19. Because of this it was not possible to precisely state

that the spot anomalies are caused by the same starspot, but circumstantial evidence

does seem to suggest that they are. prism indicates that the angular size of the

starspot(s) in both lightcurves are the same, while the spot contrast does alter. This

could be explained by the evolution of the starspot. As with WASP-19 (see Figure 3.9)

from examining Figure 4.5 only a fraction of the starspot(s) are on the transit cord.

Because the lightcurve can only tell us what is happening inside the transit cord then

the more probable scenario is that the planet is passing over a band of smaller starspots,

indicating an active region on WASP-6. In this active region, there would be a number

of starspots each with sizes much less than 1◦ and therefore would have lifetimes smaller

than 30 days (see Section 4.1.1). From this it would be expected to see changes in the

overall contrast from the starspot region, but as a whole the region would remain a

similar size and shape.

In the case of a single large starspot both rspot (from Table 4.6) and R∗ (from

Table 4.8) can be combined to find the starspot radius in km, where Rspot = 141012±
9525 km which equates to approximately 5.5% of the visible stellar surface. This value

is similar to starspots found on other G-type stars (Strassmeier, 2009).

If the two starspot anomalies are assumed to be generated by the planet crossing

the same starspot then it is possible to calculate the latitudinal rotation period of

WASP-6. It was found that either Prot = 23.56 ± 0.13 d or Prot = 12.56 ± 0.13 d at a

co-latitude of 77.5◦. These calculation assumed that WASP-6 had made either one or

two full rotations prior to the difference seen in the lightcurves. There is no rotation

period measurement found in the literature but there are two measurements for v sin I

from Gillon et al. (2009a) and Doyle et al. (2013). Both of these measurements agree

with the v value found when combining Prot and R∗ at a co-latitude of 77.5◦ to give

either v(77.5◦) = 1.80 ± 0.19 km s−1 or v(77.5◦) = 3.38 ± 0.19 km s−1. The problem that

arises from checking measurements of v against v sin I is that due to the nature of sin I

any value for v that is found to be greater than v sin I can be considered to agree. A

second unknown is the amount of differential rotation that is experienced by WASP-6.

In the absence of any differential rotation then the original value of Prot = 23.56±0.13 d
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would lead to an equatorial rotational velocity of v = 1.85 ± 0.19 km s−1. This result

agrees with the v sin I value from Gillon et al. (2009a) but does not agree with Doyle

et al. (2013). Due to not knowing the extent of the differential rotation it is not

possible to combine the measurements of v and v sin I to measure the angle between

the stellar rotation axis and the plane of the sky I. The difference between v and v sin I

is therefore formed from a mixture of the differential rotation and I.

Both WASP-6 and WASP-19 are of similar spectral types (G8 WASP-6 and G8V

WASP-19). Considering that the size of the starspots detected on both WASP-6 and

WASP-19 (see Tables 3.5 and 4.6) are of similar size then it is plausible that both stars

are of similar magnetic activity. Combining this knowledge can lead to the proposal

that both WASP-19 and WASP-6 should be of similar ages and therefore have similar

rotation periods. The rotation period of WASP-19 was found to be Prot = 11.76±0.09 d

at a co-latitude of 65◦ and Hebb et al. (2010) gives Prot of 10.5± 0.2 d from rotational

modulation of the star’s brightness over several years. Both of these values are closest to

Prot = 12.56±0.13 d at a co-latitude of 77.5◦ for WASP-6. This implies that between the

two transit that observed the starspot anomalies, WASP-6 had in fact rotated N = 2

full rotations plus 50.83◦ ± 0.93◦. To definitely determine the exact rotation period

of WASP-6, will require further consecutive transit observations containing starspot

anomalies. But using WASP-19 as a potential twin can allow the rotation period of

WASP-6 to be estimated at Prot = 12.56± 0.13 d at a co-latitude of 77.5◦.

Despite the number of full rotations that WASP-6 potentially completed between

the two lightcurves, if the starspot anomalies are due to the same spot then the sky-

projected spin orbit alignment λ of the system can still be measured. The results show

that λ = 6.4◦±2.3◦ for WASP-6. This result agrees with, and is more precise than, the

previous measurement of λ using the RM effect (λ = 11◦ +14
−18; Gillon et al. 2009a). λ

gives the lower boundary of the true spin-orbit angle, ψ. As stated in Section 1.4.1 and

by Fabrycky & Winn (2009), finding a small value for λ can be interpreted in different

ways. Either ψ lies close to λ and the system is aligned or ψ lies far from λ and the

system is not aligned. Because the spot is close to the stellar equator then it could

be assumed that the change in v at the equator due to the differential rotation would
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be small. Coupled with the uncertainties measured in v sin I from both Gillon et al.

(2009a) and Doyle et al. (2013) it is plausible that sin I ≈ 1 and therefore ψ ≈ 6◦ (using

Equation 1.38). Without any further evidence it is not possible to precisely determine

the true obliquity of the system. It would therefore be desirable to observe consecutive

transits of WASP-6 in an attempt to definitely identify multiple planetary crossings

of the same starspot and to therefore precisely determine Prot, λ and potentially ψ of

WASP-6.

If the starspot anomalies are due to the same starspot so that λ = 6.4◦ ± 2.3◦

then there is no direct evidence for a spin-orbit misalignment in the WASP-6 system.

With potentially a low obliquity and a cool host star, WASP-6 seems to follow the idea

put forward by Winn et al. (2010a) that planetary systems with cool stars will have a

low obliquity. It also lends weight to the idea that WASP-6 b formed at a much greater

distance from host star and suffered orbital decay through tidal interactions with the

protoplanetary disc (i.e. either Type I or Type II disc-migration, Ward 1997a).
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5 The WASP-50 Planetary System

This Chapter describes the WASP-50 planetary system and the collection and analysis

of two transit lightcurves of WASP-50. The two lightcurves were collected using the

defocused photometry technique applied to the ESO NTT, this approach resulted in

the lowest known rms scatter achieved using a ground-based telescope. Section 5.1

begins with an overview of the WASP-50 planetary system including the discovery of

WASP-50 b. Section 5.2 describes the data collection, reduction and confirmation of

the low scatter. Section 5.3 presents both the photometric and physical results of fitting

the transits using prism. Section 5.4 presents the discussion and conclusions for the

Chapter. Sections 5.2 and 5.3 were published as first author in Monthly Notices of the

Royal Astronomical Society (see AppendixA.1 for publication details).

5.1 Overview of the WASP-50 Planetary System

The discovery of the TEP system, WASP-50 was presented by Gillon et al. (2011b),

who found it to comprise a TEP with a mass of 1.47± 0.09MJup and radius of 1.15±
0.05RJup, orbiting a cool star with mass and radius 0.89±0.08M⊙ and 0.84±0.03R⊙.

The discovery of WASP-50 used photometry from the WASP South telescope (see

Figure 5.1). Gillon et al. (2011b) detected two similar periodic modulations of 16.09±
0.09 days and 16.65± 0.13 days with a FAP (False Alarm Probability) value of 0.05%

and 0.1%, respectively, in two seasons of WASP-South data (see Figure 5.2), indicating

stellar activity due to starspots rotating on and off the stellar disc. When taking

into account that instrumental noise in the WASP data adds a systematic error of

±0.5 days, Gillon et al. (2011b) calculated the stellar rotation period of WASP-50 as

Prot = 16.3± 0.5 days.

Gillon et al. (2011b) performed photometric follow-up observations (see Fig-

ure 5.3) using TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope;

Gillon et al. 2011a) and the 1.2m Euler telescope. They also performed RV follow-up
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Figure 5.1: WASP-South discovery photometry of WASP-50 b (Gillon et al., 2011b).
The data are phase folded using T0 = 54997.4996 ± 0.0014 and a period of P =
1.955 days.

Figure 5.2: Periodograms for the WASP data from two seasons of WASP-50 (Gillon
et al., 2011b). Each panel shows the date range (JD -245000). The horizontal lines
represent the FAP levels 0.1, 0.01 and 0.001.

observations using the CORALIE spectrograph (Baranne et al., 1996; Queloz et al.,

2000) on the 1.2m Euler telescope.

They also determined the presence of Ca H+K emission in spectra of the host star.

They deduced a chromospheric emission index of logR′

HK ∼ −4.67, which is similar
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Figure 5.3: Transit lightcurves of WASP-50 from TRAPPIST and Euler (Gillon et al.,
2011b). The left hand panel shows the transits and best-fitting models and the right
hand panel shows the residuals. The bottom transit with the lowest scatter was ob-
tained using the Euler telescope.

to that found for the magnetically active star WASP-41A (Maxted et al., 2011b).

They concluded that WASP-50 is magnetically active and that the periodic modulation

detected in the WASP-South data is due to starspots.

The initial transit lightcurves and RV measurements of WASP-50 from Gillon
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et al. (2011b) gave uncertainties in the planetary mass, radius, density and surface

gravity of 6%, 4%, 9% and 6%, respectively. Coupled with the evidence of stellar

activity from WASP-50, this makes the WASP-50 planetary system a prime candidate

for further high-precision transit photometry to not just refine the system parameters

but to also try and observe a starspot anomaly.

WASP-50 was observed with the aim of improving its measured physical prop-

erties, using the telescope-defocussing approach. Two complete transits of WASP-50

were observed using the NTT, achieving extremely low photometric scatters of 258

and 211 parts per million (ppm), respectively, versus a fitted model. The latter is the

lowest scatter ever achieved in ground-based photometry per point for a point source.

Some of the highest photometric precisions previously accomplished for a TEP

system are 479 ppm for CoRoT-1 using the 8.2m VLT (Pont et al., 2010), 478 ppm

for WASP-4 using the 6.5m Magellan Baade telescope (Winn et al., 2009), 470 ppm

for WASP-10 using the University of Hawaii 2.2m telescope (Johnson et al., 2009),

387 ppm for WASP-2 using a 1.5m telescope (Southworth et al., 2010), and 316 ppm

for TrES-2 using the 10.4m Gran Telescopio Canarias (Colón et al., 2010). The highest

photometric precision from a ground-based telescope was previously 258 ppm in time-

series observations of stars in the open cluster M67 (Gilliland et al., 1993).

An alternative metric which is well-suited for making direct comparisons is the

signal-to-noise per unit time. The scatter was recalculated in ppm per minute of

observing time for the datasets listed above. By this metric the 211 ppm dataset is

almost exactly equal to the best one presented by Gilliland et al. (1993), and both of

the light curves are better than any previously published ground-based photometric

observations of a TEP system.

5.2 Observations and Data Reduction

Two transits of WASP-50 were observed on the nights of 2011/11/20 and 2011/11/24

using the NTT with the EFOSC2 instrument operated in imaging mode. In this setup
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the CCD covers a field of view of (4.1′)2 with a pixel scale of 0.12′′ pixel−1. The images

were windowed down to 1100 × 1600 pixels and no binning was used, resulting in a

dead time between consecutive images of 50 s. The observations were taken through

a Gunn r filter (ESO filter #784). The Moon was below the horizon for half of the

first transit and all of the second transit. The telescope was initially focused and the

shape of its primary mirror was adjusted to obtain the best image possible. We then

applied a defocus to the telescope and performed the full observing sequence without

adjusting the telescope focus or mirror shape. The amount of defocus applied caused

the resulting PSFs to have a diameter of 93 pixels for the night of 2011/11/20 and 102

pixels for the night of 2011/11/24.

Table 5.1: Log of the observations presented for WASP-50. Nobs is the number of
observations.

Date 2011/11/20 2011/11/24
Start time (UT) 00:59 01:08
End time (UT) 06:02 06:27
Nobs 127 124
Exposure time (s) 120–150 150
Filter Gunn r Gunn r
Airmass 2.62 → 1.48 2.10 → 1.53
Fractional Moon illumination 0.384 0.045
Moon distance (◦) 91.2 137.4
Aperture sizes (pixel) 75, 105, 120 75, 100, 125
Scatter (ppm) 258 211

The pointing of the telescope was adjusted to allow a good comparison star to

be observed simultaneously with WASP-50. The comparison star used was 2MASS

J02544939−1051548, which is of a similar apparent magnitude and colour to WASP-

50. The 2MASS J − Ks colour indices of the two objects are 0.432 for WASP-50

and 0.357 for the comparison star (Skrutskie et al., 2006). We were able to keep the

telescope autoguided through all observations. An observing log is given in Table 5.1.

Figure 5.4 shows the shape of the point spread function (PSF) of WASP-50 in

an image taken at random from the observing sequence on the night of 2011/10/24.
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Figure 5.4: Surface plot of the PSF of WASP-50 in an image taken at random from
the observing sequence on the night of 2011 October 24th. The x and y axes are in
pixels. The lowest and highest counts are 684 and 24 726 ADUs, respectively, and the
z axis is on a linear scale.

This provides an interesting comparison with similar observations of WASP-4 from

a 1.5m telescope of more traditional design (see Figure 2.3). The PSF for the cur-

rent observations shows a much more rounded annulus of high counts, which allows a

smaller amount of defocussing to be used to collect a given number of photons without

saturating individual pixels.

The data were reduced in an identical fashion to Sections 2.5.1, 3.2, 4.2 and

Southworth et al. (2009a). In short, aperture photometry was performed using an idl

implementation of daophot (Stetson, 1987), and the aperture sizes were adjusted to

obtain the best results (see Table 5.1). A differential-magnitude light curve was calcu-

lated between the target and comparison star. A first-order polynomial was fitted to

the outside-transit data and subtracted to remove a slow trend present in the differ-

ential magnitudes. The times of the start of the exposures were given in JD/UTC in

the FITS file headers, and the times of the midpoints of the exposures were converted

into BJD/TDB (see Section 2.5.2).
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In order to confirm the low scatter of the resulting light curves a second indepen-

dent data reduction was performed by Dr John Taylor. The starlink/autophotom

package (Eaton et al., 1999) driven by a custom C-shell script (Southworth et al.,

2004b), was used and yielded a light curve with an rms scatter of 414 ppm for the first

night of data. This result agrees with our light curve from daophot, once the dis-

cretization of the datapoints (autophotom quotes instrumental magnitudes to only

three decimal places) was taken into account.

5.3 Data Analysis

TheWASP-50 data were fitted in a similar manner to Chapters 3 and 4. Limb darkening

was implemented using the standard quadratic law (see Section 2.7 for more details).

prism used six system parameters given in Table 5.2 to model the system.

gemc was used to fit the model to the data (see Section 2.8.3). Because gemc is a

hybrid between the Markov Chain Monte Carlo approach and a genetic algorithm, the

burn-in phase is relatively short, allowing us to use a large parameter search space. The

boundaries of the search space for each parameter are given in Tables 5.2 and 5.3 and

which also contains the individual results for the two light curves. Table 5.4 gives the

final photometric parameters for the WASP-50 system, which are weighted means of

the results from the two individual fits. All errorbars denote 1-σ uncertainties. Fig. 5.5

Table 5.2: Derived photometric parameters from the 2011/11/20 lightcurve, plus the
interval within which the best fit was searched for using gemc.

Parameter Symbol Search interval 2011/11/20
Radius ratio rp/rs 0.05 to 0.30 0.13710 ± 0.00049
Sum of fractional radii rs + rp 0.10 to 0.50 0.1552 ± 0.0018
Linear LD coefficient u1 0.0 to 1.0 0.386 ± 0.068
Quadratic LD coefficient u2 0.0 to 1.0 0.281 ± 0.099
Inclination (degrees) i 70.0 to 90.0 84.43 ± 0.17
Transit epoch (BJD/UTC) T0 ±0.5 in phase 2455855.78172 ± 0.000076
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Table 5.3: Derived photometric parameters from the 2011/11/24 lightcurve, plus the
interval within which the best fit was searched for using gemc.
Parameter Symbol Search interval 2011/11/24
Radius ratio rp/rs 0.05 to 0.30 0.13661 ± 0.00036
Sum of fractional radii rs + rp 0.10 to 0.50 0.1553 ± 0.0016
Linear LD coefficient u1 0.0 to 1.0 0.385 ± 0.049
Quadratic LD coefficient u2 0.0 to 1.0 0.279 ± 0.043
Inclination (degrees) i 70.0 to 90.0 84.45 ± 0.14
Transit epoch (BJD/UTC) T0 ±0.5 in phase 2455859.691755 ± 0.000118

Table 5.4: Combined photometric parameters from both lightcurves.
Parameter Symbol Combined photometric parameters
Radius ratio rp/rs 0.13678 ± 0.00029
Sum of fractional radii rs + rp 0.1552 ± 0.0012
Linear LD coefficient u1 0.386 ± 0.040
Quadratic LD coefficient u2 0.280 ± 0.040
Inclination (degrees) i 84.44 ± 0.11

and 5.6 compares the light curves to the best-fitting models, including the residuals.

The two datasets were modelled individually, and the agreement between the best-fit

parameters is exceptionally good. The best-fit limb-darkening coefficients are also in

good agreement with the theoretically predicted values for WASP-50 of u1 = 0.407 and

u2 = 0.281 (Claret, 2004a).

The data were taken with 120 s and 150 s exposures, so the relatively long ex-

posure times were checked to see if they affected the derived parameters. For this

the data were modelled using the jktebop code (Southworth et al., 2004a), finding

results in good agreement with those from prism. jktebop was then used to numer-

ically integrate the model over the duration of each exposure whilst finding the best

fit (Southworth, 2011). The final parameters for each lightcurve were altered by only

0.1 to 0.25-σ, allowing the conclusion that smearing of the transit shape due to long

exposure times did not have a significant effect on the results.

To check for correlated ‘red’ noise the Monte Carlo and residual-permutation
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Figure 5.5: Transit light curve and the best-fitting model for WASP-50 on 2011/11/20.
The residuals are displayed at the base of the figure.

Figure 5.6: Transit light curve and the best-fitting model for WASP-50 on 2011/11/24.
The residuals are displayed at the base of the figure. The gap in the data between
phases 0.03 and 0.04 was caused by a technical difficulty with the shutter on EFOSC2.
This was corrected by a shutdown and restart of the instrument. The telescope pointing
was unaffected.
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algorithms in jktebop (Southworth, 2008) were used to assess the uncertainties in

the fitted parameters. A difference between the two methods of only 0.1% was found,

which showed that correlated noise was not present at a significant level in the data.

jktebop was also used to check whether the removal of the slow drift in bright-

ness with a first-order polynomial had any effect on the results. It was found that

including the polynomial coefficients as fitted parameters caused changes in the other

parameters of roughly 0.001-σ. Therefore the detrending process has had no deleterious

effect on the results.

The available times of mid-transit for WASP-50 were collected from the literature

(Gillon et al., 2011b; Sada et al., 2012). All timings were converted to the BJD/TDB

timescale and used to obtain an improved orbital ephemeris:

T0 = BJD/TDB 2 455 558.61237(20) + 1.9550938(13)× E

where E represents the cycle count with respect to the reference epoch and the brack-

eted quantities represent the uncertainty in the final digit of the preceding number.

Figure 5.7 and Table 5.5 show the residuals of these times against the ephemeris. Ex-

amining the results show no evidence for transit timing variations in the WASP-50

planetary system.

Figure 5.7: Residuals of the available times of mid-transit versus the orbital ephemeris
found in this work. The two timings from this work are the last two points after cycle
number 150.
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Table 5.5: Times of minimum light of WASP-50 and their residuals versus the ephemeris
derived in this work.

Time of minimum Cycle Residual Reference
(BJD/TDB − 2400000) no. (BJD)
55558.61237±0.00020 0.0 0.00000 1
55849.92131±0.00060 149.0 -0.00004 2
55851.87634±0.00028 150.0 -0.00010 2
55855.78664±0.00008 152.0 0.00001 3
55859.69680±0.00012 154.0 -0.00001 3

References: (1) Gillon et al. (2011b); (2) Sada et al. (2012); (3) This work.

5.3.1 Physical Properties of the WASP-50 System

The work in this subsection was performed by Dr John Taylor and is included here

because it is an integral part of the analysis of WASP-50.

With the photometric properties of WASP-50 measured the physical characteris-

tics could be determined. The same approach as in Section 3.3.2 was used, which uses

the parameters measured from the light curves and spectra, plus tabulated predictions

of several theoretical models. The values of i, rp/rs and rs + rp were used from Ta-

ble 5.4, and the stellar properties of effective temperature Teff = 5400 ± 100K, metal

abundance [Fe/H] = −0.12± 0.08 and velocity amplitude Ks = 256.6± 4.4m s−1 were

taken from Gillon et al. (2011b).

An initial value of the velocity amplitude of the planet, Kp, was used to calculate

the physical properties of the system using standard formulae and the physical con-

stants listed by Southworth (2011). The mass and [Fe/H] of the star were then used

as interpolates within tabulated predictions from stellar theoretical models, in order

to find the expected Teff and radius. Kp was then iteratively refined to find the best

agreement between the observed and predicted Teff , and the light-curve-derived rs and

predicted Rs

a
. This was performed for ages ranging from zero-age to the terminal-age

main-sequence, in steps of 0.01Gyr. The overall best fit was identified, yielding esti-
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mates of the physical properties of the system and the evolutionary age of the star.

This procedure was performed separately using five different sets of stellar theoretical

models (see Southworth, 2010) and the spread of values for each output parameter was

used to determine a systematic error. Statistical errors were propagated by perturbing

each input parameter in turn to quantify the effect on each output parameter.

Table 5.6: Physical properties of the WASP-50 system. The equilibrium temperature,
T ′

eq, is for an assumed zero albedo and full heat redistribution. Θ is the Safronov (1972)
number. Both statistical and systematic uncertainties are given. The first uncertainty
is the statistical uncertainty and the second is the systematic uncertainty.

Parameter This work Gillon et al. (2011b)
MA (M⊙) 0.861± 0.052 ± 0.023 0.892+0.080

−0.074

RA ( R⊙) 0.855± 0.018 ± 0.007 0.843± 0.031
log gA (cgs) 4.509± 0.012 ± 0.004 4.537± 0.022
ρA ( ρ⊙) 1.376± 0.032 1.48+0.10

−0.09

Mb (MJup) 1.437± 0.063 ± 0.025 1.468+0.091
−0.086

Rb ( RJup) 1.138± 0.024 ± 0.010 1.153± 0.048
gb (m s−2) 27.50± 0.64 27.5± 1.6
ρb ( ρJup) 0.911± 0.032 ± 0.008 0.958+0.095

−0.082

T ′

eq (K) 1410± 26 1393± 30
Θ 0.0853± 0.0024 ± 0.0007
a (AU) 0.02913±0.00059± 0.00025 0.02945±0.00085
Age (Gyr) 8.1 +6.7

−4.4
+1.5
−1.3

The final results of this process have good internal agreement (between the five

sets of theoretical models) and are also consistent with those found by Gillon et al.

(2011b). The final physical properties are given in Table 5.6 and include separate

statistical and systematic errorbars for those parameters with a dependence on the

theoretical models. The final statistical errorbar for each parameter is the largest of

the individual ones from the solutions using each of the five different stellar models.

The systematic errorbar is the largest difference between the mean and the individual

values of the parameter from the five solutions.
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5.4 Discussion and Conclusions

While the two transits of WASP-50 showed no evidence of starspot anomalies, they

achieved a ground breaking precision for ground-based transit photometry. When

viewing the Euler transit from Gillon et al. (2011b) with the second transit of WASP-

50 (see Figure 5.8) the difference in the rms scatter is evident. It should be noted that

the two telescopes are of different sizes, with the NTT being 3.58m and the Euler

telescope being 1.2m. Therefore the NTT is able to collect approximately nine times

more photons than the Euler.

In the pursuit of obtaining accurate properties for transiting extrasolar planetary

systems, photometric precisions of 258 and 211 ppm were achieved in observations of

WASP-50, which are a record for ground-based photometry of a point source. The

approach was to heavily defocus the 3.6m NTT and to use exposure times of 120–

150 s. The observations also benefited from the presence of a good comparison star, at

a distance of 2.25 arcmin from WASP-50 and with similar colours and r-band apparent

magnitude. The sky brightness was also low, as the Moon was below the horizon for

most of the observations.

The reduction of the data used two independent pipelines, finding agreement

between them. The lightcurves were modelled using two different models (prism and

jktebop), again finding good agreement. From these results and published spectro-

scopic measurements it was possible to deduced the physical properties of the WASP-50

system to a high-precision. The properties of the planet WASP-50 b are now known to

within 5% (mass), 2% (radius), 4% (density) and 2% (surface gravity). This compares

to 6%, 4%, 9% and 6%, respectively, in the discovery paper (Gillon et al., 2011b).

It was also possible to obtain a refined orbital ephemeris. Further improvements in

precision could be made in the shorter term by obtaining additional radial velocity

measurements, and in the longer term by using sets of stellar models that show a

better interagreement on properties of the host star WASP-50.

In the study of WASP-19 (Chapter 3) a modest discrepancy was found between

the limb-darkening coefficients measured from the three datasets taken with the same
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Figure 5.8: Comparison between the best transits from the NTT and Gillon et al.
(2011b). The top panel shows a transit and best-fitting model for the NTT observation
of WASP-50 taken on 2011/10/24. The bottom panel shows a transit and best-fitting
model for WASP-50 using the Euler telescope from Gillon et al. (2011b).
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telescope. This was attributed to the fact that WASP-19A is an active star with signif-

icant starspot activity, which alters the limb-darkening behaviour of the star (Ballerini

et al., 2012). Whilst WASP-50 does show modest chromospheric activity, as judged

from emission in the Ca II H and K lines (Gillon et al., 2011b), starspot anomalies

have not been observed in any of the six transit light curves of this system. The limb-

darkening coefficients found from the two WASP-50 datasets are in excellent agreement

(0.02-σ), supporting the suggestion that starspots affect stellar limb-darkening.

Figure 5.9: Simulated light curve of a 2R⊕ planet orbiting WASP-50.

Observations at this high-precision were then checked to see if they could be used

to characterise transiting super-Earths. A synthetic transit of a 2R⊕ planet was placed

in front of WASP-50 by injecting the transit into the residuals of the best fits from

both nights, and then binning the data together. This simulated light curve (Fig. 5.9)

shows a clear transit signature, suggesting that ground-based defocused photometry of

transiting super-Earths is a viable possibility.
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6 Summary and Final Discussion

This Chapter draws upon the discussions and conclusions from the application of prism

and gemc to the analysis of TEPs. Section 6.1 provides a brief summary of the research

contained in this thesis and gives the main conclusions of the research. Section 6.2

describes the key implications that prism and gemc have had on the exoplanet com-

munity together with the results from WASP-19 and WASP-50. It then goes on to

discuss future modifications that will be made to both prism and gemc and future

observational strategies which can make use of these new tools. Section 6.3 then ends

the Chapter with a final wrap-up.

6.1 Summary of Research and Main Conclusions

The research performed for this thesis required the creation of a model (prism) to pre-

cisely determine the photometric properties of a TEP’s lightcurve containing a starspot

anomaly. Because of the method employed in modelling starspots on a stellar disc, the

required computing time of a single function iteration was approximately one second.

When combined with an MCMC algorithm to both optimise the model and to perform

a Bayesian statistical analysis the total computing time increased to 106 seconds or

11.6 days. To reduce the computing time a new form of optimisation algorithm was

created (gemc). gemc is a hybrid between MCMC and a genetic algorithm (GA) and

is based on DE-MC put forward by Ter Braak (2006). While running tests on gemc,

it out-performed both an MCMC and a GA in ascertaining the best fit to transit pho-

tometry and the associated parameter uncertainties by only taking 14 hours per data

set for WASP-19.

After the creation of prism and gemc the next step was to analyse transit

photometry of TEPs containing starspot anomalies. This was done for three transits

of WASP-19 and four transits of WASP-6. Two transits of WASP-50 that did not

contain a starspot anomaly were also analysed.
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Two consecutive transits of WASP-19 separated by approximately 19 hours con-

tained a starspot anomaly and as such it was possible to determine that the two starspot

anomalies were caused by the same starspot. From this it was possible to precisely de-

termine the latitudinal rotation period of WASP-19 to be Prot = 11.76 ± 0.09 d at a

co-latitude of 65◦. This equated to a surface velocity of v(65◦) = 3.88 ± 0.15 km s−1.

With the position of the starspot known at two different but distinct times it was pos-

sible to calculate the sky-projected spin orbit alignment of λ = 1.0◦ ± 1.2◦. Combined

with the fact that there is no evidence to suggest that the true system obliquity ψ was

large, then it followed that WASP-19 b experienced disc-migration through interactions

with the protoplanetary disc to position the planet close to its host star.

Two transits of WASP-6 contained a starspot anomaly, but unlike WASP-19 the

two transits were separated by 27 days. Therefore it is not possible to definitively state

whether or not the starspot anomalies were caused by the same starspot. When mod-

elled by prism the starspot from both data sets were the same angular size. Coupled

with the fact that for a starspot to survive for 30 days it must have an angular size

greater than 1◦ (see Section 4.1.1) then it is feasible that the anomalies are due to the

same starspot. Using the circumstantial evidence both Prot and λ could be calculated

for WASP-6 by making the assumptions that the two starspot anomalies were gener-

ated by the same starspot and that WASP-6 is similar in magnetic activity, age and

therefore rotation as WASP-19. It was found that Prot = 12.56±0.13 d at a co-latitude

of 77.5◦ but it is also conceivable that Prot = 23.56± 0.13 d, due to the surface velocity

v of both rotation periods agreeing with previous measurements of v sin I (see Gillon

et al. 2009a; Doyle et al. 2013). In either case it was found that λ = 6.4◦ ± 2.3◦, indi-

cating potential axial alignment for the WASP-6 planetary system. This helps deduce

that WASP-6 b formed beyond the snowline and through disc-migration came to orbit

close to the host star, providing that the two starspot anomalies are created by the

planet crossing the same starspot twice.

The original observing strategy for WASP-50 was to obtain two consecutive

lightcurves containing starspot anomalies. It can be seen from Chapter 5 that no

starspot anomalies were detected. However, in the process the highest precision for
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ground-based photometry of a TEP was achieved. The rms (root mean squared) scat-

ter for each data set when compared to the best-fitting model generated from prism

and gemc are 211 and 258 ppm (parts per million). This compares to 316 ppm for

TrES-2 using the 10.4m Gran Telescopio Canarias (Colón et al., 2010). The analysis

of the WASP-50 lightcurves yielded new refined parameters for the host star’s mass

0.861 ± 0.057M⊙, radius 0.855 ± 0.019R⊙ and the planet’s mass 1.437 ± 0.068MJup,

radius 1.138±0.026RJup and density 0.911±0.033 ρJup. The results from the WASP-50

lightcurves reduced the uncertainties in the system parameters from 6% (mass), 4%

(radius), 9% (density) and 6% (surface gravity) to 5%, 2%, 4% and 2% respectively.

6.1.1 Main Conclusions

The development of gemc has allowed for a major reduction in the amount of com-

puting time required to find the global solution (compared to an MCMC and a GA)

in a large and rugged parameter space. This can be seen by comparing panel f in

Figure 2.15 and Figure 2.20. pikaia took around 2000 function iterations to find the

global solution peak (Figure 2.15) while gemc only took 200 function iterations to find

the global maximum peak (Figure 2.20), a 10-fold improvement. At present gemc only

takes 4000 function iterations to find the global solution for a transit lightcurve1. gemc

still requires a further 106 (10 chains of a 105 length) to perform a detailed Bayesian

analysis for the photometric uncertainties. This is due to gemc still performing a

MCMC analysis after the best-fitting solution is found.

In Section 1.5 it was shown that starspots affect the whole transit lightcurve and

therefore a new model was required to precisely determine the transit properties. In

the case of WASP-19 (Chapter 3) three transit lightcurves had been observed but two

of the lightcurves contained a starspot anomaly and as such when using conventional

models the photometric parameters from the three lightcurves did not agree within

1Using 200 chains for 20 generations for the WASP-6 data.
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their 1-σ uncertainties. This meant that only one of the lightcurves was able to be

used in the analysis of the WASP-19 system (see Hellier et al. 2011).

The research performed for both WASP-19 and WASP-6 show that using prism

to model transit lightcurves containing starspot anomalies, allows a precise determina-

tion of the system parameters. This shows that even if used as a stand alone method

both prism and gemc allow transit lightcurves contaminated by a starspot anomaly

to be used in the determination of the photometric parameters of TEPs. Without the

ability to analyse the two transits containing a starspot anomaly for WASP-19 then

the final photometric parameter uncertainties would have increased.2

In the event when two closely spaced transits both contain a starspot anomaly

(such as WASP-19) it is possible to determine the latitudinal rotational velocity and,

when combined with the physical stellar radius, the latitudinal surface velocity can be

found. It is also possible to measure λ and potentially the true stellar obliquity ψ.

In the case of WASP-19, λ was calculated by determining the angle between a vector

connecting the centre of the starspot at the two different positions and the horizontal.

In the event that ψ is large then the stellar rotation axis would be pointing either

towards or away from the observer and therefore the path traced out by the starspot

would represent a curved motion across the curved stellar surface. If it was possible for

a fourth transit of WASP-19 to have been observed between the two transits containing

the starspot anomaly then the precise value of ψ could have been calculated. This is

because if the centre of the starspot fell on the vector connecting the centre of the two

starspots then the stellar rotation axis would lie in the plane of the sky and ψ would

be equal to λ. On the other-hand if the centre of the starspot did not fall on the vector

then the travel path of the starspot would have been curved and the stellar rotation

axis would have been pointing either towards or away from the observer and ψ would

be greater than λ.

By determining λ and ψ of the planetary system it is possible to begin to under-

2For the inclination of WASP-19 the uncertainty would increase from ±0.23◦ to ±0.44◦, almost a
100% increase.
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stand the primary process in the dynamical evolution of the system. In Section 1.4.2

it was mentioned that the Rossiter-McLaughlin (RM) effect can be used to ascertain

a value for λ. One limitation of this method though is from an excess radial velocity

jitter (stellar activity aka. starspots). Therefore, the use of the RM effect either re-

quires magnetically quiet stars or the transit cord of the planet to bypass any active

latitudes on the stellar disc. The opposite is true when using starspot anomalies in

lightcurves to determine λ. Due to this the two different methods compliment each

other in probing the dominant process in the dynamical evolution of TEPs. It should

be noted that in both the cases of WASP-19 and WASP-6 the measured uncertainty in

λ is much smaller than measured using the RM effect. This implies that the starspot

method to measure λ is superior to the RM effect in terms of reduced uncertainty in

measuring λ. However, as was shown in observing WASP-50, the starspot method

does not always work in terms of obtaining transit lightcurves affected by a starspot

anomaly. The RM effect does have a high success rate in measuring a value of λ but

rarely achieves a similar precision.

Winn et al. (2010a) suggest that cool host stars will harbour planets with low

orbital obliquities due to having a thicker convective zone compared to hotter stars (i.e.

Teff > 6250K). They propose that the planetary orbit realigns with the photosphere of

cooler stars due to tidal dissipation with the stars convective zone. Winn et al. (2010a)

based their conclusions on the analysis of 19 planetary systems (see Figure 6.1).

At present there are 68 TEPs with published λ values3. The λ values for WASP-

6 and WASP-19 were updated to the values found in this work and a new plot of λ

against Teff was created (see Figure 6.2). To remove any ambiguity in the plot due to

negative values of λ the magnitudes, |λ| were calculated and plotted. As can be seen,

a large proportion of cool stars (Teff < 6250K) harbour aligned systems, while the

majority of misaligned systems have hot host stars. This trend supports the re-wording

of Winn et al. (2010a) from hot stars with hot-Jupiters will have high obliquities to

3All measured λ and Teff values of the known TEPs were obtained from the 30/01/2014 version
of the TEPCat catalogue (Southworth, 2011).
(http://www.astro.keele.ac.uk/∼jkt/tepcat/)



182

Figure 6.1: Cool stars have low obliquities (Winn et al., 2010a). The top panel shows
λ plotted against Teff of the host star for 19 planetary systems. The blue squares
indicate planets found from RV surveys while the red circles represent planets found
from transit surveys. The Teff = 6250K line represents the transition between aligned
and non aligned systems, with the two exceptions named. The bottom panel shows
the mass of the convective zone as a function of Teff (Pinsonneault et al., 2001).

cool stars with hot-Jupiters will have low obliquities. This trend can also be explained

by the time required for the system to align. Hot stars will have thinner convective

zones and will therefore take longer to align the photosphere with the planetary orbit.

Because of this, by examining λ of hot stars a greater proportion will have misaligned

systems compared to cool stars where the alignment process is much shorter and so

will have a higher proportion of aligned systems. Cool stars also live longer so the ones

that are observed are on average older. They have therefore had more time for tidal

effects to work (Triaud, 2011b).
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Figure 6.2: |λ| against Teff for 68 TEPs from TEPCat including WASP-19 and WASP-
6. The green and red data points are WASP-6 (left) and WASP-19 (right). The green
data points represent values from the literature (e.g. WASP-6: Gillon et al. 2009a and
WASP-19: Hellier et al. 2011) and the red data points represent the values found from
this work. The trend in the data suggests that cool host stars harbour aligned systems.
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6.2 Implications and Further Work

From the development of prism it is now possible for researchers to accurately model

both the transit and the starspot parameters from transit photometry of a TEP. The

development of gemc has shown how it is possible to combine MCMC with a genetic

algorithm to allow a fast and efficient exploration of a large and complex parameter

space, while maintaining the ability to perform a Bayesian statistical analysis. Making

these two new codes publicly available allows researchers to use starspot ‘contaminated’

lightcurves in their analysis to determine the physical properties of a TEP. It also allows

them to use transit photometry to measure λ and to investigate the dominant process

in the dynamical evolution of TEPs.

Since prism and gemc have been made publicly available4, they have been used

by the HAT-South research group to model transits containing a starspot anomaly for

the planetary system HATS-2 (Mohler-Fischer et al., 2013). Two transits of HATS-2

were observed in four optical passbands using GROND, obtaining eight transit light

curves. The optical passbands used are the same as those used for WASP-19 in Sec-

tion 3.4. In the first transit a dark starspot anomaly was detected coupled with a faint

bright starspot, while the second transit contained both a starspot and a clear bright

starspot anomaly in the g’-band (see Figure 6.3).

The bright starspot in the g’-band transit observed on 2012/06/01 can also be

seen in the other bands with decreasing amplitude, but due to prism only being able

to model a single starspot the g’-band lightcurve from the 2012/06/01 was left out of

the analysis. The other three lightcurves from 2012/06/01 were just modelled for a

single dark starspot.

Because the two transits were separated by 94 days Mohler-Fischer et al. (2013)

could not precisely determine that the dark starspot anomaly seen was generated from

the same starspot. However, they calculated that Prot = 31 ± 1 d and λ = 8◦ ± 8◦

for HATS-2 under the assumption that the two dark starspot anomalies are due to the

4http://www.astro.keele.ac.uk/∼jtr/downloads.html
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Figure 6.3: Two simultaneous optical transits of HATS-2 together with the best-fitting
models using prism and gemc (Mohler-Fischer et al., 2013). The left panel shows the
transit from 2012/02/28 and shows a dark starspot. The right panel shows the transit
from 2012/06/01 and shows a dark starspot in all four bands and a bright starspot in
the g’-band.

same starspot. Due to observing the dark starspot in four optical bands they were then

able to determine the temperature of the dark starspot and found both the temperature

and size of the starspot to be in agreement with other G-K dwarf stars. Mohler-Fischer

et al. (2013) was then able to use the final system photometric parameters from the

prism and gemc fits in the final analysis.
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The research conducted by Mohler-Fischer et al. (2013) has shown how both

prism and gemc are starting to be used in the scientific community and are an invalu-

able tool in the analysis of transit lightcurves of TEPs containing a starspot anomaly.

The research conducted by Mohler-Fischer et al. (2013) has also highlighted areas in

which both prism and gemc could be improved to increase the usefulness of the codes

to the scientific community.

6.2.1 Future Improvements to PRISM and GEMC

At present prism models a planetary transit using a circular orbit. While this allows

efficient modelling of the vast majority of TEPs it does leave some inconsistencies when

modelling TEPs with slightly eccentric orbits. This was encountered when modelling

the four transit lightcurves of WASP-6 where e = 0.054+0.018
−0.015. To solve this, prism

can be modified to use e and ω in calculating the position of the planet. Both e and

ω will be set as fixed parameters in the same way that the orbital period is. prism

will not be set to fit for e or ω because it is not possible to ascertain these values

from photometry only (due to only observing a small fraction of the orbit) unless an

occultation is observed (Kipping et al., 2012).

At present prismmodels the position of a starspot using longitude and co-latitude

coordinates. This allows a starspot to be positioned anywhere on the stellar disc but

the latitudinal position of the starspot is confined to lie within the transit cord. To

improve efficiency and convergence, the latitudinal position of the starspot could be

parametrised to a value −1 ≤ t ≥ 1, where t = 0 equates the centre of the starspot

to the impact parameter b, t = 1 represents the edge of the starspot touching the

upper edge of the transit cord (b+ rp + rspot) and t = −1 would represent the opposite

(b− rp − rspot). With this new parametrisation the inclination of the planetary orbit i

can be perturbed and the latitudinal position of the starspot will automatically shift

to the corresponding position on the stellar disc and so maintain the amplitude of the

starspot anomaly.

gemc is currently hard coded to fit for a single starspot. This was done due to
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designing an input file, edited by the user. From this the user can select the desired

parameter search space for each of the spot’s parameters. Removing this feature and

allowing gemc to select the parameter search space for each of the spot’s parameters

would allow the input file to simply ask how many dark and bright spots are to be fitted

for. This will allow gemc to fit for multiple starspot anomalies in a single transit.

Before the MCMC component of gemc begins the user designates in which gen-

eration the ‘burn in’ should end. Depending on the number of chains being used and

the size of the parameter space this can be after 20 generations. By introducing the

Gelman-Rubin statistic (Gelman & Rubin, 1992) gemc could self check the variance

within the chains and the population. Once the Gelman-Rubin statistic reaches a user

defined threshold (e.g. less than 1.1) gemc could display the best fit and allow the

user an option to resume with finding the parameter uncertainties or to stop to allow

the user to alter the parameter search space or the number of chains being used.

To find the uncertainties in the parameters gemc uses an MCMC algorithm. Due

to prism using 10 different parameters, trying to find the correct step size for each

parameter for individual data sets can take time and requires multiple runs. Replacing

the MCMC component with DE-MC would remove the need to do this. This is because

the step size for each parameter is dependent on the variance in the population clustered

around the solution. Replacing MCMC with DE-MC will also remove the need to run

gemc with a large number of chains to find the optimal solution and to then re-run

gemc with a small number of chains to allow for longer chain length to accurately

probe the posterior distribution. Using DE-MC it is possible to use over 100 chains

for only 1500 generations (Welsh et al., 2012) or approximately 105 function iterations.

This is a 10-fold decrease in the amount of function iterations required compared to

the MCMC section of gemc.

To improve the efficiency in modelling and fitting multiband photometry, prism

will be modified to fit multiple transits simultaneously which will increase prism’s

usability to the scientific community. The idea will allow users to set which param-

eters are shared between the individual lightcurves (e.g. inclination) and set which

parameters are independent for each lightcurve (e.g. transit depth).
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It was seen in Chapter 3 that the LD coefficients of transit lightcurves affected by

a starspot anomaly do not usually agree with theoretical values. Ballerini et al. (2012)

states that the LD coefficients are affected by starspots due to the LD coefficients

being wavelength dependent. Because a starspot will have a different temperature

compared to the surrounding photosphere then the LD coefficients of the region of

the photosphere affected by the starspot will be different to those of the stellar disc

(Ballerini et al., 2012). To help solve this problem prism will be modified to model

two sets of LD coefficients. The first set represents the LD of the stellar disc while

the second set will represent the LD of the starspot itself. This should allow the LD

coefficients of the stellar disc to agree with tabulated theoretical values.

To decrease the amount of time required to find the optimal solution prism will

be re-written in fortran. This will have two major effects. The first will make prism

more valuable to the scientific community, as users will no longer require an expensive

idl licence. The second will yield an expected improvement of a factor of five in speed

(e.g. Eastman et al., 2013). It was mentioned in Section 2.6.1 that the fastest method

to model planetary transits was to use an analytical approach. The final improvement

to prism would be to write a new analytical version, a-prism (Analytical Planetary

Retrospective Integrated Starspot Model). This final foreseeable improvement will

require the greatest investment of time, but the rewards of having a model that can

perform tens of function evaluations a second will allow multiple lightcurves to be fitted

simultaneously by greatly reducing the overall computation time for each lightcurve to

a matter of hours.

6.2.2 Future Observational Strategies

The primary future observational strategy is to probe the dynamical evolution of TEPs.

By performing high-precision defocused photometry of TEPs coupled with using prism

and gemc it is possible to accurately model transit photometry containing a starspot

anomaly. If two closely spaced transits contain a starspot anomaly it should be possible

to precisely determine if the anomaly is generated from the same starspot. From this
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method it is then possible to obtain Prot and λ of the system. By increasing the

number of known TEPs with measurements of λ it will be possible to explore the exact

dynamical evolution process involved in creating these systems. An offshoot from this

observational strategy would be in obtaining high-precision photometry which would

lead to measuring the physical properties of TEPs to an extremely high-precision (e.g.

Chapter 5). By achieving high-precision measurements of a planet’s radius it is then

possible to determine the mass of the planetary core using theoretical models (e.g.

Fortney et al., 2007).

For highly irradiated planets, the atmosphere at optical wavelengths is a vital

part of the energy budget of the planet, as it is where the bulk of the stellar flux

is deposited (Sing et al., 2011). By using either GROND on the ESO-MPG 2.2m or

BUSCA on the 2.2m telescope at Calar Alto, Spain to perform simultaneous multiband

defocused photometry of TEPs, it is possible to measure variations in the planetary

radius at different wavelengths. Such variations can arise from Rayleigh scattering and

from molecular opacities, so are tracers of the atmospheric conditions and chemical

composition (Southworth et al., 2012a; Mancini et al., 2013a,b,c). By using a wide

wavelength range (GROND simultaneously covers the optical to NIR and BUSCA

covers the optical) a broadband transmission spectrum can be constructed (e.g. Nikolov

et al., 2013). Whilst the Hubble Space Telescope (HST) is the instrument of choice for

such work, its extremely high cost coupled with large and unavoidable systematic effects

means it has been used for only a very few objects. Figure 6.4 shows an example of

multiband defocused photometry of HAT-P-32 taken using BUSCA. The rms scatter in

the UV band is only 920 ppm, a record for a ground-based optical UV band lightcurve.

The lightcurves were observed on 2011/08/24.

It is possible to perform multiband photometry to study the effect of starspots

on the transit shape as a function of wavelength. The presence of starspots hampers

accurate measurements of the planetary radius. By using prism this is not an issue.

Modelling a starspot at multiple wavelengths allows the temperature of the spot to

be found and breaks the degeneracy between the contrast and size of a starspot in

single-band photometry. This has already been done for a starspot in a single transit
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Figure 6.4: Three simultaneous optical transits of HAT-P-32 observed using BUSCA
on 2011/08/24. The best fits are shown where blue represents the Strömgren u-band,
green represents Strömgren b-band and red represents the Strömgren y-band. The rms
scatters from top to bottom are 920, 850 and 890 ppm.
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of WASP-19 observed by GROND and modelled using prism (see Section 3.4.2) and

two transits of HATS-2 (Mohler-Fischer et al., 2013), resulting in a measurement of the

spot’s temperature. Using GROND and BUSCA to observe planetary transits therefore

allows the temperature and size of starspots to be determined, probe the dynamical

evolution of the system, construct a broadband transmission spectrum of the planet,

and to determine the precise physical properties of the planet and its host star.

The transit-spot method gives a precise measurement of the stellar rotation period

which combined with the gyrochronology relationship (e.g. Barnes, 2007) gives the age

of the host star. The age can then be compared to results from stellar evolution models.

This was done for WASP-19 by Hebb et al. (2010) using Prot = 10.5 ± 0.2 days from

rotational modulation resulting in an age of 500–600 Myr for a G8V star like WASP-19.

This was not consistent with an older age inferred from stellar evolution models. They

proposed that as WASP-19 b has been spiralling in towards the host star during the

planets lifetime and that the planet has increased the spin rate for the host star.

By combining observations of the calcium H and K lines (which are indicators of

stellar magnetic activity) by using VLT/UVES with the starspot method it would be

possible to compare the starspot properties with both the stellar rotation period and

the calcium H and K lines. From this the relationship between the calcium H and K

lines and the physical properties of starspots can be investigated.

The speed of the improved version of a-prism will allow transit lightcurves of

TEPs containing starspot anomalies in the Kepler public science data to be used to

probe the dominant process in the dynamical evolution of these systems (e.g. Sanchis-

Ojeda & Winn, 2011; Sanchis-Ojeda et al., 2012, 2013), hence increasing the number

of possible TEPs for which a λ measurement is available.

6.3 Final Wrap-up

The work completed for this thesis has developed a new set of tools to allow researchers

to model starspot anomalies in planetary transits. Once developed the new tools were
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then used in the modelling of eight transits for three TEPs. This work will have

the affect of allowing transit lightcurves contaminated with a starspot anomaly to be

used in precisely determining the transit parameters of the system. When multiple

transits contaminated with a starspot anomaly are used prism will allow researchers

to determine the co-latitudinal rotation period of the host star and will also allow

them to determine λ. Because of this prism and gemc can be used to help researchers

begin in determining the dominant process in the dynamical evolution of the planetary

system.
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