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Abstract 

The western flower thrips, Frankliniella occidentalis (Pergande), is an increasing 

problem in UK strawberry crops.  The use of polythene tunnels has provided a more 

favourable environment for the pest, and pesticide-resistant strains have resulted in control 

failure.  There is a need for improved knowledge of thrips biology and for additional 

control methods that can be integrated with natural enemies in order to make thrips 

management programmes more robust.  The distribution of, and damage caused by, 

F. occidentalis was investigated to improve monitoring and decision-making, and the 

viability of using traps as a control was tested.  Over 74% of adult thrips on plants were in 

flowers.  Twice as many adult thrips were found in mature flowers at the top of the plant 

compared to those at the side.  The distribution of larvae between flower and fruit stages 

varied with thrips density.  All stages of flower and fruit were susceptible to damage but 

thrips larvae caused more damage than adults per individual, so the distribution and 

numbers of larvae between fruit stages best predicted the timing of damage.  The predatory 

mite Neoseiulus cucumeris Oudemans reduced damage by feeding on thrips larvae.  

Economic crop loss occurred at five adult thrips per flower in the absence of N. cucumeris, 

but up to about 11 adult thrips per flower with good mite establishment.  Adult 

F. occidentalis females overwintered on strawberry and on weeds, resulting in more thrips 

in second-year than in first-year crops.  Mass trapping using blue sticky roller traps caught 

sufficient adult thrips to reduce fruit damage by 55-68% and increased grower returns by 

an estimated £2.2k per hectare. The addition of the F. occidentalis aggregation pheromone, 

neryl (S)-2-methylbutanoate, to the traps doubled the trap catch, but a visual stimulus was 

essential for trapping. (R)-lavandulyl acetate reduced trap catch, suggesting that it is not 

part of the aggregation pheromone. 

 



Management of the western flower thrips on strawberry 

ii 

 

Table of Contents 

Abstract ................................................................................................................................. i 

Table of contents ................................................................................................................... ii 

Tables and Figures ............................................................................................................. viii 

List of species cited .............................................................................................................. ix 

List of abbreviations ............................................................................................................. xi 

Acknowledgements ............................................................................................................. xii 

Papers published ................................................................................................................ xiii 

 

Chapter 1  General introduction ........................................................................................ 1 

1.1. The biology of Frankliniella occidentalis................................................................... 1 

1.2. Pest status of Frankliniella occidentalis ..................................................................... 6 

1.3. Management of Frankliniella occidentalis ................................................................. 8 

1.4. Aims of the study ...................................................................................................... 13 

 

Chapter 2  General methods ............................................................................................. 18 

2.1. Introduction ............................................................................................................... 18 

2.2. Site details and growing systems .............................................................................. 18 

2.3. Thrips identification .................................................................................................. 19 

2.4. Counting and removing thrips from traps ................................................................. 22 

2.5. Validation of the method used for sampling strawberry flowers .............................. 22 

 2.5.1. Flower sampling: materials and methods .............................................................. 23 

 2.5.1.1. Which flower should be sampled? ................................................................. 23 

 2.5.1.2.  Is the sampling method accurate and consistent between samplers? ........... 24 

 2.5.2.  Flower sampling: results ...................................................................................... 24 

 2.5.2.1. Which flower should be sampled? ................................................................. 24 

 2.5.2.2.  Is the sampling method accurate and consistent between samplers? ........... 25 

 2.5.3.  Flower sampling: discussion ................................................................................ 25 

2.6. Environmental measurements ................................................................................... 28 

2.7. Rearing of Frankliniella occidentalis ....................................................................... 28 

2.8. Statistical analysis ..................................................................................................... 30 



Management of the western flower thrips on strawberry 

iii 

 

Chapter 3  Phenology in strawberry ................................................................................ 39 

3.1. Introduction ............................................................................................................... 39 

3.2. Materials and Methods .............................................................................................. 43 

 3.2.1.  Seasonal abundance .............................................................................................. 44 

 3.2.2.  Which thrips species are present? ........................................................................ 46 

 3.2.3.  Are there weed hosts within strawberry fields? ................................................... 47 

 3.2.4.  Do active stages of F. occidentalis overwinter? ................................................... 48 

 3.2.5.  Between-field distribution and abundance: is there a difference in thrips 

distribution and abundance between first and second-year crops? ................................. 50 

 3.2.6.  Within-field distribution and abundance: do temperature gradients within fields 

affect local abundance? ................................................................................................... 50 

 3.2.7.   Movement of adults between flowers ................................................................. 52 

 3.2.8.  Statistical analysis ................................................................................................ 53 

3.3. Results ....................................................................................................................... 53 

 3.3.1.  Seasonal abundance .............................................................................................. 53 

 3.3.2.  Which thrips species are present? ........................................................................ 55 

 3.3.3.  Are there weed hosts within strawberry fields? ................................................... 55 

 3.3.4.  Do active stages of F. occidentalis overwinter? ................................................... 56 

 3.3.5.  Between-field distribution and abundance: is there a difference in thrips 

distribution and abundance between first and second-year crops? ................................. 57 

 3.3.6.  Within-field distribution and abundance: do temperature gradients within fields 

affect local abundance? ................................................................................................... 58 

 3.3.7.   Movement of adults between flowers ................................................................. 59 

3.4. Discussion ................................................................................................................. 59 

 

Chapter 4  Damage to strawberry fruit ........................................................................... 83 

4.1. Introduction ............................................................................................................... 83 

4.2. Materials and Methods .............................................................................................. 87 

 4.2.1.  What is the effect of F. occidentalis on strawberry fruit damage? ...................... 88 

 4.2.2.  What is the effect of N. cucumeris on F. occidentalis fruit damage? .................. 89 

 4.2.2.1.  At four adult thrips per flower ...................................................................... 89 

 4.2.2.2.  At eight adult thrips per flower ..................................................................... 90 

 4.2.2.3.  Adjustment of the Economic Injury Level (EIL) in the presence of 

N.  cucumeris. ............................................................................................................. 90 



Management of the western flower thrips on strawberry 

iv 

 

 4.2.3.   When does fruit damage occur during fruit development? ................................. 91 

 4.2.3.1.  Which flower or fruit stages are susceptible to adult or larval thrips damage?

 .................................................................................................................................... 91 

 4.2.3.2.  Within-plant distribution of thrips ................................................................ 92 

 4.2.3.3.  Flower progression in relation to F. occidentalis life cycle ......................... 92 

 4.2.4.  Estimation of the EIL in a commercial pack-house ............................................. 92 

 4.2.5.  Validation of EILs in commercial crops .............................................................. 93 

 4.2.5.1.  What is the relationship between flowering periods, thrips per flower and 

fruit damage through the season? ............................................................................... 94 

 4.2.5.2.  EILs observed in commercial crops. ............................................................ 95 

 4.2.6.  How many flowers should be sampled to estimate thrips density? ...................... 95 

 4.2.7.  An action plan for growers ................................................................................... 96 

 4.2.8.  Statistical analysis ................................................................................................ 96 

4.3.  Results .......................................................................................................................... 97 

 4.3.1.  What is the effect of F. occidentalis on strawberry fruit damage? ...................... 97 

 4.3.2.  What is the effect of N. cucumeris on F. occidentalis fruit damage? .................. 97 

 4.3.2.1.  At four adult thrips per flower ...................................................................... 97 

 4.3.2.2.  At eight adult thrips per flower ..................................................................... 98 

 4.3.2.3.  Adjustment of the EIL in the presence of N. cucumeris. .............................. 98 

 4.3.3.  When does damage occur during fruit development? .......................................... 99 

 4.3.3.1.  Which flower or fruit stages are susceptible to adult or larval thrips damage?

 .................................................................................................................................... 99 

 4.3.3.2.  Within-plant distribution of thrips ................................................................ 99 

 4.3.3.3.  Flower progression in relation to F. occidentalis life cycle ....................... 100 

 4.3.4.  Estimation of the EIL in a commercial pack-house ........................................... 101 

 4.3.5.  Validation of EILs in commercial crops ............................................................ 101 

 4.3.5.1.  What is the relationship between flowering periods, thrips per flower and 

fruit damage through the season? ............................................................................. 101 

 4.3.5.2.  EILs observed in commercial crops. .......................................................... 103 

 4.3.6.  How many flowers should be sampled to estimate thrips density? .................... 103 

 4.3.7.  An action plan for growers ................................................................................. 104 

4.4. Discussion ............................................................................................................... 105 

 

 



Management of the western flower thrips on strawberry 

v 

 

 

Chapter 5  Optimising pheromone use for trapping..................................................... 131 

5.1. Introduction ............................................................................................................. 131 

5.2. Materials and Methods ............................................................................................ 138 

 5.2.1.  Does the release rate of neryl (S)-2-methylbutanoate affect trap catch? ............ 142 

 5.2.2.  Does the chiral form of neryl -2-methylbutanoate affect trap catch? ................. 143 

 5.2.3.  Does lavandulyl acetate increase trap catch? ..................................................... 144 

 5.2.3.1.  Does the ratio of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate affect 

trap catch? ................................................................................................................. 144 

 5.2.3.2.  Does the release rate of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate 

(5:1) affect trap catch? .............................................................................................. 145 

 5.2.3.3.  Does the chiral form of lavandulyl acetate affect trap catch? .................... 145 

 5.2.4.  Is the pheromone trap catch enhanced by certain trap colours? ......................... 146 

 5.2.5.  Is the pheromone trap catch enhanced by trap type? .......................................... 146 

 5.2.6.  Does trap height above the crop affect pheromone trap catch? ......................... 147 

 5.2.7.  Does trap spacing affect pheromone trap catch? ................................................ 147 

 5.2.8.  Is response to pheromone synergised by plant volatiles? ................................... 148 

 5.2.8.1.  In a pepper crop in Spain ............................................................................ 148 

 5.2.8.2.  In a strawberry crop in the UK ................................................................... 149 

 5.2.9.  Statistical analysis .............................................................................................. 150 

5.3. Results ..................................................................................................................... 151 

 5.3.1.  Does the release rate of neryl (S)-2-methylbutanoate affect trap catch? ............ 151 

 5.3.2.  Does the chiral form of neryl -2-methylbutanoate affect trap catch? ................. 151 

 5.3.3.  Does lavandulyl acetate affect trap catch? ......................................................... 152 

 5.3.3.1.  Does the ratio of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate affect 

trap catch? ................................................................................................................. 152 

 5.3.3.2.  Does the release rate of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate 

(5:1) affect trap catch? .............................................................................................. 152 

 5.3.3.3.  Does the chiral form of lavandulyl acetate affect trap catch? .................... 153 

 5.3.4.  Is the pheromone trap catch enhanced by certain trap colours? ......................... 153 

 5.3.5.  Is the pheromone trap catch enhanced by trap type? .......................................... 154 

 5.3.6.  Does trap height above the crop affect pheromone trap catch? ......................... 154 

 5.3.7.  Does trap spacing affect pheromone trap catch? ................................................ 155 

 5.3.8.  Is response to pheromone synergised by a plant volatile analogue? .................. 155 



Management of the western flower thrips on strawberry 

vi 

 

 5.3.8.1.  In a pepper crop in Spain ............................................................................ 155 

 5.3.8.2.  In a strawberry crop in the UK ................................................................... 156 

 5.3.9.  Thrips species composition ................................................................................ 156 

5.4. Discussion ............................................................................................................... 157 

 

Chapter 6 Can mass trapping reduce thrips damage and is it economically viable? 181 

6.1. Introduction ............................................................................................................. 181 

6.2. Materials and Methods ............................................................................................ 186 

 6.2.1.  What is the effect of trap colour on trap catch of pest and beneficial insects? .. 189 

 6.2.2.  Can thrips escape from sticky traps? .................................................................. 190 

 6.2.3.  Do traps decrease in efficiency through time? ................................................... 191 

 6.2.4.  Trap placement in commercial strawberry ......................................................... 192 

 6.2.4.1.  Does trap height and orientation affect trap catch? .................................... 192 

 6.2.4.2.  Are traps effective when placed between the tunnels? ............................... 193 

 6.2.5.  Are traps effective throughout the growing season? .......................................... 194 

 6.2.6.   Can mass trapping reduce thrips numbers and fruit damage? ........................... 195 

 6.2.6.1.  Pilot experiments in a first-year and a second-year crop ............................ 195 

 6.2.6.2.  Mass trapping with roller traps, with and without the aggregation 

pheromone. ............................................................................................................... 198 

 6.2.6.3.  Thrips identification ................................................................................... 200 

 6.2.7.  Cost-benefit analysis of mass trapping with and without pheromone. ............... 200 

 6.2.8.  Statistical analysis .............................................................................................. 201 

6.3.  Results ........................................................................................................................ 202 

 6.3.1.  What is the effect of trap colour on catch of pest and beneficial species? ......... 202 

 6.3.2.  Can thrips escape from sticky traps? .................................................................. 203 

 6.3.3.  Do traps decrease in efficacy through time? ...................................................... 203 

 6.3.4.  Trap placement in commercial strawberry ......................................................... 203 

 6.3.4.1.  Does trap height and orientation affect trap catch? .................................... 203 

 6.3.4.2.  Are traps effective when placed between the tunnels? ............................... 204 

 6.3.5.  Efficiency of trapping through the season .......................................................... 205 

 6.3.6.  Can mass trapping reduce thrips numbers and fruit damage? ............................ 205 

 6.3.6.1.  Pilot experiment in a first-year and a second-year crop ............................. 205 

 6.3.6.2.  Mass trapping using roller traps with or without aggregation pheromone . 207 



Management of the western flower thrips on strawberry 

vii 

 

 6.3.7.  Cost-benefit analysis of mass trapping with and without pheromone. ............... 208 

 6.3.8.  Thrips identification ........................................................................................... 209 

6.4.  Discussion .................................................................................................................. 209 

 

Chapter 7  General discussion ........................................................................................ 230 

7.1.  Monitoring thrips ....................................................................................................... 230 

7.2.  Economic Injury Levels ............................................................................................. 231 

7.3.  Phenology in strawberry ............................................................................................ 234 

7.4.  Optimising the use of the aggregation pheromone .................................................... 236 

7.5.  Mass trapping ............................................................................................................. 237 

7.6.  IPM of F. occidentalis in semi-protected strawberry................................................. 238 

 

8.  References .................................................................................................................... 240 

 

Appendix A:  Handout given to farm staff before sampling thrips in flowers . ................ 277 

Appendix B:  Temperatures recorded during the growing season, in a semi-protected 

strawberry  crop in the West Midlands ..................................................................... 278 

 

  



Management of the western flower thrips on strawberry 

viii 

 

Tables and Figures 

Because of the large numbers of tables and figures in this thesis, they are not indexed 

individually.  Instead they are grouped at the back of each chapter so that they can be 

located easily as follows: 

 

Tables                      Pages 

Tables 1.1 to 1.3   Chapter 1, introduction…………...………………………..…..15-17 

Tables 2.1 to 2.3   Chapter 2, general methods…………………………………….31-33 

Tables 3.1 to 3.6 Chapter 3, phenology in strawberry……………………………67-72 

Tables 4.1 to 4.5 Chapter 4, damage to strawberry fruit………………….…...114-118 

Table 5.1  Chapter 5, optimising pheromone use for trapping…………........165 

Tables 6.1 to 6.3 Chapter 6, mass trapping………………………………….…216-218 

 

Figures 

Figures 2.1 to 2.5   Chapter 2, general methods…………………………………….34-38 

Figures 3.1 to 3.10 Chapter 3, phenology in strawberry……………………...…….73-82 

Figures 4.1 to 4.12 Chapter 4, damage to strawberry fruit………………….…...119-130 

Figures 5.1 to 5.15 Chapter 5, optimising pheromone use for trapping…….……166-180 

Figures 6.1 to 6.11 Chapter 6, mass trapping…………………………………….219-229 

Figure 7.1  Chapter 7, general discussion…………………………………….239 

 

 

 

  



Management of the western flower thrips on strawberry 

ix 

 

List of species cited 

Thysanoptera 

Aeolothrips intermedius Bagnall  

Aeolothrips tenuicornis Bagnall 

Echinothrips americanus Morgan 

Frankliniella bispinosa (Morgan) 

Frankliniella intonsa (Trybom) 

Frankliniella occidentalis (Pergande) 

Frankliniella tenuicornis (Uzel) 

Frankliniella tritici (Fitch) 

Kakothrips pisivorus (Westwood) 

Oncothrips tepperi Karny 

Pezothrips dianthi (Priesner) 

Thrips angusticeps Uzel  

Thrips atratus Haliday   

Thrips fuscipennis Haliday  

Thrips hawaiiensis (Morgan)  

Thrips imaginis Bagnall 

Thrips major Uzel  

Thrips obscuratus (Crawford) 

Thrips palmi Karny 

Thrips tabaci Lindeman 

Fungi 

Beauveria bassiana (Balsamo) Vuillemin 

Botrytis cinerea Kunze 

Entomophthora thripidum Samson 

Erysiphe cichoracearum 

Metarhizium anisopliae Metsch. 

 Neozygites parvispora MacLeod & Carl 

Plants 

Brassica rapa Ssp oleifera de Candolle 

Calystegia sepium Linnaeus  

Capsella bursa-pastoris Linnaeus 

Cerastium glomeratum Thuill. 

Cucumis sativus Linnaeus 

Dendranthema grandiflora Tzvelev 

Fragaria X ananassa Duchesne 

Galium aparine Linnaeus 

Heracleum sphondylium Linnaeus 

Impatiens walleriana Hook 

Matricaria discoidea D. C. 

Phaseolus vulgaris Linnaeus 

Poa annua Linnaeus 

Senecio vulgaris Linnaeus 

Sisymbrium officinale (Linnaeus) Scop. 

Solanum nigrum Linnaeus 

Sonchus asper (Linnaeus) Hill 

Stellaria media (Linnaeus) Vill. 

Tagetes erecta Linnaeus 

Taraxacum officinale Agg. Wigg. 

Trifolium repens Linnaeus 

Tripleurospermum inodorum Linnaeus 

Urtica dioica Linnaeus 

Verbena officinalis Linnaeus 

Veronica persica Poiret 

Vicia faba Linnaeus 

 

 



Management of the western flower thrips on strawberry 

x 

 

Other invertebrate species 

Agrilus planipennis Fairmaire 

Agrotis segetum (Denis & Schiffermüller) 

Amblyseius andersoni (Chant) 

Anomala osakana Sawada  

Anthocoris nemorum (Linnaeus) 

Apis mellifera Linnaeus 

Bombus terrestris (Linnaeus) 

Carpophilus antiquus Melsheimer 

Carpophilus mutilatus Erichson   

Chrysoperla carnea (Stephens) 

Conogethes punctiferalis Guenée 

Cydia molesta (Busck) 

Dalotia coriaria (Kraatz) 

Dendroctonus ponderosae Hopkins 

Drosophila suzukii (Matsumura) 

Drosophila virilis Sturtevant 

Geolaelaps aculeifer Canestrini 

Gnathotricus salcatus (LeConte) 

Heterorhabditis megidis (Poinar) 

Ips pini (Say) 

Lygus rugulipennis Poppius 

Macrocheles robustulus (Berlese) 

Musca domestica Linnaeus 

Nauphoeta cinerea (Olivier) 

Neoseiulus californicus (McGregor) 

Neoseiulus cucumeris (Oudemans) 

Orius insidiosus (Say) 

Orius laevigatus (Fieber) 

Orius majusculus (Reuter) 

Phthorimaea operculella (Zeller) 

Phytonemus pallidus (Banks) 

Phytoseiulus persimilis Athias-Henriot  

 

Planococcus ficus (Signoret) 

Popillia japonica Newman  

Prostephanus truncates (Horn) 

Rhynchophorus palmarum (Linnaeus) 

Steinernema feltiae (Filipjev) 

Steinernema carpocapsae (Weiser) 

Stratiolaelaps scimitus (Womersley) 

Tetranychus urticae Koch 

Thripinema nicklewoodi (Siddiqi) 

Tribolium castaneum (Herbst) 

Trichoplusia ni (Hübner) 

 



Management of the western flower thrips on strawberry 

xi 

 

List of abbreviations 

ADAS  Agricultural Development and Advisory Service 

ANOVA  ANalysis Of VAriance  

AT   Action Threshold 

CV  Coefficient of Variation 

cv.  cultivar 

DT   Damage Threshold 

ee  enantiomeric excess 

EIL   Economic Injury Level 

GC   Gas Chromatography  

GC-MS Gas Chromatography - Mass Spectrometry  

GLM   General Linear Model  

GPS  Global Positioning System 

INSV   Impatiens Necrotic Spot Virus  

IPM   Integrated Pest Management  

NRI   Natural Resources Institute 

PEPI   Programs for EPIdemiologists 

RAPD-PCR  Random Amplified Polymorphic DNA - Polymerase Chain Reaction 

TSWV  Tomato spotted wilt virus 

  



Management of the western flower thrips on strawberry 

xii 

 

Acknowledgements 

Grateful thanks to Dr William Kirk, who has been an excellent teacher.  He has generously 

shared his encyclopaedic knowledge of thrips and statistics.  His attention to detail, 

tolerance, humour and cake meetings have been greatly appreciated.  Also thanks to Prof. 

Gordon Hamilton and Dr Srabasti Chakravorty for their helpful suggestions. 

A number of people have provided specific assistance for which I am very grateful: 

 Mr Simon Clarke, Mr George Busby and Sons and Mr. Stephen McGuffie kindly 

allowed access to their farms, fields, thrips and records. 

 Dr William Kirk and Prof. Gordon Hamilton helped collect data for the trapping 

experiments in Spain and Dr Abi Olaniran helped sample whilst I was away. 

 Prof. David Hall and Mr Dudley Farman (Natural Resources International (NRI), 

Chatham, Kent, UK) synthesised, tested and supplied chemicals used in trapping. 

 Dr Sarah Arnold (NRI) measured the spectral reflectance of sticky traps. 

 Mr Robert Irving (ADAS), Mr Simon Clarke (Manor Farm) and Ms Zlatka 

Zapryanova (Manor Farm) helped to test the monitoring method in the field. 

 Russell IPM Ltd and Syngenta Bioline Ltd supplied sticky traps.   

 Syngenta Bioline Ltd supplied aggregation pheromone lures (Thriplineams). 

 BCP Certis supplied natural enemies for thrips, spider mite and aphid control. 

 Mr Ron Knapper and Ms Zlatka Zapryanova helped to put up roller traps. 

This project was co-funded through the Horticulture LINK programme in the UK (project 

HL01107) by the Department for Environment, Food and Rural Affairs 

(http://www.defra.gov.uk/), together with a consortium of industrial companies: 

Agriculture and Horticulture Development Board, Bayer CropScience Ltd, Belchim Crop 

Protection Ltd, Berry Gardens Growers Ltd, Certis Europe BV, CPM Retail Ltd, East 

Malling Ltd, KG Growers Ltd, Russell IPM Ltd, Syngenta Bioline Ltd and Tesco Stores 

Ltd.  The author is a member of the Europe Australasian Thysanoptera Semiochemical 

(EATS) Network Project (Marie Curie IRSES No. 295194). 

Special thanks to my lovely daughter Erin, who has cheerfully moved houses and schools 

so that I could do this work.  She has been a great companion and an inspiration.  Thanks 

also to my family for their support, especially to my mother Jane. 



Management of the western flower thrips on strawberry 

xiii 

 

Papers published 

 

The following papers have been published from the PhD: 

Sampson, C., Hamilton, J.G.C. & Kirk, W.D.J. (2012) The effect of trap colour and 

aggregation pheromone on trap catch of Frankliniella occidentalis and associated 

predators in protected pepper in Spain. IOBC/WPRS Bulletin 80, 313-318. 

 

Sampson, C. & Kirk, W.D.J. (2012) Flower stage and position affect population estimates 

of the western flower thrips, Frankliniella occidentalis (Pergande), in strawberry. Acta 

Phytopathologica et Entomologica Hungarica 47, 133-139. 

 

Sampson, C. & Kirk, W.D.J. (2013) Can mass trapping reduce thrips damage and is it 

economically viable? Management of the western flower thrips in strawberry. PLOS 

ONE 8, e80787.  



General introduction________________________________________________Chapter 1 

 

1 

 

Chapter 1 

General introduction 

1.1. The biology of Frankliniella occidentalis 

Frankliniella occidentalis (Pergande) (Thripidae), the western flower thrips, belongs 

to the Thysanopteran insect order, commonly known as thrips.  Fossil records of thrips date 

back to the Jurassic period and the approximately 5,500 species described today have 

diversified into fungal feeders, herbivores, predators and omnivores (Mound, 2005).  

Thrips are most abundant in the tropics, but are found throughout the world from Alaska 

(60°N) to New Zealand (45°S) (Lewis, 1973).  They are separated from other insect orders 

by having a single mandible adapted for piercing and sucking (Heming, 1989) and an 

inflatable bladder (arolium) on their tarsi with which they hold onto surfaces (Heming, 

1971).  Thrips are characterised by the delicate fringed wings from which their name 

derives (thysanos = fringe, pteron = wing).  Most are small and elongate, <2 mm long and 

display thigmotactic behaviour, congregating in small spaces when at rest, making them 

hard to contact with insecticides and difficult to detect for quarantine and monitoring 

purposes (Hansen et al., 2003b).  Despite or perhaps partly because of their small size, 

about a hundred species, mainly in the family Thripidae, are important crop pests (Lewis, 

1997a).  The most damaging species (about 10 in number) are vectors of tospoviruses as 

well as causing direct feeding damage (Mound, 2002), of which F. occidentalis is currently 

considered the most economically damaging on a global scale (Mantel & Vierbergen, 

1996). 

Native to the western USA (Bailey, 1938), F. occidentalis has spread rapidly around 

the world since the 1970s, probably as a result of pesticide-resistant biotypes being 

transported through the plant-trade in an increasingly global market (Kirk & Terry, 2003).   

Recent work has revealed that there are two species of F. occidentalis, commonly known 

as the glasshouse and lupin biotypes, that have the same identification features but are 

associated with slightly different climates (hot/dry versus cool/ moist climates) (Brunner & 

Frey, 2010; Rugman-Jones et al., 2010).  There are sympatric populations in the USA, 
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New Zealand and China, but the glasshouse biotype (preferring hot/dry conditions) has 

spread most widely and is considered the most damaging (Brunner & Frey, 2010; Rugman-

Jones et al., 2010). The key to its success in colonising new areas is its adaptable and 

polyphagous nature, and field populations vary in their body size (Kirk, 1990), colour 

(Bryan & Smith, 1956), resistance to insecticides (Jensen, 2000), virus transmission (van 

de Wetering et al., 1999), life history parameters (de Kogel et al., 1997) and even in 

response to kairomones (W.J. de Kogel, pers. comm., 2011).   Frankliniella occidentalis is 

most attracted to flowering plants as pollen is their preferred food source (Trichilo & 

Leigh, 1988).  It has been recorded on over 240 host-plant species from 62 different 

families (Tommasini & Maini, 1995), but also feeds on small invertebrates such as eggs of 

spider mite, Tetranychus urticae (Trichilo & Leigh, 1986).   

Frankliniella occidentalis was first recorded in the UK in 1986 (Baker et al., 1993), 

since when it has established in and around commercial greenhouses throughout the 

country and has become a major pest of glasshouse crops such as cucumber, pepper and 

chrysanthemum (Kirk, 2002).  It can survive outside in southern Britain but its range is 

predicted to spread northwards with global warming (Cannon, 2004).  Frankliniella 

occidentalis was not recorded on UK strawberry in 1990 (Easterbrook, 1991), but 

incidence in soft fruit crops has increased with the use of semi-protected (open-sided) 

polytunnels, which now cover about 80% of UK strawberry (Garthwaite et al., 2013).  

Polytunnels are used to improve fruit quality and extend the growing season, but they also 

provide a more suitable environment for F. occidentalis survival and development.  

Frankliniella occidentals is currently the most damaging pest of semi-protected strawberry 

in the UK (Cross, 2012).  

Frankliniella occidentalis has six stages in its life cycle: egg, two larval stages (first 

and second-instar larvae), two pupal stages (propupa and pupa) and adult.  Adult females 

make a slit into plant tissue with their ovipositor and lay their kidney-shaped eggs singly 

into leaves, sepals, flowers and fruit.  Eggs hatch into the pale-coloured wingless larval 

stages, which are active feeders and are usually found hidden inside flowers or terminal 

buds (Lewis, 1973).  Most larvae drop to the ground to pupate in the soil or leaf litter 

(Holmes et al., 2012), but a greater proportion stay on plants with dense foliage (Broadbent 

et al., 2003), complex flowers (Buitenhuis & Shipp, 2008), or when relative humidity (RH) 

exceeds 81% (Steiner et al., 2010).  The two pupal stages are white and have wing buds, 

but are non-feeding and sessile (Moritz, 1997).   On hatching, the winged adults aggregate 
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to feed and mate (Terry & Gardner, 1990).  Females are larger and more variable in colour 

than males, which are uniformly pale (Bryan & Smith, 1956). 

Frankliniella occidentalis has an unusual haplodiploidy reproduction, which 

contributes to its success as a crop pest.  Fertilised eggs are diploid and produce females 

and unfertilised eggs are haploid, producing males (arrhenotoky) (Moritz, 1997).  As 

females do not have to mate to lay eggs, new colonies can develop from individual 

females, aiding spread and population increase.  The development of pesticide-resistant 

strains is accelerated as recessive, resistant genes would be expressed in haploid males, 

which would survive pesticide treatments and breed with other related survivors.  The sex 

ratio reflects the population density, with a higher proportion of males at low pest densities 

and more females at higher pest densities (Higgins & Myers, 1992), although there is 

usually a female bias as females live longer than males.  The sex ratio is also influenced by 

dispersal (females disperse earlier than males), attraction to colour, time of day, plant 

distribution, host quality, age of the female (the proportion of daughters decreases as the 

females age) and temperature (the proportion of daughters increases with temperature) 

(Matteson & Terry, 1992; Gaum et al., 1994; Kumm & Moritz, 2010).   

Under suitable conditions, F. occidentalis populations can increase rapidly in crops.  It 

has an intrinsic rate of increase (rm) of 0.17 per day on cucumber leaves at 25°C (van Rijn 

et al., 1995).  Development time decreases in a linear relationship with temperatures 

between about 10 and 35°C, above a minimum temperature for development of about 8°C 

(McDonald et al., 1998).  There is no obligate diapause in F. occidentalis, which breeds 

throughout the year under suitable conditions (Ishida et al., 2003).  Overwinter 

temperatures are critical to survival and early-season development and these are discussed 

with reference to UK strawberry in Chapter 3.  Development rates are highly variable, 

being affected by plant quality, host plant species (Zhang et al., 2007), cultivar (Rahman et 

al., 2010) and daylength (Whittaker & Kirk, 2004).  On strawberry, egg to adult 

development time decreased from 33 days at 16°C to about 10 days at 31°C (Nondillo et 

al., 2008).   The presence of pollen increases longevity and fecundity (Trichilo & Leigh, 

1988), so the flowering pattern within a crop can have a great effect on phenology in the 

field.  Adult females lay eggs throughout their lives, laying about two eggs per day when 

fed on strawberry leaves and about 7 eggs per day when fed on strawberry flowers, while 

living for 13 and 15 days on leaves and flowers  respectively (25°C, cv. Aromas) (Nondillo 
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et al., 2009).  In laboratory cultures, females can live up to 75 days and lay over 200 eggs 

(Robb & Parrella, 1991), but the longevity on different host plants in the field is unknown.   

Frankliniella occidentalis is most active during the day, although limited flight, 

walking, pollen consumption and oviposition occurs during the night (O'Leary & Kirk, 

2004; Whittaker & Kirk, 2004).  Flight is more frequent above light intensities of 7 – 14 

Wm
-2

 and is temperature dependent, with no take-off at 15°C and increasing take-off 

between 20 and 30°C (O'Leary, 2005).  As a result, peak flight occurs around the middle of 

the day in North European greenhouses when temperatures are warmest (Kiers et al., 

2000), although a dip is observed in the mid-day heat when temperatures exceed about 

30°C (Mateus, 1998).  Flight is concentrated near or just above the top of the crop, where 

most flowers and new growth occurs (Shipp & Zariffa, 1991).  Flight speed of F. 

occidentalis is estimated at 10-22 cm per second (Mateus, 1998) and thrips land at 

windspeeds above this (Teulon et al., 1999; Pearsall, 2002).  Thrips take off to find new 

hosts when they are starved (Liang et al., 2010), at higher densities (O'Leary, 2005) and 

when a crop has been harvested or has senesced (Lewis, 1964).  Female F. occidentalis 

have a greater dispersal response to flower senescence than males (Rhainds & Shipp, 

2003), possibly because they require higher quality food for egg-production.  In outdoor 

crops, wind-speed is often stronger than thrips flight-speed and thrips may drift long 

distances, carried on wind currents.  The related Frankliniella tritici migrates annually to 

infest strawberry fields in north-eastern USA where they have not overwintered, carried on 

spring frontal systems (Stannard, 1968), but the distance travelled by F. occidentalis 

between UK fields is unknown.  Flight is more frequent and prolonged at higher humidities 

(Terry & Gardner, 1990; Liang et al., 2010) and swarming is sometimes observed before 

storms, partly in response to changes in barometric pressure (O'Leary, 2005; Kirk, 2007).  

Thrips are known to land in response to attractive colours and scents (Brødsgaard, 1990), 

but it is not known what distance they can fly towards an attractive source.  Further 

information on flight behaviour would help to improve trapping programmes.   

Colours and scents are used by flower-inhabiting thrips to locate flowers (Kirk, 1984; 

Terry, 1997) and both are utilised to increase trap catch for the monitoring or control of 

thrips.  Frankliniella occidentalis are most attracted to blue, violet, white and yellow traps, 

which reflect their choice of flower colour (Brødsgaard, 1989; Robb, 1989).  A specific 

shade of blue, with a peak reflectance at 450 nm, is the most attractive in greenhouse-

grown crops (Brødsgaard, 1989; Vernon & Gillespie, 1990; Matteson et al., 1992), 
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although the reason is not known.  Attraction increases with light intensity and hue 

brightness (Matteson & Terry, 1992) but reduces with increased ultraviolet (UV) 

reflectance above 35% (Matteson et al., 1992; Walbank, 1996).  Males show a greater 

response to attractive colours than females when they are swarming (Vernon & Gillespie, 

1990; Matteson & Terry, 1992).   

Polyphagous thrips species, such as F. occidentalis, are attracted to odours that are 

common to many different flower species and they are more attracted to scented flowers 

than odourless ones (Annand, 1926).  Over 1,700 compounds have been identified from 

flowers (Knudsen et al., 2006) of which at least 45 are reported as thrips attractants, 

including benzenoids, terpenes and nitrogen-containing compounds (Koschier et al., 2000; 

Koschier, 2008; Davidson et al., 2008).  The most promising compounds have been 

patented and are sold commercially to improve trap catch, either for monitoring or control 

(Table 1.1).  The increase in F. occidentalis trap catch with scents can be relatively small 

(e.g. ×2-3) for resident thrips and the interpretation of trap catches requires an 

understanding of the behavioural response of the thrips species to each odour (e.g. 

increased activity or landing) and their movement within and between crops (Kirk, 1985c; 

Davidson & Teulon, 2007) (see Chapter 5).  The greater increase in trap catch observed to 

odours in Thrips obscuratus (e.g. >×1000) is partly explained by the thrips behaviour, as it 

migrates into peach orchards from surrounding areas in response to scents from ripening 

peaches (El-Sayed et al., 2014).  The response to scent is reduced when in competition 

with other scents from the crop or surrounding vegetation (Davidson et al., 2009).  The 

colour and size of traps is important as the odours are less effective without a colour 

component (Kirk, 1987; Teulon et al., 1999).  Some scents, such as carvacrol, thymol and 

cis-jasmone, are repellent and reduce feeding damage, so have potential for crop protection 

(Koschier, 2008; Egger & Koshier, 2014).  The use of scented and coloured traps for 

monitoring and control of F. occidentalis is discussed further in Chapters 5 and 6. 

Pheromones are used widely in crop protection, especially against lepidopteran and 

coleopteran pests, mostly for monitoring, mass trapping, mating disruption and improving 

pesticide efficacy (Howse, 1998).  The discovery of pheromones in thrips is relatively 

recent and the role of pheromones in defensive, aggregation and mating behaviour is still 

being explored and has yet to be fully exploited in crop protection.  An alarm pheromone 

found in the anal droplets of F. occidentalis larvae, containing decyl acetate and dodecyl 

acetate, repels and reduces oviposition rate in adults and increases larval activity (Teerling 
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et al., 1993b; MacDonald et al., 2003).   It causes larvae to jerk and wag their abdomens at 

predators and drop off plants (van der Hoeven & van Rijn, 1990) and could be used to 

enhance pesticide efficacy (Cook et al., 2002) or attract natural enemies such as Orius spp. 

(Teerling et al., 1993a).  Male adult F. occidentalis produce an aggregation pheromone, 

neryl (S)-2-methylbutanoate, which attracts both males and females (Hamilton et al., 2005) 

and has been used to increase trap-catch (Table 1.1).  Males aggregate in prominent or 

distinctive areas (lek-like) where females are likely to be found (Terry & Gardner, 1990), 

typically in the most visible (often top) flowers in a crop (Terry & DeGrandi-Hoffman, 

1988; Sampson & Kirk, 2012).  They defend small territories by lining up side by side, 

wagging and flicking their abdomens (Terry & Dyreson, 1996; Olaniran & Kirk, 2012).  

Females enter the aggregation to mate and then leave again (Terry & Gardner, 1990).  

There is a period of calm during copulation, which could involve pheromones (Pelikan, 

1951; Terry & Schneider, 1993).  Olaniran (2013) observed the same behaviour by females 

in response to lavandulyl acetate, suggesting that it may be involved.  In contradiction, Zhu 

et al. (2012) consider lavandulyl acetate to be part of the aggregation pheromone but did 

not test this theory with synthetic compounds.  A newly identified contact pheromone, 7-

methyltricosane, causes increased activity in males and causes females to raise their 

abdomens to reject mating (Olaniran et al., 2013).  In order to gain further insight into the 

role of these compounds and their possible use in pest management, various combinations 

of the synthetic compounds were field-tested in this study (see Chapter 5).   

1.2. Pest status of Frankliniella occidentalis 

The world-wide pest status of F. occidentalis reflects the wide range of crops from 

different plant families, continents and sectors that it attacks.  Host plants include outdoor-

grown crops, such as cotton, top fruit, peanuts, tomato, lettuce, peas, onion and grape, and 

greenhouse-grown crops, such as cucumber, sweet pepper, strawberry, chrysanthemum and 

rose (Robb, 1989; Terry, 1991; Frey, 1993; Leigh, 1995).  Both adult and larval F. 

occidentalis cause direct damage by feeding on plant leaves, flowers and fruit (Childers, 

1997).   Symptoms include leaf scarring, spotting, necrosis, distorted growth and deformed 

flowers (Kirk, 1997a).  Blotches of silvering is a typical symptom on leaves and petals, 

caused by air once fluid has been sucked out of the plant, which may also be spotted by 

dark faecal deposits (Mound, 1971).  Feeding often results in distorted growth when thrips 
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feed on young tissue, damaging cells which collapse and fail to expand during growth.  For 

example, a small amount of feeding on young cucumber fruit results in curling or 

pigtailing (Jacobson, 1997).  Uncontrolled, F. occidentalis feeding can result in direct crop 

loss or unmarketable produce as well as downgraded plants sold at a lower price (Shipp et 

al., 1998).  On strawberry, the most important damage caused by F. occidentalis feeding is 

fruit bronzing and weight loss, but the damage and tolerance to damage varies considerably 

between cultivars, climate and markets (Steiner & Goodwin, 2005a; Coll et al., 2007a), so 

local knowledge is required.  The relationship between thrips density and fruit damage was 

quantified under UK conditions in this study (see Chapter 4). 

As well as causing feeding damage, Frankliniella occidentalis is an important vector 

of tospoviruses such as Tomato spotted wilt virus (Tospovirus; Bunyaviridae TSWV) and 

can spread bacterial and fungal diseases which enter plants damaged by thrips feeding 

(Ullman et al., 1997).  Strawberry is not known to be a host of any thrips-vectored viruses 

(Parrella et al., 2003a), but F. occidentalis can exacerbate the spread of Botrytis cinerea 

(Coll et al., 2007a).    

Quantification of global crop losses due to F. occidentalis is difficult because of the 

diversity of areas and crops in which damage occurs (Kirk, 2002).  In the Netherlands 

alone, annual losses from direct damage were estimated at $30 million, with a further $19 

million due to TSWV when F. occidentalis first arrived in the country (Roosjen et al., 

1998).  Globally, annual losses from TSWV during the early 1990s exceeded $1 billion 

(Goldbach & Peters, 1994).  Further costs have been incurred by countries and growers in 

trying to eradicate F. occidentalis when it was considered a quarantine pest.  For example, 

Finland spent US$390,000 between 1987 and1990 on attempted eradication (Rautapää, 

1992).  The losses due to F. occidentalis change annually as its geographical range 

continues to expand, resulting in more damage in some crops and regions, while the 

implementation of successful IPM programmes in other crops and regions has improved 

control and reduced damage (Sampson et al., 2009).  In semi-protected UK strawberry 

crops, growers have suffered increasing losses to F. occidentalis over the last decade, as 

pesticide-resistant strains have spread through strawberry-growing regions and annual UK 

losses are estimated at £7-11 million (see Chapter 4). 
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1.3. Management of Frankliniella occidentalis 

In protected crops in Northern Europe, the most successful and sustainable control 

programmes rely on the integration of all appropriate control methods including natural 

enemies (van Lenteren, 2007), commonly known as Integrated Pest Management (IPM) 

(Dent, 1995).  The adoption of successful IPM worldwide has resulted in a significant 

reduction in pesticide use (Baker et al., 2002) with resulting benefits for human health  as 

well as improved, more sustainable control (Peshin et al., 2009).   

The main driver for the adoption of IPM by UK strawberry growers is the limited 

number of insecticides that are registered for use against F. occidentalis on strawberry 

(Table 1.2) and the poor control often achieved with those that are available.  This has 

resulted in complete crop loss on some occasions (R. Harden, pers. comm., 2013) and 

alternative control methods are sought.  Poor control can be the result of insecticide-

resistant biotypes, which are widespread globally following indiscriminate use of 

insecticides (Immaraju et al., 1992; Jensen, 2000; Bielza, 2008; Sparks et al., 2012).  In 

consequence, insecticides are used increasingly in combination with natural enemies, so 

their compatibility must be considered (Table 1.2).  Spinosad (Tracer, Landseer, 

Chelmsford, UK) is most commonly used as it can be highly effective against 

F. occidentalis (Rahman et al., 2011b).  It has low mammalian toxicity and its use can be 

integrated with predatory mites on strawberry (Rahman et al., 2012).  However, spinosad-

resistant F. occidentalis populations were found within three years of its commercial 

release in the UK (Colin Cater, Landseer, pers. comm., 2011) and are widespread 

throughout the world (Sparks et al., 2012).  Resistant thrips populations compete well in 

the field, but tend to get diluted by more susceptible biotypes at the end of the season 

(Contreras et al., 2008), so some efficacy can be retained by minimising insecticide use 

and rotating active ingredients from different chemical groups as a resistance management 

strategy (Denholm & Jespersen, 1998; Bielza, 2008).  More harmful insecticides with a 

residual action of several weeks cannot be integrated easily with natural enemies unless 

separated by time (e.g. used as end of season clean-up) or space (e.g used as spot-

treatments or soil treatment).  With few chemical options available, the use of biopesticides 

and physically acting products offer possible alternatives.   

Following a change in EU pesticide regulations aimed at improving food safety, fewer 

chemical insecticides are likely to be available to growers (Parente, 2006), so it essential to 
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make the best use of those that are available.  Control failure can be the result of poor 

spraying technique and timing rather than resistance, as F. occidentalis is difficult to target 

and the strawberry canopy difficult to penetrate.  Spray equipment and technique can be 

manipulated to improve thrips control (Lewis, 1997c).    A small droplet size and high 

spray pressure is required to penetrate the dense canopy of leaves in strawberry (Cross et 

al., 2000).  Increased water volume, electrostatic spraying, adjuvants and cultural methods 

such as de-leafing could be used to improve penetration of the canopy (Helyer & Brobyn, 

1992; Seaton et al., 1997).   Sprays are usually most effective at times of the day when 

thrips are most active as they are more exposed, but the use of sugars or the alarm 

pheromone have been found to increase activity and thereby improve pesticide efficacy 

(Cook et al., 2002; Parrella et al., 2003b). 

Cultural methods such as the choice of cultivar, growing methods and crop hygiene 

play an important role in IPM.  Starting the season with low pest numbers allows time to 

establish other control measures, such as predators and traps, before thrips numbers build 

up.  Incorporating hygiene measures into the normal routine of a farm, including weeding 

and end of season clean-ups to remove infested plant material and inspecting incoming 

plant material for thrips makes a vital contribution to thrips control (Parrella, 1996).  Weed 

control is especially important between crops as they provide a green bridge to carry thrips 

populations over to new or second-year crops (Katayama, 2006).  Flowering plants, such as 

chrysanthemum or verbena, have been identified that are very attractive to thrips, drawing 

them away from the crop as a trap crop, which can then be sprayed or removed (Buitenhuis 

et al., 2007), although whether these plant species would compete with a flowering 

strawberry crop is unknown.  As flowering plants in field margins are also refuges for 

natural enemies (Atakan, 2010), further work is required to identify field margins that 

minimise thrips invasion yet maximise naturally occurring beneficial insects for pollination 

and pest control (Wackers et al., 2008).  The advantages of growing strawberry over one, 

two or three seasons has to be weighed against the increasing thrips populations that can 

accumulate with each successive season.  As climate, alternative hosts and growing 

systems affect F. occidentalis populations, some basic information was required on its 

phenology in semi-protected UK strawberry crops to help target possible IPM methods 

(see Chapter 3).  

The choice of cladding and bed mulch can affect thrips numbers in polytunnels.  

Plastic films that block ultraviolet (UV) transmission (200-400 nm) but allow visible light 
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(400-700 nm) can result in 50-80% reduction in thrips (Antignus et al., 1996; Doukas & 

Payne, 2007).  Reflective materials, such as aluminiumised tape, are repellent to F. 

occidentalis and can reduce thrips invasion into closed polytunnels by 55% when placed 

around the entrances (McIntyre et al., 1996).  Reflective sheets have also been used as a 

mulch, reducing thrips populations by 33-68% in vegetable and ornamental crops 

(Greenough et al., 1990; Csizinszyk et al., 1995), although the effects reduce as soon as the 

crop canopy shades the mulch.  The use of plastic skirts as a physical barrier can delay the 

spread of thrips between fields with different infestation levels as thrips are generally low 

flying (Yudin et al., 1991).  

Physical, chemical and phenotypic traits of plants, such as trichome length, 

phenylpropanoid levels and flower colour can confer varietal resistance or tolerance to F. 

occidentalis in different crops (Kumar et al., 1995; Soria & Mollema, 1995; Maris et al., 

2004; Leiss et al., 2009).  On strawberry, cultivar differences have been observed in 

susceptibility to damage and tolerance to F. occidentalis, for example, females produced 

fewer live young, had a longer development time and reduced longevity on the cultivar 

‘Albion’ compared to ‘Camarosa’ (Rahman et al., 2010).  The timing and abundance of 

flowering can be controlled by planting and cladding dates and by de-flowering, which 

could also be used to manage thrips populations, as flower availability is a key factor in 

F. occidentalis population build-up (Gerin et al., 1999). 

The temperature and humidity cannot be manipulated in polytunnels in the same way 

as glasshouse crops, but some physical manipulation may be possible.  Watering and 

fertilisation regimes can affect thrips populations (Schuch et al., 1998) and damage 

symptoms (Larson et al., 2004).  In the 2011 season, UK strawberry growers were trialing 

the use of hot air and vacuum treatments previously used against capsids (Pickel et al., 

1994), but further work is required to refine heat treatments so that they do not scorch the 

strawberries or disrupt natural enemies.   

Natural enemies are an essential part of managing pesticide-resistant F. occidentalis in 

strawberry (Coll et al., 2005; Steiner & Goodwin, 2006; Shakya et al., 2010; Rahman et 

al., 2011a; Sampson et al., 2011).  Over 300 natural enemy species of F. occidentalis have 

been identified and evaluated in different crops around the world including predators 

(Riudavets, 1995), parasitoids (Loomans & van Lenteren, 1995), nematodes (Loomans et 

al., 1997) and entomopathogenic fungi (Butt & Brownbridge, 1997).  In practice, relatively 
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few species are released commercially, constrained by the need for economic mass rearing, 

start-up costs and legislation (van Lenteren et al., 2006) (Table 1.3).  Naturally occurring 

species, such as Orius spp., can be sufficient to control F. occidentalis without inundative 

releases where broad-spectrum pesticides are avoided (Coll et al., 2007a).   

The predatory mite Neoseiulus cucumeris (formerly Amblyseius cucumeris) is the most 

widely used predator against F. occidentalis in UK strawberry crops (Garthwaite et al., 

2013).  These small predatory mites only feed on eggs and first instar larvae (Shipp & 

Whitfield, 1991), so control relies on inundation of the crop with predators before thrips 

adult numbers build up (Jacobson et al., 2001b).  Neoseiulus cucumeris can establish in the 

absence of thrips in pollen-producing crops, but the frequency and numbers required to 

prevent crop damage in semi-protected strawberry needs further quantification (Fitzgerald 

& Jay, 2011).  Environmental conditions are critical for establishment as N. cucumeris is 

active between 8-30°C and eggs die below 65% RH (van Houten & van Lier, 1995; Shipp 

& van Houten, 1997).  Control failure may result from releasing too few predators too late, 

from invasions of adult thrips (Shipp & Whitfield, 1991), or from the use of incompatible 

pesticides against thrips or other pests (Malezieux et al., 1992).  As N. cucumeris is the 

main predator used in semi-protected strawberry in the East Midlands, UK, it was 

considered as a factor in the economic injury levels defined in Chapter 4.   

The soil dwelling mites Stratiolaelaps scimitus (formerly Hypoaspis miles) and 

Macrocheles robustulus and the predatory ground beetle Dalotia coriaria (formerly Atheta 

coriaria) can be used to reduce pupal stages of F. occidentalis (Bennison, 2006; Messelink 

& Van Holstein-Saj, 2008).  The combined use of predators in the soil and on the plant 

results in a more robust control strategy as the different predators attack different thrips 

stages.  Also, soil predators are more protected from insecticide treatments than plant 

predators (Wiethoff et al., 2004).  Stratiolaelaps scimitus is commonly used in 

combination with N. cucumeris in glasshouse strawberry and there is evidence that it 

would be equally effective in tunnel-grown strawberry (Rahman et al., 2011a). 

The predatory bugs Orius spp. are widely used in combination with predatory mites as 

they are voracious polyphagous predators that feed on both adult and larval F. occidentalis 

on strawberry (Shakya et al., 2010).  Orius spp. can be very effective on strawberry in 

Southern Europe and F. occidentalis populations decline sharply once flower occupation is 

high (Coll et al., 2005; Sampson et al., 2011).   Orius laevigatus is used in protected crops 
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in north European crops as it has a shorter diapause than O. majusculus, so can be released 

earlier in the season (Chambers et al., 1993).  Cool temperatures and a relatively long 

generation time (egg to egg takes 3-4 weeks at 25-20°C (Alauzet et al., 1994)) can limit its 

use in UK strawberry as mortality is high below 15°C and egg-laying mainly occurs at 

temperatures between 20-30°C (Riudavets et al., 1995).  As a result, Orius spp. 

populations may not build up fast enough to prevent thrips outbreaks unless released in 

large (uneconomic) quantities.  Improved early season establishment is sought by timing 

releases to correspond with flowering or by the addition of banker plants with pollen to 

boost food, especially between flower flushes (Boullenger et al., 2010; Bennison et al., 

2011), a technique that has been used effectively in cut roses (Bueno et al., 2009).  New 

rearing methods are being investigated that may reduce the cost of Orius spp., which could 

make higher release rates affordable (Arijs & De Clercq, 2001; Mendes et al., 2005).   

A second line of defence may be required to correct predator: prey imbalance and 

there are several biological options available which can be applied through conventional 

spray equipment and would offer a safer option than chemical insecticides.  Frankliniella 

occidentalis is susceptible to at least seven species of entomopathogenic fungi 

(Brownbridge et al., 2000; Ansari et al., 2008).  Lecanicillium spp. require high humidities 

(Helyer et al., 1992) and are unlikely to work on strawberry foliage although could be used 

in the soil (Sermann et al., 1996).  Beauveria bassiana (Naturalis-L, Intrachem, Italy) is 

more tolerant of lower humidities (Shipp et al., 2003) and achieved control equivalent to 

that of chemicals (65-87%) in cucumber (Jacobson et al., 2001a), but efficacy has not been 

demonstrated in strawberry.    Metarhizium anisopliae (Met 52, Fargro) has resulted in 

useful control (53-75%) of pupae in soil or compost (Brownbridge et al., 2011).  Novel 

methods of applying M. anisopliae are being developed, using “attract and infect” traps 

(Niassy et al., 2012), which could be tested in UK crops.  Entomopathogenic nematode 

species, such as Steinernema feltiae, can reduce adult and pupal stages of F. occidentalis, 

although control relies on repeated applications and sufficient moisture for the nematodes 

to locate their hosts before drying out (Ebssa et al., 2004; Buitenhuis & Shipp, 2005). 

Many natural enemy species have been identified that are specific to thrips and could 

offer exciting opportunities for improved control in the future.  These include the nematode 

Thripinema nicklewoodi (Greene & Parrella, 1995), the Entomophthorales fungi 

Entomophthora thripidum (Samson et al., 1979) and Neozygites parvispora 

(Ananthakrishnan, 1993).  Economic mass production of these potentially important 
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control agents is the key to getting them to market, offering a challenge to research 

workers.   

The implementation of IPM relies on accurate methods of estimating population 

density to determine the timing of preventative treatments, the success of existing 

treatments or the need for remedial treatments.  This is critical in the control of pesticide-

resistant F. occidentalis so that the use of unnecessary insecticide treatments can be 

avoided, as these may harm predators and increase resistance levels (Denholm & 

Jespersen, 1998).  Counts of thrips in flowers are most commonly used to estimate thrips 

density in strawberry, as it is a cost-effective method that can be used by growers 

(González-Zamora & Garcia-Marí, 2003), although traps can also be used (Steiner & 

Goodwin, 2005b).  To interpret monitoring results, growers need to know what density of 

thrips is likely to result in economic crop loss.  Published action, economic injury and 

damage thresholds are very variable in strawberry, ranging from 3-24 thrips per flower and 

there is a need to determine economic injury levels under UK conditions because 

thresholds vary with the cultivar, local market price and damage tolerance (see Chapter 4).   

1.4. Aims of the study 

This study was part of a larger project carried out in collaboration with science 

partners in the UK (ADAS, EMR, Warwick HRI and NRI).  The overall aim was to 

develop a comprehensive range of new effective methods for managing insecticide-

resistant F. occidentalis on semi-protected strawberry in the UK.  The methods 

investigated by other partners included a computer-based population and risk forecasting 

model, new selective pesticide treatments, new biopesticides and novel, more cost-

effective strategies for using existing predators.  These components were to be integrated 

with the monitoring and trapping methods developed in this study in order to recommend a 

comprehensive management strategy for the pest. 

The overall aim of this study was to improve the management of F. occidentalis in 

semi-protected strawberry in the UK, by developing an easy to use monitoring method 

with attendant economic injury levels (EILs), based on new insight into thrips biology, and 

by investigating the viability of using traps for control of F. occidentalis. 
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The specific objectives were to: 

(1) develop an easy to use monitoring method for thrips for use by growers on 

strawberry (see Chapters 2 and 4); 

(2) observe the phenology of F. occidentalis in UK strawberry fields (see Chapter 3); 

(3) quantify the damage to strawberry fruit caused by F. occidentalis (see Chapter 4); 

(4) determine flower count EILs for F. occidentalis in semi-protected strawberry (see 

Chapter 4); 

(5) optimise pheromone use for the monitoring and trapping of F. occidentalis (see 

Chapter 5); 

(6) develop a practical method for mass trapping (see Chapter 6); 

(7) test whether mass trapping of F. occidentalis reduces crop damage and is 

economically viable (see Chapter 6). 
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Table 1.1. Some odours that increased trap catches of thrips compared to unbaited controls. 

Odour Trap 

colour 

Trap increase 

 

Species Reference 

Benzaldehyde White ×4 T. tabaci Teulon et al., 2007b 

p-anisaldehyde White 

White  

Yellow  

Yellow  

Blue 

Blue 

Yellow 

Yellow 

White 

×3-8 

×2-3 

×2-6 

×10 

×2 

×2 

×11-15 

×3-20 

×4 

Thrips spp. 

T. imaginis 

F. occidentalis 

F. occidentalis 

F. occidentalis 

F. occidentalis 

♀F. occidentalis 

♂F. occidentalis 

T. tabaci 

Kirk, 1985c 

Kirk, 1987 

Teulon et al., 1993 

Hollister et al., 1995 

Brødsgaard, 1990 

Frey et al., 1994 

Teulon et al., 1999 

Teulon et al., 1999 

Teulon et al., 2007b 

Ethyl nicotinate Beige 

White 

Blue 

White 

White 

Yellow 

>100 

×27 

×2 

>100 

×4 

×0 

T. obscuratus 

T. obscuratus 

F. occidentalis 

T. obscuratus 

T. tabaci 

F. occidentalis 

Penman et al., 1982 

Teulon et al., 1993 

Frey et al., 1994 

Teulon et al., 2007b 

Teulon et al., 2007b 

Davidson et al., 2007 

Ethyl 

isonicotinate 

White 

Yellow 

×31 

×14 

T. tabaci 

♀F. occidentalis 

Teulon et al., 2007b 

Davidson et al., 2007 

Geraniol Blue ×2 F. occidentalis Frey et al., 1994 

Methyl 

isonicotinate 

Yellow 

Yellow 

White 

×14 

×5 

×9 

♀F. occidentalis 

♂F. occidentalis 

F. occidentalis 

Davidson et al., 2007 

Davidson et al., 2007 

Davidson et al., 2009 

Methyl 

anthranilate 

Green ×3-50 T. hawaiiensis Murai et al., 2000 

6-Pentyl-2H-

pyran-2-one 

Red >1000 T. obscuratus El-Sayed et al., 2014 

 

Neryl (S)-2-

methylbutanoate 

Blue 

Yellow 

Blue 

×3 

×2-3 

×2 

F. occidentalis 

F. occidentalis 

F. occidentalis 

Gómez et al., 2006 

Broughton, 2009 

Sampson & Kirk, 2013 
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Table 1.2.  Chemical and physical pesticides with label or off-label approval for use on 

semi-protected strawberry crops in the UK, 2013 (Lainsbury, 2013), which may have some 

activity against thrips.  The compatibility of selected pesticides with Neoseiulus cucumeris 

is taken from the Koppert side-effects list (Koppert, 2014) unless stated otherwise, where 

harmful >75% mortality following direct contact.  The side-effects lists provided by 

commercial biological control companies are compiled partly from IOBC (International 

Organisation of Biological Control) side-effects testing programme, as well as published 

papers and field experience. 

Product Active 

ingredient 

Compatibility with 

N. cucumeris 

Comments 

Decis 

(Bayer 

cropscience) 

deltamethrin Harmful for >8 weeks Use should be avoided 

during the growing 

season 

Equity 

(Dow) 

chlorpyrifos Harmful for >6 weeks Use should be avoided 

during the growing 

season. 

Pyrethrum 5 EC 

(Agropharm) 

Spruzit (Certis) 

pyrethrins Harmful for <1 week Poor thrips control. 

Predators can be re-

released after treatment. 

Majestik 

(Certis) 

maltodextrin Harmful for 1 day
a
 Physically acting, must 

achieve good contact. 

Savona 

(Koppert) 

Fatty acids Harmful for 1 day
a
 Physically acting, must 

achieve good contact. 

Tracer 

(Lanseer) 

spinosad Harmful for <1 week
b 

Resistant populations of 

thrips occur.  Can be 

integrated with predators. 

 

Dynamec 

(Syngenta 

Bioline) 

abamectin Harmful for 2 weeks
c 

Low-moderate thrips 

control. Residual effect is 

shorter during the 

summer. 

a 
No residual effect once dry. 

b 
Data from (Rahman et al., 2011b). 

c
 The residual effect is shorter in the summer as the chemical is degraded by 

sunlight. 
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Table 1.3.  Commercially available natural enemies of F. occidentalis for release in semi-

protected strawberry crops in the UK, 2013. 

Phylum/Order Species References 

Hemiptera Orius laevigatus*  

Orius majusculus  

Tommassini & Nicoli, 1995 

Tommassini & Nicoli, 1995 

Coleoptera Dalotia coriaria  Bennison, 2006 

Mesostigmata Stratiolaelaps scimitus* 

Geolaelaps aculeifa  

Neoseiulus cucumeris*  

Macrocheles robustus  

Berndt et al., 2004 

Gillespie & Ramey, 1988 

Bennison et al., 2002 

Messelink et al., 2006 

Nematoda Heterorhabditis megidis 

Steinernema feltiae  

S. carpocapsae  

Greene & Parrella, 1995 

Buitenhuis & Shipp, 2005 

Bennison et al., 2007 

Hyphomycetes Beauveria bassiana  

Metarhizium anisopliae  

Wright & Kennedy, 1996 

Ansari et al., 2007 

Source: Product lists from Biocontrol suppliers in the UK: Certis UK, Biobest, Fargro, 

Koppert, Syngenta Bioline.  Note: Some generalist predators that may feed on a few thrips 

but are not released specifically for their control, such as Amblyseius andersoni, Neoseiulus 

californicus, and Adalia spp. have been excluded.   

* = The species most commonly released in UK strawberry
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Chapter 2 

General Methods 

2.1. Introduction 

General methods that were common to several experiments are included here.  The site 

details and growing methods are summarised for the UK strawberry (Fragaria x ananassa) 

trial sites.  Methods of trapping, rearing, sampling, collecting and identifying thrips are 

shown, as well as methods for collecting temperature and humidity data.  Statistical 

methods were standardised throughout the study.  Further details or anomalies that are 

specific to individual experiments are given within the chapters where they are reported. 

2.2. Site details and growing systems 

With the exception of the pheromone screening experiments that were carried out in 

Spain (Chapter 5), all field experiments were carried out on three farms in the West 

Midlands area of the UK from 2011 to 2013.  Large, commercial, strawberry growing 

farms were selected that were 10-40 km apart and had a history of crop loss to 

F. occidentalis: 

 Manor Farm (owner, Mr. Simon Clarke), Hinxhill, Tamworth, B78 3DW.   

 Littywood Farm (owner, Mr. George Busby), Bradley, Stafford, ST18 9DW. 

 New Farm Produce Ltd. (owner, Mr. Stephen McGuffie), Elmhurst, Lichfield, 

WS13 8EX. 

The GPS grid references of field sites are in Table 2.1.  All experiments were 

conducted in semi-protected, everbearer strawberry crops, as these are highly susceptible 

to thrips damage (R. Harnden, pers. comm., 2011).  Everbearer cultivars flower and fruit 

continuously from about April to October, enabling F. occidentalis populations to build up 

throughout the season.  In contrast, main-crop strawberry cultivars only flower for about 

60 days and so thrips damage is less common.  The cultivars Camarillo (Driscoll’s, 
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Watsonville, USA) and Finesse (East Malling Research, East Malling, UK) were selected 

for most experiments, as they were most widely grown on the farms used and are 

susceptible to F. occidentalis damage (S. Clarke, pers. comm., 2011).  Camarillo was used 

for controlled damage experiments to enable comparison of data on the same strawberry 

cultivar between sites and years. 

Most commercial UK everbearer crops are grown under open-sided polytunnels during 

flowering and fruiting.  This improves fruit quality and extends the growing season, but 

also increases the temperature which favours F. occidentalis development (McDonald et 

al., 1998).  The polytunnels used in this study were either 8 m wide with five strawberry 

beds per tunnel or 6.5 m wide with four strawberry beds or rows per tunnel (Figure 2.1 A, 

B).  The tunnels were covered by polythene cladding (Manor farm and New farm produce: 

Haygrove, 150 micron, 3 season, Haygrove Ltd., Ledbury, UK; Littywood farm: 

Luminance THB, BPI-Visqueen, London, UK), from approximately early April to late 

October, and the cladding was removed over winter. 

Some crops were grown in raised beds, covered in black plastic mulch, and irrigated by 

T-tape (Table 2.1, Figure 2.1 A).  The planting density was 9.5-10 plants per m
2
.  Other 

crops were grown in coir growbags (10 cm x 100 cm), each contained 10 plants, and 

placed on a Mypex mulch (Don and Low Ltd, Forfar, UK) with drip irrigation (Dripnet PC, 

Netafim Ltd, Tel Aviv, Israel) (Table 2.1, Figure 2.1 B).  The growbags were spaced to 

give a density of 10 plants per m
2
.  Early season flowers were typically removed from first-

year crops during April to increase vegetative growth and strengthen the plant, as is usual 

commercial practice. 

During the experiments, growers continued with their usual pest and disease control 

programmes.  The thrips control mainly consisted of spraying with the insecticide spinosad 

(Tracer, Landseer Ltd, Chelmsford, UK) and releasing the predatory mite Neoseiulus 

cucumeris.  Further details on treatments that are specific to individual experiments are 

given within the chapters, where relevant. 

2.3. Thrips identification 

Identification of thrips requires detailed examination of minute features and specimens 

must usually be cleared, mounted and examined under a high-powered microscope to see 
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these.  The best method for clearing and mounting specimens varies according to the 

purpose of mounting and length of time required for storage.  Museum quality slides, that 

may last for hundreds of years, are dehydrated in increasing concentration of alcohol, then 

cleared (e.g. with clove oil) and mounted in Canada Balsam (Kirk, 1996).  Aqueous 

mounts such as polyvinyl lactophenol, Hoyer’s medium or Berlese fluid can be used for 

less permanent mounts (Kirk, 1996).  Polyvinyl lactophenol (Harris chemicals, Shenstone, 

UK) was used in this study, as it clears and sets the thrips well and preserved the slides for 

at least the length of the study.  Although effective, polyvinyl lactophenol is very corrosive 

and no longer available commercially. 

Thrips collected from the field or removed from traps were stored in 70% alcohol 

(industrial methylated spirits).  For identification, adult thrips were mounted on slides and 

examined under a compound microscope (x 200, Leica ATC 2000, Milton Keynes, UK) 

using the following procedure: 

 One drop (10 µl) of polyvinyl lactophenol (Harris chemicals) was placed on a glass 

cover slip (13 mm diameter, No. 0, 0.13-0.17 mm thick, Chance Propper Ltd., 

Waveley, UK) using a micro-pipette. 

 A thrips was removed from the alcohol sample using a fine paint brush, then 

positioned on its back in the polyvinyl in lactophenol on the glass cover slip. 

 The thrips abdomen was gently pressed down and the wings spread out with a bent 

needle, so that it was possible to see the antennae, tergites and wings. 

 A glass slide (76 x 26 mm, Thermo Scientific, Menzel-Gläser, Braunschweig, 

Germany) was placed on the cover slip and flipped over so that the thrips was on its 

front and bristles on the head could be seen.  If the wings had not spread fully, the 

cover slip was pressed down gently to spread them further, to improve the visibility 

of key identification features. 

Specimens were identified to species using two main keys (Mound et al., 1976; Kirk, 

1996).   The Royal Entomological Society key (1976) provides thorough identification of 

the British thrips fauna up to 1976 but does not include some of the invasive pest species 

that have established or been recorded in the UK since then, such as F. occidentalis, Thrips 

palmi and Echinothrips americanus.  Most of these invasive species are included in Kirk’s 

key (1996), although new species continue to be recorded, particularly in glasshouse crops.  

Identifications were checked against reference specimens in the collection of W. D. J. Kirk 
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at Keele University and against photographs in the interactive key of world thrips pests 

(Moritz et al., 2004).  Identification of F. occidentalis using molecular methods (RAPD-

PCR, random amplified polymorphic DNA-polymerase chain reaction) is possible (Kraus 

et al., 1999), but this technology was not available commercially during this study (Moritz 

et al., 2007). 

Only three thrips families occur in Britain and the Thripidae were separated from 

Aeolothripidae by their lack of broad wings and from Phlaeothripidae by their lack of a 

tube at the end of their body.  Within the Thripidae, Frankliniella adults were separated 

from Thrips adults by the following characters: 

 Antenna comprising of eight distinct segments (Figure 2.2 A). 

 Forewing with two complete rows of setae between the hair fringes (Figure 2.2 C). 

 A pair of setae anterior to the first ocellus. 

 Abdominal tergite 8 with ctenidia anterio-lateral to the spiracles. 

Frankliniella occidentalis adults were separated from other UK Frankliniella species by 

the following features: 

 The second post ocular setae are long, about 3 x the length of other post-ocular 

setae (Figure 2.2 B). 

 The pronotum anterior setae comprise of two long lateral and four short medial 

setae. 

The three features highlighted in Figure 2.2 were sufficient to identify F. occidentalis 

to species and were usually visible under a stereoscopic microscope (x 50, Wild M5A, 

Wild AG, Heerbrugg, Switzerland) before mounting.  Hence, F. occidentalis in alcohol or 

on sticky traps could be counted under a stereoscopic microscope (Wild M5A, Heerbrugg) 

without mounting every thrips.  Alcohol samples were poured into a petri-dish and the 

thrips were separated into species or family groups using a fine paint brush before 

counting. Voucher specimens (over 2000 in total) were selected at random from each 

group for mounting to confirm the identification, using random numbers and a grid square 

(5 mm
2
).  Specific details relating to the number of specimens mounted for identification 

for each experiment are given within the chapters where they occur. 
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2.4. Counting and removing thrips from traps 

Sticky traps removed from field experiments were wrapped in clear plastic and stored 

in a freezer at -20°C to preserve the thrips.  Trap catches of F. occidentalis were counted 

under a stereoscopic microscope (Wild AG, Heerbrugg) in the Keele laboratory, using the 

identification features detailed above (Figure 2.2).  As there were large numbers of thrips 

on the traps, a transparent acetate sheet with grid lines, 10 mm apart (approximately the 

field of vision under the microscope), was laid over the top of the trap to aid tracking, and 

the thrips were tallied using a click counter.  To avoid duplication of counts, any thrips 

falling under a grid line were counted in the cell to the left of the line.  Voucher specimens 

were mounted to confirm the identification.  Specific details relating to the number of 

specimens mounted for identification for each experiment are given in the chapters where 

they occur. 

Where mounting was required to identify a thrips, a small triangular section of the trap 

containing the thrips was cut out.  The section of trap was placed in a small watch glass 

containing terpentine (White spirit, Fisher Scientific, Loughborough, UK), which dissolved 

the glue allowing the plastic wrapper to be removed.  The thrips was then removed from 

the trap and mounted on a slide as above (see 2.3). 

2.5. Validation of the method used for sampling strawberry flowers 

An effective and reliable method of assessing thrips population density was required, 

that was also rapid and practical so that it could be used by growers for monitoring and 

decision-making.  Estimates of F. occidentalis numbers in strawberry usually focus on 

flowers, where adult thrips are most numerous (García-Mari et al., 1994; Laudonia et al., 

2000; González-Zamora & Garcia-Marí, 2003; Steiner & Goodwin, 2005a).  The relative 

accuracy of visual, tap or extraction sampling in flowers varies with the complexity of the 

flower.  Visual counts provide a reasonable estimate of adult thrips in simple flowers, such 

as busy lizzy (Impatiens walleriana), but not in complex flowers, such as marigold 

(Tagetes erecta) (Ugine et al., 2011).  Because of the time and expense involved in 

extraction techniques, visual inspection is considered the most cost-effective sampling 

method for adult thrips in open flowers like strawberry, recovering about 80% of adults but 

only 33% of larvae when compared to absolute counts of thrips extracted from flowers 
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placed in alcohol (González-Zamora & Garcia-Marí, 2003).  Differences in F. occidentalis 

abundance and population structure have been observed between flower stages in apple 

and strawberry (Terry & DeGrandi-Hoffman, 1988; González-Zamora & Garcia-Marí, 

2003).  Further work was required to test whether the selection of flower stage and flower 

position for sampling affects F. occidentalis population estimates in strawberry.   

The aim of this study was to define a reliable method of sampling thrips populations in 

flowers for the field experiments and for decision-making by growers.  The sampling 

method defined was tested to determine whether it could be used effectively by farm staff, 

following a short training session.  Thus, if reliable, sampling of adult thrips in flowers of a 

specific age and position, by eye, could be used throughout the study, and these could be 

related to grower counts used for decision-making. 

2.5.1. Flower sampling: materials and methods 

2.5.1.1. Which flower should be sampled?  

Flower stage.  Different stages of flower were sampled in a field of everbearer 

strawberries (cv. Camarillo) (Table 2.1, field 3) in order to determine the distribution of 

adults between flower stages.  On 5 and 12 July 2011, six stages of flowering were selected 

for sampling, which could be recognised easily in the field (Table 2.2).  On each of the 

sample dates, 30 plants were selected at random from a 50 m length of strawberry row.  

One flower from each of the six categories in Table 2.2 was sampled on the selected plants, 

or the nearest to that plant if there were no flowers of the right stage present.  A visual 

sampling method was used in situ as this was considered the most cost effective method 

for strawberry growers (González-Zamora & Garcia-Marí, 2003).  Each flower was picked 

and examined carefully using a ×7 optiVISOR head lens (LightCraft, London, UK) while 

peeling apart the petals to reveal the thrips, and the numbers of adult female, adult male 

and larval (first and second instar larvae combined) thrips were counted.   

Flower position.  On 26 July 2011, in the same crop, 27 mature flowers were selected 

from either the top or the side of randomly selected plants, using random numbers 

generated by Minitab 16 (Minitab Inc., Pennsylvania, USA), and the numbers of adult 

female, adult male and larval thrips (first and second instar larvae combined) were counted 

by eye per flower, using a head lens (as above). 
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2.5.1.2.  Is the sampling method accurate and consistent between samplers? 

To test whether the sampling of mature mid-aged flowers, taken from the top of 

strawberry plants resulted in a consistent estimate of thrips density and could be used by 

growers, a training hand-out was given to four samplers with instructions on how to count 

the number of adult thrips per flower.  The samplers included two experienced advisors 

and two inexperienced farm staff.  The hand-out showed which age and position of flower 

to sample and what to count, with pictures of thrips to aid identification (Appendix A).  

Flowers were taken from the middle of the strawberry beds as these were less disturbed by 

crop workers and machinery.  Two crops were sampled on 6 June 2012, one field with high 

numbers of thrips (Table 2.1, field 7) and one with low numbers of thrips (Table 2.1, field 

3).  In each crop, each sampler examined 30 separate flowers by eye, using a x10 hand 

lens, and recorded the number of adult thrips per flower.  At the same time 30 flowers were 

placed into tubes containing 70% alcohol and the number of thrips counted later under a 

binocular microscope.  The first samples were taken about 15 m in from the open end of 

the tunnel and samplers moved down the tunnel together so that although different flowers 

were sampled by each person, they were taken from the same area of crop.   

2.5.2.  Flower sampling: results 

2.5.2.1. Which flower should be sampled?  

Flower stage.  The abundance and frequency of development stages of F. occidentalis 

were significantly different between the flower stages sampled.  Adult females were 

present in flowers from the white bud stage and there were significantly more females in 

young and mature flowers than in senescent flowers on 12 July (Kruskal-Wallis test, 

H(2) = 13.92, P<0.001) (Figure 2.3 A).  The trend was the same on 5 July although the 

differences were not statistically significant (Kruskal-Wallis test, H(2) = 4.07, P = 0.13) 

(Figure 2.3 B).  Adult males colonised open flowers and there were significantly more 

males in mature and senescent flowers than in young flowers on 5 July (Kruskal-Wallis 

test, H(2) = 8.53, P = 0.03) (Figure 2.3 A).  On 12 July, the numbers of males were not 

statistically different between the open flower stages (Kruskal-Wallis test, H(2) = 2.12, 

P = 0.53) (Figure 2.3 B), although the proportion of males remaining in senescent flowers 

compared to peak numbers was 57% compared to 37% of females.  
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First instar larvae were the only thrips stage found in closed green buds, thereafter 

larval numbers increased significantly between flower stages as the flowers matured, being 

most abundant in senescent flowers (Kruskal-Wallis tests, H(2 ) = 33.68, P<0.001 (5 July); 

H(2)  = 44.03, P<0.001 (12 July)) (Figure 2.3 A, B).  There were significantly more thrips 

(all stages) in mature and senescent flowers than in young flowers (Kruskal-Wallis tests, 

H(2 ) = 32.24, P<0.001 (5 July); H(2) = 36.90, P<0.001 (12 July)).  All thrips stages declined 

in numbers after flowering. 

Mean temperatures for the two weeks before the sample dates were 17.2 °C for 5 July 

and 18.2 °C for 12 July. The flower development time from the start of white bud to the 

end of senescence (once all the petals had dropped) was 10-12 days. 

Flower position.  There were significantly more adult female (Kruskal-Wallis test, 

H(1)  = 21.4, P<0.001) and adult male (Kruskal-Wallis test, H(1 ) = 14.57, P<0.001) thrips in 

mature flowers at the top of the plants than in mature flowers at the side of the plants, but 

numbers of larvae were not significantly different between flower positions (Kruskal-

Wallis test, H(1) = 0.05, P = 0.82) (Figure 2.4). 

2.5.2.2.  Is the sampling method accurate and consistent between samplers? 

Population estimates of thrips were significantly different between samplers in a field 

with moderate thrips (one-factor ANOVA, F(4, 145) = 8.2, P<0.001) but not in a field with 

low thrips numbers (one-factor ANOVA, F(4, 145) = 1.48, P = 0.2) (Table 2.3).  Tukey’s test 

showed that the population estimates of three of the four samplers were not significantly 

different from the alcohol samples in the field with moderate thrips population, whereas 

the population estimate of one sampler (sampler 2, Table 2.3) was lower.  Sampler 2 (an 

experienced advisor) was deliberately sampling thrips numbers quickly as done when crop 

walking and did not count the numbers of thrips above 10 per flower, which brought down 

the mean.   

2.5.3.  Flower sampling: discussion 

Flower thrips aggregate in flowers, attracted by flower colour and scent.  An 

understanding of how the thrips select and move between flowers can help inform 

decisions as to the most appropriate flowers to sample for various purposes and aid in the 

interpretation of results.  In short-lived flowers such as bindweed (Calystegia sepium), 

Thrips major move in and out of flowers within a single day (Kirk, 1985a).  In field bean 
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(Vicia faba), both adults and larvae of Kakothrips pisivorus move along the raceme as new 

flowers open, resulting in an accumulation of larvae in flowers at the end of the raceme 

(Kirk, 1985b).  In strawberry, adult F. occidentalis leave flowers as they senesce to 

colonise newly open flowers (Figure 2.3), probably in search of fresh pollen.  Females 

require a richer diet than males for egg-production and move out of senescing flowers 

earlier than males. There were twice as many adults in top flowers than in side flowers.  A 

number of factors may contribute to the selection of flowers by thrips: top flowers are 

usually more visible than side flowers because they stand proud of the foliage and because 

they have more sunlight illuminating them, also both males and females aggregate in 

prominent flowers for mating (Terry & Dyreson, 1996; Hamilton et al., 2005).  Selection 

of top flowers by F. occidentalis is also observed in other crops such as apple where more 

thrips are found in king buds than in lateral buds (Terry, 1991).  On strawberry, eggs were 

observed in the sepals of green buds and hatching larvae were able to enter green buds and 

complete most of their development within a single strawberry flower under UK 

conditions.  Numbers of larvae increased with flower age as more eggs hatched, although 

larvae may also move between flowers.  

Larval numbers decreased sharply after flowering (Figure 2.3), which could be 

because they had completed their development and dropped to the ground to pupate 

(Holmes et al., 2012), or because they moved into fresh flowers.  Temperature may affect 

the population structure and abundance of F. occidentalis in flowers.  Larval development 

time decreases with increased temperature, for example from 14.4 days at 16 °C to 11.2 

days at 19 °C and to 5.5 days at 25 °C on strawberry (Nondillo et al., 2008).  As a result 

there is likely to be a greater proportion of larvae in flowers during the cool, cloudy 

conditions present during these experiments when flowers were open for 10–12 days, than 

might occur in warmer conditions or climates when thrips would pupate earlier and drop 

out of the flower.  Bloom progression in the family Rosaceae is also temperature 

dependent (DeGrandi-Hoffman et al., 1987) and a shorter flowering time at higher 

temperatures could also affect larval numbers.   

The variation in F. occidentalis abundance and population structure between flowers 

has implications for sampling. The choice of flower selected by different samplers and in 

different growing systems (e.g. table top vs. ground produced strawberries) is likely to 

vary.  In these experiments, flower selection could make a difference by as much as a 

factor of 4 for adult thrips (e.g. mature top flowers vs. senescent side flowers) or a factor of 
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3 for larvae (e.g. young flowers vs senescent flowers).  The male: female ratio also 

changed between flower stages (e.g. from 1:3 in young flowers to 1: 1 in mature flowers on 

5 July).  Under the conditions of these experiments the sampling of adult F. occidentalis in 

mid-aged mature flowers (fully open flowers, with petals intact, and pollen starting to 

dehisce) was likely to result in the most accurate population estimates as sampling newly 

opened  flowers could underestimate the numbers of males and sampling senescent flowers 

could underestimate the numbers of females.   

Visual assessment of larvae is not recommended for population estimates as larvae are 

difficult to see in flowers and usually underestimated (González-Zamora & Garcia-Marí, 

2003) and because numbers vary significantly between flower stages and temperatures.  

When an estimate of larval populations is required, for example to determine the efficacy 

of the larval predator Neoseiulus cucumeris, the sampling of senescent flowers may be 

most appropriate, where larvae are most abundant.  The numbers of larvae increase with 

flower age as more larvae hatch out, then decline sharply after senescence (Figure 2.3).  

The sampling of young flowers underestimates numbers of larvae as some would not have 

hatched yet and the sampling of older fruit would exclude larvae that had pupated and 

those that had moved into fresh flowers to feed on pollen. 

At the start of a flower flush or at the end of flowering it may not be possible to select 

a specific flower stage to monitor because it could be absent or scarce, resulting in a shift 

in thrips numbers and population structure that reflects the stage of flower sampled rather 

than a change in the population. For example, only young flowers might be available at the 

start of flowering resulting in a higher proportion of females and an underestimate of 

larvae.  This needs to be taken into consideration when interpreting results. This work 

demonstrates the importance of being consistent and precise in flower selection when 

developing thresholds or estimating populations of F. occidentalis in strawberry, 

specifying the age and position of flowers and selecting the most appropriate thrips stage to 

sample according to the purpose of monitoring. 

Comparison between counts by eye of adult thrips in mature mid-aged strawberry 

flowers carried out by different samplers, with counts of thrips in flowers from alcohol 

samples confirmed that the method of sampling was sufficiently accurate and could be 

carried out by farm staff following a minimum of training.  Rapid assessment can result in 

a low estimate of thrips numbers (e.g. sampler 2, Table 2.3), so it is important to train and 
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test samplers on farm before relying on their counts for decision-making.  Feedback from 

farm staff on the training sheet indicated that it could be improved by the addition of 

photographs of insect species that look similar to thrips and are frequent in strawberry 

flowers, such as springtails (symphilids).   

This study found that counting the numbers of adult thrips in mature, mid-aged 

flowers by eye resulted in a reliable estimate of the thrips population, and that this method 

was practical for use by growers, so was used throughout the rest of the project.  To ensure 

a consistent sample, flowers were always sampled from the top (rather than the side) of 

plants.  While this would result in a higher population estimate, such flowers are most at 

risk from thrips damage, so provide growers with an earlier warning of potential fruit 

damage. 

2.6. Environmental measurements 

Temperature and humidity was recorded every 30 minutes during all the UK 

experiments in strawberry.  A data logger (EL-USB-1, Lascar Electronics, Salisbury, UK) 

was suspended in the crop canopy at about flower height in a white delta trap (273 mm 

length, 130 mm height, œcos, Kimpton, UK) to shade it from the sun.  The delta traps were 

placed centrally in each experimental plot with the base of the traps resting on the 

strawberry bed or growbag between the strawberry plants and secured with bamboo canes.  

Data loggers were suspended in the air within the traps on a wire looped through a hole in 

the trap and the data logger cap. 

2.7. Rearing of Frankliniella occidentalis 

A stock culture of Frankliniella occidentalis was maintained to provide a reliable 

source of one species of thrips for controlled damage experiments, as these could not be 

obtained from strawberry fields, where mixed-species thrips populations were prevalent.  

Frankliniella species can be reared on a variety of host plants including beans (Phaseolus 

vulgaris) (Murai & Loomans, 2001), cucumbers (Cucumis sativus) (DeGraaf & Wood, 

2009), chrysanthemums (Dendranthema grandiflora) (van Dijken et al., 1993), as well as 

leaf discs (Teulon, 1992) and artificial diets (Murai & Ishii, 1982).  The presence or 
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addition of pollen increases the fecundity of F. occidentalis and therefore the productivity 

of a culture (Trichilo & Leigh, 1988).   

In these studies F. occidentalis was reared on potted chrysanthemums, D. grandiflora, 

which was easy, low maintenance and productive.  Thrips have been reared at Keele 

University since 1997, with the original thrips collected from UK glasshouses (Kirk & 

Hamilton, 2004).  Plants of various cultivars and colours were sourced from supermarkets 

(Sainsbury’s, Morrison’s or Tesco, Newcastle under Lyme, UK).  Rearing cages (height 

600 mm, width 430 mm, depth 430 mm) (Figure 2.5) had transparent perspex sides 

(Rubberfast Ltd., Fenton, UK), open bases and clear plastic sheeting roofs to let light into 

the cages.  Access was gained through a detachable front panel (width 370 mm, height 540 

mm), held by two wing nuts.  Cages were stood on capillary matting (Vattex Black, 

double-layer, Berrycroft Stores Ltd., UK) in a base tray (500 mm
2
).  Each cage was 

ventilated by a fan (12 V, 0.8 W, Papst-Motoren, St. Georgen, Germany) at the back, with 

two air vents in the front panel to prevent condensation.  There were six cages and four 

chrysanthemum plants per cage.  The oldest plant in each cage was replaced with a new 

plant every 4-7 days according to thrips demand and plant quality.  The culture was 

maintained at 25 ± 2°C, 60-80% RH and 16 h light: 8 h dark regime.  Full-spectrum 

fluorescent tubes were used to provide a UV component similar to daylight (58 W Sylvania 

Activa 172 professional, Germany).  Each tray was watered with about 500 ml tap water, 

three times a week, which was sufficient to maintain the plants without flooding the base 

tray and matting, so allowing any pupae there to survive and develop.   

The success of F. occidentalis rearing can be affected by a number of factors, such as 

temperature and humidity, micro-climate, host-plant quality, and infestations of predatory 

mites (Loomans & Murai, 1997).  Over the course of the three years of this study the 

rearing method was considered robust, easy to use and produced very large numbers of 

thrips.  However, overwatering resulted in a higher humidity within the cages, which 

increased the incidence of fungal diseases such as powdery mildew (Erysiphe 

cichoracearum), and increased incidence of the predatory mites Neoseiulus cucumeris and 

Macrocheles robustulus and of the ground beetle, Dalotia coriaria.  Predators are used 

increasingly by commercial growers to control F. occidentalis in glasshouse 

chrysanthemums and were observed on plants bought from the supermarkets.  DeGraaf and 

Wood (2009) developed a method of rearing that reduced predatory mite infestation, 

although labour for maintaining the cultures was increased.  Predatory mite egg hatch is 
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affected by low humidities, and I observed that reducing the humidity in the cages (by 

reducing the amount of watering) and replacing the plants more frequently was an 

alternative method of reducing the predatory mite population with minimal labour input.  If 

this observation is demonstrated experimentally, then conversely growers might be able to 

improve predatory mite efficacy by increasing the relative humidity in glasshouse crops, 

although the effect on plant diseases would also have to be tested. 

2.8. Statistical analysis 

Statistical analysis was carried out using Minitab 16 (Minitab Incorporated, 

Pennsylvania, USA).  Data and residuals were checked for normality using an Anderson-

Darling test.  In most cases parametric analysis of variance or regression was used on log10 

(n+1) transformed data to homogenise the variance unless stated otherwise.  Multiple 

comparisons used Tukey’s test.  Where data were not normally distributed, Kruskal-Wallis 

tests adjusted for ties were used.  Multiple comparisons used repeated pair-wise Mann-

Whitney tests.  Data were considered statistically significant where P < 0.05.  Where 

multiple comparisons are made, PEPI version 4.0 (Programs for EPIdemiologists) 

(Abramson & Gahlinger, 2001) was used to obtain Holm’s adjusted P-values. This 

procedure was proposed by Holm (1979) and recommended by Wright (1992).  

Tables and figures show untransformed means to aid interpretation and allow more 

intuitive comparison with counts that would be used by growers, whilst statistical analysis 

used transformed data.  The percentage or ratio comparisons between treatments and the 

controls were calculated by comparing the untransformed means. 
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Table 2.1.  Field sites and growing methods used for trapping and monitoring 

experiments in semi-protected strawberry crops in the West Midlands UK, 2011 to 2013. 

Field 

No. 

Location (field 

name) 

Grid reference 

Area 

(ha) 

No. of 

tunnels 

(width, m) 

Growing 

System
 

Cultivar Crop year 

1 Tamworth (Block 4) 2.0 22 (6.5 m) Raised 

beds 

Albion 3 (2011) 

 N 52° 37’ 23.54” W 1° 45’ 31.83” 

2 Stafford (Toft) 12.5 134 (8 m) Raised 

beds 

Camarillo 2 (2011) 

 N 52° 46’ 6.44” W 2° 10’ 14.14” 

3 Tamworth 

(Taylor’s) 

2.1 14 (6.5 m) Growbags Camarillo 

Camarillo 

Finesse 

2 (2011) 

1 (2012) 

1 (2013) 
 N 52° 37’ 19.73” W 1° 45’ 17.76”  

4 Tamworth (Road) 2.4 22 (6.5 m) Raised 

beds 

Camarillo 2 (2012) 

 N 52° 37’ 43.89” W 1° 46’ 10.88” 

5 Tamworth (Block 5) 2.0 22 (6.5 m) Raised 

beds 

Finesse 1 (2012) 

 N 52° 37’ 27.99” W 1° 45’ 27.45” 

6 Tamworth (Quarry) 2.4 17 (6.5 m) Raised 

beds 

Finesse 2 (2012) 

 N 52° 37’ 57.72” W 1° 46’ 11.86” 

7 Tamworth (12 acre) 1.0 8 (6.5 m) Raised 

beds 

Finesse 1 (2011) 

 N 52° 37’ 22.59” W 1° 45’ 51.58”  Finesse 2 (2012) 

8 Tamworth 

(Meadow) 

1.0 8 (6.5 m) Growbags EME676 1 (2012) 

 N 52° 37’ 16.28” W 1° 45’ 24.30” 

9 Stafford (a) 21.4 40 (8 m) Raised 

beds 

Camarillo 1 (2012) 

 N 52° 43’ 46.83” W 2° 16’ 13.03” 

10 Stafford (b) 21.4 40 (8 m) Raised 

beds 

Camarillo 2 (2012) 

 N 52° 44’ 05.83” W 2° 16’ 24.63” 

11 Lichfield (Hanch 7) 4.5 30 (6.5 m) Raised 

beds 

Camarillo 2 (2013) 

 N 52° 43’ 5.48” W 1° 51’ 01.37” 
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Table 2.2.  Description of the strawberry flower stages monitored for F. occidentalis  

Flower stage Description of flower stage 

Green bud Sepals forming a ball enclosing the petals, no petals showing. 

White bud Sepals opening, petals showing but not open, no anthers visible. 

Young flower Sepals open, fresh petals, anthers opening, pollen visible, fresh pistils. 

Mature flower All petals present, not withered, pollen shed and anthers darkened. 

Senescent flower At least one petal present, petals withered, drying anthers and styles 

Button fruit* No petals, receptacle protruding from sepal whorl, green seeds visible. 

* The button fruit is the young green fruit, where the seeds cover a greater area of the fruit 

than the flesh between. 
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Table 2.3.  The mean numbers of adult thripids ± SEM per flower and comparisons 

between different samplers compared to counts from flowers in alcohol, from fields with 

moderate (F(4, 145) = 8.24, P < 0.001) and low (F(4, 145) = 1.48, P = 0.21) thrips numbers, in a 

UK strawberry crop (n = 30 flowers).  Means followed by the same letter within each row 

are not significantly different (P > 0.05).  The table shows untransformed means whereas 

the statistical analysis used log transformed data. 

 

Field no.* 

(cv.) 

Mean numbers ± SEM of thrips per flower 

Experienced samplers Inexperienced samplers Alcohol 

samples 1 2 3 4 

Field 7 

(Finesse) 

7.0 ± 0.50 

a 

3.2 ± 0.50 

b 

6.0 ± 0.78 

a 

6.6 ± 0.67 

a 

5.7 ± 0.69 

a 

Field 3 

(Camarillo) 

0.07 ± 0.06 

a 

0.10 ± 0.05 

a 

0 ± 0 

a 

0 ± 0 

a 

0.03 ± 0.03 

a 

* Field number refers to Table 2.1 
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Figure 2.1.  Examples of field sites of everbearer strawberry crops grown under semi-

protected polytunnels showing (A) a second-year crop in July, grown in raised beds 

irrigated by T-tape (field 3 in Table 2.1) and (B) a first-year crop in April, grown in 

growbags with drip irrigation (field 2 in Table 2.1). 

 

A 

B 



General methods___________________________________________________Chapter 2 

 

35 

 

     

 

 

Figure 2.2.  Main identification features of F. occidentalis showing (A) antennae with eight 

clear antennal segments (B) post-ocular setae about three times as long as other post-ocular 

setae and (C) the forewing with two complete rows of setae between the hair fringes. 

  

A B 

C 

Segments VII and VIII 

Row 1 

Row 2 
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Figure 2.3.   The mean number ± SEM of thripids in different flower stages in a 

commercial UK strawberry crop (cv. Camarillo) on (A) 5 July 2011 and (B) 12 July 2011. 
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Figure 2.4.   The mean number ± SEM of thripids in top or side mature flowers in a 

commercial UK strawberry crop (cv. Camarillo). 
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Figure 2.5.  Perspex cages, with fans and vented doors, used for rearing Frankliniella 

occidentalis on potted chrysanthemum (Dendanthema grandiflora) at 25 ± 2ºC under full 

spectrum lighting (turned off for the photograph).
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Chapter 3 

Phenology in strawberry 

3.1. Introduction 

An understanding of factors that affect the severity and timing of F. occidentalis 

infestations is needed by growers to predict outbreaks, so that timely interventions and 

effective management programmes can be put into place.  This chapter examines seasonal 

fluctuations and the distribution of F. occidentalis within and between semi-protected 

strawberry crops in the West Midlands area of the UK, in order to identify factors affecting 

population development, such as temperature, food availability, overwintering and natural 

enemies (Kirk, 1997b).   

Temperature limits the range and abundance of cold-blooded animals like thrips, with 

upper and lower thresholds for development and survival (McDonald et al., 1998).  In a 

classic study, Thrips imaginis was sampled almost daily in rose flowers over a 14-year 

period in Australia, where seasonal fluctuations could be largely explained by temperature 

and rainfall data, with thrips populations increasing as soon as temperatures are suitable for 

development and crashing when it is too hot and dry (Andrewartha & Birch, 1954), 

although insufficient account may have been taken of density-dependent factors in their 

study (Smith, 1961).  Temperature-based models can predict F. occidentalis population 

development reasonably well, early in the season, in some glasshouse cucumber and 

chrysanthemum crops (Wang & Shipp, 2001; Nothnagl et al., 2008) and broad risk of an 

outbreak in outdoor crops (Olatinwo et al., 2011), but are less good once thrips population 

growth is limited by competition for resources or by natural enemies.    

In UK strawberry, early-season F. occidentalis population development may be 

restricted by low temperature.  Minimum temperature for F. occidentalis development has 

been estimated at between 6.7 and 11.8°C, by assuming a linear relationship between 

development rate and temperature, and extrapolating the temperature down from data 

points tested at higher temperatures (mostly between 15 to 30°C) (Table 3.1).  Because 

there is high mortality and possibly a non-linear relationship at the extremes, and the 
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threshold may differ for each life stage, the thresholds should be viewed with some caution 

(Bergant & Trdan, 2006).  Some of the variability may result from different biotypes, cold-

hardening or from local adaption to cooler climates (Felland et al., 1995; McDonald et al., 

1997b; Brunner & Frey, 2010).  Once above the threshold, development time decreases in 

a linear relationship with temperature between 10 and 35°C, with optimum temperatures of 

25 to 29°C and high larval mortality above 35°C (Lublinkhof & Foster, 1977; van Rijn et 

al., 1995; McDonald et al., 1998).  Egg-laying rate increases with temperature (Robb, 

1989) and population growth did not occur below 15°C on cucumber (Gaum et al., 1994).  

On strawberry, egg to adult development time is around 33 days at 16°C (typical mean 

early-season temperatures in UK polytunnels), 13 days at 25°C (typical mean summer 

temperatures in UK polytunnels) and 10 days at 31°C (Nondillo et al., 2008).  Reported 

temperature requirements to complete a generation (egg to adult) vary between 114 to 268 

day-degrees above a minimum temperature (7 to 11°C) (Table 3.1), allowing for 

completion of three to five generations per year outside in the West Midlands area of the 

UK or 11 to 18 generations in Brazilian strawberry (Sites & Chambers, 1990; McDonald et 

al., 1998; Nondillo et al., 2008).   The number of generations that occur in semi-protected 

UK strawberry is not known and is estimated in this study. 

Frankliniella occidentalis is a predominantly a flower-inhabiting species, and the 

flowering pattern is likely to be a key factor affecting its population growth in strawberry.  

The presence of pollen increases fecundity and reduces development time in F. 

occidentalis (Trichilo & Leigh, 1988), almost doubling the intrinsic rate of increase on 

cucumber (Hulshof et al., 2003).  On strawberry, at 25°C, females produced nearly eight 

times more offspring (70 offspring per female) in the presence of flowers compared to 

leaves alone (Nondillo et al., 2009).   In chrysanthemum, there are conflicting data:  Gerin 

et al. (1999) found limited F. occidentalis population growth without flowers, whilst 

Nothnagl et al. (2007) found little difference in population growth between flowering and 

non-flowering plants.  As thrips population density increases, competition between thrips 

for space and resources within flowers reduces the oviposition rate (Kirk, 1994; O'Leary, 

2005), which is likely to be a limiting factor in UK strawberry.  Further information is 

required on the effect of the timing of flowering or flower density on F. occidentalis 

population development in strawberry. 

Natural enemies limit the growth of most animal populations and control of pesticide-

resistant F. occidentalis relies on inundative releases of predators in UK protected crops 
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(Jacobson, 1997) (see Chapter 1, Table 1.3).   The use of natural enemies for thrips control 

was being investigated by other science partners within this project, so was beyond the 

scope of this study.  However, limited sampling of important natural enemies, such as 

Neoseiulus spp. and anthocorids was carried out and the impact of N. cucumeris on thrips 

damage and economic injury levels is tested in Chapter 4. 

The presence of flowering weeds within and surrounding crops could also affect the 

phenology of thrips in strawberry.  Frankliniella occidentalis adults have been collected 

from well over 100 species of flowering weeds, e.g. (Chamberlin et al., 1992; Chellemi et 

al., 1994; Cho et al., 1995a; Katayama, 2006).   Thrips larvae were counted in these 

studies, but not usually identified to species because of a lack of suitable identification 

keys, however Kahn et al. (2005) reared larvae through to adults for identification and 

found that the distribution of F. occidentalis larvae between host plants matched that of the 

adults.  In controlled trials, weed density had limited or no effect on seasonal abundance of 

F. occidentalis in apples or field beans (Cossentine et al., 1999; Cockfield & Beers, 2008; 

Atakan, 2010), possibly because of the low abundance of weed flowers compared to a 

flowering crop.  However, sudden influxes of thrips and associated damage have been 

observed when weed control results in movement of thrips onto a crop.  Weeds also 

provide overwintering sites that could increase the carry-over of thrips between crops 

(Chamberlin et al., 1992; Cho et al., 1995a).  Conversely, weeds may contribute to thrips 

control by providing food and refuge for key natural enemies, such as anthocorids and 

predatory mites (Atakan, 2010).  Predators survive on pollen and nectar supplied by the 

weeds when they would otherwise decline or die out, and then move back into the crops at 

flowering (Van Rijn et al., 2002).  In such cases, the weeds are working as banker plants 

which have improved Orius spp. establishment in ornamental crops.  Full investigation into 

the effect of weeds on thrips populations in strawberry was beyond the scope of this study, 

but initial studies were carried out to identify whether common weed hosts are present in 

UK strawberry crops and whether these contribute to the overwintering of F. occidentalis. 

The ability of F. occidentalis to overwinter in semi-protected strawberry affects early-

season abundance.  Frankliniella occidentalis overwinters outside in southern USA and 

southern Europe, but not in the cooler climates of Canada and Denmark (Chambers & 

Sites, 1989; Broadbent & Hunt, 1991; Brødsgaard, 1993a).  Most records of overwintering 

are of adults (Chambers & Sites, 1989; Chamberlin et al., 1992), which are hardier than 

pupae and larvae (Brødsgaard, 1993a; McDonald et al., 1997b).  As the pupal stage is 
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short-lived, it could be that the pupae hatch as adults before the spring.  Pupae are recorded 

through the winter in California (Campbell et al., 2012), but this could be the result of 

warmer temperatures there.  Typically, F. occidentalis (all stages) survives for less than a 

week at constant temperatures below 0°C, although adults overwintered in NE USA in the 

soil and in the open air after 35 consecutive nights below zero, suggesting that warmer 

daytime temperatures allow some recovery (Felland et al., 1993, 1995; McDonald et al., 

1997b).   In the UK, F. occidentalis has predominated in glasshouses where it can breed 

throughout the year when conditions are suitable, as there is no obligate diapause 

(Brødsgaard, 1994; Ishida et al., 2003).  Outside, it can survive in southern UK in mild 

winters and for short periods of cold weather, but prolonged chilling results in high 

mortality (90 to 100%) and an experiment showed no overwinter survival on leaf discs in 

the Midlands (McDonald et al., 1997a-b; Bale & Walters, 2001).  Exposure to cold 

temperatures also reduced the reproductive output of survivors by about half (McDonald et 

al., 1997a), so winter temperatures could have a critical effect on both survival and early 

season population growth.  Further data were required to confirm whether adults 

overwinter in strawberry crops in the West Midlands and to determine the impact of this on 

early-season thrips populations. 

There is limited knowledge on thrips dispersal within and between fields.  The 

Australian gall-forming thrips, Oncothrips tepperi, disperse 1 km between trees (McLeish 

et al., 2003) and Frankliniella tritici migrates tens of kilometres annually to infest 

strawberry fields in north-eastern USA (Felland et al., 1994).  Although F. occidentalis 

may be carried on the wind, its flight in protected crops is typified by short flits rather than 

sustained flight.  Spread from a central release point in glasshouse chrysanthemum and 

cucumbers was estimated as 0.2-0.3 m per day, at 21-27°C (Rhainds & Shipp, 2004).  The 

movement of F. occidentalis around the world in recent years is thought to be through the 

plant trade rather than by flight (Kirk & Terry, 2003).  Further information is required on 

the distribution and spread of F. occidentalis within and between UK strawberry fields to 

help predict which crops or areas within crops are most at risk from thrips damage. 

Other factors could play a role that was not investigated here:  Daylength affects 

bionomics with shorter larval development time and increased female survival at longer 

daylength (Brødsgaard, 1994; Whittaker & Kirk, 2004).  The strawberry cultivar is known 

to affect egg hatch, female longevity and population growth (Rahman et al., 2010).  

Relative humidity affects adult survival at the extremes, but high humidity can also 
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increase mortality by favouring fungal diseases such as Beauveria bassiana (Shipp & 

Gillespie, 1993; Shipp et al., 2003).  Cultural techniques that affect plant vigour and health 

also affect F. occidentalis population growth (Scott Brown et al., 2002; Chau et al., 2005). 

The overall aim of this chapter was to identify the main factors affecting F. 

occidentalis population development in semi-protected strawberry crops in the West 

Midlands area of the UK.  Specific aims were to: 

(1) collect baseline phenological data on thrips density, thrips species and flight 

periods in relation to temperature, humidity and flowering periods, to identify 

key factors affecting the distribution and abundance of thrips within strawberry 

fields; 

(2) determine which thrips species are present in strawberry through the season; 

(3) identify weed hosts that could affect the phenology of F. occidentalis in 

strawberry crops; 

(4) determine whether active stages of F. occidentalis overwinter on strawberry 

and on selected weed hosts; 

(5) test whether there is a difference in F. occidentalis distribution and abundance 

between first and second-year crops; 

(6) test whether thrips distribution within polytunnels can be explained partially by 

local temperature gradients. 

3.2. Materials and Methods 

For the rest of this chapter ‘thrips’ refers to species in the family Thripidae, unless 

stated otherwise.  Counts of thrips in flowers in all experiments were carried out by eye 

using a ×7 head lens (optiVISOR, LightCraft, London, UK), in medium-aged mature 

flowers (petals open, and with anthers starting to dehisce) (Sampson & Kirk, 2012).  Eye 

counts were used because the results could then be related to grower monitoring which is 

done in the same way and was sufficiently accurate to compare changes in thrips 

abundance (see Chapters 2 and 4).   
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3.2.1.  Seasonal abundance 

Baseline phenological data were collected from four everbearer crops (two in 2011 

and two in 2012) on thrips density, thrips species and flight periods in relation to 

temperature, humidity and flowering periods.  Data on fruit numbers and fruit damage 

were collected at the same time, but this is reported in Chapter 4. 

Seasonal abundance was monitored in two second-year crops in 2011, each on a 

separate farm that had a history of F. occidentalis damage (cv. Camarillo, fields 2 and 3, 

Table 2.1).   The growers continued with their usual thrips control programmes, which 

included releases of predators and insecticide treatments (Table 3.2).  Field 2 was 

monitored from 2 March 2011 (before flowering) to 13 September 2011 (when the crop 

was ploughed up).  Field 3 was monitored from first flowering on 17 May 2011 (earlier 

flowers had been de-blossomed as is common commercial practice) to 18 October 2011 

(when the crop was pulled out of the growbags).     

Flight periods were measured using blue sticky pheromone traps.  In each crop, a blue 

sticky monitoring pheromone trap (25 cm × 10 cm, Impact trap, Russell IPM, UK) was set 

up in each of two separate tunnels.  Blue sticky pheromone traps were used as they are 

known to be most attractive to F. occidentalis (see Chapter 5).  Traps were placed in 

separate tunnels, 20 m apart and 20 m in from the ends of the tunnels to reduce sunlight 

and edge effects.  Traps were placed vertically (south facing, landscape orientation) onto 

metal posts (60 cm) with the bottom edge of the traps about 10 cm above the crop and 

secured using rubber bands (size 33, Censtretch, Rochester, UK).  Pheromone lures 

(Thripline ams, Syngenta Bioline Ltd, UK), each containing 30 µg of the F. occidentalis 

aggregation pheromone, neryl (S)-2-methylbutanoate, were placed in pheromone lure 

holders (55 mm long, 25 mm diam., Russell IPM Ltd) slotted over the metal posts using a 

small wire loop, with the cage hanging on the north side of the trap, shaded from direct 

sunlight.  Traps and pheromone lures were replaced weekly to ensure that the traps did not 

become contaminated with dirt and other insect species and so that the pheromone release 

rate was similar between weeks.  Collected traps were placed in separate polythene 

wrappers and stored in a freezer.  The numbers of thripids on traps were counted under a 

binocular microscope in the laboratory, using methods detailed in Chapter 2.   

Thrips numbers on the crop were assessed weekly on 10 plants within 10 m of each 

trap.  Plants were selected at random.  On each plant, the total numbers of flowers and fruit 
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per plant and the numbers of adult and larval thrips in one medium-aged flower were 

counted as above.  Counts by eye of larval thrips in flowers should be interpreted with 

some caution as the yellow larvae are easily missed amongst the yellow stamens and the 

counts are not as reliable as counts of adults (González-Zamora & Garcia-Marí, 2003).  

However, they would give a record of relative abundance through the season. The presence 

or absence of the predators Orius spp. (adults or nymphs) per flower and Neoseiulus spp. 

(actives) per fruit was recorded.  The predatory mites were not routinely identified, but 20 

Neoseiulus spp. individuals were selected at random from the flower alcohol samples (see 

below), mounted on slides, using methods for mounting thrips described in Chapter 2, and 

identified to species under a compound microscope (Leica).   

The flowers were pooled and placed in 70% alcohol so that thrips could be extracted 

and the species identified using the methods detailed in Chapter 2.  These data were 

combined with thrips identifications from other experiments and are reported in section 

3.2.2.  A simple estimate of the numbers of thrips per plant for the purpose of comparison 

was made by multiplying the mean numbers of adult thrips per flower by the mean 

numbers of flowers per plant.  Flower counts included all stages, from bud to senescence 

that had at least one petal.  Although this is an underestimate, as it does not include thrips 

on the fruit, leaves or off the plant, it is a relative measure of the thrips population for 

looking at variation over time.  In whole plant counts in different fields during the season, 

about 74% of the F. occidentalis adult population was found in flowers (see Chapter 4). 

In 2012, more limited monitoring was carried out on a first- and a second-year crop 

(cv. Finesse, fields 5 and 7, Table 2.1) from fields that were close to each other on the 

same farm, and so had similar climatic conditions, growing methods and management.  

This allowed comparison of the thrips population development in a first- and a second-year 

crop.  Whilst there was insufficient replication to draw conclusions about the effect of crop 

age on thrips populations, it would show broad differences that could be tested further.  

The grower continued with his usual thrips control programme (Table 3.2).  Both fields 

were monitored from 22 March (first flowering) to 13 September 2011 (near the end of 

cropping).  In both fields, ten plants were sampled weekly from near the top of each field 

(in equivalent positions) where thrips populations were known to be highest, but 20 m in 

from the field edges to reduce edge effects.  The sampling was carried out as above, but 

without the blue sticky traps, predator, fruit or fruit damage assessments, as the interactions 
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between these were tested in separate experiments (Chapters 4 and 5).  The presence or 

absence of thrips larvae was recorded, but no counts were made. 

Temperature and humidity were recorded in the canopy of a central strawberry bed in 

a sample plot of each field, using methods detailed in Chapter 2. 

The timing of the first occurrence of thrips adults and larvae was compared to mean 

temperature and flowering periods for all crops.  A simple estimate of the rate of increase 

each week was calculated by dividing the numbers of adult thrips per plant by that of the 

previous week and this was compared to the timing of 100% flower occupancy. 

The number of F. occidentalis generations during each crop (to the end of cropping) 

was estimated based on minimum development temperatures and thermal requirements for 

a generation calculated by McDonald et al. (1998) (7.9°C and 268 degree-days), and the 

mean values from published studies (9.0°C and 216 day-degrees) (Table 3.1).  McDonald 

et al. (1998) data were selected because it was based on a UK F. occidentalis population 

and because they had a data point that was closer to the development threshold (10°C) than 

in most other studies (most did not test below 15°C), so was considered likely to be the 

best fit.  The mean of all the studies in Table 3.1 was used as a comparison. 

The relationship between thrips density on the crop and trapping efficiency through 

the season is shown in Chapter 6, and will not be repeated here.   

3.2.2.  Which thrips species are present? 

At least eight species of thripids have been recorded from strawberry flowers in the 

UK (Easterbrook, 1991; Cross, 2003), but fruit damage is usually associated with F. 

occidentalis, so it was necessary to determine which species occurred through the season in 

this study, and the relative importance of F. occidentalis.  Flower samples collected during 

the field monitoring in 2011 (section 3.2.1.), the field distribution surveys in 2012 (section 

3.3.2.) and the mass trapping experiments in 2012 (Chapter 6) were pooled by site and date 

and rinsed in alcohol to remove the adult thrips.  Frankliniella occidentalis was separated 

from other species by eye under a binocular microscope and the different species groups 

were counted.  Sub-samples of thrips were then placed on microscope slides in polyvinyl 

lactophenol to confirm the identification under a compound microscope (see section 2.3).  

Confirmation of the identification (on slides) was carried out for 50 randomly selected 

specimens considered to be Frankliniella spp. and 50 randomly selected specimens 
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considered to be Thrips spp. per month from June to September for each field separately.  

If fewer than 50 specimens were available, then all were identified.  In total, over 2000 

thrips adults were identified to species.   

3.2.3.  Are there weed hosts within strawberry fields? 

A survey was carried out to identify F. occidentalis weed hosts that could affect thrips 

abundance in strawberry.   The survey was carried out on 28 October 2011 after the end of 

cropping, as weeds infested with F. occidentalis at this time could contribute to 

overwintering.  A field with relatively few weeds (compared to other fields and farms in 

the study) was chosen for the survey (field 3, Table 2.1), as weeds present in this field were 

likely to be present in other fields.  Weeds were collected from strawberry beds and from 

the area between polytunnels in a 20 m long × 6.5 m wide length of polytunnel and were 

identified to species using Stace (2010).  The sampled plot was randomly selected (using 

random numbers), and was at least 20 m in from the edge of the field to reduce the 

incidental occurrence of thrips from the hedgerows.  Where present, flowers from the 

different weed species were collected and placed directly into 70% alcohol, so that thrips 

could be extracted and identified at a later date.  If no flowers were present, then leaves 

were collected.  As the flowers or leaves were different sizes, samples were taken that were 

approximately the same volume.  This was measured by the amount that would fit easily 

into a 50 ml collecting tube, for example, about three dandelion flowers (Taraxacum 

officinale), five mayweed flowers (Tripleurospermum inodorum), 15 groundsel flowers 

(Senecio vulgaris) or >20 chickweed flowers (Stellaria media).  The flowers or leaves were 

rinsed in alcohol to extract the thrips.  Frankliniella occidentalis adults were separated 

from other thrips, identified to species and counted using the methods detailed in Chapter 

2.  Other thripid species and larvae were counted but not identified to species.  No attempt 

was made to quantify the frequency of each weed species or numbers of flowers per plant.  

Whilst no conclusions could be drawn about the impact of the weeds on thrips populations, 

the survey was sufficient to identify potential weed hosts that could be evaluated further.   

To test whether weed hosts were widespread in other fields, a broader survey was 

carried out.  Three weed species (S. media, S. vulgaris, T. officinale) were selected from 

the initial survey that hosted F. occidentalis adults and thrips larvae, were common, 

widespread and flowered throughout the year (Table 3.4).   Thus if widespread, they could 

have an impact on F. occidentalis phenology in strawberry.    On 28 October 2011, the 
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presence or absence of the three target weed species was recorded in every second tunnel 

in the four study crops used in 2011 (fields 1, 2, 3, 7, Table 2.1).  To confirm the presence 

of F. occidentalis on the selected weed species, three plants of each weed species were 

collected from an area known to be infested with F. occidentalis, in each study field.  The 

flowers were removed and placed in 70% alcohol, and the presence or absence of F. 

occidentalis adults on each weed species was recorded per field using the extraction and 

identification methods detailed in Chapter 2.   

Selected weed species were monitored through the winter to determine whether they 

contributed to the overwintering of F. occidentalis in strawberry fields (section 3.2.4.). 

3.2.4.  Do active stages of F. occidentalis overwinter? 

Overwintering of F. occidentalis in strawberry crops would affect thrips abundance in 

the spring and the carry-over of thrips from first- to second-year crops could result in 

higher thrips numbers in second-year crops.  

To determine whether active stages of F. occidentalis overwinter in West Midlands 

strawberry fields, strawberry flowers and selected weed species were sampled from 29 

October 2011 (after cropping) to 22 March 2012 (before first flowering), in three 

strawberry fields that were infested with F. occidentalis in 2011 (fields 3, 4 and 7, Table 

2.1).  Three weed hosts were sampled that were widespread in strawberry fields and 

flowered through the year (S. media, S. vulgaris and T. officinale, see section 3.3.3), 

thereby providing a potential over-winter food source.  The fields were sampled on 29 

October 2011, 29 November 2011, 13 December 2011, 25 January 2012, 22 February 2012 

and 22 March 2012.   

On each sample date and in each field, plant material was sampled from the same area 

of crop (approximately 7 m × 10 m), at least 20 m in from the edge of each field to reduce 

edge effects.  Five strawberry flowers,  three T. officinale flowers, 10 S. vulgaris flowers 

and 10 S. media flowers were collected per field, on each sample date.  Flowers were 

sampled, as they are a known overwintering site (Chamberlin et al., 1992).  Where no open 

flowers were present, senescent flowers or dead flowers were sampled.  If no flowers were 

present, then an equivalent volume of leaves were collected.  The flowers or leaves were 

placed directly into a tube containing 70% alcohol for storage.  Thrips were extracted from 

flower samples by washing them in 70% alcohol, then F. occidentalis were separated from 

other thripid species, sexed, counted and the identification confirmed using the methods 
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detailed in Chapter 2.  Thrips larvae were extracted and counted, but not identified to 

species.  Adults rather than pupae were sampled as they gave a more immediate measure of 

potential increase and can lay eggs as soon as temperatures are suitable. 

Blue sticky traps (with and without pheromone) were used to determine whether 

F. occidentalis was active (flying) during the winter.  Two pairs of blue sticky traps (10 cm 

high by 25 cm wide, Impact trap, Russell IPM) were set up in each of the three fields 

above on 29 October 2011, using the methods detailed in 3.2.1.  Traps were placed at least 

20 m in from the ends of the crops to reduce edge effects with at least 20 m between pairs 

and 10 m between traps within a pair.  The trap positions (with and without pheromones) 

were alternated within each pair, with the first position chosen randomly, using a coin toss, 

on each monitoring date.  Each pair was placed in a separate tunnel and consisted of one 

trap with a pheromone lure and one trap with a blank lure.  Pheromone lures (Thripline ams, 

Syngenta Bioline Ltd), each containing 30 µg of the F. occidentalis aggregation 

pheromone, neryl (S)-2-methylbutanoate, were placed in pheromone lure holders (55 mm 

long, 25 mm diam., Russell IPM Ltd) slotted over the metal posts using a small wire loop, 

with the cage hanging on the north side of the trap, shaded from direct sunlight.    The 

control traps used a cage containing a blank natural rubber septum identical to that used for 

the pheromone (6.3 mm diam.  10.8 mm long; International Pheromone Systems Ltd, 

UK).  All traps were south-facing with the printed grid side of the trap facing north.  Traps 

and lures were replaced regularly (on 29 November 2011, 13 December 2011, 25 

December 2011, 22 February 2012 and 22 March 2012) and the traps placed in a polythene 

wrapper and stored in a freezer at -20°C.  All thrips on traps were examined under a 

binocular microscope in the Keele laboratory and the numbers of male and female F. 

occidentalis were counted using the methods detailed in Chapter 2.  Other thrips species 

were not identified to species.   Mean trap catches of F. occidentalis on traps with and 

without pheromone were compared using analysis of variance from traps collected in on 29 

November and 22 March 2012.  Two traps had dropped to the ground, so affected blocks 

were excluded from the analysis.  Counts from traps in place from 29 November 2011 to 

22 February 2012 were excluded from the analysis because of the very low numbers of 

thrips caught during this time (a total of 6 F. occidentalis on 36 traps). 

Temperature and humidity were recorded at the approximate height of senescent 

strawberry flowers in the crop, which was 5 cm above the bed, using methods detailed in 

Chapter 2.   



Phenology in strawberry_____________________________________________Chapter 3 

 

50 

 

3.2.5.  Between-field distribution and abundance: is there a difference in thrips 

distribution and abundance between first and second-year crops? 

To test whether there was a difference in distribution and abundance of thrips in first 

or second-year crops, strawberry flowers were sampled approximately monthly, from mid-

April (approximately two weeks after first flowering) to mid-August 2012, in three 

matched pairs of first- and second-year crops.  Each pair was of the same cultivar and on 

the same farm, so that cultural methods were similar: Pair 1, fields 3 and 4 (cv. Camarillo); 

Pair 2, fields 5 and 7 (cv. Finesse); Pair 3, fields 9 and 10 (cv. Camarillo) (Table 2.1).  The 

length and breadth of each crop was divided into ten equal divisions then sampled in a zig-

zag pattern so that there were 10 sample plots, distributed systematically over each crop 

(Figure 3.6).  On each sample date (monthly from mid-April to mid-August), ten medium-

aged flowers were selected arbitrarily per plot and the number of adult thrips per flower 

was counted by eye (as above) (n = 100 flowers per field).  In addition, ten fully swollen 

white fruit were selected from the same plants as the flower samples and the numbers of 

seeds surrounded by bronzing were counted by eye using a ×7 head lens (optiVISOR) (n = 

100 fruit per field).  The fruit and flower data were used for determining damage 

thresholds (see Chapter 4).  The flower samples were pooled and placed in 70% alcohol so 

that thrips could be extracted and the species identified using the methods detailed in 

Chapter 2.  Mean thrips per flower in first- and second-year crops were compared per 

month and the percentages of flowers infested with thrips in the different crops were 

compared through the season.  Analysis (ANOVA) used the mean thrips density per crop 

to avoid pseudo-replication (n = 100 flowers per crop). 

The flower samples from the Camarillo crops were also used to determine the sample 

size required for estimating thrips populations (see Chapter 4). 

3.2.6.  Within-field distribution and abundance: do temperature gradients 

within fields affect local abundance? 

As strong gradients in thrips density were apparent within strawberry fields, a survey 

of thrips distribution was carried out in a second-year crop to see whether the pattern of 

infestation could be explained.  The crop was sampled systematically on 6 June 2012 (cv. 

Finesse, field 7, Table 2.1).  Samples were taken from five plots in each of four different 

tunnels (alternate tunnels from a series of eight tunnels).  In all fields the tunnels ran up the 

slope to aid irrigation.  The first plot was 15 m in from the top of the field, then at every 40 
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m down the tunnel, so that the last plot was 15 m in from the bottom of each tunnel.  At 

each sample point, five medium-aged flowers (as above) were selected arbitrarily per plot 

and the number of adult thrips was counted by eye per flower.  Temperatures were 

recorded 15 m in from the top of the field and 15 m in from the bottom of the field during 

the time of sampling (10.00 am to 15.00 pm) using methods described in Chapter 2.  

Thrips abundance was compared between plots using ANOVA, at different distances down 

the tunnels and between tunnels. 

As thrips were more abundant in the mid to top areas of the polytunnels sampled, 

where day-time temperatures are higher, this relationship was investigated further.  To test 

the relationship between thrips density and daytime temperatures, the steepest sloping field 

on a farm was selected, where the thrips density was known to be variable and the gradient 

up the slope was 1 in 12 (4.8°), to exaggerate any differences in temperature (cv. 

Camarillo, field 4, Table 2.1).  Four tunnels were sampled on 13 September 2012, between 

11.00 h and 14.00 h, when temperatures were likely to be at their warmest.  Four tunnels 

with a similar slope were selected, to allow comparison between tunnels at specific 

altitudes.  The tunnels were about 158 m long with two tunnels (16 m) between each tunnel 

and two tunnels in from the edge of the field to reduce the influence of adjacent hedgerows 

and cooler wind currents coming from outside the crop.   

Each polytunnel was sampled at eight points.  The first plot was 2 m in from the top of 

the field, then at every 22 m down the tunnel, so that the last plot was 2 m in from the 

bottom of the field.  At each position, the middle bed on the left of the tunnel was sampled, 

to provide a consistent sample in case temperatures varied across each tunnel.  At each 

sampling position (36 plots) the following measurements were taken: 

 The altitude was recorded in metres using a satellite navigation device (Nüvi, 

Garmin (Europe) Ltd., Southampton, UK).  

 The temperature was recorded using a digital thermometer (Thermo-Hydro, RS 

212-124, Oregon Scientific, Northants, UK) that was placed in a white delta trap 

(œcos, Hitchin, UK) to shade it from direct sunlight.  The delta trap was placed on 

the strawberry bed, amongst the strawberry leaves and the temperature recorded 

after about five minutes, once the temperature had stabilised within the delta trap.    

 The number of adult thrips per flower was counted by eye in the five medium-aged 

flowers (as above) that were closest to the thermometer position.   
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To inform possible temperature differences over a longer period of time, three data 

loggers recorded temperatures at 30 minute intervals from 24 September to 5 October 

2012.  The data loggers were suspended at flower height in delta traps (see section 2.6) 

about 20 m in from the bottom (95 m altitude), in the middle (101 m altitude) and about 20 

m in from the top of a tunnel (107 m altitude). 

The sampled flowers were pooled and placed in 70% alcohol so that the thrips could 

be extracted and the proportion of F. occidentalis determined, using the methods detailed 

in Chapter 2. 

The difference in thrips density in flowers was compared between tunnels and at 

different heights up the tunnels using ANOVA.  To test whether there was a correlation 

between thrips density and temperature, the mean numbers of adult thrips per flower were 

regressed on temperatures recorded at the different sampling points up the tunnels at the 

time of sampling. 

3.2.7.   Movement of adults between flowers 

To help interpret the phenology results, a short observation was made to test the extent 

to which adult thrips move between strawberry flowers in the field.  On 13 September 

2012, ten medium-aged flowers were marked in a commercial semi-protected strawberry 

crop (field 4, Table 2.1).  The flowers were selected at random within a 1 m × 4 m plot and 

were tagged with pegs placed at the base of the stem, taking care not to disturb the flowers 

or thrips within them.  At hourly intervals, between 10.00 h and 13.00 h, each flower was 

examined carefully for about 30 seconds and the number of adult thrips per flower was 

counted by eye, using a ×7 head lens (optiVISOR).  Unlike previous assessments, where 

petals were moved so that the thrips could be seen easily, the flowers were not touched, so 

that the thrips were not disturbed.  Whilst some thrips may have been missed using this 

method, most would have been seen as the thrips were active at the time of the study and 

extra time was taken to observe each flower from all angles.  Temperature was recorded 

using methods detailed in Chapter 2.  The mean number of thrips between flowers and 

between times was compared.  A simple measure of the movement was defined as whether 

or not the number of thrips per flower changed in an hour.  Whilst this measure would 

underestimate movement, as it would not detect occasions when the same number of thrips 

move in and out of a flower, it was sufficient to give a broad indication of movement 

between flowers. 
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3.2.8.  Statistical analysis 

Statistical analysis is described in Chapter 2 (section 2.8). 

3.3. Results 

3.3.1.  Seasonal abundance 

Adult thrips, including F. occidentalis, were found in flowers within a week of first 

opening (late-March to mid-April) in all the second-year crops sampled (Figures 3.1 A, 3.2 

A and 3.3 A).  Larvae were found in the flowers three weeks after the first adults in an 

early-flowering crop, when temperatures averaged 11.5°C (Figure 3.3 A, D) and two 

weeks after the first adults in a late-flowering crop, when temperatures averaged 15.5°C 

(Figure 3.2 A, E).  Later in the season, once the generations were over-lapping, larvae were 

observed in flowers as soon as they opened.  In one isolated crop (there were no adjacent 

strawberry fields), there was a four-week delay between first adults (19 April 2011) and 

first larvae (17 May 2011), but there were so few thrips present in the crop that the larvae 

may have been missed considering the small sample size (n = 20 flowers) (Figure 3.1 A).  

In a first-year crop, no thrips were recorded until 23 May 2012, several weeks after the 

start of flowering on 22 March 2012 (Figure 3.3 A).  This delayed infestation was observed 

in other first-year crops and was investigated further (see section 3.3.5).  Thrips numbers 

increased steadily from flowering, then rapidly around mid-July and remained high for the 

rest of the season until late-September to early-October, when they declined again (Figures 

3.1. C, 3.2. C, 3.3. C).   

Blue sticky pheromone monitoring traps caught large numbers of thrips, averaging 

over 100 (field 2) and 800 (field 3) thrips per card trap per week (mid-May to mid-

September) but exceeding 800 (field 2) and 2000 (field 3) thrips per monitoring trap per 

week on occasions.  Linear regression analysis showed a significant correlation between 

weekly trap catch and mean adult thrips per plant (regression analysis, field 2, F(1.40) = 

18.9, P < 0.001, R
2
 = 30.4%; field 3, F(1.38) = 195.3, P < 0.001, R

2
 = 83.3%). 

In the two fields sampled in 2011 (cv. Camarillo), Neoseiulus spp. were recorded on 

4% of fruit in field 2, where two releases of N. cucumeris were made (100 predators per 

m
2
), and on 42% of fruit in field 3, where five releases of N. cucumeris were made (>1000 
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predators per m
2
) (Table 3.2).  95% of the Neoseiulus spp. collected from flowers were 

identified as N. cucumeris and 5% as N. californicus (n = 20).  The efficacy of predatory 

mites was not tested in this study, but it was observed that the thrips population peaked at 

10 adult thrips per flower in the field with the most predatory mites (field 3) and at 16 adult 

thrips per flower in the field with fewer predatory mites (field 2), even though field 2 

started with fewer thrips (Figures 3.1 A, 3.2 A).  Orius spp. were present in <1% of flowers 

in both crops.  Naturally occurring Anthocoris nemorum was observed in flowers in very 

low numbers, late in the season.  No other predators were observed in the flowers, although 

a few predatory thrips, staphylinid beetles and lacewings were observed on traps, which 

were not identified to species. 

Thrips numbers per flower peaked at 20.6 in field 5 following a first flower flush with 

about 30 flowers per plant (compared to less than 10 in other crops) (Figure 3.3. A).  There 

was insufficient replication to draw conclusions from this, as the crops were of different 

varieties and in different years.   

Two trends were observed that could help to predict the timing of thrips damage: 

Increases in number of thrips per flower were observed at the end of flower flushes in 

second-year crops, as the thrips concentrated into fewer flowers (e.g. Figure 3.3. A, B); 

thrips density in flowers increased rapidly once thrips occupancy of flowers approached 

100%, as before this any increase in thrips numbers results in a wider distribution between 

flowers (see section 3.3.7).  These increases in numbers of thrips per flower did not 

necessarily coincide with an increase in the thrips population (thrips per plant).  These 

trends were observed consistently between crops and years throughout the study, but 

further controlled experiments would be needed to confirm them.  

Comparison of temperature records in the fields (from January to the end of cropping) 

with published data on the threshold for development and the number of degree-days 

required to complete a generation (using a UK data set and the mean of published data) 

suggested that five F. occidentalis generations could be completed by the end of cropping 

in semi-protected strawberry in the West Midlands (Table 3.3).  The maximum increase in 

the adult population occurred when thrips approached 100% occupation of flowers (Table 

3.3). 

Relative humidity averaged 78.8 ± 2.4 % (range 55 to 95% RH) in the fields sampled, 

between mid-May and mid-September, whilst polytunnel covers were in place. 



Phenology in strawberry_____________________________________________Chapter 3 

 

55 

 

3.3.2.  Which thrips species are present? 

The thrips population in semi-protected strawberry was predominantly F. occidentalis 

in all the fields sampled at times when thrips numbers were highest and fruit damage was 

observed (typically July to September) (see Chapter 4 for damage records) (Figure 3.4).  

The proportion of F. occidentalis in strawberry flowers increased through the season to 

over 95% by the end of September.   The proportion of Thrips major was relatively high 

early in the season (25 to 75% in June), but declined after June (Figure 3.4).  Other thripid 

species present in low numbers included; Thrips tabaci, Thrips fuscipennis, Frankliniella 

intonsa, Thrips atratus, Thrips angusticeps and Frankliniella tenuicornis.  All of these are 

common species known to breed on strawberry, except F. tenuicornis, which breeds on 

grasses and cereals.  The predatory thrips Aeolothrips intermedius was also present in low 

numbers.   

There was insufficient replication between crop age, crop variety, farm and insecticide 

use to draw conclusions on the impact of these on the abundance of F. occidentalis, but 

some general observations can be made.  The thrips species and proportion of each through 

the season were similar in field 3 between 2011 (Figure 3.4. A) and 2012 (Figure 3.4. B), 

where a second-year crop was removed from growbags in October 2011 and new plants 

planted into the same growbags in February 2012.    Fields 1, 2 and 3 were adjacent to 

other strawberry growing fields and had proportionally more F. occidentalis early in the 

season (52 to 63% in June) (Figure 3.4. A, C, F) compared to fields 9 and 10, which were 

more isolated fields with proportionally fewer F. occidentalis early in the season (0 to 25% 

in June) (Figure 3.4. D, E).  There was a trend towards an increased proportion of F. 

occidentalis with increased pesticide-use.  For example, in July, the proportion of F. 

occidentalis was 10% in a field where no spinosad (Tracer) sprays had been applied 

(Figure 3.4. E), 33%, 52% and 84% where one spinosad (Tracer) spray had been applied 

(Figure 3.4. F, A, B) and 99% and 100% where two spinosad (Tracer) sprays had been 

applied (Figure 3.4. C, F).  Further work is required to test whether the increase in the 

proportion of F. occidentalis observed with pesticide use was the result of selective 

survival of pesticide-resistant strains. 

3.3.3.  Are there weed hosts within strawberry fields? 

Frankliniella occidentalis adults were present on 15 different weed species from 10 

different plant families in a semi-protected strawberry crop (Table 3.4).  Adults were most 
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abundant on dandelion (T. officinale), scentless mayweed (Tripleurospermum inodorum) 

and black nightshade (Solanum nigrum).    However, as T. inodorum and S. nigrum were 

only represented by a few plants in the sample area (<5 plants), and have limited flowering 

periods, they were not considered to be the most important weed hosts present.  Thrips 

larvae were most numerous on weeds in the Asteraceae family. Although the larvae were 

not identified to species, it is likely that the majority were F. occidentalis in common with 

>95% of the adults at the time (September 2011, Figure 3.4 A) and because F. occidentalis 

has a wide host range and plants in the Asteraceae family are known hosts (Kahn et al., 

2005).  Three weed species were selected as potentially important weed hosts on the basis 

that they were widespread, flower throughout the year and known hosts of F. occidentalis 

(adults and larvae).  These were Stellaria media, Senecio vulgaris and T. officinale (Table 

3.4).    

In a wider survey, S. media, S. vulgaris and T. officinale were found to be widespread 

in strawberry beds, growbags and between the polytunnels, and were present in every 

strawberry tunnel of every field sampled (Figure 3.5).  Frankliniella occidentalis adults 

and thripid larvae were extracted from all three weed species in all fields sampled.   The 

survey confirms that there were many weed hosts in the fields sampled and if this is more 

widely the case, then weeds could affect the phenology in strawberry. 

Although no attempt was made to quantify the effect of weeds on F. occidentalis 

phenology in strawberry, it was observed that thrips were sometimes more numerous 

beside weedy field margins (Figure 3.5 B) early in the season, and beside weedy areas 

between polytunnels (Figure 3.5 C) mid-season.  Further studies are required to confirm 

these observations and to test whether weeds could be a refuge for important natural 

enemies. 

3.3.4.  Do active stages of F. occidentalis overwinter? 

Frankliniella occidentalis overwintered as adult females in senescent or dead 

strawberry flowers and in the flowers of three common weed species found within the 

cropping area (S. media, S. vulgaris and T. officinale)  (Table 3.5).  Male F. occidentalis 

and thripid larvae were present in flowers on 29 November and 13 December 2011, but 

were not present in January, February or March 2012 (Table 3.5).  This suggests that adult 

females are the only active stage that over-winters, although a more comprehensive survey 

in different micro-climates is required to confirm this.  Adults could also be overwintering 
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in other areas of the crop, on other weeds species, in soil and plant debris or under the 

black plastic mulch, but these were not sampled.  Pupae may be present in the soil or in the 

leaf litter around the base of strawberry plants, but these were not sampled.   

Low numbers of F. occidentalis adults were caught on traps throughout the winter.  

The trap catches confirmed that it is predominantly females that overwinter, as males and 

females were caught in November and December 2011, but only females were caught from 

January to March 2012 before the polytunnels were erected.  Blue sticky pheromone traps 

caught nearly three times more F. occidentalis than control traps in November and March, 

but the differences were not significantly different (one-factor ANOVA, F(1, 21) = 2.5, P= 

0.13), probably because of the low sample size (Table 3.5).  Very few thrips were caught 

between December and late February, when mean temperatures were 2.5 to 5.5 °C and 

maximum temperatures were 11 to 12.5°C.  Temperatures fell below 0°C on 29 nights, but 

not more than six consecutive nights and day-time temperatures always exceeded 0°C. 

3.3.5.  Between-field distribution and abundance: is there a difference in thrips 

distribution and abundance between first and second-year crops? 

Thrips numbers were higher in second-year crops than in first-year crops, but the 

difference between them reduced as the season progressed, being significant from April to 

June, but not in July and August (Figure 3.7 A).  No thrips were found in any of the first-

year crops in April, but in all second-year crops (one-factor ANOVA, F(1, 4) = 8.4, P = 

0.044).  Second-year crops had × 39 more thrips in May (one-factor ANOVA, F(1, 4) = 17.7, 

P = 0.01)), × 24 more thrips in June (one-factor ANOVA, F(1, 4) = 15.5, P = 0.017),  × 7 

more thrips in July (one-factor ANOVA, F(1, 4) = 2.6, P = 0.18) and × 2 more thrips in 

August (one-factor ANOVA, F(1, 4) = 1.3, P = 0.32), than first-year crops. 

The percentage flower occupation gives further insight into the spread of thrips within 

and between crops.  The percentage of flowers occupied by thrips remained low (up to 

15% flower occupation) in all the first-year crops from April to June.  By comparison, 

there was 75-99% flower occupation in second-year crops by June.  In July, whilst there 

was a small increase in thrips numbers per flower in first-year crops, there was a massive 

increase in flower occupation (Figure 3.7 B).  This increase could have come from thrips 

within the crops, or from thrips invading from near-by crops and weeds, or a combination 

of both.  Temperatures within the polytunnels were optimum for thrips flight during July 

(Figures 3.1 E, 3.2 E, 3.3 D) and second-year crops were usually in close proximity to the 
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first-year crops (e.g. within 500 m) and equipment such as picking trays was moved 

between fields regularly, so movement of thrips between crops on a farm is likely.  Thrips 

numbers remained low throughout the season in a first-year crop that was isolated, newly 

planted in ploughed grassland and where predatory mites were released from planting 

(field 9, Table 2.1, Figure 3.7 B).  In a second-year crop with a low proportion of 

F. occidentalis compared to Thrips spp. (Figure 3.4 D), there was a reduction in thrips 

flower occupation (from 79% to 35%) between June and July following a spinosad 

treatment (field 9, Table 2.1, Figure 3.7 B).  Thrips were distributed throughout the fields 

from the start of the season in second-year crops.  In first-year crops, in May, there 

appeared to be a bias towards more thrips around the edges of the fields, particularly beside 

weedy field margins, but this was not tested.  By June this was no longer apparent. 

3.3.6.  Within-field distribution and abundance: do temperature gradients 

within fields affect local abundance? 

In a survey of a second-year strawberry crop (field 7, Table 2.1), thrips were present 

throughout the field in early June (81% flower occupancy, 83% F. occidentalis), with the 

exception of one area at the bottom of the field that was cool and shaded by trees.   The 

distribution of thrips was similar between the four tunnels sampled (two-factor ANOVA, 

F(3, 19)  = 0.1, P = 1.0), but within each tunnel there were ×17 more thrips at the mid to top 

of the field compared with at the bottom end (two-factor ANOVA, F(4, 19)  = 15.7, P 

<0.001) (Figure 3.8).  Temperatures averaged about 1°C higher (17.3°C) near the top 

compared to the bottom (16.1°C) of the field at the time of sampling (10.00 am to 15.00 

pm).   

The relationship between temperature and thrips density within a polytunnel was 

examined further in a second-year crop in September (field 4, Table 2.1).  There were ×6 

more thrips near the top of the field compared to near the bottom end (two-factor ANOVA, 

F(7, 21) = 13.8, P < 0.001), but numbers dipped at the exposed tunnel ends (Figure 3.9 A, C).  

There was no difference in thrips numbers and distribution between the four tunnels 

sampled (two-factor ANOVA, F(3, 21) = 0.1, P = 0.94).  Temperature increased with altitude 

up the tunnels (Figure 3.9 B).  When thrips numbers were regressed on temperature at 

different altitudes up the tunnels at the time of sampling there was a significant correlation 

between mean thrips density and temperature (regression analysis, F(2,5) = 30.7, P = 0.002; 

R
2  

= 89.5%).   
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The daily maximum and minimum temperature from top, middle and bottom positions 

up the tunnel from 24 September to 5 October are shown in Figure 3.10.  Over the 13 day 

period, the mean maximum temperatures were about 4 to 5.5°C higher near the middle 

(25.7°C, 101 m) and top (27.5°C, 107 m) of a tunnel than near the bottom of the tunnel 

(21.9°C, 95 m) (one-factor ANOVA, F(2, 36) = 13.1, P < 0.001).   Temperature gradients 

were reversed at night, with a mean difference in temperatures of about 2°C between the 

top and bottom of the tunnel (Figure 3.10). 

3.3.7.   Movement of adults between flowers 

The number of adult thrips in individual flowers was different from the number 

counted in the same flower one hour previously on 24 out of 30 occasions, indicating that 

adult thrips moved frequently between strawberry flowers (Table 3.6).  Mean numbers of 

thrips per flower did not change between sampling times (two-factor ANOVA, F(3, 36) = 

0.7, P = 0.6), indicating that adults are moving between flowers rather than moving in and 

out of flowers.  Adult thrips numbers were consistently higher in some flowers than others 

(two-factor ANOVA, F(9, 30) = 11.6, P < 0.001) (Table 3.6), which is consistent with earlier 

studies showing that more thrips were found in flowers at the top of strawberry plants than 

at the side (see Chapter 2).    

3.4. Discussion 

This study has added to our knowledge of the distribution and abundance of F. 

occidentalis within and between semi-protected strawberry crops in the West Midlands 

area of the UK.   

Frankliniella occidentalis is now the dominant thrips species on semi-protected 

strawberry on the farms sampled in the West Midlands, UK (Figure 3.4), as has been 

reported in other strawberry growing regions in the south of England, such as Kent and 

East Anglia (Cross, 2003).  Before F. occidentalis arrived in the UK, T. major and 

T. atratus were the dominant thrips species on UK strawberry (Easterbrook, 1991), so 

F. occidentalis has displaced native thrips species in these crops as found in other 

protected crops in the UK (Jacobson, 1997) and in outdoor crops in warmer climates (Tunç 

& Vierbergen, 1999).   
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Thrips major is one of the commonest flower-inhabiting thrips species in the UK 

(Kirk, 1996) and was present in similar numbers to F. occidentalis at the start of the 

season, but was gradually displaced as the season progressed (Figure 3.4).  This contrasts 

with the seasonal abundance observed in non-cropped areas.  In flowers in chalk grassland 

in Sussex, T. major is typically most abundant from July to September (Ward, 1973), so is 

a late-season species like F. occidentalis and both species have similar temperature 

requirements per generation (Stacey & Fellowes, 2002).  One possible explanation for the 

displacement of T. major during the season is that susceptible T. major were killed by 

spinosad (Tracer) treatments, leaving pesticide-resistant populations of F. occidentalis to 

increase.  The increased proportion of F. occidentalis associated with increasing number of 

spinosad (Tracer) treatments observed in this study is supporting evidence for this (section 

3.3.2).  Spinosad-resistant F. occidentalis populations are widespread throughout the world 

(Sparks et al., 2012) and are known in the UK (Colin Cater, Landseer, pers. comm, 2011).  

An alternative explanation is that F. occidentalis outcompetes T. major, as found in 

Florida, where it has a faster reproductive rate than the native F. bispinosa in dense 

interspecific populations (Northfield et al., 2011).   Further studies are required to 

determine which of these applies. 

Low temperatures limited F. occidentalis population growth in semi-protected 

strawberry at the start and end of the season.  No population growth was observed before 

mean temperatures were consistently above 15°C (from mid-May) and thrips numbers 

declined again at the end of the season (September-October) once mean temperatures 

dipped below 15°C (Figures 3.1 to 3.3), which is consistent with published data (Gaum et 

al., 1994).  Whilst there was no population growth without sufficient temperature, other 

factors were important in limiting the speed of growth, the peak thrips numbers and the 

timing of outbreaks (see below). 

The start of population increase in individual crops could not be predicted by 

temperature alone, as the first larvae were observed on different dates in different crops, 

between 12 April and 31 May (Figures 3.1 to 3.3).  The first occurrence of larvae reflected 

the timing of first-flowering in second-year crops and the later arrival of thrips into first-

year crops.  Whilst flowering in strawberry is temperature related (Sønsteby & Heide, 

2007), it also reflects cultural practices, such as planting and covering date, plant vigour 

and whether the grower de-blossoms.  The timing of the first larvae in second-year crops 

was consistent with adults entering flowers as soon as they opened and starting to lay eggs 



Phenology in strawberry_____________________________________________Chapter 3 

 

61 

 

immediately, as larvae were found 2-3 weeks after the first adults and the development 

times for eggs is about 10 days at 16°C and a projected 13 days at 11.5°C on strawberry 

(Nondillo et al., 2008).   

Limited data in crops with early-season flowering showed a drop in adult numbers 

(per flower and per plant) after about four weeks, suggesting that the first generation of 

adults had died out before the second generation of adults started to emerge (e.g. Figure 

3.3. C).  In later flowering crops (e.g. from mid-May), there was no clear gap between the 

first and second generation of adults (e.g. Figure 3.2. C).  This could be because of the 

shorter generation time at warmer temperatures, or because adults are moving in from 

weeds or other crops.  Survival times vary with host plant and temperature and there is no 

directly comparable published data on strawberry at early-season UK temperatures (11°C 

to 15°C).  Adult females lived about 46 days at 15°C on chrysanthemum (Robb, 1989) and 

for 21 days at 25°C on strawberry (Nondillo et al., 2009).  Further information on the field 

longevity of F. occidentalis on strawberry at different temperatures would improve the 

prediction of population development in the field.   

The rapid increase in thrips numbers observed in July, in most second-year crops 

(Table 3.3) corresponded with predicted peak emergence of the third generation of adults 

(using published data from McDonald et al. (1998)), by which time there were over-

lapping generations, average temperatures of about 18°C and optimum daytime 

temperatures (for development and flight) of 25-30°C.  Theoretically, if thrips population 

development depended upon temperature and rainfall (which can largely be discounted 

under the polytunnels) alone, adult thrips numbers should have continued to rise from mid-

July to the end of the season as there were overlapping generations, more adults emerging 

daily and because adults emerging in mid-July might survive to near the end of the season 

at the temperatures recorded.  However, the thrips numbers fluctuated around a plateau in 

all the fields (although at slightly different densities) during July and August that did not 

relate solely to pesticide treatments (Figures 3.1 to 3.3).  As temperatures were ideal for 

most of the season, thrips populations must have been limited by density-dependent factors 

during July and August, such as competition for resources (flower availability), reduced 

oviposition (O'Leary, 2005) and predation (Rahman et al., 2011a).   

It was estimated that five generations of F. occidentalis could complete their 

development during the growing season in semi-protected strawberry in the West Midlands 
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(Table 3.3).  A possible sixth generation could be completed after cropping or in warmer 

areas of the UK.  The predicted number of generations was the same, whether using a UK 

data set (McDonald et al., 1998), or mean values from several data sets (Table 3.3), as 

fewer day-degrees were required when there was a higher development threshold (see 

Trudgill et al., 2005).  Published development thresholds could not be confirmed, as mean 

temperatures were mostly below published thresholds before the polythene cladding was in 

place, but exceeded published thresholds as soon as the cladding was up.  As thrips 

populations increased in different crops at different times (relating to age of crop and 

flowering time rather than temperature alone), the use of percentage of flowers infested 

with thrips may be a better predictor of increased thrips density per flower and fruit 

damage than temperature (Table 3.3), as it would reflect populations specific to each field, 

but this was not tested.  Prediction of thrips damage is discussed further in Chapter 4. 

Thrips were caught on traps throughout the cropping period as daytime temperatures 

exceeded 15°C on most days (Figures 3.1, 3.2, 3.3).  This is in line with published 

information on F. occidentalis flight, which showed no take-off at 15°C and increasing 

flight activity between 20°C-30°C in a UK population (O'Leary, 2005).  Few thrips were 

caught between December and late February (Table 3.5), which could reflect a lower 

population as well as the low mean (2.5 to 5.5 °C) and maximum (11 to 12.5°C) 

temperatures during these months (Table 3.5).  Correlation between thrips density on 

plants and trap catch was significant, but variable, as trap catch reflects daily flight pattern, 

which varies with temperature, wind speed, population density and food availability 

(Teulon et al., 1999; Pearsall, 2002; O'Leary, 2005; Liang et al., 2010).  The comparative 

use of flower counts or trap catch for assessing thrips populations and predicting fruit 

damage, and the efficiency of trapping through the season are discussed in Chapters 4 and 

5 respectively. 

Strawberry flower density varies between cultivars, age of crop and cultural methods 

and could affect thrips population development.  In this study, the highest thrips 

populations were found in the crops that supported the greatest number of flowers per plant 

during flower flushes, but there was insufficient replication between crops of the same 

cultivar to draw conclusions from this.  If the number of flowers in a flower flush affects 

thrips population increase, it could be an important factor that is missing from prediction 

models (e.g. (Wang & Shipp, 2001)).  The number of flowers in a crop is a limiting factor 

in thrips population growth because egg-laying per female decreases with increasing 
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numbers of thrips per flower, possibly as a result of interference between individuals 

within flowers (Kirk, 1994; O'Leary, 2005).  The size of flower is also likely to affect the 

number of thrips within.  In this study, the highest count in an individual flower was 82 

adult F. occidentalis (22 August, 2012, alcohol sample, field 7), although this was an 

exception, with average numbers peaking at between 4 and 20 adult thrips per flower in 

different fields.  Larger complicated flowers, such as roses, may be able to support more 

thrips without interference.  Andrewartha & Birch (1954) found as many as 400 

T. imaginis in a rose flower in Australia. 

The establishment of the predators Neoseiulus spp. in the two crops monitored in 2011 

reflected the releases of N. cucumeris made by the growers and lower thrips numbers were 

observed in the crop with more predators.  Whilst this is no proof of pest control effect, as 

there was no replication, it does support published information on strawberry, showing that 

N. cucumeris reduces thrips numbers (Rahman et al., 2012).  Very low establishment of 

Orius spp. was observed, which reflected the low temperatures at the time of the release 

(<15°C), as establishment is poor below 15°C (Cocuzza et al., 1997).  One release was 

made when temperatures were suitable, but it was too late in the season for the predator to 

exert control.  The effect of N. cucumeris on fruit damage is tested in Chapter 4. 

A wide range of F. occidentalis weed hosts were identified from UK strawberry fields 

(Table 3.4), as found in other crops and in other countries (Chamberlin et al., 1992; 

Chellemi et al., 1994; Kahn et al., 2005; Katayama, 2006; Jenser, 2008).  Weeds were 

abundant in some crops and as F. occidentalis is polyphagous, the total number of weeds 

could be as important as the prevalence of the most attractive species (Figure 3.5).  Three 

common species that were widespread and flower throughout the year (S. media, S. 

vulgaris and T. officinale) supported overwintering populations of F. occidentalis (Table 

3.4), so contributing to the carry-over of thrips from first to second-year crops and were a 

source of infestation in first-year crops.  Further studies are required to quantify the impact 

of weed hosts on thrips abundance in strawberry, but whether they increase local thrips 

abundance, cause an invasion of thrips onto crops when controlled (Allsopp, 2010), or 

support predator populations (Frescata & Mexia, 1996; Honek et al., 2005), they need 

careful management.  

Overwintering of adult female F. occidentalis was confirmed in strawberry and weed 

flowers in the Midlands, UK (Table 3.4), which contrasts with controlled studies, where F. 
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occidentalis failed to overwinter in the same region (McDonald et al., 1997b).  As air 

temperatures were broadly similar between the two studies, it is possible that the ‘wild’ 

populations are able to survive by moving into protected micro-climates, such as inside 

weed flowers or under the plastic mulch used to cover strawberry beds, which can increase 

soil temperatures by several degrees (Diaz-Perez et al., 2007).   The use of polytunnels 

(e.g. from April to October) could make the difference as they effectively shorten the 

winter, and some adults in the study by McDonald et al. (1997b) nearly made it through 

the winter, the longest-lived surviving for nearly 90 days.  Males apparently died out over 

winter and they are known to be shorter-lived than females in cold conditions (Tsumuki et 

al., 2007).  As temperatures are predicted to increase by between 1 to 3.5°C by 2100 

(Cannon, 2004), it is likely that the distribution of F. occidentalis will expand further 

northwards as a result (Krumov & Karadjova, 2012).  To date, there is conflicting evidence 

of local adaption to cooler climates, and a UK study found no difference in temperature 

requirements between F. occidentalis collected from the field near northern and southern 

research stations (Stacey & Fellowes, 2002).  However, the thrips collected in their study 

may have originated from related glasshouse cultures, so it would be interesting to 

compare the development thresholds of thrips collected from strawberry fields in the 

spring, from Kent, Staffordshire and Angus (i.e south, middle and north range of latitudes).   

The overwintering of thrips could be a critical factor in the management of thrips, as 

the lower numbers of F. occidentalis in first-year crops are usually well controlled by the 

predator N. cucumeris (e.g. Figure 3.7 A).  Growers could reduce thrips risk on their farms 

by growing only one-year crops, using good weed control or by identifying treatments that 

effectively reduce the overwintering thrips population.   

The widespread distribution and abundance of F. occidentalis in second-year crops, 

compared to first-year crops, at first flowering in April is supporting evidence that the 

thrips have over-wintered in the crops.  In some second-year crops there were sufficient 

thrips in the first generation to cause crop damage very early in the season (e.g. >4 thrips 

per flower, Figure 3.3. A).  Maximum temperatures only exceeded 20°C (when flight 

becomes more frequent) occasionally in April, so the thrips are unlikely to have flown into 

these crops from outside.  As no thrips were found in 100 flowers in three first-year crops 

sampled at first flowering in April and about 74% of the adult thrips population are found 

in flowers (see Chapter 4), it suggests that the thrips populations in second-year crops 

develop mostly from resident thrips.  When the thrips arrived in first-year crops, they were 
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widespread throughout the crop (although a slight bias towards the edges for the first 

month) and could have come from several sources: Thrips can be brought in on incoming 

plants (Kirk & Terry, 2003), could enter the crop from weeds (Table 3.3), or on farm 

equipment (picking trays, boxes, tractors) and staff, who move daily from field to field, or 

can fly in from nearby fields once temperatures are suitable.  The frequent movement of 

thrips between strawberry flowers (Table 3.5) helps to explain how the thrips spread 

through strawberry crops and why they are usually found throughout affected crops.  Even 

if the thrips enter from a weedy field margin and spread slowly at the 0.3 m per day 

observed in glasshouse crops (Rhainds & Shipp, 2004), they would spread through most 

strawberry fields by the end of the season.  Spread through open-sided polytunnels is likely 

to be accelerated by wind currents.  It would be useful to measure thrips entrance and 

departure rates from flowers at different temperatures and different thrips densities to 

understand how thrips density affects movement and therefore spread through the crop 

(Crespi & Taylor, 1990).  Further data are required to determine the amount of movement 

between fields. 

Within fields, the higher thrips numbers in the top to middle of sloping fields reflected 

the higher mean and daytime temperatures in those areas (Figures 3.8, 3.9, 3.10), which 

would result in an increased reproductive rate (Robb, 1989).  In addition, when the sun 

comes out, warm air currents move up the tunnels possibly carrying thrips with them.  

Individual fields may have other influences and specific hot-spots (e.g. adjacent crops, 

prevailing wind, weed control, spraying etc.), but tunnel temperature has a significant 

effect on thrips numbers and this information can be used by growers to predict areas 

within crops that are most at risk from thrips damage.   

This study has identified a number of factors that could be manipulated by growers to 

improve control.  Frankliniella occidentalis was confirmed as the dominant thrips species 

in the semi-protected strawberry crops sampled and the thrips overwintered on strawberry 

and weeds within the fields.  As adult females were found in senescent/dead strawberry 

flowers and weed flowers throughout the winter, one control option might be to remove 

these at the end of cropping.  Other treatments could be identified that target the 

overwintering thrips population.  As the carry-over of thrips to second-year crops was 

identified as a risk factor, growers could consider one-year crops in fields with high thrips 

populations in order to reduce thrips populations.  Temperature gradients within 

polytunnels explained some local variations in thrips abundance, and this information 
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could be used by growers to target areas most at risk from thrips damage, for sampling and 

control.  Factors affecting the timing and abundance of thrips populations were identified, 

but controlled studies are required to test how these factors can be manipulated within 

integrated pest management programmes.  
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Table 3.1.  Lower development thresholds reported in the literature (in °C) and the total 

thermal requirement (in day-degrees) above the development threshold required to 

complete a generation (egg to adult) of F. occidentalis. 

Reference Lower 

development 

threshold (°C) 

Day-degree 

requirement (°C) 

Host plant 

Bryan & Smith (1956) 9.4 238.1 Radish 

Lublinkhof & Foster (1977) 5.3 303.0 Green beans 

Sites & Chambers
1
 (1990)

 
6.7 114.0 Alfalfa 

Robb & Parrella (1991) 11.8 169.5 Chrysanthemum 

Lowry et al. (1995) 6.5 253.9 Peanut 

Gaum et al. (1994) 9.4 249.8 Cucumber 

Katayama (1997) 9.5 194.0 Chrysanthemum 

Jarošík et al. (1997) 10.7 231.1 Cucumber 

McDonald et al.
2
 (1998)

 
7.9 268.0 Chrysanthemum 

Stacey & Fellowes
2
 (2002) 6.7 233.4 Green beans 

Gitonga et al. (2002) 9.0 256.8 Green beans 

Nondillo et al.
3
 (2008)

 
9.9 211.9 Strawberry 

Zhang et al. (2012)
 

 

7.8 208.0 Green beans 

Mean ± SEM 8.5 ± 0.5 225.5 ± 13.3  

1 
 USA population, wild-collected in spring from alfalfa 

2
  UK populations  

3
  Brazilian population, from strawberry    
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Table 3.2.  Thrips control treatments applied to semi-protected strawberry crops monitored 

for seasonal thripid abundance during 2011 and 2012.  Field numbers refer to Table 2.1. 

Week 

no. 

Thrips control treatments 

Field 2, 2011 

cv. Camarillo 

Field 3, 2011 

cv. Camarillo 

Field 5, 2012 

cv. Finesse 

Field 7, 2012 

cv. Finesse 

13  S. scimitus  

250 per m
2
 

 N. cucumeris bags 1 

per 2 m of bed 
     

18 N. cucumeris 

50 per m
2
 

N. cucumeris bags 

1 per 2 m of bed 

 N. cucumeris 250 

per m
2
, fortnightly 

     

19 Spinosad (Tracer)    

 

20 N. cucumeris 

50 per m
2
 

Heat treatment   

     

23  O. laevigatus 

0.5 per m
2
 

N. cucumeris 250 

per m
2
 fortnightly 

Spinosad (Tracer) 

     

26  Heat treatment Abamectin 

(Acaramite) 

N. cucumeris 

500 per m
2
 weekly  

     

27  N. cucumeris 

160 per m
2
 

 Spinosad (Tracer) 

 
     

29 Spinosad (Tracer) Maltodextrin 

(Eradicoat) 

N. cucumeris 

400 per m
2
 

  

     

30  Spinosad (Tracer)  B. bassiana 

(Naturalis) 

31 Spinosad (Tracer) 

 

O. laevigatus 

(2.4 per m
2
) 

N. cucumeris 

(300 per m
2
) 

  

     

35  N. cucumeris 

(200 per m
2
) 

  

     

36 Spinosad (Tracer) 

 

Spinosad (Tracer) 

 

Spinosad (Tracer) 

Abamectin 

(Acaramite) 

B. bassiana 

(Naturalis) 

Spinosad (Tracer) 
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Table 3.3.  The number of day-degrees above development thresholds of 7.9°C (McDonald 

et al., 1998) or 8.5°C (mean from Table 3.1) and the estimated maximum number of 

generations that could complete development up to the end of cropping in 2011 and 2012, 

based on temperature records taken from within the canopy of semi-protected strawberry 

crops in the West Midlands, UK; the timing of maximum increase in thrips adult numbers 

(mean numbers per plant/mean numbers per plant in the previous week); the timing of 

100% flower occupation by thrips.  Field numbers refer to Table 2.1. 

 
Field 2, 2011  Field 3, 2011 Field 5, 2012

a 
Field 7, 2012

a 

McDonald data
b
 

    

Day degrees  1368 1329 1423 1423 

Generations 5.1 5.0 5.3 5.3 

Mean data from Table 3.1
c
   

Day degrees 1180 1159 1214 1214 

Generations 5.5 5.4 5.6 5.6 

     

Timing of maximum 

increase 

19 July 26 July 29 May 9 July 

Date of 100% flower 

occupancy 

2 August 

(80% on 19 

July) 

26 July 29 May N/A
d 

a
Nearby fields on the same farm used the same temperature data. 

b
268 degree-days above a threshold of 7.9°C 

c
226 degree-days above a threshold of 8.5°C  

d
This first-year crop did not reach 100% thrips occupancy of flowers 
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Table 3.4.  Weed host-plants that were identified from a semi-protected strawberry field 

(field 3, Table 2.1) on 28 October 2011. 

Key:  * = Weed species that flower throughout the year and were present in every tunnel in 

all the fields in Table 2.1; a = less than five adult F. occidentalis per sample; A = five or 

more adult F. occidentalis per sample; l = less than five thripid larvae per sample; L = five 

or more thripid larvae per sample; - = none found. 

Weed host family and species Main flowering 

period (months) 

Presence of adult 

F. occidentalis 

Presence of 

thripid larvae 

 

Apiaceae    

   Heracleum sphondylium  6-9 a l 

Asteraceae    

   Matricaria discoidea 6-7 a L 

  *Senecio vulgaris 1-12 a L 

   Sonchus asper 6-8 a l 

  *Taraxacum officinale 1-12 A L 

   Tripleurospermum inodorum 7-9 A L 

Brassicaceae    

   Brassica rapa Ssp oleifera 5-8 - - 

   Capsella bursa-pastoris 6-9 - - 

   Sisymbrium officinale 6-7 a - 

Caryophyllaceae    

   Cerastium glomeratum 4-9 a l 

  *Stellaria media 1-12 a l 

Fabaceae    

  Trifolium repens 6-9 - - 

Poaceae    

  Poa annua 1-12 a - 

Rubiaceae    

   Galium aparine 6-8 a l 

Solanaceae    

   Solanum nigrum 7-9 A l 

Urticaceae    

  Urtica dioica 6-8 a - 

Verbenaceae    

   Verbena officinalis 7-9 a l 

Veronicacaea    

   Veronica persica 1-12 a l 
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Table 3.5.  Overwintering of F. occidentalis in UK strawberry.   

The presence or absence of adult F. occidentalis and thripid larvae on overwintered 

strawberry plants and selected weed species flowers, the mean trap catch ± SEM with or 

without pheromone on blue sticky traps, and mean, maximum and minimum overwinter 

temperatures in semi-protected strawberry crops in the W. Midlands, UK. 

Key: A = adult F. occidentalis (males and females), F = female F. occidentalis, L = thripid 

larvae. 

Total number of F. occidentalis adults and thripid larvae found on flower samples
a
 

Date 29 Nov 2011 13 Dec 2011 25 Jan 2012 22 Feb 2012 22 March 2012 

Strawberry  5 A, 6 L* 2 A, 4 L* 1 F, 0 L  0 2 F, 0 L 

Groundsel 2 A, 11 L* 1 F, 2 L* 1 F, 0 L* 0* 1 F, 0 L* 

Dandelion 13 A, 2 L* 4 A, 2 L* 1 F, 0 L* 1 F, 0 L* 0* 

Chickweed 1 F, 2 L* 2 A, 0 L* 0
b 

0
 b
 3 F, 0 L* 

Mean trap catch (n = 6 traps)    

Date 29 Oct to 

 29 Nov 2011 

29 Nov to 

 13 Dec 2011 

13 Dec to 

 25 Jan 2012 

25 Jan to 

22 Feb 2012 

22 Feb to 22 

March 2012 

Blue sticky  1.4 A ± 0.5 0.2 A ± 0.2 0 0 5.8 F ± 1.5 

Blue sticky 

pheromone 
5.0 A ± 2.5 0.5 A ± 0.3 0.2 F ± 0.2 0.2 F ± 0.2 14.2 F ± 7.3 

Temperature (°C)     

Maximum  15.5 12.5 11 12.5 25.5 

Mean  9.3 5.4 5.5 2.5 8.6 

Minimum  4 1 -4.5 -6 -1.5 

a 
 n = 15 strawberry, 9 dandelion, 30 groundsel or 30 chickweed flowers. Where open 

flowers were not available, senescent or dead flowers were collected. 

*Open flowers were available 

b 
Chickweed leaves had silver feeding marks and faecal deposits typical of F. occidentalis. 
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Table 3.6.  Number of adult thripids per flower in ten marked flowers, sampled hourly 

from 10.00 h to 13.00 h.  The data shows that the number of adult thripids within 

individual flowers differed from the previous count in 24 out of 30 occasions, as indicated 

by (+, -) for an increase or decrease and (=) where no change was observed, showing 

frequent movement between flowers.  Individual flowers differed in the number of thripids 

that they supported (F(9, 30) = 11.6, P < 0.001) but the number of thripids per flower was 

not significantly different between sample times (F(3, 36) = 0.7, P = 0.6).  The table shows 

untransformed means whereas the statistical analysis used log transformed data. 

 

 Adult thripids per flower at different sampling times 

Flower 

number 

10.00 am 

17.6°C 

11.00 am 

21.4°C 

12.00 pm 

19.7°C 

13.00 pm 

24.6°C 

Mean ± 

SEM per 

flower 

      

1 6 4 (-) 2 (-) 5 (+) 4.5 ± 0.9 

2 1 1 (=) 0 (-) 1 (+) 0.8 ± 0.3 

3 1 0 (-) 1(+)  0 (-) 0.5 ± 0.3 

4 0 1 (+) 1 (=) 0 (-) 0.5 ± 0.3 

5 4 1 (-) 1 (=) 2 (+) 2.0 ± 0.7 

6 2 1 (-) 2 (+) 2  (=) 1.8 ± 0.3 

7 6 6 (=) 4 (-) 6 (+) 5.5 ± 0.5 

8 4 3 (-) 2 (-) 3 (+) 3.0 ± 0.4 

9 5 4 (-) 3 (-) 4 (+) 4.0 ± 0.4 

10 3 1 (-) 1 (=) 2 (+) 1.8 ± 0.5 

Mean ± 

SEM 
3.2 ± 0.7 2.2 ± 0.6 1.7 ± 0.4 2.5 ± 0.6 2.4 ± 0.3 
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         Figure 3.1.  Seasonal changes in (A) adult thripids per flower, (B) flowers per plant, (C) 

adult thripids per plant (thrips per flower x flowers per plant), (D) adult thripids per blue 

sticky pheromone trap and (E) mean temperature (°C) in two plots in a second-year semi-

protected strawberry crop (cv. Camarillo) (field 2, Table 2.1) in 2011.    = spinosad 

applied. 
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         Figure 3.2.  Seasonal changes in (A) adult thripids per flower, (B) flowers per plant, (C) 

adult thripids per plant (thrips per flower x flowers per plant), (D) adult thripids per blue 

sticky pheromone trap and (E) mean temperature (°C) in two plots in a second-year semi-

protected strawberry crop (cv. Camarillo) (field 3, Table 2.1) in 2011.     = spinosad 

applied. 
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Figure 3.3.  Seasonal changes in (A) adult thripids per flower, (B) flowers per plant, (C) 

adult thripids per plant (thrips per flower x flowers per plant), and (D) mean temperature 

(°C) in two plots in first-year (cv. Finesse, field 5, Table 2.1) and second-year (cv. Finesse, 

field 7, Table 2.1), semi-protected strawberry crops  in 2012.     = spinosad applied.   
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Figure 3.4.  Thrips species composition through the season in semi-protected strawberry 

fields in the West Midlands, UK, 2011 and 2012.  The percentage of adult thrips in 

strawberry flowers that were Frankliniella occidentalis, Thrips major or other species is 

shown (n >100 for all samples).  
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Figure 3.5.   Common F. occidentalis weed hosts in semi-protected strawberry. 

(A) Senecio vulgaris and Taraxacum officinale, (B) a mix of weed species along field 

margins and, (C) between polytunnel rows, (D) Stellaria media seedlings growing in an 

empty growbag in January. 
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Figure 3.6.  Sampling plan adopted for assessing the distribution and abundance of thripids 

in three first-year and three second-year semi-protected strawberry crops through the 

season (section 3.2.5).  The length (1 to 10) and breadth (A to J) of each crop was divided 

into ten equal sections and plots distributed as shown in grey.  Ten flowers were sampled 

from each of the marked plots (n= 100 flowers and fruit per crop).  
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         Figure 3.7. (A) Mean adult thripids per flower ± SEM from samples taken in April, May, 

June, July and August from first and second-year, semi-protected strawberry crops (cvs. 

Camarillo and Finesse, n = 3 fields of each cultivar).  Differences are significant from 

April to June, but not in July and August (April, P= 0.04; May, P = 0.01; June, P = 0.02; 

July, P = 0.18; Aug, P = 0.32). Analysis was on log-transformed data whilst the chart 

shows untransformed data.   (B) The percentage of flowers occupied by thripids in the 

three first-year and three second-year crops sampled, through the season (n = 100 flowers). 
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Figure 3.8.  The distribution of thrips in a second-year, semi-protected strawberry crop (cv. 

Finesse) on 6 June 2012 (field 7, Table 2.1), showing the mean number ± SEM of adult 

thripids per flower (F (19, 80) = 12.3, P < 0.001) (n = 5 flowers per sample) at different 

distances down four (out of 8) tunnels.  Means with the same letter are not significantly 

different (P > 0.05). 
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Figure 3.9.  The distribution of thrips in a second-year, semi-protected strawberry crop (cv. 

Camarillo) on 13 September 2012 (field 4, Table 2.1) showing, (A) the mean number ± 

SEM of adult thripids per flower (F (7, 80) = 13.8, P < 0.001) (n = 5 flowers per sample, 4 

tunnels), (B) Mean temperature (n = 4 tunnels) and (C) mean altitude at different distances 

up the tunnels (n = 4 tunnels).  Means with the same letter are not significantly different 

(Tukey’s test, P > 0.05).  Analysis was on log-transformed data whilst the charts show 

untransformed data. 
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Figure 3.10. The daily maximum and minimum temperatures (°C) at top (107 m altitude), 

middle (101 m altitude) and bottom (95 m altitude) positions in a semi-protected 

strawberry tunnel (field 4, Table 2.1) from 24 September to 5
 
October 2012.  Temperatures 

were recorded using data loggers suspended between the crop canopy at about flower 

height in white delta traps to shade them from direct sunlight. 
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Chapter 4 

Damage to strawberry fruit 

4.1. Introduction 

Strawberry is a high-value crop in the UK with a production value of about £222 

million in 2012 (Department for Environment, Food and Rural Affairs, 2013).  About 

4,648 ha were grown in 2012 (Department for Environment, Food and Rural Affairs, 

2013), of which about one third were susceptible, everbearer varieties (continuously 

flowering and fruiting over several months) grown under open-sided polytunnels.  In such 

crops, 10-15% losses due to thrips damage are typical (R. Harnden, pers. comm., 2013) as 

a result of increasing resistance to chemical insecticides (Sparks et al., 2012).  This 10-

15% over 1550 ha equates to about £7-11 million loss to the producer due to F. 

occidentalis per annum in UK strawberry.   

On strawberry, the most important damage due to F. occidentalis is bronzing 

(russeting) on fruit, which correlates directly with thrips density in flowers (Katayama, 

2005; Steiner & Goodwin, 2005a; Coll et al., 2007a).  Damage can appear on very young 

fruit as a result of thrips feeding on the tissue between the seeds (Figure 4.1 A), resulting in 

a net-like pattern as the fruit matures (Figure 4.1 B) (Steiner & Goodwin, 2005a; Nondillo 

et al., 2010).  When thrips feed on mature fruit they feed in the seed-pits causing bronzing 

close to the seed (Figures 4.1 C, D).  Slight damage to the fruit appears as tracking around 

the calyx and small patches of bronzing around a few seeds.  High numbers of thrips result 

in punctured, bronzed and small fruit which are dull in appearance, which have a limited 

shelf life and are unmarketable (Figure 4.1 E, Figure 4.2 B) (Steiner & Goodwin, 2005a).  

The limited data on the susceptibility of different strawberry stages to bronzing are 

contradictory (Coll et al., 2007a; Nondillo et al., 2010) and further data are needed to 

identify the timing of damage so that growers can take timely action to prevent damage.  

Flower damage can be economically damaging when thrips numbers are high (e.g. >25 

thrips per flower) (Steiner & Goodwin, 2005b; Coll et al., 2007a).  Symptoms in the flower 

include necrotic and withered anthers and calyces, flower and fruitlet abortion, reduced 
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receptacle size, petal browning and premature petal drop (Figure 4.2 A) (González-Zamora 

& Garcia-Marí, 2003; Coll et al., 2007a; Atakan, 2008; Nondillo et al., 2010).  Bronzing 

symptoms are exacerbated by hot, dry conditions and can be reduced by some cultural 

methods such as misting, choice of mulch or high drip-irrigation rates (Larson et al., 2004; 

Steiner & Goodwin, 2006).  Some strawberry cultivars are more tolerant than others to 

thrips damage (Kitamura & Kashio, 2004), or more favourable for F. occidentalis 

population growth (Rahman et al., 2010), so the relationship between thrips density and 

bronzing damage needs to be quantified under UK conditions on cultivars used by UK 

growers to develop damage thresholds for the UK.   

Several causes of strawberry bronzing are recognised that may be confused with thrips 

damage, including strawberry tarsonemid mite (Phytonemus pallidus), chemical spray 

burn, sun scorch and hot, dry conditions (Polito et al., 2002).  Damage caused by hot, dry 

weather usually results in a more even distribution of bronzing over the fruit than that 

caused by thrips and bronzing from spray or sun-scorch is limited to exposed areas of the 

fruit.  Early reports suggested that the feeding on styles and stigmas by thrips could cause 

malformation of strawberry fruit (“cat-facing”) (Allen & Gaede, 1963; Buxton & 

Easterbrook, 1988), but some experimental work refutes this (Easterbrook, 2000; Atakan, 

2008; Nondillo et al., 2010).  Cat facing is a symptom of Lygus spp, which occurs at very 

low pest numbers and may be confused with thrips damage in the field (Easterbrook & 

Simpson, 2000).  Fruit distortion is affected by cultivar and increases with poor pollination 

and low temperatures (Ariza et al., 2012), indeed, F. occidentalis could reduce fruit 

distortion by contributing to pollination at times of poor fruit set (Kirk, 1988).  Another 

possible benefit of low densities of F. occidentalis, not investigated here, is that they 

predate spider mites, Tetranychus urticae (Pickett et al., 1988; Steiner & Goodwin, 2006). 

To control pesticide-resistant F. occidentalis, growers need to know what density of 

thrips can be tolerated without economic damage so that unnecessary sprays can be 

avoided, or when timely actions should be taken to prevent damage.  Economic injury 

levels (EILs) were originally defined as the lowest population density of a pest that will 

cause economic damage (Stern et al., 1959).  Economic damage thresholds (the amount of 

damage that justifies the cost of artificial control) include calculations for the cost and 

effectiveness of specific control measures (Pedigo et al., 1986), but these cannot be 

included when the resistance level of the pest is unknown, as treatment could result in an 

increase in pest numbers if predator numbers are reduced but not thrips.  Action thresholds 
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(ATs) are the pest density at which control measures should be implemented to prevent it 

from reaching the EIL.  ATs were beyond the scope of this study as they vary according to 

the treatment being considered, for example, biopesticides typically have a longer lead 

time than chemical insecticides (as they take longer to work) and the predatory mite N. 

cucumeris, which can survive and reproduce on pollen, should usually be established 

preventatively before thrips numbers increase.  Damage thresholds (DTs) may be defined 

as the lowest population density that will cause measurable damage.  As one F. 

occidentalis can cause measurable (but not economic) damage in strawberry, the use of this 

measure to time insecticide treatments can be counter-productive for growers who are 

trying to reduce the selection pressure for resistance by spraying less.   

Most ATs, DTs and EILs developed for strawberry crops are based on assessment of 

thrips density in flowers, as there is a strong correlation between numbers of F. 

occidentalis per flower and fruit damage (Steiner & Goodwin, 2005b; Coll et al., 2007a).  

Assessment of thrips in flowers gives an earlier warning of damage to young fruit than trap 

catches, although trap catches and sex ratio can also be useful indicators of damage 

(Steiner & Goodwin, 2005b).  Trap catches are less reliable than flower sampling as they 

only catch adults and are more influenced by environmental conditions such as wind speed 

and temperature (Shipp & Zariffa, 1991).  Published thresholds vary considerable, from 3 

to 24 thrips per flower in strawberry (Table 4.1), partly as a result of the type of threshold 

defined (action, damage or economic) or thrips stages monitored (i.e. adults or adults and 

larvae combined).  Other factors, such as cultivar (Rahman et al., 2010), climate, time of 

year (Steiner & Goodwin, 2006) and sale price may also affect EILs (Coll et al., 2007a).  

Predators are a key component for controlling pesticide-resistant F. occidentalis and 

damage thresholds can be relaxed in the presence of predators.  Shakya et al. (2010) 

suggest that the presence of one Orius bug per flower can relax damage thresholds by 

about 40% and that the economic threshold can be increased by one or two thrips per 

flower in the presence or absence of pollen respectively, for every N. cucumeris per flower, 

based on their predation rates on strawberry (Shakya et al., 2009).  The amount of damage 

accepted by retailers and the fruit price changes with fruit availability through the season, 

which affects the pest tolerance.  The variability in published data is such that further data 

are required to estimate EILs for thrips in UK strawberry.    

To estimate thrips density in a crop, growers need a practical and effective method of 

sampling.  Methods for assessing numbers of adult thrips in strawberry flowers, by eye, 
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were developed (see section 2.5, Chapter 2), as eye-counts are considered the most cost-

effective sampling method for strawberry (García-Mari et al., 1994) and other open-

flowered crops, such as pepper (Shipp & Zariffa, 1991) and apple (Terry & DeGrandi-

Hoffman, 1988).  The sample size required to estimate a thrips population using visual 

assessment varies from 10 to 30 flowers in strawberry (García-Mari et al., 1994; Laudonia 

et al., 2000; Steiner & Goodwin, 2005a).  Further data are required to identify the sample 

size required to estimate a thrips population in UK strawberry and to investigate the 

possibility of using time-efficient methods in UK strawberry. 

The overall aim of this chapter was to identify EILs to help growers with decision-

making for F. occidentalis management in semi-protected strawberry crops in the West 

Midlands area of the UK.  Specific aims were to: 

(1) determine the relationship between the number of adult thrips per flower and 

subsequent fruit bronzing under UK conditions in order to estimate an EIL in 

the absence of predatory mites; 

(2) determine the effect of the predatory mite Neoseiulus cucumeris on fruit 

bronzing caused by F. occidentalis to estimate an EIL in the presence of 

predatory mites; 

(3) identify which strawberry fruit stage(s) are most susceptible to F. occidentalis 

damage and whether individual F. occidentalis adults or larvae cause more 

damage; 

(4) determine the distribution of adult and larval thrips on different strawberry 

flower and fruit stages in commercial crops, to see which fruit stages are 

exposed to the most thrips, which will in turn help to identify the timing of 

thrips damage; 

(5) measure the progression of flowers from bud to red fruit to help interpret the 

timing of sampling in relation to possible damage; 

(6) estimate the amount of bronzing that results in the down-grading of a 

strawberry fruit from class 1 (good quality fruit that is sold at the highest price) 

to class 2 (fruit that is reduced to a lower price due to bronzing), in a 

commercial pack-house; 

(7) validate the EILs in commercial UK strawberry fields in the West Midlands by 

comparing thrips density and fruit bronzing in different crops and seasons; 

(8) identify a cost-effective sampling method for growers. 
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4.2. Materials and Methods 

For the rest of this chapter thrips refers to species in the Thripidae family unless 

specified otherwise.  Counts of thrips in flowers in all experiments were carried out by eye 

using a ×7 head lens (optiVISOR, LightCraft, London, UK), in medium-aged flowers 

(petals open, and with anthers starting to dehisce (Sampson & Kirk, 2012)).  The flowers 

were picked and the petals pealed apart carefully so that the thrips could be seen.  Eye 

counts were used because the results could then be related to grower monitoring which is 

done in the same way.  All sampling was carried out between 10.00–15.00 h when thrips 

were most active and visible. 

The economic injury level (EIL) in this study is defined as the lowest thrips population 

density that would cause economic damage, which is the amount of thrips bronzing 

(expressed as percentage of fruit surface bronzed) that would result in the down-grading of 

a strawberry fruit from class 1 (good quality fruit that is sold at the highest price) to class 2 

(fruit that is reduced to a lower price due to bronzing).    EILs were estimated using 

numbers of adult thrips per flower rather than motile stages (adults plus larvae).  Both 

adults and motiles (adults and larvae) have been used to estimate thrips EILs (e.g. (Steiner 

& Goodwin, 2005a)), but adults were used in this study because eye-counts of larvae are 

known to be inaccurate (only 33% of larvae were found compared to alcohol counts) 

(González-Zamora & Garcia-Marí, 2003).  Also, sampling different-aged flowers results in 

a greater variation of larval numbers compared to adults, which would increase the error.  

The field abundance of larval thrips in different-aged flowers, changed by a factor of seven 

between open and senescent flowers, compared to a factor of two for adult thrips (Sampson 

& Kirk, 2012).  EILs have also been developed using thrips population estimates on fruit, 

but these were not considered in this study because they are less reliable (Steiner & 

Goodwin, 2005a). 

There were insufficient data to include the cost and effectiveness of insecticide 

treatments within the EIL for UK strawberry, as insecticide resistance levels for individual 

farms were unknown and the efficacy of biopesticides was unproven in strawberry.  

Control costs could be factored in for different treatments at a later date, when efficacy 

data are available. 
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4.2.1.  What is the effect of F. occidentalis on strawberry fruit damage? 

To test the relationship between thrips density and subsequent fruit bronzing under UK 

conditions, different numbers of adult female thrips were caged on individual flowers and 

the amount of bronzing was recorded subsequently on the fruit that developed from those 

flowers.  The experiment was carried out in an open-sided polytunnel (2 m × 5 m), at 

Keele University (N 53° 00.37’ W 2° 27.71’), from late June to early August 2011.  

Strawberry (Fragaria × ananassa, cv. Camarillo) was grown in coir growbags (10 cm 

wide × 100 cm long, BVBSublime, Maasland, NL), each containing ten flowering and 

fruiting plants.  Spontaneous outbreaks of aphids and spider mites were controlled with 

specific parasitoids and predators, Aphidius spp. (Hymenoptera: Aphidiidae) and 

Phytoseiulus persimilis (Acarina: Phytoseiidae) (Aphidsure and Phytosure respectively, 

BCP Certis, Ashford, UK).  Powdery mildew was controlled by potassium bicarbonate 

sprays (1 g per 100 ml water).  There were five treatments of 0, 2, 4, 8 or 16 adult female 

F. occidentalis per flower.  The experiment was laid out in a randomised complete block 

design, with 17 blocks (each block was a separate growbag) and one replicate per block 

(one flower infested with each thrips density in each block).  Five fully-open flowers, that 

were similar in size and position on the plant, were selected per block (growbag), then 

tagged and labelled using 50 mm sections of drinking straws, which were slit and placed 

over each flower onto the stems (Figure 4.3 A).  Each flower was allocated a treatment 

using random numbers, and enclosed using a cage made of horticultural fleece (approx. 8 

cm × 8 cm), tied to the stem with PTFE tape (polytetrafluoroethylene tape, 12 mm wide) 

(Figure 4.3. A).  Thrips were taken from the culture at Keele University (see Chapter 2).  

Adult female thrips were obtained by tapping flowers over a white dish, then using a damp 

paintbrush to scoop them into Eppendorf tubes (12 mm × 37 mm).  Mixed-aged females 

were used, as mixed-aged females would be present in the field, so it was a better 

representation of the field situation.  Males were not tested as they do not produce larvae, 

which cause much of the damage.  The use of females would therefore result in higher 

levels of damage than would be observed in field situations with mixed-sex populations.  

The proportion of adult males in flowers was typically about 28% (mean of adult thrips 

sampled through the 2011 season in semi-protected strawberry crops, n = 3,560 thrips).  

Tubes containing the appropriate numbers of thrips, or an empty tube for the control, were 

placed into the flower cages, opened, and left in situ to allow the thrips to move to the 

flower.  Any invertebrates observed in the flowers were removed with a damp paintbrush 
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before the thrips were released.  After one week the fleece covers were removed from the 

flowers to allow the fruit to develop normally.  All fruit were harvested at the fully swollen 

white fruit stage (growth stage 85 (Meier et al., 1994)), 30 days after they were infested, 

just as they were starting to turn pink.  Each fruit was assessed for damage by counting the 

numbers of seeds surrounded by bronzing.  The fruit were weighed and the total number of 

seeds per fruit was counted.   

To test the relationship between fruit damage and thrips density, bronzing on white 

fruit (as above) was regressed on the numbers of thrips per flower.  An EIL was calculated 

from the regression equation, as the number of adult thrips per flower that corresponded 

with bronzing on white fruit over 10% of the fruit surface area (about 29 seeds in this 

experiment), which would result in fruit down-grading (from class 1 to class 2) in a 

commercial pack-house (see 4.3.4).   

4.2.2.  What is the effect of N. cucumeris on F. occidentalis fruit damage?  

To test the effect of N. cucumeris on fruit bronzing caused by thrips, adult female F. 

occidentalis were caged on individual flowers at a density of either four (4.2.2.1) or eight 

(4.2.2.2) per flower, with or without the predator N. cucumeris, and the amount of bronzing 

was recorded subsequently on the fruit that developed from those flowers.  If reduction in 

damage exceeded 50%, this would also provide supporting evidence that larvae are 

responsible for most (i.e.>50%) of the damage to strawberry.  Neoseiulus cucumeris feed 

mostly on first instar thrips larvae because they are less able to catch larger prey (Bakker & 

Sabelis, 1989).  The experiment was carried out at a thrips density of four and eight per 

flower, as these were around the lower and upper EILs observed in the field (see section 

4.3.5).  Both experiments were carried out in the same polytunnel (at Keele University), 

using the same growing system, strawberry cultivar (cv. Camarillo) and cultural methods 

described in section 4.2.1.   

4.2.2.1.  At four adult thrips per flower 

The two treatments were with and without N. cucumeris.  The experiment was laid out 

in a randomised block design, with 4 blocks, on 11 June 2013.  Each block consisted of 

two separate growbags and two replicates per treatment (two flowers with predators in one 

growbag and two flowers without predators in a second growbag).  The treatments were in 

separate growbags and each growbag was surrounded by blue sticky traps placed on the 
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ground to reduce the spread of predatory mites from treated to untreated growbags (Figure 

4.3.C).  Newly-opened flowers of a similar size were selected, and then each was infested 

with 4 adult female F. occidentalis, and enclosed in a nylon pyramid teabag cage (75 mm 

long × 33 mm wide at the top, Tea Forte, St Albans, UK, Figure 4.3. B), which was sealed 

with clear adhesive tape.  Treated flowers were infested with 5 active N. cucumeris 

(Ambsure (c), BCP Certis, Ashford, UK), which is equivalent to a good establishment of 

the predatory mites in the field (Rahman et al., 2012).  Mixed-aged and mixed-sex N. 

cucumeris were used to match releases made by growers.  The predatory mites were 

collected directly from the commercial package (Ambsure (c)) using a damp paint brush, 

and transferred into Eppendorf tubes (12 mm × 37 mm).    Tubes containing the predators, 

or an empty tube for the control, were placed into the flower cages, opened, and left in situ 

to allow the mites to move to the flower.  After one week, the cages were removed to allow 

the fruit to develop normally.  All fruit were harvested at the fully swollen white fruit stage 

as they were starting to turn pink, 27 days after they were infested.  The fruit were 

harvested at this stage because some fruit were ripening faster than others, so harvesting 

early allowed direct comparison of all fruit at the same colour stage on the same date.  

Also, a toad and a blackbird were feeding on fruit as they ripened, so the fruit were 

harvested in case they got eaten!  Each fruit was assessed for damage by counting the 

number of seeds surrounded by bronzing.  The fruit were weighed and the total number of 

seeds per fruit was counted.   

4.2.2.2.  At eight adult thrips per flower 

The experiment was carried out as above (4.2.2.1), except with eight adult female F. 

occidentalis per flower instead of four.  The experiment was set up on 4 June 2013 and 

harvested at the white fruit stage, after 30 days. 

4.2.2.3.  Adjustment of the Economic Injury Level (EIL) in the presence of N. cucumeris. 

The reduction in fruit damage observed in the presence of N. cucumeris from the 

experiments above (see 4.2.2.1, 4.2.2.2) was used to calculate the mean reduction of 

damage (number of seeds surrounded by bronzing) per individual N. cucumeris per flower.  

The comparisons would give an indication as to how the EIL could be relaxed when 

predatory mites are present. 
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4.2.3.   When does fruit damage occur during fruit development?  

The susceptibility of different flower or fruit stages to adult and larval thrips damage 

was tested under controlled conditions.  By combining this information with the 

distribution of thrips between different strawberry stages in the field, the timing of damage 

can be estimated.   This in turn will help to interpret EILs and prediction of damage. 

4.2.3.1.  Which flower or fruit stages are susceptible to adult or larval thrips damage? 

To determine the relative susceptibility of different flower and fruit stages to adult or 

larval thrips, the same numbers of adult or larval thrips were caged on different strawberry 

flower or fruit stages for seven days, then thrips were regularly removed from the fruit 

thereafter and the amount of bronzing on the fruit that developed subsequently was scored, 

compared to an untreated control.  The experiment was carried out in August 2012, in the 

Keele polytunnel, using the same growing system, strawberry cultivar (cv. Camarillo) and 

cultural methods described in 4.2.1.  The experiment was laid out in a randomised 

complete block design, with 10 blocks (each block was a separate growbag) and one 

replicate per treatment (n = 10 flowers or fruit).  There were 12 treatments; four stages of 

strawberry (mid-aged open flowers, green fruit, white fruit and red fruit) infested with six 

F. occidentalis second instar larvae (mixed sex), six adult female F. occidentalis or no 

thrips (control).  Each flower or fruit was allocated a treatment using random numbers, and 

enclosed using a cage made of horticultural fleece (approx. 8 cm × 8 cm), tied to the stem 

with PTFE tape (polytetrafluoroethylene tape, 12 mm wide).  Thrips were sourced from the 

culture at Keele University (see Chapter 2) using the methods described in 4.2.1.  Any 

invertebrates observed in the flowers were removed with a damp paint brush before the 

thrips were released.  After one week the fleece covers and all visible thrips were removed 

with a damp paintbrush and then every three days until harvest.  All fruit were harvested 

when they reached the red fruit stage so that damage could be compared on the same fruit 

colour.    Fruit damage was assessed by counting the number of seeds surrounded by 

bronzing.  The amount of damage caused by thrips on the different fruit or flower stages 

and the amount of damage caused by adult or larval thrips were compared.  Eight fruit had 

been partially eaten (possibly by a toad) and these were excluded from the analysis.   
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4.2.3.2.  Within-plant distribution of thrips 

The distribution of thrips was assessed on different strawberry plant parts in four semi-

protected strawberry fields (cv. Camarillo) to determine which fruit stages had the greatest 

exposure to thrips.  When combined with information on the relative susceptibility of the 

different fruit stages, this would indicate when most of the damage is occurring, which 

could help growers to time treatments to prevent damage.  As the distribution could vary 

with thrips density, it was tested in two fields with high thrips densities (>10 adult thrips 

per flower) and in two fields with low thrips densities (<5 adult thrips per flower).  

Samples were taken on 5 July 2011 (field 3, Table 2.1), 10 August 2012 (field 7, Table 

2.1), 22 August 2012 (field 4, Table 2.1) and 13 September 2012 (field 4, Table 2.1).  On 

each occasion, ten plants were selected at random from a 10 m section of bed.  One fully 

expanded leaf, one open flower, one senescent flower, one button fruit, one green fruit, one 

white fruit and one red fruit were selected from each plant and placed separately into pots 

of 70% alcohol (n = 10 for each plant part per site).  In the laboratory, thrips were washed 

off the samples and the numbers or adult and larval thrips were counted.  The proportion of 

adults or larvae on each plant part was calculated as a percentage for the fields with high 

and low thrips numbers separately.  To test whether thrips density affected the distribution 

on plants, the proportion of the thrips population on red and white fruit in two fields with 

low thrips densities and two fields with high thrips densities were compared. 

4.2.3.3.  Flower progression in relation to F. occidentalis life cycle 

To help interpret the distribution of thrips on the different plant parts, six flower buds 

(unopened) were selected at random on 29 June 2011, tagged and their progression 

recorded daily until harvest (Keele polytunnel, cv. Camarillo).  Temperatures were 

recorded as described in Chapter 2.  The duration of each stage was calculated, then 

compared with published data on the time taken for different development stages of F. 

occidentalis on strawberry at the temperatures recorded (Nondillo et al., 2008).  

4.2.4.  Estimation of the EIL in a commercial pack-house 

Fruit in pack-houses are graded into class 1 (good quality fruit that is sold at the 

highest prices), class 2 (fruit that has a small amount of damage and is sold at a lower 

price) and waste (fruit of poor quality that cannot be sold).  An EIL was defined as the 

amount of damage on red fruit, above which fruit is downgraded from class 1 to class 2.  
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This was determined by comparing the amount of bronzing on 25 higher priced fruit (class 

1 fruit) and 25 fruit that had been downgraded to a lower price (class 2 fruit), using 

harvested red fruit that had been sorted in a pack-house.  This was done on 13 September 

2012 on cv. Finesse and on 2 October 2012 on cv. Camarillo.  While different cultivars 

may be more or less susceptible to thrips damage, they were graded on the same criteria.  

Fruit was graded and selected by pack-house staff, individual fruit were then removed that 

had been downgraded for reasons other than bronzing, such as size, shape, bruising and 

disease.  Bronzing was quantified on the remaining fruit by counting the numbers of seeds 

surrounded by bronzing per fruit in the laboratory using a ×7 head lens (optiVISOR).  To 

give an indication of where the EIL between class 1 and class 2 fruit lay, the inter-quartile 

ranges of bronzing for both classes of fruit were compared and the threshold was selected 

from between the lower quartile of class 2 fruit and upper quartile of class 1 fruit, such that 

the majority of class 2 fruit was above and the majority of class 1 fruit was below. 

The damage on fruit from the pack house was assessed on red fruit whereas the field 

data were obtained from white fruit, where damage shows up more easily.  The assessment 

of white fruit enabled comparison of the same fruit stage between fields and dates, as red 

fruit of comparable ripeness was not always available following picking, and selective 

picking of undamaged red fruit would have biased the red fruit samples.  The assessment 

of bronzing on red fruit from the pack-house and white fruit from the field was considered 

broadly similar because the red fruit assessments were done under a bright light with 

magnification so that the bronzing showed up well, so a 1:1 conversion was used.  A more 

precise conversion was used for estimating economic crop loss due to bronzing in 

Chapter 6.   Because damage shows up more easily on white fruit, the resulting thresholds 

on white fruit may be considered conservative. 

4.2.5.  Validation of EILs in commercial crops 

Previous controlled damage experiments showed that five or more adult thrips per 

flower resulted in fruit bronzing that would result in downgrading in a commercial pack-

house (10% of the fruit surface bronzed, section 4.3.2) but that eight adult thrips per flower 

could be tolerated when there was good establishment of N. cucumeris (section 4.3.2).  The 

aim of this study was to test the relationship between thrips density and fruit damage in 

commercial crops, by assessing the numbers of adult thrips per flower and amount of fruit 

bronzing weekly in two semi-protected crops (cv. Camarillo) through the growing season 
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in 2011 and on single occasions in seven semi-protected strawberry crops of varying 

cultivars and thrips densities in 2012 and 2013.   

4.2.5.1.  What is the relationship between flowering periods, thrips per flower and fruit 

damage through the season? 

Phenological data were collected weekly from two crops (cv. Camarillo) on separate 

farms, from first flowering to final harvest, in 2011, as described in Chapter 3, section 

3.2.1 (Figures 3.1, 3.2).  The cultivar Camarillo was selected to allow direct comparison 

with the controlled damage experiments above.  In addition to the data collected on flowers 

per plant, thrips per flower and thrips per trap (described in Chapter 3), fruit were assessed 

for bronzing damage at the same time and on the same plants.  Once fruit were present, one 

fully-expanded white fruit was selected from each sample plant.  If none were present on 

the sample plants, the nearest fruit was sampled.  On each date, fruit bronzing was assessed 

by eye, using a ×7 head lens (optiVISOR) and recorded using a five-point scale:  

0: Absent (i.e. free from thrips damage). 

1: 'calyx' - tracking under calyx but not on fruit.  

2: ‘slight’ - bronzing on the fruit (one patch of russetting around 1-3 seeds).  

3:  ‘moderate’ - bronzing (from 4 seeds to 50% of the fruit surface area damaged). 

4:  ‘severe’ - more than 50% of the fruit surface area damaged. 

The five-point damage scale was used only in the first year of the project before the 

EILs had been determined and would need to be revised to take into account the 10% EIL 

(see 4.3.4) if used again.  Absolute damage assessments (numbers of seeds surrounded by 

bronzing) were used in years 2 and 3 of the study because it gave a more precise linear 

scale. 

The presence or absence of Neoseiulus spp. was recorded per fruit.  Twenty 

Neoseiulus spp. individuals were selected at random from field 3, mounted on slides, using 

methods for mounting thrips described in Chapter 2, and identified to species under a 

compound microscope (Leica).   

To indicate which length of time between thrips density in flowers and fruit damage 

gives the best correlation, regression analyses of bronzing on white fruit on thrips density 

(measured as above) was carried out with time lags between flower counts and fruit 

damage of  between zero and six weeks.  First flower bud to red fruit takes about six weeks 
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under UK conditions (see 4.3.3.3).  Knowing the time of damage in relation to thrips 

density in flowers would help growers to decide how frequently to sample and how quickly 

they need to act to prevent further damage. 

To test whether thrips per flower or trap catch was a better predictor of damage, the 

relationship between fruit bronzing and thrips density was quantified by regressions of 

bronzing on white fruit (from the scale above) on numbers of adult thrips per flower or 

numbers of thrips per pheromone trap.   

4.2.5.2.  EILs observed in commercial crops. 

To test the relationship between thrips density in flowers and fruit damage in a wider 

range of crops, bronzing on white fruit (recorded using the scale above in 2011 or as the 

numbers of seeds surrounded by bronzing on white fruit in 2012 and 2013) was regressed 

on the mean numbers of adult thrips per flower in different fields, cultivars and years.  The 

data were taken from different experiments carried out throughout the study and the 

methods for collecting the data will not be repeated here.  The experiment and field from 

which each data set came is referenced in the results table (Table 4.4).  The predatory mite 

N. cucumeris was released in all the fields sampled, but by varying amounts and 

frequencies.  In addition to the fruit damage assessments, each fruit was picked and 

examined by eye, using a ×7 head lens (optiVISOR) and the presence or absence of 

Neoseiulus spp. was recorded per fruit.  Analysis was carried out on data collected weekly 

through the growing season from two crops in 2011 (see 4.2.5.1), but on single dates in the 

other crops.  Thrips density on a particular date was compared to white fruit bronzing on 

the same date, as this gave the best correlation (see 4.3.5.1) and is convenient for growers 

to use.  The thresholds were calculated from the regression equations, as the numbers of 

adult thrips per flower that corresponded with bronzing on white fruit over 10% of the fruit 

surface area (about 30 seeds) and resulted in fruit down-grading (from class 1 to class 2) in 

a commercial pack-house (see 4.3.4).   

4.2.6.  How many flowers should be sampled to estimate thrips density? 

To determine the number of flower samples required to estimate thrips populations, 

the distribution of thrips was compared to thrips density in three crops (cv. Camarillo), 

monthly from mid-April to mid-August 2012.  Camarillo crops (fields 3, 4, 10, Table 2.1) 

were used so that the results could be related to the EIL experiments, which were estimated 
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for the same cultivar.  In each field there were eight sub-plots (one tunnel wide x 15 m) 

evenly spread through the field, but at least 20 m in from the edge to reduce edge effects.  

On each assessment date, 40 medium-aged flowers were sampled regularly from across 

each plot and the numbers of adult thrips per flower were counted by eye, using a ×7 head 

lens (optiVISOR), as above.  In total, 1920 Camarillo flowers were sampled in crops with 

different thrips densities through the season. 

Aggregation indices were calculated using Taylor’s power law (Taylor, 1961) which 

has been used to describe thrips populations in strawberry (Laudonia et al., 2000; Steiner 

& Goodwin, 2005a) and other crops (Navarro-Campos et al., 2012) and the same methods 

were used to enable direct comparison.  Taylor’s power law shows that mean (m) and 

variance (s
2
) increase together according to the equation s

2
 = a m

b
, where s

2
 is the sample 

variance, m is the sample mean, a is sampling constant relating to sample size and b is 

Taylor’s index of aggregation, which is characteristic of the species.  The constants a and b 

were estimated using a regression after log-log transformation (log s
2
 = log a + b log m).  

An aggregation index above 1 indicates clumped populations.  Taylor’s constants (a and b) 

were then used to calculate the minimum sample size (n) required to estimate thrips density 

with precision levels of 80% and 90%, using n = a m
b-2

/D
2
 (Green, 1970), where D = 0.2 

for 80% accuracy or 0.1 for 90% accuracy.  A population density estimate with a SEM of 

25% is considered accurate enough for damage assessment studies (Southwood, 1978). 

The possibility of reducing sampling time by using binomial sampling (presence or 

absence) was investigated by comparing the mean number of thrips per flower with 

percentage flowers infested (Ugine et al., 2011).  The mean value (m) was adjusted using 

the equation m´ = m
1-0.5b

 (Southwood, 1978) to give a linear relationship when m´ is plotted 

against percentage flowers occupied, where b is Taylor’s index of aggregation (see above).  

4.2.7.  An action plan for growers 

An action plan was drafted showing how the EILs (with and without predatory mites) 

devised from experimental and field data might be used to improve integrated pest 

management of thrips in strawberry.   

4.2.8.  Statistical analysis 

General statistical methods are described in Chapter 2 (section 2.8). Further details 

specific to sampling are shown in 4.2.6. 
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4.3.  Results 

4.3.1.  What is the effect of F. occidentalis on strawberry fruit damage? 

When thrips were confined on flowers, fruit bronzing increased with the number of 

adult female F. occidentalis per flower (one-factor ANOVA, F(4, 63) = 51.9, P<0.001, 

Figure 4.4 A).  At low thrips densities (two per flower) there was slight brown tracking 

under the calyx, with about 8% of the white fruit surface bronzed.  At medium thrips 

density (four to eight per flower) bronzing covered 18 to 27% of the white fruit surface.  At 

high thrips density (16 per flower) about 80% of the white fruit surface was bronzed.  Fruit 

weight averaged 7.2 ± 0.5 g with no significant difference in weight observed between 

treatments (one-factor ANOVA, F(4, 78) = 0.87, P = 0.48, Figure 4.4 B).  Mean number of 

seeds per fruit ± SEM was 291 ± 15 seeds.  Minimum and maximum temperature and 

humidity was 6°C: 30°C and 49%: 96% RH respectively.   

A log (n+1) transformed regression of fruit damage on thrips density gave an EIL of 

4.6 adult thrips per flower to give fruit bronzing over 10 ± 0.4% of the fruit surface in the 

absence of predators: log bronzing (number of seeds + 1) = 0.31 + 1.56  log (thrips + 1);  

F(1,82)  = 144, P < 0.001; R
2 

= 64%). 

4.3.2.  What is the effect of N. cucumeris on F. occidentalis fruit damage?  

4.3.2.1.  At four adult thrips per flower 

The addition of N. cucumeris (5 per flower) to flowers containing four adult female F. 

occidentalis reduced fruit bronzing from about 26% to <1% of the fruit surface (one-factor 

ANOVA with blocks, F(1, 3) = 11.6, P = 0.042, Figure 4.5. A), bringing bronzing below the 

EIL (section 4.3.4), to a level where there was little detectable damage, so little further 

reduction was possible.  There was no significant difference observed between treatments 

in fruit weight (one-factor ANOVA with blocks, F(1, 3) = 0.02, P = 0.90, Figure 4.5. B), or 

number of seeds per fruit (one-factor ANOVA with blocks, F(1, 3) = 7.46, P = 0.07), which 

averaged (± SEM) 314 ± 17 and 351 ± 22 with and without N. cucumeris respectively.  At 

the end of the experiment there were 3.8 ± 1.0 predators per fruit in treated plots and 1.0 ± 

0.5 predators per fruit in untreated plots (one-factor ANOVA with blocks, F(1, 3) = 11.0, P = 

0.045), indicating that there had been some movement of predators from control to treated 

growbags over six weeks.  Minimum and maximum temperatures and humidities were 

4.5°C, 30°C and 48%, 95.5% RH respectively.   
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4.3.2.2.  At eight adult thrips per flower 

The addition of N. cucumeris (five per flower) to flowers containing eight adult female 

F. occidentalis reduced fruit bronzing from about 51% to about 4% of the fruit surface 

(one-factor ANOVA with blocks, F(1, 3) = 75.5, P = 0.003, Figure 4.6. A), bringing 

bronzing below the EIL (see 4.3.4).  There was no significant difference observed between 

treatments in fruit weight (one-factor ANOVA with blocks, F(1, 3) = 0.05, P = 0.84, Figure 

4.4. B), or number of seeds per fruit (one-factor ANOVA with blocks, F(1, 3) = 0.6, P = 

0.49),  which averaged (± SEM) 353 ± 9 and 361 ± 7 with and without N. cucumeris 

respectively.  At the end of the experiment there were 3.5 ± 0.2 predators per fruit in 

treated plots and 0.5 ± 0.2 predators per fruit in control plots (one-factor ANOVA with 

blocks, F(1, 3) = 87.4, P = 0.003), indicating that there had been some movement of 

predators from treated to control growbags over six weeks.  Minimum and maximum 

temperatures and humidities were 4.5°C, 30°C and 48%, 95.5% RH respectively.   

4.3.2.3.  Adjustment of the EIL in the presence of N. cucumeris. 

In the two controlled experiments above (see 4.3.2.1, 4.3.2.2), each adult thrips per 

flower resulted in bronzing around 21 ± 2 seeds per fruit in the absence of predatory mites. 

The estimated bronzing from 4.6 adult thrips (the EIL calculated in the absence of 

predatory mites in 4.3.1) is therefore 97 ± 9 seeds (21 x 4.6).  At four thrips per flower, 

five predatory mites per flower prevented nearly all the thrips damage (Figure 4.5 A).  At 

eight thrips per flower, five predatory mites per flower reduced the damage by 171 ± 27 

seeds (Figure 4.6 A), which is equivalent to a reduction of 34 ± 5 seeds per mite per 

flower.  As each mite reduced bronzing by 34 seeds, then a higher thrips level can be 

tolerated that would cause more damage without mites.  Based on these results, the EIL 

would increase from 4.6 adult thrips per flower to 6.2 adult thrips per flower where one 

predatory mite is present, according to the calculation ((97+34)/97) x 4.6.  Therefore the 

EIL could be relaxed by 1.6 adult thrips per flower for each N. cucumeris adult present.   

This is an approximation that should be interpreted with some care as predation rates and 

relative damage are likely to vary with thrips and predator density.  Table 4.5 shows how 

this might be used by growers for decision-making.   



Damage to strawberry fruit___________________________________________Chapter 4 

 

99 

 

4.3.3.  When does damage occur during fruit development? 

4.3.3.1.  Which flower or fruit stages are susceptible to adult or larval thrips damage? 

Both adult and larval F. occidentalis caused damage to all stages of strawberry tested 

(Figure 4.7).  There was a trend towards more damage when flowers were infested with 

thrips compared to fruit stages, although the overall differences were not statistically 

significant (two-factor ANOVA, F(3,100 ) = 1.5, P = 0.23) and there was no interaction 

between stage × treatment (two-factor ANOVA, F(6,100) = 0.5, P = 0.78).  The trend 

towards more damage when thrips were released earlier might result from extra damage 

caused by thrips that hatched between removal times (every three days), which would 

accumulate over time on plant parts that were infested earlier.  There was a significant 

difference between the amount of damage between thrips larva, thrips adult and control 

treatments (two-factor ANOVA, F(2,100) = 77.6, P<0.001).  Tukey’s test showed that larvae 

caused nearly twice (×1.7) as much damage as adults over a week and both stages caused 

more damage than controls, with mean bronzing (numbers of seeds) ± SEM being 15.0 ± 

2.6, 8.9 ± 1.4 and 0.9 ± 0.2 for six larvae, six adults and untreated plant parts respectively.  

The amount of damage and timing of damage therefore relates to the numbers of larval and 

adult thrips present on the different stages of fruit development.  The distribution of thrips 

was tested in commercial crops with low and high thrips numbers (see next section). 

4.3.3.2.  Within-plant distribution of thrips 

Adult thrips were concentrated in strawberry flowers (74% and 79% in flowers in 

fields with low and high thrips density respectively), with the rest spread between fruit of 

different stages of ripeness and relatively few (<1%) on the leaves (low thrips, two-factor 

ANOVA, F(6, 6) = 15.5, P = 0.002, Figure 4.8 A; high thrips, two-factor ANOVA, F(6, 6) = 

34.3, P < 0.001, Figure 4.8 B).  There was no significant difference between the proportion 

of adults on later stage fruit (red and white fruit) between the fields with low thrips density 

or high thrips density (one-factor ANOVA, F(1,2) = 0.03, P = 0.87).   

Larval thrips were most numerous in the senescent flower and green fruit stages in the 

fields with low thrips densities, then numbers of larvae declined as the fruit developed with 

about 6% on the red and white fruit stages (combined) and relatively few (<1%) on the 

leaves (two-factor ANOVA, F(6, 6) = 14.4, P = 0.002, Figure 4.8 C).  In fields with high 

thrips densities, the larvae were more evenly distributed between the different fruit stages 
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with 29% on the red and white fruit stages (combined) (two-factor ANOVA, F(6,  6) = 5.0, P 

= 0.035, Figure 4.8. D).  There were proportionally more larvae on later stage fruit (red and 

white stage fruit) in fields with high thrips density than in fields with low thrips density 

(one-factor ANOVA, F(1,2) = 725.3, P<0.001).   

As damage can occur at all stages of fruit development (see 4.3.2.1), the results 

suggest that most damage would occur in the late flowering and green fruit stages in fields 

with low thrips densities, whereas damage is likely to occur more evenly throughout fruit 

development in fields with higher thrips densities. 

4.3.3.3.  Flower progression in relation to F. occidentalis life cycle 

The progression of strawberry flowers from first opening of buds to harvest took 

approximately six weeks (42 days) from the end of June to mid-August (Table 4.2).  Mean 

temperature was 15.7°C during this time, which was relatively cool for the time of year.  In 

published data on F. occidentalis on strawberry at a constant 16°C, the life cycle (egg to 

adult) took 33 days, with eggs taking about 9.8 days, larval instars taking 14.4 days and 

pupae taking 8.9 days (Nondillo et al., 2008).  The relative duration of the different thrips 

life stages (using data from Nondillo et al. (2008)) in relation to the different flower and 

fruit stages from Table 4.2 is illustrated in Figure 4.9.  When adult thrips occur in the open 

flower stage (over 70% of adult thrips were found in flowers in field populations, see 

4.3.3.2), the larvae hatching from eggs laid by those adults would occur mainly in the 

green fruit stages and would start to drop off to pupate as the fruit turned white, resulting in 

a drop in larval numbers at the white fruit stage, which is observed in fields with low thrips 

populations (Figure 4.8 C).   In this situation a second generation of thrips adults would 

start to hatch near the end of fruit development but would not necessarily return to the 

same fruit.  First instar larvae are found in very young buds (see Chapter 2), as might occur 

when eggs are laid in the sepals before the flowers open or if the larvae move into young 

buds and flowers from other plant parts in search of pollen.  In this situation, most larvae 

would have pupated whilst the fruit was still green but a second generation of larvae would 

occur when the fruit are in the white fruit stage, although these would not necessarily be on 

the same fruit.  The overlapping generations present in flowers can result in larvae being 

present in similar numbers throughout fruit development, as was observed in fields with 

high thrips numbers (Figure 4.8 D).  When a thrips population is increasing, proportionally 
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more damage would occur in the later stages of fruit development, reflecting the higher 

thrips density at the time. 

4.3.4.  Estimation of the EIL in a commercial pack-house 

Harvested red fruit that had been downgraded to class 2 in the pack-house showed 

significantly more bronzing than class 1 fruit (one-factor ANOVA, F(1,45) = 51.4, P < 

0.001, cv. Camarillo; F(1,48) = 32.5, P < 0.001, cv. Finesse).  In pack-house fruit, 50% of 

class 1 fruit had bronzing surrounding 5-20 (cv. Camarillo) and 2-32 (cv. Finesse) seeds 

and 50% of class 2 fruit had bronzing surrounding 34-93 (cv. Camarillo) and 30-80 (cv. 

Finesse) seeds (Figure 4.10), pointing to an EIL in the region of 30 for bronzing around 

seeds per red fruit, which was about 10% of the fruit surface bronzed.  This was considered 

a reasonable estimate as >80% of class 1 red fruit had bronzing below this threshold and 

>80% of class 2 red fruit had bronzing above this threshold in both varieties assessed.   

4.3.5.  Validation of EILs in commercial crops 

Whilst mixed thrips species were present in all fields, the majority of thrips were F. 

occidentalis (typically >90%) at times when most fruit bronzing was observed, from late-

July through to September (see Chapter 3, Figure 3.4).   

4.3.5.1.  What is the relationship between flowering periods, thrips per flower and fruit 

damage through the season? 

When two crops were sampled weekly through the season in 2011, a small amount of 

fruit damage was observed in early-June from autumn-initiated flowers, but fruit damage 

increased rapidly from mid-July, which corresponded with a similar increase in numbers of 

adult thrips per flower (Figure 4.11).  In both crops, thrips density in flowers increased at 

the end of flower flushes, when thrips concentrated into fewer flowers, resulting in 

increased numbers of thrips per flower and subsequent fruit damage (Figure 4.11).  Flower 

density in crops could be a key factor in predicting the timing of thrips damage.   

Grower records in 2009-2011 showed a small amount of class 2 fruit (5% fruit 

downgraded) in late-May to early-June (week numbers 23-25), which corresponded with 

the end of the first flower–flushes in second-year crops, and a significant amount of class 2 

fruit (15-30% fruit downgraded in the worst affected fields) from late July through August 
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(week numbers 30-36), which corresponded with the main period of thrips activity (S. 

Clarke, pers. comm, 2011). 

Regression analysis of white fruit damage on thrips density in flowers showed the best 

correlation when both measurements were obtained on the same date, but became 

progressively weaker and the regression slopes less steep as the time gap increased (Table 

4.3).  This indicates that most fruit damage was occurring relatively recently (e.g. in the 

previous 10 days).  The correlations between thrips density in flowers and fruit damage 

one and two weeks later were still statistically significant and reasonably strong (R
2
 = 69% 

and 70% in fields 2 and 3 respectively), so the assessment of thrips density in flowers is a 

good indicator of fruit damage at the same time or soon after (e.g. up to two weeks after 

flowering), but not reliably beyond that (Table 4.3).  Only one plot was used for the 

analysis for field 2 as there were insufficient thrips in the other plot to cause fruit damage 

and early season data were excluded because no thrips were recorded until both both fruit 

and flowers were present.  This explains why the number of data points decreases with the 

lag in field 2.  In field 3, thrips were present from the start of sampling and there was six 

weeks of flowering before fruit was present, which explains why the number of data points 

remains the same for the different lags. 

The relationship between the mean numbers of adult thrips per flower and mean fruit 

bronzing on the same dates through the season was similar in the two commercial crops: 

 field 2: log (bronzing +1) = 0.01 + 0.63 log (thrips density +1), F(1,12) = 101.7, 

P<0.001, R
2
= 89% and 

 field 3:  log (bronzing +1) = 0.02 + 0.62 log (thrips density +1), F(1,34) = 108.4, 

P<0.001, R
2 

= 75%, 

where, bronzing = the numbers of seeds on white fruit surrounded by bronzing and thrips 

density = the numbers of adult thrips per flower. 

The use of the damage scale did not give a very precise measure for defining an EIL, 

but 10% fruit surface bronzing equated to just above two on the scale used.  Fruit damage 

reached this threshold when there were 5.0 ± 0.3 per flower in both fields, where predatory 

mite establishment was relatively low.  The adult thrips population was higher in field 3 

than in field 2 at the start of the season, but there were proportionally fewer thrips larvae 

(compared to adults) in field 3, where 42% of the fruit were infested with predatory mites 

compared to 4% in field 2 (Figure 4.11).  A higher EIL might be expected in field 3, where 
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there were more predatory mites, but the use of a damage scale did not allow for sufficient 

differentiation in this case.  95% of the Neoseiulus spp. collected from field 3 were 

identified as N. cucumeris and 5% were N. californicus (n = 20 mites). 

The use of trap catch rather than counts of thrips in flowers resulted in a significant but 

weaker correlation with fruit damage in the same fields and on the same dates through the 

season:   

 field 2: log (bronzing +1) = -0.44 + 0.36 log (thrips per trap +1), F(1,15) = 82.7, 

P<0.001, R
2  

= 62%  and 

 field 3: log (bronzing +1) = -0.19 + 0.22 log (thrips per trap +1), F(1,28) = 17.5, 

P<0.001, R
2 

= 36%,  

indicating that flower sampling gives a better measure of thrips population density than 

trap catch for the prediction of fruit damage. 

4.3.5.2.  EILs observed in commercial crops. 

EILs of between 5 and 11 adult thrips per flower were identified in six commercial 

crops where thrips damage had resulted in some downgrading of fruit to a lower price 

(Table 4.4).  No economic crop loss due to thrips damage was observed in three crops 

where thrips numbers remained below 5 adults per flower throughout the season (Table 

4.4).   

The lowest EIL (economic fruit damage when there were 5 adult thrips per flower) 

was observed in the field with the lowest cover of predatory mites and the highest EIL 

(economic fruit damage when there were 11 adult thrips per flower) was observed in the 

field with the highest cover of predatory mites (Table 4.4).  These data broadly support the 

EILs observed in controlled experiments with and without N. cucumeris (see 4.3.1, 4.3.2), 

but cannot be quantified further as the numbers of predatory mites per fruit were not 

counted nor were they routinely identified to species. The data should be viewed with 

some caution as the establishment of predatory mites varied between fields, within field 

and between sample dates. 

4.3.6.  How many flowers should be sampled to estimate thrips density? 

The relationship between mean numbers of adult thrips per flower and variance for the 

Camarillo crops sampled estimated Taylor’s coefficients a = 0.12 ± 0.01 and b = 1.12 ± 
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0.02 (log variance = 0.11 + 1.12 log mean, P<0.001, R
2
 = 97%).  A slightly aggregated 

population is indicated by the aggregation index b, which is just >1.   Taylor’s coefficients 

were used to calculate the minimum sample size required to estimate thrips density in 

flowers at 80% and 90% accuracy (Figure 4.12 A).  For growers, who are monitoring to 

determine EILs, the sampling of 8 and 32 flowers from an area would be sufficient to 

estimate the population with 80% and 90% accuracy respectively when the mean thrips 

density is 5 adult thrips per flower and 4 and 17 flowers when the mean thrips density is 11 

adult thrips per flower (these being the thrips densities for lower and upper EILs estimated 

without and with predatory mites).  The sampling of 10 flowers per area of interest would 

be sufficient to give >80% accuracy in estimating EILs of 5 to 11 adult thrips per flower.  

The possibility of reducing sampling time by using binomial (presence, absence) 

sampling was tested by comparing mean thrips per flower with the percent of flowers 

infested (Figure 4.12 B).  When the mean was adjusted to a linear relationship (m´ = m
1 -

0.5b
), the percentage of flowers infested = -8.07 + 59.6 × m´.  Thrips reached 100% flower 

occupation when the mean thrips per flower was about 4 thrips per flower (3 and 4 adult 

thrips per flower equate to 88% and 101% flower occupancy respectively).  This could be a 

useful as a rough guide for growers as an alert that the EIL (about 5 adult thrips per flower) 

is approaching and that more detailed monitoring is needed.  If valid, then presence and 

absence sampling could be used until 100% occupancy while thrips numbers are still 

below damaging densities, then growers could change to counting numbers of adult thrips 

per flower.   

4.3.7.  An action plan for growers 

An action plan for thrips management on strawberry (cv. Camarillo) in the West 

Midlands, UK, is shown in Table 4.5.  The table suggests possible actions according to 

thrips density and establishment of predatory mites, according to EILs devised from 

experimental and field data.  Further testing in commercial crops is required to validate the 

thresholds and actions in different cultivars and regions of the UK before it could be 

recommended to growers. 
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4.4. Discussion 

The pattern of bronzing observed on strawberry fruit caused by thrips in this study was 

consistent with that found in Australia (Steiner & Goodwin, 2005a) and elsewhere, with a 

netting pattern around the seeds when damage occurred in the early stages of fruit 

development (Figure 4.1 B) and damage in the pit surrounding the seeds when it occurred 

on swollen fruit (Figure 4.1 C, D).  Severely damaged fruit had a dull, seedy appearance 

(Figure 4.1 E).  The position of damage on the fruit therefore gives a clue to when most of 

the damage occurred during fruit development.  Thrips damage did not explain all the 

bronzing, and bronzing associated with pesticide treatment (e.g. Figure 6.10 D, Chapter 6), 

physical damage or high temperature was observed in the field.  Thrips damage did not 

affect fruit weight in the controlled experiments in this study, which contrasts with other 

work (Coll et al., 2007a).  This may be because lower numbers of thrips per flower were 

tested in this study to reflect typical field populations (2-16 adult thrips per flower), 

compared to 60 adult thrips per flower used by Coll et al. (2007a).  Waste fruit affected by 

thrips damage in the commercial fields in the UK appeared to be small (Figure 4.1 E), but 

this was not quantified and fruit were down-graded as a result of bronzing before weight 

was affected.  In line with recent studies (e.g. Nondillo et al. (2010)), no fruit deformation 

was observed as a result of thrips damage. 

To make timely control treatments, growers need to know when the majority of 

damage is occurring during the approximately six week period (in the UK) that it takes 

from bud-break to harvested red fruit.  Coll et al. (2007a) found the ripe fruit most 

susceptible to thrips bronzing and Steiner and Goodwin (2005a) suggested that the most 

important damage was done at the young green fruit stage.  In contrast, all stages of fruit 

and late flowering (cv. Camarillo) were found susceptible to thrips bronzing damage in this 

study, as found by Nondillo et al. (2010), suggesting that damage could occur at any time 

from flowering to harvest.  The data from Coll, et al. (2007a) may reflect the cultivar used 

(cv. 328, Tamar) which apparently tolerated higher numbers of thrips without bronzing 

damage than other cultivars in comparable studies (Table 4.1).  If all stages of fruit are 

equally susceptible, the predicted timing of damage reflects the numbers of thrips present 

at each fruit development stage.  Second-instar F. occidentalis larvae caused proportionally 

more damage per individual than adults (Figure 4.7) and larval F. occidentalis have been 

found to cause more damage than adults in other crops (Pearsall, 2000).  Although 
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differences in damage caused by adults and larvae were statistically significant in my 

study, the error was large (Figure 4.7), which could have resulted from adults escaping 

from the cages or failure to remove all the thrips after the plants had been infested for a 

week.  Further controlled experiments comparing damage caused by adult and larval thrips 

on different stages of fruit, over a short period of time (e.g. a day) would provide useful 

back-up information.  The large reduction in damage (>90%) observed in the presence of 

N. cucumeris, which only feed on thrips larvae, provided supporting evidence that F. 

occidentalis larvae cause the majority of the damage (Figures 4.5 A, 4.6 A), so the 

distribution of larvae between flower and fruit stages is likely to be the best indicator for 

the timing of damage.  At lower thrips densities (<5 adult thrips per flower), thrips larvae 

were concentrated in the late flowering and green fruit stages (Figure 4.8 C), so damage 

would occur at early stages of fruit development, 20 - 30 days before harvest, as suggested 

by Steiner and Goodwin (2005a).  However, when thrips density was high (e.g. >11 adult 

thrips per flower), larvae were present in similar numbers throughout fruit development 

(Figure 4.8 D), so the damage could occur right up to harvest rather than mainly in the 

early fruit stages.  The change in distribution observed as thrips density increases may 

result from competition for resources and interference between thrips at higher thrips 

densities, which would force thrips out of flowers into less favoured habitats (Crespi & 

Taylor, 1990).  Both adult and larval thrips can move between flowers and fruit (Kirk, 

1985b) and the thrips density on a particular flower or fruit could be influenced by that in 

surrounding flowers and fruit (with thrips hatching at different times), which would also 

contribute to the thrips density during the later stages of fruit development.  In addition, 

thrips distribution on strawberry changes with pollen availability and predator 

establishment (Shakya et al., 2010).  There are proportionally more larvae on the later fruit 

stages when there is less pollen, as would occur later in the season when there are fewer 

flowers and more thrips.  Further biological data on the movement of thrips larvae between 

strawberry parts, at different thrips, flower and N. cucumeris densities are required to 

explain the observed changes in their distribution.   

The later timing of bronzing in fruit development predicted at higher thrips densities 

helps to explain why thrips density per flower correlated best with bronzing on white fruit 

when both were measured at the same time (Table 4.3).  The more even distribution of 

larvae at higher thrips densities suggested that over 30% of the damage on white fruit (at 

the turning pink stage) occurred over the previous 1-2 weeks, so damage reflected current 
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thrips densities better than those of 3-4 weeks previously (when those white fruit would 

have been flowers).  Another possible explanation is that thrips populations are often 

increasing at times when damage is occurring, which weights the timing of damage 

towards the later stages.  For example, mean numbers of adult thrips per flower increased 

from <1 to about 13 over a five-week period from mid-July to mid-August 2011 in field 2 

(Figure 4.11 A) and the adults alone that were present in mid-August (without subsequent 

larvae) could have caused damage that would not have been predicted from the low 

numbers of thrips in mid-July.  Empirical evidence from the field shows that the 

assessment of  thrips density in mid-aged flowers cannot reliably predict thrips damage on 

the white fruit (3-4 weeks later), or red fruit (about 5 weeks later) that develop from those 

flowers, because thrips density may increase and do further damage in between (Table 

4.3), whereas there was good correlation between thrips density in flowers and damage on 

white fruit that develop from those flowers in experiments where other parameters were 

controlled (e.g. Figure 4.4).  As field conditions are uncontrolled, the assessment of adult 

thrips density in flowers in the field is considered simply as a relative measure of thrips 

density that reflects relative fruit damage at that time.  Published EILs and DTs have also 

been developed by comparing thrips density in flowers with fruit damage at the same time 

(see references in Table 4.1). 

Quantification of realistic EILs for bronzing on strawberry fruit is difficult in 

commercial fields, where there is a complex relationship between bronzing and 

environmental conditions, cultural techniques, pest or diseases species present and control 

treatments applied (Polito et al., 2002).  Key to developing EILs is the quantification of the 

amount of fruit bronzing that would result in economic loss, but this is not included in 

most studies. Steiner and Goodwin’s (2005a) damage threshold of five or more F. 

occidentalis was based on moderate to high fruit damage (>20% of the fruit surface 

bronzed).  Coll et al. (2007a) incorporated economic loss into their EIL by quantifying 

weight loss as a result of thrips damage, which did not apply in this study because fruit 

were downgraded on bronzing before weight loss was affected.  They also showed that 

different markets had different tolerance for damage, specifying 30% fruit surface bronzing 

as the damage threshold for the local market in Israel and a requirement for uniform size 

and colour for the export market (bronzing unspecified), resulting in EILs of 24 and 10 

motile (adults and larvae) thrips per flower for local and export markets respectively.  At 

the start of my study it was assumed that fruit for the UK market were downgraded if 
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bronzing was observed around more than a few seeds (e.g. up to five seeds), based on 

discussions with growers and advisors, which was reflected in the damage scale used in 

2011.  In reality this turned out to be more of an aspirational, rather than an actual, 

threshold as bronzing up to about 10% of the fruit surface was tolerated without down-

grading of fruit in a commercial pack-house (Figure 4.10).  Some of this discrepancy 

between observed and perceived damage thresholds may arise because the intensity of 

bronzing was not considered in this study, so the slightest bronzing was scored (observed 

carefully with a lens and a light) that may not have been recognised on red fruit being 

graded rapidly by staff in a commercial pack-house.  The EILs in this study are considered 

conservative as the assessment of fruit bronzing was carried on red fruit in the pack-house, 

whereas white fruit was assessed in the field, where fruit bronzing shows up more clearly.   

The EIL defined from damage assessed on pack-house fruit equated to about five adult 

thrips per flower in the absence of predatory mites in a controlled experiment (Figure 4.4), 

which was within the range of published thresholds on strawberry (Table 4.1) and the same 

as that identified by Steiner and Goodwin (2005a) in Australia when adult thrips were 

sampled.  The threshold is considered conservative, not only because white fruit were 

assessed (see above) but also because females were used in the controlled experiment, 

which would have resulted in proportionally more larvae and therefore more damage, than 

if a mixed-sex population had been used.  The sex ratio of F. occidentalis in strawberry 

flowers from the field was about 3: 1 female: male, identified from alcohol samples 

(n>2000, Chapter 3).  Despite this, the same EIL (five adult thrips per flower) was 

identified in two commercial crops of the same cultivar, on different farms, with relatively 

few predatory mites, in the same year (Figure 4.11).  Further support for this EIL comes 

from three crops where there was no crop loss due to thrips damage throughout the season 

while thrips densities remained below the threshold (Table 4.4).  The similarity between 

the EILs identified in different countries with different climates is perhaps rather 

surprising.  A possible explanation for this is that the growing methods, planting densities 

and cultivars used in commercial strawberry crops are similar between countries where 

there is regular exchange of information and plants in a global market, and because the 

growing conditions between countries are more similar for protected crops. 

The predatory mite N. cucumeris is a key component in the control of pesticide-

resistant F. occidentalis on strawberry (Rahman et al., 2012).  The reduction in strawberry 

fruit bronzing resulting from N. cucumeris in this study (Figures 4.5, 4.6) is similar to that 
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predicted by Shakya et al. (2010), based on N. cucumeris predation rates on thrips larvae.  

The predatory mites prevented nearly all damage at a thrips density of four adult thrips per 

flower (Figure 4.5), which is further evidence that low levels of thrips (below the EIL of 5 

adult thrips per flower) can be managed with predatory mites.  Shakya et al. (2010) 

estimated that the EIL could be relaxed by one or two motile (adults and larvae) thrips, 

with and without pollen respectively, for each predatory mite present per sampling unit, 

which is similar to that predicted by this study, of 1.6 adult thrips per flower per predatory 

mite (see 4.3.2.3).  The field data also indicate increased thresholds with increasing N. 

cucumeris establishment, but the relaxation of the EIL according to numbers of predators 

per fruit could not be tested as the predatory mites were not counted (only 

presence/absence data were recorded).  The field data should be viewed with caution as 

there was insufficient replication between farms and cultivars to draw conclusions and 

relatively few predatory mites were identified to species, although 90% were N. cucumeris 

in the small sample of mites identified (n = 20).  As the identification of predatory mites is 

time consuming and requires specialist knowledge and equipment (Zhang, 2003), it is not 

practical for most growers, so it would be useful to test whether it would be sufficient to 

sample predatory mite density without identifying them to species for the purpose of 

estimating an EIL.  Many naturally occurring or naturalised generalist predators, such as N. 

californicus, feed on thrips in addition to their preferred prey (Walzer et al., 2004), so 

identification may not be necessary.  Neosieulus californicus is more frequent on leaves 

than on flowers and fruit (Fitzgerald et al., 2008), so may be less prevalent than N. 

cucumeris in flower samples.  Even where regular releases of N. cucumeris had been made, 

field distribution was patchy, so the distribution of predatory mites must be considered as 

well as the numbers of predators per flower, as an even distribution of N. cucumeris is a 

key factor in preventing thrips increase (Jacobson et al., 2001b).  Further data are required 

to determine the numbers or percentage cover of predators required to reduce strawberry 

fruit damage in the field and to determine a reliable sampling method for the predatory 

mites.  This study has shown the importance of N. cucumeris in reducing thrips bronzing, 

so predator establishment must be taken into account within EILs.  Early intervention risks 

disrupting the predator establishment and increasing pesticide resistance, which would 

result in increased numbers of thrips.   

When the density of adult thrips reaches a high enough density they can cause 

sufficient bronzing on their own (i.e. without the subsequent damage caused by their 
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larvae) that will result in fruit down-grading.  This damage cannot be reduced significantly 

by N. cucumeris, which only feed on larvae.  This upper threshold was not tested 

experimentally, but there is evidence that it may be around 11-12 adult thrips per flower in 

UK crops:  high levels of N. cucumeris (5 per fruit) reduced fruit bronzing below 

economically damaging levels at eight adult thrips per flower (Figure 6.5 A), suggesting 

that the upper threshold is higher than eight; six adult thrips per flower (without subsequent 

larvae) caused fruit bronzing around 5% of the fruit surface (around 15 seeds, Figure 4.7), 

suggesting that 12 adult thrips per flower would result in about 10% fruit surface bronzing 

(the EIL); and the highest EIL observed in a field with good predatory mite establishment 

was 11 adult thrips per flower (Table 4.4).  Therefore an upper threshold of 11 adult thrips 

per flower is suggested (see Table 4.5), as few growers or advisors would risk higher thrips 

numbers, but this could be tested further in controlled experiments.  

There were several important factors that were not incorporated into the EILs in this 

study.  Seasonal market changes were not considered in the EIL, which was tested at times 

when 10-15% of the fruit was being down-graded due to fruit bronzing (S. Clarke, pers. 

comm, 2012) and further data are required to test how the threshold might change 

according to the availability of good quality fruit.  When there is a glut of undamaged fruit, 

the EIL might be lower as only the very best quality fruit would be selected for sale.  

Climatic conditions may affect fruit damage.  More damage was observed on 

chrysanthemum at longer daylength (De Jager et al., 1997), which may be the result of 

increased feeding activity (Whittaker & Kirk, 2004).  Relatively more fruit bronzing per 

thrips was observed on strawberry in hot, dry conditions (daytime temperatures of 35°C vs 

25°C) in Australia (Steiner & Goodwin, 2005a).  As a result, EILs may vary between 

seasons, regions, farms, or even within fields, where temperatures can be significantly 

higher near the top of sloping fields compared to the bottom (see Chapter 3).  There were 

insufficient data to draw conclusions on the relative susceptibility of different cultivars to 

thrips damage, but the limited data available showed similar susceptibility to damage 

between the two cultivars tested (cvs. Camarillo and Finesse).   

Orius spp. were not tested in this study as few growers in W. Midlands were releasing 

it and only a few naturally occurring Orius sp. were observed in fields at the end of the 

season (<1% of flowers with Orius).  Orius spp. achieve spectacular control of both adult 

and larval F. occidentalis when well established (Sampson et al., 2011) and where 

naturally occurring Orius spp. are widespread, the EIL is rarely reached unless harmful 
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pesticide treatments are made (Coll et al., 2007a).  Orius spp. are estimated to relax EILs 

by 40% (Shakya et al., 2010), so Orius spp. should be incorporated into the EIL if growers 

start to use them effectively.  Other naturally occurring predators were observed in the 

field, such as the common flower bug (Anthocoris nemorum), and these contribute to 

control.  Shakya et al. (2010) incorporated the presence or absence of pollen into their 

decision-making tool, as predators feed on more thrips in the absence of pollen.  The 

presence of pollen was not included in this study as it is available nearly continuously in 

everbearer strawberry cultivars.  Pollen is a key factor affecting the establishment and 

population growth of predatory mites and Orius spp. in strawberry, so although the 

predation rate per predator may decrease in the presence of pollen, the resulting increase in 

population growth is likely to result in an overall increase in predator numbers and total 

predation.   

The recommended sample sizes required to estimate thrips populations using visual 

assessment vary in the literature between 10-50 flowers per plot in strawberry (García-

Mari et al., 1994; Laudonia et al., 2000; Linder et al., 2000; Steiner & Goodwin, 2005a).  

This study supports the sampling of 10 flowers per area of interest based on the 

aggregation index (b = 1.12), which is the lowest estimate, but similar to published indices 

for adult thrips in strawberry of 1.26 to 1.42 (García-Mari et al., 1994; Linder et al., 2000; 

Steiner & Goodwin, 2005a).  The relatively low aggregation index could be the result of 

the large sample size, combining samples from different dates, which would have included 

a significant proportion of other thrips species early in the season (see Chapter 3), which 

can have lower aggregation indeces (Steiner & Goodwin, 2005a).  The sample size 

required increases when larvae are included as they are more aggregated and less mobile 

than adults (Steiner, 1990).  The choice of sample size will vary according to time 

available, thrips density and a grower’s attitude to risk.  The sampling of 10 flowers from 

an area of interest would usually be sufficient to estimate adult thrips density in most 

situations, but different areas of a crop should be sampled as thrips numbers vary 

considerably within fields (see Chapter 3).  Sampling plans should be tailored to specific 

fields based on local knowledge as pest hot-spots (areas with higher pest density) are 

usually known by growers.  As thrips density and fruit bronzing change rapidly through the 

season, weekly sampling is essential to make appropriate management decisions so that 

fruit damage can be prevented.  Although not tested experimentally, an increase in thrips 

density per flower and fruit damage was often observed at the end of flower flushes, when 
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the thrips concentrated into fewer flowers and moved onto fruit (Figure 4.11).  Future 

damage cannot therefore be predicted from thrips density alone but has to take account of 

changes in flower density.  Further data are required to quantify this experimentally, but 

extra vigilance is advised when flower density is declining.  The thresholds developed in 

this study depended on careful sampling of adult thrips in flowers of a specific age and 

position.  Inaccurate sampling would underestimate thrips numbers and make the 

thresholds invalid.  Training of staff (using methods described in Chapter 2) and checking 

of thrips counts by eye against alcohol samples would be a worthwhile investment for 

growers at the start of each season. 

Flower sampling gave a better correlation with thrips damage on fruit than trap 

catches.  Traps can be less reliable for estimating a population than counts of thrips in 

flowers  as they reflect activity as well as population density, so are more influenced by 

environmental conditions such as wind speed and temperature (Shipp & Zariffa, 1991; 

Steiner & Goodwin, 2005b).  Flower sampling gives a more direct relationship to fruit 

damage as it naturally accounts for any changes in flower density that affect numbers of 

thrips per flower even when there is no change in the thrips population.  Also because 

flower counts give an immediate measure whereas trap catches are delayed.  Binomial 

sampling was assessed as it could provide growers with a faster sampling method (Steiner 

& Goodwin, 2005a).  In this study, the numbers of thrips per flower and risk of damage, 

increased rapidly once 100% flower occupation had been reached, which equated to about 

4 adult thrips per flower, which is just below the EIL without predatory mites of 5 adult 

thrips per flower.  With good establishment of natural enemies and thus higher thresholds, 

binomial sampling will not be of use around the threshold.  One possible option is to use 

binomial sampling until 100% flower occupancy as an alert that EILs are approaching, and 

then change to counts of adult thrips per flower to give a more detailed estimate, but this 

would have to be tested further in commercial crops. 

The EILs identified for F. occidentalis, with and without predatory mites, in controlled 

studies and in commercial strawberry are remarkably consistent in this study (Table 4.4), 

but they are mainly derived from one cultivar (cv. Camarillo) and from one region of the 

UK.  Further data are required to test how factors such as the market, cultivar and climate 

affect EILs in different regions of the UK.   The thresholds and actions suggested in Table 

4.5 can be used only as a rough guide, to be amended according to experience in different 

markets, seasons, cultivars, farms or fields.  However, these conservative thresholds (based 
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on damage on white fruit), suggest that higher numbers of thrips may be tolerated without 

damage than is currently considered acceptable to growers.  Many growers routinely spray 

chemical insecticides when thrips density is below one adult thrips per flower.  The 

adoption of thresholds for timing treatments is likely to result in reduced frequency of 

potentially harmful pesticide applications that can reduce predator numbers and so cause a 

resurgence of F. occidentalis.  Reduced spraying also delays the development of pesticide 

resistance. 
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Table 4.1.  Published action thresholds (ATs), damage thresholds (DTs) and economic 

injury levels (EILs) for strawberry, based on numbers of thrips per flower where, m = 

mixed active thrips stages and A = adult thrips.  

Reference Threshold: no. 

of thrips per 

flower 

Type of 

threshold 

Thrips 

stage(s) 

Thrips 

species 

Comment 

Linder et al., 2000 3-6 DT m
 

mixed
a
 Switzerland 

Steiner & Goodwin, 

2005a 

5
b 

10 

DT 

DT 

A 

m 

WFT 

WFT 

Australia 

Grasselly, 1995 8-10 DT m WFT France 

Shakya et al., 2010 10 

14 

EIL 

EIL 

m 

m 

WFT 

WFT 

Israel, no Orius 

With Orius 

Coll et al., 2007b 10 

24 

EIL 

EIL 

m 

m 

WFT 

WFT 

Export market 

Local market 

Laudonia et al., 2000 7-15 

15-20 

AT 

EIL 

m 

m 

WFT 

WFT 

Italy 

Italy 

a
 Species did not include F. occidentalis 

b
 AT = 5 adult thrips per flower in 40% of flowers 
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Table 4.2.  Progression of semi-protected strawberry (cv. Camarillo) from white bud 

(petals visible) to red fruit from 29 June 2011, at an average 15.7°C (n = 6 flowers or fruit). 

Flower stage Description of stage Time taken for each 

stage (days) 

White bud Petals showing but not open. 4.0 ± 0.4 

Open flower All petals open and present. 4.8 ± 0.7 

Senescent flower Petals dropping, one to five petals present. 2.5 ± 0.7 

Button fruit No petals, receptacle elongating, seeds visible. 2.0 ± 0.3 

Green fruit Green seeds covering a larger area than flesh. 13.5 ± 0.5 

White fruit White flesh covering a larger area than seeds. 7.7 ± 0.7 

Pink fruit Fully swollen white fruit with some red areas.  8.0 ± 0.7 

Red fruit Ripe red fruit that was harvested after one day.  1.0 ± 0.0 
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Table 4.3.  Polynomial (linear and quadratic) regression of fruit damage (seeds surrounded 

by bronzing) on thrips density (adult thrips per flower) on the same date, then of fruit 

damage on thrips density in previous successive weeks, in two semi-protected strawberry 

crops (cv. Camarillo) (fields 2 and 3, Table 2.1).  Data were collected weekly from May to 

September 2011.  There were two plots in each field, with ten flowers and fruit sampled 

weekly per plot.  Analysis was of log-transformed data.  The regression had linear and 

quadratic components, with fruit damage increasing rapidly at lower thrips numbers but 

levelling off at high thrips numbers. 

Time lag between 

flower samples and 

fruit damage 

assessments 

Field 2 Field 3 

F (d.f) P R
2 

 F (d.f) P R
2 

On the same dates 57.6 (2, 11) <0.001 89.7  68.3 (2, 33) <0.001 79.4 

Damage after 1 week 35.6 (2, 10) <0.001 85.2  54.5 (2, 33) <0.001 75.3 

Damage after 2 weeks 13.0 (2, 9) 0.002 68.6  42.4 (2, 33) <0.001 70.3 

Damage after 3 weeks 6.2 (2, 8) 0.02 51.2  28.3 (2, 33) <0.001 60.9 

Damage after 4 weeks 2.0 (2, 7) 0.21 17.8  12.2 (2, 33) <0.001 38.3 

Damage after 5 weeks 0.7 (2, 6) 0.55 0  6.7 (2, 33) 0.003 23.7 

Damage after 6 weeks 1.5 (2, 5) 0.31 12.0  2.2 (2, 33) 0.13 6.1 
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Table 4.4.  Economic injury levels (EILs) observed in commercial semi-protected 

strawberry crops, derived from regression analysis of fruit damage (seeds surrounded by 

bronzing) on thrips density (adult thrips per flower) to predict the thrips density causing 

damage over 10% of the fruit surface.  Samples were taken on the same dates, which 

previously gave the best correlations (Table 4.3).  The mean number of adult thrips per 

flower when the thrips populations were at their peak and the percentage of fruit 

supporting predatory mites (Neoseiulus spp.) are shown.  N/A = Not available.  

Location 

(year) 

Cultivar Peak 

sampling 

density
a 

% fruit 

with 

predators
 

R
2
 P

 
EIL Data 

source: 

field, 

(ref.
b
) 

Stafford 

(2011)
c 

Camarillo 12.9 4% 90% <0.001 5.0 ± 0.3 Field 2 

(4.2.5.1) 

Tamworth 

(2011)
c 

Camarillo 10.3 42% 79% <0.001 5.0 ± 0.3 Field 3 

(4.2.5.1) 

Stafford 

(Sept 2012) 

Camarillo 6.0 5% 88% <0.001 6.3 ± 0.4 Field 10 

(6.2.6.2) 

Tamworth 

(May 2012) 

Finesse 12.5 62% 65% 0.009 8.7 ± 1.3 Field 7 

(3.2.5) 

Tamworth 

(Aug 2012) 

Camarillo 18.5 60% 63% <0.001 8.8 ± 0.4 Field 3 

(3.2.5) 

Tamworth 

(Aug 2012) 

Camarillo 17.1 72% 62% <0.001 10.6 ± 1.1 Field 4 

(6.2.7) 

The following crops did not have sufficient thrips to cause fruit downgrading: 

Stafford 

(2012) 

Camarillo 1.0 72% - - N/A Field 9 

(3.2.5) 

Tamworth 

(2012) 

Finesse 3.1 N/A - - N/A Field 5 

(3.2.5) 

Tamworth 

(2013) 

Finesse 1.0 N/A - - N/A Field 3  

(d) 

a  
The highest mean number of thrips per flower recorded over the whole season. 

b
 Reference to the experiment from which the data came. 

c  
2011 thresholds were derived from weekly samples taken throughout the season. 

d
 
 Data were used from samples of 21 plots (n = 40 flowers and 20 fruit per plot) spread 

over the field from an experiment that was not reported in this study. 
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Table 4.5.  A decision table illustrating the adjustment of economic injury levels (EILs) 

and possible thrips control actions according to thrips density (numbers of adult thrips per 

flower) and predatory mite establishment (numbers of N. cucumeris per fruit), within an 

Integrated Pest Management (IPM) programme in UK semi-protected strawberry in the 

West Midlands, where:  X = numbers of N. cucumeris adults per fruit. EIL = economic 

injury level (adult thrips per flower).   

Instructions – count the number of adult thrips per flower in 10 medium aged flowers 

selected from the top of the plant, and the numbers of adult predatory mites per fruit per 10 

white fruit, then select the appropriate action according to the relevant boxes for thrips and 

predator density in the table below. 

 

 Predatory mite level 

 Predatory mites present on the 

majority of fruit.  Adjust the 

EIL according to:    

EIL = 5 + 1.6 X 

Poor distribution (<50% of 

fruit with mites) of predatory 

mites on fruit:   

EIL = 5 

T
h
ri

p
s 

le
v
el

 

<5 adult 

thrips per 

flower 

 Monitor next week. 
 Release N. cucumeris. 

 Monitor next week. 

5 to 11 

adult 

thrips per 

flower 

 Apply compatible spray 

treatment if EIL (above) 

is reached. 

 Monitor next week. 

 Apply compatible 

spray treatment. 

 Release N. cucumeris. 

 Monitor next week. 

>11 adult 

thrips per 

flower 

 Apply compatible spray 

treatment. 

 Check predator numbers. 

 Monitor next week. 

 Apply compatible 

spray treatment. 

 Release N. cucumeris. 

 Monitor next week. 

 

Note: IPM assumes that no incompatible spray-treatments with a long residual action have 

been used.  If Orius spp. are present, the EILs could be increased further.  Earlier treatment 

may be required if the treatment is slow acting.  
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Figure 4.1. Photographs of types of damage seen on strawberry fruit, showing: (A) 

bronzing on the flesh between seeds at the earliest stages of green fruit development, (B) a 

netting pattern on white fruit resulting from earlier damage, (C) later bronzing caused by 

thrips feeding in the wells surrounding seeds in white fruit, (D) and bronzing surrounding 

the seeds on red fruit, (E) ‘seedy’ appearance of a severely bronzed red fruit and (F) typical 

thrips damage on green, white and red fruit. 

A B 

C D 

E F 
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Figure 4.2. Photographs of strawberry (cv. Finesse) from a semi-protected field that was 

heavily infested with thrips showing (A) a damaged flower truss where flowers are 

discoloured and damage is visible on the young green fruit and (B) discarded fruit due to 

thrips bronzing. 

A 

B 
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Figure 4.3. Photographs showing experimental methods: (A) caged flowers for the damage 

experiment in 2011, (B) caged flowers for the damage experiments in 2013 and (C) the 

lay-out of a single plot, with and without predatory mites (taken before the experiment had 

started in the spring). 

  

A B 

C 
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Figure 4.4.  (A) The mean numbers ± SEM of seeds surrounded by bronzing per fruit

          

(F (4, 79)  =  36.86, P < 0.001) and (B) the mean fruit weight (g) ± SEM (F (4, 62) = 1.7, P = 

0.15), following infestation of strawberry flowers with different numbers of adult female 

F. occidentalis in a semi-protected strawberry crop (cv. Camarillo) (n = 17).  Means with 

the same letter are not significantly different (Tukey’s test, P > 0.05).  Analysis was on 

log-transformed data whilst the chart shows untransformed data. 

0

50

100

150

200

250

300

0 2 4 8 16

F
ru

it
 b

ro
n

z
in

g
 (

n
o

. 
o

f 
s
e

e
d

s
) 

Number of adult females per flower  

b 

b 
a 

c 

d 

0

2

4

6

8

10

12

0 2 4 8 16

F
ru

it
 w

e
ig

h
t 

(g
) 

Number of adult females per flower  

a 

a 

a a 
a 

A 

B 



Damage to strawberry fruit___________________________________________Chapter 4 

 

123 

 

 

 

 
 

       

         

         

         

    

 

    

         

         

         

         

         

         

         

         

         

         

         

 

 

       

    

 

    

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

          

Figure 4.5.  (A) The mean numbers of seeds surrounded by bronzing per fruit ± SEM
            

(F(1, 6) = 37.7, P = 0.001) and (B) the mean fruit weight (g) ± SEM (F(1, 6) = 0.08, 

P =  0.80), following infestation of strawberry flowers with four adult female 

F.  occidentalis with or without the predator N. cucumeris in a semi-protected strawberry 

crop (cv. Camarillo) (n = 4 blocks).  Analysis was on log-transformed data whilst the chart 

shows untransformed data.  
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Figure 4.6. (A) The mean numbers of seeds surrounded by bronzing per fruit
 
± SEM        

(F(1, 6) = 75.5, P = 0.003) and (B) the mean fruit weight (g) ± SEM (F(1, 6) = 0.05, 

P  = 0.84), following infestation of strawberry flowers with eight adult female 

F. occidentalis with or without the predator N. cucumeris in a semi-protected strawberry 

crop (cv. Camarillo) (n = 4 blocks).  Analysis was on log-transformed data whilst the chart 

shows untransformed data. 
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Figure 4.7.  Mean number of seeds surrounded by bronzing per fruit ± SEM, following 

infestation of strawberry flowers, green fruit, white fruit or red fruit for 7 days, with six 

adult female, or six second instar larval F. occidentalis, or an untreated control (cv. 

Camarillo) (n = 10 flowers or fruit).   Fruit bronzing represents the numbers of seeds 

surrounded by bronzing on harvested red fruit.  There was a significant difference between 

the amount of damage caused by thrips larvae, thrips adults and control treatments (two-

factor ANOVA, F(2,100) = 77.6, P<0.001).  There was no significant difference in 

susceptibility to damage between the plant stages (two-factor ANOVA, F(3,100 ) = 1.5, 

P  = 0.23).  Analysis was on log-transformed data whilst the chart shows untransformed 

data. 
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Figure 4.8.  The distribution of adult thrips between plant parts in fields with (A) low thrips 

and (B) high thrips and the distribution of larval thrips in fields with (C) low thrips and (D) 

high thrips in semi-protected strawberry.  Each bar is the mean number of thrips ± SEM 

per plant part from two fields (n = 10 plant parts per field).  Analysis was on transformed 

data whilst the charts show untransformed data.   Means with the same letter are not 

significantly different (Tukey’s test, P > 0.05).  
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Figure 4.9.  The relative timing of thrips populations and fruit damage in relation to fruit 

development in semi-protected strawberry (cv. Camarillo) showing the progression of 

flowers from bud-burst to red fruit in days, the progression of thrips from adults that lay 

eggs in strawberry flowers and the progression of thrips from larvae that move to the 

flowers from bud-burst.  The predicted timing of damage is shown, based on the field 

distribution of thrips at low and high thrips densities.  Development times for different F. 

occidentalis stages on strawberry used published data at 16°C (Nondillo et al., 2008).   

Development stages surrounded by dotted lines may no longer be on the fruit, sen = 

senescent flower, red = red fruit. 
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Figure 4.10.  Boxplots of the amount of damage on class 1 (empty bars) and class 2 

(shaded bars) strawberry red fruit for cultivars Camarillo and Finesse from the pack-house 

in 2012, suggesting a damage threshold of around 30 seeds (dashed line).  Damage was 

recorded as the number of seeds surrounded by bronzing at harvest.  Wide bars indicate the 

inter-quartile range (50% of values) and the horizontal dashed line indicates the median.  

The vertical lines indicate the data range excluding a few outliers of very damaged fruit in 

the class 2 category. 
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         Figure 4.11.  Samples taken weekly through the season (from first flowering to end of 

harvest), in semi-protected strawberry crops on two farms in 2011 (cv. Camarillo): (A) 

field 2 (Table 2.1) (B) field 3 (Table 2.1).   Mean number of flowers per plant, mean 

number of thrips per flower and mean white fruit bronzing are shown (n = 20 flowers or 

fruit), Fruit bronzing was scored on a scale: 0 = No damage, 1 = tracking under the calyx, 

2 = bronzing around 1-3 seeds, 3 =  bronzing from 4 seeds to 50% of the fruit surface area, 

4 = >50% of the fruit surface bronzed.  Proportionally more thrips larvae were present in 

field 2 where 4% of fruit were infested with predatory mites than in field 3, where 42% of 

fruit were infested with predatory mites.  
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Figure 4.12. (A) Number of flower samples required for estimating thrips density in 

strawberry flowers (cv. Camarillo), based on the number of adult thrips per flower, to 

achieve 80% and 90% accuracy.  (B) The relationship between numbers of adult thrips per 

flower and percentage of flowers infested by thrips in semi-protected strawberry (cv. 

Camarillo). Each data point is a mean from the field plots sampled (n = 40).  When the 

mean number of adult thrips per flower (m) was adjusted to a linear relationship (m´ = m
1 -

0.5b
), the percentage of flowers infested = -8.07 + 59.6 × m´.
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Chapter 5 

Optimising pheromone use for 

trapping 

5.1. Introduction 

Sex and aggregation pheromones are used for the monitoring, mass trapping and 

control of insects by eliciting various behaviours, such as activity, upwind flight, landing, 

orientation, arrestment and mating (Jones, 1998).  Sex pheromones elicit a response only in 

the opposite sex whilst aggregation pheromones elicit a response in both sexes.  Male 

F. occidentalis produce an aggregation pheromone, neryl (S)-2-methylbutanoate (Figure 

5.1 A), which attracts and increases activity levels of both males and females (Hamilton et 

al., 2005; Olaniran, 2013).  It is sold commercially (Thriplineams, Syngenta Bioline, 

Clacton, UK) for pest monitoring, and enhances trap catch, but by relatively small amounts 

(×1.3 - ×3) (Hamilton et al., 2005; Gómez et al., 2006; Broughton, 2009).  The aim of the 

experiments in this chapter was to try to identify factors that could improve the use of the 

F. occidentalis aggregation pheromone for trapping in the field. 

The response to different dose rates of sex and aggregation pheromones varies 

between insect species and can affect trap catch.  Many insect species use sex pheromones 

to locate an individual mate and land in response to specific concentrations of pheromone, 

with higher and lower thresholds, so it is not possible to increase trap catch by increasing 

the dose rate.  For example, the emerald ash borer (Agrilus planipennis) are caught on 

pheromone traps at a release rate of 2.5 µg per day of
 
(3Z)-lactone, but not at higher release 

rates (Ryall et al., 2012).  In closely related species that share the same pheromones, the 

dose rate can be used to identify a mate of the same species.  Many species of North 

American tortricids share the same five pheromones (tetradecenyl acetates and dodecenyl 

acetates) with species differentiation dependent on the relative proportions of each (Cardé 

& Baker, 1984).  In other species, response increases with increasing dose rate, as in the 

potato tuber moth (Phthorimaea operculella) (Larrain et al., 2007).  Continuous production 
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of pheromone requires energy and comes at a cost, so some species vary the production 

rate.  Pheromone production may only occur in the presence of a host plant, signalling food 

availability to a mate.  Pheromone production may stop once a mate has been found, as in 

the greater grain borer (Prostephanus truncates) (Smith et al., 1996).  In the cabbage 

looper (Trichoplusia ni) both production of pheromone and responsiveness to pheromone 

varies through the day, peaking 6-8 hours after dark (Sower et al., 1970).  In the pine 

engraver beetle (Ips pini) pheromone production declines with age, so dose is an indication 

of fitness and may be a factor in mate selection (Miller et al., 1989).  Many insect species 

from different orders form aggregations containing variable numbers of males resulting in 

variable pheromone doses in the environment (Howse, 1998).  Some species of Nitidulidae 

beetle, such as Carpophilus antiquus, have a negative feedback mechanism, modifying the 

pheromone release rate according to the amount in the environment so that the total 

concentration remains similar, i.e. if more beetles are present each produces less 

pheromone (Bartelt et al., 1993b). 

Limited information is available on the natural release rates of the F. occidentalis 

aggregation pheromone and it is not known whether the dose rate is critical to the response.  

A range of release rates have been calculated by entraining adult male F. occidentalis 

headspace odour using solid-phase micro-extraction with gas chromatography-mass 

spectrometry (SPME/GC-MS).  These vary from 100 pg male
-1 

h
-1

 from groups of 5 males 

(Dublon et al., 2008), 120 pg male
-1 

h
-1

 from groups of 30-60 males (Kirk & Hamilton, 

2004), 300 pg male
-1 

h
-1

 from groups of 15 males (Dublon et al., 2008) to 1 ng male
-1 

h
-1

 

from groups of 30 males (Zhu et al., 2012).  Whole body washes of males failed to find the 

pheromone, indicating that the pheromones are produced on demand and not stored (Kirk 

& Hamilton, 2004).  The presence of females did not affect pheromone production 

(Dublon et al., 2008).  The evidence suggests that the pheromone is produced on demand 

by variable amounts, which do not appear to be density dependent.   As male thrips 

aggregate in mating swarms of varying size (Terry & Gardner, 1990), the pheromone is 

likely to be present in variable amounts in the environment.  De Kogel et al (2003) found 

increased response of females to higher densities of males in an olfactometer experiment, 

although this could relate to other cues.  Olaniran (2013) found more females near to filter 

paper discs with 5 ng than to lower and higher doses of synthetic neryl (S)-2-

methylbutanoate, but it is not known whether trap catch of F. occidentalis is affected by 

the aggregation pheromone release rate in the field. 
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Insects respond to pheromones with specific chemical structures, and slight 

modifications to the structure or stereochemistry can change the attraction of a pheromone 

(Klun et al., 1973; Mori, 2007).  Commonly only one chiral form of the pheromone is 

attractive while the enantiomer is not, although sometimes the enantiomer inactivates the 

pheromone.  In the Japanese beetle (Popillia japonica) (R)-japonilure is emitted by females 

to attract males, but the enantiomer (S)-japonilure is emitted by the related Osaka beetle 

(Anomala osakana) and stops the response to (R)-japonilure in male Japanese beetle, so it 

is involved in species recognition (Tumlinson et al., 1977; Ishida & Leal, 2008).  

Sometimes both stereoisomers are biologically active, and are required in specific ratios, as 

in the ambrosia beetle (Gnathotricus salcatus) (Borden et al., 1975), while in Ips species 

different enantiomers of ipsdienol are used by different species in the same genus 

(Birgersson et al., 2012), and in the red flour beetle (Tribolium castaneum) two 

enantiomers are active pheromones and two are synergists (Lu et al., 2011).  In 

F. occidentalis, there is limited knowledge on whether the enantiomer of its aggregation 

pheromone, neryl (R)-2-methylbutanoate (Figure 5.1 B), is biologically active (Hamilton et 

al., 2005).  A racemic mix of 1:1 neryl (S)-2-methylbutanoate: neryl (R)-2-

methylbutanoate reduced the trap catch compared to an untreated control in a pepper crop 

(Dublon, 2009), but further data are required to test whether chirality is critical to the 

response.  Commercial sources of chemicals often contain a racemic mixture as they are 

easier and cheaper to synthesise.  If chirality affects trap catch then the purity of the 

pheromone source needs to be considered. 

Pheromones often comprise a unique blend of chemicals and a second volatile 

chemical, (R)-lavandulyl acetate, has been identified in the head space of male F. 

occidentalis and the related F. intonsa (Hamilton et al., 2005; Zhu et al., 2012).  

Lavandulyl acetates are known components of sex pheromones in some insect species, 

such as Planococcus ficus (Zada et al., 2003), but the role of (R)-lavandulyl acetate in F. 

occidentalis remains unknown.  It was found to arrest females in laboratory experiments 

(Olaniran, 2013) and reduced trap catch when combined with neryl (S)-2-methylbutanoate 

at a 1:1 ratio when compared to neryl (S)-2-methylbutanoate alone in field experiments 

(Hamilton et al., 2005), which suggests that it may not be part of the aggregation 

pheromone.  However, Zhu et al. (2012) suggest that both compounds are part of the 

aggregation pheromone and that the ratio and doses of the two compounds plays an 

important role in interspecies recognition between F. occidentalis and F. intonsa, but they 
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did not test their theory with synthetic chemicals.  The most frequent ratio of neryl (S)-2-

methylbutanoate: (R)-lavandulyl acetate found in F. occidentalis has been about 5:1, but 

the ratios varied from about 3:1 to 47:1 (Kirk & Hamilton, 2004; Dublon et al., 2008; Zhu 

et al., 2012) (A. Sudhakhar, pers. comm., 2011), which suggests that the ratio is not critical 

to the response.  (R)-lavandulyl acetate might be a synergist for neryl (S)-2-

methylbutanoate at the right ratio or dose, or it might have a completely different role, in 

which case the ratio is likely to be variable and irrelevant to increasing trap catches. 

Less volatile chemicals may also form part of aggregation pheromones at a shorter 

range.  Some cuticular hydrocarbons are pheromones, for example, (Z)-9-tricosene is a sex 

pheromone attracting female houseflies (Musca domestica) (Carlson et al., 1971).  Others 

are synergistic, for example, a specific hydrocarbon causes the yellow peach moth 

(Conogethes punctiferalis) to spend more time in contact with, and in the vicinity of,  a sex 

pheromone lure (Xiao et al., 2012), which could translate into increased trap catch.  

Several cuticular hydrocarbons have been identified from samples of mixed sex F. 

occidentalis adults and larvae (Golebiowski et al., 2007; Zhao et al., 2011), but a contact 

hydrocarbon pheromone, 7-methyltricosane (Figure 5.1 E), is produced by adult males 

(Olaniran et al., 2013).  It is probably involved in species recognition and causes females 

to stay in the vicinity of the pheromone.  In laboratory tests, there was only a contact 

response and the compound has low volatility (bp 411°C) (D. Hall, pers. comm., 2013) 

(Olaniran et al., 2013), so it seems unlikely that the contact pheromone forms part of the 

aggregation pheromone, although it could improve trap catch by reducing escape rate.  

Two other male-produced compounds (9-methylpentacosane and 7-methylpentacosane) 

have been found in small quantities, but their role is unknown (Olaniran et al., 2013).  

They could have a similar role to 7-methyltricosane in view of their similarity, as cuticular 

hydrocarbon effects often relate to groups of compounds.  A pilot experiment was carried 

out to test whether 7-methyltricosane affects trap catch, but it is not reported here. 

Plant volatiles and their analogues can influence the response to pheromone in 

phytophagous insects.  In some species of Diptera and Coleoptera with male-produced 

pheromones, the response to pheromone is synergised by plant volatiles, which indicate 

feeding or oviposition sites.  Synergism occurs when the interaction of two or more 

substances produces a combined effect greater than the sum (for untransformed data) or 

product (for log-transformed data) of their separate effects.  For example, the response to 

aggregation pheromone in the mountain pine beetle (Dendroctonus ponderosae) is 
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synergised by monoterpenes from their host, pine bark (Borden et al., 2008) and the 

response to aggregation pheromone in the fruit fly (Drosophila virilis) is synergised by the 

odour of willow bark, on which they feed and lay eggs (Landolt & Philips, 1997).  The 

synergistic effect can be great, and the addition of fermented bread dough to aggregation 

pheromone increased trap catch by about a factor of 300 in Carpophilus mutilatus (Bartelt 

et al., 1993a).  In some species, such as Cydia molesta, specific mixtures of volatiles were 

attractive when the individual components were not (Natale et al. 2003), although testing 

multiple mixtures of plant volatiles was beyond the scope of this project.  Some species, 

like the palm weevil (Rhynchophorus palmarum) only respond to pheromone in the 

presence of host odour (Rochat et al., 1991).  These strategies maximise the chance of 

meeting females that are visiting host plants to feed and lay eggs.   

The polyphagous F. occidentalis is attracted to many floral scents and their analogues, 

which have been shown to increase trap catch (see Table 1.1).  In this study, the plant 

volatile analogue methyl isonicotinate (Figure 5.1 F) was used to test whether there is a 

synergistic interaction between pheromone and plant volatiles, which could improve trap 

catch.  It is known to be attractive to F. occidentalis (Davidson et al., 2005) and is 

commercially available to growers (Lurem-TR, Koppert, Berkel en Rodenrijs, NL).  In 

comparison studies, methyl isonicotinate gave an increase in trap catch of F. occidentalis 

similar to that of the aggregation pheromone (Broughton & Harrison, 2012).  Interpretation 

of field responses are complicated by the fact that strawberry flowers contain the floral 

scents benzaldehyde and p-anisaldehyde (Hamilton-Kemp et al., 1990), both of which are 

known attractants to F. occidentalis (Davidson et al., 2008).  In addition, there is 

increasing evidence of a strain of F. occidentalis in Spain that is not responding to methyl 

isonicotinate (Mette Nielsen, pers. comm., 2013).  Full understanding of the interaction 

between pheromone and different floral scents would require extensive laboratory studies 

where competing scents were controlled, but in this study the objective was to improve 

trap catch in the field, so experiments were carried out in sweet pepper (Spain) and 

strawberry (UK) crops, where competing scents from flowers were present.   

The design, colour and placement of a trap can affect the relative increase in trap catch 

with additional pheromone.  A wide range of insect traps are available commercially and 

flat coloured sticky traps are most widely used for trapping F. occidentalis (Yudin et al., 

1987; Vernon & Gillespie, 1990, 1995; Brødsgaard, 1993b; Chen et al., 2006).  The colour 

and size of sticky traps have a great effect on F. occidentalis trap catch (see Chapters 1 and 
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6), but the effect of trap colour on pheromone trap catch is not known.  A number of trap 

designs have been developed specifically for pheromone use in Lepidoptera as they change 

the plume shape to increase trap catch by aiding trail-following (Jones, 1998), although 

there is no evidence that F. occidentalis follow odour plumes.  Systematic testing of trap 

types was beyond the scope of this study, but the delta trap (Figure 5.3 C) was tested as it 

is the most common pheromone trap design in commercial use.   

A better understanding of thrips flight behaviour in response to different cues would 

help to interpret observed trap catches.  The mating behaviour of F. occidentalis in the 

field was observed by Terry and Gardner (1990).  Males defend a small territory (lek-like) 

in visible positions to attract females, such as the corolla of prominent white flowers or on 

attractively coloured surfaces (Terry & DeGrandi-Hoffman, 1988; Terry & Schneider, 

1993). Typically females visit a swarm, mate and then leave (Terry & Gardner, 1990).  

Laboratory studies have identified several behaviours that could result in increased trap 

catch in the field.  Some laboratory studies show increased thrips take-off in response to 

scent cues, followed by flight towards a visual stimulus once airborne (Brødsgaard, 1990; 

Smits et al., 2000; van Tol et al., 2012).  Both methyl isonicotinate and neryl (S)-2-

methylbutanoate increase the activity and take-off in F. occidentalis (van Tol et al., 2012; 

Olaniran, 2013).  Thrips move towards attractive scents in olfactometer experiments 

(Koschier et al., 2000).  Odours can also arrest thrips flight at certain concentrations and 

induce landing (Teulon et al., 1999; Berry et al., 2006) and Kirk (1985c) suggests that 

thrips could use a scent cue more efficiently as an arrestant or to stimulate a visual 

response because the cue could be used in still air.    Teulon et al. (2007a) showed that an 

attractive odour only affected trap catch of T. tabaci over relatively short distances up to 10 

m, but declining by 50% within 1.3 m from the odour source (methyl isonicotinate).  If 

visual cues are dominant over scent for landing in F. occidentalis it could limit trap catch 

as the thrips may land on flowers before reaching a pheromone trap.  Most flight occurs 

near or just above the top of the crop (Shipp & Zariffa, 1991; Mateus, 1998) where most 

flowers and new growth occurs and the attraction of the flowers (which often contain 

pheromone-producing thrips) may be greater than that of a pheromone trap.  Laboratory 

experiments may not translate directly to the field as the response to odour changes 

according to various factors, such as hunger status of the insect (Davidson et al., 2006), 

dose (Koschier et al., 2000), host plant odours (Davidson et al., 2009) and wind speed (see 

below).   
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Frankliniella occidentalis is not a strong flyer, which may limit its ability to fly 

upwind towards a trap.  They have an estimated flight speed of 4-8 km h
-1

 (Mateus, 1998) 

and land at wind-speeds above 8 km h
-1

 in laboratory conditions (Teulon et al., 1999).  In 

the field, reduced flight has been observed at wind speeds above 15 km per h (Pearsall, 

2002), although F. occidentalis can move up-wind by staying close to the ground and 

making small ‘hops’ and by timing their flights at times of the day when wind speeds are 

below 15 km per h (Ben-Yakir & Chen, 2008).  Weak flight might be expected to limit trap 

catches, but some thrips species of a similar size and flying ability to F. occidentalis, such 

as T. obscuratus (and other small insects such as aphids), show consistently higher trap 

catches (sometimes by a factor >1000) in response to scents than F. occidentalis in the 

field (Teulon et al., 1993; El-Sayed et al., 2014).  The most likely explanation for this is 

their flight behaviour.  In New Zealand, T. obscuratus migrate annually from gorse bushes, 

where they overwinter, into stone fruit orchards during flowering and fruiting.  Once 

temperatures are suitable, they launch themselves into the wind in large numbers in 

response to specific wind directions, then drop down in response to olfactory and visual 

cues (McLaren et al., 2010).  In contrast, F. occidentalis typically overwinters and builds 

up inside protected crops (see Chapter 3), so there is likely to be less flight than when 

thrips are migrating in from outside the crop and therefore less response to scented traps.  

Trap catches in outdoor crops are typically greater than in protected crops, but the increase 

in F. occidentalis trap catch with pheromone (compared to untreated controls) was similar 

(×2 - ×3) in protected pepper (Gómez et al., 2006), semi-protected strawberry (Sampson & 

Kirk, 2013) and in outdoor top fruit (Broughton & Harrison, 2012), so the trapping 

response does not relate to the level of protection alone.  More information on F. 

occidentalis flight, the proportion of resident and immigrant thrips in these crops and on 

how that affects trap catch is required to fully interpret trap catches.   

The overall aim of the experiments in this chapter was to determine whether the 

pheromone trap catch of F. occidentalis could be enhanced by specific dose rates, chiral 

forms or ratios of the male-produced compounds and whether response to the pheromone 

could be improved by trap colour, trap type, trap placement or plant volatiles. Specific 

aims were to: 
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(1) test whether the dose rate of neryl (S)-2-methylbutanoate affects the trap catch; 

(2) test whether the chirality of neryl (S)-2-methylbutanoate is critical to the trap 

catch; 

(3) test whether the ratio of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate 

affects trap catch compared to neryl (S)-2-methylbutanoate alone; 

(4) test whether the dose of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate at a 

5:1 ratio affects trap catch;  

(5) confirm which chiral form of lavandulyl acetate is biologically active; 

(6) test whether pheromone trap catch is enhanced by specific trap colours and 

whether there is an interaction between the responses to colour and scent; 

(7) test whether the height of the trap above the crop affects pheromone trap catch; 

(8) test whether pheromone released from treatment traps is reaching control traps 

and boosting their catch; 

(9) test whether the pheromone trap catch is synergised by methyl isonicotinate in 

pepper and strawberry crops. 

5.2. Materials and Methods 

A series of experiments was carried out in two commercial pepper crops grown in 

multispan plastic houses in the Murcia region of Spain (Table 5.1, Figure 5.2) during April 

2011.  The thrips population at both sites consisted of > 97% F. occidentalis (see 5.3.9) 

and there were few other pests, which allowed for rapid screening of the different 

pheromone components without contamination of traps with other insect species.  The 

plastic houses were selected for their infestation level, size and ease of access to traps.  

Within both houses there were local gradients in thrips density, with more thrips in the 

warmer central area of the houses and fewer around the perimeter.  The experiments were 

placed centrally in the houses and the experimental design was blocked to reduce these 

effects, however there was still much variation that could not be removed statistically. As a 

result there was considerable background variation that would tend to obscure real effects 

unless the experiments were well replicated.  The following methods were common to 

most of the experiments carried out in Spanish pepper crops in this chapter and will not be 

repeated in each section.  Further details that are specific to individual experiments are 

included within the chapter. 
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Blue (Takitrapline b, Syngenta Bioline Ltd, Clacton, UK) or yellow sticky traps 

(Takitrapline y, Syngenta Bioline Ltd) were used unless stated otherwise.  These were 10 

cm wide by 25 cm tall and are widely used for monitoring F. occidentalis.  Yellow traps 

were used to test the pheromone components as they are less attractive than blue traps so 

more thrips were available to respond to the scents.  They were also used for the practical 

reason that the thrips and their features are easier to see on a yellow trap than on a blue 

trap.  Experiments were laid out in randomised complete block designs with appropriate 

controls.  In most experiments the traps within a block were spaced 4.8 m (4 plants) apart 

along a single row (Figure 5.3 A), which reflects the planting distance of 1.2 m between 

plants within a row.  It is possible that some scent from treated traps reached control traps 

(Teulon et al., 2007a) but similar spacing has detected differences in previous experiments 

(Hamilton et al., 2005) and wider spacing would have placed some traps in areas with very 

few thrips by extending the overall size of the experiment.  Each block was along a 

different plant row and separated by either 6 plant rows (6 m) or 9 plant rows (9 m) 

according to the size of the greenhouse.  Traps were suspended vertically (portrait 

orientation) with the base of the trap about 10 cm above crop height (unless stated 

otherwise) by attaching them with wooden clothes pegs to vertical strings supporting the 

crop (Figure 5.3 A).   

The source of the different pheromone and plant volatile analogue components used 

(below) apply to all the chemicals referred to subsequently in this chapter and will not be 

repeated in each section.  

Neryl (S)-2-methylbutanoate was synthesised by Prof. David Hall and Mr Dudley 

Farman at NRI (Natural Resources International, Chatham, Kent, UK) from (S)-2-

methylbutanoic acid (SigmaAldrich, Gillingham, Dorset, UK) as described by Hamilton et 

al. (Hamilton et al., 2005) and had enantiomeric excess (ee) of 97.8% as determined by gas 

chromatographic analysis on a chiral cyclodextrin column.  Neryl (R)-2-methylbutanoate 

was synthesised by NRI similarly from (R)-2-methylbutanoic acid provided by Dr Aijun 

Zhang (USDA, Beltsville) (Zhang et al., 2004) and had ee of 99.0%.  Both compounds 

were at least 98% pure by GC analysis. 

The enantiomers of lavandulyl acetate were synthesised by NRI by resolution of 

lavandulol (SigmaAldrich) with porcine pancreatic lipase (SigmaAldrich) and vinyl acetate 

in petroleum ether with separation of alcohol and acetate by silica gel chromatography.  
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Four cycles gave (R)-lavandulyl acetate with ee 97.2% and (S)-lavandulyl acetate with ee 

86.8%, both compounds being at least 98% pure by GC analysis. 

Pheromone dispensers were either polyethylene vials (0.5 ml, 9 mm diam.  23 mm 

long, 1.5 mm thick; Just Plastics, Norfolk, UK) or natural rubber septa (6.3 mm diam.  

10.8 mm long; International Pheromone Systems Ltd., Cheshire, UK), as used for the 

commercial lures (Thriplineams, Syngenta Bioline Ltd, Clacton, UK).   Pheromones were 

dissolved in petroleum: ether (bp 40-60°C; Fisher Scientific) or n-hexane (>97% purity, 

Merck, Germany) and added to the dispenser in a volume of 0.1 ml.  After evaporation of 

the solvent the lid was closed on the vials.  

Methyl isonicotinate (250 µl) (98%, SigmaAldrich) was dispensed from polyethylene 

sachets (50 mm x 50 mm x 120 µ thick) similar to those used in the commercial product 

Lurem (Koppert).  These were prepared by heat sealing layflat tubing (Transatlantic 

Plastics, Southampton, UK) and gave a release rate of 12.8 mg per day at 22°C. 

Lures containing specific volumes of the pheromone and plant volatile components 

were largely made up in the UK by Prof. Gordon Hamilton or by Prof. David Hall and Mr 

Dudley Farman (NRI) before travelling to Spain and were packed separately in aluminium 

foil wrappers to prevent contamination.  Some lures were made up in situ by Prof. 

Hamilton and some experiments used commercially available lures (Thriplineams, Syngenta 

Bioline Ltd, Clacton, UK).   

Release rate measurements made at NRI (27°C and 8 km h
-1

 windspeed) showed that 

lavandulyl acetate was released very rapidly from septa, essentially within 5 days, and 

release of neryl (S)-2-methylbutanoate declined exponentially over about 30 days.  Release 

of both compounds from vials was more uniform with release of neryl (S)-2-

methylbutanoate about 30% of the initial release rate from septa.  Thus a dose of 100 µg 

neryl (S)-2-methylbutanoate in vials gave the same release rate as 30 µg neryl (S)-2-

methylbutanoate from rubber septa (the amount used in commercial lures by Syngenta 

Bioline Ltd), and this was calculated to be about 0.4 µg per day at 27°C.  As (R)-

lavandulyl acetate (bp 229°C) is more volatile than neryl (S)-2-methylbutanoate (bp 

113°C), half the volume of (R)-lavandulyl acetate was required to give the same release 

rate as neryl (S)-2-methylbutanoate (D. Hall, pers. comm., 2011).  Before the start of the 

experiments, the dispensers (vials containing 100 µg and septa containing 30 µg neryl (S)-

2-methylbutanoate) were tested in the field and both dispensers increased trap catch by 



Optimising pheromone use for trapping_________________________________Chapter 5 

 

141 

 

about the same proportion (×1.3) so it was concluded that vials could be used in further 

experiments (Sampson, unpublished data, 2011).   

In the majority of experiments, a single polyethylene vial (Just Plastics) or a single 

natural rubber septum (International Pheromone Systems Ltd.) was placed vertically in the 

middle of the slightly concave side of the dry traps (Figure 5.3 B).   The sticky glue on the 

trap was usually sufficient to hold the lures in place during the experiments, although lures 

occasionally fell off and affected blocks were omitted from the analysis.  Dedicated latex 

gloves were used to handle lures for each treatment to prevent cross-contamination; these 

were disposed of after each experiment.  The sachets and their controls were placed at the 

tops of the traps and held in place with wooden clothes pegs, which were disposed of after 

a single use.  All traps were oriented so that the septum/vial/sachet side faced north to 

avoid direct sunlight on the release device. However, some traps twisted during the 

experiment, so that the initial orientation was not always maintained.  Maximum and 

minimum temperature and humidity were recorded during each experiment with a digital 

thermo-hygrometer (Thermo-Hydro, RS 212-124, Oregon Scientific, Northants, UK), 

which was strapped to a polytunnel post at crop height and spaced so that it did not touch 

the metal post.  Traps were removed from the crop after 24 hours, wrapped individually in 

polythene and stored in a freezer.   

Trap catches of F. occidentalis were counted under a stereoscopic microscope (Wild 

AG, Heerbrugg) in the Keele laboratory, using the methods described in Chapter 2.  

Aeolothripid (with broad wing fringes) and phlaeothripid thrips (with elongated last 

abdominal segment) were excluded from the counts.  The great majority of the thrips on 

traps were F. occidentalis and the key identification features detailed in Chapter 2 were 

usually visible under the microscope without mounting the thrips on slides.  Occasional 

individuals of other species were present (typically 1-5 per trap).  To confirm the 

identifications, one thrips was randomly selected, using an acetate sheet with a 0.5 cm
2
 

grid marked on it and random numbers, from 100 randomly selected control traps (from all 

experiments) per site (n = 200 thrips).  These thrips were removed from the traps, mounted 

on slides and identified to species, using the methods detailed in Chapter 2.   

All experiments in Spain were carried out jointly by me, Dr William Kirk and Prof. 

Gordon Hamilton.  Experimental design was discussed and agreed between us and was 

informed by previous experiments (Hamilton et al., 2005).  Some rapid counting of thrips 
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on traps was carried out by Prof. Gordon Hamilton and me in the field to check that the 

pheromone was active, but all thrips were re-counted and sexed by me under a binocular 

microscope in the laboratory.  Following initial data analysis in Spain carried out by me 

and Dr William Kirk, all data were re-analysed by me once the final counts had been made 

back at Keele. 

One experiment in this chapter was carried out in UK strawberry.  It was a repeat of an 

experiment carried out in Spain using plant volatiles where there was some doubt about the 

response of Spanish F. occidentalis populations to the scent.  The experiment was 

designed, carried out and analysed by me and the methods are detailed separately within 

the chapter. 

5.2.1.  Does the release rate of neryl (S)-2-methylbutanoate affect trap catch? 

To test the effect of release rate of neryl (S)-2-methylbutanoate on trap catch, lures 

containing different doses of the aggregation pheromone were added to traps that were 

hung above a crop and the trap catch compared between doses after 24 h.  If the release 

rate is not critical then a higher dose can be used in commercial lures, which can last 

longer in the field.  The response of F. occidentalis to neryl (S)-2-methylbutanoate release 

rate was tested in a commercial pepper crop (Site 1, Table 5.1, Figure 5.2 A) using yellow 

sticky traps (Takitrapline y) laid out in a randomised complete block design.  There were 

20 blocks and one replicate per block with 4.8 m between traps within a block and 6 m 

between blocks.  One trap dropped during the experiment, so the affected block was 

omitted.  Treatments included four release rates of neryl (S)-2-methylbutanoate and a 

control, with one vial containing the treatments was placed centrally on the front of each 

trap.  Treatments were: 

 10 µg neryl (S)-2-methylbutanoate dissolved in 100 µl solvent (a release rate of 

about 0.04 µg per day); 

 100 µg neryl (S)-2-methylbutanoate dissolved in 100 µl solvent (a release rate of 

about 0.4 µg per day); 

 1000 µg neryl (S)-2-methylbutanoate dissolved in 100 µl solvent (a release rate of 

about 4 µg per day); 

 2000 µg neryl (S)-2-methylbutanoate dissolved in 100 µl solvent (a release rate of 

about 8 µg per day; 

 100 µl solvent only (control). 
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5.2.2.  Does the chiral form of neryl -2-methylbutanoate affect trap catch? 

Industrial sources of neryl (S)-2-methylbutanoate are usually contaminated with small 

amounts of the (R) form (e.g. neryl (S)-2-methylbutanoate form Merck, Germany, with 

98% enantiomeric excess contains 1% of the (R) form).  To test whether the chiral form of 

neryl 2-methylbutanoate is critical to trap catch, lures containing different ratios of the two 

enantiomers and an untreated control were added to traps that were hung above a crop and 

the trap catch compared after 24 h.  If the chirality is critical to the response then a pure 

source of the pheromone is required to maximise trap catch.  The response of 

F. occidentalis to the different enantiomeric forms of neryl 2-methylbutanoate (Figure 5.1 

A, B) was tested in a commercial pepper crop (Site 2, Table 5.1, Figure 5.2 B) using 

yellow sticky traps (Takitrapline y) laid out in a randomised complete block design.  There 

were 20 blocks and one replicate per block with 4.8 m between traps within a block and 

9 m between blocks.  Treatments included neryl (S)-2-methylbutanoate, neryl (R)-2-

methylbutanoate, a racemic mix of both enantiomers and a control, with one vial 

containing the treatments placed centrally on the front of each trap.  The vials were made 

up by NRI to give a release rate of 0.4 µg per day (D. Hall, pers. comm., 2011) and the 

treatments were: 

 100 µg neryl (S)-2-methylbutanoate dissolved in 100 µl solvent; 

 100 µg neryl (R)-2-methylbutanoate dissolved in 100 µl solvent; 

 100 µg neryl (S)-2-methylbutanoate plus 100 µg neryl (R)-2-methylbutanoate 

dissolved in 100 µl solvent; 

 100 µl solvent only (control). 

If the purity of neryl (S)-2-methylbutanoate is critical to the response, then the addition 

of a small amount more of the (R) form will affect trap catch.  To test this, the experiment 

above was repeated at the same site (Site 2), using the same trap type (Takitrapline y) and 

trap spacing (4.8 m) as above, but with a smaller dose of the (R) form.  Rubber septa were 

used instead of vials, which were prepared in situ by Prof. G Hamilton whilst in Spain.  

The treatments were: 

 30 µg neryl (S)-2-methylbutanoate dissolved in 30 µl solvent (about 1% (R));  

 30 µg neryl (S)-2-methylbutanoate plus 1 µg neryl (R)-2-methylbutanoate; 

dissolved in 30 µl solvent (about 4% (R));  

 30 µl solvent only (control). 
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5.2.3.  Does lavandulyl acetate increase trap catch? 

Lavandulyl acetate could be part of the F. occidentalis pheromone at a specific chiral 

form, dose, or ratio to neryl (S)-2-methylbutanoate, but it may have a different role 

altogether (see 5.1).  If no increase in trap catch can be identified with the addition of 

lavandulyl acetate at different ratios, chiral forms and doses, then it is further evidence that 

it is not part of the aggregation pheromone and so there would be no benefit in adding it to 

the aggregation pheromone lures to increase trap catch. 

5.2.3.1.  Does the ratio of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate affect trap 

catch? 

The response of F. occidentalis to different ratios of neryl (S)-2-methylbutanoate: (R)-

lavandulyl acetate was tested in a commercial pepper crop (Site 2, Table 5.1, Figure 5.2 B) 

using yellow sticky traps (Takitrapline y) laid out in a randomised complete block design.  

There were 20 blocks and one replicate per block with 4.8 m between traps within a block 

and 9 m between blocks.  Treatments covered the full range of ratios observed in F. 

occidentalis (see 5.1).  One vial containing the treatments was placed centrally on the front 

of each trap.  The vials were made up by NRI and were calibrated to give the specified 

release rate, rather than a ratio based on volume of pheromone.  The release rate of 100 

neryl (S)-2-methylbutanoate was the same as that of 50 µg (R)-lavandulyl acetate, which 

was 0.4 µg per day.  The treatments were: 

 100 µg neryl (S)-2-methylbutanoate dissolved in 100 µl solvent (release ratio of 

1:0 neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate); 

 100 µg neryl (S)-2-methylbutanoate plus 50 µg (R)-lavandulyl acetate dissolved in 

100 µl solvent (release ratio of 1:1); 

 100 µg neryl (S)-2-methylbutanoate plus 10 µg (R)-lavandulyl acetate dissolved in 

100 µl solvent (release ratio of 5:1); 

 100 µg neryl (S)-2-methylbutanoate plus 5 µg (R)-lavandulyl acetate dissolved in 

100 µl solvent (release ratio of 10:1); 

 100 µg neryl (S)-2-methylbutanoate plus 1 µg (R)-lavandulyl acetate dissolved in 

100 µl solvent (release ratio of 50:1); 

 100 µl solvent only (control). 
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5.2.3.2.  Does the release rate of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate (5:1) 

affect trap catch? 

The response of F. occidentalis to low, medium and high release rates of a 5:1 ratio of 

neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate was tested in a commercial pepper 

crop (Site 1, Table 5.1, Figure 5.2 A) using yellow sticky traps (Takitrapline y) laid out in 

a randomised complete block design.  A 5:1 ratio of release rates of the compounds was 

used, as this is the most frequent ratio found in F. occidentalis (see 5.1) (A. Sudhakhar, 

pers. comm., 2011).  There were 20 blocks and one replicate per block with 4.8 m between 

traps within a block and 6 m between blocks.  One vial containing the treatments was 

placed centrally on the front of each trap.  The vials were made up by NRI and were 

calibrated to give the specified doses at a release rate ratio of 5:1 (D. Hall, pers. comm., 

2011).  Treatments were: 

 10 µg neryl (S)-2-methylbutanoate plus 1 µg (R)-lavandulyl acetate dissolved in 

100 µl solvent (low release rate of 0.04 µg neryl plus 0.008 µg lavandulyl per d); 

 100 µg neryl (S)-2-methylbutanoate plus 10 µg (R)-lavandulyl acetate dissolved in 

100 µl solvent (medium release rate of 0.4 µg neryl plus 0.08 µg lavandulyl per d); 

 1000 µg neryl (S)-2-methylbutanoate plus 100 µg (R)-lavandulyl acetate dissolved 

in 100 µl solvent (high release rate of 4 µg neryl plus 0.8 µg  lavandulyl per d); 

 100 µl solvent only (control). 

5.2.3.3.  Does the chiral form of lavandulyl acetate affect trap catch? 

The response of F. occidentalis to the two chiral forms of lavandulyl acetate (Figure 

5.1 C, D) was tested in a commercial pepper crop (Site 2, Table 5.1, Figure 5.2 B) using 

yellow sticky traps (Takitrapline y) laid out in a randomised complete block design.  There 

were 20 blocks and one replicate per block with 4.8 m between traps within a block and 

9 m between blocks.  Treatments included (R)-lavandulyl acetate, (S)-lavandulyl acetate, a 

racemic mix of equal amounts of both enantiomers and a control, with one vial stuck 

centrally on the front of each trap.   The release rate of 50 µg lavandulyl acetate was about 

0.4 µg per day.  The vials were made up by NRI and treatments were: 
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 50 µg (R)-lavandulyl acetate dissolved in 100 µl solvent; 

 50 µg (S)-lavandulyl acetate dissolved in 100 µl solvent; 

 50 µg (R)-lavandulyl acetate plus 50 µg (S)-lavandulyl acetate dissolved in 100 µl 

solvent; 

 100 µl solvent only (control). 

5.2.4. Is the pheromone trap catch enhanced by certain trap colours? 

The effect of trap colour on the response of F. occidentalis to neryl (S)-2-

methylbutanoate was tested in a commercial pepper crop (Site 1, Table 5.1, Figure 5.2 A) 

using yellow, blue, clear and black sticky traps with a black grid on the back (10 cm by 

25 cm, Impact trap, Russell IPM, Deeside, UK), laid out in a randomised complete block 

design.  Blue and yellow traps were selected as they are attractive to F. occidentalis and 

widely used for monitoring pests in greenhouses.  Clear and black traps were selected as 

they are less visibly attractive.  There were 20 blocks and one replicate per block with 

3.6 m between traps within a block and 6 m between blocks.  The distance between traps 

was reduced from every four plants (4.8 m) to every three plants (3.6 m) so that the eight 

treatments within a block could be fitted down a single plant row while avoiding the edges 

of the greenhouse.  One trap dropped during the experiment, so the affected block was 

omitted from the analysis.  Treatments were the four different colours of sticky trap, each 

with or without the F. occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate.    

Rubber septa were used for the pheromone and control treatments, which were placed 

centrally on the traps.  The septum was treated with 30 µg neryl (S)-2-methylbutanoate 

dissolved in 30 µl hexane and the control septum with 30 µl hexane only. 

5.2.5.  Is the pheromone trap catch enhanced by trap type? 

Some traps, such as delta traps (Figure 5.3 C), are designed to enhance the pheromone 

plume, which increases trap catch in species (e.g. moths) that follow scent trails (see 5.1).  

The response of F. occidentalis to neryl (S)-2-methylbutanoate was tested on sticky 

monitoring traps and in delta traps, in a commercial pepper crop (Site 2, Table 5.1, Figure 

5.2 B) laid out in a randomised complete block design.  The design should have compared 

sticky and delta traps of the same colour and surface area, but none were available at the 

time, so different coloured traps were used.  Although this confounds the results between 

trap type and trap colour, it was sufficient to test whether a large increase in pheromone 
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trap catch would result from the delta trap design, which could be investigated further.  

There were 20 blocks and one replicate per block with 4.8 m between traps within a block 

and 9 m between blocks. Treatments included blue sticky traps (Takitrapline b) and brown 

cardboard delta traps (273 mm length, 130 mm height, œcos, Kimpton, UK) with a blue 

sticky monitoring trap insert, with and without neryl (S)-2-methylbutanoate, with one 

septum placed centrally on the front of the sticky monitoring trap or on the middle (upper 

surface) of each delta trap insert in the delta trap.  The pheromone septum was impregnated 

with 30 µg neryl (S)-2-methylbutanoate dissolved in 30 µl solvent and the control septum 

with 30 µl solvent only.  Trap counts were compared using half of the trap count of the 

sticky monitoring traps (i.e. the total trap count divided by two), so that the trap area was 

equivalent to the one side of trap exposed inside the delta trap.  

5.2.6.  Does trap height above the crop affect pheromone trap catch? 

The response to pheromone was compared at two different heights above the crop to 

test whether pheromone can attract thrips away from the crop.  If so, the ratio of treatment 

catch to control catch would be expected to be at least as good between the higher traps as 

between the lower traps. If the higher traps are less effective than lower traps, then traps 

would need to be sited close to the crop for maximum trap catch.  The response of F. 

occidentalis to neryl (S)-2-methylbutanoate at different trap heights was tested in a 

commercial pepper crop (Site 2, Table 5.1, Figure 5.2 B) using yellow sticky traps 

(Takitrapline y) laid out in a randomised complete block design.  There were 20 blocks and 

one replicate per block with 3.6 m between traps within a block and 6 m between blocks. 

Treatments included trap heights with the base of the trap 20 cm or 45 cm above the crop 

canopy, with and without neryl (S)-2-methylbutanoate, with one septum placed centrally 

on the front of each trap.  A trap height of 20 cm rather than the usual 10 cm was used 

because the crop had wilted overnight and the crop recovered to about 10 cm below the 

trap during the experiment.  The pheromone septum was impregnated with 30 µg neryl (S)-

2-methylbutanoate dissolved in 30 µl solvent and the control septum with 30 µl solvent 

only. 

5.2.7.  Does trap spacing affect pheromone trap catch? 

The response to pheromone was compared at two different spacings between 

pheromone and control traps to test whether pheromone released from pheromone traps 

was reaching control traps and boosting their catch.  If so, the ratio of treatment catch to 
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control catch would be expected to be higher on traps spaced far apart and lower on traps 

spaced close together.  Control traps far apart from treatment traps (far control) would be 

expected to have lower trap catches than all the other trap types, because they are least 

likely to have pheromone reaching them from surrounding traps.  The response of 

F. occidentalis to neryl (S)-2-methylbutanoate at different trap spacing was tested in a 

commercial pepper crop (Site 1, Table 5.1, Figure 5.2 A) using blue sticky traps 

(Takitrapline b) laid out in a randomised complete block design.  There were 20 blocks and 

one replicate per block with 6 m between blocks.  Within each block there were two pairs 

of traps spaced at 1.2 m and 6 m and the position of each treatment within a pair was 

chosen randomly.  The treatments within each pair were with and without neryl (S)-2-

methylbutanoate, with one septum placed centrally on the front of each trap.  The 

pheromone septum was filled with 30 µg neryl (S)-2-methylbutanoate dissolved in 30 µl 

solvent and the control septum with 30 µl solvent only. 

5.2.8.  Is response to pheromone synergised by plant volatiles? 

Plant volatiles and their analogues are known to synergise the response to aggregation 

and sex pheromones in some insect species (see 5.1) and can increase thrips trap catch on 

their own (see Table 1.1).  Traps baited with the different scents, combined scents or no 

scents were placed in pepper and strawberry crops and the trap catches compared.  If a 

synergistic or even additive increase in trap catch is found, then there would be a benefit in 

combining the scents to increase trap catch. 

5.2.8.1.  In a pepper crop in Spain 

The effect of a plant volatile on response to pheromone was tested in a commercial 

pepper crop (Site 1, Table 5.1, Figure 5.2 A) using yellow sticky traps (Takitrapline y) laid 

out in a randomised complete block design.  There were 20 blocks and one replicate per 

block with 4.8 m between traps within a block and 6 m between blocks. On each trap one 

septum and one sachet were placed side by side, 2 cm from the top, on the front (north 

facing side) of each trap.  The sachets were made up by NRI.  The pheromone septum was 

loaded with 30 µg neryl (S)-2-methylbutanoate dissolved in 30 µl solvent, the methyl 

isonicotinate sachet contained 250 µl neat solution, the control septum contained 30 µl 

solvent only and the control sachet was an empty sachet.  The release rate for the different 

treatments matched those of the commercial products (Thriplineams, Syngenta Bioline Ltd, 

Clacton, UK and Lurem-TR, Koppert, Rodenrijs, NL).  The methyl isonicotinate was 



Optimising pheromone use for trapping_________________________________Chapter 5 

 

149 

 

placed in a sachet rather than a septum because of the large volume of liquid required. The 

methyl isonicotinate sachets had a release rate of about 12.8 mg per day and the neryl (S)-

2-methylbutanoate had a release rate of about 0.4 µg per day (D. Hall, pers. comm., 2011), 

i.e. the release rate of the plant volatile analogue was ×32,000 that of the aggregation 

pheromone.  Treatments were: 

 30 µg neryl (S)-2-methylbutanoate dissolved in 30 µl solvent in a septum with a 

blank sachet; 

 250 µl methyl isonicotinate in a sachet with a septum containing 30 µl solvent 

only; 

 30 µg neryl (S)-2-methylbutanoate dissolved in 30 µl solvent in a septum and 250 

µl methyl isonicotinate in a sachet; 

 a septum containing 30 µl solvent only and a blank sachet (control). 

5.2.8.2.  In a strawberry crop in the UK 

The effect of a plant volatile on response to pheromone was tested in a commercial 

semi-protected strawberry crop (cv. Finesse) near Tamworth, UK (Field 7, Table 2.1) using 

blue sticky traps (Impact trap) laid out in a randomised complete block design on 10 

August 2012.  Blue traps were used because blue is more likely to be used commercially 

for mass trapping.  Traps were placed between the strawberry beds in the leg area of the 

polytunnel so that they were out of the way of crop workers.  They were stuck vertically 

(landscape orientation) onto bamboo canes (60 cm long), which were pushed into the soil 

so that the bottom edge of the traps were about 10 cm above the height of the crop, which 

was about 40 cm high (Figure 5.3 D).  There were 18 blocks and one replicate per block 

with 6.6 m (three posts) between traps within a block and 6.5 m (one tunnel width) 

between blocks. Treatments were: 

 30 µg neryl (S)-2-methylbutanoate dissolved in 30 µl solvent in a septum with a 

blank sachet; 

 250 µl methyl isonicotinate in a sachet with a septum containing 30 µl solvent 

only; 

 30 µg neryl (S)-2-methylbutanoate dissolved in 30 µl solvent in a septum and 250 

µl methyl isonicotinate in a sachet; 

 a septum containing 30 µl solvent only and a blank sachet (control). 
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On each trap one septum and one sachet were placed side by side, 2 cm from the top, 

on the front (north facing side) of each trap (Figure 5.3 D).  The methyl isonicotinate 

sachets contained 250 µl neat solution and were made up by NRI.  Commercial lures were 

used for the pheromone septum (Thriplineams).  The control septum was filled with 30 µl 

solvent only and the control sachet was an empty sachet.  The traps were removed after 8 h 

in the crop (10.30 h to 18.30 h), wrapped separately in polythene and stored in a freezer.   

Trap catches of F. occidentalis were counted under a stereoscopic microscope (Wild 

AG, Heerbrugg) in the Keele laboratory, using the methods described in Chapter 2.  The 

great majority of the thrips on traps appeared to be F. occidentalis and one thrips was 

selected at random from each control trap and identified to species to confirm the 

identification, using the methods detailed in Chapter 2 (n = 18 thrips).   

To determine the thrips species and density of thrips in the crop, ten plants were 

selected arbitrarily from the experimental field and the number of flowers per plant was 

counted and one medium-aged strawberry flower (see Chapter 2) was picked from each of 

the sample plants (n = 10 flowers).  The flowers were pooled and placed in 70% alcohol so 

that adult thrips could be extracted.  One hundred adult thrips were selected at random 

from the alcohol sample and identified to species using the methods detailed in Chapter 2 

(n = 100 thrips).  

5.2.9.  Statistical analysis 

Statistical analysis was carried out using Minitab 16 (Minitab Incorporated, 

Pennsylvania, USA).  Data and residuals were checked for normality using an Anderson-

Darling test.  Parametric analysis of variance was used on log10 (n+1) transformed data to 

homogenise the variance.  Multiple comparisons used Tukey’s test.  Where data were not 

normally distributed, Mann Whitney non-parametric tests were used for pair-wise 

comparisons.  Data were considered statistically significant where P < 0.05.   

In the trap colour experiment (see 5.2.4), the variances of thrips numbers on the more 

attractive trap colours were greater than those of the less attractive colours, reflecting the 

differences in their means.  An assumption of analysis of variance is homogeneity of 

variance.  Despite differences in variance between thrips numbers on different trap colours, 

the ratio of the largest cell variance to the smallest (F max) was less than 10, so analysis of 

variance was still considered appropriate (Tabachnick & Fidell, 2001).  The residuals were 

normally distributed.  Pair-wise comparisons between pheromone and control traps of each 
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trap colour used Tukey’s test.  The ratio of trap catch between each treatment and the 

control was calculated by comparing the untransformed trap catch on the two trap types 

within each block, and these ratios were compared using regression analysis between the 

relative effectiveness of pheromone (ratio of treatment: control catch) and the 

attractiveness of the trap colour (control catch for each colour). 

Tables and figures show untransformed means to aid interpretation and allow more 

intuitive comparison with counts that would be used by growers, whilst statistical analysis 

used transformed data.  The factor of increase or decrease in trap catch was calculated by 

dividing the treatment trap catch by the control trap catch using untransformed means.   

5.3. Results 

5.3.1.  Does the release rate of neryl (S)-2-methylbutanoate affect trap catch? 

Pheromone trap catch was not affected by the release rate of the pheromone over a 

wide range between 0.04 µg and 8 µg per day (Figure 5.4 A, B, Tukey’s test, P< 0.05).  

There was a significant difference in trap catch between treatments overall, for females 

(ANOVA, F(4, 72) = 13.4, P<0.001) and males (ANOVA, F(4, 72) = 4.9, P = 0.002).  All the 

release rates of the aggregation pheromone, neryl (S)-2-methylbutanoate, increased trap 

catch compared to untreated control traps, by ×1.6-2.2 for females and by ×1.6-1.8 for 

males.   

5.3.2.  Does the chiral form of neryl -2-methylbutanoate affect trap catch? 

For females, there was a significant difference in trap catch between the treatments 

overall (ANOVA, F(3, 57 ) = 6.7, P < 0.001).  The aggregation pheromone, neryl (S)-2-

methylbutanoate, increased trap catch by ×1.8, but there was no increase with neryl (R)-2-

methylbutanoate or when the two chiral forms were combined in equal proportions (Figure 

5.5 A).   Analysis of treatment effects of the chiral forms for females was repeated using 

two-factor ANOVA with contrasts, to take account of the pheromone components in the 

mixed treatment.  This showed a significant increase in trap catch with neryl (S)-2-

methylbutanoate (F(1,57) = 35.0, P < 0.001) and a significant decrease with neryl (R)-2-

methylbutanoate (F(1, 57) = 23.7, P < 0.001) with no significant interaction between the two 

chiral forms (F(1, 57) = 2.4, P = 0.13).    For males there were no significant differences 
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between the treatments overall (ANOVA, F(3, 57) = 2.6, P = 0.065), although the trends in 

the data were the same as for females (Figure 5.5 B) and a two-factor ANOVA with 

contrasts showed an increase in trap catch with neryl (S)-2-methylbutanoate and decrease 

with neryl (R)-2-methylbutanoate that were close to significant (F(1, 57) = 3.8, P = 0.056 for 

(S); F(1, 57) = 2.8, P = 0.10 for (R); F(1, 57) = 1.1, P = 0.31 for interaction).    

If purity of the neryl (S)-2-methylbutanoate is critical to the response, then a decrease 

in trap catch might be observed when only a small amount of the (R) form is added.  When 

a small amount (1 μg, or about 4%) of neryl (R)-2-methylbutanoate was added to the 1% 

already present the pheromone reduced trap catch of both females and males by a small 

amount (about 4%) that was not significantly different from the trap catch neryl (S)-2-

methylbutanoate alone (Figure 5.6 A, B, Tukey’s test, P<0.05).  There was a significant 

difference in trap catch between treatments overall, for females (ANOVA, F(2, 38) = 19.0, P 

< 0.001) and males (ANOVA, F(2, 38 ) = 4.1, P = 0.026).  Neryl (S)-2-methylbutanoate alone 

increased trap catch of females by ×1.5 and males by ×1.3.  The trends were consistent 

with the experiment above.  

5.3.3.  Does lavandulyl acetate affect trap catch? 

5.3.3.1.  Does the ratio of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate affect trap 

catch? 

The addition of (R)-lavandulyl acetate to the aggregation pheromone reduced the trap 

catch, with a trend towards decreasing trap catch with increasing proportion of (R)-

lavandulyl acetate (Figure 5.7 A, B, Tukey’s tests, P<0.05).  There was a significant 

difference in trap catch between treatments overall for females (ANOVA, F(5, 95) = 11.0, P 

< 0.001), but not males (ANOVA, F(5, 95) = 1.6, P = 0.19), although the trends in the data 

were similar for both sexes.  The aggregation pheromone, neryl (S)-2-methylbutanoate, 

increased trap catch of females by ×2.0 and of males by ×1.6.   

5.3.3.2.  Does the release rate of neryl (S)-2-methylbutanoate: (R)-lavandulyl acetate (5:1) 

affect trap catch? 

There was a significant effect of a 5:1 ratio of neryl (S)-2-methylbutanoate: (R)-

lavandulyl acetate release rate on trap catch.  There was an increase in trap catch of 

females at the higher release rates (×1.8-1.9) but not at the lower release rate (Figure 5.8 A, 

Tukey’s test, P<0.05), and the increases were not as high (×0.6) as those seen with the 
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same release rates of neryl (S)-2-methylbutanoate alone (×2.1-2.2, Figure 5.4 A).  None of 

the doses tested revealed a response specific to concentration over and above that expected 

from neryl (S)-2-methylbutanoate alone.  There was a similar trend for males although the 

increases in trap catch with the two compounds were lower than for females (×1.2-1.4) and 

were not significantly different from the control (Figure 5.8 B, Tukey’s test, P<0.05).  

There was a significant difference in trap catch between treatments overall for females 

(ANOVA, F(3, 57) = 21.6, P < 0.001), but not males (ANOVA, F(3, 57) = 1.1, P = 0.38).   

5.3.3.3.  Does the chiral form of lavandulyl acetate affect trap catch? 

(R)-lavandulyl acetate, and the two chiral forms combined, significantly reduced trap 

catch of females, whereas the enantiomer (S)-lavandulyl acetate had no effect (Figure 

5.9 A, Tukey’s test, P<0.05).  The treatment trends were the same in males, although the 

differences were not significant (Figure 5.9 B, Tukey’s test, P<0.05).  Analysis of 

treatment effects of the chiral forms was repeated using two-factor ANOVA with contrasts, 

to take account of the components in the mixed treatment.  This showed a significant 

reduction in trap catch with (R)-lavandulyl acetate for both sexes (females, ×0.63, F(1, 57) = 

23.4, P < 0.001; males ×0.81, F(1, 57) = 4.1, P = 0.047) while (S)-lavandulyl acetate had no 

effect (females, F(1, 57) = 3.4, P = 0.07; males, F(1, 57) = 0.5, P = 0.54), and there was no 

interaction between the two chiral forms (females, F(1, 57) = 0.6, P = 0.46; males, F(1, 57) = 

1.0, P = 0.33).  There was a significant difference in trap catch between treatments overall 

for females (ANOVA, F(3, 57) = 9.1, P < 0.001), but not for males (ANOVA, F(3, 57) = 1.8, P 

= 0.15).   

These results are consistent with previous experiments, showing that no increase in 

trap catch was identified with any of the ratios, doses or chiral forms of lavandulyl acetate 

tested.  (R)-lavandulyl acetate reduced trap catches, especially of females, at a very low 

release rates, indicating that the thrips are very sensitive to it. 

5.3.4.  Is the pheromone trap catch enhanced by certain trap colours? 

There was a strong effect of trap colour on trap catch of F. occidentalis (ANOVA, F(3, 

133) = 175.0, P < 0.001).  Blue traps caught significantly more thrips than yellow traps 

(×2.4), clear traps (×9.3) or black traps (×34.7) (Figure 5.10).  The aggregation pheromone 

increased trap catch (ANOVA, F(1, 133) = 16.0, P < 0.001) in inverse relationship to the 

attractiveness of the trap colour (blue ×1.3, yellow ×1.7, clear ×1.9, black ×3.4).  A general 
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linear model regression showed that there was a negative association between the relative 

effectiveness of pheromone (ratio of treatment: control catch) and the attractiveness of the 

trap colour (control catch for each colour) (Regression, F(1, 55) = 7.2, P = 0.01). 

5.3.5.  Is the pheromone trap catch enhanced by trap type? 

Blue sticky traps caught ×29 more adult thrips than delta traps (Mann Whitney, W19 = 

820, P < 0.001).  The delta traps, which were brown with a blue sticky trap insert, caught 

very few thrips with or without pheromones, confirming the importance of the visual 

component of the traps for absolute trap catch (Figure 5.11 A, B).  Pair-wise comparison 

by block of treated and control traps for each trap type showed that the aggregation 

pheromone, neryl (S)-2-methylbutanoate, increased trap catch of females by ×3.1, and of 

males by ×2.5 (Mann Whitney, W20 = 302, P = 0.003 for females; W20 = 317, P = 0.009 for 

males) in the delta traps, but the increase in trap catch on the sticky traps, by ×1.3 

(females) and ×1.1 (males), were not statistically significant (Mann Whitney, W20 = 353, P 

= 0.13 for females; W20 = 402, P = 0.83 for males).  A comparison of the ratio of treatment: 

control catch of adult thrips by block for the different trap types showed a significant 

interaction between the effect of the pheromone and the attractiveness of the trap (Mann-

Whitney, W20 = 308, P = 0.006).  The pheromone increased trap catch in inverse 

proportion to the attractiveness of the trap, with a median ratio (treatment: control) of ×2.2 

in delta traps and of ×1.3 on sticky traps.  Although the brown delta trap enhanced the 

response to pheromone, further experiments are required to determine whether this was the 

result of trap type or trap colour. 

5.3.6.  Does trap height above the crop affect pheromone trap catch? 

There was a significant difference in trap catch between treatments overall for females 

(ANOVA, (F(1, 57) = 30.1, P < 0.001) and males (ANOVA, F(1, 57) = 68.3, P < 0.001).  Traps 

that were closer to the crop caught ×1.7 more females and ×2.2 more males than traps that 

were higher above the crop (Figure 5.12 A, B).  The aggregation pheromone, neryl (S)-2-

methylbutanoate, increased trap catch of females by ×1.4 (ANOVA, F(1, 57) = 13.4, P < 

0.001), and of males by ×1.2 (ANOVA, F(1, 57) = 4.9, P = 0.032).  There was no significant 

interaction between response to pheromone at the different trap heights (females, ANOVA, 

F(1, 57) = 0.4, P = 0.55; males, ANOVA, F(1, 57) = 0.1, P = 0.72) indicating that neither the 

trap colour nor the pheromone are drawing the thrips away strongly from the crop canopy.   



Optimising pheromone use for trapping_________________________________Chapter 5 

 

155 

 

5.3.7.  Does trap spacing affect pheromone trap catch? 

There was a significant difference in trap catch between treatments overall for females 

(ANOVA, (F(3, 57) = 14.6, P < 0.001) and males (ANOVA, F(3, 57) = 24.4, P < 0.001).  

Overall, the aggregation pheromone, neryl (S)-2-methylbutanoate, increased trap catch of 

females by ×1.4 and of males by ×1.2.  There was a trend for a greater treatment: control 

ratio with increasing distance between traps (×1.2 near and ×1.5 far) (Figure 5.13 A, B).  In 

pair-wise Tukey’s comparisons there was no statistical difference in the trap catch between 

treatment and control traps placed 1.2 m apart (females, P = 0.68; males P = 0.64), 

whereas the difference was significant at 6 m spacing (females, P < 0.001; males P = 

0.011), showing that the pheromone influenced the control trap catch when the traps were 

1.2 m apart but not (or to a lesser extent) when they were 6 m apart.  The interaction 

between spacing and pheromone was significant for females (F(1, 57) = 4.1, P = 0.049) but 

not males (F(1, 57) = 0.4, P = 0.52).  The control traps that were furthest from a pheromone 

lure (6 m) caught the fewest thrips, as predicted. 

5.3.8.  Is response to pheromone synergised by a plant volatile analogue? 

5.3.8.1.  In a pepper crop in Spain 

Small increases in trap catch were observed with the different scents (Figure 5.14 A, 

B):  The increase in trap catch with methyl isonicotinate (×1.2, females and males 

combined) was not statistically significant;  neryl (S)-2-methylbutanoate increased trap 

catch significantly by ×1.3 (females and males combined); the combination of pheromone 

and methyl isonicotinate increased trap catch by ×1.4 (females and males combined), but 

there was no synergistic effect over and above the multiplicative effects of the 

combination.  There was a significant difference in trap catch between treatments overall 

for females (ANOVA, F(3, 57) = 6.4, P = 0.001), but not males (ANOVA, F(3, 57) = 2.0, P = 

0.12), although the trends were similar in both sexes.  Analysis of treatment effects of the 

two compounds was repeated using two-factor ANOVA with contrasts, to take account of 

the scents in the mixed treatment, which showed no significant increase in trap catch with 

methyl isonicotinate (females, F(1, 57) = 0.9, P = 0.36; males, F(1, 57) = 0.1, P = 0.76), a 

significant increase in trap catch with neryl (S)-2-methylbutanoate (females, F(1, 57) = 18.1, 

P<0.001; males, F(1, 51) = 5.8, P = 0.02) and no interaction between the two scents 

(females, F(1, 57) = 0.2, P = 0.64; males, F(1, 51) = 0.1, P = 0.71).   
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5.3.8.2.  In a strawberry crop in the UK 

When the experiment was repeated in UK strawberry, both scents significantly 

increased trap catch by similar amounts (Figure 5.15 A, B):  Methyl isonicotinate increased 

the trap catch of females by ×1.4 and of males by ×1.3; neryl (S)-2-methylbutanoate 

increased trap catch of females by ×1.3 and of males by ×1.2; the combination of 

pheromone and methyl isonicotinate increased trap catch by ×1.4 (females and males 

combined), but there was no synergistic increase in trap catch over and above the 

multiplicative effects of the combination.  There was a significant difference in trap catch 

between treatments overall for females (ANOVA, F(3, 51) = 6.4, P < 0.001), and males 

(ANOVA, F(3, 51) = 10.8, P < 0.001).  Analysis of treatment effects of the two compounds 

was repeated using two-factor ANOVA with contrasts, to take account of the scents in the 

mixed treatment, which showed a significant increase in trap catch with methyl 

isonicotinate (females, ANOVA, F(1, 51) = 40.3, P<0.001; males, ANOVA, F(1, 51) = 25.6, 

P<0.001), a significant increase in trap catch with neryl (S)-2-methylbutanoate (females, 

ANOVA, F(1, 51) = 9.2, P = 0.004; males, ANOVA, F(1, 51) = 4.1, P = 0.049).  There was 

significant interaction between the two scents for females (ANOVA, F(1, 51) = 9.5, P = 

0.003), which is a synergistic decrease, because the combined effect of the two scents was 

significantly less than the product of their separate effects on log-transformed data.  No 

significant interaction was observed in males (ANOVA, F(1, 51) = 2.7, P = 0.10).   

5.3.9.  Thrips species composition 

The Thripidae species composition was similar between the two experimental sites in 

Spain, with about 97 % F. occidentalis and 2% T. tabaci. Thrips angusticeps and 

F. intonsa were also present in low numbers (<1%).  Occasional aeolothripid and 

phlaeothripid thrips were present on most traps, including the predatory species Aeolothrips 

tenuicornis. 

In the UK strawberry crop, (see 5.3.8.2), 97% of the thripids in flowers were F. 

occidentalis (n = 100) and 100% of the thripids identified from traps were F. occidentalis 

(n = 18), with an average of 16 adult thrips per flower and 1 flower per plant (n = 10 

flowers and plants). 



Optimising pheromone use for trapping_________________________________Chapter 5 

 

157 

 

5.4. Discussion 

The results confirm that the aggregation pheromone, neryl (S)-2-methylbutanoate, 

increases trap catch of both male and female F. occidentalis in protected pepper crops in 

Spain and a semi-protected strawberry crop in the UK.  The increase in trap catch is 

consistent with that found previously in greenhouse pepper, tomato, cucumber and outdoor 

top fruit, where addition of the pheromone resulted in increases between ×1.2 and ×3 

(Hamilton et al., 2005; Gómez et al., 2006; Broughton & Harrison, 2012; Covaci et al., 

2012).  The experiments in strawberry in this thesis and resultant publications are the first 

records of increased trap catch using the aggregation pheromone in semi-protected 

strawberry, showing that the pheromone could be used to enhance trapping and monitoring 

in strawberry.   

The increase in trap catch with the aggregation pheromone was consistently greater for 

females (×1.7) than for males (×1.4) (mean of nine experiments).  The greater increase in 

trap catch of females in the field could reflect a higher trap catch of virgin females, 

although this is untested.  Alternatively, as most females are likely to be mated (Terry & 

Schneider, 1993), the greater increase in trap catch for females with the pheromone could 

be because females disperse more readily than males (Terry & Gardner, 1990; Rhainds & 

Shipp, 2003).  Males have a more aggregated distribution than females, as shown by the 

coefficients of variation (standard deviation/mean), which were higher (more variable) in 

males than in females in all experiments.  To give a typical example (experiment 5.3.3.1), 

the coefficient of variation (CV) was 73% for males and 65% for females on control traps, 

and 64% for males and 48% for females on pheromone traps.  The reduction in the CV 

with the aggregation pheromone is unexplained.  It might be that the control traps show the 

underlying distribution of thrips within a crop while pheromone traps reflect overall 

activity over a crop and that the two types of trap are not sampling the same sets of the 

population.  It is not clear why so many non-virgin females are attracted to the aggregation 

pheromone given that they do not need to mate to lay eggs, that most are likely to have 

already mated (Terry, 1997), and that they do not mate again for several days after mating 

(Terry & Schneider, 1993).   

Frankliniella occidentalis trap catch was not affected by dose of neryl (S)-2-

methylbutanoate over the wide range tested (10-2000 µg).  This may be expected 

theoretically because the pheromone is produced in variable amounts, because thrips 
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numbers vary within aggregations and there is no evidence of a negative feedback 

mechanism for pheromone production rate.  The response to pheromone could vary at 

doses above or below those tested.  The lowest dose tested (10 µg) had the lowest trap 

catch, so there is nothing to suggest a lower dose would increase trap catch (Figure 5.4).  

Its release rate of about 0.04 µg per day (D. Hall, pers. comm., 2011) is equivalent to the 

amount of pheromone produced by about 6-17 male thrips per day, calculated up from a 

release rate of 100-300 pg per male per h (Dublon et al., 2008).  This is only an 

approximate measure for the purposes of comparison, because pheromone production rate 

is variable and as it is not known how the thrips pheromone production varies through the 

day.  De Kogel (2003) found a positive dose response of females to increasing numbers of 

male F. occidentalis from 5-80 males, although other compounds may be involved when 

using live thrips. There is no reason to suppose that doses higher than those tested would 

increase trap catch as there was no trend towards increased trap catch with doses between 

100 and 2000 µg (Figure 5.4).  As no critical dose was identified it suggests that thrips are 

not responding to aggregation pheromone in the same way that Lepidoptera respond to 

their sex pheromones.  Lepidoptera use concentration to locate conspecific mates and land 

at specific concentrations (Cardé & Baker, 1984), whereas thrips land at various 

concentrations.  As most moth species are nocturnal, scents are likely to be more important 

for mate location than for day-flying thrips, which use visual cues for landing.  There is an 

apparent advantage for thrips in responding to high doses of pheromone because they have 

more chance of mating in aggregations that contain more thrips (Milne et al., 2002).  A 

possible benefit of the lack of a dose-response in thrips is that the dose rate for lures is less 

critical, so there is more margin for error than in moth species that land in response to 

specific doses.  As there is no evidence that trap catch would increase by altering the dose, 

the dose used in commercial lures of 30 µg per septa (equivalent to 100 µg in vials) is 

adequate.   

The chiral form of neryl 2-methylbutanoate was critical to the response as is typical of 

insect pheromones and the experiments confirm neryl (S)-2-methylbutanoate as the 

aggregation pheromone, which increases trap catch.  The experiments also demonstrate 

that neryl (R)-2-methylbutanoate is biologically active, reducing or cancelling out the 

effect of neryl (S)-2-methylbutanoate at very low concentration.  It is not known why neryl 

(R)-2-methylbutanoate is affecting trap catch.  It could be working by interfering with the 

receptors to neryl (S)-2-methylbutanoate, or could play an active role as a repellent. There 
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is no evidence that the (R) form is produced by F. occidentalis or F. intonsa (Hamilton et 

al., 2005; Zhu et al., 2012), although it could be produced by related species and have a 

role that has not been identified.  The small amounts of neryl (R)-2-methylbutanoate (about 

1%) present in commercial sources of neryl (S)-2-methylbutanoate are unlikely to have a 

great impact on trap catch, although the purity of the pheromone source will affect 

efficacy.  Olaniran (2013) reported that the response of female F. occidentalis (walking 

and flitting) to filter paper dosed with synthetic pheromone failed to match that to filter 

papers that had been exposed to live thrips in laboratory experiments, because 7-methyl 

tricosane was absent.  Contamination of commercial sources of neryl (S)-2-

methylbutanoate with small amounts of the (R)-form may contribute as it would reduce the 

response to the aggregation pheromone, although other compounds and behaviours may be 

involved. 

(R)-lavandulyl acetate did not increase trap catch at any of the ratios (to the 

aggregation pheromone) or doses tested, so there is no evidence for the suggestion by Zhu 

et al. (2012) that it is part of the aggregation pheromone.  Zhu et al. (2012) suggested that 

the ratio and doses of the two compounds play an important role in interspecies recognition 

between F. occidentalis and F. intonsa, as F. intonsa  produce more of both compounds 

and proportionally more (R)-lavandulyl acetate than F. occidentalis.  As the ratios between 

the two compounds and release rates tested extended over the full range entrained from 

males of both species, it seems unlikely that a critical ratio or dose has been missed.  The 

significant reduction in trap catch with (R)-lavandulyl acetate in females (Figure 5.9 A) 

indicates that it has a role of its own, rather than reducing trap catch by direct interference 

with the aggregation pheromone.  In contrast its enantiomer, (S)-lavandulyl acetate, did not 

affect the trap catch (no increase or decrease) of females or males, suggesting that it is not 

biologically active.  Olaniran (2013) found that (R)-lavandulyl acetate arrested females, 

reducing walking and flits in laboratory experiments and suggested that it may be used by 

males to calm females during mating.  Pelikan (1951) observed that adult male Pezothrips 

dianthi (formerly Taeniothrips dianthi) also produce a compound that calms females.  The 

reduction in female F. occidentalis trap catch in response to (R)-lavandulyl acetate might, 

therefore, be as a result of females landing (arresting) before they arrive at a trap, or failing 

to take off near the trap.  Similar compounds have been identified in some mealybug and 

scale insect species that reduce trap catch and play a role in copulation behaviour (Millar et 

al., 2005).  In most experiments the effect of (R)-lavandulyl acetate on male trap catch was 
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not statistically significant (Figure 5.9 B).  Olaniran (2013) found increased activity of 

males (walking and flits) in response to the compound in laboratory experiments, which he 

associated with fighting and mating behaviour, but this increased activity did not translate 

into increased trap catch in the field, rather there was a slight decrease in trap catch with a 

similar trend to that in females, which is unexplained.  Further work is required to identify 

the biological role of (R)-lavandulyl acetate.  A bioassay to test whether mating success is 

improved in the presence of the compound should be sufficient to confirm whether it aids 

mating as suggested by Olaniran (2013).  As it does not appear to be part of the 

aggregation pheromone, there is no benefit in adding (R)-lavandulyl acetate to pheromone 

lures to increase trap catch of F. occidentalis. Further experiments are required to test 

whether the response of females to (R)-lavandulyl acetate is sufficient to reduce feeding 

damage and egg-laying. This could be a new method of pest control with an applied use 

which is worth investigating.  

The results on different trap colours confirmed the attractiveness of blue (about 450 

nm, see Chapter 6) to F. occidentalis in greenhouse crops (Brødsgaard, 1989; Vernon & 

Gillespie, 1990) and the importance of visual cues in trap attraction.  The absolute increase 

in trap catch with additional pheromone was greater for the more attractively coloured 

traps, although the proportional increase was lower.  A similar interaction between colour 

and scent has been observed with plant kairomones (Teulon et al., 1999; Davidson et al., 

2012).  The reduced treatment: control ratio with pheromone on the most visually attractive 

traps may be explained, at least in part, by the fact that they are already extremely 

attractive, drawing in a large number of thrips, thereby reducing the numbers of thrips 

available for the pheromone to attract unless an invasion of thrips is occurring. For 

example, the blue traps were catching thrips equivalent to about all the adult thrips in 

flowers of about 5 m
2

 of crop (19 thrips per m
2 

in flowers (site 1, Table 5.1); 99 thrips per 

blue trap (Figure 5.10)).  The black pheromone traps and brown delta traps caught very 

few thrips, confirming that a visual cue is an essential part of the traps.  The pheromone is 

known to attract F. occidentalis in olfactometer experiments (although the thrips are 

mostly walking rather than flying) (Hamilton et al., 2005) and it increases activity 

(including flits) (Olaniran, 2013), so it is possible that thrips take off and fly towards the 

pheromone lures, but landed on attractively coloured surfaces (such as the white flowers in 

the pepper crop) before reaching the less attractively coloured (black or brown) traps.  No 

conclusions can be made about whether the delta trap design increases pheromone trap 
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catch as there was no comparison of sticky traps and delta traps of the same colour, with 

and without pheromone.  The treatment: control ratio was about the same (3:1 for adult 

thrips) in the brown delta traps and on the black traps (i.e. less attractive colours) in 

different experiments, indicating that the low trap catches and higher treatment: control 

ratio may be the result of trap colour rather than trap type.  Further experiments (for 

example with blue delta traps) are required to test this, although, as the trap catch was so 

low in the delta traps (35% of the control traps caught no thrips) and as no great increase 

was seen with added pheromone, they are unlikely to be a useful tool for thrips monitoring 

compared to sticky traps, which are cheaper.  Blue sticky traps (about 450 nm) with added 

pheromone resulted in the highest trap catches of the different colours tested and these 

were used for mass trapping (see Chapter 6). 

The plant volatile analogue, methyl isonicotinate and the aggregation pheromone 

increased the trap catch of F. occidentalis by similar amounts in UK strawberry, which is 

consistent with results in top fruit in Australia (Broughton & Harrison, 2012).  Both scents 

increase thrips activity and take-off (van Tol et al., 2012; Olaniran, 2013).  The lack of a 

synergistic increase in trap-catch with the two scents combined is similar to the response 

observed in T. tabaci when different plant volatiles were combined (Teulon et al., 2007c).  

The lack of response by a Spanish thrips population to methyl isonicotinate in a pepper 

crop is consistent with that found by Nielsen (pers. comm., 2013).  There is the possibility 

that thrips could habituate to certain scents or that population control using scents could 

lead to adaptive changes (resistance).  This could apply equally to plant volatiles and 

pheromones, as the pheromone composition within a species can change between 

populations, for example, the ratio of different pheromone components in the turnip moth 

(Agrotis segetum) varies between European countries (Löfstedt et al., 1986).  If changes in 

the pheromone composition occur in response to trapping, then the techniques need to 

change along with the insect development.  Resistance management may need to be 

considered in the same way as insecticides, considering the frequency of application or 

rotation between scents.  An alternative explanation for a lack of response to different 

scents could relate to the cropping environment, as fewer thrips respond to traps in more 

attractive environments (Prokopy & Owens, 1983).  For example, the plant volatile p-

anisaldehyde did not increase trap catch in UK strawberry (Sampson, unpublished data, 

2013), possibly because p-anisaldehyde is already present in strawberry flowers and one of 

the behavioural responses to p-anisaldehye is reduced take-off (arrestment) (Teulon et al., 



Optimising pheromone use for trapping_________________________________Chapter 5 

 

162 

 

1999; Davidson et al., 2012).  Further controlled experiments are required to understand 

the flight response of F. occidentalis to lures and competing scents (from the crop, weeds 

and other thrips) at different times of the year in the field, so that the use of scents can be 

optimised for trapping.  

The experiments in this study fail to identify any improvements to the aggregation 

pheromone for trapping, but they do provide further clues as to how the thrips are 

responding to the pheromone.  The significant effect of trap spacing on trap catch (Figure 

5.13), where the pheromone affected trap catch on control traps that were 1.2 m away but 

not (or to a lesser extent) at 6 m away, is proof that the thrips are landing in response to 

colour rather than flying directly to the scent, because the scented trap has increased the 

trap catch of an unscented trap that is 1.2 m away.  The landing of thrips in response to 

visual stimuli could partly explain why the increase in thrips trap catch is not higher in 

flowering pepper and strawberry crops in this study, because some thrips may land on the 

white flowers that were abundant throughout the crop (a mean of 5 and 10 flowers per m
2 

in the pepper and strawberry crops respectively at the time of the experiments), before 

reaching a trap.  In contrast, some nocturnal lepidopteran species are more attracted to 

scent than to visual cues, landing at exact concentrations of pheromone and continuing to 

search until the source of a scent is found, which results in a greater increase in trap catch 

compared to controls (Howse, 1998).  The pheromone treatment effect in this study was no 

different when traps of the same colour were 6 m or 3.6 m apart in different experiments 

(e.g. about ×1.3 increase in blue trap catch of adults thrips with pheromone in 5.3.4 and 

5.3.7), suggesting that there was minimal spread of pheromone scent onto the control traps 

at these distances.  This would indicate that minimum pheromone lure spacing should be 

somewhere between 2.4 and 6 m for maximum effect, based on evidence that pheromone 

boosted control traps that were 1.2 m away, but had a limited effect of pheromone on 

control traps that were 6 m away.  Teulon et al  (2007a) predicted a similar effect of ethyl 

isonicotinate on T. tabaci, where trap catch was predicted to decrease by 50% within 1.3 m 

of a baited trap.  Further studies are required to identify the best spacing for lures for 

monitoring and mass trapping, as the distance over which thrips respond to scents in the 

field is unknown.   

It is evident that not all thrips are responding to the pheromone traps as there were 

plenty of thrips in the flowers immediately surrounding a trap in the field.  The thrips 

caught on a trap may include a few more responsive thrips that are flying in from further 
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distances as well as those immediately surrounding a trap.  The most effective hue 

(dominant wavelength) is very attractive to F. occidentalis (Brødsgaard, 1989), yet neither 

an attractive hue nor pheromone drew thrips away from the flowering canopy when traps 

were raised higher above the crop (Figure 5.12).  Thrips may be arrested in the flowers, 

rather than flying towards the traps, as flowers are attractively coloured and may contain 

floral scents, pheromone producing thrips, and a favourite food source (pollen).  Both p-

anisaldehyde (which is present in strawberry flowers) and (R)-lavandulyl acetate (produced 

by male F. occidentalis) are known to arrest thrips (Teulon et al., 1999; Olaniran, 2013), 

which could explain the lack of response in some thrips, although various other abiotic 

(e.g. temperature and wind speed) and biotic (e.g. crowding and hunger status) factors are 

likely to be involved.  As no dose-related response to pheromone was identified in thrips, 

the higher dose from a pheromone trap may not override the attraction of other thrips 

within a flower, or it may be that thrips only respond when in flight.  The release rate from 

commercial lures (about 0.4 µg per day, D. Hall, pers. comm., 2011) is equivalent to that 

produced by about 60-170 male thrips per day, which sounds a lot, but adult trap catches in 

UK strawberry can exceeded 2000 thrips per week
 
during the summer (see Chapter 3), so 

there is considerable competition from pheromone produced by thrips within the crop.  A 

greater pheromone trap catch compared to control would be expected in a non-flowering 

crop because of reduced competition from the environment and because the thrips are 

likely to be less satiated and therefore flying more (Davidson et al., 2006, 2009) and this is 

explored further in Chapter 6.  The proportion of immigrant thrips was unknown in the 

crops in this study, but a greater response to trapping might occur when there are more 

immigrants.  Further knowledge about the movement of thrips within and between crops 

would help to identify the best timing and placement of traps. 

The F. occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate, resulted in a 

small, but consistent increase in trap catch throughout the study, with a greater increase of 

females than males.  (R)-lavandulyl acetate did not increase trap catch at any of the ratios 

(to the aggregation pheromone) or doses tested, so there is no evidence that it is part of the 

aggregation pheromone.  No other volatile components of sufficient volume to attract 

thrips over a distance have been found from the head space of F. occidentalis (Hamilton et 

al., 2005; Olaniran, 2013), so although it is possible that other compounds may be involved 

in aggregation, it seems unlikely.  Further testing of the less volatile cuticular 

hydrocarbons, which act on contact or at short distances, is required to determine whether 
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they could be used to improve trap catch.  Applied use of the pheromone has yet to be fully 

explored.  Even a small increase in trap catch can be important to improve the sensitivity 

and reliability of monitoring traps, especially early in the season, when it is important to 

apply timely releases of natural enemies.  There is also potential for mass trapping (see 

Chapter 6), attract and kill, attract and infect (Niassy et al., 2012) or to improve the 

efficacy of insecticide treatments in a similar way to alarm pheromones (Cook et al., 

2002). 
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Table 5.1. Field site details showing location, growing methods, environmental conditions 

and thrips occupation, for the thrips trapping experiments carried out in protected sweet 

pepper crops in Spain, April 2011. 

 

 Site 1 Site 2 

 

Location 

 

El Algar, Murcia, Spain 

 

Los Infiernos, Murcia, Spain 

Grid Reference N 37° 37.34´ W 0° 53.48´ N 37° 57.07´ W 0° 54.77´ 

Structure Multi-tunnel plastic house Multi-tunnel plastic house 

Area 7500 m
2
 6000 m

2 

Cultivar Velez Guepard 

Growing method Hydroponic In soil 

Planting density 2.5 plants per m
2 

2.5 plants per m
2
 

Crop height 66 cm 90 cm 

Mean min. and max. temp. 14-37 °C 14-36 °C 

Mean min. and max. RH 34-89 % 36-88 % 

Thrips occupancy of flowers 40% 35% 

Thrips per flower
 

3.1 1.2 

Flowers per plant
 

2.5 6 
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Figure 5.1.  Chemical structure of : (A) neryl (S)-2-methylbutanoate;  (B) neryl (R)-2-

methylbutanoate;  (C) (R)-lavandulyl acetate;  (D) (S)-lavandulyl acetate;  (E) 7-

methyltricosane;  (F) methyl isonicotinate. 
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Figure 5.2.  Field sites for the pheromone trap trials showing (A) site 1  (B) site 2  (C) 

vents at site 1  (D) pepper plants growing at site 2.  
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Figure 5.3.  Field experiments showing (A) a typical block lay-out in a Spanish pepper 

pheromone experiment (B) the position of the lures on the traps (C) a delta trap with a blue 

sticky trap insert and (D) a blue sticky trap with a septum and sachet in the UK strawberry 

experiment.  
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         Figure 5.4.  The mean number ± SEM of adult F. occidentalis caught on yellow sticky 

traps with different release rates of neryl (S)-2-methylbutanoate from vials, over 24 h in a 

pepper crop (n = 19) for (A) females (F(4, 72) = 13.4, P < 0.001) and (B) males (F(4, 72) = 4.9, 

P = 0.002).  The release rates equated to doses of 0, 10, 100, 1000 and 2000 µg per vial.  

Analysis was on transformed data whilst the charts show untransformed data.  Means with 

the same letter are not significantly different (Tukey’s test, P > 0.05). 
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         Figure 5.5.  The mean number ± SEM of adult F. occidentalis caught on yellow sticky 

traps with different chiral forms of neryl 2-methylbutanoate, using vials, over 24 h in a 

pepper crop (n = 20) for (A) females (F(3, 57) = 6.7, P < 0.001) and (B) males (F(3, 57) = 2.6, 

P = 0.065).  NSMB = neryl (S)-2-methylbutanoate, NRMB = neryl (R)-2-methylbutanoate.  

The release rate of the compounds was about 0.4 µg per day from vials.  Analysis was on 

transformed data whilst the charts show untransformed data.  Means with the same letter 

are not significantly different (Tukey’s test, P > 0.05). 
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         Figure 5.6.  The mean number ± SEM of adult F. occidentalis caught on yellow sticky 

traps with an additional small amount (4%) of neryl (R)-2-methylbutanoate added to the 

1% already present in the (S) form, using septa, over 24 h in a pepper crop (n = 20) for  (A) 

females (F(2, 38) = 19.0, P < 0.001) and (B) males (F(2, 38) = 4.1, P = 0.026).  NSMB = neryl 

(S)-2-methylbutanoate, NRMB = neryl (R)-2-methylbutanoate.  Analysis was on 

transformed data whilst the charts show untransformed data.  Means with the same letter 

are not significantly different (Tukey’s test, P > 0.05). 
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         Figure 5.7.  The mean number ± SEM of adult F. occidentalis caught on yellow sticky 

traps with different release rate ratios of neryl (S)-2-methylbutanoate: (R)-lavandulyl 

acetate from vials, over 24 h in a pepper crop (n = 20) for (A) females (F(5, 95) = 11.0, P < 

0.001) and (B) males (F(5, 95) =  1.6, P = 0.17).  The release rate of neryl (S)-2-

methylbutanoate was about 0.4 µg per day for all treatments (except the control), with 

proportional release rate of (R)-lavandulyl acetate.  Analysis was on transformed data 

whilst the charts show untransformed data.  Means with the same letter are not 

significantly different (Tukey’s test, P > 0.05). 
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         Figure 5.8.  The mean number ± SEM of adult F. occidentalis caught on yellow sticky 

traps with different release rates of a 5:1 ratio of neryl (S)-2-methylbutanoate: (R)-

lavandulyl acetate from vials, over 24 h in a pepper crop (n = 20) for (A) females (F(3, 57) = 

21.6, P < 0.001) and (B) males (F(3, 57) = 1.1, P = 0.38).  Analysis was on transformed data 

whilst the charts show untransformed data.  Means with the same letter are not 

significantly different (Tukey’s test, P > 0.05). 
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         Figure 5.9.  The mean number ± SEM of adult F. occidentalis caught on yellow sticky 

traps with different chiral forms of lavandulyl acetate in vials, over 24 h in a pepper crop 

(n = 20) for  (A) females (F(3, 57) = 9.1, P < 0.001) and (B) males (F(3, 57) = 1.8, P = 0.15).  

The release rate of RLA, SLA and LA was 0.4, 0.4 and 0.8 µg per day, respectively. 

RLA = (R)-lavandulyl acetate, SLA = (S)-lavandulyl acetate, LA = lavandulyl acetate.  

Analysis was on transformed data whilst the charts show untransformed data.  Means with 

the same letter are not significantly different (Tukey’s test, P > 0.05). 
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Figure 5.10.  Mean catch + SEM of adult F. occidentalis on different coloured sticky traps 

with and without the aggregation pheromone neryl (S)-2-methylbutanoate on septa, over 

24 h in a pepper crop (n = 19).  Pair-wise comparisons between trap catch on control and 

pheromone treated traps for each trap colour are shown by P values and factor of increase.  

NSMB = neryl (S)-2-methylbutanoate.  The release rate of NSMB was about 0.4 µg per 

day.  Analysis was on transformed data whilst the charts show untransformed data.  
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         Figure 5.11.   The mean catch ± SEM of adult F. occidentalis on blue sticky traps alone, or 

blue sticky traps inserted into brown delta traps, with and without the aggregation 

pheromone neryl (S)-2-methylbutanoate (NSMB) on septa, over 24 h in a pepper crop (n = 

20) for (A) females and (B) males.  Pair-wise comparisons between trap catch on control 

and pheromone treated traps for each trap colour are shown by P values and factor of 

increase.  The release rate of NSMB was about 0.4 µg per day.  Analysis was on 

transformed data whilst the charts show untransformed data.  
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Figure 5.12.  The mean number ± SEM of adult F. occidentalis caught on yellow sticky 

traps at 20 cm (low) and 45 cm (high) above the crop, with and without the aggregation 

pheromone neryl (S)-2-methylbutanoate on septa, over 24 h in a pepper crop (n = 20) for  

(A) females (F(3, 57) = 14.6, P < 0.001) and (B) males (F(3, 57) = 24.4, P < 0.001).  NSMB = 

neryl (S)-2-methylbutanoate.  The release rate of NSMB was about 0.4 µg per day.  

Analysis was on transformed data whilst the charts show untransformed data.  Means with 

the same letter are not significantly different (Tukey’s test, P > 0.05).   
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Figure 5.13.  The mean catch ± SEM of adult F. occidentalis on blue sticky traps at 

spacing of 1.2 m (near) and 6 m (far), with and without the aggregation pheromone neryl 

(S)-2-methylbutanoate on septa, over 24 h in a pepper crop (n = 20) for  (A) females (F(3, 

57) = 8.5, P < 0.001) and (B) males (F(3, 57) = 7.1, P < 0.001).  NSMB = neryl (S)-2-

methylbutanoate.  The release rate of NSMB was about 0.4 µg per day.  Analysis was on 

transformed data whilst the charts show untransformed data.  Means with the same letter 

are not significantly different (Tukey’s test, P > 0.05).  
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         Figure 5.14.  The mean catch ± SEM of adult F. occidentalis caught on yellow sticky traps 

with neryl (S)-2-methylbutanoate on septa and methyl isonicotinate in sachets, over 24 h in 

a pepper crop (n = 20) for (A) females (F(3, 57) = 6.4, P = 0.001) and (B) males (F(3, 57) = 2.1, 

P = 0.12).  NSMB = neryl (S)-2-methylbutanoate, MIN = methyl isonicotinate.  The 

release rates of NSMB and MIN were about 0.4 µg and 12.8 mg per day, respectively.  

Analysis was on transformed data whilst the charts show untransformed data.  Means with 

the same letter are not significantly different (Tukey’s test, P > 0.05). 
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Figure 5.15.  The mean catch ± SEM of adult F. occidentalis on blue sticky traps with 

neryl (S)-2-methylbutanoate on septa and methyl isonicotinate in sachets, over 8 h in a 

strawberry crop (n = 18) for (A) females (F(3, 51) = 19.7, P < 0.001) and (B) males (F(3, 51) = 

10.8, P < 0.001).  NSMB = neryl (S)-2-methylbutanoate, MIN = methyl isonicotinate.  The 

release rates of NSMB and MIN were about 0.4 µg and 12.8 mg per day, respectively.  

Analysis was on transformed data whilst the charts show untransformed data.  Means with 

the same letter are not significantly different (Tukey’s test, P > 0.05).
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Chapter 6 

Can mass trapping reduce thrips 

damage and is it economically viable? 

6.1. Introduction 

Mass trapping of insect pests is used routinely on more than 10 million hectares of 

commercial crops around the world, predominantly against Lepidoptera, Coleoptera, 

Diptera and Hemiptera (Witzgall et al., 2010).  A variety of lures are used to attract them, 

including food, colour, kairomones and pheromones, either alone or in combination (Jones, 

1998).  Interest in pheromone mass trapping has increased because traps can be species-

specific, which reduces the impact on non-target species and because pheromones are 

active at very low concentrations and do not need to be sprayed directly onto a crop, which 

is safer for the environment than chemical insecticides.  This gives a sustainable pest 

control strategy that can be integrated with the biologically-based programmes increasingly 

used.  The greatest success has been against pest species that occur at low densities, have 

limited host ranges, long generation times, isolated populations and low mobility (El-

Sayed et al., 2006).  In contrast, mass trapping is not widely used commercially against 

thysanopteran pests, which are typically polyphagous, have high population densities, short 

life cycles and rapid population increases (Kirk, 1997b).  Thrips are difficult to control 

with trapping, as huge numbers need to be caught to make an impact on a population 

(Kawai & Kitamura, 1990).  High densities of sticky traps have reduced Thrips palmi 

numbers in pepper and aubergine in Japan (Kawai, 1990) and Frankliniella intonsa in 

strawberry (Lim & Mainali, 2009) and pepper (Lim et al., 2013) in South Korea, but no 

assessment of crop damage was done in these studies, so there was no evidence of 

economic viability.  Natwick et al. (2007) found a negative correlation between trap catch 

and numbers of both Frankliniella occidentalis and Thrips tabaci on lettuce plants, 

suggesting that mass trapping could cause population reduction.  Sticky traps failed to 

prevent damage from T. tabaci in onion (Trdan et al., 2005). 
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This chapter examines the possibility of using mass trapping, as part of an integrated 

pest management (IPM) programme, against F. occidentalis in semi-protected strawberry.  

Scents and colours are used by flower-inhabiting thrips to locate flowers (Kirk, 1984; 

Terry, 1997) and both are utilised to increase trap catch for the monitoring or control of 

thrips.  The best trap type and colour for mass trapping will depend on cost and practicality 

as well as the prevalence of other economically important pest and beneficial species in the 

crop.  Frankliniella occidentalis are most attracted to a specific shade of light blue, 

containing a slight tint of white, with a peak in reflectance around 450 nm (blue), low 

reflectance at 350 nm (UV) and low reflectance at 600 nm (yellow-orange) (Brødsgaard, 

1989; Vernon & Gillespie, 1990).  A peak at 750 nm (red) is also present, but this is not 

considered relevant to trap catch as F. occidentalis is dichromatic, having two 

photoreceptors that respond in electroretinograms to peaks (λmax) at about 365 nm (UV) 

and about 540 nm (green) but do not respond to wavelengths above about 650 nm 

(Matteson et al., 1992).  White and yellow traps are also attractive, but generally to a lesser 

extent, while there is little or no attraction to black, green, red and clear traps (Brødsgaard, 

1989; Broughton & Harrison, 2012; Sampson et al., 2012).  Trap catches decrease with 

increasing UV reflectance, so adding UV reflectance to the most attractive light blue traps 

reduces trap catch below that of standard non-UV white traps, while changing the blue 

shade (in a non-UV trap) to a darker blue results in a similar trap catch to the standard non-

UV white (Vernon & Gillespie, 1990).  In addition, trap catch increases with colour 

brightness (% reflectance) (Vernon & Gillespie, 1990; Matteson & Terry, 1992) so a bright 

light of a less attractive colour can be more attractive than a dull light of the most attractive 

colour, and F. occidentalis trap catch can be increased by the addition of blue light-

emitting diodes (LEDs) (Chen et al., 2004b).  Both male and female F. occidentalis have a 

similar response to the colour of traps, but higher numbers of males are trapped during 

swarming (Matteson & Terry, 1992).  In a few studies, white (Moffitt, 1964; Yudin et al., 

1987; Hoddle et al., 2002) or yellow (Cho et al., 1995b) traps have caught more F. 

occidentalis than blue traps.  Hoddle et al. (2002) suggest that white may be more 

attractive than blue traps in outdoor crops and blue traps more attractive than white in 

protected crops, but there is no experimental evidence for this as the same trap types were 

not tested in both cropping situations and the commercial blue traps available do not 

always match the most attractive blue wavelength.  There is increasing use of photo-

selective cladding on polytunnels, to improve plant quality and for plant protection, 
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including UV-absorbing, thermic, fluorescent and pigmented films (Antignus, 2000; 

Doukas & Payne, 2007; Johansen et al., 2011).  These films could affect the optical 

properties and efficacy of traps which has not been fully tested, but is not examined here as 

the films were not used on the polytunnels in this study.   

Predators, parasitoids and pollinators also use visual and odour cues for host finding 

and it is important to know the effect of trap colour and scents on beneficial insects to 

ensure that essential pollinators or natural enemies are not removed by trapping.  The ideal 

trap colour would confer a degree of specificity, catching pest species without disrupting 

economically important beneficial species.  In UK strawberry, key pollinators include 

honey bees (Apis mellifera), buff-tailed bumble bees (Bombus terrestris) and hoverflies 

(Syrphidae) (Garratt, 2012), which are essential for maintaining good fruit set and yield.  

Natural enemies such as Orius spp. and parasitic wasps (Aphidius, Aphelinus and Praon 

spp) are released for thrips and aphid control respectively (Sampson et al., 2011) and 

augment naturally occurring predators, such as Anthocoris nemorum (Anthocoridae), 

hoverflies (Syrphidae), ladybirds (Coccinellidae), lacewings (e.g. Chrysoperla spp.) and 

Aeolothrips intermedius (Aelothripidae).  Predatory mites, such as Phytoseiulus persimilis 

and Neoseiulus cucumeris, are used extensively for spider mite and thrips control in 

strawberry (see Chapter 1), but are unlikely to be affected greatly by sticky traps, as they 

do not fly.  A relationship between ecological groups and colour attraction allows some 

prediction of trap catches to be made (Kirk, 1984; Kelber, 2001).  In contrast to F. 

occidentalis, most phytophagous insect species are trichromatic, having three 

photoreceptors that respond to peaks (λmax) at about 350 nm (UV), 440 nm (blue) and 530 

nm (green), and yellow and white traps typically attract the widest range of leaf-feeding 

species, although flower-feeding species may also be attracted to the flower colour of their 

host plant (Prokopy & Owens, 1983; Kirk, 1984).  Therefore some of the literature appears 

contradictory and cannot be fully interpreted without reference to the colour preferences of 

specific species and reflectance spectrum of the traps tested, which are not always 

available.  More honey bees and solitary bees have been found on white traps than on blue 

traps, yet more bumble bees were found on blue traps (Clare et al., 2000).  Pollen feeding 

insects are usually attracted to yellow traps and hoverflies generally have a strong 

preference for yellow (Finch, 1992; Sutherland et al., 1999; Laubertie et al., 2006), yet 

there are some records of higher trap catch of hoverflies on blue traps than on white or 

yellow traps (Chen et al., 2004a; Broughton & Harrison, 2012).  Orius spp. also feed on 
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pollen and show attraction to flowers (Hansen et al., 2003a), their own pheromones 

(Aldrich et al., 2007) and plant volatiles emitted from infested plants (Venzon et al., 1999).  

Orius spp. are recorded on blue, yellow and white traps (Boone, 1999; Atakan & Bayram, 

2011), although sticky traps have been used extensively for monitoring of thrips without 

having any apparent negative impact on Orius populations.  Yellow traps have caught 

more parasitic wasps than blue traps in citrus (Moreno et al., 1984).  Lacewings 

(Chrysoperla carnea) were more frequent on clear traps than on a range of colours 

(including blue, white and yellow) in alfalfa (Blackmer et al., 2008), yet more Mallada 

spp. were caught on blue traps than on white traps in Australian orchards (Broughton & 

Harrison, 2012).  Aeolothrips spp. have been recorded on blue and yellow sticky traps 

(Sampson et al., 2012) and Aeolothrips intermedius shows a colour preference similar to F. 

occidentalis (Kirk, 1984).  The pest species Thrips major and Lygus rugulipennis were 

present on strawberry plants in the study described in this chapter.  Thrips major is 

attracted to both white and blue traps (Kirk, 1984) and Lygus spp are attracted to white 

traps (Blackmer et al., 2008).  Full testing of the impact of mass trapping on beneficial and 

secondary pest species was beyond the scope of this study, however, selected species were 

assessed on blue and white traps in UK strawberry, to give an indication of their 

prevalence and the possible impact of trapping on non-target species.  The total number of 

insects caught on blue and white traps was also assessed as large numbers could 

contaminate the traps, reducing their efficiency. 

A variety of trap types are used for thrips including water, sticky, light, suction, 

semiochemical traps and others (Lewis, 1997b).  Blue sticky traps are most widely used to 

monitor F. occidentalis in commercial crops as they are relatively cost-effective and easy 

to manage (Brødsgaard, 1993b).  Thrips trap catch is affected by trap size, shape and 

contrast with background, increasing with area of trap and length of perimeter (Kirk, 1987; 

Vernon & Gillespie, 1995; Chen et al., 2006).  Mainali and Lim (2008) and Lim and 

Mainali (2009) developed a daisy-shaped sticky trap for mass trapping and suggest that 

increased trap-catch of F. intonsa is because thrips recognise the flower shape, however 

the length of perimeter also affects trap catch (Carrizo, 2008), which is an alternative 

explanation that was not tested.  Although traps with the greatest surface area would be 

most effective for mass trapping, they must be economic and placement must not interfere 

with crop management or plant growth.  Traps catch most F. occidentalis when placed just 

above the crop canopy, close to flowers (Gillespie & Vernon, 1990; Laudonia & Viggiani, 
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1998), but deployment of a large number or surface area of sticky traps immediately above 

the strawberry beds is not practical in commercial crops, as the traps would interfere with 

crop work (picking and spraying), so two experiments in this chapter tested trap position in 

strawberry.  Individual thrips have been observed to escape from sticky traps (Kirk, pers. 

com., 2011), especially during cooler periods when the glue loses some tackiness.  In 

addition the efficiency of traps declines as they become contaminated with dirt and insect 

bodies.  The rate of escape and decline in efficacy was tested, to give an indication of the 

possible benefit of replacing sticky traps.  

Various scents, including para-anisaldehyde, methyl isonicotinate, and the F. 

occidentalis aggregation pheromone, neryl (S)-2-methylbutanoate, are known to increase 

thrips trap catch by similar amounts (Hamilton et al., 2005; Teulon et al., 2007b) (see also 

Chapter 5).  These offer an opportunity for enhanced mass trapping that has not been 

tested.  The pheromone is currently used for precision monitoring (Thripline ams, Syngenta 

Bioline, Clacton, UK), but does not have EU registration as a control.  Plant volatiles and 

their analogues have a broader spectrum of activity, increasing trap catch of some other 

pest and beneficial species, whereas the aggregation pheromone is generally more specific 

to F. occidentalis and did not significantly affect trap catch of the predator Orius 

laevigatus in a Spanish pepper crop (Broughton & Harrison, 2012; Sampson et al., 2012).  

However, the aggregation pheromone is attractive to a North American species, Orius 

insidiosus (Waite, 2012).  It could be that O. insidiosus has adapted to use the F. 

occidentalis aggregation pheromone as a kairomone in its native North America.  Further 

studies are required to test the response of different Orius species to the F. occidentalis 

aggregation pheromone, as natural enemies are often the most important control method 

available to growers and it is important that mass trapping of the pest does not disrupt 

biological control.   

The overall aim of this chapter was to identify a practical and cost-effective method of 

mass trapping F. occidentalis in semi-protected strawberry.  Specific aims were to: 

(1) test the effect of trap colour (blue or white) on trap catch of F. occidentalis, 

other pest species and economically important beneficial insects in strawberry; 

(2) test the extent to which thrips escape from sticky traps; 

(3) test whether sticky traps decline in efficiency through time; 

(4) test the effect of trap height and orientation on trap catch; 
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(5) identify a practical and effective placement of sticky roller traps in commercial 

crops; 

(6) determine whether traps are effective throughout the growing season; 

(7) test whether mass trapping with blue sticky roller traps catches sufficient F. 

occidentalis to reduce fruit damage in semi-protected strawberry; 

(8) test whether there is added benefit of the aggregation pheromone for mass 

trapping with blue sticky roller traps;  

(9) determine whether mass trapping is economically viable in UK semi-protected 

strawberry. 

6.2. Materials and Methods 

A series of experiments was carried out in commercial everbearer strawberry 

(Fragaria x ananassa) crops, that were continuously flowering from April to October.  

The crops were grown under semi-protected polytunnels in the West Midlands region of 

the UK (Figure 2.1).  The polytunnels were open-sided and in place from late March 

through to November.  Details of the fields and growing systems used are summarised in 

Chapter 2 (Table 2.1).  Experiments were carried out in fields where the thrips species and 

their distribution was largely known, following the routine monitoring, distribution and 

damage studies detailed in Chapters 3 and 4.  The fields were selected for their infestation 

level and thrips species composition.  The thrips population in the fields selected for the 

trap position and trap stickiness experiments consisted of >90% F. occidentalis and there 

were few other pests, which allowed testing with minimal contamination of traps with 

other insect species.  A field with a greater diversity of species was selected for the trap 

colour experiment so that the impact on non-target species could be tested.  Within the 

fields there were local gradients in thrips density (see Chapter 3).  As a result there was 

considerable background variation that would tend to obscure real treatment effects unless 

they were large or the experiments well replicated.  As far as possible, the trap colour, 

efficiency and trap position experiments were placed in areas of the fields where the thrips 

density was similar and the experimental design was blocked to reduce these effects, 

however there was still much variation that could not be removed statistically.  Fewer 

blocks were possible in the three mass trapping experiments because of the large plot size 

required (see 6.2.6 for the experimental design of the mass trapping experiments). 
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Initial experiments investigated trap colour, decline-rate and position in the crop, and 

the following methods were common to these unless stated otherwise, and will not be 

repeated in each section.  Methods used for testing the efficiency of trapping through the 

season and for the mass trapping experiments are shown separately.  Blue sticky 

monitoring traps were used (10 cm high by 25 cm wide) from Russell IPM (Impact trap, 

Russell IPM Ltd, Deeside, UK) or Syngenta Bioline (Takitrapline b, Syngenta Bioline Ltd, 

Clacton, UK), which are widely used for monitoring F. occidentalis.  White traps (Russell 

IPM Ltd) were also used for the trap colour experiment as some white traps have caught 

more F. occidentalis than some blue traps (Hoddle et al., 2002).  Two different suppliers of 

blue monitoring traps were used as both companies were partners in the project.  Both trap 

types matched to the same shade of light blue in Pantone colour charts (see 6.3), but no 

direct comparison of the efficacy of the traps was made.  Only one trap type was used 

within a single experiment.   

The spectral reflectance (300-700 nm) of the different blue and white sticky traps used 

during this study was measured by Dr Sarah Arnold (NRI, Chatham, UK).  It was 

measured using a spectrophotometer (AvaSpec-2048, Avantes, Apeldoorn, NL) with a 

Deuterium-Halogen light source (AvaLight-DH-S-BAL, Avantes, Apeldoorn, NL).  The 

spectra were calibrated relative to a barium sulphate white standard (WS-2, Avantes, 

Apeldoorn, NL), using a fine probe (FCR-7UV200-2-1.5 x 100, Avantes, Apeldoorn, 

NL) at 45° to the stimulus surface using a light shade probe holder (Knight Photonics, 

Leatherhead, UK) (Chittka & Kevan, 2005).  Three measurements were made on each type 

of blue sticky monitoring traps from Syngenta Bioline and Russell IPM, on an area without 

adhesive and three on an area with adhesive.  Three measurements were also made on an 

area with adhesive on the white traps.  The white traps had been specifically made by 

Russell IPM for the experiment and there were no areas without adhesive to test.  Three 

measurements were also made on an area without adhesive on a roller trap (Optiroll), but 

no test was done on the adhesive area, as the available traps had been used in the 

experiments.  To measure over the sticky part, the sticky trap was covered with a thin piece 

of cellophane which does not have any significant absorbance.  Each trap colour was also 

matched by eye to Pantone colour charts.  

At the start of each experiment, a sample of 20 plants and 20 mid-aged flowers (see 

Chapter 2) was taken from the experimental area, with the sample plants spaced regularly 

over the trial area.  The number of flowers per plant and number of adult thrips per 
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medium-aged flower was counted by eye using a x7 head lens (optiVISOR).  The sampled 

flowers were placed in 70% alcohol and the adult thrips were counted and the 

F. occidentalis separated from the other thrips species, using the methods described in 

Chapter 2.  These pooled samples were used to calculate the percentage of F. occidentalis 

in the eye counts (section 6.2.8).    

Sticky monitoring traps were stuck vertically (landscape orientation) onto bamboo 

canes (60 cm), which were pushed into the ground so that the bottom edge of each trap was 

about 10 cm above the crop canopy with about 1 cm of cane extending above the traps.  

Traps were secured with a rubber band (size 33, Censtretch, Rochester, UK) that was 

placed over the cane, twisted over the trap, then slotted back over the cane.  A landscape 

orientation was used so that the traps would fit under a tractor during crop work, as traps in 

portrait orientation were too high and were knocked over.  Sticky monitoring traps faced 

south, unless stated otherwise, to avoid any bias that might occur through wind or sun 

direction.  Traps were placed at least 20 m inside from the ends of the polytunnels to 

reduce edge effects, as the ends of the polytunnels were cooled by the outside air, have 

more direct sunlight, or could be affected by the thrips present in the weeds along the field 

margins.  Unless stated otherwise, the traps were spaced 2.2 m apart.  A spacing of 2.2 m 

was used, rather than the 4.8 m spacing used for the experiments in Chapter 5, to reduce 

the background variability in thrips numbers.  This spacing was the same spacing as the 

polytunnel legs which gave an easy reference for placing the traps but also ensured that 

every trap was in the same position relative to the polytunnel cladding. 

At the end of each experiment, traps were removed from the crop, wrapped separately 

in clear, thin polythene and stored in a freezer.  Trap catches were counted under a 

binocular microscope in the Keele laboratory, as described in Chapter 2.  Aeolothripid 

(with broad wings) and Phlaeothripid thrips (with elongated last abdominal segment) were 

excluded from the counts unless stated otherwise as these can be predators and are not 

considered pests of strawberry.  With the exception of the trap colour experiment (section 

6.2.1) the flower samples were used to indicate the species present on the traps.  Although 

it is probable that the blue sticky traps were selectively more attractive to F. occidentalis 

than to some of the other thrips species present (Kirk, 1984), this had a minimal effect on 

the total trap catch because of the high proportion of F. occidentalis present (e.g. the 

percentage of F. occidentalis may be 95% in flowers and 96% on traps, C. Sampson, 

unpublished data, 2012).  The species found in the strawberry flowers were therefore 
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considered broadly indicative of those on the traps.  For the rest of this chapter thrips refers 

to species in the Thripidae family. 

A data logger (EL-USB-1, Lascar Electronics, Salisbury, UK) was placed in a white 

delta trap (273 mm length, 130 mm height, œcos, Kimpton, UK) to shade it from the sun 

and was placed in the crop canopy, in a central area of each experiment, to record 

temperature and humidity. 

6.2.1.  What is the effect of trap colour on trap catch of pest and beneficial 

insects? 

To select the best trap colour for mass trapping, the trap catches of selected pest and 

beneficial species was compared, on blue and white traps in a semi-protected strawberry 

crop (cv. Camarillo, field 3, Table 2.1).  Blue and white sticky monitoring traps (Impact 

traps, Russell IPM Ltd) were used as they are the most attractive colours to F. occidentalis 

(see 6.1).  The white traps were made up specifically for the experiment in small sheets by 

Russell IPM.  Both trap colours were cut to the same size (16 cm wide x 10 cm high) to 

allow direct comparison.  The two trap colours were paired and laid out in a randomised 

complete block design on 6 August 2012.  There were 15 blocks and one replicate per 

block with 2.2 m between all traps (within and between blocks).  All the traps were placed 

in two adjacent strawberry beds in a row along the centre of a single tunnel.  Treatments 

were: 

 Blue sticky monitoring traps (16 cm wide x 10 cm high);   

 White sticky monitoring traps (16 cm wide x 10 cm high).   

The traps were removed after 96 h in the crop, wrapped separately in clear polythene 

and stored in a freezer.  Initially a few traps (five of each colour) were scanned rapidly 

under a binocular microscope to see which pest and beneficial species had been caught.  

The majority of insects on the traps were thrips, which were present in high numbers, so 

these were sub-sampled.  Thrips were removed from four sections of each trap using the 

methods shown in section 2.4, and then thrips from the four sections were pooled together 

in 70% alcohol.   Each section was 1 cm wide and 1 cm in from the top or bottom of the 

trap, repeated on both sides, which totalled 12.5% of the total trap surface.  Frankliniella 

occidentalis and Thrips major were the most numerous thrips species on the traps and 

these were separated from each other and from other thrips species by eye (see Chapter 2) 
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and were counted under a binocular microscope whilst in alcohol.  Then sub-samples of 

thrips were placed on microscope slides (see Chapter 2) to confirm the identification under 

a compound microscope.  Confirmation of the identification (on slides) was carried out of 

50 randomly selected specimens considered to be F. occidentalis, using a grid square on 

the bottom of the petri-dish, 50 randomly selected specimens considered to be T. major and 

of all the remaining thrips that were neither of these species.   

Another important pest species on strawberry, the European tarnished plant bug, Lygus 

rugulipennis was caught on the traps.  Whole trap counts of Lygus bugs were made, which 

were separated from other species of mirid bug (such as Orius spp. and Anthocoris 

nemorum) by their characteristic body shape and distinctive lighter coloured scutellum.  

One, randomly selected L. rugulipennis on each trap was examined under a binocular 

microscope to confirm the identification, based on the densely pubescent corium (n = 30 

Lygus  bugs) (Nau, 2004).   Whole trap counts of beneficial insects were made.  These 

included the predatory thrips Aeolothrips intermedius, identified by its broad, black and 

white-striped wing and pale wing-tip vein;  bees, including bumble bees, solitary bees and 

honey bees, which were identified as bees (not to species) by two pairs of wings, large, 

hairy body and colour pattern of their hairs (Edwards & Jenner, 2009);  hoverflies 

(Syrphidae), which were identified by their brightly coloured patterns, single pair of wings 

and the presence of a spurious vein (vena spuria) found parallel to the forth longitudinal 

wing vein (Stubbs & Falk, 2002); other beneficial species were present in very low 

numbers, these included Coccinellidae, Anthocoridae and parasitic wasps.  The beneficial 

insect data were combined for analysis because there were insufficient individuals of any 

one species.  A count of the total number of insects per trap (excluding thrips) was carried 

out to give a measure of possible contamination of the traps for each of the two colours.  

6.2.2.  Can thrips escape from sticky traps? 

Some thrips may escape from the traps.  To determine whether thrips escape from 

sticky monitoring traps, traps were placed in a field with a moderate thrips population for a 

day, then moved to a nearby field with few thrips, after which half the traps were collected 

in and the other half left overnight in a field where few extra thrips would be caught.  The 

trap catches of the two sets of traps were compared to test whether there had been a decline 

in trap catch overnight.  Further traps were placed in the field with few thrips overnight to 

determine the overnight trap catch.  The experiment was carried out in the field rather than 
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in the laboratory, as this allowed thrips to fly and land on the traps naturally at field 

temperatures, which could affect escape rate.  The traps that were only in situ during the 

day were moved to the new field before collection to ensure that any reduction in thrips 

numbers was not due to them being moved.  A reduction in thrips trap catch overnight 

would suggest that thrips are escaping from the traps.  If a significant number of thrips are 

escaping from traps, it could have implications for the trap design or the frequency of 

replacement (see 6.2.2). 

Escape from sticky monitoring traps was tested in two semi-protected strawberry 

crops (cv. Finesse, fields 5 and 7, Table 2.1) using cut-down blue sticky monitoring traps 

(10 cm x 5 cm, Impact traps) laid out in a randomised complete block on 6 August 2012.  

Trap size was reduced because the thrips population was high, so sufficient thrips were 

caught on small traps to identify a difference between treatments.  There were 10 blocks 

and one replicate per block with 2.2 m between all traps (within and between blocks).   

Traps were placed in a strawberry bed row along the centre of a single tunnel.  Treatments 

were: 

 Day traps: Traps were placed in field 7 on 6 August from 9.00 h to 16.30 h, then 

moved to field 5 before being collected at 17.00 h (day trap catch in a field with 

moderate numbers of thrips); 

 Day and night traps: Traps were placed in field 7 from 9.00 h to 16.30 h on 6 

August, then moved to field 5 where they were in place from 17.00 h on 6 August 

until 8.00 h on 7 August (day trap catch plus overnight in a field with few thrips); 

 Night traps: Traps were placed in field 5 from 17.00 h on 6 August 2012 to 8.00 h 

on 7 August 2012 (overnight in a field with few thrips). 

In addition to counts of the total trap catch (see 6.2), the number of thrips touching the 

edge of each trap was counted on the traps that were in situ during the day and for 23 h, as 

this could help provide information about how the thrips are escaping.  It is possible that 

thrips are moving to the edge of the trap and using the edge as a lever to escape the trap 

glue. 

6.2.3.  Do traps decrease in efficiency through time? 

Sticky traps may decline in efficiency through time because they become 

contaminated with dirt and insects or because the glue washes off or becomes less sticky.  
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If this is the case, then proportionally more thrips would be caught when traps are first 

deployed and progressively fewer thrips thereafter.  This was tested by leaving traps out 

for a total of four days, but replacing the traps within each treatment at different 

frequencies.  If there is no decline in efficiency, then the total trap catch would be about 

the same for all treatments, but if there is a decline then trap-catch would increase with the 

number of trap replacements, so the traps would have to be replaced frequently for 

maximum effect.  

The effect of time on the efficiency of sticky monitoring traps was tested in a 

commercial semi-protected strawberry crop (cv. Finesse, field 7, Table 2.1) using blue 

sticky monitoring traps (25 cm x 10 cm, Impact traps) laid out in a randomised complete 

block on 6 August 2012.  There were 10 blocks and one replicate per block with 2.2 m 

between all traps (within and between blocks).  Traps were placed in a strawberry bed row 

along the centre of a single tunnel.  Treatments were: 

 Traps that were replaced daily for four days (4 traps, each for 24 hours); 

 Traps that were replaced after two days (2 traps, each for 48 hours); 

 Traps that remained in place for four days (1 trap for 96 hours).   

6.2.4.  Trap placement in commercial strawberry 

The following two experiments sought to optimise the placement of traps for mass 

trapping in strawberry, without interfering with crop work or plant growth. 

6.2.4.1.  Does trap height and orientation affect trap catch? 

Sticky traps were placed at different heights and orientations above a strawberry crop 

and the trap catches were compared to determine which trap positions resulted in the 

highest trap catch.  This information was used to help decide how traps should be placed 

for maximum effect for mass trapping (see 6.2.6).   

The effect of trap height and orientation on trap catch was tested in a commercial 

semi-protected strawberry crop (cv. Albion, field 1, Table 2.1) using blue sticky 

monitoring traps (25 cm x 10 cm, Takitrap b) laid out in a randomised complete block 

design on 25 August 2011.  There were 20 blocks, each in a different tunnel, and one 

replicate per block with 4.4 m between traps within a block and 13 m (two tunnels) 

between blocks.  Treatments were: 
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 Vertical trap, landscape orientation, low (base 10 cm above the crop), south facing; 

 Vertical trap, landscape orientation, low (base 10 cm above the crop), east facing; 

 Vertical trap, portrait orientation, low (base 10 cm above the crop), east facing; 

 Vertical trap, landscape orientation, high (base 30 cm above the crop), east facing; 

 Horizontal trap, 10 cm above the crop. 

The traps were suspended above the crop by sticking them onto bamboo garden canes 

that had been pushed into the ground and were secured with wooden clothes pegs.  The 

horizontal trap was supported on bent wire curled around the bamboo cane.  The traps were 

removed from the crop after 24 h, wrapped separately in clear polythene and stored in a 

freezer.  The wind speed and direction was recorded by Mr S. Clarke from Manor Farm’s 

weather station (Vantage Pro2, Davis, Hayward, USA), which is placed outside the 

strawberry tunnels in a central position on the farm. 

6.2.4.2.  Are traps effective when placed between the tunnels? 

Placement of traps within strawberry beds could affect plant growth, disrupt crop work 

and make the traps vulnerable to damage from tractors, whilst placing them between the 

tunnels, in the area where the tunnel legs reach the ground, may be more practical and less 

disruptive for growers.  The effect of placement on trap catch was tested by placing traps 

in strawberry beds and between the tunnels, then comparing the trap catch.  If the trap 

catch is little affected by placing the traps between the tunnels, then that placement could 

be used for mass trapping (see 6.2.6).   

The experiment was carried out in a commercial semi-protected strawberry crop (cv. 

Finesse, field 7, Table 2.1) using blue sticky monitoring traps (25 cm x 10 cm, Impact 

traps) laid out in a randomised complete block design on 6 August 2012.    There were 18 

blocks and one replicate per block with 3 m between traps within a block (the distance 

between the middle of the strawberry bed used and the area between the polytunnels where 

the tunnel legs reach the ground) and 6.5 m (1 tunnel) between blocks.  Treatments were: 

 Blue sticky trap (25 cm x 10 cm, Russell IPM) placed within the strawberry beds; 

 Blue sticky trap (25 cm x 10 cm, Russell IPM) placed between the strawberry beds.   

Traps were stuck vertically (landscape orientation) onto bamboo canes (60 cm) with 

the bottom edge of the traps about 10 cm above the crop within beds or 50 cm above the 

ground (at the same height above ground as the bed traps) between the strawberry beds, in 
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the area where the polytunnel legs reach the ground.  The area between the polytunnels 

was 1 m wide, covered with straw mulch and there were few weeds.  All traps were south 

facing.  After four days the traps were removed from the crop, wrapped individually in 

clear polythene and stored in a freezer.  Male and female thrips were counted separately on 

the traps and in the flower samples from the field. 

6.2.5.  Are traps effective throughout the growing season? 

To determine the relative efficiency of trapping through a season, thrips population 

density on a strawberry crop and pheromone trap catches were sampled weekly.  A 

“trapping efficiency index” was calculated each week by dividing the numbers of thrips 

per trap by the estimated numbers of thrips per m
2
 to give a relative measure of the 

proportion of the population caught by trapping.  Thus it can be used to indicate when 

trapping efficiency was high or low.  This was tested in a semi-protected strawberry crop 

(cv. Camarillo, field 3, Table 2.1), which was monitored weekly from first flowering on 17 

May (earlier flowers had been de-blossomed as is common commercial practice) to the end 

of cropping on 18 October 2011.  The grower continued with his usual thrips control 

programme, which included releases of the predatory mite Neoseiulus cucumeris 

(Oudemans) (Acarina: Phytoseiidae) (about 100 per plant spread over the season) and two 

insecticide treatments with spinosad (Tracer, Landseer Ltd., Chelmsford, UK) on 15 and 

30 July 2011. 

The methods used for trapping and estimating the thrips population are detailed in 

section 3.2.1, Chapter 3 and will not be repeated here.  Briefly, one blue sticky trap (25 cm 

x 10 cm, Impact trap, Russell IPM) with a pheromone lure (Thriplineams, Syngenta Bioline 

Ltd) and 10 plants within 10 m of the trap were monitored weekly in each of two separate 

tunnels (n = 1 trap, 10 plants).  The numbers of flowers and fruit per plant were counted 

and one flower and one white fruit were selected from each of the 10 plants and the 

numbers of thrips per plant part were counted (n = 10 flowers and 10 white fruit).   

A simple estimate of the numbers of thrips per m
2
 for the purpose of comparison was 

made by multiplying the mean numbers of adult thrips per flower by the numbers of open 

flowers on the 10 plants, then adding the mean numbers of adult thrips per white fruit 

multiplied by the numbers of fruit (all stages) on the 10 plants.  Numbers of adult 

F. occidentalis typically increase as the fruit matures from green to white to red, with 

about twice as many adult thrips on red fruit compared to those on green fruit (Steiner & 
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Goodwin, 2005a), so an intermediate stage was used.  Although this is an underestimate, as 

it does not include thrips on leaves or off the plant, it is a relative measure of the thrips 

population for looking at variation over time.  In whole plant counts in different fields 

during the season, on the cultivar Camarillo, about 1% of F. occidentalis adults were found 

on strawberry leaves compared to flowers and fruit (see Chapter 4). 

6.2.6.   Can mass trapping reduce thrips numbers and fruit damage? 

6.2.6.1.  Pilot experiments in a first-year and a second-year crop 

In these pilot experiments, a high density of traps with added plant volatile and 

aggregation pheromone were used to test whether mass trapping could reduce thrips 

numbers and fruit damage in UK strawberry.  The trapping was not necessarily practical or 

economically viable.  The experiments were set up in two crops concurrently: in a first-

year crop with lower thrips numbers at the start of the season (cv. Camarillo, field 3, Table 

2.1), and in a second-year crop with an established thrips population (cv. Camarillo, field 

4, Table 2.1).  Traps were used in addition to the grower’s usual thrips control programme, 

which included releases of the predatory mite N. cucumeris (a total of 200-300 per plant 

spread between April and July); one insecticide treatment with spinosad (Tracer) in field 4 

on 14 June 2012 and in field 3 on 15 August 2012; and one treatment with Naturalis 

(Beauveria bassiana) in field 4 on 10 July 2012.  Blue sticky traps were used as they are 

known to be attractive to F. occidentalis and more specific to F. occidentalis than white 

traps (see 6.3.1).  The roller traps were placed vertically, at flower height, between the 

tunnels, in the area between the strawberry beds where the tunnel legs reach the ground, to 

maximise the trap catch of female thrips (see 6.3.4).  The plant volatile analogue, methyl 

isonicotinate and the aggregation pheromone neryl (S)-2-methylbutoanoate were added to 

maximise the trap catch (see Chapter 5).  In each field there were four matched pairs of 

treated and untreated plots (Figure 6.1 A, B).  Each plot was 17.6 m long and 6.5 m (one 

tunnel) wide, with 19.5 m (three tunnels) in between each pair.  Plot length was determined 

by the length of available roller trap and the distance between tunnel legs, to which the 

traps were attached.  The treatment position within the first pair was chosen randomly, but 

the treatment position for the rest of the pairs was alternated, as previous surveys had 

shown local gradients in both fields with higher thrips densities towards the top of the 

tunnels and because there was a heavily infested crop adjacent to the first-year crop.  All 

plots were located at least 40 m in from the ends of the polytunnels to reduce edge effects.  
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In both crops, the tunnels were 6.5 m wide with four beds of strawberry per tunnel.  

Treatments were: 

 Control plots without any traps or lures; 

 Treated plots with both traps and lures.   

In treated plots, blue sticky roller traps (Optiroll, 100 m x 30 cm, cut to plot length, 

Russell IPM Ltd) were placed along each side of the plots in three, 4.4 m sections, with 

2.2 m (distance between legs) between each section (Figure 6.2 A).  When the traps were 

put up for the first time, gaps were left for practical reasons as I was putting up the traps 

on my own and used shorter lengths of trap, wrapping the ends around the posts to ensure 

the traps remained taut.  The blue sticky roller traps were double-sided and placed down 

both sides of the treatment plots, clipped onto the polytunnel legs between strawberry beds 

using polytunnel securing clips (20 mm wide, 30 mm diameter) protected by a polythene 

strip, (approx. 30 mm x 80 mm) (Figure 6.2 B).   The base of each trap was level with the 

crop canopy (approximately 30 cm above the ground).  Within each treated plot, blue 

sticky monitoring traps (25 cm x 10 cm, Impact trap) were placed down the two middle 

strawberry beds at 2.2 m intervals (9 per bed).  For extra secure fixing, the canes were 

pushed through a slit that was made in the middle of each trap (Figure 6.2 C).  The sticky 

monitoring traps were not replaced if they were knocked over, to give an indication of the 

practicality of the method.  The traps were put up on 23 April 2012 (1
st
 year crop) and 19 

April 2012 (2
nd

 year crop) and were replaced on 27 June 2012 (both crops).  When the 

roller traps were replaced in June, they were replaced in a continuous run along each side 

of the plot (17.6 m long), with two clips holding the trap in place at every leg.  This was 

made possible by getting help from Mr Ron Knapper (Keele University) and Ms Zlatka 

Zapryanova (Manor Farm staff) to put the traps up. 

The pheromone lures, each containing 30 µg neryl (S)-2-methylbutanoate 

(Thriplineams, Syngenta Bioline) were placed in the string hole of each central trap and at 

2.2 m intervals down the roller traps (Figure 6.2 C, D) (a total of 36 lures, 1080 µg 

pheromone).  Each pheromone lure gave a release rate of about 0.4 µg neryl (S)-2-

methylbutanoate per day at 27°C (NRI, see Chapter 5).  A spacing of 2.2 m was adopted 

partly for convenience as the interval corresponded with the spacing of the polytunnel legs 

and partly because previous experiments had shown that the pheromone increases trap 

catch on traps that are at least 1.2 m away (see Chapter 5).  Four polythene sachets (50 mm 
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x 50 mm x 120 µm thick), each containing 250 µl methyl isonicotinate (SigmaAldrich)  

were stapled onto traps (without puncturing the sachets) with one on each roller trap and 

one in each central bed (a total of four lures, 1000 µl of plant volatile).  Each sachet gave a 

release rate of about 12.8 mg per day at 22°C (NRI, see Chapter 5).  The spacing for the 

plant volatile lures was adopted to keep the total volume of pheromone and plant volatile 

per plot approximately equal based on the volume of the scents used in commercial lures. 

An assessment of thrips numbers was made on 12 April 2012 (1
st
 year crop) and 19 

April 2012 (2
nd

 year crop) before the traps were put up, then at approximately monthly 

intervals on 23 May, 21 June, 18 July, 13 August (1
st
 year crop) and 16 May, 12 June, 11 

July, 10 August (2
nd

 year crop).  On each assessment date, 40 medium-aged flowers and 20 

fully swollen white fruit (once available) were sampled regularly from across each plot, 

excluding 2.2 m in from the ends to reduce edge effects.  The assessment of white fruit 

enabled comparison of the same fruit stage between plots and dates, as red fruit of 

comparable ripeness was not always available following picking and the selective picking 

of undamaged red fruit would have biased red fruit samples.  The numbers of adult thrips 

per flower and the numbers of seeds surrounded by bronzing per fruit were counted by eye 

in the field using a x7 head lens (optiVISOR) as eye counts were considered both effective 

and reliable and could be related in future to grower counts for monitoring (González-

Zamora & Garcia-Marí, 2003) (see Chapter 2).  Flowers were pooled and placed in 70% 

alcohol so that thrips could be extracted and identified to species.  These flower counts 

were used to identify the percentage of F. occidentalis in the field (see 6.2.8).  The 

numbers of flowers per plant were counted on 10 plants from the middle of the trial area on 

each assessment date. 

To test the impact of trapping on thrips density, simple estimates of the numbers of 

adult thrips per plot (on each sample date) and thrips per roller trap were made, when the 

traps were changed and at the end of the experiment.  Numbers of adult thrips per plot 

were estimated by multiplying the mean numbers of adult thrips per flower (n = 40 

flowers) by the mean numbers of flowers per plant (n = 10 plants) and plants per plot (set 

by the planting density).  Flower counts, although providing an underestimate of the thrips 

population, would account for over 74% of the adult F. occidentalis population in 

strawberry (see Chapter 4), so an underestimate but reasonably close.  The numbers of 

thrips on roller traps were estimated by counting the total numbers of thrips on six 

randomly selected sub-samples (10 cm x 30 cm) of blue sticky roller traps per plot, then 
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extrapolating the total numbers of thrips per trap.  The number of thrips was counted on 

four, randomly selected sticky monitoring traps per plot, and then the total numbers of 

thrips on monitoring traps was extrapolated according to the numbers of traps.  The roller 

trap counts and sticky monitoring trap counts were added together to give a total trap catch 

estimate.  Both estimates are considered a rough approximation and are not directly 

comparable as the thrips per plot assessments were ‘snapshots’ while the trap counts were 

cumulative, and both include thrips that may have flown in from adjacent tunnels.  In 

addition, the majority of the sticky monitoring traps that were placed within the strawberry 

beds were knocked over during the experiments and became contaminated with dirt, so 

made little contribute to the trapping.  However, the estimates are sufficient to test 

whether enough thrips were caught on traps to reduce the thrips population. 

6.2.6.2.  Mass trapping with roller traps, with and without the aggregation pheromone. 

Following the pilot experiments above, an experiment was set up to test whether roller 

traps placed along the polytunnel legs, without any monitoring traps in the strawberry 

beds, are sufficient to reduce thrips numbers and fruit damage and whether there is 

additional benefit from the aggregation pheromone.  The placement of traps in strawberry 

beds had proven impractical as the traps were knocked over by tractors, whilst placement 

of traps in the leg rows between strawberry beds can be effective (see 6.3.4.2). The 

experiment was carried out in a commercial semi-protected strawberry crop (cv. Camarillo, 

field 10, Table 2.1).  Each polytunnel was 8.5 m wide and contained five strawberry beds 

(wider than in the experiments above).  Blue sticky roller traps were used in addition to the 

grower’s usual thrips control programme, which included releases of the predatory mite N. 

cucumeris (fortnightly releases from mid-May to mid-August at 25 mites per plant per 

release) and three insecticide treatments with spinosad (Tracer) on 18 July, 5 August and 

28 August 2012.  Blue, yellow and white traps are used widely in commercial crops, but 

blue traps were used as they typically catch more F. occidentalis than yellow or white traps 

and a narrower range of non-target species (Moreno et al., 1984; Sampson et al., 2012).  A 

data logger was placed in a white delta trap to record temperature and humidity (see 

Chapter 2).   

On 9 July 2012, the experiment was laid out in a randomised design with three 

treatments and three replicate plots (Figure 6.3).  Two weeks before the start of the 

experiment the thrips distribution through the field was surveyed by counting the numbers 
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of adult thrips per medium-aged flower by eye, using a x7 head lens (optiVISOR), in 10 

flowers from 10 different 4 m
2
 plots (n=100) located in a zig-zag pattern across the field.  

The experiment was then sited in an area of the field that had been shown to have an even 

distribution of thrips.  Each plot was 17.6 m long and 8.5 m (one tunnel) wide, with 33 m 

between plots within tunnels and 25 m between plots in different tunnels.  All plots were 

located at least 40 m in from the ends of the polytunnels to reduce edge effects.  

Treatments were: 

 Control plots without any traps or lures; 

 Trap plots with blue sticky roller traps (Optiroll, 100 m x 30 cm, cut to plot length, 

Russell IPM Ltd); 

 Pheromone plots with blue sticky roller traps (Optiroll) plus lures containing the F. 

occidentalis aggregation pheromone (Thripline ams).   

The blue sticky roller traps were double-sided and placed down both sides of the 

treatment plots, clipped onto the polytunnel legs between strawberry beds so that they did 

not interfere with work on the crop.  The base of each trap was level with the crop canopy 

(approximately 30 cm above the ground).  The pheromone lures, each containing 30 µg 

neryl (S)-2-methylbutanoate, were pushed into a hole made in the blue sticky roller trap 

with a hole punch beside every tunnel leg (2.2 m apart as above, 18 lures per plot).   An 

assessment of thrips numbers was made on 9 July 2012 before the traps were put up, then 

at approximately monthly intervals on 8 August and 10 September.  On each assessment 

date, 40 medium-aged flowers and 20 fully swollen white fruit were sampled regularly 

from across each plot, excluding 2.2 m in from the ends to reduce edge effects, as above.  

The numbers of adult thrips per flower and the numbers of seeds surrounded by bronzing 

per fruit were counted by eye using a x7 head lens (optiVISOR), as above.  Flowers were 

placed in 80% alcohol so that thrips could be extracted and identified to species.  These 

pooled samples were used to calculate the percentage of F. occidentalis in the eye counts 

(section 6.2.8).  The numbers of flowers per plant were counted on 10 plants from the 

middle of the trial area on each assessment date.  

On 10 September 2012, the numbers of larval thrips per flower were counted by eye as 

above, at the same time as the adult counts.  Such counts should be interpreted with caution 

as only the larger larvae will be visible and the counts are not as reliable as counts of adults 
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(González-Zamora & Garcia-Marí, 2003).  However, they would give a relative indication 

of changes in a population. 

To test the impact of trapping on thrips density, simple estimates of the numbers of 

adult thrips per plot (on each sample date) and thrips per roller trap (at the end of the 

experiment) were made, as above.  Numbers of adult thrips per plot were estimated by 

multiplying the mean numbers of adult thrips per flower by the mean numbers of flowers 

per plant and plants per plot (set by the planting density), as above.  The numbers of thrips 

on roller traps were estimated by counting the total numbers of thrips on six randomly 

selected sub-samples (10 cm x 30 cm) of blue sticky roller traps per plot, then 

extrapolating the total numbers of thrips per trap.   

6.2.6.3.  Thrips identification  

The flower samples collected during the mass trapping experiments in 2012 were 

rinsed in alcohol to remove the adult thrips and were pooled by date and site.  Frankliniella 

occidentalis was separated from other species by eye under a binocular microscope, and 

then sub-samples of thrips were placed on microscope slides to confirm the identification 

under a compound microscope (see Chapter 2).  Confirmation of the identification (on 

slides) was carried out on 50 randomly selected specimens considered to be Frankliniella 

spp. and 50 randomly selected specimens considered to be Thrips spp. per month for each 

mass trapping experiment, using the methods detailed in Chapter 2.  If fewer than 50 

Frankliniella spp. (early in the season) or Thrips spp. (early and late in the season) were 

available, then all were identified.  

6.2.7.  Cost-benefit analysis of mass trapping with and without pheromone.  

The data from the experiment above (section 6.2.6.2) were used to calculate the cost of 

trapping and estimated returns to growers.  The cost of the different treatments was 

compared to the estimated returns based on the price of damaged and undamaged fruit.  An 

economic injury level of bronzing around 30 seeds per harvested red fruit, which was 

about 10% of the fruit surface bronzed, was used to separate higher priced fruit (class 1 

fruit) from fruit that had been downgraded to a lower price (class 2 fruit).  This was 

derived from damage recorded on first and second class fruit (cv. Camarillo), that had been 

graded by staff at the commercial packhouse at the time of the trial (see Chapter 4).   As 

fruit bronzing can be caused by environmental factors as well as thrips (Koike et al., 2009), 
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a regression analysis was used to confirm the relationship between fruit bronzing and 

thrips density using mean bronzing on white fruit and mean thrips per flower in the nine 

plots in the mass trapping experiment in September 2012.   

The economic injury level from the pack-house was assessed on red fruit whereas the 

plot data were obtained from white fruit (where damage shows up more easily), so a 

conversion factor was required to predict the economic injury level on white fruit.  To 

quantify the conversion factor, bronzing was assessed on white fruit in 32 marked plots of 

0.5 m
2
 (cv. Camarillo, field 4, Table 2.1) on 5 September 2012, then on red fruit (before 

picking) in the same plots on 10 September (when the white fruit from 5 September had 

turned red).  On each date, the numbers of seeds surrounded by bronzing was assessed by 

eye, using a x7 head lens (optiVISOR), on five fruit per plot.  The conversion factor was 

quantified by regressing bronzing on white fruit (from 5 September) on bronzing on red 

fruit (from 10 September) using a square root transformation to normalise the data. 

The economic returns to growers from trapping were calculated by subtracting the 

total cost of trapping per hectare (including blue sticky roller traps, pheromone lures and 

the cost of labour to erect the traps once for the period July to September) from the 

estimated increase in fruit sales per hectare during September (estimated sales in treated 

plots minus estimated sales in control plots).  The weight of fruit sold (class 1 and class 2 

combined, in kg per ha) was assumed to be the same for all treatments and was based on 

the actual yield per ha in the crop for the month of September, although this may have 

underestimated the weight in treated plots as a slightly higher weight may be associated 

with lower thrips numbers (Nondillo et al., 2010).  This would have underestimated the 

return on trapping.  Earlier months were discounted as there were insufficient thrips to 

cause fruit downgrading.  The economic injury level, derived from harvested red fruit with 

the white fruit conversion (see above), was used to calculate the proportion of class 1 and 

class 2 fruit in each plot.  Fruit sales were then projected based on the proportion of class 1 

and class 2 fruit and sale price of each.  Prices for class 1 and class 2 fruit were taken from 

an average of grower prices from buyers for five supermarkets, for cultivar Camarillo in 

2012.   

6.2.8.  Statistical analysis 

Statistical methods are described in Chapter 2 (section 2.8). 
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6.3.  Results  

The spectral reflectance of the different trap types used in this chapter is shown in 

Figure 6.4.  One reading on the blue Impact traps with adhesive was anomalously high and 

was thought to have hit a thicker spot of glue and was omitted from the data.  The results 

are expressed as a percentage of the reflectance from white barium sulphate, which is an 

efficient reflector of all the wavelengths across the spectrum.  The results show that the 

three blue trap types tested (Impact trap, Takitrap b and Optiroll) all have similar 

reflectance in the absence of adhesive and all three matched the same shade of light blue 

by eye (north, indirect daylight), number 299 U, in Pantone colour charts (colour selector 

1000, uncoated).  The addition of adhesive to the Takitrap b blocked most UV reflectance, 

yet the Impact trap adhesive increased the UV reflectance around 350-400 nm.  No 

information was available on the type of adhesives used by the different companies and no 

assessment was made of the impact of the different glue types on trap catch.  The white 

Impact trap shows a standard white reflectance, but UV-absorbing for the most part and 

with a peak in the blue (around 400-450 nm).  This could either be due to an element of 

fluorescence, indicated by a reflectance over 100%, or due to specular reflectance over a 

shiny surface. 

6.3.1.  What is the effect of trap colour on catch of pest and beneficial species? 

There was no significant effect of trap colour (blue vs white) on trap catch of F. 

occidentalis (F(1, 13) = 1.1, P = 0.32) (Table 6.1).  There was a strong effect of trap colour 

on the other pest species assessed: white traps caught significantly more T. major (×2) 

(F(1, 13) = 26.9, P<0.001) and L. rugulipennis (×4) (F(1, 13) = 12.8, P = 0.003) than blue traps 

(Table 6.1).  One of the traps had been knocked over during the experiment, so the affected 

block was omitted from the analysis. 

Beneficial insects, including bees (the main pollinators of strawberry), predators and 

parasitoids, were caught in very low numbers on both trap colours.  There was a significant 

effect of trap colour (all species combined) on beneficial insects: white traps caught 

significantly more beneficial insects (×2) than blue traps (F(1, 13) = 5.4, P = 0.036) (Table 

6.1). 

There was a significant effect of trap colour on non-target species (all species except 

thrips): white traps caught significantly more insects (×2) than blue traps (F(1, 13) = 16.4, 
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P  = 0.001) (Table 6.1).  The majority of these insects were dipterans that were not 

identified to species, but were not considered to be pests as no dipteran pests were recorded 

by the grower or his advisors during weekly pest monitoring (S. Clarke, pers. comm, 

2012).  

As both trap colours were equally attractive to F. occidentalis, but blue traps were 

more selective (attracting fewer beneficial species and non-target insects), blue traps were 

used in the mass trapping experiments (see 6.2.6). 

6.3.2.  Can thrips escape from sticky traps? 

Monitoring traps lost about 14% of the daily trap catch overnight, in a field with few 

thrips (F(1, 9) = 6.5, P = 0.031, Figure 6.5), which suggests that thrips were escaping from 

the traps.  Only two thrips were caught on the 10 traps that were only out overnight.  There 

were significantly more thrips (×1.7) touching the edge of traps that were out over 23 hours 

(8.0 ± 0.7) compared to traps that were only out during the day (4.8 ± 0.9) (F(1, 9) = 13.2, 

P  = 0.005), which adds to the evidence that thrips may be moving to the edge of the traps 

before escaping from the glue (as observed by W. Kirk, pers. comm, 2012).  Temperatures 

were suitable for thrips activity throughout the experiment, with a mean day-time (9.00 h 

to 17.00 h) temperature of 21 °C (range 19-24 °C) and a mean night-time (17.00 h to 

8.00 h) temperature of 16 °C (range 13-22 °C). 

6.3.3.  Do traps decrease in efficacy through time? 

The daily trap catch of thrips on monitoring traps decreased with the length of time 

that the traps were in place (F(2, 18) = 90.9, P <0.001) (Figure 6.6).  The highest total trap 

catch over four days occurred when traps were replaced daily.  There was a 25% decrease 

in total trap catch when traps were replaced every two days and a 30% decrease when traps 

were left in place for four days, so the decrease in efficiency was greatest soon after the 

traps had been deployed. 

6.3.4.  Trap placement in commercial strawberry 

6.3.4.1.  Does trap height and orientation affect trap catch? 

The height above the crop and orientation of traps placed above a strawberry crop had 

a significant effect on trap catch (F(4, 76) = 14.6, P<0.001) (Figure 6.7).  Traps caught most 

thrips when suspended vertically, with the base approximately 10 cm above the crop, 
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compared to other positions tested.  Traps placed horizontally or 20 cm higher above the 

crop caught significantly fewer thrips (both × 0.6) (Tukey’s test, P<0.001).  There was no 

significant difference in the trap catch of vertical traps placed in landscape or portrait 

orientations at the same height above the crop (Tukey’s test, P = 0.98).  The cardinal 

direction of the trap did not affect the total trap catch (Tukey’s test, P = 0.07), although the 

thrips were not evenly distributed on the traps:  On the south-facing traps there were 

significantly more thrips (× 2) on the shaded (north) side than the brighter (south) side of 

the traps (F(1, 38)  = 5.1, P = 0.03), yet there was no significant difference in the numbers of 

thrips on the front or back of west-facing traps (F(1, 38)  = 1.5, P = 0.23).  This distribution 

of thrips on traps (more on the north side of the traps) did not appear to relate to wind 

speed or direction as it was a relatively still day (windspeed of 7 mph, wind direction 

ENE), and the same pattern was observed on south-facing traps in the trapping experiments 

carried out in Spanish pepper and UK strawberry crops (C. Sampson, unpublished data, 

2011), where the predominant wind direction differed.  On the horizontal traps, there were 

significantly more thrips (× 6) on the top surface of the traps (a mean of 289 ± 52) than on 

the bottom surface (a mean of 52 ± 15) (F(1,39) = 19.2, P<0.001), suggesting that the traps 

may be attracting flying thrips from above the crop rather than thrips from the flowers 

below (i.e. traps may not be initiating thrips take-off), although the thrips could be flying 

around the traps to land on the top. 

6.3.4.2.  Are traps effective when placed between the tunnels? 

More thrips were caught on traps placed within strawberry beds than on traps placed in 

the area between the tunnels where the polytunnel legs reach the ground (×1.2) (F(1, 17) = 

7.2, P = 0.016), however, there was a significant interaction between thrips sex and trap 

placement (F(1, 34) = 60.7, P <0.001), indicating a different response to trap placement 

between the sexes.  There were significantly more female thrips (×1.3) (F(1, 17) = 15.6, P 

<0.001), yet significantly fewer male thrips (×0.6) (F(1, 17 )= 30.2, P<0.001) on traps placed 

between the tunnels compared to those placed in strawberry beds (Figure 6.8).  The sex 

ratio of thrips collected from strawberry flowers in the crop was similar to that on traps 

placed between the tunnels, 44% male and 47% male respectively, but there were 

proportionally more males (64% male) on the traps placed above the strawberry beds. 

As the traps placed between the tunnels, in the area where the tunnel legs reach the 

ground, caught more female thrips than traps placed above the strawberry beds, the 
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placement of traps between tunnels could have a greater impact on thrips population 

development, as well as being more practical for growers, so this placement was used for 

the mass trapping experiments (see 6.2.6). 

6.3.5.  Efficiency of trapping through the season 

Thrips numbers increased steadily from when the strawberry plants came into flower 

in mid-May 2011 (Figures 6.9 A, B), then rapidly in the second half of July and remained 

high for the rest of the season until October, when they declined again.  Blue sticky 

monitoring pheromone traps caught large numbers of thrips, averaging over 800 thrips per 

monitoring trap per week (mid-May to mid-September) but exceeding 2000 thrips per 

monitoring trap per week on occasions.  Each monitoring trap caught the number of thrips 

per week equivalent to all the adult thrips in an area of about 9 m
2
 of crop, on average.  

Trapping efficiency (numbers of thrips per trap / numbers of thrips per m
2
) was greatest in 

the brief period between mid-May and early-June, when flower numbers were below 10 

per m
2
 and adult thrips numbers were low (Figure 6.9 D).  The trapping efficiency dipped 

from mid-June to late July when the crop was in full flower flush (30-70 flowers per m
2
, 

Figure 6.9 A) and thrips numbers still low (Figure 6.9 B), but increased to intermediate 

levels throughout the main cropping period (August-September), when flowers averaged 

about 20 per m
2
 and adult thrips numbers were >4 per flower (Figure 6.9 D).  A spike in 

trap catch at the end of August occurred during thundery weather (Figure 6.9 C) (Kirk, 

2004), and a second spike in trapping occurred at the end of September when a strawberry 

crop in the adjacent field was being pulled out during warm weather (max 33°C) (Figure 

6.9 C).  The sharp drop in trapping efficiency at the end of the season corresponded with 

falling temperatures (from a weekly mean maximum of 31.6°C to 20.1°C) in early 

October. 

6.3.6.  Can mass trapping reduce thrips numbers and fruit damage? 

6.3.6.1.  Pilot experiment in a first-year and a second-year crop 

At the start of the experiment in April 2012, low numbers of thrips were found in 

flower samples from the second-year crop but none were found in samples from the first-

year crop (n = 320 flowers).  By May, thrips were present in both crops, but in low 

numbers (<1 per flower), so it was not possible to show a reduction in thrips numbers as a 

result of mass trapping (Figure 6.10 A, B).  Thrips numbers rose rapidly in both crops at 
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the end of July.  Mass trapping with blue sticky roller traps and blue sticky monitoring 

traps with additional F. occidentalis aggregation pheromone and plant volatiles lures, 

reduced thrips numbers by 67% and 60%  in June; by 78% and 51% in July; and by 48% 

and 60% in August, in first and second-year crops respectively (Figure 6.10 A, B).   The 

results of the two fields were combined for analysis and show that the reductions in thrips 

numbers from mass trapping were significant in June (F(1, 10) = 14.0, P = 0.004), July (F(1, 

10) = 7.4, P = 0.022), and August (F(1, 10) = 9.0, P = 0.013) (Table 6.2).  There was no 

significant difference in thrips numbers between treated and untreated plots in April 

(before the start of the experiment) (F(1, 10) = 0.8, P = 0.40), or May (F(1, 10) = 0.6, P = 0.46).  

Analysis of effects showed no interaction between the treatment effect and the field (first-

year or second-year crop), indicating that the response to treatment was the same in both 

crops (e.g. Treatment*field interaction in August, F(1, 9) = 0.05, P = 0.82). 

To get a relative measure of the impact of trapping on the thrips population, trap catch 

(cumulative total) in June and August, and thrips density (on each assessment date) were 

compared (Table 6.2).  Although the estimates are not directly comparable as the thrips per 

plot assessments were ‘snapshots’ while the trap counts were cumulative, the estimates are 

sufficient to confirm that trapping would have a considerable impact on the population. On 

each occasion, more thrips had accumulated on the traps over the two months that they 

were up, than were present in the control plots without traps by factors of  ×1.9, ×1.3 (June 

and August, 1
st
 year crop), ×1.4 and ×1.4  (June and August, 2

nd
 year crop) (Table 6.2).   

In the first-year crop it was not possible to show a reduction in fruit damage in June 

from mass trapping, as thrips numbers were very low in the control, but there was a 

significant reduction in fruit damage by 67% and 29% in July and August respectively 

(Figure 6.10 C).  Mass trapping in the second-year crop reduced fruit damage by 54% and 

49% in June and July respectively (Figure 6.10 D).  Some of the fruit damage recorded on 

fruit in June, in the second-year crop, appeared to be the result of pesticide scorching as the 

bronzing was evenly distributed over the exposed areas of the fruit, although additional 

thrips damage was observed.  A 52% reduction in thrips damage from mass trapping was 

recorded in August, but this was not statistically significant as thrips numbers were too low 

(<1 per flower) to cause significant damage when the fruit were being formed. 

Roller traps remained in place for the duration of each experiment and the method of 

attaching them to the legs was practical and easy to apply.  Although the traps are designed 
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for outdoor use with non-drying glue, placement in the leg area meant that they were 

subject to water dripping (or pouring) from the tunnel cladding in places, which washed off 

thrips and glue in some areas.  2012 was an exceptionally wet season with approximately 

457 mm rainfall from April to July in the West Midlands, which was 190% average rainfall 

(1981-2010) (http://www.metoffice.gov.uk, accessed 2 Oct 2013).  Thrips were seen 

walking over the traps in areas where the glue had been washed away.  Traps placed within 

strawberry beds on bamboo canes were vulnerable to tractor damage.  After one month, 29 

out of 72 traps per field within beds were still in place (40%).  After two months an 

average 5 out of 72 traps were still in place (5%).  Those traps that remained were soiled, 

broken and often no longer sticky.  So few thrips were recovered from these traps (< 5 per 

trap) that they were discounted from Table 6.2 as the counts were not reliable, resulting in 

an underestimate of the numbers of thrips caught by trapping. 

Maximum daytime temperatures were generally cool before the end of May, although 

they exceeded 20°C for short periods on most days (Appendix B), which is needed for F. 

occidentalis flight and trapping (O'Leary, 2005). 

6.3.6.2.  Mass trapping using roller traps with or without aggregation pheromone 

Thrips were well controlled until mid-August.  As thrips numbers in the plots without 

traps were low in early-August (<1 per flower), it was not possible to show a reduction in 

thrips numbers (F(2,6) = 1.55, P = 0.29) or fruit damage (F(2,6) = 3.29, P = 0.11) with 

trapping at this time (Figure 6.8).  The thrips population took-off in August when the 

population was largely F. occidentalis (Figure 3.4 D), which was not well controlled by 

spinosad (Tracer).  Mass trapping with blue sticky roller traps alone, or with additional F. 

occidentalis aggregation pheromone, reduced thrips numbers by 61% and 73% (F(2,6) = 

60.1, P<0.001) and fruit damage by 55% and 68% (F(2,6) = 13.29, P = 0.006) respectively 

by early September (Figure 6.11).  Trapping relies on thrips flight and maximum day-time 

temperatures exceeded 20°C on all but two days during the experiment, which was 

sufficient for F. occidentalis flight (O'Leary, 2005). 

Counts of thrips larvae by eye on 10 September showed that mass trapping with blue 

sticky roller traps alone, or with additional F. occidentalis aggregation pheromone, reduced 

larval thrips numbers by 63% and 90% respectively (F(2,6) = 14.1, P = 0.005).  The mean 

number of larvae per flower (±SEM) was 1.83 ± 0.49 on control plots without traps, 0.68 ± 

0.15 on plots with traps alone and 0.19 ± 0.07 on plots with traps and pheromones.  
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Tukey’s test showed that plots with traps alone and plots with traps with pheromone had 

significantly fewer larvae than the control plots (P = 0.044 and P = 0.005 respectively), 

but that the difference between the two treatments with traps was not significant 

(P = 0.17). 

To get a relative measure of the impact of trapping on the thrips population, trap catch 

(cumulative total) in September and thrips density (on each assessment date) were 

compared.  The traps were estimated to have caught 13,376 ± 476 (without pheromone) 

and 25,754 ± 1,844 (with pheromone) thrips per plot.  Thus, the addition of the F. 

occidentalis aggregation pheromone to blue sticky roller traps approximately doubled the 

trap catch (F(1,4) = 64.2, P<0.001).  The numbers of thrips on plants were estimated as 924 

± 137 (July), 2,228 ± 566 (August) and 13,255 ± 832 (September) thrips per plot in plots 

without traps; 1,166 ± 308 (July), 1,387 ± 402 (August) and 5,188 ± 734 (September) 

thrips per plot in trap plots; and 704 ± 230 (July), 1,341 ± 120 (August) and 3,630 ± 188 

(September) thrips per plot in pheromone trap plots.  Pheromone traps had accumulated 

nearly 26,000 thrips per plot over three months, at a time when numbers of thrips per plot 

were about 13,000 in the plots without traps.  The numbers confirm that trapping would 

have a considerable impact on the population. 

6.3.7.  Cost-benefit analysis of mass trapping with and without pheromone.  

The percentage of class 1 and class 2 fruit, the projected fruit sales in treated and 

untreated plots and the return on trapping investment are shown in Table 6.3.  

The cost of treating every tunnel with blue sticky roller traps was based on 13 traps x 

100 m at £25 per trap, plus labour costs based on three workers taking 1.5 days per hectare 

(£252 per ha at £7 per hour wages) and the cost of pheromone monitoring lures at £2.34 

per lure (Table 6.3).  Different (possibly lower) prices are likely to apply if the pheromone 

was formulated for mass trapping and registered as a control method.  Fruit sales were 

calculated based on £2.99 per kg for class 1 fruit and £1.21 per kg for class 2 fruit and a 

total yield of 6,262 kg per ha during September (for all treatments).   

The amount of bronzing on class 1 and class 2 fruit used an economic injury level of 

10% of the red fruit surface bronzed (see Chapter 4), which was around 30 seeds on red 

fruit.  A regression of white fruit bronzing on red fruit bronzing was significant 

(F(1, 30)=56.3, P<0.001; R
2 

= 64%) (y = 1.10 + 0.97 x; where y = square root of white fruit 

bronzing and x = square root of red fruit bronzing).  Using this equation, a threshold of 
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bronzing of 30 seeds on red fruit was equivalent to bronzing of around 41 seeds on white 

fruit.  The amount of bronzing was rather similar between fruit stages in this experiment 

and so the accuracy of conversion of white fruit damage scores to red fruit damage scores 

made little difference to the cost-benefit analysis. A regression of mean bronzing on white 

fruit on the mean numbers of thrips per flower in the different plots in September 2012 was 

consistent with bronzing being caused by thrips (F(1,7) = 36.4, P<0.001, R
2 

= 82%) (y = 0.98 

+ 0.84 x; where y = log white fruit bronzing and x = log adult thrips per flower). 

The cost-benefit analysis demonstrates a return on investment for mass trapping for 

both blue sticky roller traps and blue sticky roller pheromone traps.  This assumes that the 

mass trapping is used in addition to other methods such predatory mites, as part of an 

integrated pest management programme.  If the return on investment of £2,200 per ha 

(Table 6.3) is typical, then mass trapping could save UK strawberry growers over 

£2 million per annum, projected over the 1000 ha of everbearer strawberry varieties that 

are susceptible to F. occidentalis damage (R. Harnden, pers. comm., 2013). 

6.3.8.  Thrips identification 

The proportion of F. occidentalis in strawberry flowers increased through the season 

from below 60% before July to over 95% by the end of August in 2011 and 2012 (see 

Chapter 3, Figure 3.4).  Other thripid species found as adults included T. major, T. tabaci, 

Thrips fuscipennis, F. intonsa, Frankliniella tenuicornis, Thrips angusticeps and Thrips 

atratus.   

The proportion of F. occidentalis was high in the strawberry fields where the sticky 

monitoring trap experiments were carried out during August (2011 and 2012): experiment 

6.3.1, 83% F. occidentalis (n = 190); experiments 6.3.2, 6.3.3 and 6.3.4.2, 97% 

F. occidentalis (n = 72); experiment 6.3.4.1, 92% F. occidentalis (n = 96). 

6.4.  Discussion 

This study confirms that mass trapping can reduce thrips numbers, as found previously 

in strawberry (Lim & Mainali, 2009) and pepper (Lim et al., 2013).  However it goes 

further than previous work by demonstrating that the reduction in thrips numbers reduces 

crop damage and that it can also increase grower economic returns.  Further work is 
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needed to optimise the timing of trapping, to make the best use of the aggregation 

pheromone and to determine the best trap colour, adhesives and scents to use in different 

cropping systems. 

The best trap colour for mass trapping may vary according to the importance of 

secondary pests and beneficial insects in the crop and the impact of trapping on these non-

target species.  Blue and white sticky traps caught similar high numbers of F. occidentalis 

in the trap colour experiment (Table 6.1), which was an unexpected result given that F. 

occidentalis are most attracted to light blue traps (Brødsgaard, 1989).  Careful examination 

of the colour spectrum of the blue and white traps used offers some explanation (Figure 

6.4).  The trap catch on the blue traps used may have been slightly lower than expected as 

the colour (299 U in Pantone colour charts, colour selector 1000, uncoated) was close to, 

but not an exact match to the most attractive trap colour identified by Brødsgaard (1989) 

(257 in Pantone colour charts) and the adhesive on the traps increased UV reflectance 

(Figure 6.3), which is known to reduce trap catch (Vernon & Gillespie, 1990).  The trap 

catch on the white trap tested may have been slightly higher than expected as they had low 

UV reflectance and a distinct fluorescence in the blue wavelengths (around 400-450 nm) 

(Figure 6.3) giving the white traps a very bright appearance, and thrips may have seen the 

white traps as ‘blue’.  The results suggest that further improvement in trap catch would be 

possible by careful selection of trap colour and adhesive.  The type of adhesive used can 

alter the spectral properties of the traps, so plays an important part in trapping that is rarely 

mentioned in the scientific literature. 

As expected (Kirk, 1984), the white traps with low UV were less selective than the 

blue traps tested and caught about twice as many non-target insects (Table 6.1).  This could 

be an advantage in crops where more than one economically-damaging pest is trapped.  

Two species of secondary pest were caught frequently on traps in this study: Thrips spp. 

can cause fruit damage when present in sufficient numbers (de Kogel, pers. comm, 2011) 

and Lygus spp. cause fruit deformation when present in very low numbers (Easterbrook, 

2000), so mass trapping with white traps could be advantageous if they reduce Lygus spp. 

populations.  One disadvantage is that contamination of the traps with non-target species 

reduces the efficiency of the traps against F. occidentalis, which was the most damaging 

pest species present.  Further experiments would be useful to test the long-term efficiency 

of blue and white traps and to determine their impact on secondary pests.   
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Relatively few beneficial insects were caught on blue or white sticky traps (<5 per 

trap) compared to F. occidentalis (>200 per trap) (Table 6.1), but no assessment of the 

field populations of beneficial insects was made, so the impact of trapping on natural 

enemies could not be determined.  In the fields used, predatory mites were released for 

thrips and spider mite control but no flying natural enemies had been released and few 

were observed in the flower samples, so it is likely that the low trap catch reflected low 

numbers in the crop.  Bombus terrestris (Natupol, Koppert, Rodenrijs, NL) were used for 

pollination in all the experimental fields, so were present throughout the crops visiting all 

the flowers, yet few bumble bees were caught on traps of either colour.  The increase in 

percentage class 1 fruit in the mass trapping experiments (Table 6.3) indicates that the blue 

roller traps did not disrupt pollination, as there would have been more downgraded 

misshapen fruit if pollination had been affected.  Further work is required to determine the 

impact of mass trapping on beneficial insects, but blue traps are likely to be the better 

choice for mass trapping where F. occidentalis is the main pest problem as there would be 

less contamination of traps by non-target species and fewer natural enemies caught. 

The adhesive on sticky traps is a key part in efficiency and this study showed that a 

significant number of thrips (14% per day) may be escaping from the sticky traps (Figure 

6.5), as found by Chu et al. (2006).  An alternative explanation for the decline in thrips 

numbers overnight is that they are being predated, but there was no evidence of this as 

there were few predators caught on the traps.  The escape from traps corresponded with an 

increase in thrips numbers touching the edge of the traps, supporting the observation (Kirk, 

pers. comm., 2011) that the thrips move to the edge and use it to escape the glue on the 

trap.  However, although there is no data on the viability of escaped thrips and it seems 

unlikely that glue covered thrips would thrive.   It was observed that the traps are less tacky 

in cool conditions, so there may be differential escape at different temperatures, but this 

was not tested.  It would also be useful to know whether there is an increased escape rate 

from traps with additional aggregation pheromone, because this activates thrips.  Escape 

from traps explains why trap catch can be improved by adding insecticide to traps (Chu et 

al., 2006), although this would be less useful against pesticide-resistant F. occidentalis.  

Thicker glue also increases trap catch (Sampson, unpublished data, 2011), which may be 

the result of reduced escape rate or possibly increased attraction, if the glue changes the 

spectral properties of the trap.  There was a rapid decline in efficiency of the monitoring 

traps, which became less efficient even after a day in the crop and there was a direct 
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relationship between trap catch and frequency of replacement (Figure 6.6).  Further 

experiments are required to test whether the efficiency of roller traps, which have a wet 

glue designed for longer use, decline at a similar rate to that of monitoring traps.  

Comparison of the cost of traps (including labour) and return on investment (Table 6.3) 

suggests that the roller traps could be replaced up to three times in the strawberry season 

(about every 6 weeks) without incurring a loss, but there would be no immediate financial 

return from replacing traps in crops with little thrips damage.  

The trap placement experiments confirm that vertical placement of traps, just above 

the crop canopy catches the most thrips, as found previously by Gillespie and Vernon 

(1990) in cucumber and by Laudonia and Viggiani (1998) in strawberry.  The cardinal 

direction of the traps made no difference to the total trap catch, as found by Hoddle et al. 

(2002).  An understanding of why more thrips are landing on the north side of traps 

(regardless of the wind direction) may add further insight into the flight behaviour of 

thrips.  It is possible that the thrips to the north of the traps are more attracted towards traps 

than those to the south because the traps have a greater contrast with the background, or 

are lit up by the sun shining through them when viewed from the north with the sun in the 

background.  An alternative explanation, which seems unlikely given that thrips aggregate 

on visible bright surfaces (Terry & Gardner, 1990), is that thrips are flying around the traps 

to land on the shaded side.    The mass trapping experiments demonstrated that traps within 

strawberry beds are vulnerable to damage from crop work (section 6.3.6.1) and that placing 

roller traps along the polytunnel legs between the tunnels is a viable alternative (section 

6.3.4.2).  More female thrips were caught on traps that were placed between the tunnels in 

the area where the polytunnel legs reach the ground and if this is more generally true, it is 

an interesting behavioural result that is unexplained.  At the time of the experiment there 

was a combination of high thrips numbers and low numbers of flowers, so it is likely that 

thrips were searching for pollen to feed on.  It could be that females were more actively 

searching for new food sources and egg-laying sites away from the (overcrowded) crop 

than males, as females have a greater need for pollen for egg-production and a greater 

dispersal response to senescence than males (Rhainds & Shipp, 2003).  In contrast, more 

males were found on the traps in the strawberry beds, which had a higher sex ratio (64% 

male compared to 44-47% male in flowers or on leg traps), which may relate to swarming 

behaviour.  Males form mating swarms on attractively coloured surfaces and have a greater 

response to colour than females when swarming (Matteson & Terry, 1992), but it is 



Mass trapping _____________________________________________________Chapter 6 

 

213 

 

unknown whether the aggregation sites are chosen to be close to possible food sources (as 

would be the case in the strawberry beds).  Further studies are required to better understand 

the dispersal and flight behaviour of male and female thrips.  At least on some occasions, 

placing traps between the strawberry beds, where the polytunnel legs reach the ground, 

may be more effective for mass trapping than placing them above strawberry beds because 

the traps catch more female thrips, therefore having a greater effect on the population. 

Field monitoring gave an indication that trapping could be effective throughout the 

growing season, as blue sticky monitoring pheromone traps caught many thrips in every 

week that the polytunnel covers were in position (mid-May to late-October) (Figure 6.6 C).  

The efficiency of trapping was similar throughout the season, but possibly better at the 

start before the first flower flush (Figure 6.9 D).  Frankliniella occidentalis flight is likely 

to increase when flowers are scarce because they feed on pollen (Whittaker & Kirk, 2004) 

and would be searching for food.  In addition, starved thrips are known to fly more and 

have a greater response to colour and odour than satiated thrips (Davidson et al., 2006).  

This could explain the increased trapping efficiency before the crop had come into full 

flower.  The number of thrips per flower could also play a part by increasing dispersal at 

high density (Crespi & Taylor, 1990).  The broad increases in trap catch and trapping 

efficiency when maximum temperatures were around 30°C and reduction when maximum 

temperatures were around 20°C (October) is in line with published information on F. 

occidentalis flight, which showed no take-off at 15°C and increasing flight activity 

between 20-30°C in a UK population (O'Leary, 2005).  Trapping efficiency is likely to 

decline with the length of time that traps are up, as traps become contaminated by dirt and 

insects and because the glue loses its stickiness in places.  In the mass trapping 

experiments, thrips could be seen walking over some areas of the blue sticky roller traps 

after two months in the field.  Mass trapping reduced thrips numbers and fruit bronzing 

when it was at most risk of thrips damage (July to September), but the trapping efficiency 

index suggests that there might be a benefit in mass trapping from the start of the season 

(from April), as soon as the polytunnels are erected.  Early trapping may keep thrips at a 

level that can be maintained by the predatory mite N. cucumeris, however the returns 

would not be as high early in the season if thrips numbers remain below the economic 

injury level through May and June.  It would be interesting to test whether mass trapping 

could be used to reduce the overwintering thrips population.  Although temperatures would 

generally be below optimum for thrips flight (about 20°C), traps could be effective on 
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warm days as there would be less competition from flowers.  Further work is needed to test 

the impact of using traps at different times of the year and to determine whether, or how 

often, the traps should be replaced during the season to maximise returns. 

The addition of the F. occidentalis aggregation pheromone to blue sticky roller traps 

approximately doubled the trap catch in semi-protected strawberry.  This is the first record 

of using the aggregation pheromone in strawberry (Sampson & Kirk, 2013) and the 

increase in trap catch is consistent with that found in protected pepper (Hamilton et al., 

2005; Sampson et al., 2012), cucumber (Covaci et al., 2012), tomato (Gómez et al., 2006), 

and top fruit (Broughton & Harrison, 2012), where addition of the pheromone resulted in 

trap catch increases between 20% and 300%.  Increases in F. occidentalis trap catch have 

also been found using plant volatiles and their analogues (Brødsgaard, 1990; Frey et al., 

1994; Teulon et al., 1999; Davidson et al., 2007), which attract other thrips species as well 

as F. occidentalis, so they may be useful for mass trapping in crops where there is a 

complex of thrips pests.  The aggregation pheromone has advantages over plant volatiles 

where F. occidentalis  is the main thrips pest species as very small quantities are required 

to elicit a response (Dublon et al., 2008) (<0.5 g per ha was used in this study) and it 

increases F. occidentalis trap catch without directly affecting key natural enemies 

(Broughton & Harrison, 2012; Sampson et al., 2012).  Although a mix of thrips species 

was present at the beginning of the season in strawberry (see Chapter 3), fruit damage 

occurred when the thrips population was predominantly F. occidentalis (August and 

September), which is when the aggregation pheromone is likely to be most effective.   

As well as reducing the adult thrips population, trapping reduced the larval thrips 

population by a broadly similar amount, taking into consideration the greater variability of 

larval counts.  Although both adults and larvae can cause damage to strawberries, larvae 

are the most damaging (Chapter 4) and the results suggest that the reduction in adult 

population led to fewer larvae, which then led to less damage. 

The economic injury level defined from damage assessed on pack-house fruit (see 

Chapter 4) equated to a density of around six adult thrips per flower in the mass trapping 

experiment (6.3.6.2), which was within the range of published damage thresholds in 

strawberry (Steiner & Goodwin, 2005a; Coll et al., 2007a).  The economic returns 

calculated using the economic injury level (Table 6.3) are considered conservative as they 

do not include loss of fruit that occurred in late August and October, nor do they consider 
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possible consequential benefits such as reduced spraying costs or reduced numbers of 

thrips in the following season.  In this study a high density of pheromone monitoring lures 

(every 2.2 m) was used, but if the lures could be spaced at wider intervals without losing 

efficacy, then the economic returns on trapping would be greater than with traps alone.  

Further work is required on the range of pheromone attraction in thrips to optimise the 

spacing and formulation of traps and lures for mass trapping.   

This study shows that mass trapping can be cost-effective against a polyphagous, high-

density pest species with a short generation time, and integrates well with a pest 

management programme for F. occidentalis in semi-protected strawberry.  Mass trapping 

is unlikely to be sufficient to control F. occidentalis on its own and needs to be used 

alongside other measures.  There is plenty of scope for improving the mass trapping by 

optimising the trap colour and scent, testing different trap sizes and automating the 

application to reduce labour costs.  The cost-benefit calculations, while done in the UK, are 

likely to be applicable to other countries and other high-value crops such as cucumber and 

cut flowers. 
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Table 6.1.  The mean number ± SEM of selected pest species: F. occidentalis, T. major and 

L. rugulipennis, beneficial species: bees, hoverflies and Aeolothrips intermedius, and total 

non-target species caught on blue or white sticky traps over 96 h in a semi-protected 

strawberry crop (n = 14).  The table shows untransformed means whereas the statistical 

analysis is on log transformed data.   

 Mean number ± SEM of insects caught per sticky 

monitoring trap (n = 14) 

Insect type Blue traps White traps F(1,13) P 

Pest species     

Frankliniella occidentalis
1 

208.8 ± 17.6 234.4 ± 20.0 1.1 0.32 

Thrips major
1 

50.4 ± 5.6 96.0 ± 8.8 26.9 <0.001 

Lygus rugulipennis 2.8 ± 1.0 11.0 ± 3.1 12.8 0.003 

Beneficial insects     

Bees
2 

0.7 ± 0.2 1.1 ± 0.4   

Syrphidae 0.6 ± 0.2 1.3 ± 0.5   

Aeolothrips intermedius 0.3 ± 0.2 0.5 ± 0.2   

Total beneficial insects
3 

1.8 ± 0.4 4.4 ± 1.0 5.4 0.036 

All insects (except thrips)
4
 32.1 ± 3.3 66.4 ± 13.6 16.4 0.001 

 

1
  F. occidentalis and T. major estimates were extrapolated from sections of trap counts.  

 

2
  Bees includes solitary bees, bumble bees and honey bees. 

3  
Total beneficial insects includes coccinellids, predatory mirid bugs (Anthocoris nemorum 

and Orius spp.) and parasitic Hymenoptera in addition to those listed above. 

4 
All insects represents whole trap counts of all insects except thrips.  The majority of these 

were dipterans that were not considered to be pest or beneficial species. 
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Table 6.2.  Estimated numbers of thrips in flowers per plot and on traps in semi-protected 

strawberry (cv. Camarillo) and comparison between thrips numbers in untreated plots and 

plots treated with roller traps, pheromone lures and plant volatile lures, in a 1
st
 and a 2

nd
 

year crop.  The table shows untransformed means whereas the statistical analysis is on log 

transformed data.   

Month: April May June July August 

1
st
 year crop      

Thrips per control plot
a
  0 74 428 2,370 24,443 

Thrips per treated plot
a
  0 37 142 527 12,813 

Thrips per trap
b 

  813  30,646 

2
nd

 year crop      

Thrips per control plot
a
 26 2,383 1,526 1,182 10,666 

Thrips per treated plot
a
  16 2,107 612 584 4,224 

Thrips per trap
b 

  2,189  14,850 

Analysis of treatment effects
c
      

F(1,10) 0.8 0.6 14.0 7.4 9.0 

P 0.40 0.46 0.004 0.022 0.013 

 

Key: 

a
  Estimated thrips per plot = Thrips per flower × flowers per plant × plants per plot. 

b
  Estimated thrips per trap = Thrips counts on trap sections × trap length. 

c
  Analysis of treatment effect on thrips per plot using analysis of variance in both fields 

together. 
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Table 6.3.  Cost-benefit analysis of mass trapping in semi-protected strawberry.  

Comparison of use of no traps with use of blue sticky roller traps, with and without the 

Frankliniella occidentalis aggregation pheromone in a UK crop.   

 

 No traps 

(control) 

Traps only Traps with 

pheromone 

Total cost of trapping (£ ha
-1

) - 577 1,953* 

Sales of class 1 fruit (£ ha
-1

) (%) 12,482 (67%) 17,162 (92%) 18,098 (97%) 

Sales of class 2 fruit (£ ha
-1

) (%) 2,525 (33%) 631 (8%) 252 (3%) 

Total sales in September (£ ha
-1

) 15,007 17,793 18,351 

Return on trapping (£ ha
-1

) - 2,209 1,391* 

 

*Cost and return were calculated using current prices of pheromone monitoring lures.  If 

the pheromone were registered and formulated as a control for mass trapping, different 

prices would apply. 

 

  



Mass trapping _____________________________________________________Chapter 6 

 

219 

 

 

 

Figure 6.1.  Trial layout for the pilot mass trapping experiments in semi-protected 

strawberry crops (cv. Camarillo), from April to August 2012, showing the approximate 

location of the control plots in white (without traps or lures) and treated plots in red (with 

blue sticky roller traps, blue sticky monitoring traps, lures with the aggregation 

pheromone, neryl (S)-2-methyl butanoate, and lures with plant volatile lures) for (A) a 

first-year crop and (B) a second-year crop in the West Midlands, UK.   The images of the 

greenhouses are from Google Earth (https://www.google.com/maps). 

A 

B 

All plots; 17.6 m long 

and 6.5 m wide.  

Approx. to scale. 

All plots; 17.6 m long 

and 6.5 m wide.  

Approx. to scale. 

Image © 2013 Bluesky 

Image © 2013 Bluesky 



Mass trapping _____________________________________________________Chapter 6 

 

220 

 

 

                     

 

Figure 6.2.  A plot from the pilot mass trapping experiments in a first-year semi-protected 

strawberry crop (cv. Camarillo) showing (A) the initial layout for the treated plots with 

sections of blue sticky roller trap (Optiroll, Russell IPM) run along the legs of the 

polytunnels and blue sticky monitoring traps placed on bamboo canes within the 

strawberry beds (B) the method of securing the roller traps to the polytunnel legs and (C) a 

sticky monitoring trap secured on a bamboo cane with an aggregation pheromone lure 

through the string hole. 

 

A 

B C 

Pheromone lures 
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Figure 6.3.  Trial layout for the 2012 mass trapping experiment in a semi-protected 

strawberry crop (cv. Camarillo) in the West Midlands, UK, showing the approximate 

location of (A) control plots (without traps or lures), (B) trap plots (with blue sticky roller 

traps (Optiroll, Russell IPM) and (C) pheromone trap plots (with blue sticky roller traps 

(Optiroll, Russell IPM) and aggregation pheromone lures (Thripline ams, Syngenta 

Bioline)).  
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Figure 6.4.  The percentage of reflectance in wavelengths from 300-700 nm of the sticky 

traps types used in this chapter from white barium sulphate.  Measurements show the mean 

of two or three readings and, where available, on areas of the trap with or without 

adhesive. 
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Figure 6.5.   The mean trap catch ± SEM of adult thripids caught on blue sticky monitoring 

traps comparing day with day and night trap catch (F(1, 9) = 6.5, P = 0.031), in a semi-

protected strawberry crop (n = 10 traps).  The figure shows untransformed means whereas 

the statistical analysis is on log transformed data.   
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Figure 6.6.   The mean trap catch ± SEM of adult thripids caught on blue sticky monitoring 

traps over 4 days with traps replaced daily, at two days or not replaced (F(2, 18) = 90.9, P < 

0.001), in a semi-protected strawberry crop (n = 10 traps).  Means with the same letter are 

not significantly different (Tukey’s test, P > 0.05).  The figure shows untransformed means 

whereas the statistical analysis is on log transformed data.   
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Figure 6.7.  Mean trap catch ± S.E. of thripids on blue sticky monitoring traps in different 

orientations (F(4, 76) = 14.6, P < 0.001), above a semi-protected strawberry crop (n = 

20 traps).  Bars with the same letter are not significantly different (Tukey’s test, P > 0.05).  

Analysis was on transformed data whilst the chart shows untransformed data. 

Key: VPLE = vertical, portrait, low, east facing; 

VLLE = vertical, landscape, low, east facing;  

VLLS = vertical, landscape, low, south facing;  

VLHE = vertical, landscape, high, east facing;  

Horiz = horizontal, low.  
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Figure 6.8.  Mean trap catch ± S.E. of thripids on blue sticky traps placed within 

strawberry beds or in the area between beds where the polytunnel legs reach the ground, 

over four days in a semi-protected strawberry crop (n = 18).  Pair-wise comparisons 

between trap catch of male and female thripids on traps in and between strawberry beds are 

shown by P values.  Analysis was on transformed data whilst the chart shows 

untransformed data. 
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Figure 6.9.  Seasonal changes in (A) flowers per m

2
, (B) thrips per m

2
, (C) thrips per trap 

and (D) trapping efficiency index (thrips per trap/thrips per m
2
) in two plots in semi-

protected strawberry in 2011. 
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         Figure 6.10.  Samples taken through the season in semi-protected strawberry in: plots 

without blue sticky roller traps and plots with blue sticky roller traps, pheromone lures and 

plant volatile lures. (A) mean adult thrips per flower ±SEM in a 1
st
 year crop (B) mean 

adult thrips per flower ±SEM in a 2
nd

 year crop  (C) mean fruit damage ±SEM in a 1
st
 year 

crop and (D) mean fruit damage ±SEM in a 2
nd

 year crop.  Damage was recorded as the 

number of seeds surrounded by bronzing on swollen white fruit.  Comparison between 

control and trapped plots are shown by stars for each assessment date (n = 4).  Analysis 

was on transformed data whilst the charts show untransformed data.  Key: ns = not 

significant; * P<0.05; ** P<0.01. 
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         Figure 6.11.  Samples taken on 9 July, 8 August and 10 September 2012 in: plots without 

blue sticky roller traps; plots with blue sticky roller traps only; and plots with blue sticky 

roller traps and pheromone lures. (A) mean adult thrips per flower ±SE and (B) mean fruit 

damage ±SE.  Damage was recorded as the number of seeds surrounded by bronzing on 

swollen white fruit.  Differences were significant in September (thrips numbers P<0.001, 

fruit damage P = 0.006) (n = 3).  Means with the same letter are not significantly different 

(P > 0.05).  Analysis was on transformed data whilst the charts show untransformed data.
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Chapter 7 

General discussion 

The overall aim of this study was to improve the management of F. occidentalis in 

semi-protected strawberry in the UK by developing an easy to use monitoring method with 

attendant economic injury levels (EILs) and by investigating the viability of using traps for 

control of F. occidentalis.  Improvements were made through new knowledge and 

understanding of the biology of the species.  During the study, discoveries were made 

about the phenology of thrips in UK strawberry, which were investigated further.  The use 

of pheromone for monitoring and mass trapping was investigated. 

7.1.  Monitoring thrips 

The use of action thresholds for decision-making requires an accurate estimate of 

population density that can be used by growers in the field.  Methods of sampling thrips in 

strawberry flowers and on traps have been developed previously (González-Zamora & 

Garcia-Marí, 2003; Steiner & Goodwin, 2005b).  This study improved the accuracy of 

assessing thrips populations in flowers by adding to the knowledge of the distribution of 

thrips on plants.  Adult thrips were used as larvae cannot be sampled reliably by eye in the 

field (González-Zamora & Garcia-Marí, 2003).  The age and position of strawberry 

flowers sampled could affect population estimates of adult thripids by as much as a factor 

of four (see Chapter 2).  This highlighted the importance of taking a consistent flower 

sample.  A reliable estimate of the adult thrips population in strawberry flowers was 

achieved by farm staff using the revised methods following a minimum of training (Table 

2.3).  It was sufficient to sample 10 flowers from an area of interest to estimate the thrips 

density in medium-aged flowers taken from the tops of plants with 80% confidence in the 

mean.  As found by Shipp and Zariffa (1991), monitoring thrips population density in 

flowers was a better measure than trap catch for predicting fruit damage as it accounted for 

changes in flower density within a crop and was less subject to weather conditions that 

affect thrips flight (see Chapter 4).   
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There have been reports of the estimates of adult thrips per flower using eye counts 

differing greatly from absolute counts from alcohol samples (J. Fitzgerald, pers. comm., 

2013), so the next step is to train growers in the sampling method and to verify it on a 

wider scale.  Within fields, thrips population density correlated with temperature gradients 

under the polytunnels (Figure 3.8).  This information could be used by growers to predict 

areas of greatest risk of thrips damage and to adapt sampling programmes and control 

measures accordingly (e.g. numbers of predators released in different areas).  Year on year 

records of pest populations are invaluable for decision-making at a farm level, both to 

predict periods of risk under local conditions, but also to confirm that low numbers of 

thrips do not cause economic crop loss when predators are well established.  This builds 

the confidence needed to avoid unnecessary spray treatments.  The change from a 

chemically-based to a biologically-based control programme is a cultural change that relies 

on knowing the relative numbers of pests and predators in a crop, so the first step towards 

improved control is to start monitoring as soon as flowering commences (Figure 7.1 B). 

7.2.  Economic Injury Levels 

On strawberry, F. occidentalis causes bronzing (russeting) on fruit, which correlates 

directly with thrips density in flowers (Steiner & Goodwin, 2005a; Coll et al., 2007a; 

Nondillo et al., 2010).  Damage to strawberry fruit has been shown to vary with cultivar, 

growing system and climate, so it was necessary to quantify fruit bronzing in relation to 

thrips density in UK crops before EILs could be defined.  Data on the susceptibility of 

different strawberry stages to bronzing is contradictory (most damage occurred either on 

green fruit, red fruit or on all stages of fruit in the papers above) and the relative damage 

caused by different thrips stages was untested.  This study quantified thrips damage under 

controlled conditions and in the field, in different months and years (see Chapter 4).  All 

stages of strawberry flower and fruit were susceptible to thrips damage and larvae caused 

more damage than adults per individual.  The timing of damage related most to the 

numbers and distribution of thrips larvae on different fruit stages at the time.  At lower 

thrips densities, larvae were most abundant at late flowering and early fruit stages, so most 

damage occurred soon after flowering, but at higher thrips densities there were 

proportionally more larvae on the later stages of fruit development, which partly explains 

why the relative timing of damage varies between crops.  Shakya et al. (2010) found that 
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the distribution of thrips larvae on strawberry plants varies with predator establishment and 

pollen availability, but further controlled studies are required to determine whether the 

change in larval distribution at different thrips densities was due to movement of larvae as 

a result of competition for food and space, or due to predation or avoidance of predators. 

The EILs were derived by regressing fruit damage on thrips density, then calculating 

the lowest thrips density that would result in economic fruit damage from the regression 

equations.  Economic fruit damage was defined as the amount of bronzing on fruit that 

would result in the downgrading from a good quality higher-priced (class 1) fruit to a 

lower-priced (class 2) fruit, which occurred when about 10% of the fruit surface was 

bronzed (Figure 4.10).  The resulting EILs of 5-11 adult thrips per medium-aged flower 

(see Chapter 4) were similar to those identified in Australia, where temperatures were 

warmer and EILs might be expected to be lower (Steiner & Goodwin, 2005a).  This 

suggests that although EILs were identified in the West Midlands, they might be more 

widely applicable to other (warmer) parts of the UK.  All thresholds are an approximate 

guide to be treated with some caution and adjusted at a farm level according to specific 

biotic and abiotic factors such as temperature, growing methods, secondary pests and their 

controls at the time.  Despite this, the relationship between thrips density and fruit damage 

was surprisingly consistent, but the studies were based on one cultivar and were carried out 

in one region of the UK, so further data are required to determine whether the relationship 

is more widely applicable.  Some cultivars favour thrips development (Rahman et al., 

2010), but the susceptibility of different cultivars to damage has not been tested, nor have 

the physical and chemical properties been identified that make some cultivars more 

favourable than others.  This knowledge could identify features that would confer some 

tolerance or resistance to thrips.  The EILs are considered realistic as they are derived from 

actual damage observed in a commercial pack-house.  If anything they are conservative 

because the damage in the field was assessed on white fruit, where damage shows up more 

clearly, whereas the damage in the pack-house was assessed on red fruit.  The EILs may 

change when there is a glut or scarcity of good quality fruit, or between pack-houses, or 

supermarket buyers, but this was not tested. 

One of the most effective control strategies currently available to UK strawberry 

growers for the control of pesticide-resistant F. occidentalis is to combine the use of the 

predatory mite, N. cucumeris, which predates thrips larvae, with the occasional use of 

spinosad (Tracer) to reduce outbreaks of adult thrips (Rahman et al., 2012).  As pesticide-
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resistant strains of F. occidentalis are widespread (Sparks et al., 2012) and spinosad 

(Tracer) can interrupt predatory mite establishment (Rahman et al., 2011b), it is important 

to avoid unnecessary treatments by using action thresholds (Figure 7.1 D, E).  Shakya et al. 

(2010), estimated  that action thresholds could be relaxed by between 1-2 thrips for each 

predatory mite present per flower or fruit based on their predation rate.  This study goes 

further by quantifying the reduction in thrips damage to fruit resulting from N. cucumeris 

predation, and the results (relaxation of the threshold by 1.6 thrips per mite) support those 

of Shakya et al. (2010).  Neoseiulus cucumeris is often considered a rather poor predator 

because it only feeds on first instar larvae, but this study demonstrates that it prevents fruit 

damage in strawberry (Figures 4.5, 4.6) by feeding on larvae, thus providing further 

evidence that larvae are the most damaging thrips stage (Figure 4.7).  The study suggests 

that the EIL can be relaxed from about five adult thrips per flower where few predators are 

present up to about 11 adult thrips per flower where predatory mites are well established 

(Table 4.4).  Above these thrips densities, adult thrips can cause sufficient damage on their 

own, without subsequent larvae, which would not be controlled by the predatory mites that 

only feed on larvae (see Chapter 4).  Although the use of N. cucumeris is increasing in UK 

semi-protected strawberry and is routine in glasshouse crops, there are still some research 

questions that have not been addressed.  The sampling methods for predatory mites need to 

be optimised for strawberry and further studies are required to confirm the percentage 

cover and numbers of predators required per fruit to prevent damage.  Control of 

F. occidentalis using N. cucumeris is a preventative treatment that relies on good 

distribution of the predatory mites over the crop before adult thrips populations build up 

(Fitzgerald & Jay, 2011).  The distribution of mites was patchy in the fields sampled 

during this study, so improved application methods are required to ensure an even 

distribution.  Methods might include repeated releases, novel release methods or 

mechanical distribution (Sampson, 1998; Opit et al., 2005).   

This study quantified EILs, but growers need to know action thresholds (AT), which is 

the thrips density at which treatment should be made to prevent damage.  For a fast-acting 

chemical insecticide like spinosad (Tracer), the AT may be close to the EIL.  For example, 

where predatory mite establishment was poor, damage occurred at around five adult thrips 

per flower, but little damage was observed at four adult thrips per flower in the crops 

sampled, so an AT of between four and five adult thrips per flower (or 100% flower 

occupancy) may be appropriate, but this needs to be verified in commercial crops.  The 
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speed of increase of thrips density in flowers is also relevant, which is affected by the time 

of year, distribution of thrips between flowers and flower density as well as population 

size.  For slower-acting biopesticides, a lower AT may be appropriate, but until an 

effective biopesticide treatment has been identified in strawberry and the time-lag between 

treatment and thrips infection determined, an appropriate AT cannot be defined.  The 

adoption of action thresholds for timing insecticide treatments is likely to reduce the 

number of spray treatments (Figure 7.1 D, E), which would reduce the selection pressure 

and therefore maintain or improve the efficacy of the few chemical insecticides available 

to strawberry growers (Denholm & Jespersen, 1998; Contreras et al., 2008), as well as 

reducing the impact on the natural enemies that are essential for maintaining control 

(Rahman et al., 2011b).  Although it takes a leap of faith to reduce insecticide use for those 

growers who have come to rely upon them, the economic benefits of doing so when faced 

with pesticide-resistant thrips have been proved in protected crops across Europe (van 

Lenteren, 2007; Sampson et al., 2009).  These research results provide further evidence to 

show that natural enemies can be effective. 

7.3.  Phenology in strawberry 

It is easier to maintain control of low thrips populations than to bring high thrips 

populations under control, so the phenology of F. occidentalis was studied in semi-

protected strawberry to identify factors affecting thrips population development that could 

be manipulated by growers to improve control (see Chapter 3).  The study showed that F. 

occidentalis is dominant in the crops sampled; displacing the native Thrips major as the 

season progresses.  Further data are required to test whether this displacement results from 

competition between the two species or because F. occidentalis are more resistant to 

chemical insecticides.  Population growth of F. occidentalis occurred once mean 

temperatures exceeded about 15°C and declined again once temperatures fell below 15°C 

at the end of the season, which is consistent with other crops (Gaum et al., 1994).  

Comparison of temperature records and published data on the development of UK 

populations of F. occidentalis (McDonald et al., 1998) suggests that they can complete 

about five generations during the growing season under tunnels.  The thrips populations 

reached a plateau during July and August, but maximum thrips density varied between 

fields.  Predator establishment was identified as one limiting factor, but the effect of flower 
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density on potential thrips population increase and the thrips carrying capacity of a crop 

were not quantified.  The numbers and pattern of flowering could be manipulated as part of 

a thrips management strategy.   

Adult female F. occidentalis overwintered in the dying inflorescences of the previous 

year’s crop.  The carry-over of thrips from first- to second-year crops resulted in more 

thrips in second-year crops by a factor of about 40 at the start of the season, but it is not 

known whether the removal of old inflorescences (and the thrips that they contain) after 

cropping would reduce this carry-over.  Thrips numbers remained low enough in some 

first-year crops for N. cucumeris to maintain control throughout the season, so the viability 

of growing only one-year crops could be considered as a way of maintaining low thrips 

numbers, by comparing the cost of re-planting against loses due to thrips in two-year crops.  

Alternatively, a treatment could be identified that reduces thrips populations at the end of 

cropping.  Slower-acting or longer-residual pesticides (biological or chemical) could be 

used at this stage as long as they do not interfere with predator establishment the following 

spring.  Although carry-over from first- to second-year crops was demonstrated (Figure 

3.7) and thrips are known to be carried between fields on plants and equipment, there is 

limited information on the extent to which F. occidentalis migrates between fields and 

farms within the UK and this would help growers to design control strategies further. 

Frankliniella occidentalis has a wide range of host plants (e.g.Chamberlin et al., 

1992).  It was found on many weed species within strawberry fields in this study, three of 

which were common and widespread and flower throughout the year.  Weed hosts are 

another source of thrips infestation and overwintering (Tables 3.4, 3.5).  No attempt was 

made to quantify the effect of weed control on F. occidentalis damage, but spring-

flowering weeds are likely to increase thrips abundance early in the season.  Growers 

frequently report an invasion of thrips adults and consequent damage following mowing 

around the edges of fields, as observed in grapevines and other crops (Allsopp, 2010), so 

mowing or weeding at the wrong time might be a direct cause of damage resulting from 

adult thrips migrating onto a crop.   Where natural enemies are well established, weeds can 

also be a refuge for predators (Frescata & Mexia, 1996), so the relative benefits and 

disadvantages of weeds need to be quantified in UK strawberry. 
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7.4.  Optimising the use of the aggregation pheromone 

Male F. occidentalis produce an aggregation pheromone, neryl (S)-2-methylbutanoate, 

which increases trap-catch (Hamilton et al., 2005), but by relatively small amounts (Table 

1.1).  The aggregation pheromone was tested at different release rates, chiral forms and in 

different crops (Chapters 5 and 6), but no improvement in trap catch was identified above 

those already found (Table 1.1).  The experiments added to the knowledge on flight 

behaviour.  The thrips landed in response to pheromone combined with an attractive colour 

rather than flying directly to a lure.  This limits the potential increase in trap-catch as thrips 

may land on flowers before reaching the traps.  Neither pheromone nor an attractive colour 

drew thrips far above a flowering crop.  Thrips may be arrested in flowers that contain 

food, scent and an attractive colour.  Studies suggest that response to pheromone may be 

greater when there are few flowers (Figure 6.9 D), but further experiments are required to 

confirm this.  Even the doubling of trap catch observed with the aggregation pheromone in 

strawberry can be used to improve the sensitivity of monitoring traps or to enhance mass 

trapping (Sampson & Kirk, 2013).  The increased activity resulting from the aggregation 

pheromone (Olaniran, 2013) has the potential to improve the efficacy of insecticides by 

increasing the pick-up of a chemical, or increasing exposure to the sprays in a similar way 

to alarm pheromone (Cook et al., 2002), or it could increase the efficacy of attract and kill 

or attract and infect techniques (Niassy et al., 2012). 

A second male-produced volatile, (R)-lavandulyl acetate, has been shown to calm 

females and may have a role in mating behaviour (Olaniran, 2013), or it may be part of the 

aggregation pheromone at a specific concentration or ratio to neryl (S)-2-methylbutanoate 

(Zhu et al., 2012).  Different release rates, ratios and chiral forms of lavandulyl acetate 

were tested in the field and (R)-lavandulyl acetate consistently reduced the trap catch of 

female F. occidentalis, supporting its role as a calming pheromone, but there was no 

evidence that it is part of the aggregation pheromone.  Further experiments are required to 

elucidate its role and to test whether the arrestment effect is strong enough to reduce 

feeding or egg-laying, which might have an applied use in crop protection.  Male-produced 

aggregation and sex pheromones can involve a complex of compounds that have different 

roles at long and short range (Sirugue et al., 1992).  Frankliniella occidentalis adult males 

produce several less-volatile hydrocarbons, including 7-methyl tricosane that causes 

females to stay in the vicinity of the pheromone on contact (Olaniran et al., 2013).  Thrips 
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escape from sticky traps (Figure 6.5), so it is possible that such pheromones could reduce 

escape-rate. 

7.5.  Mass trapping 

A practical method of thrips mass trapping was developed for semi-protected 

strawberry that caught sufficient thrips to reduce strawberry fruit damage and increase 

grower returns when used as part of an IPM programme (Sampson & Kirk, 2013).  It took 

several weeks for the traps to catch sufficient thrips to reduce a population, so it is likely 

that they can only be used as a preventative measure (Figure 7.1 A, C).  The traps are not 

sufficient to control thrips on their own but are an extra tool for use in addition to the 

biological (e.g. predatory mites) and chemical (e.g. spinosad) control methods that are 

already used and will strengthen IPM programmes.  Trapping complements N. cucumeris 

by controlling adults, whereas N. cucumeris only feeds on larvae.  It also reduces the need 

for remedial treatments, so makes a useful contribution to the management of insecticide 

resistance. 

There is scope for improving mass trapping by optimising trap colours, glues, scents 

distance between lures and replacement rate, although the impact on important beneficial 

insects would have to be tested to ensure compatibility.  The traps reduced thrips numbers 

and fruit damage from June to September, when daytime temperatures were optimal for 

thrips flight.  Further research is needed to test whether traps could be useful throughout 

the year.  Although temperatures are usually below the flight threshold of about 15°C 

through the winter, flight still occurred on the occasional warm day (see Chapter 3) and the 

relative attraction of traps may be greater in the winter when there are fewer flowers to 

compete with the traps.  Trapping efficiency may be affected by cultural techniques.  Some 

growers in Southern UK use blue mulches, which could attract thrips away from blue 

sticky traps and reduce trap-catch.  In this study, roller traps were placed down every 

tunnel (6.5-8.0 m apart) and further information is required on the flight behaviour of 

thrips and the distance of attraction to determine whether the traps could be spaced wider 

apart without reducing the efficacy.  If significant numbers of thrips migrate into first-year 

crops from nearby fields, then surrounding the crops with traps may be effective.  If mass 

trapping is adopted more widely by growers, then an automated, tractor-mounted 

application system could be developed to reduce the application costs. 
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7.6.  Integrated Pest Management (IPM) of F. occidentalis in semi-

protected strawberry 

During the course of this project a grower who has implemented some of the strategies 

in this study (Figure 7.1), including monitoring, regular predator release and mass trapping, 

has significantly improved thrips control in semi-protected strawberry, while other growers 

are still suffering devastating crop loss.  Some of the control failures may be due to the 

difficult transition from chemically-based to biologically-based control methods, as many 

UK strawberry growers are new to the use of N. cucumeris.  Evidence for this is the 

numbers of UK strawberry hectares treated with N. cucumeris, which increased from 469 

ha in 2006 to 2,567 ha in 2012 (Garthwaite et al., 2006, 2013).  Some control failures 

result from releasing too few predators too late, but at some farms predators are being 

killed by the use of incompatible pesticide treatments used against thrips and against other 

pests such as spider mites (T. urticae), capsids (L. rugulipennis) and spotted wing 

drosophila (Drosophila suzukii).  A variety of IPM compatible control methods are 

available to control these species (Saville et al., 2013) and it is essential to avoid the use of 

broad-spectrum pesticides during the growing season if pesticide-resistant thrips are to be 

controlled.  Even when the best management programmes are implemented, thrips control 

occasionally breaks down and growers need fast-acting remedial treatments for such 

occasions until IPM programmes become more robust.  Further research is required to 

identify remedial treatments that could be rotated with spinosad.  These could include new 

chemistry, biopesticides, or if production costs came down, Orius sp. could be released at 

inundative rather than inoculative rates.  The UK has been at the forefront of developing 

biological pest control techniques in greenhouse crops that result in sustainable pest control 

to the benefit of growers, crop workers and consumers (van Lenteren, 2007).  Whereas the 

use of natural enemies has become routine in most glasshouse crops, the technology still 

needs to be transferred to those growers and also to some advisers who are new to 

biological control, so training and technology transfer may be as important as research to 

improve F. occidentalis control in UK semi-protected strawberry crops.  
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Figure 7.1.  How the methods identified in this study might be used to improve the control of F. occidentalis in semi-protected strawberry.  

 

 

 

 

 

 

 

 

 

 

Possible actions: 

A:  Add roller traps for mass trapping to the polytunnel ‘legs’ as soon as the cladding goes on as warmer temperatures will increase thrips flight. 

B:  Start monitoring weekly and record the numbers of adult thrips per flower, the numbers of flowers per plant and predator establishment. 

      Establish the predatory mite Neoseiulus cucumeris from first flowering and repeat releases as required.   

C:  A period of risk when flower numbers are declining, monitor carefully and replace the roller traps. 

D and E:  If the numbers of adult thrips per flower reach the EIL (economic injury level), treat with a compatible pesticide. 

F:  At the end of cropping, the impact of removing senescent flower trusses and controlling weeds on spring thrips numbers could be tested.
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Appendix A:  Handout given to farm staff before sampling thrips in 

flowers (see Chapter 2, 2.5.1.2). 

1. Select one medium aged flower sticking up from the top (not side) of each plant. 

Medium aged flowers have fresh looking petals but the pollen has dropped from the 

anthers, so the anthers look a bit darker. 

 

                  Young flower                     Medium aged flower                Senescent flower 

                (yellow anthers)                       (brown anthers)                     (dropped petals) 

               

2. Count the numbers of adult thrips (do not count larvae) in each flower and record them 

on the sheet. Use a x 10 hand lens to see the thrips.  Carefully pull down the petals on 

each side of the flower to see the thrips. 

 

          

Adult thrips have wings, may be dark or pale          Thrips larvae have no wings, all yellow 

 

Thrips photographs kindly provided by BCP Certis and Nigel Cattlin, Holt Studios

   

1-2 mm <1 mm 

Thrips adults Thrips larvae 

 
 



 © BCP Certis © Cattlin © Cattlin © Cattlin 
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Appendix B:  Temperatures recorded with a data logger placed inside a delta trap at about flower height during the growing season, in 

a semi-protected strawberry crop (field 3 in table 2.1) in the West Midlands, 2012. 
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